TW201014897A - Refrigerant composition comprising difluoromethane (HFC32) and 2,3,3,3-tetrafluoropropene (HFO1234yf) - Google Patents

Refrigerant composition comprising difluoromethane (HFC32) and 2,3,3,3-tetrafluoropropene (HFO1234yf) Download PDF

Info

Publication number
TW201014897A
TW201014897A TW98122288A TW98122288A TW201014897A TW 201014897 A TW201014897 A TW 201014897A TW 98122288 A TW98122288 A TW 98122288A TW 98122288 A TW98122288 A TW 98122288A TW 201014897 A TW201014897 A TW 201014897A
Authority
TW
Taiwan
Prior art keywords
refrigerant
mass
hfc32
refrigerant composition
tetrafluoropropene
Prior art date
Application number
TW98122288A
Other languages
Chinese (zh)
Inventor
Tatsumi Tsuchiya
Katsuki Fujiwara
Masahiro Noguchi
Yasufu Yamada
Original Assignee
Daikin Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Ind Ltd filed Critical Daikin Ind Ltd
Publication of TW201014897A publication Critical patent/TW201014897A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/22All components of a mixture being fluoro compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Lubricants (AREA)

Abstract

The present invention provides a refrigerant with a comprehensively lowered environmental impact, including a low global warming potential resulting in an excellent effect on direct environmental impact, and a good energy efficiency when charged into an apparatus resulting in an excellent effect on indirect environmental impact, and low LCCP. Specifically, the present invention relates to a refrigerant composition containing 10 to 26 mass% of difluoromethane (HFC32) and 74 to 90 mass% of 2, 3, 3, 3-tetrafluoropropene (HFO1234yf).

Description

201014897 六、發明說明: 【發明所屬之技術領域】 本發明係關於冷凍及空調機器所用之由二氟甲烷( HFC32 )與2,3,3,3-四氟丙烯(HF01234yf)所構成之混 合冷媒組成物。 【先前技術】 φ 在全世界議論全球暖化已成爲更深刻之問題當中,對 環境之負擔爲少之冷凍空調機的開發,其重要性逐漸增加 。冷媒除了自身持有之對溫暖化之影響度,對於冷凍空調 機之性能也大有關聯,因此冷媒之選擇,作爲削減造成溫 暖化之二氧化碳發生量的技術也產生重要之作用。 最近,與至今所知之氟氯碳化物(CFC)、氫氟氯碳 化物(HCFC)、氫氟碳化物(HFC)相比,有提出各種 全球增溫潛勢(Global Warming Potential,GWP)爲低之 〇 於分子内具有雙鍵之經部分氟化的丙烷。 其中之一則有2,3,3,3-四氟丙烯(HF01234yf)(專 利文獻1、2等),由以往之靜置型之空調機所使用之 HCFC22或用以替代其之後代之與臭氧層之破壊無關聯之 R407C或R4l〇A相比,因其沸點爲高,則有無法單獨保 持冷凍能力之缺點。 不用說也知道選定冷媒時冷媒自體之全球增溫潛勢( GWP )爲小之重要性’使用其冷媒時之機器的能源使用效 率也成爲同様或在其以上之重要要素。前者作爲對環境之 201014897 直接影響、後者作爲對環境之間接影響而評價,因此作爲 其所用之客觀性指標,則有提倡LCCP ( Life Cycle Climate Performance )(非專利文獻 1等)。於今日也 被認知成爲對冷媒用之總合性判斷,藉由進行至LCCP之 評價,則變得可探索對環境之影響度爲明瞭且環境負荷爲 小之適宜冷媒。 [先前技術文獻] @ [專利文獻] [專利文獻1]國際公開第2005/105947號手冊 [專利文獻2]國際公開第2006/094303號手冊 [非專利文獻] [非專利文獻 1]" Life Cycle Climate Performance of Some Applications in Japan ", Haruo Onishi, 15th Annual Earth Technologies Forum and Mobile Air Conditioning Summit, April 1 3 - 1 5, 2004 Conference ⑩201014897 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a mixed refrigerant composed of difluoromethane (HFC32) and 2,3,3,3-tetrafluoropropene (HF01234yf) for use in a refrigerating and air-conditioning machine. Composition. [Prior Art] φ In the world, global warming has become a more profound problem, and the importance of the development of refrigerating air conditioners with less environmental burden has gradually increased. In addition to the influence of the refrigerant on the warming, the refrigerant has a great influence on the performance of the refrigerating and air-conditioning machine. Therefore, the choice of the refrigerant also plays an important role as a technology for reducing the amount of carbon dioxide generated by warming. Recently, compared with the known CFCs, hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs), various global warming potentials (GWPs) have been proposed. It is low in the partially fluorinated propane having a double bond in the molecule. One of them is 2,3,3,3-tetrafluoropropene (HF01234yf) (Patent Documents 1, 2, etc.), which is used by the HCFC 22 used in the conventional stationary air conditioner or in place of the ozone layer. Compared with R407C or R4l〇A, which is unrelated, it has the disadvantage that it cannot maintain the freezing ability alone because of its high boiling point. Needless to say, it is also known that the global warming potential (GWP) of the refrigerant itself is small when the refrigerant is selected. The energy efficiency of the machine when using the refrigerant is also an important factor in the same or above. The former has a direct impact on the environment of 201014897 and the latter as an environmental impact. Therefore, as an objective indicator used, LCCP (Life Cycle Climate Performance) is advocated (Non-Patent Document 1). It is also recognized today as a general judgment for the use of refrigerants. By conducting an evaluation to LCCP, it becomes possible to explore a suitable refrigerant with a clear impact on the environment and a small environmental load. [Prior Art Document] @ [Patent Document 1] [Patent Document 1] International Publication No. 2005/105947 Handbook [Patent Document 2] International Publication No. 2006/094303 Handbook [Non-Patent Document] [Non-Patent Document 1] " Life Cycle Climate Performance of Some Applications in Japan ", Haruo Onishi, 15th Annual Earth Technologies Forum and Mobile Air Conditioning Summit, April 1 3 - 1 5, 2004 Conference 10

Proceedings 【發明內容】 [發明所欲解決之課題] 冷媒之沸點高且動作壓力低時,於蒸氣壓縮式之冷凍 循環中,無法得到充分之能力,對於用以確保冷房或暖房 能力,將機器大型化等之對策則爲必要,由於壓力損失等 之影響而對環境之間接影響則會通常惡化。本發明以提供 -6- 201014897 因全球增溫潛勢(GWP )爲小對環境之直接影響爲優良’ 又充塡於機器時之能源效率爲良好且對環境之間接影響也 爲優良,故其LCCP爲小,總合性環境負荷量經改善之冷 媒爲目的。 [用以解決課題之手段] 本發明者有鑑於上述般之課題經過認真硏究之結果, 0 藉由經過壓縮機使冷媒循環而構成冷凍循環之裝置中,藉 由採用含有10〜26質量%之二氟甲烷(HFC32)與74~90 質量%之2,3,3,3-四氟丙烯(HF01234yf)的冷媒組成物, 則可解決上述之課題一事。更佳爲由14~22質量%之 HFC32與78〜86質量%之HF01234yf所構成之冷媒組成物 。基於相關之知識見解更進而硏究之結果而完成本發明。 即,本發明係爲提供下述之冷媒組成物者。 第1項一種冷媒組成物,其特徵爲含有二氟甲烷( φ HFC32 ) 10〜26 質量 %及 2,3,3,3-四氟丙烯(HF01234yf) 7 4 ~ 9 0 質量 % 〇 第2項 如第1項記載之冷媒組成物,其中含有二氟 甲烷(HFC32 ) 14〜22質量%及 2,3,3,3-四氟丙烯( HFOl234yf) 78〜86 質量%。 第3項 如第1項或第2項記載之冷媒組成物,其中 更進而含有聚合防止劑。 第4項 如第1項至第3項中任一項記載之冷媒組成 物,其中更進而含有乾燥劑。 201014897 第5項 如第1項至第4項中任一項記載之冷媒組成 物,其中更進而含有安定劑。 第6項一種冷凍機之運轉方法,其特徵爲使第1項 至第5項中任一項記載之冷媒組成物藉由壓縮機循環。 第7項一種製造方法,其係第1項記載之冷媒組成 物之製造方法,其特徵爲配合10~26質量%之二氟甲烷( HFC32)及 74~90 質量。/〇之 2,3,3,3-四氟丙烷(HF01234yf )。 ❹ 第8項一種冷凍機,其特徵爲含有如第1項至第5 項中任一項記載之冷媒組成物。 [發明之效果] 藉由本發明之冷媒組成物,可達成以下般之效果。 (1) 與由先前所使用至今之冷媒R407C或R410A相 比,全球增溫潛勢(GWP )爲小。 (2) 由於臭氧耗竭潛勢(Ozone Depletion Potential, 瘳 〇DP )爲零,既使使用後之冷媒無被完全回收之情況,也 不會對臭氧層造成破壊。 (3 ) LCCP評價中爲優良,作爲熱泵冷媒使用之情況 ,與由先前所使用至今之冷媒R407C或R410A同等或在 其以上且對全球暖化之加劇爲小。 【實施方式】Proceedings [Summary of the Invention] [Problems to be Solved by the Invention] When the boiling point of the refrigerant is high and the operating pressure is low, sufficient capacity cannot be obtained in the vapor compression refrigeration cycle, and the machine is large in order to ensure the capacity of the cold room or the greenhouse. It is necessary to take measures such as chemicalization, and the influence on the environment due to the influence of pressure loss or the like is usually deteriorated. The invention provides an excellent direct impact on the environment due to the global warming potential (GWP) of -6-201014897, and the energy efficiency is good when it is fully charged to the machine, and the environmental impact is also excellent, so LCCP is aimed at small, total refrigerants with improved environmental load. [Means for Solving the Problems] The inventors of the present invention have earnestly studied the above-mentioned problems. In the apparatus which forms a refrigeration cycle by circulating a refrigerant through a compressor, the inventors include 10 to 26% by mass. The refrigerant composition of difluoromethane (HFC32) and 74 to 90% by mass of 2,3,3,3-tetrafluoropropene (HF01234yf) can solve the above problems. More preferably, it is a refrigerant composition composed of 14 to 22% by mass of HFC32 and 78 to 86% by mass of HF01234yf. The present invention has been completed based on the results of related knowledge and further research. That is, the present invention is to provide the following refrigerant composition. Item 1 is a refrigerant composition characterized by containing difluoromethane (φ HFC32 ) 10 to 26% by mass and 2,3,3,3-tetrafluoropropene (HF01234yf) 7 4 to 90% by mass 〇 Item 2 The refrigerant composition according to the item 1, which contains 14 to 22% by mass of difluoromethane (HFC32) and 78 to 86% by mass of 2,3,3,3-tetrafluoropropene (HFO1234yf). Item 3 The refrigerant composition according to Item 1 or 2, further comprising a polymerization inhibitor. The refrigerant composition according to any one of the items 1 to 3, further comprising a desiccant. The refrigerant composition according to any one of the items 1 to 4, further comprising a stabilizer. Item 6 is a method of operating a refrigerator, characterized in that the refrigerant composition according to any one of the items 1 to 5 is circulated by a compressor. Item 7 is a method for producing a refrigerant composition according to the item 1, characterized in that it is blended with 10 to 26% by mass of difluoromethane (HFC32) and 74 to 90% by mass. /〇 2,3,3,3-tetrafluoropropane (HF01234yf). The refrigerator according to any one of the items 1 to 5, wherein the refrigerant composition according to any one of the items 1 to 5. [Effect of the Invention] The following effects can be achieved by the refrigerant composition of the present invention. (1) The global warming potential (GWP) is small compared to the refrigerant R407C or R410A used to date. (2) Since the Ozone Depletion Potential (瘳 〇 DP) is zero, even if the used refrigerant is not completely recovered, it will not cause damage to the ozone layer. (3) It is excellent in LCCP evaluation, and it is used as a heat pump refrigerant, which is equal to or higher than the refrigerant R407C or R410A which has been used up to now and is less intensified to global warming. [Embodiment]

本發明者對於HFC32及HF01234yf之混合比與LCCP -8- 201014897 (Life Cycle Climate Performance)之關係進行專心硏究 。LCCP係以試驗例1所記載之方法進行評價。 評價之結果,判知含有HFC32 10~26質量%及HF〇1234yf 74〜90質量%之冷媒組成物(即,HFC32與HF01234yf之 質量比率爲10/90-26/74之冷媒組成物)’無損及冷凍性 能且環境負荷爲小LCCP優良一事。又,在含有HFC32 12〜25質量%及HF01234yf 75~88質量%之冷媒組成物( φ HFC32與HF01234yf之質量比率爲12/88~25/75之冷媒組 成物)之情況’更可發揮優良之效果’更進一步’在含有 HFC32 14~22質量%及HF01234yf 78〜86質量%之冷媒組 成物(HFC32與HF01234yf之質量比率爲14/86〜22/78之 冷媒組成物)之情況,更可發揮特別優良之效果。 又,HFC32 之 GWP (積分期間(Integration Time Horizon ) ; ITH = 1 〇〇yr )爲 675,HFO 1 234yf 其則爲 4。 作爲混合冷媒HFC3 2之重量比若成爲21.8質量%以下, ® 也可使混合冷媒之GWP ( ITH=10 0yr )爲150以下。 本發明之組成物雖顯示高安定性,過苛之使用條件中 要求高度安定性之情況’可依據需要添加安定劑。 作爲此般之安定劑,可舉出(i)硝基甲烷' 硝基乙 烷等之脂肪族硝基化合物、硝基苯、硝基苯乙烯等之芳香 族硝基化合物、環氧己烷等之醚類、2,2,3,3,3-五氟丙基胺、二苯基胺等之胺類、丁基羥基茬、苯并三唑 等。安定劑可單獨或將2種以上組使用。 安定劑之使用量雖依據安定劑之種類而異,但係以對 -9 - 201014897 組成物之性質不早成障礙之程度。安定劑之使用量係相對 於HFC32與HF01234yf之混合物100重量份,通常以 0.01~5重量份程度爲佳,以〇.〇5〜2重量份程度爲更佳。 本發明之組成物亦可更進而添加聚合禁止劑。例如可 舉出4-甲氧基-卜萘酚、氫醌、氫醌甲基醚、二甲基-t-丁基酚' 2,6-二-tert-丁基-P-甲酚、苯并三唑等。 聚合禁止劑之使用量係相對於HFC32與HF01234yf 之混合物100重量份,通常以0.01〜5重量份程度爲佳, φ 以0.05〜2重量份程度爲更佳。 本發明之組成物亦可更進而含有乾燥劑。 藉由將本發明之冷媒組成物經過壓縮機使其循環,則 可構成冷凍循環。又,也可作爲經過壓縮機使該冷媒組成 物循環而構成冷凍循環之裝置。 可使用本發明之冷媒組成物之冷凍機,例如有汽車空 調' 自動販賣機用冷凍機、業務用·家庭用空調及燃氣熱 泵(GHP ) •電熱泵(EHP )等,但不限定於此些。特別 參 係可有用作爲機器之小型化所要求之業務用•家庭用空調 之冷媒組成物。 [實施例] 以下,使用實施例說明本發明,但並非係受此限定者 試驗例1 -10- 201014897 冷媒係使用 HFC32/HF0 1234yf,使其成爲各自之混 合組成10.6/89.4(實施例1) 、14.3/85.7(實施例2)、 18.0/82.0 (實施例 3 ) 、21.8/78.2 (實施例 4 )、 25.5/74.5 (實施例5 )(各數値爲質量% )。 使用熱泵,作爲冷房額定條件,能力設爲4kW、蒸發 器中之冷媒之蒸發溫度設爲l〇°C、凝縮器中之冷媒之凝縮 溫度設爲45 °C ;作爲冷房中間條件,能力2kW、蒸發溫 度17°C、凝縮溫度42°C ;作爲暖房額定條件,能力5kW 、蒸發溫度〇°C、凝縮溫度42°C ;作爲暖房中間條件,能 力2.5kW、蒸發溫度2°C、凝縮溫度32°C下進行運轉。各 自之過熱度及過冷卻度在〇°C中進行運轉。 此時之冷媒配管長皆爲7.5 m。 又作爲比較例,冷媒使用 HFC32/HF01234yf,使其 成爲各自之混合組成5.0/95.0 (比較例1 )、6.9/93.1 (比 較例 2) 、29.2/70.8 (比較例 3 )、36.7/63.3 (比較例 4 〇 ) 、44.1/55.9(比較例5)(各數値爲質量。/。),與上述 相同之熱泵條件、冷媒配管長下進行運轉。 以此些結果爲基礎將年度消費電力量kWh依據JRA 4046 : 2004 算出。更進一步,將 APF ( AnnualThe inventors focused on the relationship between the mixing ratio of HFC32 and HF01234yf and LCCP-8-201014897 (Life Cycle Climate Performance). LCCP was evaluated by the method described in Test Example 1. As a result of the evaluation, it was found that a refrigerant composition containing 10 to 26% by mass of HFC32 and 74 to 90% by mass of HF〇1234yf (that is, a refrigerant composition having a mass ratio of HFC32 to HF01234yf of 10/90 to 26/74) was not impaired. And the refrigeration performance and environmental load is good for small LCCP. In addition, in the case of a refrigerant composition containing 12 to 25 mass% of HFC32 and 75 to 88 mass% of HF01234yf (a refrigerant composition having a mass ratio of φ HFC32 to HF01234yf of 12/88 to 25/75), it is more excellent. The effect is further improved in the case of a refrigerant composition containing 14 to 22% by mass of HFC32 and 78 to 86% by mass of HF01234yf (a refrigerant composition having a mass ratio of HFC32 to HF01234yf of 14/86 to 22/78). Particularly excellent results. Also, the GWP of HFC32 (Integration Time Horizon; ITH = 1 〇〇yr ) is 675, and HFO 1 234yf is 4. When the weight ratio of the mixed refrigerant HFC3 2 is 21.8% by mass or less, ® can also make the mixed refrigerant have a GWP (ITH = 10 0 yr ) of 150 or less. The composition of the present invention exhibits high stability and requires high stability in use conditions under severe conditions. A stabilizer may be added as needed. Examples of such stabilizers include (i) an aliphatic nitro compound such as nitromethane nitroethane, an aromatic nitro compound such as nitrobenzene or nitrostyrene, or hexylene oxide. Ethers, amines such as 2,2,3,3,3-pentafluoropropylamine, diphenylamine, etc., butyl hydroxy hydrazine, benzotriazole, and the like. The stabilizers may be used singly or in combination of two or more. The amount of stabilizer used varies depending on the type of stabilizer, but it does not pose an obstacle to the nature of the composition of -9 - 201014897. The stabilizer is used in an amount of preferably from 0.01 to 5 parts by weight, based on 100 parts by weight of the mixture of HFC32 and HF01234yf, more preferably from 5 to 2 parts by weight. The composition of the present invention may further contain a polymerization inhibiting agent. For example, 4-methoxy-naphthol, hydroquinone, hydroquinone methyl ether, dimethyl-t-butylphenol '2,6-di-tert-butyl-P-cresol, benzene And triazole and so on. The amount of the polymerization inhibiting agent used is preferably from 0.01 to 5 parts by weight, more preferably from 0.05 to 2 parts by weight, per 100 parts by weight of the mixture of HFC32 and HF01234yf. The composition of the present invention may further contain a desiccant. By circulating the refrigerant composition of the present invention through a compressor, a refrigeration cycle can be constructed. Further, it may be a device that circulates the refrigerant composition through a compressor to constitute a refrigeration cycle. The refrigerator using the refrigerant composition of the present invention may be, for example, a car air conditioner 'refrigerator for vending machines, a commercial air conditioner, a household air conditioner, a gas heat pump (GHP), an electric heat pump (EHP), or the like, but is not limited thereto. some. The special reference can be used as a refrigerant composition for business and household air conditioners required for miniaturization of machines. [Examples] Hereinafter, the present invention will be described using examples, but it is not limited thereto. Test Example 1-10-201014897 The refrigerant used HFC32/HF0 1234yf to make the respective mixed composition 10.6/89.4 (Example 1) 14.3/85.7 (Example 2), 18.0/82.0 (Example 3), 21.8/78.2 (Example 4), 25.5/74.5 (Example 5) (each number is % by mass). The heat pump is used as the rated condition of the cold room, the capacity is set to 4kW, the evaporation temperature of the refrigerant in the evaporator is set to l〇°C, the condensation temperature of the refrigerant in the condenser is set to 45 °C; as the intermediate condition of the cold room, the capacity is 2kW, Evaporation temperature 17 ° C, condensation temperature 42 ° C; as a greenhouse condition, capacity 5kW, evaporation temperature 〇 ° C, condensation temperature 42 ° C; as a greenhouse intermediate conditions, capacity 2.5kW, evaporation temperature 2 ° C, condensation temperature 32 Operate at °C. Each superheat and supercooling is operated at 〇 °C. At this time, the refrigerant piping length is 7.5 m. Further, as a comparative example, HFC32/HF01234yf was used as a refrigerant to have a mixed composition of 5.0/95.0 (Comparative Example 1), 6.9/93.1 (Comparative Example 2), 29.2/70.8 (Comparative Example 3), and 36.7/63.3 (Comparative). Example 4 〇), 44.1/55.9 (Comparative Example 5) (each number is mass / /), and the same heat pump conditions and refrigerant piping as described above were operated. Based on these results, the annual consumption power kWh is calculated based on JRA 4046:2004. Further, APF (Annual

Performance Factor);全年能源消費效率藉由下式算出 〇 APF= ( 1年度所必要之冷暖房能力總和)/ (年度消 費電力),額定冷房能力4kW時之1年度所必要之冷暖 房能力總和爲801 5kWh。 201014897 由此些之結果,進行LCCP之評價。即、 LCCP=直接影響(kg-C02) +間接影響(kg-C02) 直接影響=(在製造工廠充塡時之漏出)+ (常定性 之年度漏出)+ (非常定之年度漏出)+ (服務時之漏出 )+ (廢棄時之漏出) 間接影響=(空調使用所產生之co2排出量)+ (冷 媒之製造、輸送時之C〇2排出量),具體而言可如以下般 而求得。 @ 直接影響=GWP X Μ X ( l-α) + GWPae X Μ 間接影響 =Ν χ Ε χ β GWP :每iKg之C02基準之全球增溫潛勢 積分期 間 100 年(kg-C02/kg) GWPAE :製造時之放出等所成之附加GWP (包含副 生成物等之漏洩所成者或間接性放出) N:機器之運轉年數(年)N=12 M :對機器之充塡量(kg) M=1.3 _ α:機器廢棄時之回收率(回收量/充塡量) α = 0·6 Ε:機器之年度消費電力量(kWh/年) β : IKWh發電所需要之C02發生量(kg-C02/kWh) β = 0.378 結果如表1所示般。 -12 - 201014897 [表i] 實施例 比較例 1 2 3 4 5 1 2 3 4 5 HFC32質量% 10.6 14.3 18.0 21.8 25.5 5.0 6.9 29.2 36.7 44.1 HF01234yf 質量% 89.4 85.7 82.0 78.2 74.5 95.0 93.1 70.8 63.3 55.9 GWP (ITH=100yr) 75.1 100.0 124.8 150.3 175.1 37.6 50.3 199.9 250.3 299.9 年度消費電力 kWh 1618 1613 1610 1609 1610 1661 1643 1611 1613 1612 APF 4.954 4.968 4.980 4.982 4.978 4.827 4.878 4.977 4.969 4.971 間接影響 kg-C02 7339 7317 7301 7298 7303 7533 7454 7306 7316 7314 直接影響 kg-C〇2 69.0 81.9 94.8 108.0 121.0 49.4 56.1 133.9 160.0 185.9 LCCP kg-C02 7408 7399 7396 7406 7424 7582 7510 7440 7476 7500Performance Factor); The annual energy consumption efficiency is calculated by the following formula: 〇 APF = (the sum of the capacity of the cold and warm rooms necessary for the year) / (the annual consumption power), and the total capacity of the cold and warm rooms necessary for the first year when the rated cold capacity is 4 kW is 801. 5kWh. 201014897 Based on these results, the evaluation of LCCP was carried out. That is, LCCP = direct impact (kg-C02) + indirect impact (kg-C02) direct impact = (leakage at the time of manufacture of the factory) + (constant annual leakage) + (very fixed annual leakage) + (service In case of leakage (except when it is discarded), indirect influence = (co2 discharge amount generated by air conditioner use) + (C〇2 discharge amount at the time of manufacture and transportation of refrigerant), specifically, can be obtained as follows . @直接影响=GWP X Μ X ( l-α) + GWPae X Μ Indirect impact =Ν χ Ε χ β GWP : Global warming potential period of 100 hours per CK benchmark (kg-C02/kg) GWPAE : Additional GWP (including the leakage of by-products or indirect release) caused by the release at the time of manufacture N: The number of years of operation of the machine (year) N=12 M : The amount of charge to the machine (kg M=1.3 _ α: Recovery rate (recycling amount/charged amount) when the machine is abandoned α = 0·6 Ε: Annual consumption power consumption of the machine (kWh/year) β : The amount of C02 required for IKWh power generation ( kg-C02/kWh) β = 0.378 The results are shown in Table 1. -12 - 201014897 [Table i] Example Comparative Example 1 2 3 4 5 1 2 3 4 5 HFC 32% by mass 10.6 14.3 18.0 21.8 25.5 5.0 6.9 29.2 36.7 44.1 HF01234yf Mass % 89.4 85.7 82.0 78.2 74.5 95.0 93.1 70.8 63.3 55.9 GWP ( ITH=100yr) 75.1 100.0 124.8 150.3 175.1 37.6 50.3 199.9 250.3 299.9 Annual Consumption Power kWh 1618 1613 1610 1609 1610 1661 1643 1611 1613 1612 APF 4.954 4.968 4.980 4.982 4.978 4.827 4.878 4.977 4.969 4.971 Indirect Impact kg-C02 7339 7317 7301 7298 7303 7533 7454 7306 7316 7314 Direct impact kg-C〇2 69.0 81.9 94.8 108.0 121.0 49.4 56.1 133.9 160.0 185.9 LCCP kg-C02 7408 7399 7396 7406 7424 7582 7510 7440 7476 7500

試驗例2 與試驗例1使用相同冷媒,除了冷媒配管長爲5m以 ® 外,其他與試驗例1相同之熱泵條件下進行運轉(實施例 6〜10、比較例6~10 )。其結果如表2所示般。 -13- 201014897 [表2] 實施例 比較例 6 7 8 9 10 6 7 8 9 10 HFC32 質量% 10.6 14.3 18.0 21.8 25.5 5.0 6.9 29.2 36.7 44.1 HF01234yf 質量% 89.4 85.7 82.0 78.2 74.5 95.0 93.1 70.8 63.3 55.9 GWP (ITH=100yr) 75.1 100.0 124.8 150.3 175.1 37.6 50.3 199.9 250.3 299.9 年度消費電力 kWh 1605 1600 1598 1599 1602 1633 1620 1603 1607 1607 APF 4.994 5.011 5.016 5.013 5.005 4.909 4.947 5.000 4.989 4.987 間接影響 kg-C02 7281 7255 7249 7253 7264 7406 7350 7271 7288 7290 直麟響 kg-C〇2 69.0 81.9 94.8 108.0 121.0 49.4 56.1 133.9 160.0 185.9 LCCP kg-C02 7350 7337 7344 7361 7385 7456 7406 7405 7449 7476 試驗例3 使用與試驗例1相同之冷媒,除了冷媒配管長爲l〇m 以外’其他與試驗例1相同之熱泵條件下進行運轉(實施 例1 1 ~ 1 5、比較例1 1〜1 5 )。其結果如表3所示般。 201014897 [表3] 實施例 比較例 11 12 13 14 15 11 12 13 14 15 HFC32 質量% 10.6 14.3 18.0 21.8 25.5 5.0 6.9 29.2 36.7 44.1 HF01234yf 質量% 89.4 85.7 82.0 78.2 74.5 95.0 93.1 70.8 63.3 55.9 GWP (ITH=100yr) 75.1 100.0 124.8 150.3 175.1 37.6 50.3 199.9 250.3 299.9 年度消費電力 kWh 1643 1629 1622 1619 1619 1727 1676 1619 1620 1618 APF 4.879 4.921 4.941 4.950 4.978 4.641 4.786 4.952 4.949 4.955 間接影響 kg-C02 7453 7389 7359 7346 7345 7834 7601 7343 7346 7338 直接影響 kg-C02 69.0 81.9 94.8 108.0 121.0 49.4 56.1 133.9 160.0 185.9 LCCP kg-C02 7522 7471 7454 7454 7466 7884 7657 7477 7506 7524 試驗例4 〇 作爲比較例,冷媒使用 R410A (比較例16 )及 R4〇7C (比較例17 ),與試驗例1相同之熱泵條件、冷媒 配管長下進行運転。其結果如表4所示般。 -15- 201014897 [表4] 比較例 16 17 冷媒 R410A R407C GWP ( ITH=1 OOyr ) 2060 1774 年度消費電力kWh 1606 1595 APF 4.992 5.026 間接影響kg-C02 7283 723 5 直接影響kg-C02 110 1 952 LCCP kg-C02 83 8 4 8 187 依據表1〜3之結果,將圖示關於本發明之冷媒組成的 LCCP者表示於圖1。本發明之冷媒,其十分明顯在加進 了碳酸氣體排出之直接影響及間接影響之指標的LCCP中 ,顯示出比R410A及R407C更低之値,且在1〇~26質量 % (特別係14〜22質量%)之HFC32組成範圍下對環境負 荷爲小一事。 [產業上之可利用性] 本發明之混合冷媒組成物可有用作爲冷凍及空調機器 所用之冷媒組成物。 【圖式簡單說明】 [圖1 ]圖示試驗例1 ~3之實施例及比較例之各冷媒組 成中之LCCP者。 -16-Test Example 2 The same refrigerant as in Test Example 1 was used, except that the refrigerant pipe length was 5 m and the operation was carried out under the same heat pump conditions as in Test Example 1 (Examples 6 to 10 and Comparative Examples 6 to 10). The results are shown in Table 2. -13- 201014897 [Table 2] Example Comparative Example 6 7 8 9 10 6 7 8 9 10 HFC32% by mass 10.6 14.3 18.0 21.8 25.5 5.0 6.9 29.2 36.7 44.1 HF01234yf% by mass 89.4 85.7 82.0 78.2 74.5 95.0 93.1 70.8 63.3 55.9 GWP ( ITH=100yr) 75.1 100.0 124.8 150.3 175.1 37.6 50.3 199.9 250.3 299.9 Annual Consumption Power kWh 1605 1600 1598 1599 1602 1633 1620 1603 1607 1607 APF 4.994 5.011 5.016 5.013 5.005 4.909 4.947 5.000 4.989 4.987 Indirect Impact kg-C02 7281 7255 7249 7253 7264 7406 7350 7271 7288 7290 直麟响 kg-C〇2 69.0 81.9 94.8 108.0 121.0 49.4 56.1 133.9 160.0 185.9 LCCP kg-C02 7350 7337 7344 7361 7385 7456 7406 7405 7449 7476 Test Example 3 The same refrigerant as Test Example 1 was used except for the refrigerant. The operation was carried out under the same heat pump conditions as in Test Example 1 except that the length of the piping was l〇m (Examples 1 to 15 and Comparative Examples 1 to 15). The results are shown in Table 3. 201014897 [Table 3] Example Comparative Example 11 12 13 14 15 11 12 13 14 15 HFC32% by mass 10.6 14.3 18.0 21.8 25.5 5.0 6.9 29.2 36.7 44.1 HF01234yf Mass % 89.4 85.7 82.0 78.2 74.5 95.0 93.1 70.8 63.3 55.9 GWP (ITH=100yr 75.1 100.0 124.8 150.3 175.1 37.6 50.3 199.9 250.3 299.9 Annual consumption power kWh 1643 1629 1622 1619 1619 1727 1676 1619 1620 1618 APF 4.879 4.921 4.941 4.950 4.978 4.641 4.786 4.952 4.949 4.955 Indirect impact kg-C02 7453 7389 7359 7346 7345 7834 7601 7343 7346 7338 Direct influence kg-C02 69.0 81.9 94.8 108.0 121.0 49.4 56.1 133.9 160.0 185.9 LCCP kg-C02 7522 7471 7454 7454 7466 7884 7657 7477 7506 7524 Test example 4 〇 As a comparative example, the refrigerant used R410A (Comparative Example 16) and R4〇7C (Comparative Example 17) The same heat pump conditions and refrigerant piping as in Test Example 1 were carried out. The results are shown in Table 4. -15- 201014897 [Table 4] Comparative Example 16 17 Refrigerant R410A R407C GWP ( ITH=1 OOyr ) 2060 1774 Annual Consumption Power kWh 1606 1595 APF 4.992 5.026 Indirect Impact kg-C02 7283 723 5 Direct Impact kg-C02 110 1 952 LCCP kg-C02 83 8 4 8 187 According to the results of Tables 1 to 3, the LCCP showing the composition of the refrigerant of the present invention is shown in Fig. 1. The refrigerant of the present invention is obviously lower in RCCP which is added to the direct influence of carbon dioxide gas discharge and the index of indirect influence, and is lower than R410A and R407C, and is in the range of 1 〇 to 26 mass% (especially 14 ~22% by mass of the HFC32 composition range is less important for environmental load. [Industrial Applicability] The mixed refrigerant composition of the present invention can be used as a refrigerant composition for use in refrigeration and air-conditioning equipment. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] The LCCPs in the respective refrigerant compositions of the examples of the test examples 1 to 3 and the comparative examples are shown. -16-

Claims (1)

201014897 七、申請專利範圍: 1·—種冷媒組成物,其特徵爲含有10~26質量%之二 氟甲烷(HFC32)及74〜90質量%之2,3,3, 3 -四氟丙烯( HFOl 234yf )。 2·如申請專利範圍第1項記載之冷媒組成物,其中 含有14~22質量%之二氟甲烷(HFC32)及78~86質量% 之 2,3,3,3-四氟丙烯(HF01234yf)。 ® 3.如申請專利範圍第1項記載之冷媒組成物,其中 更進一步含有聚合防止劑。 4-如申請專利範圍第1項記載之冷媒組成物,其中 更進一步含有乾燥劑。 5·如申請專利範圍第1項記載之冷媒組成物,其中 更進一步含有安定劑。 6- 一種冷凍機之運轉方法,其特徵爲使申請專利範 圍第1項記載之冷媒組成物藉由壓縮機循環。 ® 7. —種製造方法,其係申請專利範圍第1項記載之 冷媒組成物之製造方法,其特徵爲配合1〇~26質量%之二 氟甲烷(HFC32)及74〜90質量%之2,3,3,3-四氟丙烯( HF01234yf)。 8. —種冷凍機,其特徵爲含有如申請專利範圍第1 項記載之冷媒組成物。 -17-201014897 VII. Patent application scope: 1. A refrigerant composition characterized by containing 10 to 26% by mass of difluoromethane (HFC32) and 74 to 90% by mass of 2,3,3,3-tetrafluoropropene ( HFOl 234yf ). 2. The refrigerant composition according to claim 1, wherein 14 to 22% by mass of difluoromethane (HFC32) and 78 to 86% by mass of 2,3,3,3-tetrafluoropropene (HF01234yf) are contained. . The refrigerant composition according to claim 1, which further contains a polymerization inhibitor. 4- The refrigerant composition according to claim 1, wherein the desiccant further contains a desiccant. 5. The refrigerant composition according to claim 1, wherein the stabilizer further contains a stabilizer. 6- A method of operating a refrigerator, characterized in that the refrigerant composition described in the first paragraph of the patent application is circulated by a compressor. A method for producing a refrigerant composition according to the first aspect of the invention, which is characterized in that it is blended with 1 to 26% by mass of difluoromethane (HFC32) and 74 to 90% by mass. , 3,3,3-tetrafluoropropene (HF01234yf). 8. A refrigerator characterized by containing the refrigerant composition as recited in claim 1 of the patent application. -17-
TW98122288A 2008-07-01 2009-07-01 Refrigerant composition comprising difluoromethane (HFC32) and 2,3,3,3-tetrafluoropropene (HFO1234yf) TW201014897A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12950108P 2008-07-01 2008-07-01
US11289608P 2008-11-10 2008-11-10

Publications (1)

Publication Number Publication Date
TW201014897A true TW201014897A (en) 2010-04-16

Family

ID=41119424

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98122288A TW201014897A (en) 2008-07-01 2009-07-01 Refrigerant composition comprising difluoromethane (HFC32) and 2,3,3,3-tetrafluoropropene (HFO1234yf)

Country Status (2)

Country Link
TW (1) TW201014897A (en)
WO (1) WO2010002016A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2936806B1 (en) 2008-10-08 2012-08-31 Arkema France REFRIGERANT FLUID
US20100122545A1 (en) 2008-11-19 2010-05-20 E. I. Du Pont De Nemours And Company Tetrafluoropropene compositions and uses thereof
FR2950065B1 (en) 2009-09-11 2012-02-03 Arkema France BINARY REFRIGERANT FLUID
FR2950066B1 (en) 2009-09-11 2011-10-28 Arkema France LOW AND MEDIUM TEMPERATURE REFRIGERATION
KR20210122889A (en) * 2009-12-21 2021-10-12 더 케무어스 컴퍼니 에프씨, 엘엘씨 Compositions comprising tetrafluoropropene and difluoromethane and uses thereof
EP3284796B1 (en) * 2010-01-27 2021-05-26 Daikin Industries, Ltd. Use of refrigerant composition comprising difluoromethane (hfc32) and 2,3,3,3-tetrafluoropropene (hfo1234yf)
TW201410856A (en) 2012-08-23 2014-03-16 Du Pont Refrigerant mixtures comprising tetrafluoropropenes and difluoromethane and uses thereof
EP2894209B1 (en) * 2012-09-04 2022-01-05 Daikin Industries, Ltd. Method for filling mixed refrigerant containing 2,3,3,3-tetrafluoropropene
DK4206298T3 (en) * 2018-04-30 2024-04-29 Chemours Co Fc Llc STABILIZED FLUOROLEFINE COMPOSITIONS AND PROCEDURE FOR MANUFACTURE, STORAGE AND USE THEREOF

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279451B2 (en) * 2002-10-25 2007-10-09 Honeywell International Inc. Compositions containing fluorine substituted olefins
US7569170B2 (en) * 2005-03-04 2009-08-04 E.I. Du Pont De Nemours And Company Compositions comprising a fluoroolefin
US20060243944A1 (en) * 2005-03-04 2006-11-02 Minor Barbara H Compositions comprising a fluoroolefin
TWI657070B (en) * 2005-06-24 2019-04-21 美商哈尼威爾國際公司 Compositions containing fluorine substituted olefins and uses thereof
CA2661007A1 (en) * 2006-09-01 2008-03-06 E.I. Du Pont De Nemours And Company Method for circulating selected heat transfer fluids through a closed loop cycle

Also Published As

Publication number Publication date
WO2010002016A1 (en) 2010-01-07

Similar Documents

Publication Publication Date Title
JP6392272B2 (en) Heat transfer fluids and their use in countercurrent heat exchangers
JP5936604B2 (en) Heat transfer fluids and their use in countercurrent heat exchangers
EP2566930B1 (en) Use of compositions for refrigeration
US8496845B2 (en) Refrigerant composition comprising difluoromethane (HFC32), pentafluoroethane (HFC125) and 2, 3, 3, 3-tetrafluoropropene (HFO1234yf)
EP3730871A1 (en) Heat source unit and refrigeration cycle device
TW201014897A (en) Refrigerant composition comprising difluoromethane (HFC32) and 2,3,3,3-tetrafluoropropene (HFO1234yf)
EP4053242A1 (en) Composition containing refrigerant, and refrigeration method using said composition, operating method for refrigeration device, and refrigeration device
TW201014898A (en) Refrigerant composition comprising difluoromethane (HFC32), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a)
JP2013530265A5 (en)
EP3808828A1 (en) Refrigerant-containing composition, heat transfer medium, and heat cycle system
JP7410429B2 (en) Compositions containing refrigerants and their applications
JP2016514187A (en) Compositions and methods for cooling
US20160017199A1 (en) Systems for efficient heating and/or cooling and having low climate change impact
Emani et al. Development of refrigerants: a brief review
WO2015083834A1 (en) Composition including difluoromethane (hfc-32), pentafluoroethane (hfc-125), and 1,1,1,2-tetrafluoroethane (hfc-134a)
TW201014899A (en) Refrigerant composition comprising pentafluoroethane (HFC125), 2,3,3,3-tetrafluoropropene (HFO1234yf) and 1,1,1,2-tetrafluoroethane (HFC134a)
Pabón Phase-out of high GWP refrigerants in refrigeration systems: Status of process in Colombia