TW201014899A - Refrigerant composition comprising pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a) - Google Patents

Refrigerant composition comprising pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a) Download PDF

Info

Publication number
TW201014899A
TW201014899A TW98122293A TW98122293A TW201014899A TW 201014899 A TW201014899 A TW 201014899A TW 98122293 A TW98122293 A TW 98122293A TW 98122293 A TW98122293 A TW 98122293A TW 201014899 A TW201014899 A TW 201014899A
Authority
TW
Taiwan
Prior art keywords
mass
hfc125
refrigerant composition
hfc134a
refrigerant
Prior art date
Application number
TW98122293A
Other languages
Chinese (zh)
Inventor
Tatsumi Tsuchiya
Katsuki Fujiwara
Masahiro Noguchi
Yasufu Yamada
Original Assignee
Daikin Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Ind Ltd filed Critical Daikin Ind Ltd
Publication of TW201014899A publication Critical patent/TW201014899A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds

Abstract

The present invention provides a refrigerant composition that is nonflammable, and ensures low LCCP and less burden on the environment. More specifically, provided is a refrigerant composition containing pentafluoroethane (HFC125), 2, 3, 3, 3-tetrafluoropropene (HFO1234yf), and 1, 1, 1, 2-tetrafluoroethane (HFC134a), the ratio of HFC125/HFO1234yf/HFC134a being in a range surrounded by points(21/79/0 mass%), (28.5/71.5/0 mass%), (0/30.2/69.8 mass%), and (0/64/36 mass%) in a ternary diagram of a refrigerant composition containing HFC125, HFO1234yf, and HFC134a, and the composition essentially containing HFC134a and HFC125.

Description

201014899 六、發明說明: 【發明所屬之技術領域】 本發明係有關由用於冷凍及空調機器之五氟乙烷 HFC125 ) 、2,3,3,3-四氟丙烯(HF01234yf )、以及 1,1,1,2 -四氟乙烷(HFC134a)所成之混合冷媒組成物。 【先前技術】 地球暖化之更嚴肅問題於全世界被議論中,開發一種 減少環境負擔之冷凍空調機其重要性更爲大增。冷媒本身 具有對地球暖化之影響力之外,冷凍空調機的性能亦有相 當大的關連,因此冷媒的選擇,以削減寄與地球暖化之二 氧化碳產生量作爲技術,賦予重要的功能。 相較於目前爲止公知的氯氟碳(CFC )、氫氯氟碳( HCFC )、氫氟碳(HFC),最近,被揭示各種於地球暖化 係數之低分子內具有雙鍵之部份被氟化之丙烯。 作爲其中之一者,有2,3,3,3-四氟丙烯(HF01234yf )(專利文獻1、2等),該冷媒具燃燒性’21 °C下,空 氣中濃度爲6.5-12.5vol.%之範圍,具有著火的性質。又, 相較於先行技術用於開放型空調之HCFC22,之後之替代 化頻繁之無關臭氧層破壞之R407C、R410A’由於其沸點 高,因此單獨使用時無法有效保持冷凍能力之缺點存在。 選擇冷媒時,當然首重冷媒本身的地球暖化係數( GWP )小,而使用該冷媒時之機器的能量使用效率亦同樣 爲重要因素或更爲重要。前者係作爲直接影響之評定,後 -5- 201014899 者係作爲間接影響之評定’而作成其客觀的指標者之 LCCP (生命周期氣候性能分析)被提倡(非專利文獻1 等)。目前,爲了冷媒的綜合判定被廣泛確認’而提供最 適當之冷媒時,尙無評定至LCCP之例。 〔先行技術文獻〕 〔專利文獻〕 〔專利文獻1〕國際公開第2005/105947號手冊 〔專利文獻2〕國際公開第2006/094303號手冊 〔非專利文獻〕 〔非專利文獻 1〕"Life Cycle Climate Performance of Some Applications in Japan", Haruo Onishi, 15 th Annual Earth Technologies Forum and Mobile Air Conditioning Summit, April 13-15, 2004 Conference201014899 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to pentafluoroethane HFC125), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1, for use in refrigeration and air conditioning machines. A mixed refrigerant composition of 1,1,2-tetrafluoroethane (HFC134a). [Prior Art] The more serious problem of global warming is discussed in the world, and the development of a refrigerating air conditioner that reduces the environmental burden is even more important. In addition to the influence of the refrigerant on the global warming, the performance of the refrigerating and air-conditioning machine is also greatly related. Therefore, the choice of the refrigerant to reduce the amount of carbon dioxide generated by the earth and the warming of the earth as a technology gives important functions. Compared with chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs), which have been known so far, it has recently been revealed that various moieties with low-molecular elements in the global warming coefficient are Fluorinated propylene. As one of them, there are 2,3,3,3-tetrafluoropropene (HF01234yf) (Patent Documents 1, 2, etc.), and the refrigerant has a flammability of '6.5-12.5 vol in air at '21 °C. The range of % has the nature of fire. Further, compared with the prior art for the HCFC 22 of the open type air conditioner, the R407C and R410A' which are frequently substituted irrespective of the ozone layer destruction have a disadvantage of being unable to effectively maintain the freezing ability when used alone because of their high boiling point. When the refrigerant is selected, of course, the first heavy refrigerant itself has a small global warming coefficient (GWP), and the energy efficiency of the machine when the refrigerant is used is also an important factor or more important. The former is evaluated as a direct impact, and the LCCP (Life Cycle Climate Performance Analysis) is proposed as an objective indicator for the evaluation of indirect impacts (Non-Patent Document 1, etc.). At present, when the comprehensive judgment of the refrigerant is widely confirmed, and the most suitable refrigerant is provided, there is no case of an assessment to LCCP. [PRIOR ART DOCUMENT] [Patent Document 1] [Public Document 1] International Publication No. 2005/105947 (Patent Document 2) International Publication No. 2006/094303 (Non-Patent Document) [Non-Patent Document 1] "Life Cycle Climate Performance of Some Applications in Japan", Haruo Onishi, 15 th Annual Earth Technologies Forum and Mobile Air Conditioning Summit, April 13-15, 2004 Conference

Proceedings 【發明內容】 當冷媒沸點高,作用壓力低時,蒸氣壓縮式之冷凍循 環中,無法取得充足的能量,爲確保冷房、暖房的能量, 務必作成大型化的機器等之對策,於壓力損失等之影響下 ’通常間接影響產生惡化。又’於冷媒具燃燒性時,務必 使用電氣系統具高度安全性之構件,設置限制可塡充於機 器之上限重要。本發明係以提供一種LCCP良好、環境負 荷小’且不燃性之冷媒組成物爲目的者。 -6- 201014899 本發明者,鑑於上述課題,進行精密硏討之結果發現 ’介由壓縮機使冷媒循環,構成冷凍循環之裝置中,於含 有五氟乙烷(HFC125) 、2,3,3,3 -四氟丙烯(HF01234yf )’以及1,1,1,2-四氟乙烷(HFC134a)之冷媒組成物之 三角圖中(圖1),各自之成份於(21/ 79/ 0質量。/。)、 (28.5/71.5/0 質量 % ) 、( 0/30.2/69.8 質量%)及( 〇 / 64 / 36質量% )之各點圍成之範圍內,且務必含有 φ HFC134a及HFC125之冷媒組成物可解決上述之課題。 更於該三角圖中,發現各自成份於(17/76/7質量 %)、( 25 / 68/ 7 質量%)、( 1 8/ 58/ 24 質量%)、( 7 / 69 / 24質量% )、及(14 / 74 / 12質量% )之各點圍 成之範圍內之冷媒組成物可解決該課題。 其中,如該三角圖中之(17/76/7質量% )之點係 指含有 17質量%之HFC125、76質量%之HF01234yf、7 質量% HFC 134a之組成物之意。又,該三角圖中該各點所 〇 圍繞範圍內係指,所有結合該4點或5點所成之四角形或 五角形之各邊上、及其內部所含之3成份的組成比例之意 〇 以該發現爲基準,進一步精密硏討之結果,進而完成 本發明。 亦即,本發明係提供下述之不燃性冷媒組成物者。 申請項1:含有五氟乙烷(HFC125) 、2,3,3,3-四氟 丙烯(HF01234yf )、及 1,1,1,2-四氟乙烷(HFC 1 3 4a )之 冷媒組成物之三角圖中,各自之成份(HFC125 / 201014899 HF01234yf/HFC134a)於(21/79/0 質量%) 、(28.5 /71.5/0 質量 %)、(0/30.2/69.8 質量%)、及(0/ 64/36質量% )之各點所圍繞之範圍內’且務必含有 HFC134a及HFC125之冷媒組成物。 申請項2:含有五氟乙烷(HFC125) 、2,3,3,3·四氟 丙烯(HFO 1 23 4yf )、及 1,1,1,2 -四氟乙烷(HF C 1 3 4 a )之 冷媒組成物之三角圖中’各自成份(HFC125/HF01234yf /HFC134a)於(17/76/7 質量。/。)、(25/68/7 質量 參 % ) 、( 18/58/24 質量%) 、(7/69/24 質量%)、及 (14/ 74/ 12質量%)之各點所圍繞之範圍內之申請項1 所載之冷媒組成物。 申請項3:含有五氟乙烷(HFC125) 、2,3,3,3-四氟 丙烯(HFO 1 234yf )、及 1,1 ,1,2 -四氟乙烷(H F C 1 3 4 a )之 冷媒組成物之三角圖中,各自成份(HFC125/HF01234yf /HFC134a)於(16/70/14 質量 %)、(14/72/14 質 量%) 、(14/70/16 質量 %)、及(16/68/16 質量 % _ )之各點所圍繞之範圍內之申請項1或2所載之冷媒組成 物。 申請項4:更含有聚合防止劑之申請項1〜3中任一項 之冷媒組成物。 申請項5:更含有乾燥劑之申請項1〜4中任一項之冷 媒組成物。 申請項6:進一步含有穩定劑之申請項1〜5中任一項 之冷媒組成物。 -8 - 201014899 申請項7 :使申請項1〜6中任一項之冷媒組成物,介 由壓縮機進行循環者爲其特徵之冷凍機的運轉方法。 申請項8:申請項1所載之冷媒組成物之製造方法, 其特徵係於含有五氟乙烷(HFC125) 、2,3,3,3-四氟丙烯 (HF01234yf)、及 ι,ι,ι,2-四氟乙烷(HFC134a)之冷媒 組成物之三角圖中,各自成份(HFC125/HF01234yf/ HFC134a)於(21/79/0 質量 %)、(28.5/71.5/0 質 φ 量%) 、(0/30.2/69.8 質量 % )、及(0/64/36 質量 %)之各點所圍繞之範圍下進行配合者之製造方法。 申請項9:含有申請項〗〜6中任一項所載冷媒組成物 之冷凍機。 藉由本發明之冷媒組成物,達成如下之效果。 (1 )可得到相同於以先行技術所使用之R407C、 R410A爲冷媒使用之加熱泵之循環性能,或更優於其之循 環性能。 φ (2)由於爲不燃性之冷媒,故無必要使用安全性高 的構件等特別的機器方式的改變。 (3) 由於臭氧破壞係數(ODP )爲零,故即使使用 後之冷媒未完全回收時,仍不會破壞臭氧層。 (4) 相較於先行技術所使用之冷媒R40 7C、R410A, 其地球暖化係數(GWP )較小。 (5 )於LCCP評定爲良好,作爲加熱泵之冷媒使用 時,與先行技術所使用之冷媒R4 0 7C、R410A相同或其以 上對於地球暖化之影響小。 -9- 201014899 【實施方式】 〔發明實施之最佳形態〕 本發明者針對HFC125、HF01234yf及HFC134a之混 合比例與LCCP (生命周期氣候性能分析)以及燃燒性之 關係進行精密硏討。依L C C P爲試驗例1、燃燒性爲試驗 例2所記載之方法下進行評定。 評定結果證明,含有 HFC125、HF01234yf 及 HFC 13 4a之冷媒組成物之三角圖(圖1 )係含有五氟乙烷 (HFC125 ) 、2,3,3,3-四氟丙烯(HF01234yf )、及 1,1,1,2-四氟乙烷(HFC134a)之冷媒組成物之三角圖中, 各自成份於(21/79/0質量% )、(28.5/71.5/0質量 % ) 、(0/30.2/69.8 質量%)、及(0/64/36 質量 % )之各點圍成之範圍,且務必含有HFC 134a及HFC125之 冷媒組成物時,其對於LCCP良好環境負荷小,且爲不燃 性者。 換言之,含有 HFC125、HF01234yf、及 HFC134a 之 冷媒組成物,其各自之成份比例(a/ b/ c質量% )爲 〇 < 28.5、 〇<a$21 時,滿足((2070xa+ 43 000 ) / 1 426 ^ b ^ (15/21xa+64) 、c = 100— a— b 之關係 21<a 彡 28.5 時,滿足(( 2070xa+ 43000 ) / 1426 $ bS (100— a) 、c=l〇〇-a—b之關係之冷媒組成物對於 LCCP良好、環境負荷小,且爲不燃性。該式係使於不燃 界限線與GWP (積分期間;ITH= 100yr ) = 1 000下所圍 201014899 繞之範圍,作成數式化者,由實施例被確立(參照圖1) 〇 進一步,各自之成份於(17/76/7質量%) 、(25 /68/7 質量 °/〇) 、( 18/58/24 質量 %)、(7/69/24 質量% )、及(14/ 74/ 12質量%)所圍繞之範圍內所混 合之冷媒組成物時,更可有效發揮效果,特別是,各自的 成份於(16/70/14 質量%) 、(14/72/14 質量%)、 Q (14/70/16質量%)、及(16/68/16質量%)所圍繞 之範圍內之組成物時,特別可發揮理想的效果。 本發明之冷媒組成物其GWP低、具有良好的冷凍能 力。如:該冷媒組成物之GWP ( ITH= lOOyr )約爲520〜 1000、R410A ( GWP : 2088 )之 1/2 以下、R4 07C(GWP :1 7 7 3 )之 3 / 5 以下。 本發明之冷媒組成物爲因應於顯現高度穩定性之嚴苛 的使用條件中,被要求高度穩定性時,可添加穩定劑。 φ 作爲該穩定劑例者,如:(i )硝基甲烷、硝基乙烷 等之脂肪族硝基化合物、硝基苯、硝基苯乙烯等之芳香族 硝基化合物、(ii)l,4-二氧陸圜等之醚類、2,2,3,3,3-五 氟丙胺、二苯胺等之胺類、丁基羥基二甲苯、苯並三唑等 例。穩定劑可單獨使用或組合2種以上使用之。 穩定劑之使用量依其穩定劑之種類而異,通常作成不 妨礙不燃性組成物之性質者。一般穩定劑之使用量對於 100重量份之HFC125、HF01234yf及HFC134a之混合物 而言,爲0.01〜5重量份者宜、更佳者爲〇.〇5〜2重量份 -11 - 201014899 本發明之組成物更可含有聚合禁止劑。如:4-甲氧基-I-萘酚、氫醌、氫醌甲醚、二甲基-第三丁基苯酚、2,6-二-第三丁基-P-甲酚、苯基三唑等例。 聚合禁止劑之使用量對於100重量份之HFC125、 HF〇1234yf及HFC134a之混合物而言,通常爲0.01〜5重 量份者宜、更佳者爲0.05〜2重量份。 介由壓縮機使本發明之冷媒組成物進行循環後,可構 成冷凍循環。又,介由壓縮機亦可構成使該冷媒組成物循 環之冷凍循環裝置。 本發明之組成物可進一步含有乾燥劑。 作爲本發明之可使用冷媒組成物之冷凍機者,如:汽 車冷氣、自動販賣機用冷凍機、業務用•家庭用冷氣及瓦 斯加熱泵(GHP ) ·電氣加熱泵(EHP )等,惟並未受限 於此。特別適用於被要求機器小型化之業務用•家庭用冷 氣之冷媒組成物。 〔實施例〕 以下利用實施例,說明本發明,惟並未受限於此。 (試驗例1 ) 冷媒中使用 HFC125/HF01234yf/HFC134a ( 5/40 / 55mass% ) 、 ( 5 / 6 5 / 3 0 m a s s % ) 、 ( 15 / 70 / 15mass%) 、( 20/ 75/ 5mass%)(實施例 1〜4),以加 -12- 201014899 熱泵作爲冷房定格條件,使能力4kW、蒸發器中之冷媒蒸 發溫度爲l〇°C、使凝縮器中之冷媒凝縮溫度爲45°C ;作 爲冷房中間條件、能力2k W、蒸發溫度1 7 t、凝縮溫度 42°C ;作爲暖房定格條件,能力5kW、蒸發溫度0°C、凝 縮溫度42°C ;作爲暖房中間條件,能力2.5kW、蒸發溫度 2°C、凝縮溫度32°C下進行運轉。分別使過熱度及過冷卻 度於〇°C下進行運轉。 〇 又,作爲比較例者,使用 R410A (比較例1 )及 R407C (比較例2 ),與上述相同之條件下,進行加熱泵 之運轉。 更使用 HFC125 / HF01234yf / HFC134a ( 20 / 50/ 3 Omass% ) 、( 25/ 60/15mass%)(比較例 3、4),作 爲比較例、與上述相同條件下,進行加熱泵之運轉。 將此等結果,於表2顯示原本算出之成績係數(COP )、蒸發壓力、及凝縮壓力。且,利用此等結果,依JRA 〇 4 046: 20 04爲基準,算出每年消耗電力量,進行LCCP之 評定(表3 )。 藉由下式求出成績係數(COP )及LCCP。可以: COP =(冷凍能力或暖房能力)/消耗電力量 LCCP=直接影響(kg—C02) +間接影響(kg-C02) 直接影響=(製造裝置下的塡充時的泄漏)+ (恆定 性年間泄漏)+ (非恆定性年間泄漏)+ (廢棄時之泄漏) 間接影響=(因使用空調之co2排出量)+ (冷媒之 製造、輸送時之C〇2排出量) -13- 201014899 示之,具體而言,可依以下求出。 直接影響= GWPxMx(l-a) +GWPaexM 間接影響=NxEx冷 GWP:每lKg之C02基準之暖化係數 積分期100 年(kg- C02/ kg) GWPAE :藉由製造時之釋放等之加成GWP (亦包含副 產物等之泄漏者、間接的釋放)(kg - C02/ kg) N :機器的運轉年數(年) N=12 Μ :對機器的塡充量(kg) M= 1.3 a :機器廢棄時的回收率(回收量/塡充量)a = 0.6 E :機器之每年消耗電力量(kWh/年) β : lkWh之發電所需之C02產生量(kg — C02/ kWh ) β = 0.378 表2中,實施例1〜4及比較例2〜4之暖化賦予C02 產生量比(間接影響、直接影響及LCCP )之數値係使實 施例1〜4及比較例2〜4之間接影響、直接影響及LCCP ,以比較例1 ( R4 1 0A )之彼等作爲基準(1 〇〇 )所評定之 相對値(比)。本發明之冷媒係加上碳酸氣體排出之直接 、間接影響指標之LCCP中,與R410A,更與R407C比較 後,顯示爲相同或更低値,證明對於環境之負荷小。 -14- 201014899 〔表1〕Proceedings [Summary of the Invention] When the boiling point of the refrigerant is high and the pressure is low, the vapor compression type refrigeration cycle cannot obtain sufficient energy. To ensure the energy of the cold room and the greenhouse, it is necessary to make a large-scale machine and the like. Under the influence of 'the usual indirect effects produce deterioration. In addition, when the refrigerant is flammable, it is important to use a member with a high degree of safety in the electrical system. It is important to set limits on the upper limit of the machine. The present invention has been made in an effort to provide a refrigerant composition which is excellent in LCCP and has a small environmental load and is incombustible. -6-201014899 The present inventors have found that in view of the above-mentioned problems, it has been found that "the refrigerant is circulated by the compressor to circulate the refrigerant through the compressor, and the apparatus for constituting the refrigeration cycle contains pentafluoroethane (HFC125), 2, 3, 3 , 3 - tetrafluoropropene (HF01234yf )' and a triangular composition of the refrigerant composition of 1,1,1,2-tetrafluoroethane (HFC134a) (Fig. 1), each of which has a composition of (21/79/0 mass) /.), (28.5/71.5/0 mass%), (0/30.2/69.8 mass%), and (〇/64 / 36 mass%) are within the range of each point, and must contain φ HFC134a and HFC125 The refrigerant composition can solve the above problems. Further, in the triangular diagram, the respective components were found to be (17/76/7 mass%), (25 / 68/7 mass%), (1 8/58/24 mass%), (7 / 69 / 24 mass%) The refrigerant composition within the range enclosed by each of (14 / 74 / 12% by mass) can solve this problem. Here, the point (17/76/7 mass%) in the triangular diagram means a composition containing 17% by mass of HFC125, 76% by mass of HF01234yf, and 7 mass% of HFC 134a. Further, in the triangular diagram, the points around the respective points refer to the meanings of the composition ratios of the three components on the sides of the square or pentagon formed by the four or five points, and the inside thereof. Based on this finding, the results of the further begging are further refined, and the present invention has been completed. That is, the present invention provides the following nonflammable refrigerant composition. Item 1: Refrigerant composition containing pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1,1,1,2-tetrafluoroethane (HFC 1 3 4a ) In the triangle of the object, the respective components (HFC125 / 201014899 HF01234yf/HFC134a) are (21/79/0 mass%), (28.5 /71.5/0 mass%), (0/30.2/69.8 mass%), and The range of 0/64/36 mass%) is surrounded by 'and must contain the refrigerant composition of HFC134a and HFC125. Application 2: Containing pentafluoroethane (HFC125), 2,3,3,3·tetrafluoropropene (HFO 1 23 4yf ), and 1,1,1,2-tetrafluoroethane (HF C 1 3 4 a) The composition of the refrigerant composition in the 'respective composition (HFC125/HF01234yf / HFC134a) at (17/76/7 mass / /), (25 / 68 / 7 mass%), (18/58/24 The refrigerant composition contained in the application 1 of the range of the mass%), (7/69/24 mass%), and (14/74/12 mass%) points. Application 3: Containing pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HFO 1 234yf ), and 1,1,1,2-tetrafluoroethane (HFC 1 3 4 a ) In the triangular diagram of the refrigerant composition, the respective components (HFC125/HF01234yf / HFC134a) are (16/70/14% by mass), (14/72/14% by mass), (14/70/16% by mass), and The refrigerant composition contained in application 1 or 2 within the range around (16/68/16 mass% _ ). The refrigerant composition according to any one of claims 1 to 3, which further contains a polymerization inhibitor. Clause 5: A refrigerant composition according to any one of claims 1 to 4 which further contains a desiccant. The refrigerant composition according to any one of claims 1 to 5, further comprising a stabilizer. -8 - 201014899. The application method of the refrigerator according to any one of claims 1 to 6, wherein the refrigerant is circulated by a compressor. Item 8: The method for producing a refrigerant composition according to the application item 1, characterized in that it comprises pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HF01234yf), and ι, ι, In the triangular diagram of the refrigerant composition of ι,2-tetrafluoroethane (HFC134a), the respective components (HFC125/HF01234yf/HFC134a) are (21/79/0% by mass), (28.5/71.5/0 mass φ%) The manufacturing method of the fitter is carried out under the range of (0/30.2/69.8 mass%) and (0/64/36 mass%). Clause 9: A refrigerator comprising the refrigerant composition as set forth in any one of claims 1-6. With the refrigerant composition of the present invention, the following effects are achieved. (1) The cycle performance of the heat pump which is the same as that of the R407C and R410A used in the prior art as a refrigerant can be obtained, or better than the cycle performance. Since φ (2) is a non-combustible refrigerant, it is not necessary to use a special machine type such as a member with high safety. (3) Since the ozone destruction coefficient (ODP) is zero, the ozone layer will not be destroyed even if the used refrigerant is not completely recovered. (4) The global warming coefficient (GWP) is small compared to the refrigerants R40 7C and R410A used in the prior art. (5) The LCCP is rated as good, and when used as a refrigerant for the heat pump, it is the same as or less than the refrigerant R4 0 7C, R410A used in the prior art. -9-201014899 [Embodiment] [Best Mode for Carrying Out the Invention] The inventors of the present invention have intensively discussed the relationship between the mixing ratio of HFC125, HF01234yf, and HFC134a and the relationship between LCCP (Life Cycle Climate Performance Analysis) and flammability. The evaluation was carried out according to the method described in Test Example 2 and the flammability according to L C C P . The results of the evaluation prove that the triangular diagram of the refrigerant composition containing HFC125, HF01234yf and HFC 13 4a (Fig. 1) contains pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1 In the triangular diagram of the refrigerant composition of 1,1,2-tetrafluoroethane (HFC134a), the respective components are (21/79/0% by mass), (28.5/71.5/0% by mass), (0/30.2). /69.8 mass%), and (0/64/36 mass%) of the range of each point, and must contain the refrigerant composition of HFC 134a and HFC125, it has a small environmental load for LCCP, and is incombustible . In other words, the refrigerant composition containing HFC125, HF01234yf, and HFC134a has a composition ratio (a/b/c mass%) of 〇< 28.5, 〇<a$21, and satisfies ((2070xa+ 43 000 ) / 1 426 ^ b ^ (15/21xa+64) , c = 100 - a - b relationship 21 < a 彡 28.5, satisfy (( 2070xa + 43000 ) / 1426 $ bS (100- a) , c = l〇〇 - The refrigerant composition of a-b relationship is good for LCCP, has low environmental load, and is non-combustible. This formula is used to make the range around the non-combustible limit line and GWP (integration period; ITH = 100yr) = 1 000. In the case of the numbering, the examples are established (see Fig. 1). Further, the respective components are (17/76/7 mass%), (25/68/7 mass °/〇), (18/58). When the refrigerant composition mixed in the range of /24% by mass), (7/69/24% by mass), and (14/74/12% by mass) is more effective, in particular, Composition of ingredients in the range of (16/70/14% by mass), (14/72/14% by mass), Q (14/70/16% by mass), and (16/68/16% by mass) Object In particular, the refrigerant composition of the present invention has a low GWP and good freezing ability. For example, the refrigerant composition has a GWP (ITH = 100 yr) of about 520 to 1000 and R410A (GWP: 2088). 1/2 or less, R4 07C (GWP: 1 7 7 3 ) 3 / 5 or less. The refrigerant composition of the present invention is required to be highly stable in accordance with the severe use conditions in which high stability is exhibited. Stabilizer is added. φ As the stabilizer, for example, (i) an aliphatic nitro compound such as nitromethane or nitroethane, an aromatic nitro compound such as nitrobenzene or nitrostyrene, Ii) an ether such as l,4-dioxane, or an amine such as 2,2,3,3,3-pentafluoropropylamine or diphenylamine, butylhydroxyxylene or benzotriazole. The agent may be used singly or in combination of two or more kinds. The amount of the stabilizer to be used varies depending on the type of the stabilizer, and is usually made to prevent the properties of the incombustible composition. The amount of the stabilizer is generally 100 parts by weight of HFC125. For the mixture of HF01234yf and HFC134a, it is preferably 0.01 to 5 parts by weight, more preferably 〇.〇5~2 parts by weight -11 - 201014899 The composition of the present invention may further contain a polymerization inhibiting agent. Such as: 4-methoxy-I-naphthol, hydroquinone, hydroquinone, dimethyl-tert-butylphenol, 2,6-di-t-butyl-P-cresol, phenyl tri Examples of azoles. The amount of the polymerization inhibiting agent used is usually 0.01 to 5 parts by weight, more preferably 0.05 to 2 parts by weight, per 100 parts by weight of the mixture of HFC125, HF〇1234yf and HFC134a. The refrigerant composition of the present invention is circulated through a compressor to form a refrigeration cycle. Further, the compressor may constitute a refrigeration cycle apparatus for circulating the refrigerant composition. The composition of the present invention may further contain a desiccant. As a refrigerator capable of using a refrigerant composition of the present invention, for example, an automobile air conditioner, a vending machine refrigerator, a business household vacuum air conditioner, a gas heating pump (GHP), an electric heating pump (EHP), etc. Not limited to this. It is especially suitable for use in business and household air-cooling refrigerant compositions that are required to be miniaturized. [Examples] Hereinafter, the present invention will be described by way of Examples, but it is not limited thereto. (Test Example 1) HFC125/HF01234yf/HFC134a (5/40 / 55 mass%), (5 / 6 5 / 3 0 mass % ), ( 15 / 70 / 15 mass%), (20/ 75 / 5 mass%) were used in the refrigerant. (Examples 1 to 4), with the addition of -12-201014899 heat pump as the cold room freeze condition, the capacity is 4kW, the evaporation temperature of the refrigerant in the evaporator is l〇 °C, and the condensation temperature in the condenser is 45 °C. As the intermediate condition of the cold room, capacity 2k W, evaporation temperature 1 7 t, condensation temperature 42 °C; as the greenhouse constant condition, the capacity is 5kW, the evaporation temperature is 0 °C, the condensation temperature is 42 °C; as the intermediate condition of the greenhouse, the capacity is 2.5kW The operation was carried out at an evaporation temperature of 2 ° C and a condensation temperature of 32 ° C. The superheat degree and the supercooling degree were respectively operated at 〇 °C. Further, as a comparative example, R410A (Comparative Example 1) and R407C (Comparative Example 2) were used, and the operation of the heat pump was performed under the same conditions as described above. Further, HFC125 / HF01234yf / HFC134a (20 / 50 / 3 Omass% ) and (25/60/15 mass%) (Comparative Examples 3 and 4) were used, and as a comparative example, the operation of the heat pump was carried out under the same conditions as above. These results are shown in Table 2 as the originally calculated coefficient of achievement (COP), evaporation pressure, and condensing pressure. In addition, based on these results, the annual power consumption is calculated based on JRA 〇 4 046: 20 04, and the LCCP is evaluated (Table 3). The coefficient of achievement (COP) and LCCP are obtained by the following formula. Can: COP = (freezing capacity or greenhouse capacity) / power consumption LCCP = direct impact (kg - C02) + indirect impact (kg - C02) Direct impact = (leakage during charging under manufacturing) + (constant Inter-annual leakage) + (non-constant annual leakage) + (leakage during disposal) Indirect impact = (co2 discharge due to air conditioning) + (C〇2 discharge during refrigerant production and transportation) -13- 201014899 Specifically, it can be obtained as follows. Direct impact = GWPxMx(la) + GWPaexM Indirect impact = NxEx cold GWP: 100% of the heating factor of the C02 benchmark per lKg (kg-C02/kg) GWPAE: Addition GWP by release at the time of manufacture ( Also includes leaks of by-products, etc., indirect release) (kg - C02/ kg) N : Number of years of operation of the machine (years) N=12 Μ : Charge to the machine (kg) M= 1.3 a : Machine Recovery rate at the time of disposal (recycling amount/recharge amount) a = 0.6 E : Annual power consumption of the machine (kWh/year) β : C02 production amount required for power generation of lkWh (kg - C02/ kWh ) β = 0.378 In Table 2, the ratios of the warming imparting CO 2 generation ratios (indirect influence, direct influence, and LCCP) of Examples 1 to 4 and Comparative Examples 2 to 4 were made between Examples 1 to 4 and Comparative Examples 2 to 4. Impact, direct impact, and LCCP, relative enthalpy (ratio) as assessed by reference (1 〇〇) of Comparative Example 1 (R4 1 0A). In the LCCP of the refrigerant and the direct and indirect influence index of the carbon dioxide gas discharge in the present invention, compared with R410A and R407C, it is shown to be the same or lower, which proves that the load on the environment is small. -14- 201014899 [Table 1]

冷媒 COP 蒸發壓力 凝縮壓力 MPa MPa 實施例1 HFC125/HFO1234yfi«FC 134a (5/40/55mass%) 冷房定格 2.65 0.472 1.270 冷房中間 4.92 0.570 1.177 暖房定格 3.73 0.345 1.177 暖房中間 5.08 0.364 0.929 實施例2 HFC 125/HFO 1234yf /HFC 134a (5/65/3 Omass%) 冷房定格 2.42 0.474 1.255 冷房中間 4.82 0.571 1.165 暖房定格 3.65 0.348 1.165 暖房中間 5.02 0.367 0.924 實施例3 HFC 125/HFO1234yf /HFC 134a (15/70/15mass°/〇) 冷房定格 2.43 0.509 1.337 冷房中間 4.79 0.612 1.242 暖房定格 3.63 0.374 1.242 暖房中間 5.01 0.396 0.989 實施例4 HFC 125/HFO 1234yf /HFC 134a (20/75/5mass°/〇) 冷房定格 2.40 0.524 1.375 冷房中間 4.76 0.630 1.276 暖房定格 3.61 0.386 1.277 暖房中間 5.00 0.410 1.018 比較例1 R410A 冷房定格 3.44 1.100 2.752 冷房中間 4.92 1.307 2.564 暖房定格 3.90 0.823 2.562 暖房中間 5.09 0.863 2.054 比較例2 R407C 冷房定格 3.42 0.678 1.837 冷房中間 5.11 0.821 1.705 暖房定格 3.99 0.495 1.706 暖房中間 5.20 0.526 1.350 比較例3 HFC 125/HFO 1234yf/HFC 134a (20/50/30mass°/〇) 冷房定格 2.62 0.532 1.407 冷房中間 4.84 0.642 1.308 暖房定格 3.68 0.391 1.308 暖房中間 5.03 0.413 1.038 比較例4 HFC 125/HFO 1234y f /HFC 134a (25/60/15mass%) 冷房定格 2.55 0.552 1.446 冷房中間 4.78 0.663 1.346 暖房定格 3.64 0.407 1.347 暖房中間 4.99 0.430 1.074 -15- 201014899 〔表2〕 冷媒 GWP 暖化影響與C02產生量比 (ITH:100y) 間接影響 直接影響 LCCP 實施例1 HFC125/HFO1234yf /HFC134a (5/40/55mass%) 963 102.3 47.6 95.2 實施例2 HFC125/HF01234yf/HFC134a (5/65/30mass°/〇) 607 104.3 31.0 94.8 實施例3 HFC125/HF01234yf/HFC134a (15/70/15mass%) 742 104.7 37.3 95.9 實施例4 HFC 125/HFO1234yf /HFC 134a (20/75/5mass%) 775 105.1 38.8 96.5 比較例1 R410A 2088 100 100 100 比較例2 R407C 1774 97.8 85.4 96.2 比較例3 HFC 125/HFO 1234yf/HFC 134a (20/50/30mass%) 1131 103.5 55.4 97.3 比較例4 HFC 125/HFO 1234yf /HFC 134a (25/60/15mass%) 1092 104.7 53.6 98.0 (試驗例2) 依ASTM E68 1 -200 1爲基準利用測定裝置,使構成本 冷媒之3成份混合冷媒之燃燒性進行燃燒範圍的測定。參 照圖3。 燃燒狀態爲目測、及使用可錄影拍攝之內容積1 2L之 球形玻璃燒瓶,經由燃燒產生過大的壓力時,由上部之蓋 子釋放氣體。著火方法係由底部保持1/3高度之電極之 放電後產生。 試驗容器:28011111 4球形(內容積:12L)Refrigerant COP Evaporation Pressure Condensation Pressure MPa MPa Example 1 HFC125/HFO1234yfi«FC 134a (5/40/55mass%) Cold room freeze 2.65 0.472 1.270 Cold room middle 4.92 0.570 1.177 Warm room freeze 3.73 0.345 1.177 Heater middle 5.08 0.364 0.929 Example 2 HFC 125 /HFO 1234yf /HFC 134a (5/65/3 Omass%) Cold room freeze 2.42 0.474 1.255 Cold room middle 4.82 0.571 1.165 Warm room freeze 3.65 0.348 1.165 Warm room middle 5.02 0.367 0.924 Example 3 HFC 125/HFO1234yf /HFC 134a (15/70/ 15mass°/〇) Cold room fixed 2.43 0.509 1.337 Middle of the cold room 4.79 0.612 1.242 Warm room fixed 3.63 0.374 1.242 Mid-room 5.01 0.396 0.989 Example 4 HFC 125/HFO 1234yf /HFC 134a (20/75/5mass°/〇) Cold room fixed 2.40 0.524 1.375 Middle of the cold room 4.76 0.630 1.276 Warm room fixed 3.61 0.386 1.277 Warm room middle 5.00 0.410 1.018 Comparative example 1 R410A Cold room fixed 3.44 1.100 2.752 Cold room middle 4.92 1.307 2.564 Warm room fixed 3.90 0.823 2.562 Warm room middle 5.09 0.863 2.054 Comparative example 2 R407C Cold room freeze 3.42 0.678 1.837 Cold room Intermediate 5.11 0.821 1.705 conservatory Grid 3.99 0.495 1.706 in the middle of the greenhouse 5.20 0.526 1.350 Comparative Example 3 HFC 125/HFO 1234yf/HFC 134a (20/50/30mass°/〇) Cold room freeze 2.62 0.532 1.407 Cold room middle 4.84 0.642 1.308 Warm room fixed 3.68 0.391 1.308 Heater middle 5.03 0.413 1.038 Comparative Example 4 HFC 125/HFO 1234y f /HFC 134a (25/60/15mass%) Cold room freeze 2.55 0.552 1.446 Cold room middle 4.78 0.663 1.346 Warm room freeze 3.64 0.407 1.347 Warm room middle 4.99 0.430 1.074 -15- 201014899 [Table 2] Refrigerant GWP Warming effect and CO2 production ratio (ITH: 100y) Indirect impact directly affects LCCP Example 1 HFC125/HFO1234yf /HFC134a (5/40/55mass%) 963 102.3 47.6 95.2 Example 2 HFC125/HF01234yf/HFC134a (5/65 /30mass°/〇) 607 104.3 31.0 94.8 Example 3 HFC125/HF01234yf/HFC134a (15/70/15mass%) 742 104.7 37.3 95.9 Example 4 HFC 125/HFO1234yf /HFC 134a (20/75/5mass%) 775 105.1 38.8 96.5 Comparative Example 1 R410A 2088 100 100 100 Comparative Example 2 R407C 1774 97.8 85.4 96.2 Comparative Example 3 HFC 125/HFO 1234yf/HFC 134a (20/50/30 mass%) 1131 103.5 55.4 97.3 Comparative Example 4 HFC 125/H FO 1234yf /HFC 134a (25/60/15mass%) 1092 104.7 53.6 98.0 (Test Example 2) Using the measuring device according to ASTM E68 1 -200 1 , the combustion of the three components constituting the refrigerant is combusted. Determination. See Figure 3. The burning state was visually observed, and a spherical glass flask having a volume of 12 L which was recorded by a video was used, and when excessive pressure was generated by combustion, gas was released from the upper cover. The ignition method is produced by discharging the electrode held at the bottom by 1/3 of the height. Test container: 28011111 4 spherical (internal volume: 12L)

試驗溫度:60°C ±3°C ±0.7 kPa 壓力:1 01 .3 kPa 201014899 水分:每lg乾燥空氣0.0088g ±0.0005 g 冷媒/空氣混合比:1 vol.%刻度 ±0.2 vol.0/〇 冷媒混合: iO.lmass% 點火方法:交流放電 電極間隔:6.4mm ( 1 / 4 inch ) 火花:0.4秒 ±0.05秒 判定基準:以著火點爲中心,擴散90度以上火焰時 =燃燒(傳播) φ 顯示與 HFC125/ HF01234yf/ HFC134a 之混合系之 可燃範圍的結果如圖2所示。不燃界限中,HFC125、 HF01234yf、及H F C 1 3 4 a之各成份組成比例(a / b / c質 量% )係幾乎滿足下述式(1 )〜(3 )所示之關係。 OS a 盔 21 ( 1 ) b = ( 15 / 21xa + 64) ( 2) c = 100 — a — b ( 3 ) 由該結果確定本發明之冷媒HFC125/HF01234yf/ ❹ HFC 13 4a之組成物爲不燃性,即使以任意比率與空氣混合 均未出現燃燒。 〔產業上可利用性〕 本發明之混合冷媒組成物係適用於冷凍及空調機器所 使用之冷媒組成物。 【圖式簡單說明】 〔圖 1〕含有 HFC125、HF01234yf 及 HFC134a 之冷 -17- 201014899 媒組成物之三角圖。 〔圖 2〕代表 HFC125、 合系的可燃範圍。 〔圖3〕用於燃燒性試 【主要元件符號說明】 A :不燃界限線 X :可燃領域 Y :不燃領域 1 :燃燒源 2 :採樣插入 3 :泄漏 4 :小玻璃燒瓶 5 :電性 6 ‘·攪拌器 7 :隔離室 HF01234yf 及 HFC134a 之混 之裝置的模式圖。Test temperature: 60 ° C ± 3 ° C ± 0.7 kPa Pressure: 1 01 .3 kPa 201014899 Moisture: 0.0088g per lg of dry air ± 0.0005 g Refrigerant / air mixing ratio: 1 vol.% scale ± 0.2 vol. 0 / 〇 Refrigerant mixing: iO.lmass% Ignition method: AC discharge electrode spacing: 6.4mm (1 / 4 inch) Spark: 0.4 seconds ± 0.05 seconds Judgment base: centering on the ignition point, diffusing more than 90 degrees of flame = burning (propagation) φ The results showing the flammability range of the hybrid system with HFC125/ HF01234yf/ HFC134a are shown in Figure 2. In the non-combustible limit, the composition ratio (a / b / c mass %) of each of HFC125, HF01234yf, and H F C 1 3 4 a almost satisfies the relationship shown by the following formulas (1) to (3). OS a Helmet 21 ( 1 ) b = ( 15 / 21xa + 64) ( 2) c = 100 — a — b ( 3 ) From this result, it is determined that the composition of the refrigerant HFC125/HF01234yf/ ❹ HFC 13 4a of the present invention is incombustible. Sex, even if mixed with air at any ratio, no burning occurs. [Industrial Applicability] The mixed refrigerant composition of the present invention is suitable for use in a refrigerant composition used in refrigeration and air-conditioning equipment. [Simple description of the diagram] [Fig. 1] A triangular diagram of the composition of cold -17-201014899 containing HFC125, HF01234yf and HFC134a. [Fig. 2] represents the flammable range of HFC125 and the system. [Fig. 3] For flammability test [Main component symbol description] A: Non-combustible limit line X: Combustible field Y: Non-combustible field 1: Combustion source 2: Sampling insertion 3: Leakage 4: Small glass flask 5: Electrical 6' - Stirrer 7: Schematic diagram of a device in which the isolation chambers HF01234yf and HFC134a are mixed.

Claims (1)

201014899 七、申請專利範圍: L —種冷媒組成物’其係於含有五氟乙烷(HFC125 )、2,3,3,3-四氟丙烯(HFOl 234yf )、及 1,1,1,2-四氟乙 烷(HFC 13 4a )之冷媒組成物的三角圖中,其特徵係各自 之成份(HFC125/HF01234yf/HFC134a)於(21/79/ 〇 質量 %) 、(28.5/71.5/0 質量%) 、(0/30.2/69.8 質量% )、及(0/ 64/ 36質量% )之各點圍成之範圍,且 φ 務必含有HFC134a及HFC125。 2.如申請專利範圍第1項之冷媒組成物,其中於含 有五氟乙烷(^^(:125)、2,3,3,3-四氟丙烯(^^01234丫【 )、及1,1,1,2-四氟乙烷(1^(:134&)之冷媒組成物的三 角圖中,各自的成份(HFC125/HF01234yf/HFC134a) 於(17/76/7 質量%) 、(25/68/7 質量 %)、(18/ 58/24 質量%) 、(7/69/24 質量%) ' 及(14/74/ 12質量% )之各點圍成之範圍。 〇 3.如申請專利範圍第1項之冷媒組成物’其中於含 有五氟乙烷(HFC125) 、2,3,3,3-四氟丙烯(HF01234yf )、及1,1,1,2-四氟乙烷(則(:134&)之冷媒組成物的三 角圖中,各自之成份(HFC125/HF01234yf/HFC134a) 於(16/70/14 質量。/d) 、(14/72/14 質量 %)、(14 /70/16質量%)、及(16/68/16質量%)之各點圍成 之範圍。 4.如申請專利範圍第1項之冷媒組成物’其中更含 有聚合防止劑。 -19 - 201014899 5. 如申請專利範圍第1項之冷媒組成物’其中更含 有乾燥劑。 6. 如申請專利範圍第1項之冷媒組成物’其中更含 有穩定劑。 7· —種冷凍機之運轉方法,其特徵係使申請專利範 圍第1項之冷媒組成物介由壓縮機進行循環。 8. —種製造方法,其爲申請專利範圍第1項之冷媒 組成物的製造方法,於含有五氟乙烷(HFC125 )、 2,3,3,3-四氟丙烯(HF01234yf)、及 1,1,1,2-四氟乙烷( HFC134a)之冷媒組成物的三角圖中,其特徵爲各自的成 份(HFC125/HF01234yf/HFC134a)於(21/79/〇 質 量%) 、(28.5/71.5/0 質量 % ) 、( 0/30.2/69.8 質量 %)、及(〇/64/36質量% )之各點圍成之範圍進行配合 〇 9. —種冷凍機,其特徵係含有申請專利範圍第丨項 之冷媒組成物。 -20-201014899 VII. Patent application scope: L—a refrigerant composition that contains pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HFOl 234yf), and 1,1,1,2 - The triangogram of the refrigerant composition of tetrafluoroethane (HFC 13 4a ) is characterized by the respective components (HFC125/HF01234yf/HFC134a) at (21/79/〇% by mass), (28.5/71.5/0 mass) %), (0/30.2/69.8 mass%), and (0/64/36 mass%) of the range enclosed by each point, and φ must contain HFC134a and HFC125. 2. A refrigerant composition as claimed in claim 1 which contains pentafluoroethane (^^(:125), 2,3,3,3-tetrafluoropropene (^^01234丫[), and 1 In the triangular diagram of the refrigerant composition of 1,1,2-tetrafluoroethane (1^(:134&), the respective components (HFC125/HF01234yf/HFC134a) are (17/76/7 mass%), ( Range of 25/68/7 mass%), (18/58/24 mass%), (7/69/24 mass%)' and (14/74/12 mass%). 〇3. For example, the refrigerant composition of claim 1 includes in the form of pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HF01234yf), and 1,1,1,2-tetrafluoroethane. In the triangle of the refrigerant composition of the alkane (: 134 &), the respective components (HFC125/HF01234yf/HFC134a) are (16/70/14 mass. /d), (14/72/14 mass%), The range of (14/70/16 mass%) and (16/68/16 mass%) of each point is 4. The refrigerant composition of claim 1 of the patent scope contains a polymerization inhibitor. 19 - 201014899 5. The refrigerant composition of claim 1 of the patent scope 'is more dry 6. The refrigerant composition of claim 1 is further containing a stabilizer. 7. The operation method of the refrigerator is characterized in that the refrigerant composition of the first application of the patent scope is carried out by a compressor. 8. A method for producing a refrigerant composition according to the first aspect of the patent application, comprising pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HF01234yf), And a triangular diagram of the refrigerant composition of 1,1,1,2-tetrafluoroethane (HFC134a), characterized in that the respective components (HFC125/HF01234yf/HFC134a) are (21/79/〇% by mass), ( 28.5/71.5/0 mass%), (0/30.2/69.8 mass%), and (〇/64/36 mass%) are blended in the range of each point. 冷冻9. Type of freezer, its characteristics are contained Apply for the refrigerant composition of the scope of the patent. -20-
TW98122293A 2008-07-01 2009-07-01 Refrigerant composition comprising pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a) TW201014899A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12950408P 2008-07-01 2008-07-01
US11376308P 2008-11-12 2008-11-12

Publications (1)

Publication Number Publication Date
TW201014899A true TW201014899A (en) 2010-04-16

Family

ID=41129090

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98122293A TW201014899A (en) 2008-07-01 2009-07-01 Refrigerant composition comprising pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a)

Country Status (2)

Country Link
TW (1) TW201014899A (en)
WO (1) WO2010002022A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009019199U1 (en) * 2008-11-19 2018-10-15 The Chemours Company Fc, Llc Tetrafluoropropene compositions and their uses
US20100122545A1 (en) 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279451B2 (en) * 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
US20060243944A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
US7569170B2 (en) * 2005-03-04 2009-08-04 E.I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
TWI657070B (en) * 2005-06-24 2019-04-21 美商哈尼威爾國際公司 Compositions containing fluorine substituted olefins and uses thereof
EP2118229A2 (en) * 2006-09-01 2009-11-18 E.I. Du Pont De Nemours And Company Method for circulating selected heat transfer fluids through a closed loop cycle
JP2010530952A (en) * 2007-06-21 2010-09-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Leakage detection method in heat transfer system

Also Published As

Publication number Publication date
WO2010002022A1 (en) 2010-01-07
WO2010002022A8 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
US8496845B2 (en) Refrigerant composition comprising difluoromethane (HFC32), pentafluoroethane (HFC125) and 2, 3, 3, 3-tetrafluoropropene (HFO1234yf)
US8318039B2 (en) Refrigerant composition comprising 1,1,1,2-tetrafluoroethane (HFC134a) and 2,3,3,3-tetrafluoropropene (HFO1234yf)
US9994749B2 (en) Compositions and methods for refrigeration
TW201014898A (en) Refrigerant composition comprising difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a)
Devotta et al. Alternatives to HCFC-22 for air conditioners
KR20120128585A (en) Heat transfer compositions
US20160017199A1 (en) Systems for efficient heating and/or cooling and having low climate change impact
TW201014897A (en) Refrigerant composition comprising difluoromethane (HFC32) and 2,3,3,3-tetrafluoropropene (HFO1234yf)
JP6555315B2 (en) Refrigerant composition containing HFO-1234ze (E) and HFC-134 and use thereof
TW201014899A (en) Refrigerant composition comprising pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a)
Mishra et al. Performance Analysis Of R-134a With Eco Friendly Refrigerant In Vapour Compression Refrigeration Cycle