TW201011972A - Balun circuit manufactured by integrate passive device process - Google Patents

Balun circuit manufactured by integrate passive device process Download PDF

Info

Publication number
TW201011972A
TW201011972A TW97147734A TW97147734A TW201011972A TW 201011972 A TW201011972 A TW 201011972A TW 97147734 A TW97147734 A TW 97147734A TW 97147734 A TW97147734 A TW 97147734A TW 201011972 A TW201011972 A TW 201011972A
Authority
TW
Taiwan
Prior art keywords
coils
left half
right half
half coils
wiring layer
Prior art date
Application number
TW97147734A
Other languages
Chinese (zh)
Other versions
TWI360254B (en
Inventor
Chi-Han Chen
Original Assignee
Advanced Semiconductor Eng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Semiconductor Eng filed Critical Advanced Semiconductor Eng
Priority to US12/427,262 priority Critical patent/US8049589B2/en
Publication of TW201011972A publication Critical patent/TW201011972A/en
Application granted granted Critical
Publication of TWI360254B publication Critical patent/TWI360254B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Filters And Equalizers (AREA)

Abstract

A Balun circuit manufactured by integrate passive device (IPD) process is provided. The Balun circuit includes a substrate, a first coplanar spiral structure, and a second coplanar spiral structure. At least two first left half coils of the first coplanar spiral structure are connected to the corresponding two first right half coils through a first intersecting structure. At least two second left half coils of the second coplanar spiral structure are connected to the corresponding two first right half coils through a second intersecting structure. Two ends of the second coplanar spiral structure is electrically connected to the most inner second left half coil and the most inner second right half coil respectively. The first left half coils and the second left half coils are interlaced, and the first right half coils and the second right half coils are interlaced.

Description

201011972 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種巴倫器(Baiun circuit),且特別是 有關於一種使用整合被動元件(Integrated Passive Device, IPD)製程製造之巴倫器。 【先前技術】 一般來說,當通訊裝置中之天線接收到無線訊號之 •後,由天線輸出之單埠電訊號會輸出至一巴倫器。巴倫器 將會把單埠電訊號轉換成雙埠電訊號,並輸出至射頻 (Radio Frequency,RF)收發器(Transceiver)來進行處理。 目前之一種巴倫器係以低溫共燒陶瓷(Low temperature co-fired ceramic,LTCC)製程來達成。然而,這 種LTCC製程所製造之巴倫器必需先經由表面黏著技術 (Surface-Mount Technology,SMT)與一基材電性連接後,才 能與基材上的射頻收發器晶片電性連接。如此,基材上必 ®需同時保留配置LTCC製程所製造之巴倫器的區域與配置 射頻收發器晶片之區域,而使得所需要之基材面積增大, 而佔用較大之通訊裝置的空間。因此,如何降低所需基材 的面積,以節省通訊裝置的内部空間,乃業界所致力的方 向之一0 【發明内容】 本發明係有關於一種使用整合被動元件製程製造之 201011972 巴倫器,可以直接配置於射頻收發器晶片上,故可降低所 需要的基材面積,而得以節省通訊裝置的内部空間。 根據本發明,提出一種使用整合被動元件(Integrated Passive Device,IPD)製程製造之巴倫器,包括一基板、一 第一共平面螺旋結構體、及一第二共平面螺旋結構體。第 一共平面螺旋結構體具有一第一端、一第二端、一第一連 接線、一第二連接線、多個第一左半線圈、多個第一右半 線圈、及至少一第一交叉結構。至少二個第一左半線圈係 參經由一個第一交叉結構與對應之二個第一右半線圈電性 連接。第一端係經由第一連接線與最外圈之第一左半線圈 電性連接,第二端係經由第二連接線與最外圈之第一右半 線圈電性連接。第二共平面螺旋結構體具有一第三端、一 第四端、一第三連接線、一第四連接線、多個第二左半線 圈、多個第二右半線圈、及至少一第二交叉結構。至少二 個第二左半線圈係經由一個第二交叉結構與對應之二個 第二右半線圈電性連接。第三端係經由第三連接線與最内 ®圈之第二左半線圈電性連接,第四端係經由第四連接線與 最内圈之第二右半線圈電性連接。此些第一左半線圈與此 些第二左半線圈係交錯配置,此些第一右半線圈與此些第 二右半線圈係交錯配置。 為讓本發明之上述内容能更明顯易懂,下文特舉較佳 實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 7 201011972 請參照第1圖,其繪示乃一種巴倫器之示意圖。巴倫 器包括傳輸線102、104、1〇6與1〇8、與電容器Cl、C2、 及C3。傳輸線102之一端係與一非平衡埠(unbalance Port)110電性連接’傳輸線1〇2之另一端係與傳輸線104 電性連接。而傳輸線104之另一端則透過電容C1接地。 傳輸線106之一端係接地,而傳輸線1〇6之另一端係與平 衡璋(Balance Port)l 12和電容C2電性連接。傳輸線108 之一端係與平衡埠114和電容C3電性連接,而傳輸線108 鲁之一端則接地。 請參照第2圖,其繪示乃第1圖之巴倫器之等效電路 圖。傳輸線102與104係可由電感L1等效之,傳輸線106 係可由電感L2等效之’而傳輸線1〇8則可由電感L3等效 之。藉由電感L1與L2之間的耦合效應,與電感L1與L3 之間的耦合效應,可使得由非平衡埠110輸入之單端 (single ended)訊號,轉換成由平衡埠112與114輸出之差 動(differential)訊號。平衡埠112與114輸出之訊號具有相 ®同之振幅,但兩個訊號之相位相差180度。 上述之電容cn、C2及C3係用以調整通帶(Passband) 的頻寬(Bandwidth),調整插入損失(Insertion Loss),或執 行阻抗轉換(Impedance Transformation) 〇 請同時參照第3A圖及第3B圖,第3A圖繪示乃依照 本發明之一實施例之一種使用整合被動元件(Integrated Passive Device, IPD)製程製造之巴倫器之結構示意圖,第 3B圖乃第3A圖中,沿著刮面線3B-3B’之巴倫器300之剖 8 201011972 面圖。巴倫器300包括一基板302、一第一共平面螺旋結 構體、及一第二共平面螺旋結構體。第一共平面螺旋結構 體具有一第一端312、一第二端314、一第一連接線316、 一第二連接線318、多個第一左半線圈、多個第一右半線 圈、及至少一第一交叉結構。多個第一左半線圈例如包括 左半線圈320(1)、320(2)及320(3)。多個第一右半線圈例 如包括右半線圈322(1)、322(2)及322(3)。至少一第一交 叉結構包括第一交叉結構324(1)與324(2)。 於第一共平面螺旋結構體中,至少二個第一左半線圈 係經由一個第一交又結構與對應之二個第一右半線圈電 性連接。舉例來說,第一左半線圈320(3)係經由第一交又 結構324(1)與第一右半線圈322(2)電性連接,而第一左半 線圈320(2)亦經由第一交叉結構324(1)與第一右半線圈 322(3)電性連接。而第一端312係經由第一連接線316與 最外圈之第一左半線圈320(1)電性連接,第二端314則經 由第二連接線318與最外圈之第一右半線圈322(丨)電性連 接。 第二共平面螺旋結構體具有一第三端332、一第四端 334、一第三連接線336、一第四連接線338、多個第二左 半線圈、多個第二右半線圈、及至少一第二交叉結構。多 個第二左半線圈例如包括第二左半線圈34〇(丨)、34〇(2)及 340(3)。多個第二右半線圈例如包括第二右半線圈 342(1)、342(2)及342(3)。至少一第二交又結構例如包括第 二交叉結構344(1)及344(2)。 9 201011972 於第一共平面螺旋結構體中,至少二個第二左半線圈 係經由一個第二交叉結構與對應之二個第二右半線圈電 性連接。舉例來說,第二左半線圈340(1)係經由第二交叉 結構344(1)與第二右半線圈342(2)電性連接,第二左半線 圈340(2)係經由第二交又結構344(1)與第二右半線圈 342(1)電性連接。第三端332係經由第三連接線336與最 内圈之第一左半線圈340(3)電性連接,而第四端334則係 經由第四連接線338與最内圈之第二右半線圈342(3)電性 ❹連接。 此些第一左半線圈與此些第二左半線圈係交錯配 置,而此些第一右半線圈與些第二右半線圈係交錯配置。 舉例來說,此些第一左半線圈與此些第二左半線圈係以第 一左半線圈320(1)、第二左半線圈340(1)、第一左半線圈 320(2)、第二左半線圈340(2)、第一左半線圈32〇(3)、第 二左半線圈340(3)的順序由外向内配置。而此些第一右半 線圈與些第二右半線圈係以第一右半線圈322(1)、第二右 ❹半線圈342(1)、第一右半線圈322(2)、第二右半線圈 342(2)、第一右半線圈322(3)、第二右半線圈342(3)的順 序由外向内配置。 較佳地,第一左半線圈320(1)〜320(3)與第二左半線 圈340(1)〜340(3)係等間隔配置。第一右半線圈 322(1)〜322(3)與第二右半線圈342(1)〜342(3)係等間隔配 置。 更進一步來說,請參考第3B圖,基板302具有一第 201011972 一佈線層352與一第二佈線層354。於第一共平面螺旋結 構體中,第一連接線316、第二連接線318、此些第一左 半線圈320(1)〜320(3)、此些第一右半線圈3400)-340(3) 係配置於第一佈線層352。部份之第一交又結構“氕^係 配置於第一佈線層352,其他部份之第一交叉結構324^) 係配置於第二佈線層354。同樣地,部份之第一交叉結構 324(2)亦配置於第一佈線層352,其他部份之第一交叉結 構324(2)亦配置於第二佈線層354。 藝茲以第一交叉結構324(1)為例說明之。第一交叉結構 324(1)包括走線356與358。走線356配置於第二佈線層 354,而走線358則配置於第一佈線層352。第一左半線圈 320(3)例如透過通孔360與走線356電性連接,而走線356 則透過通孔362與第一右半線圈322(2)電性連接。如此, 可使得第一左半線圈320(3)係經由第一交叉結構324(1)之 走線356與第一右半線圈322(2)電性連接。 而於第二共平面螺旋結構體中,第三連接線336、第 ❹四連接線338係配置於第二佈線層354。第二左半線圈 340⑴〜340(3)、第二右半線圈342⑴〜342(3)係配置於第一 佈線層352。部份之第二交叉結構344(1)係配置於第一佈 線層352 ’其他部份之第二交叉結構344(1)係配置於第二 佈線層354。而部份之第二交叉結構344(2)亦配置於第一 佈線層352,其他部份之第二交叉結構344(1)則配置於第 二佈線層354。 較佳地’第一左半線圈320(1)〜320(3)之長度和係實 201011972 質上等於第一右半線圈322(1)〜322(3)之長度和。而第二 半線圈340(1)〜340(3)之長度和係實質上等於第二右;7左 圈342(1)〜342(3)之長度和。如此,當第一端312作半線 衡埠110,第三端332與第四端334分別作為平衡^非平 與114時,第三端332與第四端334將可輸出具有 U 相同之振幅’相位實質上相差180度的兩個訊號。買上 參 對於第二左半線圈340⑴與第二右半線圈Μ 接之連接點364而言,由於連接點364左 連 長度和,實質上等於連接點364右邊之所有半線圈 和。連接點364係與一地電壓連接,或與一直 長度 單元(未%示於圖中)電性連接,以接收—直流^電壓供應 流偏壓例如可根據下級電路所需之直流偏壓^決,此直 此外,如第3Α圖所示,第二端314、第二、二° 第四端334係分別與電容C1、C2及c3電性連接32及 於本實施例的巴倫器300中,第一妓 ° 及第二共平面螺旋結構體之間的輕合方式係以 (edge coupling)的方式來達成。此種方式可£ 緣耦。 制較不受到外部之參考地電壓的影響=使得轉合機 耦合效果。 達到較良好的 此外,由於本實施例之巴倫器僅 所以特別適合於使用IPD製程來製造,、兩個佈線層, (Thin Film)製程來製造。使用IpD製即是使用薄膜 =線圈之線寬與線距可精準控制’且可使得==具 傳統使用臟製程所製造之巴偷器之線寬 12 201011972 優點。因此,相較於LTCC製程所製造之巴倫器’本實施 例之IPD製程所製造之巴倫器更具有縮小佈局(Lay〇ut)面 積的優點。 請參照第4A圖,其繪示乃具有本實施例之巴倫器之 結構之IPD 402與射頻收發器晶片404之配置關係之一例 的示意圖。IPD 402配置於基材406上,而射頻收發器晶 片404則可配置於IPD 402上。而射頻收發器晶片404則 例如透過IPD 402中之多個通孔(via)405與基材406電性 _連接。如此,與傳統之LTCC製程所製造之巴倫器必需直 接配置於基材上以與配置於基材之其他區域的射頻收發 器晶片電性連接的作法相較,本實施例之IPD 402可達到 節省基材406面積的優點。 請參照第4B圖,其繪示乃具有本實施例之巴倫器之 結構之IPD 408與射頻收發器晶片410之配置關係之另_ 例的示意圖。IPD 408配置於基材412上,而射頻收發器 晶片410則可配置於ipd 408下方的空間中。此種配置方 ❹式同樣地具有節省基材412面積的優點。 請參照第5圖,其繪示乃本實施例之巴倫器之反射镇 失(Return Loss)與插入損失(inserti〇I1 i〇ss)之模擬結果圖。 茲將做為非平衡埠110之第一端312作為輸入埠,做為平 衡埠112與114之第三端332與第四端334作為輸出埠, 來進行雙埠巴倫器之模擬。由第5圖反射損失之關係曲線 502與插入損失之關係曲線5〇4可看出,於頻率2 附近,反射損失約為_22.5dB,而插入損失則約為_ldB。由 13 201011972 此可看出於頻率2.5GHz附近’本實施例之巴倫器300確 實可以完成訊號轉換的動作。 請參照第6圖,其繪示乃本實施例之巴倫器之兩個輸 出訊號之振幅差(Amplitude imbalance)與相位差(Phase imbalance)之模擬結果圖。由第三端332與第四端334之 輸出訊號的振幅差之關係曲線602可看出,二者的振幅差 於頻率2GHz至3GHz之間係介於〇.ldB至〇 5犯之間。 而由第二端332與第四端334之輸出訊號的相位差之關係 曲線604可看出,二者的相位差則介於179度(degree)至 181度之間。由此可知,本實施例之巴倫器確實可以符合 一般巴倫器之兩輸出訊號振幅實質上相同,相位差實質上 為180度之要求。 上述雖以具有電容Cl、C2及C3之巴倫器100為例 做說明,然巴倫器100亦可不需使用電容C卜C2及C3。 本發明之使用IPD製程製造之巴倫器可以達到縮小 魯佈局面積及節省基材之面積的優點,可使得所使用之通訊 裝置更能達到輕薄短小的目的,故具有良好的市場競爭 力。 综上所述’雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 201011972 【圖式簡單說明】 第1圖繪示乃一種巴倫器之示意圖。 第2圖繪示乃第1圖之巴倫器之等效電路圖。 第3A圖繪示乃依照本發明之一實施例之一種使用整 合被動元件製程製造之巴倫器之結構示意圖。 第3B圖乃第3A圖中,沿著剖面線3B-3B’之巴倫器 之剖面圖。 第4A圖繪示乃具有本實施例之巴倫器之結構之IPD β與射頻收發器晶片之配置關係之一例的示意圖。 第4Β圖繪示乃具有本實施例之巴倫器之結構之IPD 與射頻收發器晶片之配置關係之另一例的示意圖。 第5圖繪示乃本實施例之巴倫器之反射損失與插入 損失之模擬結果圖。 第6圖繪示乃本實施例之巴倫器之兩個輸出訊號之 振幅差與相位差之模擬結果圖。 ®【主要元件符號說明】 100 :巴倫器 102、104、106、108 :傳輸線 110 :非平衡埠 112、114 :平衡埠 300 :巴倫器 302 :基板 312 :第一端 15 201011972 314 :第二端 316 :第一連接線 318 :第二連接線 320(1)、320(2)、320(3):左半線圈 322(1)、322(2)、322(3):右半線圈 324(1)、324(2):第一交叉結構 332 :第三端 334 :第四端 Ο 336 :第三連接線 338 :第四連接線 340(1)、340(2)、340(3):第二左半線圈 342(1)、342(2)、342(3):第二右半線圈 344(1)、344(2):第二交叉結構 352 :第一佈線層 354 :第二佈線層 356、358 :走線 ® 364 :連接點 402、408 :整合被動元件 404、410 :射頻收發器晶片 406、412 :基材 602、604 :關係曲線201011972 IX. INSTRUCTIONS: TECHNICAL FIELD The present invention relates to a Baiun circuit, and more particularly to a balun manufactured using an Integrated Passive Device (IPD) process. . [Prior Art] Generally, when the antenna in the communication device receives the wireless signal, the chirp signal output by the antenna is output to a balun. The Barron will convert the 單埠 signal into a double 埠 signal and output it to a Radio Frequency (RF) transceiver for processing. A current type of balun is achieved by a low temperature co-fired ceramic (LTCC) process. However, the balun manufactured by this LTCC process must be electrically connected to a substrate via Surface-Mount Technology (SMT) before it can be electrically connected to the RF transceiver chip on the substrate. In this way, the substrate must be kept at the same time as the area of the balun device fabricated by the LTCC process and the area where the RF transceiver chip is disposed, so that the required substrate area is increased, and the space of the larger communication device is occupied. . Therefore, how to reduce the area of the required substrate to save the internal space of the communication device is one of the directions of the industry. [Invention] The present invention relates to a 201011972 balun device manufactured by using an integrated passive component process. It can be directly disposed on the RF transceiver chip, so the required substrate area can be reduced, and the internal space of the communication device can be saved. In accordance with the present invention, a balun is provided using an Integrated Passive Device (IPD) process, including a substrate, a first coplanar spiral structure, and a second coplanar spiral structure. The first coplanar spiral structure has a first end, a second end, a first connecting line, a second connecting line, a plurality of first left half coils, a plurality of first right half coils, and at least one A cross structure. At least two first left half coils are electrically connected to the corresponding two first right half coils via a first intersecting structure. The first end is electrically connected to the first left half coil of the outermost ring via the first connecting line, and the second end is electrically connected to the first right half coil of the outermost ring via the second connecting line. The second coplanar spiral structure has a third end, a fourth end, a third connecting line, a fourth connecting line, a plurality of second left half coils, a plurality of second right half coils, and at least one Two cross structures. At least two second left half coils are electrically connected to the corresponding two second right half coils via a second cross structure. The third end is electrically connected to the second left half coil of the innermost ring via the third connecting line, and the fourth end is electrically connected to the second right half coil of the innermost ring via the fourth connecting line. The first left half coils and the second left half coils are alternately arranged, and the first right half coils and the second right half coils are alternately arranged. In order to make the above description of the present invention more comprehensible, the preferred embodiments are described below, and the detailed description is as follows: [Embodiment] 7 201011972 Please refer to FIG. 1 , which is a Schematic diagram of the Barron. The balun includes transmission lines 102, 104, 1〇6 and 1〇8, and capacitors C1, C2, and C3. One end of the transmission line 102 is electrically connected to an unbalanced port 110. The other end of the transmission line 1〇2 is electrically connected to the transmission line 104. The other end of the transmission line 104 is grounded through the capacitor C1. One end of the transmission line 106 is grounded, and the other end of the transmission line 1〇6 is electrically connected to the Balance Port 12 and the capacitor C2. One end of the transmission line 108 is electrically connected to the balance 埠 114 and the capacitor C3, and one end of the transmission line 108 is grounded. Please refer to Fig. 2, which shows the equivalent circuit diagram of the balun of Fig. 1. Transmission lines 102 and 104 can be equivalent to inductor L1, transmission line 106 can be equivalent to inductor L2, and transmission line 1 〇 8 can be equivalent to inductor L3. By the coupling effect between the inductors L1 and L2, and the coupling effect between the inductors L1 and L3, the single ended signal input by the unbalanced 埠110 can be converted into the output by the balance ports 112 and 114. Differential signal. The signals output by the balances 112 and 114 have the same amplitude, but the phases of the two signals are 180 degrees out of phase. The above capacitors cn, C2, and C3 are used to adjust the bandwidth of the passband, adjust the insertion loss (Insertion Loss), or perform impedance conversion (Impedance Transformation). Please refer to the 3A and 3B simultaneously. FIG. 3A is a schematic diagram showing the structure of a balun manufactured by using an integrated passive device (IPD) process according to an embodiment of the present invention, and FIG. 3B is a third embodiment, along the scraping. Section 8 of the Barron 300 of the upper thread 3B-3B' 201011972. The balun 300 includes a substrate 302, a first coplanar spiral structure, and a second coplanar spiral structure. The first coplanar spiral structure has a first end 312, a second end 314, a first connecting line 316, a second connecting line 318, a plurality of first left half coils, and a plurality of first right half coils. And at least one first cross structure. The plurality of first left half coils include, for example, left half coils 320(1), 320(2), and 320(3). The plurality of first right half coils include, for example, right half coils 322(1), 322(2), and 322(3). The at least one first intersecting structure includes first intersecting structures 324(1) and 324(2). In the first coplanar spiral structure, at least two first left half coils are electrically connected to the corresponding two first right half coils via a first intersection structure. For example, the first left half coil 320(3) is electrically connected to the first right half coil 322(2) via the first intersection structure 324(1), and the first left half coil 320(2) is also via The first cross structure 324(1) is electrically connected to the first right half coil 322(3). The first end 312 is electrically connected to the first left half coil 320(1) of the outermost ring via the first connecting line 316, and the second end 314 is connected to the first right half of the outermost ring via the second connecting line 318. The coil 322 (丨) is electrically connected. The second coplanar spiral structure has a third end 332, a fourth end 334, a third connecting line 336, a fourth connecting line 338, a plurality of second left half coils, and a plurality of second right half coils. And at least a second cross structure. The plurality of second left half coils include, for example, second left half coils 34 丨 (丨), 34 〇 (2), and 340 (3). The plurality of second right half coils include, for example, second right half coils 342(1), 342(2), and 342(3). The at least one second intersection structure includes, for example, second intersecting structures 344(1) and 344(2). 9 201011972 In the first coplanar spiral structure, at least two second left half coils are electrically connected to the corresponding two second right half coils via a second cross structure. For example, the second left half coil 340(1) is electrically connected to the second right half coil 342(2) via the second cross structure 344(1), and the second left half coil 340(2) is via the second The junction structure 344(1) is electrically connected to the second right half coil 342(1). The third end 332 is electrically connected to the first left half coil 340 ( 3 ) of the innermost ring via the third connecting line 336 , and the fourth end 334 is connected to the second innermost circle of the innermost ring via the fourth connecting line 338 . The half coil 342(3) is electrically connected. The first left half coils and the second left half coils are alternately arranged, and the first right half coils and the second right half coils are alternately arranged. For example, the first left half coil and the second left half coil are first left half coil 320 (1), second left half coil 340 (1), and first left half coil 320 (2) The order of the second left half coil 340 (2), the first left half coil 32 〇 (3), and the second left half coil 340 (3) is arranged from the outside to the inside. The first right half coil and the second right half coil are the first right half coil 322 (1), the second right half half coil 342 (1), the first right half coil 322 (2), and the second The order of the right half coil 342 (2), the first right half coil 322 (3), and the second right half coil 342 (3) is arranged from the outside to the inside. Preferably, the first left half coils 320(1) to 320(3) are arranged at equal intervals from the second left half coils 340(1) to 340(3). The first right half coils 322(1) to 322(3) and the second right half coils 342(1) to 342(3) are arranged at equal intervals. Furthermore, referring to FIG. 3B, the substrate 302 has a first wiring layer 352 and a second wiring layer 354. In the first coplanar spiral structure, the first connecting line 316, the second connecting line 318, the first left half coils 320(1) to 320(3), and the first right half coils 3400)-340 (3) is disposed on the first wiring layer 352. A portion of the first intersection structure is configured to be disposed on the first wiring layer 352, and the other portion of the first intersection structure 324 is disposed on the second wiring layer 354. Similarly, the first cross structure of the portion 324(2) is also disposed on the first wiring layer 352, and the other portion of the first intersecting structure 324(2) is also disposed on the second wiring layer 354. The first cross structure 324(1) is taken as an example. The first cross structure 324(1) includes traces 356 and 358. The trace 356 is disposed on the second wiring layer 354, and the trace 358 is disposed on the first wiring layer 352. The first left half coil 320(3) is, for example, transparent. The through hole 360 is electrically connected to the trace 356, and the trace 356 is electrically connected to the first right half coil 322(2) through the through hole 362. Thus, the first left half coil 320(3) can be made through the first The trace 356 of the cross structure 324 (1) is electrically connected to the first right half coil 322 ( 2 ). In the second coplanar spiral structure, the third connection line 336 and the fourth connection line 338 are configured. The second wiring layer 354. The second left half coils 340(1) to 340(3) and the second right half coils 342(1) to 342(3) are disposed on the first wiring layer 352. The second cross portion The second intersecting structure 344(1) of the structure 344(1) disposed in the other portion of the first wiring layer 352' is disposed on the second wiring layer 354. The second portion of the second intersecting structure 344(2) is also disposed on The first wiring layer 352 and the other portion of the second intersecting structure 344(1) are disposed on the second wiring layer 354. Preferably, the length and the length of the first left half coils 320(1) to 320(3) are 201011972 is qualitatively equal to the length sum of the first right half coils 322(1) to 322(3), and the length and system of the second half coils 340(1) to 340(3) are substantially equal to the second right; 7 left circle The length of the sum of 342 (1) to 342 (3). Thus, when the first end 312 is a half line balance 110, and the third end 332 and the fourth end 334 are respectively balanced as a non-flat and 114, the third end 332 And the fourth end 334 will output two signals having substantially the same amplitude 'phase as the U's phase difference of 180 degrees. The reference point for the second left half coil 340(1) and the second right half coil is connected to the connection point 364 due to The connection point 364 is connected to the left length and is substantially equal to all the half coils on the right side of the connection point 364. The connection point 364 is connected to a ground voltage or a constant length unit (not shown in the figure). Electrically connected to receive - DC voltage supply flow bias, for example, according to the DC bias required by the lower circuit, in addition, as shown in Figure 3, the second end 314, the second, the second The fourth end 334 is electrically connected to the capacitors C1, C2, and c3, respectively, and in the balun 300 of the embodiment, the light fitting manner between the first 妓° and the second coplanar spiral structure is (edge coupling) way to achieve. This way can be coupled. The system is less affected by the external reference ground voltage = making the coupling machine coupling effect. Further, since the balun of the present embodiment is only particularly suitable for fabrication using an IPD process, two wiring layers are manufactured by a Thin Film process. Using the IpD system is to use the film = the line width and the line spacing of the coil can be precisely controlled' and can make == the line width of the traditionally used dirty process. 12 201011972 Advantages. Therefore, the balun manufactured by the IPD process of the present embodiment of the balun device manufactured by the LTCC process has the advantage of a reduced layout (Lay〇ut) area. Please refer to FIG. 4A, which is a schematic diagram showing an example of the configuration relationship between the IPD 402 and the RF transceiver chip 404 having the structure of the balun device of the present embodiment. The IPD 402 is disposed on the substrate 406, and the RF transceiver chip 404 is configurable on the IPD 402. The RF transceiver chip 404 is electrically connected to the substrate 406, for example, via a plurality of vias 405 in the IPD 402. Thus, the balun device manufactured by the conventional LTCC process must be directly disposed on the substrate to be electrically connected to the RF transceiver chip disposed in other regions of the substrate. The IPD 402 of the embodiment can be achieved. The advantage of saving the area of the substrate 406. Please refer to FIG. 4B, which is a schematic diagram showing another example of the configuration relationship between the IPD 408 having the structure of the balun device of the present embodiment and the RF transceiver chip 410. The IPD 408 is disposed on the substrate 412, and the RF transceiver wafer 410 is configurable in a space below the ipd 408. This configuration also has the advantage of saving the area of the substrate 412. Referring to Figure 5, there is shown a simulation result of the return loss and insertion loss (inserti〇I1 i〇ss) of the balun of the present embodiment. The first end 312 of the unbalanced crucible 110 is used as an input port, and the third end 332 and the fourth end 334 of the balance ports 112 and 114 are used as output ports for the simulation of the double barrage. From the relationship between the reflection loss curve 502 and the insertion loss curve 5 〇 4, it can be seen that near the frequency 2, the reflection loss is about _22.5 dB, and the insertion loss is about _ldB. It can be seen from 13 201011972 that the balun 300 of the present embodiment can actually perform the signal conversion operation at a frequency of around 2.5 GHz. Referring to Fig. 6, there is shown a simulation result of the amplitude difference and the phase difference of the two output signals of the balun of the present embodiment. It can be seen from the amplitude difference curve 602 of the output signals of the third end 332 and the fourth end 334 that the amplitude difference between the two is between 2.ldB and 〇5. As can be seen from the relationship 604 of the phase difference of the output signals of the second end 332 and the fourth end 334, the phase difference between the two ends is between 179 degrees and 181 degrees. It can be seen that the balun of the embodiment can meet the requirements that the amplitudes of the two output signals of the general balun are substantially the same and the phase difference is substantially 180 degrees. Although the above description is made by taking the balun 100 having the capacitances C1, C2, and C3 as an example, the Barron 100 may not need to use the capacitors C, C2, and C3. The balun device manufactured by using the IPD process of the invention can achieve the advantages of reducing the layout area and saving the area of the substrate, and can make the communication device used more light, thin and short, so that it has good market competitiveness. The invention has been described above by way of a preferred embodiment, and is not intended to limit the invention. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. 201011972 [Simple description of the diagram] Figure 1 shows a schematic diagram of a balun. Figure 2 is an equivalent circuit diagram of the balun of Figure 1. 3A is a schematic view showing the structure of a balun manufactured using an integrated passive component process in accordance with an embodiment of the present invention. Fig. 3B is a cross-sectional view of the balun along section line 3B-3B' in Fig. 3A. FIG. 4A is a schematic diagram showing an example of the configuration relationship between the IPD β having the structure of the balun device of the embodiment and the RF transceiver chip. Fig. 4 is a view showing another example of the configuration relationship between the IPD having the structure of the balun device of the present embodiment and the radio frequency transceiver chip. Fig. 5 is a graph showing the simulation results of the reflection loss and the insertion loss of the balun of the present embodiment. Figure 6 is a graph showing the simulation results of the amplitude difference and the phase difference of the two output signals of the balun of the present embodiment. ® [Main Component Symbol Description] 100: Balun 102, 104, 106, 108: Transmission Line 110: Unbalanced 埠 112, 114: Balance 埠 300: Balun 302: Substrate 312: First End 15 201011972 314: Two ends 316: first connecting line 318: second connecting lines 320 (1), 320 (2), 320 (3): left half coil 322 (1), 322 (2), 322 (3): right half coil 324(1), 324(2): first cross structure 332: third end 334: fourth end Ο 336: third connection line 338: fourth connection line 340(1), 340(2), 340(3 ): second left half coil 342 (1), 342 (2), 342 (3): second right half coil 344 (1), 344 (2): second cross structure 352: first wiring layer 354: Two wiring layers 356, 358: traces 364: connection points 402, 408: integrated passive components 404, 410: radio frequency transceiver wafers 406, 412: substrate 602, 604: relationship curve

Claims (1)

201011972 十、申請專利範圍: 1. 一 種使用整合被動元件(Integrated Passive Device, IPD)製程製造之巴倫器,包括: 一基板; 一第一共平面螺旋結構體,具有一第一端、一第二 端、一第一連接線、一第二連接線、複數個第一左半線圈、 複數個第一右半線圈、及至少一第一交叉結構,至少二個 該第一左半線圈係經由一個第一交叉結構與對應之二個 ⑩該第一右半線圈電性連接,該第一端係經由該第一連接線 與最外圈之該第一左半線圈電性連接,該第二端係經由該 第二連接線與最外圈之該第一右半線圈電性連接;以及 一第二共平面螺旋結構體,具有一第三端、一第四 端、一第三連接線、一第四連接線、複數個第二左半線圈、 複數個第二右半線圈、及至少一第二交叉結構,至少二個 第二左半線圈係經由一個第二交叉結構與對應之二個該 第二右半線圈電性連接,該第三端係經由該第三連接線與 ®最内圈之該第二左半線圈電性連接,該第四端係經由該第 四連接線與最内圈之該第二右半線圈電性連接; 其中,該些第一左半線圈與該些第二左半線圈係交錯 配置,該些第一右半線圈與該些第二右半線圈係交錯配 置。 2.如申請專利範圍第1項所述之巴倫器,其中該基 板具有一第一佈線層與一第二佈線層,該第一連接線、該 第二連接線、該些第一左半線圈、及該些第一右半線圈係 17 201011972 配置於該第一佈線層,部份之該第一交叉結構係配置於該 第一佈線層,其他部份之該第一交叉結構係配置於該第二 佈線層。 3. 如申請專利範圍第1項所述之巴倫器,其中該基 板具有一第一佈線層與一第二佈線層,該第三連接線、該 第四連接線係配置於該第二佈線層,該些第二左半線圈、 及該些第二右半線圈係配置於該第一佈線層,部份之該第 二交叉結構係配置於該第一佈線層,其他部份之該第二交 ❿叉結構係配置於該第二佈線層。 4. 如申請專利範圍第1項所述之巴倫器,其中該些 第一左半線圈與該些第二左半線圈係等間隔配置。 5. 如申請專利範圍第1項所述之巴倫器,其中該些 第一右半線圈與該些第二右半線圈係等間隔配置。 6. 如申請專利範圍第1項所述之巴倫器,其中,該 些第一左半線圈之長度和係實質上等於該些第一右半線 圈之長度和。 ® 7.如申請專利範圍第1項所述之巴倫器,其中,該 些第二左半線圈之長度和係實質上等於該些第二右半線 圈之長度和。 18201011972 X. Patent application scope: 1. A balun device manufactured by using an integrated passive device (IPD) process, comprising: a substrate; a first coplanar spiral structure having a first end, a first a second end, a first connecting line, a second connecting line, a plurality of first left half coils, a plurality of first right half coils, and at least one first intersecting structure, at least two of the first left half coils are via a first cross structure is electrically connected to the corresponding two first first half coils, and the first end is electrically connected to the first left half coil of the outermost circle via the first connecting line, the second The end is electrically connected to the first right half coil of the outermost ring via the second connecting line; and the second coplanar spiral structure has a third end, a fourth end, a third connecting line, a fourth connecting line, a plurality of second left half coils, a plurality of second right half coils, and at least one second intersecting structure, and at least two second left half coils are connected via a second cross structure and corresponding two The second right half coil Connecting, the third end is electrically connected to the second left half coil of the innermost ring via the third connecting line, and the fourth end is connected to the second right half of the innermost circle via the fourth connecting line The coils are electrically connected; wherein the first left half coils and the second left half coils are alternately arranged, and the first right half coils and the second right half coils are alternately arranged. 2. The balun device of claim 1, wherein the substrate has a first wiring layer and a second wiring layer, the first connecting line, the second connecting line, and the first left half The coil and the first right half coil system 17 201011972 are disposed on the first wiring layer, and a portion of the first intersecting structure is disposed on the first wiring layer, and the other portion of the first intersecting structure is disposed on the first wiring layer The second wiring layer. 3. The balun device of claim 1, wherein the substrate has a first wiring layer and a second wiring layer, and the third connection line and the fourth connection line are disposed on the second wiring a layer, the second left half coils, and the second right half coils are disposed on the first wiring layer, and a portion of the second intersection structure is disposed on the first wiring layer, and the other portions are The two-pronged fork structure is disposed on the second wiring layer. 4. The balun of claim 1, wherein the first left half coils are equally spaced from the second left half coils. 5. The balun of claim 1, wherein the first right half coils are equally spaced from the second right half coils. 6. The balun of claim 1, wherein the lengths of the first left half coils are substantially equal to the length sum of the first right half coils. The balun device of claim 1, wherein the lengths and lengths of the second left half coils are substantially equal to the length sum of the second right half coils. 18
TW97147734A 2008-09-10 2008-12-08 Balun circuit manufactured by integrate passive de TWI360254B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/427,262 US8049589B2 (en) 2008-09-10 2009-04-21 Balun circuit manufactured by integrate passive device process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13650408P 2008-09-10 2008-09-10

Publications (2)

Publication Number Publication Date
TW201011972A true TW201011972A (en) 2010-03-16
TWI360254B TWI360254B (en) 2012-03-11

Family

ID=42020783

Family Applications (4)

Application Number Title Priority Date Filing Date
TW97147734A TWI360254B (en) 2008-09-10 2008-12-08 Balun circuit manufactured by integrate passive de
TW097147869A TWI368352B (en) 2008-09-10 2008-12-09 Balun circuit manufactured by integrate passive device process
TW098104245A TWI366982B (en) 2008-09-10 2009-02-10 Balun device
TW098104390A TWI365463B (en) 2008-09-10 2009-02-11 Dual inductance structure

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW097147869A TWI368352B (en) 2008-09-10 2008-12-09 Balun circuit manufactured by integrate passive device process
TW098104245A TWI366982B (en) 2008-09-10 2009-02-10 Balun device
TW098104390A TWI365463B (en) 2008-09-10 2009-02-11 Dual inductance structure

Country Status (2)

Country Link
CN (4) CN101673618B (en)
TW (4) TWI360254B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8791775B2 (en) * 2010-03-30 2014-07-29 Stats Chippac, Ltd. Semiconductor device and method of forming high-attenuation balanced band-pass filter
US9312060B2 (en) * 2012-09-20 2016-04-12 Marvell World Trade Ltd. Transformer circuits having transformers with figure eight and double figure eight nested structures
US9431473B2 (en) * 2012-11-21 2016-08-30 Qualcomm Incorporated Hybrid transformer structure on semiconductor devices
CN103078161B (en) * 2012-12-17 2015-03-04 江苏大学 Marchand balun provided with center tap and used for providing direct-current bias
US10002700B2 (en) 2013-02-27 2018-06-19 Qualcomm Incorporated Vertical-coupling transformer with an air-gap structure
US9634645B2 (en) 2013-03-14 2017-04-25 Qualcomm Incorporated Integration of a replica circuit and a transformer above a dielectric substrate
CN103337682B (en) * 2013-07-24 2015-03-25 东南大学 Broadband, low-loss and high-balance-degree on-chip Balun
US9449753B2 (en) 2013-08-30 2016-09-20 Qualcomm Incorporated Varying thickness inductor
CN103606726B (en) * 2013-11-27 2016-06-08 东南大学 A kind of wide-band transformer Ba Lun with center open stub
TWI549425B (en) * 2014-04-07 2016-09-11 國立臺灣科技大學 Balun device
TWI545893B (en) 2014-04-07 2016-08-11 國立臺灣科技大學 Balun device
US9906318B2 (en) 2014-04-18 2018-02-27 Qualcomm Incorporated Frequency multiplexer
US20170243690A1 (en) * 2016-02-22 2017-08-24 Mediatek Inc. Composite inductor structure
TWI632657B (en) 2016-08-05 2018-08-11 瑞昱半導體股份有限公司 Semiconductor element
TWI627644B (en) 2016-08-05 2018-06-21 瑞昱半導體股份有限公司 Semiconductor element
TWI612697B (en) 2016-08-05 2018-01-21 瑞昱半導體股份有限公司 Semiconductor element
CN107731485B (en) * 2016-08-12 2020-08-18 瑞昱半导体股份有限公司 Semiconductor device with a plurality of semiconductor chips
CN110034368A (en) * 2019-04-24 2019-07-19 南京理工大学 LTCC modified delamination helix formula balun power splitter
CN116566329A (en) * 2022-01-27 2023-08-08 锐石创芯(深圳)科技股份有限公司 Balun, radio frequency front end chip and radio frequency front end module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1180444A (en) * 1995-04-05 1998-04-29 齐罗发射技术公司 Two-stage high voltage inductor
US6097273A (en) * 1999-08-04 2000-08-01 Lucent Technologies Inc. Thin-film monolithic coupled spiral balun transformer
US6714113B1 (en) * 2000-11-14 2004-03-30 International Business Machines Corporation Inductor for integrated circuits
CN1240084C (en) * 2002-01-18 2006-02-01 达方电子股份有限公司 High-Q inductor structure
DE102005046451B4 (en) * 2005-09-28 2021-02-25 Snaptrack, Inc. Circuit and component with the circuit
US7187179B1 (en) * 2005-10-19 2007-03-06 International Business Machines Corporation Wiring test structures for determining open and short circuits in semiconductor devices
US7176776B1 (en) * 2006-05-04 2007-02-13 Delphi Technologies, Inc. Multi-layer RF filter and balun
CN201017976Y (en) * 2007-03-20 2008-02-06 浙江大学 Broadband balun based on right-left hand composite transmission lines

Also Published As

Publication number Publication date
TWI365463B (en) 2012-06-01
TWI366982B (en) 2012-06-21
CN101673864A (en) 2010-03-17
TW201012059A (en) 2010-03-16
TWI368352B (en) 2012-07-11
CN101673618A (en) 2010-03-17
CN101673865A (en) 2010-03-17
CN101673865B (en) 2014-02-19
CN101674060B (en) 2012-04-18
CN101673618B (en) 2012-01-25
CN101673864B (en) 2013-07-17
TW201011785A (en) 2010-03-16
TW201011973A (en) 2010-03-16
CN101674060A (en) 2010-03-17
TWI360254B (en) 2012-03-11

Similar Documents

Publication Publication Date Title
TW201011972A (en) Balun circuit manufactured by integrate passive device process
US8049589B2 (en) Balun circuit manufactured by integrate passive device process
CN100525099C (en) Filter circuit
US8120447B2 (en) Multilayer balanced filter
US7418251B2 (en) Compact radio frequency harmonic filter using integrated passive device technology
CN105830343B (en) Filter component
US8008987B2 (en) Balun circuit manufactured by integrate passive device process
TWI499123B (en) Cross-coupled band pass filter
JP2008113432A (en) Multi-layered band pass filter
CN109301404B (en) LTCC (Low temperature Co-fired ceramic) wide stop band filtering balun based on frequency selective coupling
WO2022131113A1 (en) Chip-type electronic component
JP2011096778A (en) Wiring structure of spiral coil and integrated circuit device
CN107634293B (en) There are two the Mini Microstrip low-pass filters of transmission zero for a kind of tool
JP2000022404A (en) Laminated dielectric filter and high frequency circuit board
JP2012517758A (en) Filtering circuit in HR-Si silicon technology
US20050206470A1 (en) Lumped-element transmission line in multi-layered substrate
CN107710605A (en) Mutual Inductance Coupling wave filter and Wireless Fidelity WiFi modules
JP4656514B2 (en) Balance-unbalance conversion circuit and high-frequency component using the same
JP2014011805A (en) Bias tee and system
KR100386729B1 (en) A directional coupler
CN106330126A (en) Antistatic band-pass filtering integrated circuit
TWI639306B (en) Splitter and electronic device
JP3207413U (en) Low-pass filter with stopband noise suppression
CN115065332B (en) Small-size broadband band-pass filter based on IPD and microwave balance filter
US20220352914A1 (en) Impedance converting circuit and amplifier module