TW201012299A - A driving system for driving backlight sources in an image display apparatus or for driving lamps in a multi-lamp lighting device - Google Patents

A driving system for driving backlight sources in an image display apparatus or for driving lamps in a multi-lamp lighting device Download PDF

Info

Publication number
TW201012299A
TW201012299A TW97134401A TW97134401A TW201012299A TW 201012299 A TW201012299 A TW 201012299A TW 97134401 A TW97134401 A TW 97134401A TW 97134401 A TW97134401 A TW 97134401A TW 201012299 A TW201012299 A TW 201012299A
Authority
TW
Taiwan
Prior art keywords
transformer
voltage side
coil
drive
windings
Prior art date
Application number
TW97134401A
Other languages
Chinese (zh)
Inventor
Yi-Chao Chiang
Original Assignee
Verticil Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Verticil Electronics Corp filed Critical Verticil Electronics Corp
Priority to TW97134401A priority Critical patent/TW201012299A/en
Publication of TW201012299A publication Critical patent/TW201012299A/en

Links

Abstract

Provided is a multi-load driving system for driving backlight sources in an image display apparatus, or for driving lamps in a multi-lamp lighting device. The driving system includes: a plurality of transformers, for receiving and boosting/bucking respective input AC signals to drive light sources or loads; a plurality of vertical balance coils, being magnetically coupled to magnetic circuits of the corresponding transformers; and an impedance network, for electrically coupling the vertical balance coils to each other. Via magnetic coupling between the transformers and the vertical balance coils, and via electrical coupling between the vertical balance coils, output voltage, current or powers of the transformers are almost the same; and the magnetic flux of the transformers are coupling to each other, so that the final magnetic flux of the transformers are almost the same.

Description

201012299 九、發明說明: 【發明所屬之技術領域】 於 本發明是有關於一種多負裁的驅動系統。且特別有關 一種轉換器(inverter或ba丨丨 寻別有關 示裝置中的昔##、、原弋田认 ’、用於驅動影像顯 均载線圈的磁場耦合效應與電 八,、刮用 流)或均載(平衡負載卜、電礼連接,來達成均流(平衡電 【先前技術】 液晶電視(LCD TV)盥液曰_ 鉍後 _ 日日顯不器(LCD device)具有 ^ ^ 卞隄點’故已成為顯不裝置的 机。在液晶電視與液晶顯示器所用的光源中,冷陰極 螢,燈管(CCFL,Cold Cathode F 丨 u〇rescent Lamp)是 主々IL之一,因其具有高亮度、高功效高壽命低功耗 等優點。 轉換器(inverter)可驅動CCFL。轉換器一般包括驅 動電路與變壓器。驅動電路,如全橋/半橋整流器等,用 ©以將直流電壓轉換為交流電。變壓器對驅動電路的輸出 進行升壓或降壓’以驅動CCFL。底下介紹幾種常見的 習知轉換器架構。 第1Α圖顯示第一種習知轉換器的架構。如第ία圖 所示’驅動電路10將直流電Vin轉換為交流電,再送入 變麗器T1進行升壓或降壓’升壓或降壓後的變壓器輸 出則用來驅動兩組的並聯負載,其中一組的負載由電容 C1與燈管LP1所組成,另一組負載則由電容〇2與燈管 6 201012299 LP2所組成。流經此兩組負載的總燈管電流丨1+丨2會一 起送至回授控制電路30。此回授控制電路3〇判斷總燈 管電流或燈管電流丨1、丨2間之最大燈管電流是否足夠, 以決定或控制驅動電路1 〇的工作狀態。 在第1A圖的架構中,為了平衡燈管電流Μ及丨2, 電容C1及C2須為電容值很小的高壓電容,以克服燈管 阻抗公差(impedance t〇|erance)及燈管之負阻抗特性所 造成的燈管電流不平衡。但是,高壓電容的零件及組裝 ,本較,,而且,變壓器丁1必需輸出額外的高電壓 ❹尚於燈管電壓的一倍以上),造成變壓器效率及壽命的下 降。且在產品設計上,要顧及高電壓及佈局(丨ay〇ut)面 積,進而造成產品安全性上的顧慮,且無法使產品達到 最小化。 此外,第1A圖的架構屬於「被動補償式」控制。 在產品出廠前,以燈管電流檢測結果「預先調整」燈管 電流的平衡性。但在使用時,因各燈管或高壓電容的老201012299 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a multi-negative cutting drive system. In particular, it relates to a converter (inverter or ba丨丨 search for the relevant ## in the display device, the original 弋田 recognition', the magnetic field coupling effect for driving the image display average carrier coil and the electric eight, the scraping flow ) or even load (balance load, electric gift connection, to achieve current sharing (balanced power [previous technology] LCD TV (LCD TV) 盥 曰 铋 _ _ _ _ _ _ _ _ _ _ _ _ _ The embankment has become a device for display. Among the light sources used in LCD TVs and liquid crystal displays, the Cold Cathode F 丨u〇rescent Lamp is one of the main 々ILs. It has the advantages of high brightness, high efficiency, high life and low power consumption. The converter can drive the CCFL. The converter generally includes the drive circuit and the transformer. The drive circuit, such as full bridge / half bridge rectifier, etc., uses © to DC voltage Converted to AC. The transformer boosts or steps down the output of the driver circuit to drive the CCFL. Several common conventional converter architectures are described below. Figure 1 shows the architecture of the first conventional converter. Figure The driving circuit 10 converts the direct current Vin into alternating current, and then sends it to the converter T1 for boosting or stepping down. The boosted or stepped down transformer output is used to drive two sets of parallel loads, one of which is loaded by a capacitor C1. It is composed of the lamp tube LP1, and the other group of loads is composed of the capacitor 〇2 and the lamp tube 6 201012299 LP2. The total lamp current 丨1+丨2 flowing through the two sets of loads is sent to the feedback control circuit 30 together. The feedback control circuit 3 determines whether the total lamp current or the maximum lamp current between the lamp currents 丨1 and 丨2 is sufficient to determine or control the operating state of the driving circuit 1 。. In the architecture of FIG. 1A In order to balance the lamp current 丨 and 丨2, the capacitors C1 and C2 must be high-voltage capacitors with small capacitance values to overcome the lamp impedance tolerance (impedance t〇|erance) and the negative impedance characteristics of the lamp. The current is unbalanced. However, the parts and assembly of the high-voltage capacitors, and, in addition, the transformer D1 must output an additional high voltage that is more than double the voltage of the lamp, resulting in a decrease in the efficiency and life of the transformer. Product design, Taking into account the high voltage and layout (丨ay〇ut) area, which leads to product safety concerns and can not minimize the product. In addition, the structure of Figure 1A belongs to the "passive compensation" control. Before the product leaves the factory, The lamp current detection result "pre-adjusts" the balance of the lamp current. However, when used, the old lamp or high-voltage capacitor

化程度不一致,使得燈管電流的平衡性變差,降低終 產品的信賴性。 第1B圖顯示第二種習知轉換器的架構。在第侷圖 中,驅動電路10的輸出會送入變壓器Τ1&τ2進 壓或降壓。變壓器T1及Τ2的一次側彼此並聯。變壓器 Τ1及Τ2的輸出各別驅動兩組負載,其中一組負載 容C1與燈管LP1所組成,另—組負載由電容C2與燈 营LP2所組成。此兩組負載的總燈管電流M+|2再 PWM(脈寬調變)控制電路35,由此ρ_控制電路% 判斷總燈管電流或燈管電流M、丨2兩者間之最大燈管電 7 201012299 流疋:ίΎ二f定或控制驅動電路1〇的工作狀態。 *广在第圖的架構争,平衡燈管電流11及|2,須對 夕個小的A差辜巳圍,將變愿哭τ 對,雷究C1另^ 及丁2做分類以及配 定,或吉接將雷—的電容值則配合變壓器的分類來決 \ 字電各移除(短路)不用。第1Β圖的架構雖可 =變22;電容或僅使用電容值較高的電容,但因 多、燈〜::纩:特殊控制’除了會增加終端產品(例如 Τΐ1τ2且:ίί:電視)量產時的困難度’因其變壓器 的成本較尚,亦增加了生產成本。此外,第1Β 圖的,構仍屬於「被動補償式」控制。 示第三種習知轉換器的架構。驅動電路 Τ1 » T9、二電Vin轉換為交流電,再各別送入變壓 ^ 進行升壓或降壓。升壓或降壓後的變壓5|輸 動兩組負,,其中-組負載由電容ί ^ Β 所組成,另一組負載由電容C2與燈管ι_Ρ2 所組成。這兩組負载的燈管電涂l Μ及|2再各別送 ❹ 控制電路4Q(包含兩個脈寬調變控制器電路)。此雙 控制電路40分別判斷燈管電流Μ與丨2是否足夠, 以決定或控制驅動電路1〇及2〇的工作狀態。 第1C圖的架構中’為了平衡燈管電流Μ及Ι2,使 用兩組完整的迴路控制,其中—組迴路控制包括驅動電 路10與雙PWM控制電路4〇中的一個pWM控制電路, 另一組迴路控制包括驅動電路20與雙pWM控制電路 i〇當中f ^ —個P W M控制電路。所以’其可有效控制燈 吕電饥的平衡性,且無須使用高壓電容以及特殊控制的 8 201012299 ϊ第1 c圖的架構對於燈管電流波形因數(c_ actor)仍屬於「被動補償式」控制。 縿颅第1D ®,其顯示第四種習知轉換器的架構。 k &态的變壓器輸出透過電容C1 (亦使電容C1短路) 而达至高壓平衡變壓器(balance transf0rmer)或高壓平 衡線圈(ba|ance ch〇ke)6〇,此高壓平衡變壓器6〇由兩 個繞組(winding)w1及W2所組成。高壓平衡變壓器6〇 ❹ ❹ 的輸出則各別用來驅動兩組負載(燈管LP1及lP2)。此 兩組負載的燈管電流Μ及丨2的其中之一(圖示為丨”送至 回授控制電路30。回授控制電路30判斷燈管電流是否 足夠’以決定或控制驅動電路1 〇的工作狀態。 在第1D圖的架構中’為了平衡燈管電流丨彳及丨2, 額外使用了高壓平衡變壓器60。高壓平衡變壓器6〇的 動作原理如後所述。當燈管電流流經各別的繞組時,會 在繞組的兩端產生自感電壓(V1與V2),其會降低燈管的 輸入電壓。繞組W1與W2間透過鐵心而彼此磁場耦合。 因此’電流丨2雖未流經繞組W1,但仍會在繞組Wi兩 端感應出互感電壓V21,其極性相反於自感電壓νι。同 樣地’電流Μ雖未流經繞組VV2,但仍會在繞組W2的 兩端感應出互感電壓V12’其極性相反於自感電壓V2。 互感電壓V21會增加燈管LP1的輸入電壓,而互感 電壓V12會增加燈管LP2的輸入電壓。當丨1=丨2時, V1=V21,所以繞組W1兩端如同短路,燈管電流丨彳並 不會被降低或增加。但是當丨1<丨2時,V1<V21,繞組 W1兩端的總電壓會增加(因為V21 > V1),藉此增加燈管 電流丨1 ’ 一直到丨1 =丨2為止。依此,可有效地使燈管電 9 201012299 流Μ與丨2達平衡狀態。 為了有效平衡燈管電流,也就是,為及時地控制(增 加或減少)燈管的輸入電壓,高壓平衡變壓器60之耐電 壓要很高。以32吋以上的液晶電視所用的CCFL為例, 要點亮CCFL的燈管輸入電壓須在2000Vrms以上,要 維持CCFL於明亮狀態之燈管輸入電壓則為lOOOVrms 左右。因此,高壓平衡變壓器60之对電壓也需10OVrms 以上(對應燈管電壓10%之合理公差範圍),方能有效平衡燈管 電流。但是當燈管未同時點亮時,例如燈管LP1先點亮 〇 但燈管LP2尚未點亮(1140但丨2 = 0),除繞組W1的兩端 會出現自感電壓V1外,尚需考慮繞組W1及W2兩端的 電壓相位差,使得高壓平衡變壓器60之耐電壓須達數百 伏方能承受此狀況。但,高耐電壓的高壓平衡變壓器之 成本極高。 更甚者,如果燈管不同極性時,須大幅提升高壓平 衡變壓器60之耐電壓至數千伏以上,這將更提高成本, 且將面臨提升耐電壓的技術瓶頸。此外,在終端產品(例 ©如液晶電視)中,相同極性的燈管一般不會相鄰排列。所 以,在佈局高壓平衡變壓器時,須配合高壓跳線器(HV Jumper)以及較大的高壓區域面積方能完成印刷電路板 的佈局。這更造成其成本提高,且其也有安全性的顧慮。 第1E圖顯示第五種習知轉換器的架構,其中,高 壓平衡變壓器60接在燈管的低壓側。雖然第1E圖的架 構不需使用高壓跳線器,且減少高壓區域的面積。然而, 燈管低壓端不再是真正的低電壓。故而,在終端產品的 設計上,除燈管高壓端要有絕緣設計外,燈管低壓端也 201012299 要有絕緣設計,此雙端絕緣的設計也易造成成本的上升。 第1F圖顯示第六種習知轉換器的架構。交流電源 輸入100(即變壓器的輸出電壓)經過數個高壓平衡變壓 益 102(1)、102(2)..· 1〇2(k)的一次側繞組 N11、 N12…N1k,以分別驅動燈管1〇4⑴、1〇4(2) 1〇4(k)。 各高壓平衡變壓器102(1)、1〇2(2)…1〇2(k)的二次側繞 ,N21、N22…N2k會串接在一起,使各高壓平衡變壓 态的二次側電流相同,即121=丨22= =|2k。因為高壓平 ❿ ,變壓器的一次側繞組與二次側繞組會耦合在一起各 尚壓平衡變壓器的一次側電流丨彳1、M2 M k與其二次側 電流相同或成固定比例,這就造成各燈管電流間的平衡。 第1F圖的架構雖可平衡多燈管電流然而並 =壓平衡變壓器。所以在終端產品的設計中,仍須盘 尚廢跳線器搭配使用,且所需的高壓區域的面積也較大 故而,需要有一種背光光源的轉換器, :式控制’其能達到均流或均載,而且,其;== 技術的問題。 六J您尤為知 【發明内容】 光燈管㈣源或多螢 _載線圈彼此間的電載===場 ^中该均载線圈可為··⑴轉接 , 變愿器中的辅助繞組。 ^㈣獨立線圈或(2) 本發明提供-種影像顯示裝置中的背光光源或多螢 魯 ❹ 201012299 動系統’其中’各別均載線_合到對應 ==磁路’所以’均載線圈電壓正比於對賴器的 輸出功率。此外,這些均載線圈彼此透過阻抗網路而電性 輕接:均載線圈上的電流會影響各變愿器的輸出功率 使各變壓盗的輸出功率相同,達到負載均流或均載的目 的。此阻抗轉利於魅糾/均載时岐應程度。 ^明提供-種影像顯示裝置中的背光光源或多螢 2燈官燈具的驅動系統,其中,當變壓器輸出功率發生異 常(不平衡)時,保護裝置可偵測阻抗網路所取樣的信號〔、 此保護電路據以控制/阻斷變壓器的交流輸入信號。 本發明有關於-種驅動轉換器,用於驅動影像顯示褒 置中的背光光源或驅動多燈管燈具。此驅動轉換哭包括. 第-變壓器,接收並升壓或降壓第一輸入信號,第一變壓 器的輸出電壓用於驅動光源或負載;第二變壓器,接收並 升壓或降麼第二輸入信號,第二變壓器的輸出電壓用於驅 動光源或負載;第-均載線圏,磁性搞合到第一盘第二變 壓器的至少一者的磁路;第二均載線圈,磁性耦ς到^一 與第-變塵器的至少-者的磁路;以及第一阻抗網路,用 於使第一均載線圈與第二均載線圈彼此電性耦合。其中, 透過第-均載線圈的磁性耦合、第二均載線圈的磁性耦合 與第一阻抗網路的電性耦合,第一變壓器與第二變壓器的 輸出相同或實質相同。 α 本發明有關於一種驅動轉換器,用於驅動影像顯示裝 置中的背光光源或驅動多燈管燈具。此驅動轉換器包括·· 12 201012299 第一變壓器,接收並升壓或降壓第一輸入信號,第一變壓 器的輸出電壓用於驅動光源或負載;第二變壓器,接收並 升壓或降壓第二輸入信號,第二變壓器的輸出電壓用於驅 動光源或負載;第一均載線圈,磁性耦合到第一與第二變 壓器的至少一者的磁路;第二均載線圈,磁性耦合到第一 與第二變麼器的至少-者的磁路;第一阻抗網路,用於使 第一均載線圈與第二均載線圈彼此電性耦合;以及保護裝 置,耦接至第一阻抗網路,當發生異常時,保護裝置根據 Θ第一阻抗網路所取樣到的電氣信號,來控制第一輸入信號 與第二輸入信號。其中’透過第一均載線圈、第二均“ 圈與第一,抗祕,第—變壓器中的磁通量與第二變壓器 中的磁通董彼此耗合,以使得第一變壓器與第 輸出幾乎相同。 的 ❹ 本發明有關於-種㈣純,用於驅㈣彡像顯示農 置中的背光光源或驅動多燈管燈具。此驅動系統包括 個變壓器,接收並升壓或降壓多個輸入信號該些 的輸出電壓用於驅動光源或負載;多個均載線圈,磁性耦 a到相關變壓器的磁路;以及阻抗網路,用於使該些均= 線圈彼此電軸合4過該些均載線圈對該些變壓器的= 2合與該些均親圈彼此_電_合,該些變壓 彼此柄合。 心而且,該些變壓器中的磁通量 下文特舉實施 為讓本發明之上述内容能更明顯易懂 例,並配合所附圖式,作詳細說明如下: 13 201012299 【實施方式】 约固實施例中’利用均載線圈來達成均流或 均載。此均載線圈可為⑴兩個或以上的獨立線目;或⑺ 具有辅助繞組的兩個或以上的獨立變壓器。在情況⑴中 兩個以上的獨立線圈各自環繞兩個以上的變壓器,再將該 些獨立線圈作電氣上的連接,使這些變壓器的鐵心中的磁 通藉該些獨立線_合在一起,由磁通差異所造成的獨立 ❹線圈電流將達成主動式平衡均流或均載效果。在情況⑺ 中。將多個獨立變愿器的輔助繞組轉接在一起,使這些變 壓為鐵心中的磁通因這些輔助繞組而耦合在一起,因磁通 差異所造成的辅助繞組電流將達成主動式平衡均流或均 盤教罢。 第一實施例 第2Α圖顯示根據本發明第一實施例的轉換器示意 Θ圖。Vac1與Vac2為同相位或幾近同相位之交流輸入信號。 交流輸入信號VAC1與VAC2各別送到變壓器丁彳及丁2的一 次侧,組,變壓器T1及T2的二次側繞組的輸出電壓會驅 動燈官(或負載)LP1及LP2。變壓器丁1與Τ2的一次側繞 組可各自獨立或耦接在一起;以及變壓器丁彳與丁2的二次 側繞組可各自獨立或輕接在一起。 均載線圈BC1及BC2各別耦合到變壓器丁1及Τ2的 磁路,所以均載線圈BC1及BC2兩端的感應電壓分別正 14 201012299 比於變壓器T1及T2之鐵心的磁通變化率,亦即其分別正 比於一次側繞組的輸出功率或二次側繞組的輸入功率。 均載線圈BC1及BC2經由阻抗網路Ζ而彼此耦合。 此阻抗網路Ζ可為雙埠網路,其内部元件彼此可為並聯、 串聯或串並聯混合。或者,此阻抗網路Ζ可為短路。也就 是說,均載線圈BC1及BC2間的耦合關係可為並聯、串 聯或串並聯混合,或者均載線圈BC1及BC2間直接耦合 (短路)。 第2Β圖顯示根據第一實施例的一種可能實際架構示 意圖,第2C圖顯示第2Β圖的等效電路。均載線圈BC1 及BC2兩端的感壓電壓V3與V4正比於磁通量ψητι1與 ψηι2。 當變壓器Τ1及Τ2的輸出功率相同(亦即均載)時,均 載線圈BC1及BC2兩端的感壓電壓相等(V3=V4),所以 均載線圈BC1及BC2所形成的迴路中沒有電流產生(亦即 丨=0),不會對T1及T2的輸出功率有任何影響。 當變壓器T1的輸出功率比變壓器T2大時,均載線圈 BC1兩端的感壓電壓會比均載線圈BC2兩端的感壓電壓 大(V3>V4),此時均載線圈BC1及BC2所形成的迴路中 會有電流產生(丨>〇)。此電流會降低變壓器T1之磁通量、 變壓器T1之二次側繞組的輸入功率以及均載線圈BC1兩 端的感壓電壓V3 ;且此電流會增加變壓器T2之磁通量、 變壓器T2之二次側繞組的輸入功率及均載線圈BC2兩端 的感壓電壓V4。如此,會使均載線圈BC1及BC2的兩端 15 201012299 的感壓電壓差異縮小,最後,可使變壓器T1及T2的輸出 幾近相同(亦即可達成均載)且變壓器Τ1及Τ2内的磁通量 幾近相同。 反之,當變壓器Τ1的輸出功率比變壓器Τ2還小時, 均載線圈BC1兩端的感壓電壓會比均載線圈BC2兩端的 感壓電壓小(V3<V4),此時均載線圈BC1及BC2所形成 的迴路中會有電流產生(丨<〇)。此電流會迫使變壓器T1之 磁通量、變壓器T1之二次側繞組的輸入功率以及均載線 _ 圈BC1兩端的感壓電壓V3增加;且此電流會使變壓器 T2之磁通量、變壓器T2之二次側繞組的輸入功率及均載 線圈BC2兩端的感壓電壓V4減少。如此,會使均載線圈 BC1及BC2兩端的感壓電壓差異縮小,而使得變壓器T1 及T2的輸出幾近相同且變壓器T1與T2之磁通量幾乎相 同(亦即可達成均載)。 在本實施例中,阻抗網路Z可用於調整均載效應。比 如,當電阻R的電阻值大(亦即阻抗網路Z的等效阻抗) φ 時,均載效果較差但燈管電流的波形較為平滑;反之亦然。 此外,均載線圈BC1及BC2所形成的迴路可用於異 常狀態(負載極度不平衡時)之偵測。如第2C圖所示,在 本第一實施例中,保護裝置210可偵測阻抗網路Z所取樣 到的信號。比如,當其中一根燈管斷開(開路)或燈管電流 間的差異值太大時,根據阻抗網路Z所取樣到的信號,保 護裝置210可控制/關閉輸入至變壓器的交流輸入電壓。 此外,此保護裝置210可為電氣偵測電路,其可偵測電壓 16 201012299 k號、電流彳S號、功率信號、頻率信號或其混人。 综上所述’在本實施例中,“均载,,乃是ϋ壓 出功率、電流或電壓相同,依實際產品設計其為 圭 輸出、等電流輸出或等電壓輸出。 、:C ” 在習知技術中’為了達到均 '流/均載,必需要控 到變壓器的交流電壓或負載端的等效阻抗或等則 能控制燈管電流。但在本實施例中,藉由均载線圈,^ k壓器的磁通量可彼此耦合’藉以控制變壓器的輸出,以 達到均流/均載的效果,所以不需要控制輸入到變壓 流電壓(除非情況異常),也不需要控制負載端的等效阻^ 或等效電壓。 』寻欢丨且抗 為更突顯出本實施例的效果,第2D圖〜第2K 在不同負載下的燈管電流實驗波形圖。第2D圖 2 丁 圖、第—2H圖、第2ϋ圖分臟示在列負載下的習知技術 的燈官電流模擬圖。由第2D圖、第2F圖、第2 Ο 2里::看第出2E在習知技術中’兩燈管電流丨1與丨2間的差 ;在 E圖、第2G圖、第2丨圖、第2K圖分別顯 的本發明第一實施例的燈管電流實驗波 圖、第犯圖、第21圖、第2Κ圖可看出, 門的=第—實施例中,兩燈管電流(或負载電流)丨1與12 二達射2常小’幾乎相同’亦即’本發明第一實施例 了達成良好的均流/均載效果。 第二實施例 17 201012299 第3圖顯示根據本發明第二實施例的轉換器的示意 圖。第一實施例與第二實施例的操作原理幾乎相同。然 而,在第3圖中,交流輸入信號Vac 1與Vac2的相位為反 相位或幾近反相位。故而,要對應地調整均載線圈BC1 及BC2的連接方式,以平衡變壓器的輸出,來達成均流/ 均載的目的。 第三實施例 第4圖顯示根據本發明第三實施例的轉換器示意圖, 其原理相同於上述實施例。不過,第4圖的架構應用了多 個(兩個以上)變壓器T1、T2...Tk。依第4圖的方式,將這 些變壓器T1、T2...Tk耦接在一起,將可使所有變壓器的 輸出相同,藉此達成各燈管或負載均流的目的。VAC1〜VAC2 為交流輸入信號,LP1〜LPk為燈管,Z1〜Zk為阻抗網路。 第四實施例 第5圖顯示根據本發明第四實施例的轉換器示意圖, 其原理相同於上述實施例。不過,在第5圖中,變壓器T1 及T2為雙輸出型態(變壓器T1及T2的二次側繞組各自獨 立、彼此並聯或串聯)。每個變壓器可推動兩根以上燈管, 如變壓器T1可推動燈管LP1與LP2,而變壓器T2則推 動燈管LP3與LP4。在第5圖中,交流輸入信號VAC1與 VAC2為同相位或幾乎同相位。均載線圈BC1及BC2的電 路連接方式如圖所示,以平衡變壓器的輸出,達成均流/ 201012299 均載的目的。 第五實施例 第6圖顯示根據本發明第五實施例的轉換器示意圖, 其原理相同於第四實施例。不過,在第6圖中,交流輸入 信號VAC1與VAC2為反相位或幾乎反相位,所以均載線圈 BC1及BC2的電路連接方式如第6圖所示,以平衡變壓 器的輸出,達成均流/均載的目的。 第六實施例 第7圖顯示根據本發明第六實施例的轉換器示意圖, 其原理相同於第一實施例。不過,在第7圖中,均載線圈 BC1及BC2設置於二次側,以平衡變壓器的輸出,達成 均流/均載的目的。 相似於第一實施例,在本發明上述實施例及其他可能 實施例中,可利用保護裝置來偵測阻抗網路所取樣到的信 φ 號。 第8A圖〜第8C圖顯示阻抗網路Z的幾種可能例子。 在第8A圖中,均載線圈BC1與BC2間為串聯。在第8B 圖中,均載線圈BC1與BC2間直接連接(短路)。在第8C 圖中,均載線圈BC1與BC2間串並聯混合連接。在第8D 圖中,均載線圈BC1、BC2與BC3間並聯。 依此類推,本發明可應用於多個(兩個以上)雙輸出型 態的變壓器,或應用於多個(兩個以上)的多輸出型態(兩個 19 201012299 以上的輸出)的變壓器中,達成均流/均載的目的。 在本發明上述實施例中,變壓器T1的低壓側與變壓 器T2的低壓側可各自獨立,或彼此耦接(類似於第1B 圖)。變壓器T1的高壓側與變壓器T2的高壓側可各自獨 立,或彼此耦接(類似於第1B圖)。 此外,變壓器T1 /T2的低壓側可包括單一繞組,或複 數繞組,其中,該些繞組可各自獨立或耦接在一起。第9A 圖顯示變壓器T1的低壓側包括複數繞組,且該些繞組可 @ 各自獨立。第9B圖顯示變壓器T1的低壓側包括複數繞 組,且該些繞組耦接在一起。 變壓器T1/T2的高壓側可包括單一繞組,或複數繞 組,其中,該些繞組可各自獨立或耦接在一起。第9C圖 顯示變壓器T1的高壓側包括複數繞組,且該些繞組可各 自獨立。第9D圖顯示變壓器T1的高壓側包括複數繞組, 且該些繞組耦接在一起。 本發明可應用於影像顯示裝置(如LCD裝置)中,當成 Q 背光源(CCFL)的驅動系統,使得變壓器的輸出相同或幾乎 相同,以穩定背光源的輸出。此外,本發明亦可當成電子 安定器,應用於具多根螢光燈管的燈具/照明設備中,以使 得穩定/均衡這些螢光燈管的發光亮度。 在本發明中,應用(1)耦接至變壓器的均載線圈或(2) 具有均載線圈的變壓器,可有效平衡燈管或負載的電流。 本發明相較於其他習用技術,更具有下列的優點: 一、無須使用額外的高壓電容,成本及壽命佳。 20 201012299 二、 變壓器升壓比低,效率佳。 三、 無須作變壓器分類,便於量產,降低成本。 四、 無需使用額外的高壓平衡線圈或高壓平衡變壓 器,有效降低成本。 五、 無須對均載線圈或具有均載線圈的變壓器做調 整,便可適用於各種負載極性的配置。 六、 主動式補償/平衡的設計可確保終端產品的信賴性 及壽命。 _ 七、可偵測出負載異常時,以保護轉換器。 八、由於均載線圈可設置於變壓器低壓側,高壓區域 面積可最小化,無須使用高壓跳線器或其他高壓元件,解 決了印刷電路板之佈局瓶頸以及成本,同時大幅提升終端 產品的安全性。此外,均載線圈亦可設置於變壓器的高壓 側。 綜上所述,雖然本發明已以數個實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 Φ 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 21 201012299 【圖式簡單說明】 ,1A圖顯示第一種習知轉換器的架構。 ,1B圖顯示第二種習知轉換器的架構。 第1C圖顯示第三種習知轉換器的架構。 ,1D圖顯示第四種習知轉換器的架構。 其中,高 第圖顯示第五種習知轉換器 壓平衡變壓器接在燈管低壓側。的架構 第1F圖顯示第六種習知轉換器的架構。 ©圖。第2A ®顯示根據本發明第一實施例的轉換器示意 意圖第2B圖顯示根據第一實施例的一種可能實際架構示 第20圖顯示第2B圖的等效電路。 不第2D圖、第2F圖、第2H圖、第2J圖分別顯示在 5,裁下的習知技術的燈管電流模擬圖。 不s第2E圖、第2G圖、第2丨圖、第2K圖分別顯示在 ❹ 同負載下的本發明第一實施例的燈管電流模擬圖。 第3圖顯示根據本發明第二實施例的轉換器的示意 圖。 ^ 圖。 圖 圖 第4圖顯示根據本發明第三實施例的轉換器的示意 第5圖顯示根據本發明第四實施例的轉換器的示意 第6圖顯示根據本發明第五實施例的轉換器的示意 22 201012299 第7圖顯示根據本發明第六實施例的轉換器示意圖。 第8A圖〜第8D圖顯示阻抗網路Z的幾種可能例子。 第9A圖顯示變壓器T1的低壓側包括複數繞組,且該 些繞組各自獨立。 第9B圖顯示變壓器T1的低壓側包括複數繞組,且該 些繞組耦接在一起。 第9C圖顯示變壓器T1的高壓側包括複數繞組,且該 些繞組各自獨立。 赢 第9D圖顯示變壓器T1的高壓側包括複數繞組,且該 馨 些繞組耦接在一起。 【主要元件符號說明】 10、 20 :驅動電路 Vin :直流電 T1〜Tk :變壓器 C1、C2 :電容 〇 LP1〜LPk :燈管或負載 11、 I2 :燈管電流或負載電流 30 : 回授控制電路 35 : PWM控制電路 40 : 雙PWM控制電路 60 : 高壓平衡變壓器 W1、 W2 :繞組 V1、 V2 :自感電壓 V21 、V12 :互感電壓 23 201012299 100 :交流電源輸入 102(1)、102(2)...102(k):高壓平衡變壓器 N11、N12...N1k : —次側繞組 104(1)、104(2)…104(k):燈管 N21、N22_..N2k:二次側繞組 121、丨22、...I2k :二次側電流 111、I12...l1k : —次側電流The degree of inconsistency makes the balance of the lamp current worse, reducing the reliability of the final product. Figure 1B shows the architecture of a second conventional converter. In the first diagram, the output of the driver circuit 10 is fed to the transformer Τ1 & τ2 for voltage or buck. The primary sides of the transformers T1 and Τ2 are connected in parallel with each other. The outputs of the transformers Τ1 and Τ2 respectively drive two sets of loads, one of which is composed of a capacitor C1 and a lamp LP1, and the other group of capacitors is composed of a capacitor C2 and a lamp camp LP2. The total lamp current M+|2 of the two sets of loads is re-PWM (pulse width modulation) control circuit 35, whereby ρ_control circuit % determines the maximum lamp between the total lamp current or the lamp current M, 丨2 Tube power 7 201012299 Flow 疋: Ύ Ύ f 或 or control the drive circuit 1 〇 working state. * Widely in the framework of the figure, the balance of the lamp current 11 and |2, must be a small A difference, will change to cry τ, Lei C1 other ^ and Ding 2 do classification and matching , or Ji Ji will be the lightning - the capacitance value is matched with the classification of the transformer to remove the word power (short circuit). The architecture of the first diagram can be changed to 22; the capacitor or only the capacitor with a higher capacitance value, but because of the light ~::纩: special control 'except the amount of terminal products (such as Τΐ1τ2 and: ίί: TV) The difficulty of production time is also due to the cost of the transformer, which also increases the production cost. In addition, the structure of Figure 1 still belongs to the "passive compensation" control. The architecture of the third conventional converter is shown. Drive circuit Τ1 » T9, two electric Vin are converted to AC power, and then separately sent to the transformer ^ to boost or step down. The step-up or step-down transformer 5|transmission is negative, where the -group load consists of the capacitor ί ^ , and the other set consists of the capacitor C2 and the lamp ι_Ρ2. The two sets of lamps are electrically coated with Μ and |2 and then sent to the control circuit 4Q (including two pulse width modulation controller circuits). The dual control circuit 40 determines whether the lamp currents 丨 and 丨2 are sufficient to determine or control the operating states of the drive circuits 1 and 2, respectively. In the architecture of Figure 1C, in order to balance the lamp current Ι and Ι2, two sets of complete loop control are used, wherein the group loop control includes one pWM control circuit of the drive circuit 10 and the dual PWM control circuit 4, and the other group The loop control includes a drive circuit 20 and a dual pWM control circuit i f a PWM control circuit. Therefore, it can effectively control the balance of the lamp and the hunger, and does not need to use high-voltage capacitors and special control. The structure of the 1 c-figure is still "passive compensation" control for the lamp current form factor (c_ actor). . The skull 1D ® shows the architecture of the fourth conventional converter. The transformer output of the k & state is transmitted through the capacitor C1 (also short-circuiting the capacitor C1) to the high-voltage balance transformer (balance transf0rmer) or the high-voltage balance coil (ba|ance ch〇ke) 6〇, the high-voltage balance transformer 6〇 is composed of two Windings consist of windings w1 and W2. The output of the high-voltage balance transformer 6〇 ❹ 各 is used to drive two sets of loads (lamps LP1 and lP2). One of the two sets of lamp currents 丨 and (2 (shown as 丨) is sent to the feedback control circuit 30. The feedback control circuit 30 determines whether the lamp current is sufficient ' to determine or control the drive circuit 1 〇 In the architecture of Figure 1D, in order to balance the lamp current 丨 and 丨2, a high-voltage balance transformer 60 is additionally used. The operation principle of the high-voltage balance transformer 6〇 is as follows. When the lamp current flows through In each winding, a self-inductance voltage (V1 and V2) is generated at both ends of the winding, which reduces the input voltage of the lamp. The windings W1 and W2 are magnetically coupled to each other through the core. Therefore, the current 丨2 is not It flows through the winding W1, but still induces a mutual inductance voltage V21 across the winding Wi, the polarity of which is opposite to the self-inductance voltage νι. Similarly, the current 未 does not flow through the winding VV2, but still induces at both ends of the winding W2. The mutual inductance voltage V12' has a polarity opposite to the self-inductance voltage V2. The mutual inductance voltage V21 increases the input voltage of the lamp LP1, and the mutual inductance voltage V12 increases the input voltage of the lamp LP2. When 丨1=丨2, V1=V21 , so the winding W1 is like a short circuit at both ends. The tube current 丨彳 is not reduced or increased. However, when 丨1 < 丨2, V1 < V21, the total voltage across winding W1 will increase (because V21 > V1), thereby increasing the lamp current 丨1 ' Until 丨1 = 丨2. According to this, it can effectively make the lamp tube 9 201012299 flow and 丨 2 reach equilibrium state. In order to effectively balance the lamp current, that is, to control (increase or decrease) the lamp in time The input voltage of the tube and the withstand voltage of the high-voltage balance transformer 60 are high. Taking the CCFL used for a liquid crystal television of 32 吋 or more as an example, the input voltage of the lamp to illuminate the CCFL must be above 2000 Vrms, and the CCFL should be maintained in a bright state. The input voltage of the lamp is about 100 ohms. Therefore, the voltage of the high voltage balance transformer 60 needs to be more than 10 OVrms (corresponding to a reasonable tolerance range of 10% of the lamp voltage), so that the lamp current can be effectively balanced. When it is on, for example, the lamp LP1 lights up first, but the lamp LP2 is not lit yet (1140 but 丨2 = 0). In addition to the self-inductance voltage V1 at both ends of the winding W1, it is necessary to consider the ends of the windings W1 and W2. Voltage phase difference makes high The withstand voltage of the balance transformer 60 must be several hundred volts to withstand this condition. However, the high-voltage high-voltage balance transformer is extremely expensive. Moreover, if the lamps have different polarities, the high-voltage balance transformer 60 must be greatly improved. Withstand voltages up to several thousand volts, this will increase the cost, and will face the technical bottleneck of increasing the withstand voltage. In addition, in the end products (such as LCD TVs), lamps of the same polarity are generally not adjacently arranged. Therefore, when laying out the high-voltage balance transformer, it is necessary to cooperate with the high voltage jumper (HV Jumper) and the large high-voltage area to complete the layout of the printed circuit board. This has led to an increase in its cost, and it also has security concerns. Fig. 1E shows the architecture of a fifth conventional converter in which a high voltage balance transformer 60 is connected to the low voltage side of the lamp. Although the structure of Figure 1E does not require the use of a high voltage jumper, the area of the high voltage region is reduced. However, the low voltage end of the lamp is no longer a true low voltage. Therefore, in the design of the terminal product, in addition to the insulation design of the high-voltage end of the lamp, the low-voltage end of the lamp also has an insulation design, and the design of the double-ended insulation is also likely to cause an increase in cost. Figure 1F shows the architecture of a sixth conventional converter. The AC power input 100 (ie, the output voltage of the transformer) is driven by several primary windings N11, N12...N1k of the high voltage balance transformers 102(1), 102(2)..·1〇2(k). The lamp is 1〇4(1), 1〇4(2) 1〇4(k). The secondary side of each of the high-voltage balance transformers 102(1), 1〇2(2)...1〇2(k) is wound, and N21, N22...N2k are connected in series to make the secondary side of each high-voltage equilibrium transformation state. The current is the same, ie 121 = 丨 22 = = | 2k. Because the high voltage is flat, the primary side winding of the transformer and the secondary side winding are coupled together. The primary side currents 丨彳1 and M2 M k of the pressure balance transformer are the same as or fixed to the secondary side current, which results in Balance between lamp currents. The architecture of Figure 1F balances multiple lamp currents but the voltage balance transformer. Therefore, in the design of the terminal products, it is still necessary to use the disk jumper together, and the required high-voltage area is also large. Therefore, a converter with a backlight source is required, and the control can achieve the current sharing. Or both, and, its;== technical problems. Six J you are particularly aware of [invention] Light tube (four) source or multiple flash _ carrier coils between each other === field ^ The average carrier coil can be ... (1) transfer, auxiliary winding in the converter . ^ (4) Independent coil or (2) The present invention provides a backlight source or a multi-spotted light source in an image display device. 201012299 The dynamic system 'where' each load line _ is integrated to the corresponding == magnetic circuit 'so the average load coil The voltage is proportional to the output power of the comparator. In addition, the load-carrying coils are electrically connected to each other through the impedance network: the current on the load-carrying coils affects the output power of each of the transformers, so that the output power of each transformer is the same, and the load is even-current or even-loaded. purpose. This impedance is transferred to the extent of the enchantment/average load. The invention provides a driving system for a backlight source or a multi-lighting lamp in an image display device, wherein when the output power of the transformer is abnormal (unbalanced), the protection device can detect the signal sampled by the impedance network [ This protection circuit is used to control/block the AC input signal of the transformer. The invention relates to a drive converter for driving a backlight source in an image display device or driving a multi-lamp lamp. This drive conversion includes: a first-transformer that receives and boosts or steps down the first input signal, the output voltage of the first transformer is used to drive the light source or load; and the second transformer receives and boosts or drops the second input signal. The output voltage of the second transformer is used to drive the light source or the load; the first-average load line 圏, magnetically engages the magnetic circuit of at least one of the second transformer of the first disk; the second load-carrying coil is magnetically coupled to the ^ a magnetic circuit of at least one of the first and the dust collectors; and a first impedance network for electrically coupling the first and second load carrying coils to each other. The first transformer and the second transformer have the same or substantially the same output through the magnetic coupling of the first-average carrier coil and the magnetic coupling of the second load-carrying coil to the first impedance network. The present invention relates to a drive converter for driving a backlight source or driving a multi-lamp lamp in an image display device. The drive converter includes·· 12 201012299 The first transformer receives and boosts or steps down the first input signal, the output voltage of the first transformer is used to drive the light source or the load; the second transformer receives and boosts or steps down a second input signal, the output voltage of the second transformer is used to drive the light source or the load; the first average carrier coil is magnetically coupled to the magnetic circuit of at least one of the first and second transformers; and the second average carrier coil is magnetically coupled to the first a magnetic circuit of at least one of the first and second transducers; a first impedance network for electrically coupling the first and second load carrying coils to each other; and a protection device coupled to the first impedance The network, when an abnormality occurs, the protection device controls the first input signal and the second input signal according to an electrical signal sampled by the first impedance network. Wherein the magnetic flux in the first transformer is substantially the same as the first output through the first average carrier coil, the second average coil and the first, the anti-mystery, the magnetic flux in the first transformer and the magnetic flux in the second transformer The invention relates to a kind of (four) pure, which is used for driving a (b) key image to display a backlight source in a farm or to drive a multi-lamp lamp. The drive system includes a transformer for receiving and boosting or stepping down multiple input signals. The output voltages are used to drive a light source or load; a plurality of load carrying coils, a magnetic coupling a to the magnetic circuit of the associated transformer; and an impedance network for causing the respective coils to be electrically coupled to each other by 4 The load coils of the transformers are electrically coupled to the plurality of transformers, and the transformers are coupled to each other. The magnetic fluxes in the transformers are specifically implemented below to make the above contents of the present invention It can be more obvious and easy to understand, and with the accompanying drawings, a detailed description is as follows: 13 201012299 [Embodiment] In the embodiment, the current-carrying coil is used to achieve the current sharing or the uniform load. The average carrier coil can be (1) Two or more Or (7) two or more independent transformers with auxiliary windings. In case (1), two or more independent coils each surround two or more transformers, and then the independent coils are electrically connected to make these transformers The magnetic flux in the core is combined by the independent wires _, and the independent ❹ coil current caused by the difference in magnetic flux will achieve an active balanced current sharing or load sharing effect. In case (7), multiple independent will be changed. The auxiliary windings of the device are switched together, so that the magnetic flux in the core is coupled together by these auxiliary windings, and the auxiliary winding current caused by the difference of the magnetic flux will reach an active balanced current sharing or uniform training. The second embodiment shows a schematic diagram of a converter according to a first embodiment of the present invention. Vac1 and Vac2 are AC signals of the same phase or nearly in phase. The AC input signals VAC1 and VAC2 are respectively sent to the transformer. The primary side of the 彳2, the group, the output voltage of the secondary winding of the transformers T1 and T2 will drive the lamp (or load) LP1 and LP2. The primary winding of the transformers 1 and Τ2 can be Independently or coupled together; and the secondary windings of the transformers D and D can be independently or lightly connected together. The average carrying coils BC1 and BC2 are respectively coupled to the magnetic circuits of the transformers 1 and 2, so The induced voltages across the carrying coils BC1 and BC2 are respectively 14 201012299 than the magnetic flux change rates of the cores of the transformers T1 and T2, that is, they are proportional to the output power of the primary winding or the input power of the secondary winding, respectively. The coils BC1 and BC2 are coupled to each other via an impedance network 。. The impedance network Ζ can be a double-turn network, the internal components of which can be connected in parallel, in series or in series and parallel. Alternatively, the impedance network can be short-circuited. That is to say, the coupling relationship between the average carrying coils BC1 and BC2 may be parallel, series or series-parallel mixing, or direct coupling (short circuit) between the average carrying coils BC1 and BC2. The second drawing shows a possible actual architectural schematic according to the first embodiment, and the 2Cth drawing shows the equivalent circuit of the second drawing. The voltages V3 and V4 across the load carrying coils BC1 and BC2 are proportional to the magnetic fluxes ψητι1 and ψηι2. When the output powers of the transformers Τ1 and Τ2 are the same (that is, the average load), the voltages across the load coils BC1 and BC2 are equal (V3=V4), so no current is generated in the loop formed by the load coils BC1 and BC2. (ie 丨 = 0), it will not have any effect on the output power of T1 and T2. When the output power of the transformer T1 is larger than the transformer T2, the voltage across the load coil BC1 is greater than the voltage across the load coil BC2 (V3 > V4), and the coils BC1 and BC2 are respectively formed. There is a current in the loop (丨>〇). This current reduces the magnetic flux of the transformer T1, the input power of the secondary winding of the transformer T1, and the voltage sensitive voltage V3 across the load carrying coil BC1; and this current increases the magnetic flux of the transformer T2 and the input of the secondary winding of the transformer T2. The power and the sense voltage V4 across the coil BC2. In this way, the voltage difference between the two terminals 15 201012299 of the load carrying coils BC1 and BC2 is reduced. Finally, the outputs of the transformers T1 and T2 can be nearly the same (that is, the load can be achieved) and the transformers Τ1 and Τ2 The magnetic flux is almost the same. Conversely, when the output power of the transformer Τ1 is smaller than the transformer Τ2, the voltage across the ac winding BC1 is lower than the voltage across the UC2 (V3 < V4), and the coils BC1 and BC2 are respectively loaded. A current is generated in the formed loop (丨<〇). This current will force the magnetic flux of the transformer T1, the input power of the secondary winding of the transformer T1, and the voltage sensitive voltage V3 across the load line _1 BC1; and this current will cause the magnetic flux of the transformer T2 and the secondary side of the transformer T2. The input power of the winding and the voltage sensitive voltage V4 across the load carrying coil BC2 are reduced. Thus, the voltage difference between the two ends of the load carrying coils BC1 and BC2 is reduced, so that the outputs of the transformers T1 and T2 are almost the same and the magnetic fluxes of the transformers T1 and T2 are almost the same (that is, the load can be achieved). In this embodiment, the impedance network Z can be used to adjust the load sharing effect. For example, when the resistance value of the resistor R is large (that is, the equivalent impedance of the impedance network Z) φ, the load sharing effect is poor but the waveform of the lamp current is smoother; and vice versa. In addition, the loop formed by the average carrying coils BC1 and BC2 can be used for detection in an abnormal state (when the load is extremely unbalanced). As shown in Fig. 2C, in the first embodiment, the protection device 210 can detect the signal sampled by the impedance network Z. For example, when one of the lamps is disconnected (open circuit) or the difference between the lamp currents is too large, the protection device 210 can control/close the AC input voltage input to the transformer according to the signal sampled by the impedance network Z. . In addition, the protection device 210 can be an electrical detection circuit that can detect the voltage 16 201012299 k, the current 彳S number, the power signal, the frequency signal, or a mixture thereof. In summary, in the present embodiment, "the average load, is the same as the output power, current or voltage, according to the actual product design, it is the output of the current, the equal current output or the equivalent voltage output.,: C ” In the prior art, in order to achieve a uniform flow/average load, it is necessary to control the AC voltage of the transformer or the equivalent impedance of the load terminal or the like to control the lamp current. However, in the present embodiment, the magnetic fluxes of the voltage regulators can be coupled to each other by the load-carrying coils, so as to control the output of the transformer to achieve the current sharing/average load effect, so that it is not necessary to control the input voltage to the transformer voltage ( Unless the condition is abnormal, there is no need to control the equivalent resistance or equivalent voltage of the load terminal. 『寻丨丨和抗 In order to further highlight the effect of this embodiment, the 2D to 2K lamp current experimental waveforms under different loads. 2DFig. 2 D., Fig. 2H, and Fig. 2 show the lamp current simulation diagram of the prior art under the column load. From the 2D diagram, the 2F diagram, and the 2nd Ο 2: see the difference between the two lamps currents 丨1 and 丨2 in the conventional technique; in the E diagram, the 2G diagram, and the 2nd diagram Fig. 2K shows a lamp current experimental wave diagram, a second map, a 21st diagram and a 2nd diagram of the first embodiment of the present invention, respectively, in the door = the first embodiment, the two tube currents (or load current) 丨1 and 12 bis 2 are often 'almost identical', that is, the first embodiment of the present invention achieves a good current sharing/sharing effect. Second Embodiment 17 201012299 Fig. 3 is a view showing a converter according to a second embodiment of the present invention. The first embodiment is almost identical to the operating principle of the second embodiment. However, in Fig. 3, the phases of the AC input signals Vac 1 and Vac2 are opposite or nearly reversed. Therefore, the connection mode of the load carrying coils BC1 and BC2 should be adjusted correspondingly to balance the output of the transformer to achieve the purpose of current sharing/average loading. THIRD EMBODIMENT Fig. 4 is a view showing a converter according to a third embodiment of the present invention, the principle of which is the same as the above embodiment. However, the architecture of Figure 4 applies multiple (two or more) transformers T1, T2 ... Tk. By coupling these transformers T1, T2, ... Tk together in the manner of Figure 4, the outputs of all transformers will be identical, thereby achieving the purpose of current sharing of the lamps or loads. VAC1~VAC2 are AC input signals, LP1~LPk are lamps, and Z1~Zk are impedance networks. Fourth Embodiment Fig. 5 is a view showing a converter according to a fourth embodiment of the present invention, the principle of which is the same as the above embodiment. However, in Figure 5, transformers T1 and T2 are of dual output type (the secondary windings of transformers T1 and T2 are independent, parallel or in series). Each transformer can drive more than two lamps, such as transformer T1 to push lamps LP1 and LP2, and transformer T2 to drive lamps LP3 and LP4. In Figure 5, the AC input signals VAC1 and VAC2 are in phase or nearly in phase. The circuit connection mode of the load coils BC1 and BC2 is as shown in the figure, to balance the output of the transformer and achieve the purpose of current sharing / 201012299. Fifth Embodiment Fig. 6 is a view showing a converter according to a fifth embodiment of the present invention, the principle of which is the same as that of the fourth embodiment. However, in Figure 6, the AC input signals VAC1 and VAC2 are in anti-phase or almost anti-phase, so the circuit connection mode of the load-carrying coils BC1 and BC2 is as shown in Fig. 6, to balance the output of the transformer. Stream/average purpose. Sixth Embodiment Fig. 7 is a view showing a converter according to a sixth embodiment of the present invention, the principle of which is the same as that of the first embodiment. However, in Fig. 7, the average carrying coils BC1 and BC2 are placed on the secondary side to balance the output of the transformer to achieve the purpose of current sharing/average loading. Similar to the first embodiment, in the above embodiments and other possible embodiments of the present invention, the protection device can be utilized to detect the signal φ number sampled by the impedance network. Figures 8A through 8C show several possible examples of impedance network Z. In Fig. 8A, the average carrying coils BC1 and BC2 are connected in series. In Fig. 8B, the load coils BC1 and BC2 are directly connected (short-circuited). In Fig. 8C, the average carrying coils BC1 and BC2 are connected in series and in parallel. In Fig. 8D, the average carrying coils BC1, BC2 and BC3 are connected in parallel. And so on, the present invention can be applied to a plurality of (two or more) dual output type transformers, or to transformers of multiple (two or more) multiple output types (two outputs of 19 201012299 or more). To achieve the purpose of current sharing / uniform loading. In the above embodiment of the invention, the low voltage side of the transformer T1 and the low voltage side of the transformer T2 may be independent of each other or coupled to each other (similar to Fig. 1B). The high voltage side of transformer T1 and the high voltage side of transformer T2 may each be independent or coupled to each other (similar to Figure 1B). Furthermore, the low voltage side of the transformer T1 / T2 may comprise a single winding, or a plurality of windings, wherein the windings may each be independently or coupled together. Figure 9A shows that the low voltage side of transformer T1 includes a plurality of windings, and the windings can be @ independent. Figure 9B shows that the low voltage side of transformer T1 includes a plurality of windings, and the windings are coupled together. The high voltage side of the transformer T1/T2 may comprise a single winding, or a plurality of windings, wherein the windings may each be independently or coupled together. Figure 9C shows that the high voltage side of transformer T1 includes a plurality of windings, and the windings can be independent. Figure 9D shows that the high voltage side of transformer T1 includes a plurality of windings, and the windings are coupled together. The present invention can be applied to an image display device (e.g., an LCD device) as a drive system for a Q backlight (CCFL) such that the outputs of the transformers are the same or nearly the same to stabilize the output of the backlight. In addition, the present invention can also be used as an electronic ballast in a luminaire/illumination device having a plurality of fluorescent tubes to stabilize/equalize the illuminating brightness of the fluorescent tubes. In the present invention, the application (1) is coupled to the load sharing coil of the transformer or (2) the transformer having the load sharing coil, which can effectively balance the current of the lamp or the load. Compared with other conventional technologies, the invention has the following advantages: 1. No need to use extra high voltage capacitors, and the cost and life are good. 20 201012299 Second, the transformer has a low boost ratio and good efficiency. Third, there is no need to classify transformers, which is convenient for mass production and reduces costs. Fourth, no need to use additional high-voltage balancing coils or high-voltage balancing transformers, effectively reducing costs. 5. It is not necessary to adjust the load-carrying coil or the transformer with the load-carrying coil, and it can be applied to various load polarity configurations. 6. The active compensation/balance design ensures the reliability and longevity of the end product. _ VII, can detect the load abnormality to protect the converter. 8. Since the average load coil can be placed on the low voltage side of the transformer, the area of the high voltage area can be minimized, and the high voltage jumper or other high voltage components are not needed, which solves the layout bottleneck and cost of the printed circuit board, and greatly improves the safety of the terminal product. . In addition, the load carrying coil can also be placed on the high voltage side of the transformer. In the above, the present invention has been disclosed in several embodiments, but it is not intended to limit the present invention. Those skilled in the art having the knowledge of the present invention can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. 21 201012299 [Simple description of the diagram], 1A shows the architecture of the first conventional converter. Figure 1B shows the architecture of a second conventional converter. Figure 1C shows the architecture of a third conventional converter. The 1D diagram shows the architecture of the fourth conventional converter. Among them, the high figure shows that the fifth conventional converter voltage balance transformer is connected to the low voltage side of the lamp. Architecture Figure 1F shows the architecture of the sixth conventional converter. © Figure. 2A ® shows a converter according to a first embodiment of the present invention. It is intended that FIG. 2B shows an equivalent circuit according to a possible practical architecture of the first embodiment. FIG. 20 shows an equivalent circuit of FIG. 2B. The second tube diagram, the 2F diagram, the 2H diagram, and the 2J diagram are shown in Fig. 5, respectively, and the lamp current simulation diagram of the prior art is cut. The second tube diagram, the second diagram, the second diagram, and the second diagram of Fig. 2 show the lamp current simulation diagram of the first embodiment of the present invention under the same load. Fig. 3 is a view showing a converter according to a second embodiment of the present invention. ^ Figure. Figure 4 is a schematic view showing a converter according to a third embodiment of the present invention. Figure 5 is a schematic view showing a converter according to a fourth embodiment of the present invention. 22 201012299 Figure 7 shows a schematic diagram of a converter in accordance with a sixth embodiment of the present invention. Figures 8A through 8D show several possible examples of impedance network Z. Figure 9A shows that the low voltage side of transformer T1 includes a plurality of windings, and the windings are independent of each other. Figure 9B shows that the low voltage side of transformer T1 includes a plurality of windings, and the windings are coupled together. Figure 9C shows that the high voltage side of transformer T1 includes a plurality of windings, and the windings are independent of each other. Winning Figure 9D shows that the high voltage side of transformer T1 includes a plurality of windings, and the windings are coupled together. [Main component symbol description] 10, 20: Drive circuit Vin: DC power T1~Tk: Transformer C1, C2: Capacitor 〇LP1~LPk: Lamp or load 11, I2: Lamp current or load current 30: Feedback control circuit 35 : PWM control circuit 40 : Dual PWM control circuit 60 : High voltage balance transformer W1 , W2 : Winding V1 , V2 : Self - inductive voltage V21 , V12 : Mutual voltage 23 201012299 100 : AC power input 102 (1), 102 (2) ...102(k): high voltage balance transformer N11, N12...N1k: - secondary winding 104(1), 104(2)...104(k): lamp N21, N22_..N2k: secondary side Windings 121, 丨22, ... I2k: secondary side currents 111, I12...l1k: - secondary current

VaC1、VaC2 :交流輸入信號 BC1、BC2 :均載線圈 Z、Z1〜Zk :阻抗網路 V3、V4 :感壓電壓 ψιτι1、ψηπ2 :磁通量 R :電阻 210 :保護裝置 I :迴圈電流VaC1, VaC2: AC input signal BC1, BC2: Average carrying coil Z, Z1~Zk: Impedance network V3, V4: Sensing voltage ψιτι1, ψηπ2: Magnetic flux R: Resistor 210: Protection device I: Loop current

24twenty four

Claims (1)

201012299 十、申請專利範園: 马傻顧-動轉換器,用於驅動—多負載燈具或驅動-& 2:'"巾的—背光光源,該驅動轉換器包括: -第-變壓器,接收並升壓或降壓一第一輸 的至少一者的一磁路 一弟一均載線圈 的至少一者的一磁路 一第一阻抗網路 載線圈彼此電性輕合 该第-變壓器的-輪出㈣用於驅動該光源或該些負 一第二變虔器,接收並升覆或關—第二輸 該第-變壓益的-輸出電壓用於驅動該光源或該些負載^ -第-均載線圈’磁性耦合到該第一與該第二變壓器 磁性耦合到該第一與該第二變壓器 以及 ° 用於使該第一均载線圈與該第二均 其中,透過該第一均載線圈的磁性耦合、該第二 線圈的磁性耦合與該第一阻抗網路的電性耦合,該第—a 壓器與該第二變壓器的輸出相同或實質相同。 支 參 2.如中請專利範圍第!項所示之㈣轉換器更包 括· -第三變壓器’接收並升壓或降壓—第三輸入信號, 該第三變壓器的一輸出電壓用於驅動該光源或該些; 一第三均載線圈,磁性耦合到該第三變壓器的— 路;以及 一第二阻抗網路,用於使該第三均載線圈電性耦合至 該第一均載線圈與該第二均載線圈之至少一者; 25 201012299 其中,透過該第-均載線圈的磁性耗合、該第二 線圈的磁性麵合、該第三均載線圈的磁性輕合該第1 抗網路的電性搞合與該第二阻抗網路 變麼器、該第二變麼器與該第三變壓器的輪=料= 相同。 ' ^ 3.如申請專利範圍第1項所示之驅動轉換器,其中 该第-均載線圈設置於該第—變壓器的—低壓側。 參 ㈣1如申請專利範圍第1項所示之驅動轉換器,其中 均載線圈設置於該第一變壓器的一高壓側。 5. 如申請專利範圍第i項所示之驅動轉換器,其令 "―均载線圈設置於該第二變壓器的—低壓側。 6. 如申請專利範圍第】項所示之驅動轉換器,其令 以第-均載線圈設置於該第二變壓器的—高壓側。 該^嶽如申請專利範圍第1項所示之驅動轉換器,其令 ^獨立壓15的—低壓側與該第二變壓器的—低壓側各 今第81申睛專利範圍第1項所示之驅動轉換器,其中 =壓器的-低壓側與該第二變壓器的-低壓側彼 該第^變如壓申二專利”第1項所示之驅動轉換器’其中 自獨立 側與該第二變壓器的-高壓側各 該第it申請專利範圍第1項所示之驅動轉換器,其中 壓器的一高壓側與該第二變壓器的一高壓側彼 26 201012299 此耗接。 其中 該第^變利範圍第1項所示之驅動轉換器、 蹙„。的一低壓側包括單—繞組。 該第—變:::專利範圍第1項所示之驅動轉換器,其中 立。 叫—低壓側包括複數繞組,該些繞組各自獨 參 ❹ 該第—變第1項所示之驅動轉換器,其t -起。 的一低壓側包括複數繞組,該些繞組輕接在 該二Γ請專利範圍第1項所示之驅動轉換器,i中 及第變歷器的一高壓側包括單—繞组。 /、中 該第二V:申請專利範圍第1項所示之驅動轉換器,其令 立^變壓器的一高壓側包括複數繞組’該些繞組各自二 該第申請專利範圍第1項所示之驅動轉換器,其中 -起。m高壓側包括複數繞組,該些繞組轉接在 該第申請專利範圍第1項所示之驅動轉換器,其中 一變壓器的一低壓側包括單一繞組。 該第Γ變:::專=圍第1項所示之驅動轉換器,其中 立。“㈣-低壓側包括複數繞組,該些繞組各自獨 該第:變2:專,圍第1項所示之驅動轉換器,其中 壓器的-低壓側包括複數繞組,該些繞組搞接在 27 201012299 一起。 其中 誃篦 '變厭申明專利範圍第1項所示之驅動轉換器 一'壓器的一高壓側包括單一繞組。 …21·如中請專利範圍第】項所示之驅動轉 :第二變壓器的一高壓側包括複數繞組,該些繞組各自、獨 申明專利範圍第1項所示之驅動轉換哭,复由 Μ器的-高壓側包括複數繞組,該些繞^接在 23·如申請專利範圍第1項所示之驅動轉換器,1 中透過該第一阻抗網路,該第一均 線圈間為串聯連接。 /乐一均载 24·如申請專利範圍第1項所示之驅動轉換器,复 t,t該第一阻抗網路’該第-均載線圈與該第二均载 線圈間為並聯連接》 ^ 女申明專利範圍第1項所示之驅動轉換器,其201012299 X. Application for Patent Park: Ma Bu Gu-dynamic converter for driving - multi-load luminaire or drive - & 2: '" towel-backlight source, the drive converter includes: - the first - transformer, Receiving and boosting or stepping down a magnetic circuit of at least one of the first inputs, a magnetic circuit, a first magnetic circuit, and a first impedance network carrier coil electrically coupled to each other - (4) for driving the light source or the negative and second transducers, receiving and raising or closing - the second output voltage of the first variable voltage is used to drive the light source or the loads ^ - a first-average carrier coil 'magnetically coupled to the first and the second transformer is magnetically coupled to the first and second transformers and is configured to pass the first average carrier coil and the second one through The magnetic coupling of the first average carrying coil, the magnetic coupling of the second coil is electrically coupled to the first impedance network, and the output of the first voltage transformer is the same or substantially the same as the output of the second transformer. Support 2. If you are in the scope of patents! The (four) converter shown in the item further includes: - the third transformer 'receives and boosts or steps down the third input signal, an output voltage of the third transformer is used to drive the light source or the others; a coil electrically coupled to the third transformer; and a second impedance network for electrically coupling the third load carrying coil to at least one of the first load carrying coil and the second load carrying coil 25 201012299 wherein the magnetic compatibility of the first-average carrier coil, the magnetic surface of the second coil, and the magnetic coupling of the third average-load coil are electrically coupled to the first anti-network The second impedance network transformer, the second transformer is the same as the wheel = material = of the third transformer. ' ^ 3. The drive converter shown in claim 1 wherein the first-average load coil is disposed on the low voltage side of the first transformer. Reference numeral (4) 1 is the drive converter shown in claim 1, wherein the load carrying coil is disposed on a high voltage side of the first transformer. 5. For the drive converter shown in item i of the patent application, the "-average carrier coil is disposed on the low voltage side of the second transformer. 6. The drive converter of claim 2, wherein the first-average load coil is disposed on a high voltage side of the second transformer. The driving converter shown in the first item of the patent application scope is as shown in the first item of the first-order patent range of the first low-pressure side of the second transformer and the low-voltage side of the second transformer. Driving the converter, wherein the low-voltage side of the pressor and the low-voltage side of the second transformer are the same as the drive converter shown in the first item of the second patent, wherein the independent side and the second The drive converter shown in the first aspect of the present invention is the high-voltage side of the transformer, wherein a high-voltage side of the voltage device and a high-voltage side of the second transformer 26 201012299 are consumed. The drive converter shown in item 1 of the range is 蹙„. A low voltage side includes a single winding. The first change::: The drive converter shown in the first item of the patent range, in which. The low-voltage side includes a plurality of windings, each of which is independent of the drive converter shown in the first item, which is t-started. A low voltage side includes a plurality of windings that are lightly coupled to the drive converter shown in item 1 of the second patent specification, i and a high voltage side of the second history changer including a single winding. /, the second V: the drive converter shown in claim 1 of the patent scope, wherein a high voltage side of the transformer comprises a plurality of windings, each of which is represented by the first item of the patent application scope Drive the converter, which starts from -. The high voltage side of the m includes a plurality of windings which are switched to the drive converter shown in the first aspect of the patent application, wherein a low voltage side of a transformer includes a single winding. The first change::: special = drive converter shown in item 1, which stands. "(4) - The low-voltage side comprises a plurality of windings, each of which is separately: the variable 2: the drive converter shown in the first item, wherein the low-voltage side of the press comprises a plurality of windings, and the windings are connected 27 201012299 Together. Among them, the drive converter shown in the first paragraph of the patent range includes a single winding on the high-voltage side of the actuator. The high voltage side of the second transformer includes a plurality of windings, and each of the windings independently declares that the driving conversion shown in the first item of the patent range is crying, and the high voltage side of the buffer includes a plurality of windings, and the windings are connected at 23 · As shown in the driving converter shown in the first paragraph of the patent application, 1 passes through the first impedance network, and the first average coil is connected in series. /Leyi is loaded 24·As claimed in the first item The driving converter is shown, complex t, t the first impedance network 'the first-average carrier coil and the second average carrier coil are connected in parallel" ^ female claiming the drive converter shown in the first item of the patent scope, its 中,透過該第-阻抗網路,該第—均載線圈與該第二均 線圈間為並串聯混合連接。 如申吻專利範圍第1項所示之驅動轉換器,其 中,透過該第-阻抗網路,該第一均載線圈與該第二均载 線圈間為直接連接。 27·如申請專利範圍第1項所示之驅動轉換器,其 中’該第-輸人信號與該第二輸人信號為同相位或幾乎同 相位。 28 201012299 28.如申請專利範圍第,項所示之驅動轉㈣,其 令’該第-輸入信號與該第二輸入信號為反相位 相位。 丁久 -旦餘動轉換^ ’詩驅動—多負紐具或驅動 -衫像顯不裝置中的—背光光源,該驅動轉換器 ’卜t變壓器,接收並升壓或降签—第—輸入信號, 忒第一變壓器的一輸出電屢用於驅動該光源或該些 ❹ ^一第二變壓器,接收並升壓或_ —第二輸入#’ 该第:變壓器的一輸出電壓用於驅動該光源或該些負载. 的至載:^性^到該第—與該第二變壓器 的至;與該第二變壓器 載二:=;::使該第-均載線圈與該第二均 ❹ 時;接至該第一阻抗網路’當發生異常 妒,來二 第一阻抗網路所取樣到的-電氣, 旒,來控制該第一輸入信號與該第二輸入传號电則口 —阻=路透^第―均載線圈、該第二^線圈與該第 的磁通量彼變壓為中的磁通量與該第二變壓器中 的輸出相同4㈣該第一變壓器與該第二變壓器 包括30·如申請專利範圍第29項所示之驅動轉換器更 29 201012299 :第三變壓器’接收並升㈣降H輸入信號, 該第三變虔器的—輸出電虔用於驅動該光源或該些負載’· 一第二均載線圈,磁性耦合到該第三變壓器的一磁 路;以及 D° a a —第二阻抗網路,用於使該第三均載線圈電性耦合至 該第一均載線圈與該第二均載線圈之至少一者; 其中,透過該第一均載線圈的磁性耦合、該第二均載 線圈的磁性耗合、該第三均載線圈的磁性麵合、該第一阻 ❹抗網路的電性耦合與該第二阻抗網路的電性耦合,該第〆 變壓為、該第二變壓器與該第三變壓器的輸出相同或實質 相同。 31. 如申凊專利範圍第29項所示之驅動轉換器,其 中该第一均載線圈設置於該第一變壓器的一低壓侧。 32. 如申請專利範圍第29項所示之驅動轉換器,其 中5玄第一均載線圈設置於該第一變壓器的一高壓側。 33. 如申請專利範圍第29項所示之驅動轉換器,其 瘳中該第二均載線圈設置於該第二變壓器的一低壓側。 34·如申請專利範圍第29項所示之驅動轉換器,其 中該第二均載線圈設置於該第二變壓器的一高壓侧。 35. 如申請專利範圍第29項所示之驅動轉換器,其 中《玄第一變壓器的一低壓側與該第二變壓器的一低壓側 各自獨立。 36. 如申請專利範圍第29項所示之驅動轉換器,其 中该第一變壓器的一低壓侧與該第二變壓器的一低壓侧 30 201012299 彼此耦接。 37. 如申請專利範圍第29項所示之驅動轉換器,其 中該第一變壓器的一高壓側與該第二變壓器的一高壓側 各自獨立。 38. 如申請專利範圍第29項所示之驅動轉換器,其 中該第一變壓器的一高壓側與該第二變壓器的一高壓側 彼此耦接。 39. 如申請專利範圍第29項所示之驅動轉換器,其 ©中該第一變壓器的一低壓側包括單一繞組。 40.如申請專利範圍第29項所示之驅動轉換器,其 中該第一變壓器的一低壓側包括複數繞組,該些繞組各自 獨立。 41.如申請專利範圍第29項所示之驅動轉換器,其 中該第一變壓器的一低壓侧包括複數繞組,該些繞組耦接 在一起。 42.如申請專利範圍第29項所示之驅動轉換器,其 Q 中該第一變壓器的一高壓側包括單一繞組。 43.如申請專利範圍第29項所示之驅動轉換器,其 中該第一變壓器的一高壓側包括複數繞組,該些繞組各自 獨立。 44.如申請專利範圍第29項所示之驅動轉換器,其 中該第一變壓器的一高壓側包括複數繞組,該些繞組耦接 在一起。 45.如申請專利範圍第29項所示之驅動轉換器,其 31 201012299 中該第二變壓器的一低壓側包括單一繞組。 46. 如申請專利範圍第29項所示之驅動轉換器,其 中該第二變壓器的一低壓側包括複數繞組,該些繞組各自 獨立。 47. 如申請專利範圍第29項所示之驅動轉換器,其 中該第二變壓器的一低壓側包括複數繞組,該些繞組耦接 在一起。 48. 如申請專利範圍第29項所示之驅動轉換器,其 ©中該第二變壓器的一高壓側包括單一繞組。 49.如申請專利範圍第29項所示之驅動轉換器,其 中該第二變壓器的一高壓側包括複數繞組,該些繞組各自 獨立。 50.如申請專利範圍第29項所示之驅動轉換器,其 中該第二變壓器的一高壓侧包括複數繞組,該些繞組耦接 在一起。 51.如申請專利範圍第29項所示之驅動轉換器,其 q 中,透過該阻抗網路,該第一均載線圈與該第二均載線圈 間為串聯連接。 52.如申請專利範圍第29項所示之驅動轉換器,其 中,透過該阻抗網路,該第一均載線圈與該第二均載線圈 間為並聯連接。 53.如申請專利範圍第29項所示之驅動轉換器,其 中,透過該阻抗網路,該第一均載線圈與該第二均載線圈 間為並串聯混合連接。 32 201012299 54·如申請專利範圍第29項所示之驅動轉換器,其 二該阻抗網路,該第一均載線圈與該第二均載線圈 間為直接連接。 55·如申請專利範圍第29項所示之驅動轉換器其 中,該第一輸入信號與該第二輸入信號為同相位。/、 5^如申請專利範圍第29項所示之驅動轉換器,其 中,該第一輸入信號與該第二輸入信號為反相位。 57·如申請專利範圍第29項所示之驅動轉換器,其 ❹中,該保護裝置偵測該阻抗網路所取樣到的一電壓信號、 -電流信號、-功率信號’或—頻率信號。 … 一 58.—種驅動系統,用於驅動一多負載燈管或一影像 顯示裝置中的一背光光源,該驅動系統包括: ^ 夕個蜒壓器,各別接收並升壓或降壓多個輸入信號, 該些=壓器的輸出電壓用於驅動該光源或該些負載; 多個均載線圈,磁性辆合到相關變壓器的磁路;以及 至·^ —阻抗網路,用於使該些均載線圈彼此電性耦 ❹合’ 其中,透過該些均載線圈對該些變壓器的磁性耦合與 該些均,線圈彼此間的電性耗合,該些變壓器的輸出 相同或實質相同’而且,該些變壓器中的磁通量彼此耦 合,此輕合使得該些變壓器中的最終磁通量 質相同。 仍丨1 33The first-average carrier coil and the second average coil are connected in series and in series through the first impedance network. A drive converter as shown in claim 1 of the patent application, wherein the first average load coil and the second load carrying coil are directly connected through the first impedance network. 27. The drive converter of claim 1, wherein the first input signal is in phase or nearly in phase with the second input signal. 28 201012299 28. The driving turn (4) shown in the item of claim 2, wherein the first input signal and the second input signal are in an opposite phase. Ding Jiu-Dan-Yu transition ^ 'Poet drive - multi-negative gear or drive - shirt like the display device - backlight source, the drive converter 'b transformer, receive and boost or down - first - input a signal, an output of the first transformer is used to drive the light source or the second transformer, receive and boost or _-second input #': the output voltage of the transformer is used to drive the The light source or the loads of the loads are: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ When the first impedance network is connected to the first impedance network, the electrical impedance is sampled by the first impedance network to control the first input signal and the second input signal port. Resistor = Reuters ^ The first-average carrier coil, the second coil and the magnetic flux of the first magnetic flux are the same as the output of the second transformer. 4 (4) The first transformer and the second transformer include 30· The drive converter shown in item 29 of the patent application scope is further 29 201012299: the third transformation Receiving and raising (four) down the H input signal, the output of the third transformer is used to drive the light source or the load '· a second average carrying coil, magnetically coupled to a magnetic circuit of the third transformer And a second impedance network for electrically coupling the third average carrier coil to at least one of the first average carrier coil and the second load carrier coil; Magnetic coupling of the carrier coil, magnetic compatibility of the second average carrier coil, magnetic face of the third load carrying coil, electrical coupling of the first resistor network and electrical properties of the second impedance network Coupling, the third transformer is transformed, and the second transformer is identical or substantially identical to the output of the third transformer. 31. The drive converter of claim 29, wherein the first load carrying coil is disposed on a low voltage side of the first transformer. 32. The drive converter as shown in claim 29, wherein the fifth first average load coil is disposed on a high voltage side of the first transformer. 33. The drive converter of claim 29, wherein the second load carrying coil is disposed on a low voltage side of the second transformer. 34. The drive converter of claim 29, wherein the second load carrying coil is disposed on a high voltage side of the second transformer. 35. The drive converter of claim 29, wherein a low voltage side of the first transformer and a low voltage side of the second transformer are independent of each other. 36. The drive converter of claim 29, wherein a low voltage side of the first transformer and a low voltage side 30 201012299 of the second transformer are coupled to each other. 37. The drive converter of claim 29, wherein a high voltage side of the first transformer is independent of a high voltage side of the second transformer. 38. The drive converter of claim 29, wherein a high voltage side of the first transformer and a high voltage side of the second transformer are coupled to each other. 39. The drive converter of claim 29, wherein a low voltage side of the first transformer comprises a single winding. 40. The drive converter of claim 29, wherein a low voltage side of the first transformer comprises a plurality of windings, the windings being independent of each other. 41. The drive converter of claim 29, wherein a low voltage side of the first transformer comprises a plurality of windings, the windings being coupled together. 42. The drive converter of claim 29, wherein a high voltage side of the first transformer in Q comprises a single winding. 43. The drive converter of claim 29, wherein a high voltage side of the first transformer comprises a plurality of windings, the windings being independent of each other. 44. The drive converter of claim 29, wherein a high voltage side of the first transformer comprises a plurality of windings, the windings being coupled together. 45. The drive converter of claim 29, wherein a low voltage side of the second transformer of 31 201012299 comprises a single winding. 46. The drive converter of claim 29, wherein a low voltage side of the second transformer comprises a plurality of windings, the windings being independent of each other. 47. The drive converter of claim 29, wherein a low voltage side of the second transformer comprises a plurality of windings, the windings being coupled together. 48. The drive converter of claim 29, wherein a high voltage side of the second transformer comprises a single winding. 49. The drive converter of claim 29, wherein a high voltage side of the second transformer comprises a plurality of windings, the windings being independent of each other. 50. The drive converter of claim 29, wherein a high voltage side of the second transformer comprises a plurality of windings, the windings being coupled together. 51. The drive converter of claim 29, wherein the first average carrier coil and the second average carrier coil are connected in series through the impedance network. 52. The drive converter of claim 29, wherein the first average carrier coil and the second load carrying coil are connected in parallel through the impedance network. 53. The drive converter of claim 29, wherein the first average carrier coil and the second average carrier coil are connected in series and in series through the impedance network. 32 201012299 54. The drive converter of claim 29, wherein the impedance network has a direct connection between the first load carrying coil and the second load carrying coil. 55. The drive converter of claim 29, wherein the first input signal is in phase with the second input signal. /, 5? The drive converter of claim 29, wherein the first input signal and the second input signal are in opposite phase. 57. The drive converter of claim 29, wherein the protection device detects a voltage signal, a current signal, a - power signal or a frequency signal sampled by the impedance network. ... a drive system for driving a multi-load lamp or a backlight source in an image display device, the drive system comprising: ^ 蜒 蜒 ,, each receiving and boosting or stepping down Input signals, the output voltages of the voltage regulators are used to drive the light source or the loads; the plurality of load-carrying coils, the magnetic circuit is coupled to the magnetic circuit of the associated transformer; and the impedance network is used to make The load-carrying coils are electrically coupled to each other. The magnetic coupling of the transformers through the load-carrying coils and the electrical coupling between the coils are the same or substantially the same. Moreover, the magnetic fluxes in the transformers are coupled to each other, and this combination makes the final flux quality in the transformers the same. Still 丨 1 33
TW97134401A 2008-09-08 2008-09-08 A driving system for driving backlight sources in an image display apparatus or for driving lamps in a multi-lamp lighting device TW201012299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97134401A TW201012299A (en) 2008-09-08 2008-09-08 A driving system for driving backlight sources in an image display apparatus or for driving lamps in a multi-lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97134401A TW201012299A (en) 2008-09-08 2008-09-08 A driving system for driving backlight sources in an image display apparatus or for driving lamps in a multi-lamp lighting device

Publications (1)

Publication Number Publication Date
TW201012299A true TW201012299A (en) 2010-03-16

Family

ID=44828934

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97134401A TW201012299A (en) 2008-09-08 2008-09-08 A driving system for driving backlight sources in an image display apparatus or for driving lamps in a multi-lamp lighting device

Country Status (1)

Country Link
TW (1) TW201012299A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504093B (en) * 2012-11-30 2015-10-11 Great Forward Ind Co Ltd Current sharing power supply device
TWI549407B (en) * 2014-09-09 2016-09-11 鴻海精密工業股份有限公司 Multiphase power circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504093B (en) * 2012-11-30 2015-10-11 Great Forward Ind Co Ltd Current sharing power supply device
TWI549407B (en) * 2014-09-09 2016-09-11 鴻海精密工業股份有限公司 Multiphase power circuit
US9787184B2 (en) 2014-09-09 2017-10-10 Hon Hai Precision Industry Co., Ltd. Multiple-phase power circuit

Similar Documents

Publication Publication Date Title
US6717372B2 (en) Multi-lamp driving system
US7291987B2 (en) Power supply system for flat panel display devices
US8890424B2 (en) Illumination device, illumination system, and lamp
US8373304B2 (en) Current-sharing supply circuit for driving multiple sets of DC loads
US20070126369A1 (en) Apparatus for driving a plurality of lamps
TWI461110B (en) Driving circuit and method for multi-lamps and display system thereof
TWI381773B (en) Fluorescent lamp driving circuit
US20100214210A1 (en) Current balancing device, led lighting apparatus, lcd backlight module, and lcd display unit
TWI397345B (en) Power supply circuit for led
CN1886021B (en) Multi lamp tube driving system
US8344643B2 (en) Driver system and method for multiple cold-cathode fluorescent lamps and/or external-electrode fluorescent lamps
US8587226B2 (en) Driver system and method with cyclic configuration for multiple cold-cathode fluorescent lamps and/or external-electrode fluorescent lamps
US20080042593A1 (en) Multiple Discharge Lamp Lighting Apparatus
TW201012299A (en) A driving system for driving backlight sources in an image display apparatus or for driving lamps in a multi-lamp lighting device
US7528552B2 (en) Power transformer combined with balance windings and application circuits thereof
US7940011B2 (en) Lamp drive circuit for driving a number of lamps and balancing currents flowing through the lamps
CN101730352A (en) Backlight source for driving image display device and driving system for driving multi-tube lamp
US20070200507A1 (en) Device for driving light source module
JP2008258166A (en) Fluorescent lamp drive power supply
CN100391315C (en) Power supply unit and used current converter
US7411356B2 (en) Power supply for multiple discharge lamps and the current balance device thereof
CN105161058B (en) Multichannel backlight driving system, liquid crystal display and LCD TV
TW201029518A (en) Single-stage driving circuit for fluorescent lamp tube with high power factor and high performance
US8072159B2 (en) Multi-lamp driving circuit
TWI274464B (en) Integrated power supplier