TW201014835A - Process and system for preparing glycidyl (meth) acrylate - Google Patents

Process and system for preparing glycidyl (meth) acrylate Download PDF

Info

Publication number
TW201014835A
TW201014835A TW98126591A TW98126591A TW201014835A TW 201014835 A TW201014835 A TW 201014835A TW 98126591 A TW98126591 A TW 98126591A TW 98126591 A TW98126591 A TW 98126591A TW 201014835 A TW201014835 A TW 201014835A
Authority
TW
Taiwan
Prior art keywords
meth
acrylate
reactor
reaction
allyl
Prior art date
Application number
TW98126591A
Other languages
Chinese (zh)
Inventor
Robert Franke
Johannes Josef Albrecht
Claudia Brasse
Dirk Broell
Juergen Neuroth
Joanne Pedall
Original Assignee
Evonik Roehm Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Roehm Gmbh filed Critical Evonik Roehm Gmbh
Publication of TW201014835A publication Critical patent/TW201014835A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/12Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B33/00Oxidation in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a continuous process for preparing glycidyl (meth)acrylate, comprising the reaction of allyl (meth)acrylate with H2O2 in at least one reactor in the presence of a catalyst, unconverted allyl (meth)acrylate being removed from the product mixture and recycled into at least one reactor, which is characterized in that unconverted H2O2 is removed from the product mixture and recycled into at least one reactor.

Description

201014835 六、發明說明: 【發明所屬之技術領域】 本發明關於一種製備(甲基)丙烯酸環氧丙烷酯的方 法。本發明進一步敘述一種進行此方法的系統。 【先前技術】 (甲基)丙烯酸環氧丙烷酯常被用作爲共單體,例如 β 用於製備反應性聚合物。據此,已知各種獲得此化合物的 方法。 例如,此化合物可藉由將表氯醇與(甲基)丙烯酸甲 酯反應而獲得。此種方法被敘述於例如DE-A-25 25 026 中。然而,表氯醇具毒性及致癌性,所以其中使用表氯醇 的系統必須符合非常高的安全標準。 因此,已發展出其中可以藉由(甲基)丙烯酸烯丙酯 與過氧化氫(Η202 )的部分環氧化反應而獲得(甲基)丙 ® 烯酸環氧丙烷酯的方法。此等方法尤其被敘述於例如ΕΡ-Α-1 90 609、ΕΡ-Α 63 8 362、JP-Α-0905 9269、JP-A- 1 01 58 1 98 、 JP-A-08 1 88575 、 JP-A-091 32571 、 JP-A-101 68072 、 JP-A-1 1 1 65074 、 JP-A-0923 5439 、 JP-A-09301966 、 CA-A-2033047 、 EP-B-434546 、 EP-B-468 840 (DE 69 1 25 540 ) 、U S 5,2 8 3,3 6 0 及 W O A - 9 8 / 2 8 2 8 7 中。 發表案EP-A- 1 90 609敘述以(甲基)丙烯酸烯丙酯 與H202在TS-1觸媒存在下反應的(甲基)丙烯酸環氧丙 烷酯製備作用。在此例子中,例如可先裝入(甲基)丙烯 -5- 201014835 酸烯丙酯及觸媒,然後加入H2〇2。在發表案中指明的反 應溫度係在從0至150°c之範圍內。在例如EP-A-190 609 中詳述之分批法的一項缺點是相當高的製造成本。另外, 產物品質的控制屢次具複雜性’因爲反應只可以分批影響 。類似的方法同樣被詳述於以上引述的更多發表案中。 另外,JP-A-08 1 8 85 75亦敘述其中先將兩種反應物與 一或多種溶劑(例如,甲醇)混合及接著在觸媒存在下轉 化的連續方法。 © 上述方法的缺點是低產量,尤其可歸因於不可逆之副 反應。例如,尤其以純化所得混合物時存在的H2o2爲關 鍵,因爲此化合物可與產物中存在的雙鍵反應。在發表案 JP-A-09132571中就此所提出的一項解決辦法係以催化分 解過量h2o2。 【發明內容】 有鑑於先前技藝,因此本發明的目的係提供一種製備 © (甲基)丙烯酸環氧丙烷酯的方法,其中產物可以非常不 貴的方式獲得。此外,所得(甲基)丙烯酸環氧丙烷酯應 該只含有非常少量的副產物。 本發明進一步的目的係提供一種其中(甲基)丙烯酸 環氧丙烷酯可以高選擇性方式獲得的方法。另外,該方法 應該提供非常實質固定的產物品質。 此外,本發明的目的係提供一種可以非常簡單且可靠 地進行用以製備(甲基)丙烯酸環氧丙烷酯的方式。同時 -6- 201014835 ,應該儘可能獲得高產量的產物,且以總體來看,具有低 能量消耗。 未明確地陳述,但可以引介方式從本文所討論之關聯 性立即衍生或分辨的這些目的及進一步的目的係藉由具有 申請專利範圍第1項之所有特色的方法達成。根據本發明 的方法之適當修改受到回歸於申請專利範圍第1項之獨立 項的保護。關於進行根據本發明的方法之系統,申請專利 φ 範圍第25項提供基本問題的解決辦法。 本發明據此提供一種製備(甲基)丙烯酸環氧丙烷酯 的連續方法,其包含將(甲基)丙烯酸烯丙酯與H202在 至少一個反應器中於觸媒存在下反應,將未轉化之(甲基 )丙烯酸烯丙酯從反應器中的產物混合物移出及再循環到 至少一個反應器中,該方法的特徵在於將未轉化之h2o2 從產物混合物移出及再循環到至少一個反應器中。 因此有可能以不可預見的方式提供一種製備(甲基) ® 丙烯酸環氧丙烷酯的方法,其中產物係以非常不貴的方式 獲得。驚人的是所獲得的產物只含有非常少量的副產物且 通常達成非常固定的產物品質。 另外,根據本發明的方法能夠特別選擇性製備(甲基 )丙嫌酸環氧丙烷酯。此外,可簡單且可靠地進行根據本 發明的方法’且可獲得高產量的產物,以總體來看,具有 低能量消耗。 根據本發明製備(甲基)丙烯酸環氧丙烷酯,術語, (甲基)丙烯酸環氧丙烷酯〃代表甲基丙烯酸環氧丙烷酯 201014835 (CAS第 106-91-2號)、丙烯酸環氧丙烷酯(CAS第 106-90-1號)及甲基丙烯酸環氧丙烷酯與丙烯酸環氧丙烷 酯之混合物。 爲了製備(甲基)丙烯酸環氧丙烷酯,根據本發明係 使用甲基丙烯酸烯丙酯(CAS第96-05-9號)、丙烯酸烯 丙酯(CAS第999-55-3號)或這些化合物之混合物,以 下被稱爲(甲基)丙烯酸烯丙酯。這些化合物被單獨或以 與過氧化氫(H202; CAS第7722-84-1號)之混合物形式 ® 使用。 所使用之過氧化氫可包含或多或少的水(H20 )量, 沒有水會造成關於反應體系(reaction regime )的問題。 然而,大量水的缺點是其必須在純化(甲基)丙烯酸環氧 丙烷酯時從反應混合物移出。另一方面,高濃縮過氧化氫 的製備及使用具複雜性。因此,適當的是過氧化氫對水之 莫耳比在以反應爲基準計從20: 1至1: 20之範圍內,較 佳地在從10: 1至1: 10之範圍,而最佳地在從5: 1至 Θ 1 : 5之範圍內。 (甲基)丙烯酸烯丙酯對H202之莫耳比較佳地大於 1。可達成關於本方法效率的特殊優點可特別藉由(甲基 )丙烯酸烯丙酯對H202之莫耳比較佳地在從20 ·· 1至1 :5之範圍內,更佳地在從10: 1至1: 1之範圍內,而 最佳地在從5: 1至2: 1之範圍內,而達成。 根據本發明的方法發生在觸媒存在下。降低環氧化反 應之活化能的觸媒本身爲已知的。關於此點,尤其應參考 -8 - 201014835 在歐洲專利局以申請號EP 86100825.8於22.01.86申請之201014835 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a process for preparing propylene oxide (meth)acrylate. The invention further describes a system for carrying out the method. [Prior Art] Propylene oxide (meth)acrylate is often used as a comonomer, for example, β for the preparation of a reactive polymer. Accordingly, various methods of obtaining such compounds are known. For example, this compound can be obtained by reacting epichlorohydrin with methyl (meth)acrylate. Such a method is described, for example, in DE-A-25 25 026. However, epichlorohydrin is toxic and carcinogenic, so systems using epichlorohydrin must meet very high safety standards. Therefore, a method in which (meth)propionic acid propylene oxide ester can be obtained by partial epoxidation reaction of allyl (meth) acrylate with hydrogen peroxide (Η202) has been developed. Such methods are described, inter alia, in, for example, ΕΡ-Α-1 90 609, ΕΡ-Α 63 8 362, JP-Α-0905 9269, JP-A-1 01 58 1 98, JP-A-08 1 88575, JP- A-091 32571, JP-A-101 68072, JP-A-1 1 1 65074, JP-A-0923 5439, JP-A-09301966, CA-A-2033047, EP-B-434546, EP-B- 468 840 (DE 69 1 25 540 ), US 5,2 8 3,3 6 0 and WOA - 9 8 / 2 8 2 8 7 . The publication EP-A-1 90 609 describes the preparation of (meth)acrylic acid propylene oxide by reacting allyl (meth) acrylate with H202 in the presence of a TS-1 catalyst. In this case, for example, (meth) propylene -5 - 201014835 acid allyl ester and a catalyst may be charged first, followed by H 2 〇 2 . The reaction temperature indicated in the publication is in the range of from 0 to 150 °C. A disadvantage of the batch process detailed in, for example, EP-A-190 609 is the relatively high manufacturing cost. In addition, the control of product quality is often complicated by the fact that the reaction can only be affected in batches. A similar approach is also detailed in more publications cited above. Further, JP-A-08 1 8 85 75 also describes a continuous process in which two reactants are first mixed with one or more solvents (e.g., methanol) and then converted in the presence of a catalyst. © The disadvantages of the above methods are low yields, especially attributable to irreversible side reactions. For example, H2o2 present in particular when purifying the resulting mixture is critical since this compound can react with the double bonds present in the product. One solution proposed in the publication JP-A-09132571 is to catalytically decompose excess h2o2. SUMMARY OF THE INVENTION In view of the prior art, it is therefore an object of the present invention to provide a process for the preparation of propylene oxide (meth)acrylate wherein the product can be obtained in a very inexpensive manner. Further, the obtained propylene oxide (meth)acrylate should contain only a very small amount of by-products. A further object of the present invention is to provide a process in which propylene oxide (meth)acrylate can be obtained in a highly selective manner. In addition, the method should provide a very substantial fixed product quality. Further, it is an object of the present invention to provide a process for producing propylene oxide (meth)acrylate which can be carried out very simply and reliably. At the same time -6- 201014835, high-yield products should be obtained as much as possible, and overall, they have low energy consumption. These objects and further objects which are not explicitly stated, but which can be immediately derived or distinguished from the relevance discussed herein, are achieved by a method having all the features of claim 1 of the scope of the patent application. Appropriate modifications of the method according to the invention are protected by the independence of item 1 of the scope of the patent application. With regard to the system for carrying out the method according to the invention, the 25th item of the patent application φ provides a solution to the basic problem. The present invention accordingly provides a continuous process for preparing propylene oxide (meth) acrylate comprising reacting allyl (meth) acrylate with H202 in the presence of a catalyst in at least one reactor, which will be unconverted The allyl (meth) acrylate is removed from the product mixture in the reactor and recycled to at least one reactor, the process being characterized by removing unconverted h2O2 from the product mixture and recycling it to at least one reactor. It is therefore possible to provide a method for preparing (meth) ® propylene oxide acrylate in an unpredictable manner, in which the product is obtained in a very inexpensive manner. Surprisingly, the product obtained contains only very small amounts of by-products and usually achieves very fixed product quality. Furthermore, the process according to the invention makes it possible to prepare, in particular, selectively (meth)propionic acid propylene oxide. Furthermore, the process according to the invention can be carried out simply and reliably and a high yield of product can be obtained, with overall low energy consumption. Preparation of propylene oxide (meth) acrylate according to the present invention, the term propylene oxide (meth) acrylate represents propylene oxide methacrylate 201014835 (CAS No. 106-91-2), propylene oxide acrylate Ester (CAS No. 106-90-1) and a mixture of propylene oxide methacrylate and propylene oxide acrylate. In order to prepare propylene oxide (meth)acrylate, allyl methacrylate (CAS No. 96-05-9), allyl acrylate (CAS No. 999-55-3) or these are used according to the invention. A mixture of compounds, hereinafter referred to as allyl (meth)acrylate. These compounds are used singly or in the form of a mixture with hydrogen peroxide (H202; CAS No. 7722-84-1). The hydrogen peroxide used may contain more or less water (H20), and the absence of water causes problems with the reaction regime. However, a disadvantage of large amounts of water is that it must be removed from the reaction mixture when purifying the propylene oxide (meth)acrylate. On the other hand, the preparation and use of highly concentrated hydrogen peroxide is complicated. Therefore, it is appropriate that the molar ratio of hydrogen peroxide to water is in the range of from 20:1 to 1:20 on the basis of the reaction, preferably in the range from 10:1 to 1:10. The ground is in the range from 5: 1 to Θ 1:5. The allyl (meth) acrylate is preferably greater than 1 for H202. A particular advantage with regard to the efficiency of the process can be achieved, in particular by the allyl (meth) acrylate to the H202 of the H202 preferably in the range from 20·1 to 1:5, more preferably from 10: Between 1 and 1:1, and optimally within the range of 5:1 to 2:1. The method according to the invention occurs in the presence of a catalyst. Catalysts which reduce the activation energy of the epoxidation reaction are known per se. In this regard, reference should be made in particular to -8 - 201014835 at the European Patent Office with application number EP 86100825.8 at 22.01.86

公開案 EP-A- 1 90 609、在歐洲專利局以申請號 EP 94112508.0 於 10.08.94 申請之公開案 EP-A-638 362、JP- A-09059269 、 JP-A- 1 0 1 58 1 98 、 JP-A-08 1 8 8 5 75 、 JP-A- 09132571 、 JP-A-10168072 、 JP-A-11165074 、 JP-A- 09235439、 JP-A-09301966 、 CA-A-2033047 、在歐洲專利 局以申請號 EP 90403648.0 於 18.12.90 申請之 EP-B-434 φ 546、在歐洲專利局以申請號EP 91401849.4於04.07.91 申請之EP-B-468 840、US 5,283,360及在歐洲專利局以申 請號 PCT/EP97/07283 於 22.12.97 申請之 WO-A-98/28287 ,將其中所述之觸媒被倂入本申請案中,以達揭示之目的 〇 特別佳的觸媒不溶於反應混合物中且包含二氧化矽, 特別優先選擇爲鈦矽質岩觸媒。 鈦矽質岩觸媒爲一般的合成沸石,在此沸石中的 . Ti〇2對Si02之莫耳比少於1。Ti〇2對Si〇2之莫耳比較佳 地根據下式: X Ti〇2· ( 1 -X ) Si〇2 其中x係在從0.0001至〇·〇4之範圍內,更佳地在從 0.0055至0.03 6之範圍內。 鈦矽質岩觸媒的孔徑較佳地在從1至50奈米,更佳 地從5至30奈米之範圍內。 -9 - 201014835 這些觸媒尤其可以藉由原矽酸四烷酯與原鈦酸四烷酯 之縮合反應製備。 根據本發明,反應係在反應器中連續地完成。術語^ 連續地'爲技術領域中已知的。應瞭解連續反應尤其意謂 其中反應物係在延長期間加入反應器中及產物係從反應器 抽出的反應混合物移出的反應。 反應可在減壓或升壓下完成。在特別適當的本發明修 改中,環氧化反應可在從200至2000毫巴之範圍內,更 ❿ 佳地在從500至1300毫巴之範圍內的壓力下進行。 反應溫度尤其取決於所使用的觸媒類型。觸媒活性越 高’則可於反應中使用的溫度越低。就本方法的經濟可行 性而言,反應的選擇性尤其重要。驚人的優點尤其可在從 20°C至60°C之範圍內,更佳地在從25°C至35°C之範圍內 的反應溫度下達成。 在本方法特別適當的配置中,至多50莫耳%,較佳 地至多30莫耳%,而最佳地至多1〇莫耳%之供應至反應 © 器中的(甲基)丙烯酸烯丙酯被轉化,沒有任何應強加限 制的意圖。此數値與整個方法的轉化率無關,其中在較佳 的變化中’可將未轉化之(甲基)丙烯酸烯丙酯再循環且 在另一操作中轉化,但是與在饋入反應器之後存在於轉化 之反應混合物中的(甲基)丙烯酸烯丙酯比例有關。 較佳地至多60莫耳%,優先選擇爲至多40莫耳%, 而最佳地至多30莫耳%之供應至反應器中的h202被轉化 。此數値不以整個方法爲基準,其中在較佳的變化中,可 -10- 201014835 將未轉化之h2o2再循環且在另一操作中轉化,但是與在 饋入反應器之後存在於轉化之反應混合物中的H2〇2比例 有關。 上述之轉化率値尤其可經由滯留時間調節,該時間尤 其在從1分鐘至180分鐘之範圍內,更佳地在從5分鐘至 60分鐘之範圍內。在使用複數個反應器的情況中,這些 數據係以這些反應器中的滞留時間總和爲基準。 以上詳述之參數較佳地係經選擇使得反應的選擇性爲 至少8 5 %,更佳地至少9 0 %,而最佳地至少9 4 %。 反應發生在至少一個反應器中,反應器類型不受任何 特殊限制。例如,尤其有可能使用等溫或絕熱反應器進行 反應,其亦可被配置成包括材料再循環的迴路反應器形式 〇 等溫反應器允許非常好的反應溫度控制,但是與相對 高的投資成本及操作與維修複雜性有關聯。 ® 關於本方法的成本功效的驚人優點尤其可經由使用一 或多個絕熱反應器達成。在絕熱反應器中,反應典型地在 無熱交換時發生。因爲本反應爲放熱反應,但是非常高的 溫度上升在許多情況中可導致較低的選擇性,所以本反應 器不需要任何昂貴的絕緣材料,以預防熱交換。據此,在 本發明的上下文中’應瞭解術語"絕熱反應器"意謂沒有 任何自動冷卻的反應容器,以維持在反應容積內固定的反 應溫度。此反應器可具有特別簡單且因此不貴的構造。 不立即可預見及以選擇性增加爲基準的一項本方法改 -11 - 201014835 進可經由使用一種具有至少兩個絕熱反應器的系統達成, 反應混合物係在反應器之間冷卻。在此配置中的絕熱反應 器的數量較佳地在從2至8個,更佳地3至5個之範圍內 〇 由於在絕熱反應器內缺乏自動冷卻,所以反應混合物 的溫度通常在反應容器內增加。絕熱反應器的尺寸較佳地 係經選擇使得溫度增加至多20°C,更佳地至多1 〇°C。例 如,在反應器入口處之反應混合物的溫度可爲最高45 °C 0 ,較佳地最高35 °C,而最佳地最高27 °C,反之,在反應 器出口處之反應混合物的溫度較佳地爲最高55 °C,更佳 地最高45°C,而最佳地最高3 1°C。 沒必要在不飽和化合物的反應或純化期間使用聚合抑 制劑。因此,有可能省掉聚合抑制劑的使用,尤其在(甲 基)丙烯酸烯丙酯的部分環氧化反應中。然而,在純化的 過程中,聚合抑制劑的使用可達成關於系統有效壽命及產 量的優點。這些化合物,例如氫醌、氫醌醚(諸如氫醌單 G 甲醚或二-三級丁基焦兒茶酚)、啡噻畊、4-羥基-2,2,6,6-四甲基六氫吡啶1-氧基、亞甲藍或位阻酚,爲技術領域 中廣泛已知的。這些化合物可被單獨或以混合物形式使用 ’且通常以市售取得。更多的細節參考標準的技術文獻, 尤其爲 Rompp-Lexikon Chemie; Editors: J. Falbe, M. Regitz; Stuttgart, New York; 10th Edition ( 1 9 9 6 ); under"Antioxidants";及以此點引用之文獻。 根據本發明的方法可以不使用溶劑進行。若必要時, -12- 201014835 亦有可能使用惰性溶劑。在本發明特殊的配置中,尤其有 可能使用可與反應物有效混合的極性溶劑》反應物較佳地 與溶劑可混溶,在反應溫度範圍內沒有混溶間隙。特別佳 的溶劑尤其包括甲醇、乙醇及丙醇。 可引入反應器中的較佳混合物包含10至50重量%, 更佳地20至40重量%之(甲基)丙烯酸烯丙酯,〇.5至 1〇重量%,更佳地1至5重量%之過氧化氫,0.5至10 Ο 重量%,更佳地1至5重量%之水,及30至90重量%, 更佳地50至70重量%之溶劑。 在反應之後獲得且從反應器抽出之產物混合物較佳地 可以多階段法純化,以移出過量H2〇2。 在本發明適當的配置中,剩餘在產物混合物中的 h2o2可藉由蒸餾或利用混溶間隙,例如使用相分離器( 分離容器)從混合物移出。 例如,若已使用極性溶劑,例如甲醇或乙醇,則溶劑 ® 可在第一步驟中藉由與存在的水(H2o) —起蒸餾而從產 物混合物移出,在該情況中,一部分(甲基)丙烯酸烯丙 酯可與甲醇一起從混合物蒸餾出來。 較佳地,可於此步驟中省掉特別的細分離作用,因爲 可將(甲基)丙烯酸烯丙酯及溶劑可以再循環到反應器中 〇 在此第一次蒸餾中的塔底溫度較佳地少於110°c,更 佳地少於100°C,而最佳地少於80°c。在第一次蒸餾中的 壓力較佳地在從0.2至2絕對巴之範圍內,更佳地在從 -13- 201014835 0.5至1.5絕對巴之範圍內。 若溶劑係例如通到用於製備過氧化氫的裝置中及(甲 基)丙烯酸烯丙酯係通到反應器中,則包含(甲基)丙烯 酸烯丙酯及溶劑的混合物可以第二次蒸餾分離。在此第二 次蒸餾中的塔底溫度較佳地少於120°C,更佳地少於90°C 。在第二次蒸餾中的壓力較佳地在從0.1至1.5絕對巴之 範圍內,更佳地在從0.2至1絕對巴之範圍內。 溶劑的移出較佳地留下可包含一部分(甲基)丙烯酸 烯丙酯、(甲基)丙烯酸環氧丙烷酯及未轉化之過氧化氫 (H2〇2 )的組成物。因爲H202在(甲基)丙烯酸烯丙酯 或(甲基)丙烯酸環氧丙烷酯中只有限定的溶解度,所以 有可能在相分離器中先移出一部分過氧化氫。另外,(甲 基)丙烯酸環氧丙烷酯可藉由進一步的蒸餾而從剩餘的( 甲基)丙烯酸烯丙酯及/或H202分離。在此第三次蒸餾中 的塔底溫度較佳地少於140°C,更佳地少於120°C,而最 佳地少於110 °C。在第三次蒸餾中的壓力較佳地在從10 © 至20 0絕對毫巴之範圍內,更佳地在從20至100絕對毫 巴之範圍內。在(甲基)丙烯酸環氧丙烷酯中剩餘的過氧 化氫可藉由相分離器先移出及接著再循環到反應器中。 (甲基)丙烯酸環氧丙烷酯可在精細純化中純化,以 移出副產物。最終,可將此混合物中剩餘的過氧化氫先以 催化分解,如在例如JP-A-09 1 32571中所詳述。 進行本發明方法的較佳系統具有至少一個用於製備 H202之裝置及至少一個與第一蒸餾塔經由管線連接的反 -14- 201014835 應器,該塔的塔頂係經由管線與第二蒸餾塔連接,及第一 蒸餾塔的塔底係經由管線與第三蒸餾塔連接,第二蒸飽塔 的塔頂係經由管線與製備H2〇2之裝置連接。此—系統同 樣地構成本發明主題的一部分。The publication EP-A- 1 90 609, published in the European Patent Office with the application number EP 94112508.0 on 10.08.94, EP-A-638 362, JP-A-09059269, JP-A-1 0 1 58 1 98 , JP-A-08 1 8 8 5 75, JP-A-09132571, JP-A-10168072, JP-A-11165074, JP-A-09235439, JP-A-09301966, CA-A-2033047, in Europe EP-B-434 φ 546, which is filed by the Patent Office, with the application number EP 90403648.0 at 18.12.90, EP-B-468 840, US 5,283,360, and the European Patent Office, filed at the European Patent Office with the application number EP 91401849.4 at 04.07.91 The catalyst described therein is incorporated in the present application by WO-A-98/28287, filed on PCT/EP97/07283, filed at PCT-PCT-PCT-PCT-PCT------ The reaction mixture contains cerium oxide, and a titanium cerium catalyst is particularly preferred. The titanium silicate rock catalyst is a general synthetic zeolite in which the molar ratio of Ti〇2 to SiO2 is less than 1. Ti〇2 is better for Si〇2 according to the following formula: X Ti〇2· ( 1 -X ) Si〇2 wherein x is in the range from 0.0001 to 〇·〇4, more preferably from Within the range of 0.0055 to 0.03 6. The pore diameter of the titanium silicate rock catalyst is preferably in the range of from 1 to 50 nm, more preferably from 5 to 30 nm. -9 - 201014835 These catalysts can be prepared, inter alia, by condensation of tetradecanoic acid phthalate with tetraalkyl orthotitanate. According to the invention, the reaction is carried out continuously in the reactor. The term ^ is continuously 'known in the art. It will be appreciated that a continuous reaction means, inter alia, a reaction in which the reactants are introduced into the reactor over an extended period of time and the product is removed from the reaction mixture withdrawn from the reactor. The reaction can be carried out under reduced pressure or elevated pressure. In a particularly suitable modification of the invention, the epoxidation reaction can be carried out at a pressure in the range from 200 to 2000 mbar, more preferably in the range from 500 to 1300 mbar. The reaction temperature depends inter alia on the type of catalyst used. The higher the catalyst activity, the lower the temperature that can be used in the reaction. The selectivity of the reaction is especially important in terms of the economic viability of the process. The surprising advantages are especially achieved in the range from 20 ° C to 60 ° C, more preferably in the range from 25 ° C to 35 ° C. In a particularly suitable configuration of the process, up to 50% by mole, preferably up to 30% by mole, and optimally up to 1% by mole of allyl (meth) acrylate supplied to the reactor Being transformed, there is no intention to impose restrictions. This number is independent of the conversion rate of the overall process, wherein in a preferred variation 'unconverted allyl (meth) acrylate can be recycled and converted in another operation, but after being fed into the reactor The proportion of allyl (meth) acrylate present in the converted reaction mixture is related. Preferably up to 60 mole %, preferably up to 40 mole %, and optimally up to 30 mole % of h202 supplied to the reactor are converted. This number is not based on the entire method, wherein in a preferred variation, unconverted h2o2 can be recycled in -10-201014835 and converted in another operation, but present in the conversion after being fed into the reactor. The ratio of H2〇2 in the reaction mixture is related. The above conversion rate 値 can be adjusted, in particular, by the residence time, which is particularly in the range from 1 minute to 180 minutes, more preferably in the range from 5 minutes to 60 minutes. In the case of using a plurality of reactors, these data are based on the sum of the residence times in these reactors. The parameters detailed above are preferably selected such that the selectivity of the reaction is at least 85 %, more preferably at least 90%, and most preferably at least 94%. The reaction takes place in at least one of the reactors, and the type of the reactor is not subject to any particular limitation. For example, it is especially possible to carry out the reaction using an isothermal or adiabatic reactor, which can also be configured in the form of a loop reactor comprising material recycle. The isothermal reactor allows very good reaction temperature control, but at a relatively high investment cost. And operation and maintenance complexity are related. The surprising advantages of the cost-effectiveness of the process can be achieved, inter alia, by the use of one or more adiabatic reactors. In an adiabatic reactor, the reaction typically occurs without heat exchange. Since this reaction is an exothermic reaction, a very high temperature rise can result in lower selectivity in many cases, so the reactor does not require any expensive insulating material to prevent heat exchange. Accordingly, in the context of the present invention, the term "adiabatic reactor" means that there is no self-cooling reaction vessel to maintain a fixed reaction temperature within the reaction volume. This reactor can have a construction that is particularly simple and therefore inexpensive. A method that is not immediately predictable and based on selectivity increases can be achieved by using a system having at least two adiabatic reactors, the reaction mixture being cooled between reactors. The number of adiabatic reactors in this configuration is preferably in the range of from 2 to 8, more preferably 3 to 5 〇 due to the lack of automatic cooling in the adiabatic reactor, the temperature of the reaction mixture is usually in the reaction vessel Increase within. The size of the adiabatic reactor is preferably selected such that the temperature is increased by up to 20 ° C, more preferably by up to 1 ° C. For example, the temperature of the reaction mixture at the inlet of the reactor can be up to 45 ° C 0 , preferably up to 35 ° C, and optimally up to 27 ° C. Conversely, the temperature of the reaction mixture at the outlet of the reactor is higher. The best is 55 ° C, more preferably 45 ° C, and the best is 3 1 ° C. It is not necessary to use a polymerization inhibitor during the reaction or purification of the unsaturated compound. Therefore, it is possible to dispense with the use of a polymerization inhibitor, especially in the partial epoxidation reaction of allyl (meth) acrylate. However, the use of polymerization inhibitors during purification can achieve advantages over the useful life and yield of the system. These compounds, such as hydroquinone, hydroquinone ether (such as hydroquinone mono G methyl ether or di-tertiary butyl pyrocatechol), thiophene, 4-hydroxy-2,2,6,6-tetramethyl Hexahydropyridine 1-oxyl, methylene blue or hindered phenol is widely known in the art. These compounds can be used singly or in the form of a mixture and are usually commercially available. For more details refer to the standard technical literature, in particular Rompp-Lexikon Chemie; Editors: J. Falbe, M. Regitz; Stuttgart, New York; 10th Edition (1 9 9 6); under"Antioxidants"; Cited literature. The process according to the invention can be carried out without the use of a solvent. If necessary, -12- 201014835 may also use an inert solvent. In a particular configuration of the invention, it is especially possible to use a polar solvent that is effective to mix with the reactants. The reactants are preferably miscible with the solvent and have no miscible gaps in the reaction temperature range. Particularly preferred solvents include, inter alia, methanol, ethanol and propanol. Preferred mixtures which can be introduced into the reactor comprise from 10 to 50% by weight, more preferably from 20 to 40% by weight, of allyl (meth) acrylate, from 5% to 1% by weight, more preferably from 1 to 5% by weight. % by weight of hydrogen peroxide, 0.5 to 10% by weight, more preferably 1 to 5% by weight of water, and 30 to 90% by weight, more preferably 50 to 70% by weight. The product mixture obtained after the reaction and withdrawn from the reactor is preferably purified in a multistage process to remove excess H2〇2. In a suitable configuration of the invention, the h2o2 remaining in the product mixture can be removed from the mixture by distillation or by using a miscible gap, for example using a phase separator (separation vessel). For example, if a polar solvent such as methanol or ethanol has been used, the solvent® can be removed from the product mixture in the first step by distillation with the water (H2o) present, in which case a portion (methyl) Allyl acrylate can be distilled from the mixture together with methanol. Preferably, special fine separation can be dispensed with in this step because allyl (meth) acrylate and solvent can be recycled to the reactor, and the temperature at the bottom of the first distillation is higher. Preferably, it is less than 110 ° C, more preferably less than 100 ° C, and most preferably less than 80 ° C. The pressure in the first distillation is preferably in the range from 0.2 to 2 bar absolute, more preferably in the range from -13 to 201014835 0.5 to 1.5 bar. If the solvent is, for example, passed to a device for preparing hydrogen peroxide and the allyl (meth) acrylate is introduced into the reactor, the mixture comprising allyl (meth) acrylate and the solvent can be subjected to a second distillation. Separation. The temperature at the bottom of the second distillation is preferably less than 120 ° C, more preferably less than 90 ° C. The pressure in the second distillation is preferably in the range of from 0.1 to 1.5 bar absolute, more preferably in the range of from 0.2 to 1 bar absolute. The removal of the solvent preferably leaves a composition which may comprise a portion of allyl (meth)acrylate, propylene oxide (meth)acrylate, and unconverted hydrogen peroxide (H2〇2). Since H202 has only a defined solubility in allyl (meth)acrylate or propylene oxide (meth)acrylate, it is possible to remove a portion of the hydrogen peroxide first in the phase separator. Further, (meth)acrylic acid propylene oxide can be separated from the remaining (meth)acrylic acid acrylate and/or H202 by further distillation. The bottom temperature in this third distillation is preferably less than 140 ° C, more preferably less than 120 ° C, and most preferably less than 110 ° C. The pressure in the third distillation is preferably in the range from 10 © to 20 0 absolute mbar, more preferably in the range from 20 to 100 mbar. The hydrogen peroxide remaining in the propylene oxide (meth)acrylate can be removed first by a phase separator and then recycled to the reactor. The propylene oxide (meth)acrylate can be purified in a fine purification to remove by-products. Finally, the hydrogen peroxide remaining in the mixture can be first catalyzed by decomposition, as described in, for example, JP-A-09 1 32571. A preferred system for carrying out the process of the invention has at least one apparatus for preparing H202 and at least one counter-14-201014835 reactor connected to the first distillation column via a line, the top of the column being passed through a line and a second distillation column The bottom of the first distillation column is connected to the third distillation column via a line, and the top of the second vaporization column is connected to the apparatus for preparing H2〇2 via a line. This - the system likewise forms part of the subject matter of the present invention.

用於製備(甲基)丙烯酸環氧丙烷酯的適當系統包含 至少一個用於製備H2〇2之裝置。此系統組件本身爲已知 的,較佳的方法及系統尤其被詳述於EP-B 0 274 830、 EP-A 0 3 6 6 4 19 ' EP-A 0 579 109、DE-A 4 1 2 7 9 1 8、EP-B 0 5 0 4 74 1、EP-B 0 4 9 2 064、EP-B 0 498 1 66、ΕΡ-Α-0 7 8 7 6 8 1 、 ΕΡ-Α-0 9 7 8 3 1 6 、 EP-A- 1 1 2 7 8 3 9 、 WO 02/092501 中。 在此優先選擇以所謂的直接合成法製備h2o2,其中 將h2與〇2在醇存在下直接反應,得到h2o2,如尤其在 EP-A- 0 787 68 1 或 ΕΡ-Α-0 978 3 16 中所詳述。 用於進行根據本發明的方法之系統可具有一或多個反 ® 應器,參考上述關於此點的配置。更佳地使用一或多個絕 熱反應器,較佳的是使用具有從2至8個,而更佳地具有 3至5個反應器的系統。在此具體例中,可將產物混合物 在反應器之間冷卻。 反應器可較佳地基本上以相對於地球表面垂直排列, 亦即傾斜角爲約9 0 °,在許多情況中可容許例如小於1 〇 ° ,較佳地小於5°的相對小偏差。在根據本發明方法的特別 適當配置中,從底部向上流經基本上垂直的反應器’使得 流動方向具有與地球表面垂直排列的方向組件。 -15- 201014835 系統可包含一、二或多個相分離器,其尤其可用於從 特殊的混合物移出水或過氧化氫。 與過氧化氫接觸的系統組件,尤其爲反應器、幫浦及 相分離器較佳地由氧化穩定之金屬(例如锆、钽、鈦或不 鏽鋼)或具有例如琺瑯層或鉻層之塗佈金屬所構成。另外 ,亦可能使用塑膠,例如加PTFE封套之組件、石墨化組 件或由石墨製成的工作件,尤其在幫浦中。 現以參考非限制性圖形的實例方式說明以上所述。 · 將製備過氧化氫的必要化合物,尤其爲包含氫與氧及 隨意的溶劑(例如,甲醇)之氣體混合物經由一或多個管 線la及lb引入裝置中以製備過氧化氫2。接著將尤其可 包含過氧化氫及隨意的溶劑之所得產物混合物經由管線3 轉移到反應器中’可將(甲基)丙烯酸烯丙酯經由管線4 引入反應器中’該反應器在本發明的情況中由複數個組件 反應器5a、5b、5c及5d所構成,反應混合物在各情況中 係在組件反應器5a、5b、5c及5d之間或下游冷卻,該冷 Θ 卻係以例如熱交換器6a、6b、6c及6d的方式可達成。 可將在本發明的系統配置中的反應器5a、5b、5c及 5d中所獲得的產物混合物先轉移到氣體分離器7中,其 可將氣態副產物經由管線8轉移出系統。接著可將液體反 應混合物經由管線9引入第一蒸餾塔1〇中,其將所獲得 的化合物經由頂部透過管線11轉移到第二蒸餾塔12中。 引入第二蒸餾塔12中的混合物尤其可包含(甲基) 丙烯酸烯丙酯、水及溶劑(例如,甲醇)。將第二蒸餾塔 -16- 201014835 12中移出的溶劑經由頂部透過管線13轉移到裝置中以製 備過氧化氫2。從第二蒸餾器12的塔底排放的混合物通 常包含(甲基)丙烯酸烯丙酯及水,將此混合物經由管線 14引入第一相分離器15中且分離。 將回收的(甲基)丙烯酸烯丙酯經由在本發明的情況 中與管線3連接的管線16轉移到反應器5a、5b、5c及 5d中。可將移出的水經由管線17從系統抽出。 Ο 經由第一蒸餾塔10的塔底移出的混合物尤其可包含 (甲基)丙烯酸烯丙酯、過氧化氫及(甲基)丙烯酸環氧 丙烷酯。經由塔底移出的混合物可經由管線18引入第三 蒸餾塔19中且分離,將經由塔頂所獲得且尤其可包含( 甲基)丙烯酸烯丙酯及過氧化氫的組成物經由管線20引 入反應器5a、5b、5c及5d中。此尤其亦可憑藉與管線3 連接的管線20做到。 因爲在第三蒸餾塔19中所獲得的塔底產物可包含相 ® 對大量的過氧化氫,所以將在本發明情況中的此塔底產物 經由管線21引入第二相分離器22中,其中將(甲基)丙 烯酸環氧丙烷酯從過氧化氫分離。爲了改進分離性能,可 將水供應到第二相分離器22中,係可使用從第一相分離 器1 5所獲得的水以達該目的。 可將第二相分離器中所獲得的(甲基)丙烯酸環氧丙 烷酯經由管線23從系統抽出。另外,所獲得的(甲基) 丙烯酸環氧丙烷酯可接受未於本發明的圖中顯示的精細純 化作用。 -17- 201014835 可將從第三相分離器回收的過氧化氫經由在詳述的具 體例中開向管線3的管線24轉移到反應器5a、5b、5c及 5d中。 除了以上明確詳述的組件以外,本發明的系統可包含 更多構成件,尤其爲幫浦、塔底蒸發器等,爲了更清晰的 理由而未顯示於圖中。A suitable system for preparing propylene oxide (meth)acrylate comprises at least one apparatus for preparing H2〇2. The system components are known per se, and the preferred methods and systems are described in particular in EP-B 0 274 830, EP-A 0 3 6 6 4 19 'EP-A 0 579 109, DE-A 4 1 2 7 9 1 8、EP-B 0 5 0 4 74 1. EP-B 0 4 9 2 064, EP-B 0 498 1 66, ΕΡ-Α-0 7 8 7 6 8 1 , ΕΡ-Α-0 9 7 8 3 1 6 , EP-A- 1 1 2 7 8 3 9 , WO 02/092501. It is preferred here to prepare h2o2 in a so-called direct synthesis process in which h2 is directly reacted with hydrazine 2 in the presence of an alcohol to give h2o2, as in particular in EP-A-0 787 68 1 or ΕΡ-Α-0 978 3 16 Detailed. The system for carrying out the method according to the invention may have one or more counter-reactors, with reference to the configuration described above with respect to this point. More preferably, one or more adiabatic reactors are used, and it is preferred to use a system having from 2 to 8, more preferably from 3 to 5 reactors. In this particular example, the product mixture can be cooled between reactors. The reactor may preferably be arranged substantially perpendicularly relative to the surface of the earth, i.e., at an angle of inclination of about 90°, and in many cases may allow for relatively small deviations of, for example, less than 1 〇 ° , preferably less than 5 °. In a particularly suitable configuration of the method according to the invention, the substantially vertical reactor' flows from the bottom up such that the flow direction has a directional component aligned perpendicular to the earth's surface. -15- 201014835 The system may comprise one, two or more phase separators, which are particularly useful for removing water or hydrogen peroxide from a particular mixture. System components in contact with hydrogen peroxide, especially reactors, pumps and phase separators, preferably from oxidatively stable metals (such as zirconium, hafnium, titanium or stainless steel) or coated metals having, for example, tantalum or chromium layers Composition. In addition, it is also possible to use plastics, such as components with PTFE envelopes, graphitized components or workpieces made of graphite, especially in pumps. The above description will now be described by way of example with reference to non-limiting figures. • Hydrogen peroxide 2 is prepared by introducing a necessary compound of hydrogen peroxide, especially a gas mixture comprising hydrogen and oxygen and a random solvent (e.g., methanol) into the apparatus via one or more lines la and lb. The resulting product mixture, which may in particular comprise hydrogen peroxide and a free solvent, is then transferred via line 3 to the reactor 'Allyl (meth) acrylate can be introduced into the reactor via line 4'. The reactor is in the invention In the case of a plurality of component reactors 5a, 5b, 5c and 5d, the reaction mixture is in each case cooled between or downstream of the component reactors 5a, 5b, 5c and 5d, which is for example thermally The manner of the exchangers 6a, 6b, 6c and 6d can be achieved. The product mixture obtained in reactors 5a, 5b, 5c and 5d in the system configuration of the present invention can be first transferred to a gas separator 7, which can transfer gaseous by-products out of the system via line 8. The liquid reaction mixture can then be introduced via line 9 into a first distillation column 1 which transfers the obtained compound to the second distillation column 12 via a top permeate line 11. The mixture introduced into the second distillation column 12 may especially comprise allyl (meth) acrylate, water and a solvent (for example, methanol). The solvent removed from the second distillation column -16 - 201014835 12 is transferred to the apparatus via the overhead permeation line 13 to prepare hydrogen peroxide 2. The mixture discharged from the bottom of the second distiller 12 usually contains allyl (meth) acrylate and water, and this mixture is introduced into the first phase separator 15 via line 14 and separated. The recovered allyl (meth) acrylate is transferred to the reactors 5a, 5b, 5c and 5d via a line 16 connected to the line 3 in the case of the present invention. The removed water can be withdrawn from the system via line 17. The mixture removed via the bottom of the first distillation column 10 may especially comprise allyl (meth)acrylate, hydrogen peroxide and propylene oxide (meth)acrylate. The mixture removed via the bottom of the column can be introduced into the third distillation column 19 via line 18 and separated, and the composition obtained via the top of the column and especially comprising (meth)acrylic acid and hydrogen peroxide can be introduced via line 20 In the devices 5a, 5b, 5c and 5d. This can in particular also be achieved by means of a line 20 connected to the line 3. Since the bottom product obtained in the third distillation column 19 can contain a large amount of hydrogen peroxide, this bottom product in the case of the present invention is introduced into the second phase separator 22 via the line 21, wherein The propylene oxide (meth)acrylate is separated from hydrogen peroxide. In order to improve the separation performance, water may be supplied to the second phase separator 22, and water obtained from the first phase separator 15 may be used for this purpose. The (meth)acrylic acid propylene oxide obtained in the second phase separator can be withdrawn from the system via line 23. Further, the obtained propylene oxide (meth) acrylate can be subjected to fine purification which is not shown in the drawings of the present invention. -17- 201014835 Hydrogen peroxide recovered from the third phase separator can be transferred to the reactors 5a, 5b, 5c and 5d via line 24 which is opened to the line 3 in the detailed description. In addition to the components specifically detailed above, the system of the present invention may include more components, particularly pumps, bottom evaporators, etc., which are not shown in the figures for clarity reasons.

【實施方式】 Q 實例1 檢査於圖1中所示用於製備(甲基)丙烯酸環氧丙烷 酯之系統的較佳具體例之性能。 將經由管線3供應之甲醇中反應物H202及經由管線 4供應之(甲基)丙烯酸烯丙酯(ΑΜΑ )與再循環物流( 1 6 )、( 20 )及(24 ) —起供應到依序排列的固定床絕熱 反應器(5a-d )中。在反應器之間的產物係以冷卻水( 6a-d)的方式冷卻。除了第一個反應器在較低溫度下操作 © 以外,從27 °C增加到3 1 °C的絕熱溫度係以在4個反應器 之間的平分轉化率達成。 在通過分離容器7之後,將產物饋入蒸餾器或塔1〇 中,其中99%之MeOH係從塔頂移出;高沸騰物、GMA 產物及H202係經由塔底及管線18完全排放。在本發明的 具體例中未達成ΑΜΑ的同步完全移出。 經由管線11排放的塔頂產物在另一蒸餾塔中分離 ,以獲得由水及ΑΜΑ所組成不含MeOH的塔底相(其經 -18· 201014835 由管線14排放)及富含MeOH的塔頂相(其經由管線13 排放)。ΑΜΑ及水可以相分離器或分離容器15的方式分 離到廢水物流(管線17)中及再回收的AM Α物流(管線 1 6 )中。 經由管線18排放的第一蒸餾器或塔10的塔頂產物含 有GMA產物與一起的高沸騰物、未轉化之H2〇2及ΑΜΑ 。從ΑΜΑ及Η202進一步分離高沸騰之GMA產物係發生 〇 在另一蒸餾器或塔19中。 經由管線23排放的GMA產物包含高沸騰物及少量 ΑΜΑ,所以有可能使用另一用於產物細純化的分離塔,其 現顯示於圖1中。約147公斤/小時之ΑΜΑ及約45.6公 斤/小時之Η2〇2的物流在反應器內以約26%之過氧化氫轉 化率得到約144.0公斤/小時之(甲基)丙烯酸環氧丙烷 酯的物流。 ❹ 實例2 基本上重複實例1,除了過氧化氫轉化率從約26%改 變成49.4%。約148公斤/小時之ΑΜΑ及約43.4公斤/小 時之Η2〇2的物流得到約106.1公斤/小時之(甲基)丙烯 酸環氧丙烷酯的物流。 【圖式簡單說明】 圖1爲進行根據本發明的方法較佳的系統之示意圖。 -19- 201014835 【主要元件符號說明】 1 a :管線 lb :管線 2 :過氧化氫 3 :管線 4 :管線 5a :反應器 5b :反應器 _ 5c :反應器 5d :反應器 6a :熱交換器 6b :熱交換器 6c :熱交換器 6d :熱交換器 7 :氣體分離器 8 :管線 @ 9 :管線 10 :第一蒸餾塔 1 1 :管線 1 2 :第二蒸餾塔 1 3 :管線 1 4 :管線 1 5 :第一相分離器 1 6 :管線 -20- 201014835 17: 18: 19 : 20 : 21 : 22 : 23 : φ 24 : 管線 管線 第三蒸餾塔 管線 管線 第二相分離器 管線 管線[Embodiment] Q Example 1 The properties of a preferred embodiment of the system for preparing (meth)acrylic acid propylene oxide shown in Fig. 1 were examined. The reactant H202 in methanol supplied via line 3 and the allyl (meth) acrylate (ΑΜΑ) supplied via line 4 are supplied to the sequential streams together with the recycle streams (16), (20) and (24). Arranged in a fixed bed adiabatic reactor (5a-d). The product between the reactors is cooled by means of cooling water (6a-d). In addition to the first reactor operating at lower temperatures, the adiabatic temperature from 27 °C to 31 °C was achieved with a split conversion between the four reactors. After passing through the separation vessel 7, the product is fed to a still or column 1 wherein 99% of the MeOH is removed overhead; the high boilers, GMA products and H202 are completely discharged via the bottom and line 18. In the specific example of the present invention, the synchronization of the flaw is not completely removed. The overhead product discharged via line 11 is separated in another distillation column to obtain a bottom phase containing no MeOH consisting of water and helium (which is discharged by line 14 at -18·201014835) and a MeOH-rich top Phase (which is discharged via line 13). The helium and water can be separated into the wastewater stream (line 17) and the recovered AM Α stream (line 16) in the form of a phase separator or separation vessel 15. The overhead product of the first distiller or column 10 discharged via line 18 contains the high boilers of the GMA product, unconverted H2 〇2 and hydrazine. Further separation of the high boiling GMA product from hydrazine and hydrazine 202 occurs in another distiller or column 19. The GMA product discharged via line 23 contains a high boiler and a small amount of hydrazine, so it is possible to use another separation column for fine purification of the product, which is now shown in Figure 1. A stream of about 147 kg/hr and about 45.6 kg/hr of 〇2〇2 obtained about 144.0 kg/hr of propylene oxide (meth)acrylate in the reactor at a conversion rate of about 26% hydrogen peroxide. Logistics. Example 2 Example 1 was substantially repeated except that the hydrogen peroxide conversion was changed from about 26% to 49.4%. A stream of about 148 kg/hr and about 23.4 kg/hour of 〇2〇2 yielded a stream of about 106.1 kg/hr of (meth) propylene oxide propionate. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic illustration of a preferred system for carrying out the method according to the invention. -19- 201014835 [Explanation of main component symbols] 1 a : Pipeline lb: Pipeline 2: Hydrogen peroxide 3: Pipeline 4: Pipeline 5a: Reactor 5b: Reactor _ 5c: Reactor 5d: Reactor 6a: Heat exchanger 6b: heat exchanger 6c: heat exchanger 6d: heat exchanger 7: gas separator 8: line @9: line 10: first distillation column 1 1 : line 1 2: second distillation column 1 3 : line 1 4 : line 1 5 : first phase separator 1 6 : line -20- 201014835 17: 18: 19 : 20 : 21 : 22 : 23 : φ 24 : line line third distillation column line line second phase separator line

Claims (1)

201014835 七、申請專利範团: 1. 一種製備(甲基)丙烯酸環氧丙烷酯的連續方法, 其包含將(甲基)丙烯酸烯丙酯與h2o2在至少一個反應 器中於觸媒存在下反應,將未轉化之(甲基)丙烯酸烯丙 酯從產物混合物移出及再循環到至少一個反應器中,該方 法的特徵在於將未轉化之H2〇2從產物混合物移出及再循 環到至少一個反應器中。 2. 根據申請專利範圍第1項之方法,其中該反應係在 ❹ 從20°C至60°C之範圍內的溫度下進行。 3. 根據申請專利範圍第2項之方法,其中該反應係在 從25 °C至35 °C之範圍內的溫度下進行。 4. 根據申請專利範圍第1項之方法,其中該反應係在 絕熱反應器中進行。 5. 根據申請專利範圍第4項之方法,其中該絕熱反應 器基本上呈垂直,且反應混合物係從底部向上流經反應器 參 6. 根據申請專利範圍第4或5項之方法,其中該反應 係在具有至少兩個絕熱反應器的工廠中進行,反應混合物 係在反應器之間冷卻。 7. 根據申請專利範圍第4項之方法,其中在反應器入 口處之反應混合物的溫度爲最高35 °C。 8. 根據申請專利範圍第4項之方法,其中在反應器出 口處之反應混合物的溫度爲最高45 t。 9. 根據申請專利範圍第1項之方法,其中該反應係以 -22- 201014835 不溶於反應混合物中的觸媒進行。 1〇·根據申請專利範圍第9項之方法,其中該反應係 使用鈦矽質岩觸媒進行。 11. 根據申請專利範圍第1項之方法,其中在所使用 之反應混合物中的(甲基)丙烯酸烯丙酯對H202之莫耳 比大於1。 12. 根據申請專利範圍第1項之方法,其中(甲基) 〇 丙烯酸烯丙酯對H202之莫耳比係在從10: 1至1: 1之範 圍內。 13. 根據申請專利範圍第1項之方法,其中至多50莫 耳%之供應至反應器中的(甲基)丙烯酸烯丙酯被轉化。 14. 根據申請專利範圍第1項之方法,其中至多60莫 耳%之供應至反應器中的H2〇2被轉化。 15. 根據申請專利範圍第1項之方法,其中引入反應 器中的反應混合物包含溶劑。 © 16.根據申請專利範圍第15項之方法,其中該溶劑爲 甲醇、乙醇或丙醇。 17. 根據申請專利範圍第1項之方法,其中該經轉化 的反應混合物係藉由包含至少兩次蒸餾的方法分離純化( work up )。 18. 根據申請專利範圍第17項之方法,其中在溶劑的 第一次蒸餾時所獲得的H20及所使用之一部分(甲基) 丙烯酸烯丙酯係經由塔頂從所使用之H202及所獲得的( 甲基)丙烯酸環氧丙烷酯分離。 •23- 201014835 19.根據申請專利範圍第18項之方法,其中該第一次 蒸餾係在低於110 °C之塔底溫度下進行。 2 0 ·根據申請專利範圍第1 7項之方法,其中該溶劑係 在第二次蒸餾時經由塔頂從所使用之(甲基)丙烯酸烯丙 酯分離,所獲得的ΗζΟ係經由塔底與(甲基)丙烯酸烯 丙酯從蒸餾塔抽出。 21. 根據申請專利範圍第20項之方法,其中該η20係 以相分離器從(甲基)丙烯酸烯丙酯分離。 @ 22. 根據申請專利範圍第17項之方法,其中在第三次 蒸餾時所使用之Ηζ〇2及所使用之一部分(甲基)丙烯酸 嫌丙醋係經由塔頂從所獲得的(甲基)丙靖酸環氧丙院酯 分離。 23. 根據申請專利範圍第22項之方法,其中該第三次 蒸餾係在低於120°C之塔底溫度下進行。 24. 根據申請專利範圍第17項之方法,其中一部分 H2〇2係以相分離器從(甲基)丙烯酸環氧丙烷酯分離。 參 25. —種進行根據申請專利範圍第1項之方法的系統 ’其特徵在於該系統具有至少—個用於製備H2〇2之裝置 及至少一個與第一蒸餾塔經由管線連接的反應器,該塔的 塔頂係經由管線與第二蒸餾塔連接及該第一蒸餾塔的塔底 係經由管線與第三蒸餾塔連接,該第二蒸餾塔的塔頂係經 由管線與製備H2〇2之裝置連接。 26. 根據申請專利範圍第25項之系統,其中該系統具 有至少兩個絕熱反應器。 -24- 201014835201014835 VII. Patent application group: 1. A continuous process for preparing propylene oxide (meth) acrylate comprising reacting allyl (meth) acrylate with h2o2 in at least one reactor in the presence of a catalyst Transferring unconverted allyl (meth) acrylate from the product mixture and recycling to at least one reactor, characterized in that unconverted H 2 〇 2 is removed from the product mixture and recycled to at least one reaction In the device. 2. The method of claim 1, wherein the reaction is carried out at a temperature ranging from 20 ° C to 60 ° C. 3. The method according to item 2 of the patent application, wherein the reaction is carried out at a temperature ranging from 25 ° C to 35 ° C. 4. The method of claim 1, wherein the reaction is carried out in an adiabatic reactor. 5. The method of claim 4, wherein the adiabatic reactor is substantially vertical, and the reaction mixture flows from the bottom up through the reactor. The method according to claim 4 or 5, wherein The reaction is carried out in a plant having at least two adiabatic reactors, and the reaction mixture is cooled between the reactors. 7. The method of claim 4, wherein the temperature of the reaction mixture at the inlet of the reactor is at most 35 °C. 8. The method of claim 4, wherein the temperature of the reaction mixture at the outlet of the reactor is at most 45 t. 9. The method according to claim 1, wherein the reaction is carried out with a catalyst which is insoluble in the reaction mixture at -22 to 201014835. The method of claim 9, wherein the reaction is carried out using a titanium silicate rock catalyst. 11. The method of claim 1, wherein the molar ratio of allyl (meth)acrylate to H202 in the reaction mixture used is greater than one. 12. The method according to item 1 of the patent application, wherein the molar ratio of (meth) 烯 allyl acrylate to H202 is in the range of from 10:1 to 1:1. 13. The method of claim 1, wherein up to 50% by mole of allyl (meth) acrylate supplied to the reactor is converted. 14. The method of claim 1, wherein up to 60 mol% of H2〇2 supplied to the reactor is converted. 15. The method of claim 1, wherein the reaction mixture introduced into the reactor comprises a solvent. The method of claim 15, wherein the solvent is methanol, ethanol or propanol. 17. The method of claim 1, wherein the converted reaction mixture is worked up by a process comprising at least two distillations. 18. The method according to claim 17, wherein H20 obtained in the first distillation of the solvent and a part of (meth)acrylic acid acrylate used are obtained from the H202 used and obtained from the top of the column. Separation of propylene oxide (meth)acrylate. The method of claim 18, wherein the first distillation is carried out at a bottom temperature of less than 110 °C. The method of claim 17, wherein the solvent is separated from the allyl (meth) acrylate by the top of the column during the second distillation, and the obtained lanthanide is passed through the bottom of the column. The allyl (meth) acrylate was extracted from the distillation column. 21. The method of claim 20, wherein the η20 is separated from the allyl (meth) acrylate by a phase separator. @ 22. According to the method of claim 17, wherein Ηζ〇2 used in the third distillation and a part of the (meth)acrylic acid propylene vinegar used are obtained from the top of the column (methyl ) Isopropyl acetophenone is isolated. 23. The method according to claim 22, wherein the third distillation is carried out at a bottom temperature of less than 120 °C. 24. The method of claim 17, wherein a portion of the H2〇2 is separated from the propylene oxide (meth)acrylate by a phase separator. A system for carrying out the method according to claim 1 of the patent application, characterized in that the system has at least one device for preparing H2〇2 and at least one reactor connected to the first distillation column via a line, The top of the column is connected to the second distillation column via a line, and the bottom of the first distillation column is connected to the third distillation column via a line, and the top of the second distillation column is connected to the H2〇2 via a pipeline. Device connection. 26. The system of claim 25, wherein the system has at least two adiabatic reactors. -24- 201014835 2 7.根據申請專利範圍第25或26項之系統,其中該 第三蒸餾塔的塔頂係經由管線與反應器連接。 2 8.根據申請專利範圍第25項之系統,其中該系統具 有至少兩個相分離器。 -25-The system according to claim 25 or 26, wherein the top of the third distillation column is connected to the reactor via a line. 2 8. The system of claim 25, wherein the system has at least two phase separators. -25-
TW98126591A 2008-08-11 2009-08-06 Process and system for preparing glycidyl (meth) acrylate TW201014835A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008041138A DE102008041138A1 (en) 2008-08-11 2008-08-11 Process and plant for the preparation of glycidyl (meth) acrylate

Publications (1)

Publication Number Publication Date
TW201014835A true TW201014835A (en) 2010-04-16

Family

ID=41066095

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98126591A TW201014835A (en) 2008-08-11 2009-08-06 Process and system for preparing glycidyl (meth) acrylate

Country Status (3)

Country Link
DE (1) DE102008041138A1 (en)
TW (1) TW201014835A (en)
WO (1) WO2010018022A1 (en)

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1184316B (en) 1985-02-05 1987-10-28 Enichem Sintesi PROCEDURE FOR MONOEPOXIDATION OF COMPOUNDS CONTAINING TWO DOUBLE LINKS
US4772458A (en) 1986-11-19 1988-09-20 E. I. Du Pont De Nemours And Company Catalytic process for making hydrogen peroxide from hydrogen and oxygen employing a bromide promoter
CA1317740C (en) 1988-10-24 1993-05-18 Karl T. Chuang Production of hydrogen peroxide
FR2656304B1 (en) 1989-12-22 1994-07-08 Norsolor Sa PROCESS FOR SELECTIVE EPOXIDATION OF UNSATURATED (METH) ACRYLIC COMPOUNDS AND NOVEL BIFUNCTIONAL ACHYLATES (METH) ACRYLATES OBTAINED.
FR2664272B3 (en) 1990-07-06 1992-11-27 Norsolor PROCESS FOR THE SELECTIVE EPOXIDATION OF UNSATURATED (METH) ACRYLATES, NEW FUNCTIONAL (METH) ACRYLATES OBTAINED AND THEIR APPLICATION TO THE SYNTHESIS OF NEW POLYMERS.
US5132099A (en) 1990-12-27 1992-07-21 Mitsubishi Gas Chemical Company, Inc. Method for producing hydrogen peroxide
JPH0532404A (en) 1991-02-08 1993-02-09 Mitsubishi Gas Chem Co Inc Production of hydrogen peroxide
DE4127918A1 (en) 1991-03-05 1992-09-10 Interox Int Sa METHOD FOR PRODUCING HYDROGEN PEROXIDE
EP0504741B1 (en) 1991-03-20 1994-12-28 Mitsubishi Gas Chemical Company, Inc. A method for producing hydrogen peroxide
BE1006078A3 (en) 1992-07-15 1994-05-10 Solvay Interox Method for manufacturing hydrogen peroxide synthesis by direct from hydrogen and oxygen.
EP0638362B1 (en) 1993-08-11 2001-03-21 Mitsubishi Gas Chemical Company, Inc. Titanosilicate catalyst particle
JPH08188575A (en) 1995-01-10 1996-07-23 Mitsubishi Gas Chem Co Inc Production of glycidyl meathacrylate
AUPN480595A0 (en) 1995-08-17 1995-09-07 Queensland Railways Steel sleeper handling system
JPH0959269A (en) 1995-08-25 1997-03-04 Mitsubishi Gas Chem Co Inc Production of glycydyl methacrylate
JPH09132571A (en) 1995-11-09 1997-05-20 Mitsubishi Gas Chem Co Inc Production of glycidyl methacrylate
US5965101A (en) 1996-01-30 1999-10-12 Sumitomo Chemical Company, Limited Process for producing hydrogen peroxide
JPH09235439A (en) 1996-02-28 1997-09-09 Mitsubishi Gas Chem Co Inc Acrylic resin composition
JPH09301966A (en) 1996-05-15 1997-11-25 Mitsubishi Gas Chem Co Inc Production of glycidyl methacrylate
JPH10158198A (en) 1996-11-29 1998-06-16 Mitsubishi Gas Chem Co Inc Decomposition of organic peroxide
JPH10168072A (en) 1996-12-04 1998-06-23 Mitsubishi Gas Chem Co Inc Recovery of epoxy compound
US5763629A (en) 1996-12-23 1998-06-09 Sartomer Company Alkoxylated glycidyl (meth)acrylates and method of preparation
JPH11165074A (en) 1997-12-01 1999-06-22 Mitsubishi Gas Chem Co Inc Production of titanosilicate-carrying catalyst and production of organic compound using the same by hydrogen peroxide
IT1301999B1 (en) 1998-08-05 2000-07-20 Enichem Spa CATALYST, PROCESS FOR THE PRODUCTION OF OXYGEN WATER AND ITS USE IN OXIDATION PROCESSES.
DE19835907A1 (en) * 1998-08-07 2000-02-17 Basf Ag Process for the reaction of an organic compound with a hydroperoxide
DE10009187A1 (en) 2000-02-26 2001-08-30 Degussa Process for the production of hydrogen peroxide by direct synthesis and noble metal catalyst therefor
FR2810981B1 (en) * 2000-06-28 2002-12-20 Solvay CONTINUOUS PROCESS FOR THE MANUFACTURE OF OXIRANNE INCLUDING PURIFICATION STEPS
US6500969B1 (en) * 2000-12-08 2002-12-31 Hydrocarbon Technologies, Inc. Integrated hydrogen peroxide production and organic chemical oxidation
ITMI20011015A1 (en) 2001-05-17 2002-11-17 Enichem Spa DIRECT SYNTHESIS OF OXYGENATED WATER IN A MULTI-COMPONENT SOLVENT SYSTEM
EP1580190B1 (en) * 2002-12-24 2013-10-23 Showa Denko K.K. Oxidation of a carbon-carbon double bond of diallyl ether for the production of allyl glycidyl ether

Also Published As

Publication number Publication date
DE102008041138A1 (en) 2010-02-18
WO2010018022A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
TWI331141B (en) Process for transesterification
JP5366935B2 (en) Method for producing methyl methacrylate using regenerated methanol
JP2013049726A (en) Method for manufacturing oxirane including separation of oxirane from reaction medium
EP0523728B1 (en) Continuous process for preparing dimethyl carbonate
TW200940479A (en) Method for preparing linear alpha-olefins
EP2679569B1 (en) Method for preparing a glycol mono-tertiary-butylether compound
KR20170012217A (en) Apparatus and method for producing cyclic carbonate
JP5196696B2 (en) Method for producing oxirane using peroxide compound
CN105408299B (en) Pass through the method for the esterification continuous production light acrylate of thick ester level acrylic acid
TW200812957A (en) Process for preparing alpha-hydroxycarboxylic esters
JP2007523120A (en) Resolution of (meth) acrylic acid oligomers under pressure in the fluid phase
US6720435B2 (en) Oxirane production method
JP3681285B2 (en) Method for producing methyl methacrylate
US7102028B2 (en) Method for producing 3,5-di-tert-butyl-4-hydroxybenzoic acid
JP2001316307A (en) Method for cleaving alkyl tert-alkyl ether to corresponding isoolefin and alkanol
TW201014835A (en) Process and system for preparing glycidyl (meth) acrylate
TW201226384A (en) Coproduction of acetic acid and acetic anhydride
JP2003171342A (en) Method for decomposing byproduct in producing (meth) acrylic acid compound
JP2009137938A (en) Method for producing glycidol
JP4471078B2 (en) Method for producing alkylbenzaldehydes
JP5662835B2 (en) Method for producing glycerin mono (meth) acrylate
JP4942878B2 (en) (Meth) acrylic acid ester purification method
JP4673028B2 (en) Method for purifying ethylene carbonate
TW201211000A (en) Method for producing n-propyl acetate and method for producing allyl acetate
JP2834436B2 (en) Method for producing sec-butyl acrylate by reaction of acrylic acid and butene isomer