JPH11165074A - Production of titanosilicate-carrying catalyst and production of organic compound using the same by hydrogen peroxide - Google Patents

Production of titanosilicate-carrying catalyst and production of organic compound using the same by hydrogen peroxide

Info

Publication number
JPH11165074A
JPH11165074A JP9330202A JP33020297A JPH11165074A JP H11165074 A JPH11165074 A JP H11165074A JP 9330202 A JP9330202 A JP 9330202A JP 33020297 A JP33020297 A JP 33020297A JP H11165074 A JPH11165074 A JP H11165074A
Authority
JP
Japan
Prior art keywords
compound
titanosilicate
catalyst
producing
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9330202A
Other languages
Japanese (ja)
Inventor
Takanobu Okamoto
隆伸 岡本
Satoshi Arakawa
敏 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP9330202A priority Critical patent/JPH11165074A/en
Publication of JPH11165074A publication Critical patent/JPH11165074A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a titanosilicate-carrying catalyst exhibiting activity to the epoxidation or the like of an olefin using hydrogen peroxide as an oxidizing agent and excellent in handling property or the like by forming a silica-titania dry gel on a carrier, treating it with pressurized steam to crystallize and firing. SOLUTION: The titanosilicate is crystallized on the carrier by forming the silica-titania dry gel containing a silicon compound, a titanium compound and a tetraalkylammonium compound on the carrier and next, treating it with the pressurized steam and is fired. As the silicon compound, a tetraalkyl orthosilicate or a colloidal silica or the like is used. As the titanium compound, a tetraalkyl orthotitanate or a hydrolyzable halogenated titanium compound or the like is used. As the tetraalkylammonium compound used as a forming material, a tetraalkylammonium hydroxide, tetraalkylammonium halide and the like are mentioned.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、過酸化水素を酸化
剤としたオレフィン化合物のエポキシ化及びフェノール
化合物のヒドロキシル化、あるいはケトン化合物のアン
モオキシム化に活性を示す、ハンドリング特性及び機械
的強度に優れたチタノシリケート触媒の製造およびこの
触媒の使用に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for treating epoxidation of olefin compounds and hydroxylation of phenol compounds or ammoximation of ketone compounds using hydrogen peroxide as an oxidizing agent. It relates to the preparation of an excellent titanosilicate catalyst and the use of this catalyst.

【0002】[0002]

【従来の技術】チタノシリケートは結晶格子のケイ素が
アルミニウムではなくチタンで置換された、ZSM−5
と同様な結晶構造を持つゼオライトの1種である。チタ
ノシリケートは過酸化水素を酸化剤とした種々の有機化
合物の酸化反応に活性を示し、例えば、オレフィン化合
物のエポキシ化、芳香族化合物のヒドロキシル化、アル
カン化合物の酸化によるアルコールやケトンの製造、ケ
トン化合物のアンモオキシム化によるケトオキシム化合
物の製造などの触媒として知られている。
2. Description of the Related Art Titanosilicate is a ZSM-5 in which the silicon of the crystal lattice is replaced by titanium instead of aluminum.
Is a type of zeolite having the same crystal structure as Titanosilicate is active in the oxidation reaction of various organic compounds using hydrogen peroxide as an oxidizing agent, for example, epoxidation of olefin compounds, hydroxylation of aromatic compounds, production of alcohols and ketones by oxidation of alkane compounds, It is known as a catalyst for the production of ketoxime compounds by ammoximation of ketone compounds.

【0003】チタノシリケート細孔内部の反応活性点へ
反応基質が接近する確率が高くなること、及び生成物が
細孔外へ拡散する距離が短くて済むこと等のために、活
性の高い触媒を得るためには、触媒の粒径が小さいほど
好ましい。しかしながら、実用的な観点からは、粒子径
が小さいほど触媒としてのハンドリング面、すなわち触
媒の分離及び回収における困難さが増大し、固体触媒と
しての利点が失われてしまう。
[0003] A catalyst having a high activity is required because the probability of the reaction substrate approaching the reactive site inside the titanosilicate pores is increased and the distance over which the product diffuses out of the pores is reduced. In order to obtain the catalyst, the smaller the particle size of the catalyst, the better. However, from a practical viewpoint, the smaller the particle size, the more difficult the handling surface as a catalyst, that is, the more difficult the separation and recovery of the catalyst, and the more the advantage as a solid catalyst is lost.

【0004】チタノシリケート触媒の調製方法として
は、特開昭56−96720号、特開昭59−5127
3号、特開昭61−183275号、特開昭62−18
5081号、特開平6−9592号、特開平7−100
387号に開示されており、ケイ素とチタンの酸化物及
び型剤である水酸化テトラアルキルアンモニウムを含有
するゾルを、オートクレーブ中で水熱合成することによ
り、チタノシリケートを得ている。しかしながら、上記
の方法で調製されるチタノシリケートはいずれも微粒子
であり、ハンドリング特性が著しく劣る。例えばプロセ
ス上の問題として、濾布の目詰まりにより触媒分離や触
媒洗浄に長時間を要する。更に、濾布に付着した触媒の
回収は非常に困難であり、濾布上に未回収触媒が蓄積す
るため、バッチ反応を例にとると、反応回数が増す毎に
触媒分離や触媒洗浄の所用時間が長くなる。
A method for preparing a titanosilicate catalyst is disclosed in JP-A-56-97720 and JP-A-59-5127.
No. 3, JP-A-61-183275, JP-A-62-18
No. 5081, JP-A-6-9592, JP-A-7-100
No. 387, a titanosilicate is obtained by hydrothermally synthesizing a sol containing an oxide of silicon and titanium and a tetraalkylammonium hydroxide as a mold agent in an autoclave. However, the titanosilicate prepared by the above-mentioned method is all fine particles, and has extremely poor handling characteristics. For example, as a process problem, it takes a long time to separate and wash the catalyst due to clogging of the filter cloth. Furthermore, it is very difficult to recover the catalyst adhering to the filter cloth, and unrecovered catalyst accumulates on the filter cloth.For example, in the case of a batch reaction, every time the number of reactions increases, it is necessary to separate and clean the catalyst. The time gets longer.

【0005】これに対し、機械的強度及びハンドリング
特性が改善されるチタノシリケート触媒の調製方法とし
て、特開昭63−103817号に水熱合成で得たチタ
ノシリケートの微粒子を結合剤と混ぜ、スプレードライ
法により粒径が増大した触媒を得る方法が提案されてい
る。しかしながら、この方法で形成された触媒は、反応
装置への充填・排出の容易さ、流れ良さの点において実
用的でなく、また、強度の点においても不十分であっ
た。
On the other hand, as a method for preparing a titanosilicate catalyst having improved mechanical strength and handling characteristics, Japanese Patent Application Laid-Open No. 63-103817 discloses a method in which fine particles of titanosilicate obtained by hydrothermal synthesis are mixed with a binder. A method for obtaining a catalyst having an increased particle size by a spray drying method has been proposed. However, the catalyst formed by this method is not practical in terms of ease of filling and discharging into the reactor, good flowability, and insufficient in strength.

【0006】また、特開平8−103659号に、チタ
ノシリケート微粒子を含むスラリー溶液を球形担体表面
に噴霧することにより担体表面をチタノシリケート微粒
子でコーティングする方法が提案されている。しかしな
がら、この方法で得られた触媒は担体表面におけるチタ
ノシリケート微粒子の結合強度が不十分であるため、例
えば撹拌槽等の反応装置における使用に適さない。ま
た、担体は球形状に限られ、より複雑な形状の担体は使
用できない。
Further, Japanese Patent Application Laid-Open No. H8-103659 proposes a method of coating the surface of a carrier with fine particles of titanosilicate by spraying a slurry solution containing fine particles of titanosilicate onto the surface of a spherical carrier. However, the catalyst obtained by this method is not suitable for use in a reaction apparatus such as a stirring tank because the binding strength of the titanosilicate fine particles on the surface of the carrier is insufficient. Further, the carrier is limited to a spherical shape, and a carrier having a more complicated shape cannot be used.

【0007】更に、特表平8−504125号に、担体
共存下で水熱合成を行い、チタノシリケ−トを担体上に
結晶化させる方法も提案されている。しかしながら、担
体にシリカゲルを用いた場合、この方法では水熱合成中
に担体が微粒子化した触媒しか得られない。
Further, Japanese Patent Publication No. Hei 8-504125 proposes a method in which hydrothermal synthesis is carried out in the presence of a carrier to crystallize titanosilicate on the carrier. However, when silica gel is used as the support, this method can only obtain a catalyst in which the support is finely divided during hydrothermal synthesis.

【0008】また、水熱合成以外にゼオライト膜を合成
する方法として、特開平7−89714号に、セラミッ
クス多孔体基板上にゾル溶液あるいはゲルの懸濁液を塗
布して乾燥し、型剤と水を含む蒸気に曝露してゼオライ
ト膜を合成し、分離膜に利用した例が開示されている。
As a method of synthesizing a zeolite membrane other than hydrothermal synthesis, Japanese Patent Application Laid-Open No. Hei 7-89714 discloses a method in which a sol solution or a gel suspension is applied to a porous ceramic substrate, dried and dried. An example is disclosed in which a zeolite membrane is synthesized by exposure to steam containing water and used for a separation membrane.

【0009】[0009]

【発明が解決しようとする課題】本発明は、過酸化水素
を酸化剤としたオレフィン化合物のエポキシ化、フェノ
ール化合物のヒドロキシル化、あるいはケトン化合物の
アンモオキシム化に活性を示す、ハンドリング特性及び
機械的強度に優れたチタノシリケート担持触媒の製造方
法を提供することを目的とする。また、本発明のもう一
つの目的は、この触媒を使用した、オレフィン化合物の
選択的なエポキシ化によるエポキシ化合物および/又は
この誘導体の製造方法、1価フェノール化合物の選択的
なヒドロキシル化による2価フェノール化合物の製造方
法、あるいはケトン化合物の選択的なアンモオキシム化
反応によるケトオキシム化合物の製造方法を提供するこ
とである。
DISCLOSURE OF THE INVENTION The present invention relates to a method for treating epoxidation of olefin compounds, hydroxylation of phenol compounds, or ammoximation of ketone compounds using hydrogen peroxide as an oxidizing agent. An object of the present invention is to provide a method for producing a titanosilicate-supported catalyst having excellent strength. Another object of the present invention is to provide a method for producing an epoxy compound and / or a derivative thereof by selective epoxidation of an olefin compound using this catalyst, and a divalent compound by selective hydroxylation of a monohydric phenol compound. An object of the present invention is to provide a method for producing a phenol compound or a method for producing a ketoxime compound by selective ammoximation reaction of a ketone compound.

【0010】[0010]

【課題を解決するための手段】本発明者らは前記目的を
達成するために鋭意研究を重ねた結果、まず担体上にケ
イ素化合物、チタン化合物及びテトラアルキルアンモニ
ウム化合物を含むシリカ・チタニア乾燥ゲルを形成さ
せ、次いでこれを加圧下水蒸気処理することによって担
体上にチタノシリケートを結晶化させた後、焼成するこ
とで上記の目的を達成し、ハンドリング特性及び機械的
強度に優れたチタノシリケート担持触媒が得られること
を見いだした。本発明はかかる知見に基づいて完成した
ものである。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, first, a silica-titania dry gel containing a silicon compound, a titanium compound and a tetraalkylammonium compound was formed on a carrier. After forming the titanosilicate on the carrier by steaming it under pressure and then sintering it, the above object is achieved by firing, and the titanosilicate carrier having excellent handling characteristics and mechanical strength A catalyst was found to be obtained. The present invention has been completed based on such findings.

【0011】すなわち、本発明は担体にケイ素化合物、
チタン化合物及びテトラアルキルアンモニウム化合物を
含むゾルあるいはゲルの懸濁液を塗布し、乾燥してゲル
を形成させ、次いでこれを加圧下水蒸気処理することに
よってチタノシリケートを担体上に結晶化させた後、焼
成することを特徴とするチタノシリケート担持触媒の製
造方法を提供する。更に、上記チタノシリケート担持触
媒を用いた、オレフィン化合物の選択的なエポキシ化に
よるエポキシ化合物および/又はこの誘導体の製造方
法、1価フェノール化合物の選択的なヒドロキシル化に
よる2価フェノール化合物の製造方法、およびケトン化
合物の選択的なアンモオキシム化反応によるケトオキシ
ム化合物の製造方法を提供する。
[0011] That is, the present invention relates to a carrier comprising a silicon compound,
A sol or gel suspension containing a titanium compound and a tetraalkylammonium compound is applied and dried to form a gel, which is then subjected to steam treatment under pressure to crystallize the titanosilicate on the carrier. And a method for producing a titanosilicate-supported catalyst characterized by firing. Further, a method for producing an epoxy compound and / or a derivative thereof by selective epoxidation of an olefin compound using the titanosilicate-supported catalyst, and a method for producing a dihydric phenol compound by selectively hydroxylating a monohydric phenol compound And a method for producing a ketoxime compound by a selective ammoximation reaction of a ketone compound.

【0012】[0012]

【発明の実施の形態】本発明の担体に塗布するゾルある
いはゲルの懸濁液は、ケイ素化合物、チタン化合物、型
剤としてのテトラアルキルアンモニウム化合物及び水か
ら成る溶液から調整するものである。また、ゲルの懸濁
液とは、溶媒の存在下、ゲルが流動性を示したものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION A suspension of a sol or a gel to be applied to a carrier of the present invention is prepared from a solution comprising a silicon compound, a titanium compound, a tetraalkylammonium compound as a template and water. A gel suspension is one in which the gel exhibits fluidity in the presence of a solvent.

【0013】ここに用いることの出来るケイ素化合物と
しては、テトラアルキルオルトシリケート(Si(OR
1 4 ;ここにR1 は炭素数1〜5のアルキル基を示
す)あるいはコロイド状シリカ等を用いることができ
る。テトラアルキルオルトシリケートとしてはテトラエ
チルオルトシリケートが好適に用いられる。
As the silicon compound that can be used here, tetraalkyl orthosilicate (Si (OR
1 ) 4 ; wherein R 1 represents an alkyl group having 1 to 5 carbon atoms) or colloidal silica or the like. As the tetraalkyl orthosilicate, tetraethyl orthosilicate is preferably used.

【0014】チタン化合物としてはテトラアルキルオル
トチタネート(Ti(OR2 4 ;ここでR2 は炭素数
1〜5のアルキル基を示す)またはTiOCl2 に例示
される加水分解性のハロゲン化チタン化合物等を用いる
ことができる。テトラアルキルオルトチタネートとして
はテトラエチルオルトチタネート、テトラプロピルオル
トチタネート、テトラブチルオルトチタネートが好適に
用いられる。
Examples of the titanium compound include tetraalkyl orthotitanate (Ti (OR 2 ) 4 ; R 2 represents an alkyl group having 1 to 5 carbon atoms) or a hydrolyzable halogenated titanium compound exemplified by TiOCl 2 . Etc. can be used. As the tetraalkyl orthotitanate, tetraethyl orthotitanate, tetrapropyl orthotitanate and tetrabutyl orthotitanate are preferably used.

【0015】型剤として使用されるテトラアルキルアン
モニウム化合物の例としては、水酸化テトラアルキルア
ンモニウムやハロゲン化テトラアルキルアンモニウム等
が挙げられる。これらの化合物の中で、水酸化テトラプ
ロピルアンモニウム、水酸化テトラブチルアンモニウ
ム、臭化テトラプロピルアンモニウム等が好適に用いら
れる。ZSM−5構造を有するチタノシリケート結晶を
形成させるために水酸化テトラプロピルアンモニウムを
用いることが特に好ましい。
Examples of the tetraalkylammonium compound used as the mold include tetraalkylammonium hydroxide and tetraalkylammonium halide. Among these compounds, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapropylammonium bromide and the like are preferably used. It is particularly preferred to use tetrapropylammonium hydroxide to form titanosilicate crystals having a ZSM-5 structure.

【0016】ゾルあるいはゲルの懸濁液を調製する際の
原料の仕込み比は、ケイ素化合物とチタン化合物ではS
i/Ti原子比が5〜500、テトラアルキルアンモニ
ウム化合物とケイ素化合物ではN/Si原子比が0.2
〜0.5、水とケイ素化合物ではモル比(水/ケイ素化
合物)が、10〜100である。また、前記仕込みモル
比の原料を混合することによって得られた反応混合物か
らは、ケイ素化合物及びチタン化合物の加水分解に伴っ
てアルコール等が生成するが、これらの加水分解生成物
はゾルあるいはゲルの懸濁液を担体に塗布する前に除去
しても良いし、除去しなくても良い。
When preparing a suspension of a sol or gel, the charge ratio of the raw materials is as follows.
i / Ti atomic ratio is 5-500, and tetraalkylammonium compound and silicon compound have N / Si atomic ratio of 0.2.
The molar ratio of water to the silicon compound (water / silicon compound) is 10 to 100. Further, from the reaction mixture obtained by mixing the raw materials in the charged molar ratio, alcohols and the like are produced along with the hydrolysis of the silicon compound and the titanium compound, and these hydrolysis products are sol or gel. The suspension may or may not be removed before applying the suspension to the carrier.

【0017】また、担体としては、ある程度の強度を有
し、ある程度の熱に対して安定であれば、特に制限はな
い。例えば、シリカゲルやアルミナゲル、各種ゼオライ
ト等が適当である。上記ゼオライトの例としては、ZS
M−5やシリカライト、スズシリケート、バナドシリケ
ート、ゲルマノシリケート、ガロシリケート等の各種メ
タロシリケートをはじめとするMFI構造を有するゼオ
ライト、ZSM−11やシリカライト2をはじめとする
MEL構造を有するゼオライト、モルデナイトをはじめ
とするMOR構造を有するゼオライト、ベータゼオライ
トをはじめとするBEA構造を有するゼオライト、MC
M−41やMCM−48をはじめとするメソポア細孔を
有するゼオライト等が挙げられる。
The carrier is not particularly limited as long as it has a certain strength and is stable against a certain amount of heat. For example, silica gel, alumina gel, various zeolites and the like are suitable. Examples of the above zeolite include ZS
Zeolite having an MFI structure including various metallosilicates such as M-5, silicalite, tin silicate, vanadosilicate, germanosilicate, and gallosilicate; and a MEL structure including ZSM-11 and silicalite 2. Zeolite having a MOR structure such as zeolite, mordenite, zeolite having a BEA structure such as beta zeolite, MC
Zeolites having mesopore pores such as M-41 and MCM-48 are exemplified.

【0018】また、担体の形状に関しては特に制限はな
く、球状や粒状の他、ハニカム構造をはじめとするより
複雑な構造のものも担体として使用することができる。
The shape of the carrier is not particularly limited, and a carrier having a more complicated structure such as a honeycomb structure in addition to a spherical or granular shape can be used.

【0019】担体の大きさは、工業装置への使用に適し
た粒度分布メジアン(粒度分布において、それより小さ
な粒子が全体の50重量%となる粒径)が、0.1mm
以上が好ましい。
The size of the carrier is such that the particle size distribution median (particle size in which 50% by weight of the smaller particles are 50% by weight in the particle size distribution) suitable for use in industrial equipment is 0.1 mm.
The above is preferred.

【0020】担体へのゾルあるいはゲルの懸濁液の塗布
は、浸漬法、スピンコート法、スプレー法によって行う
ことができる。シリカゲル等、水分の急激な吸着によっ
て担体が破壊される可能性がある場合は、予め水蒸気な
どで加湿処理をした後に、ゾルあるいはゲルの懸濁液の
塗布を行う。
The application of the sol or gel suspension to the carrier can be carried out by a dipping method, a spin coating method, or a spray method. If the carrier is likely to be destroyed due to rapid adsorption of water, such as silica gel, a sol or gel suspension is applied after humidifying treatment with water vapor or the like in advance.

【0021】乾燥によるゾルからのゲル化あるいはゲル
の懸濁液の乾燥は、加熱、真空蒸発、送風等により行う
ことができる。乾燥は空気下の他、窒素等の不活性ガス
雰囲気下で行っても良い。また、加熱乾燥の場合、温度
は50〜150℃が好ましい。乾燥温度が150℃より
高くなると、ゲルの着色や型剤の熱分解等を引き起こ
し、50℃より低いと、乾燥に時間がかかって実用的で
は無い。
Gelation from the sol or drying of the gel suspension by drying can be performed by heating, vacuum evaporation, air blowing, or the like. Drying may be performed in an atmosphere of an inert gas such as nitrogen in addition to air. In the case of heating and drying, the temperature is preferably from 50 to 150C. When the drying temperature is higher than 150 ° C., coloring of the gel and thermal decomposition of the mold agent are caused.

【0022】乾燥ゲルを含んだ担体の水蒸気処理は、オ
ートクレーブ等の耐圧容器中で行われる。担体が液体状
態の水と接触すると、担体上の乾燥ゲルが水中に流れ出
てしまう。これを防止するため、耐圧容器内では水蒸気
源となる水と担体を隔離し、水蒸気が凝縮して発生した
水滴と担体との接触を避けなければならない。
The steam treatment of the carrier containing the dried gel is performed in a pressure vessel such as an autoclave. When the carrier comes into contact with water in a liquid state, the dried gel on the carrier flows out into the water. In order to prevent this, in the pressure vessel, it is necessary to isolate water and carrier as a water vapor source, and to avoid contact between water droplets generated by condensation of water vapor and the carrier.

【0023】水蒸気処理温度は120〜300℃、より
好ましくは180〜250℃である。加熱温度が120
℃より低い場合には、チタノシリケートの結晶化に時間
がかかって実用的でなく、また、300℃より高い場合
には、型剤の熱分解が進行して、チタノシリケートの結
晶化に悪影響を与える。チタノシリケートの結晶化に要
する時間は水蒸気処理温度や乾燥ゲルの厚さ等に依存す
るが、通常1時間から30日である。
The steam treatment temperature is 120 to 300 ° C, more preferably 180 to 250 ° C. Heating temperature is 120
When the temperature is lower than ℃, it takes a long time to crystallize the titanosilicate, and when the temperature is higher than 300 ° C, the thermal decomposition of the mold proceeds and the crystallization of the titanosilicate occurs. Has a negative effect. The time required for crystallization of the titanosilicate depends on the steam treatment temperature, the thickness of the dried gel, and the like, but is usually 1 hour to 30 days.

【0024】水蒸気処理によってチタノシリケートを結
晶化させた担体を、450〜650℃で1〜100時間
焼成することにより、チタノシリケート担持触媒を製造
することができる。このとき、より好ましい焼成温度は
500〜600℃であり、より好ましい焼成時間は2〜
20時間である。
The titanosilicate-supported catalyst can be produced by calcining the support obtained by crystallizing titanosilicate by steam treatment at 450 to 650 ° C. for 1 to 100 hours. At this time, a more preferable firing temperature is 500 to 600 ° C, and a more preferable firing time is 2 to
20 hours.

【0025】本発明の触媒は、過酸化水素とオレフィン
化合物によるエポキシ化合物の製造に好適に使用され、
選択的なエポキシ化によるエポキシ化合物および/又は
この誘導体を与える。尚、エポキシ化合物の誘導体と
は、エポキシ化合物が更に加溶媒分解を受け生成したグ
リコール化合物やエーテル化合物等のことである。
The catalyst of the present invention is suitably used for producing an epoxy compound from hydrogen peroxide and an olefin compound,
An epoxy compound and / or a derivative thereof is obtained by selective epoxidation. The derivative of the epoxy compound refers to a glycol compound, an ether compound, or the like generated by further subjecting the epoxy compound to solvolysis.

【0026】エポキシ化されるオレフィン化合物は、少
なくとも1個のエチレン性不飽和二重結合を有する非環
式及び環式有機化合物である。2個あるいはそれ以上の
炭素−炭素二重結合がオレフィン化合物中にあってもよ
い。また、オレフィン化合物は各種の置換基、例えばハ
ロゲン、カルボン酸、エステル、ケトン、ヒドロキシ
ル、アシル、エーテル、チオール、ニトロ、シアノ、ア
ミノ、酸無水物等を含むことができる。好ましいオレフ
ィン化合物は、2〜20の炭素原子を含むものである。
オレフィン化合物の例としては、エチレン、プロピレ
ン、1−ブテン、2−ブテン、イソブテン、イソプレ
ン、1−ヘキセン、1−オクテン、1−デセン、1−ド
デセン、1−テトラデセン、塩化アリル、アリルアルコ
ール、アクリル酸、メタクリル酸、メタクリル酸メチ
ル、アクリル酸アリル、メタクリル酸アリル、スチレン
等を挙げることができる。
The olefin compounds to be epoxidized are acyclic and cyclic organic compounds having at least one ethylenically unsaturated double bond. Two or more carbon-carbon double bonds may be present in the olefin compound. Further, the olefin compound may contain various substituents, for example, halogen, carboxylic acid, ester, ketone, hydroxyl, acyl, ether, thiol, nitro, cyano, amino, acid anhydride and the like. Preferred olefin compounds are those containing 2 to 20 carbon atoms.
Examples of the olefin compound include ethylene, propylene, 1-butene, 2-butene, isobutene, isoprene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, allyl chloride, allyl alcohol, and acryl. Examples include acid, methacrylic acid, methyl methacrylate, allyl acrylate, allyl methacrylate, styrene and the like.

【0027】過酸化水素は、30〜90wt%の濃度の
製品を使用することができる。過酸化水素の反応系への
添加は、その全量を一度に添加してもよく、反応の進行
と並行して段階的に添加してもよい。
As the hydrogen peroxide, a product having a concentration of 30 to 90% by weight can be used. Hydrogen peroxide may be added to the reaction system in its entirety at once, or may be added stepwise in parallel with the progress of the reaction.

【0028】過酸化水素に対するオレフィン化合物の使
用比率は、0.5倍モル以上、より好ましくは0.7〜
5倍モルである。0.5倍モルより少ない場合は副反応
が増大し、5倍モルより多い場合は未反応オレフィンの
回収エネルギーが増大する。
The use ratio of the olefin compound to hydrogen peroxide is 0.5 mol or more, more preferably 0.7 to 10 mol.
It is 5 times mol. If the molar ratio is less than 0.5 times, the side reaction increases, and if it exceeds 5 times, the recovery energy of the unreacted olefin increases.

【0029】反応に使用する溶媒としては、アルコー
ル、ケトン、水等の極性溶媒が好ましい。アルコールと
しては、炭素数が5以下である脂肪族アルコールが好ま
しく、具体的には、メタノール、エタノール、プロパノ
ール、t−ブタノール等が挙げられ、メタノールが最も
好ましい。一方、ケトンとしては、炭素数が3〜6の脂
肪族ケトンが好ましく、例えば、アセトン、メチルエチ
ルケトン、ジエチルケトン、メチルイソプロピルケト
ン、メチルイソブチルケトン、エチルイソプロピルケト
ン等が挙げられる。特に好ましくは、アセトン、メチル
エチルケトンである。これらの溶媒は単独で使用しても
よいし、あるいは2種類以上の溶媒を混合して使用して
もよい。溶媒の使用量は限定されないが、反応液総量に
対して5〜80wt%、より好ましくは10〜70wt
%である。5wt%より少ない場合は収率が低下し、8
0wt%より多い場合は溶媒の回収エネルギーが増大す
る。
The solvent used in the reaction is preferably a polar solvent such as alcohol, ketone and water. As the alcohol, an aliphatic alcohol having 5 or less carbon atoms is preferable, and specific examples thereof include methanol, ethanol, propanol, t-butanol and the like, and methanol is most preferable. On the other hand, the ketone is preferably an aliphatic ketone having 3 to 6 carbon atoms, such as acetone, methyl ethyl ketone, diethyl ketone, methyl isopropyl ketone, methyl isobutyl ketone, and ethyl isopropyl ketone. Particularly preferred are acetone and methyl ethyl ketone. These solvents may be used alone or as a mixture of two or more. The amount of the solvent used is not limited, but is preferably 5 to 80 wt%, more preferably 10 to 70 wt% based on the total amount of the reaction solution.
%. If the amount is less than 5 wt%, the yield decreases and 8
If it is more than 0 wt%, the recovery energy of the solvent increases.

【0030】また、反応は液相中、大気圧下で実施でき
る。オレフィン化合物がガス状である場合は、それを液
相中に溶解させるのに十分な圧力を保つことが好まし
い。反応温度は、30〜120℃の範囲が好ましく、さ
らに好ましくは40〜80℃の範囲である。30℃より
低い反応温度の場合は反応速度が小さく、120℃より
高い場合は副反応が増大する。
The reaction can be carried out in a liquid phase at atmospheric pressure. When the olefin compound is gaseous, it is preferable to maintain a pressure sufficient to dissolve it in the liquid phase. The reaction temperature is preferably in the range of 30 to 120C, more preferably in the range of 40 to 80C. When the reaction temperature is lower than 30 ° C., the reaction rate is low, and when the reaction temperature is higher than 120 ° C., side reactions increase.

【0031】加えて、本発明の触媒を用いた過酸化水素
によるオレフィン化合物のエポキシ化反応においては、
反応条件によって生成したエポキシ化合物が更に加溶媒
分解を受けて、グリコール化合物やエーテル化合物を与
える。従って、適当な反応条件を選ぶことにより、本発
明の触媒は、選択的なグリコール化合物やエーテル化合
物の製造にも好適に使用される。
In addition, in the epoxidation reaction of an olefin compound with hydrogen peroxide using the catalyst of the present invention,
The epoxy compound produced under the reaction conditions is further subjected to solvolysis to give a glycol compound or an ether compound. Therefore, by selecting appropriate reaction conditions, the catalyst of the present invention can be suitably used for the selective production of glycol compounds and ether compounds.

【0032】本発明の触媒は、また、過酸化水素と1価
フェノール化合物による2価フェノール化合物の製造に
好適に使用され、選択的なヒドロキシル化による特定の
2価フェノール化合物を与える。
The catalyst of the present invention is also suitably used for the production of a dihydric phenol compound using hydrogen peroxide and a monohydric phenol compound to give a specific dihydric phenol compound by selective hydroxylation.

【0033】1価フェノール化合物としては、フェノー
ル、クレゾール、キシレノール等が使用し得るが、特に
フェノールが好適に使用される。
As the monohydric phenol compound, phenol, cresol, xylenol and the like can be used, and phenol is particularly preferably used.

【0034】過酸化水素に対する1価フェノール化合物
の使用比率は、副反応を抑制するために2倍モル以上、
より好ましくは3倍モル以上である。
The use ratio of the monohydric phenol compound to hydrogen peroxide is at least twice as much as possible to suppress side reactions.
More preferably, it is at least 3 moles.

【0035】反応に使用する溶媒としては、アルコー
ル、ケトン、水等の極性溶媒が好ましく、水が最も好ま
しい。溶媒の使用量は限定されないが、反応液総量に対
して10〜50wt%、より好ましくは20〜40wt
%である。更に、反応液にジオキサンを添加することが
パラ選択的ヒドロキシル化のために好ましい。
As the solvent used in the reaction, polar solvents such as alcohols, ketones and water are preferred, and water is most preferred. The amount of the solvent used is not limited, but is preferably 10 to 50% by weight, more preferably 20 to 40% by weight based on the total amount of the reaction solution.
%. Further, it is preferable to add dioxane to the reaction solution for paraselective hydroxylation.

【0036】反応温度は、50〜150℃、好ましくは
60〜120℃の範囲である。50℃より低い反応温度
の場合は反応速度が小さく、150℃より高い場合は副
反応が増大する。
The reaction temperature ranges from 50 to 150 ° C., preferably from 60 to 120 ° C. When the reaction temperature is lower than 50 ° C, the reaction rate is low, and when the reaction temperature is higher than 150 ° C, side reactions increase.

【0037】本発明の触媒は、更に、過酸化水素とケト
ン化合物とアンモニアによるケトオキシム化合物の製造
に好適に使用され、アンモオキシム化による特定のケト
オキシム化合物を与える。
The catalyst of the present invention is further suitably used for producing a ketoxime compound from hydrogen peroxide, a ketone compound and ammonia, and gives a specific ketoxime compound by ammoximation.

【0038】ケトン化合物としては、シクロヘキサノ
ン、メチルエチルケトン等が好適に使用される。
As the ketone compound, cyclohexanone, methyl ethyl ketone and the like are preferably used.

【0039】過酸化水素に対するケトン化合物の使用比
率は、0.5〜1.5倍モル、より好ましくは0.5〜
1.2倍モルである。ケトン化合物に対するアンモニア
の使用比率は1倍モル以上、より好ましくは1.5倍モ
ル以上である。ケトン化合物に対するアンモニアの使用
比率が1倍モルより少ない場合は副反応が増大する。
The use ratio of the ketone compound to hydrogen peroxide is 0.5 to 1.5 moles, more preferably 0.5 to 1.5 moles.
1.2 times mol. The use ratio of ammonia to the ketone compound is at least 1 mol, and more preferably at least 1.5 mol. When the use ratio of ammonia to the ketone compound is less than 1 mole, side reactions increase.

【0040】反応に使用する溶媒としては、アルコー
ル、ケトン、水等の極性溶媒が好ましく、t−ブチルア
ルコールが特に好ましい。溶媒の使用量は限定されない
が、反応液総量に対して10〜50wt%である。10
wt%より少ない場合は収率が低下し、50wt%より
多い場合は溶媒の回収エネルギーが増大する。
As the solvent used in the reaction, a polar solvent such as alcohol, ketone, water and the like is preferable, and t-butyl alcohol is particularly preferable. The amount of the solvent used is not limited, but is 10 to 50% by weight based on the total amount of the reaction solution. 10
If the amount is less than 50% by weight, the yield decreases.

【0041】反応温度は、30〜120℃、好ましくは
60〜100℃の範囲である。反応は常圧もしくは加圧
下で行い、溶液中のアンモニア濃度が低くなり過ぎない
ようにする。
The reaction temperature ranges from 30 to 120 ° C., preferably from 60 to 100 ° C. The reaction is carried out under normal pressure or under pressure so that the ammonia concentration in the solution does not become too low.

【0042】[0042]

【実施例】以下、実施例により本発明をさらに詳細に説
明するが、本発明の内容はこれらによって如何なる意味
においても限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, which should not be construed as limiting the scope of the invention.

【0043】実施例1 テトラエチルオルトシリケート563gとテトラエチル
オルトチタネート12.3gを、3リットルのフラスコ
に入れ、窒素気流下、20重量%水酸化テトラプロピル
アンモニウム水溶液811gを2時間で滴下した。滴下
中、反応液温度は20℃で一定となるように調節した。
滴下終了後もしばらく撹拌を続けて加水分解を進行させ
た後、反応液を80℃に加熱して加水分解で生成したエ
タノールを反応液から留去し、ゾル752gを調製し
た。次に、富士シリシア化学株式会社製球状シリカゲル
のキャリアクト30(10〜20mesh)20gを加
湿処理した後、上記のゾル65g中に加え、90℃に加
熱した後室温で1晩放置した。シリカゲルを濾別後75
℃で6時間乾燥し、乾燥ゲル担持シリカゲルを得た。こ
れをテフロン製ビーカーに入れ、3リットルオートクレ
ーブ中、水蒸気源の水と隔離するために取り付けられた
支持台上にビーカーを置いて、220℃、6日間水蒸気
処理し、担体上にチタノシリケート層を結晶化させた。
オートクレーブ内部を室温まで冷却後触媒を取り出し、
550℃で6時間焼成した。チタノシリケート含有量が
約23wt%の触媒が得られた(以下、「触媒A」と記
す)。触媒Aの粒径はシリカゲル担体とほぼ同じであっ
た。EPMA(X線マイクロアナライザー)分析による
触媒A中のチタン原子の分布状態を図1に示す。図1は
チタン原子が触媒A中にほぼ均一に分布していること示
している。一方、粉末X線回折及び拡散反射IR測定に
より担持された化合物がチタノシリケート構造を有する
ことが確認された。従って、触媒A中にはチタノシリケ
ート粒子がほぼ均一に分布していることが分かった。
Example 1 563 g of tetraethylorthosilicate and 12.3 g of tetraethylorthotitanate were placed in a 3 liter flask, and 811 g of a 20% by weight aqueous solution of tetrapropylammonium hydroxide was added dropwise over 2 hours under a nitrogen stream. During the dropwise addition, the temperature of the reaction solution was adjusted to be constant at 20 ° C.
After the addition was completed, stirring was continued for a while to promote hydrolysis, and then the reaction solution was heated to 80 ° C., and ethanol generated by hydrolysis was distilled off from the reaction solution to prepare 752 g of a sol. Next, 20 g of Carract 30 (10 to 20 mesh) of spherical silica gel manufactured by Fuji Silysia Chemical Ltd. was humidified, added to 65 g of the above sol, heated to 90 ° C., and left overnight at room temperature. After filtering off the silica gel 75
Drying at 6 ° C. for 6 hours gave a dried gel-supported silica gel. This was placed in a Teflon beaker, placed in a 3 liter autoclave, on a support attached to isolate from the water of the steam source, steamed at 220 ° C for 6 days, and the titanosilicate layer was placed on the carrier. Was crystallized.
After cooling the inside of the autoclave to room temperature, take out the catalyst,
Baking was performed at 550 ° C. for 6 hours. A catalyst having a titanosilicate content of about 23 wt% was obtained (hereinafter, referred to as "catalyst A"). The particle size of catalyst A was almost the same as that of the silica gel carrier. FIG. 1 shows the distribution of titanium atoms in catalyst A by EPMA (X-ray microanalyzer) analysis. FIG. 1 shows that titanium atoms are almost uniformly distributed in catalyst A. On the other hand, powder X-ray diffraction and diffuse reflection IR measurement confirmed that the supported compound had a titanosilicate structure. Therefore, it was found that the titanosilicate particles were almost uniformly distributed in the catalyst A.

【0044】実施例2 担体に富士シリシア化学株式会社製球状シリカゲルのキ
ャリアクト50(10〜20mesh)を用いた以外
は、実施例1と同様に、乾燥ゲルの形成、水蒸気処理に
よるチタノシリケート結晶化、焼成を行い、チタノシリ
ケート含有量が約30wt%の触媒が得られた(以下、
「触媒B」と記す)。触媒Bの粒径はシリカゲル担体と
ほぼ同じであった。また、EPMA分析、粉末X線回折
及び拡散反射IR測定より、触媒B中にはほぼ均一にチ
タノシリケート粒子が分布していることが確認された。
Example 2 The procedure of Example 1 was repeated except that Carrieract 50 (10 to 20 mesh) of spherical silica gel manufactured by Fuji Silysia Chemical Ltd. was used as the carrier to form a dry gel and titanosilicate crystals by steam treatment. , And a catalyst having a titanosilicate content of about 30 wt% was obtained (hereinafter, referred to as “catalyst”).
"Catalyst B"). The particle size of catalyst B was almost the same as that of the silica gel carrier. In addition, EPMA analysis, powder X-ray diffraction and diffuse reflection IR measurement confirmed that titanosilicate particles were almost uniformly distributed in catalyst B.

【0045】実施例3 エヌ・イー ケムキャット製ガロシリケート(Si/G
a=25、押し出し成型品、直径1.6mm)を粉砕
後、篩にかけて1.0〜1.4mmの粒を回収した。こ
れを担体に用いた以外は、実施例1と同様に、乾燥ゲル
の形成、水蒸気処理によるチタノシリケート結晶化、焼
成を行い、チタノシリケート含有量が約17wt%の触
媒が得られた(以下、「触媒C」と記す)。
Example 3 Gallosilicate (Si / G manufactured by NE Chemcat)
a = 25, extruded product, diameter 1.6 mm) was crushed and sieved to collect particles of 1.0 to 1.4 mm. Except that this was used as a carrier, formation of a dried gel, crystallization of titanosilicate by steam treatment, and calcination were carried out in the same manner as in Example 1 to obtain a catalyst having a titanosilicate content of about 17 wt% ( Hereinafter, referred to as “catalyst C”).

【0046】実施例4 担体にエヌ・イー ケムキャット製ZSM−11(Si
/Al=25、押し出し成型品、直径1.6mm)を用
いた以外は、実施例3と同様に、乾燥ゲルの形成、水蒸
気処理によるチタノシリケート結晶化、焼成を行い、チ
タノシリケート含有量が約26wt%の触媒が得られた
(以下、「触媒D」と記す)。
Example 4 The carrier was ZSM-11 (Si, manufactured by NE Chemcat).
/ Al = 25, extruded product, diameter 1.6 mm), in the same manner as in Example 3, to form a dry gel, crystallize titanosilicate by steam treatment, and calcinate to obtain a titanosilicate content. Was obtained (hereinafter, referred to as "catalyst D").

【0047】実施例5 担体にエヌ・イー ケムキャット製モルデナイト(Si
/Al=15、押し出し成型品、直径1.6mm)を用
いた以外は、実施例3と同様に、乾燥ゲルの形成、水蒸
気処理によるチタノシリケート結晶化、焼成を行い、チ
タノシリケート含有量が約19wt%の触媒が得られた
(以下、「触媒E」と記す)。
Example 5 A mordenite made by NE Chemcat (Si
/ Al = 15, extruded product, diameter 1.6 mm) except that a dry gel was formed, titanosilicate was crystallized by steam treatment, and calcined in the same manner as in Example 3 to obtain a titanosilicate content. Was obtained (hereinafter, referred to as "catalyst E").

【0048】実施例6 温度計、還流冷却器、撹拌機を取り付けた200mlの
フラスコに、メタクリル酸アリル66g(0.52モ
ル)、反応溶媒としてメタノール10g及びメチルエチ
ルケトン10g、実施例1において調製した触媒A7.
8gをそれぞれ計り取り、60℃に加熱した。温度が一
定になった時点で、60wt%過酸化水素水11.9g
(0.21モル)を1.5時間で滴下した。さらに60
分撹拌を続けた後、フラスコを油浴から取り外し反応を
終了させた。触媒を濾別後、ガスクロマトグラフィー及
びヨウ素滴定によって有機成分及び残存過酸化水素を定
量した。過酸化水素転化率96%、メタクリル酸グリシ
ジル選択率は87%であった。また、濾別した触媒は1
0gのメタノールで洗浄した。反応液からの触媒分離な
らびにメタノール洗浄に要した触媒濾過時間を表1に示
す。
Example 6 In a 200 ml flask equipped with a thermometer, a reflux condenser and a stirrer, 66 g (0.52 mol) of allyl methacrylate, 10 g of methanol as a reaction solvent and 10 g of methyl ethyl ketone, the catalyst prepared in Example 1 A7.
8 g each were weighed and heated to 60 ° C. When the temperature becomes constant, 11.9 g of 60 wt% hydrogen peroxide solution
(0.21 mol) was added dropwise over 1.5 hours. Further 60
After stirring for minutes, the flask was removed from the oil bath to terminate the reaction. After filtering off the catalyst, the organic components and residual hydrogen peroxide were quantified by gas chromatography and iodine titration. The conversion of hydrogen peroxide was 96%, and the selectivity for glycidyl methacrylate was 87%. In addition, the separated catalyst was 1
Washed with 0 g of methanol. Table 1 shows the catalyst filtration time required for separating the catalyst from the reaction solution and washing with methanol.

【0049】実施例7 触媒Aの代わりに触媒C13.0gを用いた以外は、実
施例6と同様にしてメタクリル酸アリルのエポキシ化反
応を行った。過酸化水素転化率99%、エポキシ選択率
(メタクリル酸グリシジル選択率とその加水分解生成物
であるグリコール体選択率の合計)は75%であった。
また、反応液からの触媒分離ならびにメタノール洗浄に
要した触媒濾過時間を表1に示す。
Example 7 An epoxidation reaction of allyl methacrylate was carried out in the same manner as in Example 6 except that 13.0 g of catalyst C was used instead of catalyst A. The conversion of hydrogen peroxide was 99%, and the selectivity for epoxy (the total of the selectivity for glycidyl methacrylate and the selectivity for the glycol product as a hydrolysis product thereof) was 75%.
Table 1 shows the catalyst filtration time required for separating the catalyst from the reaction solution and washing with methanol.

【0050】実施例8 触媒Aの代わりに触媒D10.4gを用いた以外は、実
施例6と同様にしてメタクリル酸アリルのエポキシ化反
応を行った。過酸化水素転化率99%、エポキシ選択率
(メタクリル酸グリシジル選択率とその加水分解生成物
であるグリコール体選択率の合計)は70%であった。
また、反応液からの触媒分離ならびにメタノール洗浄に
要した触媒濾過時間を表1に示す。
Example 8 The epoxidation reaction of allyl methacrylate was carried out in the same manner as in Example 6, except that 10.4 g of catalyst D was used instead of catalyst A. The conversion of hydrogen peroxide was 99%, and the selectivity of epoxy (total of the selectivity of glycidyl methacrylate and the selectivity of the glycol product as a hydrolysis product thereof) was 70%.
Table 1 shows the catalyst filtration time required for separating the catalyst from the reaction solution and washing with methanol.

【0051】実施例9 触媒Aの代わりに触媒E13.0gを用いた以外は、実
施例6と同様にしてメタクリル酸アリルのエポキシ化反
応を行った。過酸化水素転化率99%、エポキシ選択率
(メタクリル酸グリシジル選択率とその加水分解生成物
であるグリコール体選択率の合計)は62%であった。
また、反応液からの触媒分離ならびにメタノール洗浄に
要した触媒濾過時間を表1に示す。
Example 9 An epoxidation reaction of allyl methacrylate was carried out in the same manner as in Example 6 except that 13.0 g of Catalyst E was used instead of Catalyst A. The conversion rate of hydrogen peroxide was 99%, and the selectivity for epoxy (the total of the selectivity for glycidyl methacrylate and the selectivity for the glycol product as a hydrolysis product thereof) was 62%.
Table 1 shows the catalyst filtration time required for separating the catalyst from the reaction solution and washing with methanol.

【0052】実施例10 温度計、還流冷却器、撹拌機を取り付けた200mlの
フラスコに、塩化アリル25g(0.33モル)、反応
溶媒としてメタノール25g及びメチルエチルケトン2
5g、実施例1において調製した触媒A9.6gをそれ
ぞれ計り取り、50℃に加熱した。温度が一定になった
時点で、60wt%過酸化水素水4.0g(0.07モ
ル)を40分で滴下した。さらに10分撹拌を続けた後
フラスコを油浴から取り外し反応を終了させた。触媒を
濾別後、ガスクロマトグラフィー及びヨウ素滴定によっ
て有機成分及び残存過酸化水素を定量した。過酸化水素
転化率82%、エピクロルヒドリン選択率は97%であ
った。
Example 10 A 200 ml flask equipped with a thermometer, a reflux condenser and a stirrer was charged with 25 g (0.33 mol) of allyl chloride, 25 g of methanol as a reaction solvent and 2 g of methyl ethyl ketone.
5 g and 9.6 g of the catalyst A prepared in Example 1 were each weighed and heated to 50 ° C. When the temperature became constant, 4.0 g (0.07 mol) of a 60 wt% aqueous hydrogen peroxide solution was added dropwise over 40 minutes. After stirring was continued for another 10 minutes, the flask was removed from the oil bath to terminate the reaction. After filtering off the catalyst, the organic components and residual hydrogen peroxide were quantified by gas chromatography and iodine titration. The conversion of hydrogen peroxide was 82%, and the selectivity for epichlorohydrin was 97%.

【0053】実施例11 温度計、還流冷却器、撹拌機を取り付けた200mlの
フラスコに、1−ドデセン50g(0.30モル)、反
応溶媒としてメタノール50g及びメチルエチルケトン
50g、実施例2において調製した触媒B10.0gを
それぞれ計り取り、60℃に加熱した。温度が一定にな
った時点で、60wt%過酸化水素水3.5g(0.0
6モル)を35分で滴下した。さらに30分撹拌を続け
た後フラスコを油浴から取り外し反応を終了させた。触
媒を濾別後、ガスクロマトグラフィー及びヨウ素滴定に
よって有機成分及び残存過酸化水素を定量した。過酸化
水素転化率69%、1−エポキシドデカン選択率は88
%であった。
Example 11 In a 200 ml flask equipped with a thermometer, a reflux condenser and a stirrer, 50 g (0.30 mol) of 1-dodecene, 50 g of methanol as a reaction solvent and 50 g of methyl ethyl ketone, the catalyst prepared in Example 2 10.0 g of B was weighed and heated to 60 ° C. When the temperature becomes constant, 3.5 g of 60 wt% hydrogen peroxide solution (0.0 g
6 mol) was added dropwise in 35 minutes. After stirring was continued for another 30 minutes, the flask was removed from the oil bath to terminate the reaction. After filtering off the catalyst, the organic components and residual hydrogen peroxide were quantified by gas chromatography and iodine titration. Hydrogen peroxide conversion 69%, 1-epoxide decane selectivity 88
%Met.

【0054】実施例12 温度計、還流冷却器、撹拌機を取り付けた200mlの
フラスコに、フェノール50g(0.53モル)、1,
4−ジオキサン8.4g、水30g、及び実施例1にお
いて調製した触媒A6.3gをそれぞれ計り取り、80
℃に加熱した。温度が一定になった時点で、31wt%
過酸化水素水14.4g(0.13モル)を滴下した。
3時間反応後の溶液を分析した結果、過酸化水素基準の
2価フェノール収率は76%、生成ハイドロキノン/カ
テコールのモル比は5.6で、選択的にハイドロキノン
が得られた。
Example 12 In a 200 ml flask equipped with a thermometer, a reflux condenser and a stirrer, 50 g (0.53 mol) of phenol, 1,
8.4 g of 4-dioxane, 30 g of water and 6.3 g of the catalyst A prepared in Example 1 were weighed out,
Heated to ° C. When the temperature becomes constant, 31 wt%
14.4 g (0.13 mol) of aqueous hydrogen peroxide was added dropwise.
As a result of analyzing the solution after the reaction for 3 hours, the yield of dihydric phenol based on hydrogen peroxide was 76%, the molar ratio of produced hydroquinone / catechol was 5.6, and hydroquinone was selectively obtained.

【0055】実施例13 300mlのSUS316製オートクレーブに、シクロ
ヘキサノン38.3g(0.39モル)、25wt%ア
ンモニア水溶液39.6g(0.58モル)、t−ブタ
ノール59g、及び実施例1において調製した触媒A1
9.3gをそれぞれ計り取り、80℃に加熱した。温度
が一定になった時点で、31wt%過酸化水素水44.
7g(0.41モル)を1時間で供給し、更に30分撹
拌を続けた。反応液から触媒を濾別し、アセトンを加え
て均一溶液にした後、ガスクロマトグラフィー及びヨウ
素滴定によって有機成分及び残存過酸化水素を定量し
た。シクロヘキサノンオキシムの過酸化水素基準収率は
82%であった。
Example 13 In a 300 ml SUS316 autoclave, 38.3 g (0.39 mol) of cyclohexanone, 39.6 g (0.58 mol) of a 25 wt% aqueous ammonia solution, 59 g of t-butanol, and the mixture prepared in Example 1 were prepared. Catalyst A1
Each 9.3 g was weighed and heated to 80 ° C. When the temperature becomes constant, 31 wt% hydrogen peroxide water.
7 g (0.41 mol) were fed in one hour and stirring was continued for a further 30 minutes. After filtering off the catalyst from the reaction solution and adding acetone to make a homogeneous solution, the organic components and residual hydrogen peroxide were quantified by gas chromatography and iodine titration. The yield based on hydrogen peroxide of cyclohexanone oxime was 82%.

【0056】比較例1 500ml振とう式オートクレーブに実施例1で合成し
たゾル溶液93gと水157gを入れ、担体としてキャ
リアクト30(10〜20mesh)25gを加湿処理
後加えた。オートクレーブ内の気体を窒素で置換した
後、密閉して170℃に96時間加熱後、210℃に昇
温してさらに48時間210℃に保持した後、室温に冷
却した。シリカゲル担体は水熱合成中に溶解し、オート
クレーブ中には白色粘土状固体が堆積していた。白色固
体を遠心分離後、蒸留水で洗浄・乾燥し、20mesh
の篩にかけたところ、白色固体は全量が篩を通過し、微
細粒子となっていた。電気炉で空気中、550℃、6時
間焼成を行って微粉末状のチタノシリケート触媒が得ら
れた。
Comparative Example 1 93 g of the sol solution synthesized in Example 1 and 157 g of water were placed in a 500 ml shaking autoclave, and 25 g of Carract 30 (10 to 20 mesh) as a carrier was added after humidification. After the gas in the autoclave was replaced with nitrogen, the autoclave was closed, heated to 170 ° C for 96 hours, heated to 210 ° C, kept at 210 ° C for another 48 hours, and then cooled to room temperature. The silica gel support was dissolved during the hydrothermal synthesis, and a white clay-like solid was deposited in the autoclave. After the white solid is centrifuged, washed and dried with distilled water,
As a result, all of the white solid passed through the sieve and became fine particles. The powder was fired in an electric furnace at 550 ° C. for 6 hours in the air to obtain a fine powdery titanosilicate catalyst.

【0057】比較例2 特開昭56−96720号の実施例に従って、水熱合成
によりチタノシリケート触媒を得た(以下、「触媒F」
と記す)。触媒Aの代わりに触媒F2.6gを用いた以
外は、実施例6と同様にしてメタクリル酸アリルのエポ
キシ化反応を行った。過酸化水素転化率99%、メタク
リル酸グリシジル選択率は85%であった。また、反応
液からの触媒分離ならびにメタノール洗浄に要した触媒
濾過時間を表1に示す。触媒Fの微粒子によって濾紙が
目詰まりを起こすため、チタノシリケート担持触媒(実
施例6〜9)と比べて触媒濾過にかなり長時間を要し
た。また、エポキシ化反応を繰り返し行うと、触媒濾過
時間は更に延びる傾向にあった。
Comparative Example 2 A titanosilicate catalyst was obtained by hydrothermal synthesis according to the examples of JP-A-56-97720 (hereinafter referred to as "catalyst F").
Described). The epoxidation reaction of allyl methacrylate was carried out in the same manner as in Example 6, except that 2.6 g of the catalyst F was used instead of the catalyst A. The conversion of hydrogen peroxide was 99%, and the selectivity for glycidyl methacrylate was 85%. Table 1 shows the catalyst filtration time required for separating the catalyst from the reaction solution and washing with methanol. Since the filter paper was clogged by the fine particles of the catalyst F, the filtration of the catalyst required a considerably long time as compared with the titanosilicate-supported catalyst (Examples 6 to 9). Further, when the epoxidation reaction was repeatedly performed, the catalyst filtration time tended to be further increased.

【0058】[0058]

【表1】 ────────────────────────────── 触媒濾過時間(秒) ────────────────────── 触媒分離 メタノール洗浄 ────────────────────────────── 実施例6 12 2 実施例7 13 2 実施例8 12 3 実施例9 14 3 比較例2 61 78 ──────────────────────────────[Table 1] 濾過 Catalyst filtration time (seconds) ──────────触媒 Catalyst separation methanol washing Example 6 12 2 Example 7 13 2 Example 8 12 3 Example 9 14 3 Comparative Example 2 61 78 ─

【0059】[0059]

【発明の効果】本発明によれば、ハンドリング特性及び
機械的強度に優れたチタノシリケート担持触媒が提供さ
れる。本発明の触媒の製造においては、まず担体上にケ
イ素化合物、チタン化合物及びテトラアルキルアンモニ
ウム化合物を含むシリカ・チタニア乾燥ゲルを形成さ
せ、これを加圧下水蒸気処理することによって、球形状
だけでなく、より複雑な形状の担体上にチタノシリケー
トを結晶化させることが出来る。また、本発明のチタノ
シリケート担持触媒は、オレフィン化合物の過酸化水素
による選択的なエポキシ化、1価フェノール化合物の過
酸化水素による選択的なヒドロキシル化、あるいはケト
ン化合物とアンモニアと過酸化水素との選択的なアンモ
オキシム化に対して著しい活性を示し、有機合成に利用
される。
According to the present invention, a titanosilicate-supported catalyst having excellent handling characteristics and mechanical strength is provided. In the production of the catalyst of the present invention, first, a silica-titania dry gel containing a silicon compound, a titanium compound and a tetraalkylammonium compound is formed on a support, and this is subjected to steam treatment under pressure, so that not only a spherical shape but also a spherical shape is obtained. The titanosilicate can be crystallized on a carrier having a more complicated shape. Further, the titanosilicate supported catalyst of the present invention can be used for selective epoxidation of an olefin compound with hydrogen peroxide, selective hydroxylation of a monohydric phenol compound with hydrogen peroxide, or a ketone compound and ammonia and hydrogen peroxide. Has remarkable activity on the selective ammoximation of, and is utilized in organic synthesis.

【図面の簡単な説明】[Brief description of the drawings]

【図1】EPMAによる触媒A中のチタン原子の分布状
態図
FIG. 1 is a distribution diagram of titanium atoms in catalyst A by EPMA.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07D 301/12 C07D 301/12 303/04 303/04 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C07D 301/12 C07D 301/12 303/04 303/04

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】担体上にケイ素化合物、チタン化合物及び
テトラアルキルアンモニウム化合物を含むゾルあるいは
ゲルの懸濁液を塗布した後、乾燥してゲルを形成させ、
次いでこれを加圧下水蒸気処理によりチタノシリケート
を担体上に結晶化させた後、焼成することを特徴とする
チタノシリケート担持触媒の製造方法。
1. A sol or gel suspension containing a silicon compound, a titanium compound and a tetraalkylammonium compound is applied on a carrier and then dried to form a gel.
Next, the titanosilicate is crystallized on a carrier by steam treatment under pressure, and then calcined, followed by calcining.
【請求項2】ケイ素化合物としてテトラアルキルオルト
シリケートまたはコロイド状シリカを用いる請求項1記
載のチタノシリケート担持触媒の製造方法。
2. The method for producing a titanosilicate-supported catalyst according to claim 1, wherein a tetraalkyl orthosilicate or colloidal silica is used as the silicon compound.
【請求項3】ケイ素化合物としてテトラエチルオルトシ
リケートを用いる請求項1記載のチタノシリケート担持
触媒の製造方法。
3. The method for producing a titanosilicate-supported catalyst according to claim 1, wherein tetraethylorthosilicate is used as the silicon compound.
【請求項4】チタン化合物としてテトラアルキルオルト
チタネートまたはハロゲン化チタン化合物を用いる請求
項1記載のチタノシリケート担持触媒の製造方法。
4. The method for producing a titanosilicate-supported catalyst according to claim 1, wherein a tetraalkyl orthotitanate or a titanium halide compound is used as the titanium compound.
【請求項5】チタン化合物としてテトラエチルオルトチ
タネート、テトラプロピルオルトチタネート、またはテ
トラブチルオルトチタネートを用いる請求項1記載のチ
タノシリケート担持触媒の製造方法。
5. The method according to claim 1, wherein the titanium compound is tetraethyl orthotitanate, tetrapropyl orthotitanate or tetrabutyl orthotitanate.
【請求項6】テトラアルキルアンモニウム化合物として
水酸化テトラアルキルアンモニウムまたはハロゲン化テ
トラアルキルアンモニウムを用いる請求項1記載のチタ
ノシリケート担持触媒の製造方法。
6. The method for producing a titanosilicate-supported catalyst according to claim 1, wherein a tetraalkylammonium hydroxide or a tetraalkylammonium halide is used as the tetraalkylammonium compound.
【請求項7】テトラアルキルアンモニウム化合物として
水酸化テトラプロピルアンモニウム、水酸化テトラブチ
ルアンモニウムまたは臭化テトラプロピルアンモニウム
を用いる請求項1記載のチタノシリケート担持触媒の製
造方法。
7. The method for producing a titanosilicate-supported catalyst according to claim 1, wherein tetrapropylammonium hydroxide, tetrabutylammonium hydroxide or tetrapropylammonium bromide is used as the tetraalkylammonium compound.
【請求項8】水蒸気温度が120〜300℃である請求
項1記載のチタノシリケート担持触媒の製造方法。
8. The method for producing a titanosilicate-supported catalyst according to claim 1, wherein the steam temperature is 120 to 300 ° C.
【請求項9】過酸化水素とオレフィン化合物によるエポ
キシ化合物および/又はこの誘導体の製造において、請
求項1記載のチタノシリケート担持触媒を使用すること
を特徴とするエポキシ化合物および/又はこの誘導体の
製造方法。
9. A method for producing an epoxy compound and / or a derivative thereof using hydrogen peroxide and an olefin compound, wherein the titanosilicate-supported catalyst according to claim 1 is used. Method.
【請求項10】過酸化水素と1価フェノール化合物によ
る2価フェノール化合物の製造において、請求項1記載
のチタノシリケート担持触媒を使用することを特徴とす
る2価フェノール化合物の製造方法。
10. A method for producing a dihydric phenol compound, which comprises using the titanosilicate-supported catalyst according to claim 1 in producing a dihydric phenol compound using hydrogen peroxide and a monohydric phenol compound.
【請求項11】過酸化水素とケトン化合物及びアンモニ
アによるケトオキシム化合物の製造において、請求項1
記載のチタノシリケート担持触媒を使用することを特徴
とするケトオキシム化合物の製造方法。
11. A method for producing a ketoxime compound using hydrogen peroxide, a ketone compound and ammonia.
A method for producing a ketoxime compound, comprising using the titanosilicate-supported catalyst according to the above.
JP9330202A 1997-12-01 1997-12-01 Production of titanosilicate-carrying catalyst and production of organic compound using the same by hydrogen peroxide Pending JPH11165074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9330202A JPH11165074A (en) 1997-12-01 1997-12-01 Production of titanosilicate-carrying catalyst and production of organic compound using the same by hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9330202A JPH11165074A (en) 1997-12-01 1997-12-01 Production of titanosilicate-carrying catalyst and production of organic compound using the same by hydrogen peroxide

Publications (1)

Publication Number Publication Date
JPH11165074A true JPH11165074A (en) 1999-06-22

Family

ID=18229988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9330202A Pending JPH11165074A (en) 1997-12-01 1997-12-01 Production of titanosilicate-carrying catalyst and production of organic compound using the same by hydrogen peroxide

Country Status (1)

Country Link
JP (1) JPH11165074A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1061046A1 (en) * 1999-06-18 2000-12-20 Nippon Shokubai Co., Ltd. Molding of binderless zeolite, method for its production and its use
JP2002114746A (en) * 2000-09-26 2002-04-16 Degussa Ag Method for producing oxime
WO2004058737A1 (en) * 2002-12-24 2004-07-15 Showa Denko K.K. Method of oxidizing carbon-carbon double bond and process for producing oxidized compound
JP2005041724A (en) * 2003-07-24 2005-02-17 Nippon Shokubai Co Ltd Production method for inorganic crystalline compound
JP2007001952A (en) * 2005-06-27 2007-01-11 Yokohama National Univ Method for producing oxime
KR100762862B1 (en) * 2005-06-24 2007-10-04 쇼와 덴코 가부시키가이샤 Method of oxidizing carbon-carbon double bond and process for producing oxidized compound
DE102008041138A1 (en) 2008-08-11 2010-02-18 Evonik Röhm Gmbh Process and plant for the preparation of glycidyl (meth) acrylate
JP2013040092A (en) * 2011-08-11 2013-02-28 Chinese Petrochemical Dev Corp Titanium-silicalite molecular sieve, method for preparing the same and method for preparing cyclohexanone oxime using the molecular sieve
WO2015041137A1 (en) * 2013-09-20 2015-03-26 三井化学株式会社 Method for producing aromatic dihydroxy compound
CN114425438A (en) * 2020-09-22 2022-05-03 中国石油化工股份有限公司 Preparation method of titanium-containing catalyst, titanium-containing catalyst and method for preparing epoxy compound

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6521207B2 (en) 1999-06-18 2003-02-18 Nippon Shokubai Co., Ltd. Molding of binderless zeolite, method for production thereof, and uses thereof
EP1061046A1 (en) * 1999-06-18 2000-12-20 Nippon Shokubai Co., Ltd. Molding of binderless zeolite, method for its production and its use
JP2002114746A (en) * 2000-09-26 2002-04-16 Degussa Ag Method for producing oxime
CN100341864C (en) * 2002-12-24 2007-10-10 昭和电工株式会社 Method of oxidizing carbon-carbon double bond and process for producing oxidized compound
WO2004058737A1 (en) * 2002-12-24 2004-07-15 Showa Denko K.K. Method of oxidizing carbon-carbon double bond and process for producing oxidized compound
US7038069B2 (en) 2002-12-24 2006-05-02 Showa Denko K.K. Process for oxidizing carbon-carbon double bond and process for producing oxidized compounds
JP2005041724A (en) * 2003-07-24 2005-02-17 Nippon Shokubai Co Ltd Production method for inorganic crystalline compound
JP4703106B2 (en) * 2003-07-24 2011-06-15 株式会社日本触媒 Method for producing inorganic crystalline compound
KR100762862B1 (en) * 2005-06-24 2007-10-04 쇼와 덴코 가부시키가이샤 Method of oxidizing carbon-carbon double bond and process for producing oxidized compound
JP2007001952A (en) * 2005-06-27 2007-01-11 Yokohama National Univ Method for producing oxime
DE102008041138A1 (en) 2008-08-11 2010-02-18 Evonik Röhm Gmbh Process and plant for the preparation of glycidyl (meth) acrylate
JP2013040092A (en) * 2011-08-11 2013-02-28 Chinese Petrochemical Dev Corp Titanium-silicalite molecular sieve, method for preparing the same and method for preparing cyclohexanone oxime using the molecular sieve
WO2015041137A1 (en) * 2013-09-20 2015-03-26 三井化学株式会社 Method for producing aromatic dihydroxy compound
JP5734538B1 (en) * 2013-09-20 2015-06-17 三井化学株式会社 Method for producing aromatic dihydroxy compound
US9540298B2 (en) 2013-09-20 2017-01-10 Mitsui Chemicals, Inc. Process for producing aromatic dihydroxy compound
CN114425438A (en) * 2020-09-22 2022-05-03 中国石油化工股份有限公司 Preparation method of titanium-containing catalyst, titanium-containing catalyst and method for preparing epoxy compound
CN114425438B (en) * 2020-09-22 2023-07-14 中国石油化工股份有限公司 Preparation method of titanium-containing catalyst, titanium-containing catalyst and method for preparing epoxy compound

Similar Documents

Publication Publication Date Title
KR100339284B1 (en) Crystalline titanium-containing molecular sieve catalyst, preparation method thereof and method for epoxidation of olefin using the molecule
JP4970305B2 (en) Process for producing bound zeolite
EP0311983B1 (en) Method for the preparation of titanium-silicalites
KR100373898B1 (en) Process for the preparation of zeolitic catalysts
US20100324316A1 (en) Preparation of titanosilicate zeolite ts-1
JP2000511818A (en) Oxidation catalyst and method for producing epoxide from olefins, hydrogen and oxygen using said oxidation catalyst
JP2001517147A (en) Catalyst composition derived from Ti-containing molecular sieve
KR20000076239A (en) Tellurium, Titanium and Silicon-Containing Molecular Sieves
US5888471A (en) Synthetic crystalline porous material containing oxides of silicon, titanium and gallium
RU2622300C2 (en) Zeolite materials, and manufacturing methods using alcenyiltriammonium compounds
RU2107545C1 (en) Oxidation catalyst, method of preparation thereof (versions), method of preparing oximes, method of hydroxylation of aromatic hydrocarbons, and catalytic way of oxidizing hydrocarbons
JPH11165074A (en) Production of titanosilicate-carrying catalyst and production of organic compound using the same by hydrogen peroxide
RU2343976C2 (en) Epoxidation process and catalyst therefore
JPS62114656A (en) Catalyst for inverting hydrocarbon, manufacture thereof and inversion reaction method of hydrocarbon
JPH07267630A (en) Obtainment of zeolite containing titanium
JP4712189B2 (en) Zeolite-based catalyst, its use and process for epoxidation in the presence of this catalyst
Xia et al. Crystallization kinetics of pure TS-1 zeolite using quaternary ammonium halides as templates
JP4580237B2 (en) Improved catalysts for epoxidation reactions
CN112742470B (en) Core-shell structure titanium-silicon material, preparation method thereof and method for producing ketoxime through macromolecular ketone ammoximation reaction
JPH10316417A (en) Production of titanium-containing beta-zeolite
JPH07100387A (en) Improved titanosilicate catalyst, its production and organic synthesis reaction using the same as catalyst and utilizing hydrogen peroxide
CN112010321B (en) Titanium-silicon molecular sieve, preparation method thereof and method for producing ketoxime by macromolecular ketone ammoximation reaction
JPS6139847B2 (en)