TW201011657A - FRID tag - Google Patents

FRID tag Download PDF

Info

Publication number
TW201011657A
TW201011657A TW97135013A TW97135013A TW201011657A TW 201011657 A TW201011657 A TW 201011657A TW 97135013 A TW97135013 A TW 97135013A TW 97135013 A TW97135013 A TW 97135013A TW 201011657 A TW201011657 A TW 201011657A
Authority
TW
Taiwan
Prior art keywords
dielectric substrate
wire
main surface
disposed
substrate
Prior art date
Application number
TW97135013A
Other languages
Chinese (zh)
Inventor
Hirokatsu Okegawa
Hideo Enomoto
Yohei Nokami
Kimihiro Kaneko
Takashi Iwakura
Hirofumi Ryoki
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to TW97135013A priority Critical patent/TW201011657A/en
Publication of TW201011657A publication Critical patent/TW201011657A/en

Links

Abstract

An FRID tag is disclosed, whose feature is that the tag includes a dielectric substrate, which has hole part on its main surface; a grounding wire, which is equipped on the other main surface; conduction wire, which is equipped on the main surface of the abovementioned dielectric substrate and is installed on the inner side merely at a predetermined distance form the end parts of the dielectric substrate; and IC chip, which is inserted inside the hole part of the dielectric substrate and is electrically connected to the conduction wire through a trough hole that is formed inside the conduction wire.

Description

201011657 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種RFID(射頻識別)標籤,射頻識別 標籤係接收從讀寫器發送的命令信號,根據該命令信號的 資訊’更新、補充儲存於記憶體的標藏資訊,或是將該標 籤資訊傳送做為在射頻識別讀寫器上讀出的信號,且其係 被使用於生物.物品的門禁管理及物流管理等。 【先前技術】 RFID系統係在包括IC晶片的RFID標籤及RFid讀寫 器間進行無線通信。RFID標藏有安裝電池並以其電力驅動 的所謂主動型標籤及接收來自讀寫器的電力並以其做為 電源驅動的所謂被動型標蕺。與被動型標籤相比,主動型 標籤雖然因為安裝電池,而在通信距離及通信安定度等方 面具有優•點,但也有構造複雜、尺寸大及高成本等缺點。 • 經由近年來半導體技術的提升,促進1C晶片的小型化、 尚性能化以做為被動型標籤用,且經由通信距離的擴張及 通信安定度的提升等,在被動型標鐵的寬廣領域内的使用 係被期待的。 在被動型標籤中,被適用於頻帶為長波段、短波段的 RFID私籤之電磁感應方式係以在讀寫器的傳送天線線 及RFID標籤的天線線圈之間的電磁感應作用在卯π標籤 上感應電壓,經由此電塵,可啟動IC晶片以進行通信。 因此’咖標籤僅在RFID讀寫器的感應電磁場内㈣, 2275-10007—PF 5 201011657 v 通信距離約為數十公分。又,在UHF波段及微波波段等高 頻帶的RFID標蕺中,因為電波通信方式被適用’且經由 電波將電力供給至RFID標籤的IC晶片,通信距離大幅地 提升為約1〜8公尺。因此,UHF波段及微波波段等的高 頻帶的RFID標籤使得在通信距離短的長波段、短波段的 RFID系統中難以實現的一起讀取複數枚RFID標籤及讀取 移動的RFID標蕺也變成可能,其利用範圍未來會大幅地 ❹ 變廣。然後,做為UHF波段或微波波段等的高頻率的被 動型標籤’例如有被記載於專利文獻1〜6者。 有關傳統的RFID標籤,在專利文獻1的第3圖上係 揭示一種RFID標籤,其包括1/2波長微帶線共振器13、 "電基板14、接地導體板15,透過在1/2波長微帶線共 振器13及接地導體板15之間連接丨c晶片,即使在接地 導體板15侧有金屬物體(導體),可完全不影響天線的放 射特性而設置.黏貼至金屬物體(導體)β有關Ic晶片的細 ❹ 節’在專利文獻1的第17圖上係揭示經由打線接合等的 技術,IC106係在連接至天線導體100的中心部分之接地 線路104的背面被配置以被埋沒在接地導體侧的介電材料 中,且同樣地’在專利文獻1的第18圖〜第21圖中揭 示1C 121被配置以被埋沒於接地導體侧的介電材料中, 在專利文獻1的段落號碼0028中表示若為可在形成κ 121的連接焊墊的面之相對侧上形成接地面的Ic結構,在 銲接線122、12、2之中’不需要銲接線122中的一個。 在專利文獻2的第1圖中係揭示一種RFID標藏,其 2275-10007-PF 6 201011657 4 包括被形成在基材1的表面上之端子部3、及被配置於在 部分的基材1上形成的晶片配置區域9且被連接至端 子部3的IC晶片6。其揭示因為沒有必要將I c晶片6埋 入基材1的内部,可將其安裝在天線上面,利用僅對基材 1的表面加工’可製造結構簡單的RFII)標籤,且可能減低 產量並降低製作成本。 在專利文獻3的第19圖中係揭示一種RFID標蕺5, @ 其包括介電材料1〇、1C晶片用的凹部1 〇b、薄膜基材20、 天線場型(antenna pattern)30、及1C晶片40 ,在介電材 料10上設置可埋設1C晶片40之1C晶片用的凹部i〇b, 在此1C晶片用的凹部上埋設ic晶片40,並將薄膜基 材20缠繞在介電材料1〇上以電氣地連接被形成在薄膜基 材20的内面側之天線場型3〇與ic晶片40,且透過由天 線場型30構成的迴路天線,即使在電波吸收體附近,也 抑制了通信距離的減少。 藝在專利文獻4的第1圖及第2圖中係揭示一種rFid 標籤,其中,1C晶片21被嵌合至基材U (基板)的凹部15, 且以使用導電性墨水的網版印刷形成的天線場型丨3的兩 端被電氣地連接至1C晶片21。又,在專利文獻4的第4 圖中揭示具有2片的天線場型對13A、13B者。 在專利文獻5的第4圖中係揭示一種rfID標籤,在 天線面30上形成露出部分介電質2〇的開口 31,開口係具 有彼此相對地平行延伸的一對第丨槽孔31a、該一對槽孔 31a、及連通該一對槽孔31a的第2槽孔31b,且使前述第 2275-10007-PF 7 201011657 2槽孔31 b位於前述一對第1槽孔31 a的中間部。在傳送 接收元件(1C晶片)中,第1及第2饋電點被連接至41及 42 ° 在專利文獻6的第1圖及第2圖中係揭示一種RFID 標籤’其在沿著長方形的導體板11的中央縱方向設置並 構成槽孔12的槽孔天線1〇上安裝ic晶;=} 13。 [專利文獻1 ] _ 特開2000-332523號公報(第3圖、第17圖〜第21圖) [專利文獻2 ] 特開2002-197434號公報(第1圖) [專利文獻3 ] 特開2006-53833號公報(第19圖) [專利文獻4] 特開2003-223626號公報(第}圖、第2圖、第4圖) [專利文獻5 ] ❼ 特開2006-237674號公報(第4圖) [專利文獻6 ] 特開2002-358494號公報(第丨圖、第2圖) 專利文獻1記栽的RFID標籤 1〜A " f示取Ί尔δ又罝;^金屬物體(導 體)上。不過’因為其係在1/2波長微帶線路共振器及 地導體板之間連接1C晶片的結構,而必須藉由IC晶片的 打線接合連接或將Ic晶片埋入至介電基板的内部。: 雖然減少由衝撞等造成le晶片破損的可能性,但有結構201011657 IX. Description of the Invention: [Technical Field] The present invention relates to an RFID (Radio Frequency Identification) tag that receives a command signal transmitted from a reader/writer and updates and supplements the information according to the command signal. The information stored in the memory is recorded or transmitted as a signal read on the RFID reader, and is used for access control and logistics management of the biological item. [Prior Art] The RFID system performs wireless communication between an RFID tag including an IC chip and an RFid reader. The RFID tag houses a so-called active tag that mounts a battery and is driven by its electric power, and a so-called passive tag that receives power from the reader and drives it as a power source. Compared with passive tags, active tags have advantages in terms of communication distance and communication stability due to the installation of batteries, but they also have disadvantages such as complicated structure, large size, and high cost. • In recent years, the use of semiconductor technology has been promoted to promote the miniaturization and performance of 1C chips for passive tags, and the expansion of communication distance and the improvement of communication stability have been made in the broad field of passive type standards. The use is expected. In passive tags, the electromagnetic induction method applied to RFID private tags with long-band and short-band bands is based on the electromagnetic induction between the transmitting antenna line of the reader and the antenna coil of the RFID tag. The induced voltage is applied through which the IC chip can be activated for communication. Therefore, the 'coffee tag is only in the induced electromagnetic field of the RFID reader (4), 2275-10007 - PF 5 201011657 v The communication distance is about tens of centimeters. Further, in the RFID tag of the high frequency band such as the UHF band and the microwave band, since the radio wave communication method is applied and the power is supplied to the IC chip of the RFID tag via the radio wave, the communication distance is greatly increased to about 1 to 8 meters. Therefore, high-band RFID tags such as UHF band and microwave band make it difficult to read multiple RFID tags and read mobile RFID tags that are difficult to implement in long-band, short-band RFID systems with short communication distances. The scope of its use will be greatly expanded in the future. Then, as a high-frequency passive tag of the UHF band or the microwave band, for example, it is described in Patent Documents 1 to 6. Regarding the conventional RFID tag, in the third drawing of Patent Document 1, an RFID tag including a 1/2 wavelength microstrip line resonator 13, an electric substrate 14, and a grounded conductor plate 15 is transmitted through 1/2. The 微c wafer is connected between the wavelength microstrip line resonator 13 and the grounded conductor plate 15, and even if there is a metal object (conductor) on the side of the grounded conductor plate 15, it can be disposed without affecting the radiation characteristics of the antenna. Adhering to a metal object (conductor) The β-related fine chip of the Ic wafer is disclosed in Fig. 17 of Patent Document 1 by a technique such as wire bonding or the like, and the IC 106 is disposed on the back surface of the ground line 104 connected to the central portion of the antenna conductor 100 to be buried. In the dielectric material on the grounding conductor side, and similarly, in the 18th to 21st drawings of Patent Document 1, 1C 121 is disposed to be buried in the dielectric material on the ground conductor side, in Patent Document 1 Paragraph No. 0028 indicates that if the Ic structure is formed on the opposite side of the face on which the connection pads of κ 121 are formed, one of the weld lines 122 is not required among the weld lines 122, 12, 2. In the first drawing of Patent Document 2, an RFID tag is disclosed, the 2275-10007-PF 6 201011657 4 including the terminal portion 3 formed on the surface of the substrate 1, and the substrate 1 disposed on the portion The wafer arrangement region 9 formed thereon is connected to the IC wafer 6 of the terminal portion 3. It is revealed that since it is not necessary to embed the IC chip 6 inside the substrate 1, it can be mounted on the antenna, and the surface of the substrate 1 can be processed only by the 'RFII' label which can be manufactured with a simple structure, and the yield can be reduced and Reduce production costs. In Fig. 19 of Patent Document 3, an RFID tag 5 is disclosed, which includes a dielectric material 1 〇, a recess 1 〇b for a 1C wafer, a film substrate 20, an antenna pattern 30, and The 1C wafer 40 is provided with a recess i 〇 b for a 1 C wafer in which a 1 C wafer 40 can be buried, and an ic wafer 40 is embedded in the recess for the 1 C wafer, and the film substrate 20 is wound around the dielectric. The antenna pattern 3 type and the ic wafer 40 formed on the inner surface side of the film substrate 20 are electrically connected to each other, and the loop antenna formed of the antenna field type 30 is transmitted through the material, thereby suppressing even in the vicinity of the radio wave absorber. The communication distance is reduced. In Fig. 1 and Fig. 2 of Patent Document 4, an rFid label in which a 1C wafer 21 is fitted to a concave portion 15 of a substrate U (substrate) and formed by screen printing using conductive ink is disclosed. Both ends of the antenna field type 丨3 are electrically connected to the 1C wafer 21. Further, in the fourth drawing of Patent Document 4, an antenna field type pair 13A, 13B having two pieces is disclosed. In the fourth drawing of Patent Document 5, an rfID tag is disclosed in which an opening 31 exposing a portion of the dielectric material 2 is formed on the antenna surface 30, and the opening has a pair of second slot holes 31a extending in parallel with each other. a pair of slots 31a and a second slot 31b that communicates with the pair of slots 31a, and the slots 2275-10007-PF 7 201011657 2 are located in the middle of the pair of first slots 31a . In the transmission/reception element (1C wafer), the first and second feed points are connected to 41 and 42 °. In FIGS. 1 and 2 of Patent Document 6, an RFID tag is disclosed which is along a rectangular shape. The slot antenna 1 in which the center of the conductor plate 11 is disposed in the longitudinal direction and which constitutes the slot 12 is mounted with an ic crystal; [Patent Document 1] JP-A-2000-332523 (Patent 3, FIG. 17 to FIG. 21) [Patent Document 2] JP-A-2002-197434 (Patent 1) [Patent Document 3] Japanese Laid-Open Patent Publication No. 2003-223626 (Patent Document No. 2003-223626) (Patent Document No. 2, FIG. 4, and FIG. 4) [Patent Document 5] ❼ JP-A-2006-237674 (Patent No. 2006-237674) 4)) [Patent Document 6] JP-A-2002-358494 (Picture No. 2, Fig. 2) Patent Document 1 RFID tags 1 to A " f show Ί δ 罝 ^; ^ metal objects ( On the conductor). However, since it is a structure in which a 1C wafer is connected between a 1/2 wavelength microstrip line resonator and a ground conductor plate, it is necessary to bond the IC chip by wire bonding or to embed the Ic wafer into the inside of the dielectric substrate. : Although the possibility of damage to the wafer caused by collision or the like is reduced, there is a structure

2275-l〇〇〇7-PF 8 201011657 4 複雜且製造(量產)困難的問題。 專利文獻2記載的RFID標籤’即使促進了 ic晶片的 小型化,但因為1C晶片的厚度比天線場型及端子部的導 體厚度厚,並且,1C晶片係被安裳在基材的表面上,故其 可突出至RFID標籤的表面。因此,如專利文獻2的段落 號碼0023記載,必須覆蓋保護安裝Ic晶片的部分之全部 或一部並使RFID標籤的表面平坦。亦即,在將天線場型 ❿及1C晶片安裝在基材上時,有由衝擊等造成的IC晶片破 損的可能性,且有難以在RFID標籤的表面(上面)使用標 藏印表機直接印刷的問題。又,在將安裝有天線場型及ic 晶片的薄膜黏著至基材上時,因為發生由Ic晶片造成之 薄膜的膨脹(突起),故仍有前述問題。2275-l〇〇〇7-PF 8 201011657 4 Complex and manufacturing (production) difficult problems. In the RFID tag described in Patent Document 2, even if the size of the ic wafer is promoted, the thickness of the 1C wafer is thicker than the antenna field type and the thickness of the conductor of the terminal portion, and the 1C wafer is mounted on the surface of the substrate. Therefore, it can protrude to the surface of the RFID tag. Therefore, as described in paragraph 0023 of Patent Document 2, it is necessary to cover all or a part of the portion where the Ic wafer is mounted and to flatten the surface of the RFID tag. That is, when the antenna field type ❿ and the 1C chip are mounted on a substrate, there is a possibility that the IC chip is broken due to impact or the like, and it is difficult to directly use the standard printer on the surface (above) of the RFID tag. Printing problems. Further, when the film on which the antenna field type and the ic wafer are mounted is adhered to the substrate, the above problem is caused by the expansion (protrusion) of the film by the Ic wafer.

專利文獻3記載的RFID標籤,雖然幾乎未發生由IC 晶片造成之薄膜(薄膜基材)的膨脹(突起),在被貼附在金 屬物體等的導電性物體(導體)上且設置於其附近時,迴路 天線受導電性物體的影響而停止動作,而有通信距離極端 地減短的問題。 專利文獻4記載的RFID標籤,雖然幾乎未發生由^ 晶片造成的膨脹(突起),與專利文獻3相同係貼附於金屬 物體等的導電性物體(導體)上,且在設置於其附近時,迴 路天線或偶極天線受導電性物體的影響而停止動作,而有 通信距離極端地減短的問題。 專利文獻5記載的RFID標籤,與專利文獻丨記載的 RFID標籤相同,可設置在金屬物體(導體)上,。不過,由於 2275-10007-PF 9 201011657 4 IC晶片被設置在介電質2 0之外,即使促進了 I c晶片的小 型化,因為1C晶片的厚度比天線場型及端子部的導體厚 度厚’並且’ 1C晶片被安裝在基材的表面上’故.其可突起 至RFID標籤的表面。因此,與專利文獻2記載的RFID標 籤相同,有由衝撞等造成1C晶片破損的可能性,且有難 以在RFID標籤的表面(上面)使用標籤印表機直接印刷的 問題。又’在將安裝有天線場型及ic晶片的薄膜黏著至 _ 基材上時,因為發生由1C晶片造成之薄膜的膨脹(突起), 故仍有前述問題。除此之外,由於開口係具有彼此相對地 平行延伸的一對第丨槽孔31a、該一對槽孔31a、及連通 該一對槽孔31a的第2槽孔31b,該開口 31被構成以使得 由天線面30之中經由該開口 31露出的介電質繪製的 區域36、37形成傳送接收元件的匹配電路,饋點方向係 相對於橫向,且一對槽孔31&變成矩形,且由於在第2槽 孔31b内之橫向的主極化的電場以外,在一對槽孔31&上 ❷ 也產生縱向的交又極化成分的電場,而有主極化成分的增 益降低的問題。 又’因為產生的交叉極化波係沿著與主極化波原本的 方向不同的方向被放射’在與讀寫器通信時於不想通信的 位置有標籤而通信的情況中,也有標籤的設置方法及運用 方法困難的問題。再者,專利文獻5記載的RFID標籤的 貼片天線(patch antenna)中,雖然饋電點41、42係在天 線面30的中央周邊,由於基本上係將槽孔配置在從天線 面50的中央移動的位置上,主極化的場型也變成非對稱, 10 201011657 4 而有影響天線的放射場型之對稱性的問題。根據上述問題 可知專利文獻6的貼片天線主要係考慮區域36、3?及傳 送接收元件(IC晶片)的整合。 專利文獻6之第1圖及第2圖記載的RFID標籤係適 用在導線(conductor pattern)内部設置有槽孔的槽孔天 線,與專利文獻3相同貼附於金屬物體等的導電性物體(導 體),且在設置於其附近時,迴路天線或偶極天線受導電 ❹ 性物體的影響而停止動作,而有通信距離極端地減短的問 題。再者’因為在專利文獻5之第1圖所示的槽孔之長方 向上產生磁% ’且以此長度被共振並放射,為了高效率地 放射,槽孔長度必需約為λ/2,對於RFID標藏的小型化也 有問題。 所以’為了解決上述問題,本發明之目的在於提供一 種新的RFID標籤,其係可不縮短通信距離,與導電性物 體或非導電性物體無關而被設置的RFID標鐵,除此功能 ❹之外,因為在RFID標籤的表面上未發生IC晶片造成的突 起,故在RFII)標籤的表面上Ic晶片的破損可能性小,且 容易進行製造後的後加工(調整)。 又,本發明之目的在於提供一種新的RFID標籤,其 可不縮短通信距離,與導電性物體或非導電性物體無關, 而被叹置在平面或曲面的設置面上,且因為在rFid標藏 的表面上未發生1C晶片造成的突起,故由衝揸等造成π 晶片破損的可能性小。 2275-10007—PF 11 201011657 【發明内容】 本發明的RFID標籤係包括:介電基板,在一主面上 具有孔部;接地導線,被設置在此介電基板的另一主面 上;導線’被設置在前述介電基板上,且從前述介電基板 的端部起僅隔著預定距離被設置在其内侧上;及1C晶片, 在此導線的内部構成槽孔,經由此槽孔被電氣地連接至前 述導線,且被插入至前述介電基板的前述孔部。 本發明的RFID標藏係包括:介電基板,在一主面上 具有孔部;接地導線,被設置在此介電基板的另一主面 上,導線’被設置在前述介電基板上,且從前述介電基板 的端部起僅隔著預定距離被設置在其内側上;及ic晶片, 在此導線的内部構成細長形的槽孔,經由此槽孔被電氣地 連接至前述導線,且被插入至前述介電基板的前述孔部。 本發明的射頻識別標籤係包括:介電基板,在一主面 上具有孔部;接地導線’被設置在此介電基板的另一主面 ❹上;導線,被設置在前述介電基板的一主面上,且從前述 介電基板的端部起僅隔著預定距離被設置在其内側上;電 氣連接部,在此導線的内部構成槽孔,且從構成此槽孔的 前述導線的兩側起分別延伸至前述槽孔的内側;及IC晶 片,被電氣地連接至這些電氣連接部,且被插入至前述介 電基板的前述孔部。 本發明的射頻識別標籤係包括:介電基板,在一主面 上具有孔部;接地導線’被設置在此介電基板的另一主面 上;導線,被設置在前述介電基板的一主面上,且從前述In the RFID tag described in Patent Document 3, the film (film substrate) caused by the IC wafer hardly expands (protrusion), and is attached to a conductive object (conductor) such as a metal object and is provided in the vicinity thereof. At this time, the loop antenna is stopped by the influence of the conductive object, and there is a problem that the communication distance is extremely shortened. In the RFID tag described in Patent Document 4, the expansion (protrusion) caused by the wafer is hardly generated, and is attached to a conductive object (conductor) such as a metal object in the same manner as in Patent Document 3, and is disposed in the vicinity thereof. The loop antenna or the dipole antenna is stopped by the influence of the conductive object, and the communication distance is extremely shortened. The RFID tag described in Patent Document 5 can be provided on a metal object (conductor) in the same manner as the RFID tag described in the patent document. However, since the 2275-10007-PF 9 201011657 4 IC wafer is disposed outside the dielectric 20, even if the miniaturization of the IC chip is promoted, the thickness of the 1C wafer is thicker than the antenna field type and the conductor thickness of the terminal portion. The 'and' 1C wafer is mounted on the surface of the substrate. Therefore, it can protrude to the surface of the RFID tag. Therefore, similarly to the RFID tag described in Patent Document 2, there is a possibility that the 1C wafer is broken by a collision or the like, and it is difficult to directly print on the surface (upper surface) of the RFID tag using a label printer. Further, when the film on which the antenna pattern and the ic wafer are mounted is adhered to the substrate, the above problem is caused by the expansion (protrusion) of the film caused by the 1C wafer. In addition, since the opening has a pair of second slot holes 31a extending in parallel with each other, the pair of slots 31a, and the second slot 31b communicating with the pair of slots 31a, the opening 31 is configured The matching circuits for transmitting the receiving elements are formed such that the regions 36, 37 drawn by the dielectric exposed through the openings 31 in the antenna face 30 are oriented with respect to the lateral direction, and the pair of slots 31 & become rectangular, and In addition to the electric field of the main polarization in the lateral direction in the second slot 31b, the electric field of the longitudinally and repolarized component is also generated in the pair of slots 31 & and the gain of the main polarization component is lowered. . In addition, since the generated cross-polarized wave system is radiated in a direction different from the original direction of the main polarized wave, in the case of communication with the reader/writer at a position where communication is not desired, there is also a label setting. Methods and methods of application are difficult. Further, in the patch antenna of the RFID tag described in Patent Document 5, since the feeding points 41 and 42 are arranged around the center of the antenna surface 30, the slots are basically arranged on the antenna surface 50. At the centrally moved position, the dominant polarization field pattern also becomes asymmetrical, and there is a problem that affects the symmetry of the radiation field pattern of the antenna. According to the above problem, it is understood that the patch antenna of Patent Document 6 mainly considers the integration of the regions 36, 3? and the transmission receiving element (IC chip). The RFID tag described in the first and second aspects of the patent document 6 is applied to a slot antenna in which a slot is provided in a conductor pattern, and is attached to a conductive object such as a metal object in the same manner as in Patent Document 3. When it is placed in the vicinity thereof, the loop antenna or the dipole antenna is stopped by the influence of the conductive inertia object, and the communication distance is extremely shortened. Furthermore, 'the magnetic %' is generated in the longitudinal direction of the slot shown in the first figure of Patent Document 5, and is radiated by this length and radiated. For efficient emission, the slot length must be about λ/2. There is also a problem with miniaturization of RFID tags. Therefore, in order to solve the above problems, an object of the present invention is to provide a new RFID tag which is an RFID tag which can be disposed independently of a conductive object or a non-conductive object without shortening the communication distance, in addition to the function ❹ Since the protrusion caused by the IC wafer does not occur on the surface of the RFID tag, the possibility of breakage of the Ic wafer on the surface of the RFII) tag is small, and post-processing (adjustment) after the manufacturing is easy. Further, it is an object of the present invention to provide a new RFID tag which can be set on a plane or a curved surface without being shortened in communication distance, irrespective of a conductive object or a non-conductive object, and because it is included in the rFid mark. The protrusion caused by the 1C wafer does not occur on the surface, so that the possibility of π wafer damage caused by punching or the like is small. 2275-10007-PF 11 201011657 [Invention] The RFID tag of the present invention comprises: a dielectric substrate having a hole portion on a main surface; a grounding wire disposed on the other main surface of the dielectric substrate; 'on the dielectric substrate, and disposed on the inner side thereof from the end of the dielectric substrate by a predetermined distance; and a 1C wafer in which a slot is formed inside the wire, through which the slot is Electrically connected to the aforementioned wires and inserted into the aforementioned hole portions of the aforementioned dielectric substrate. The RFID tag of the present invention comprises: a dielectric substrate having a hole portion on a main surface; a grounding wire disposed on the other main surface of the dielectric substrate, the wire 'on being disposed on the dielectric substrate, And an ic wafer is formed from the end of the dielectric substrate with a predetermined distance therebetween; and an ic wafer is formed inside the wire to form an elongated slot through which the wire is electrically connected to the wire. And inserted into the aforementioned hole portion of the dielectric substrate. The radio frequency identification tag of the present invention comprises: a dielectric substrate having a hole portion on a main surface; a ground wire 'on the other main surface of the dielectric substrate; and a wire disposed on the dielectric substrate a main surface, and is disposed on the inner side thereof only from a predetermined distance from an end portion of the dielectric substrate; an electrical connection portion, a slot is formed inside the wire, and the aforementioned wire constituting the slot The two sides extend to the inner side of the slot, respectively; and the IC chip is electrically connected to the electrical connection portion and is inserted into the hole portion of the dielectric substrate. The radio frequency identification tag of the present invention comprises: a dielectric substrate having a hole portion on a main surface; a ground wire 'on the other main surface of the dielectric substrate; and a wire disposed on the dielectric substrate Mainly, and from the foregoing

2275-10007-PF 201011657 介電基板的端部起僅隔著預定距離被設置在其内側上;電 氣連接部,在此導線的内部構成細長形的槽孔,且從構成 此槽孔的寬度方向中之相對的前述導線的兩侧起分別延 伸至前述槽孔的内侧;及IC晶片,被電氣地連接至這些 電氣連接部,且被插入至前述介電基板的前述孔部。 本發明的RFID標蕺係可設置在預定曲率的曲面上之 射頻識別標籤,且包括:介電基板,在一主面的中央部上 φ 具有孔部’且具有至少前述預定曲率彎曲的硬度;接地導 線,被IX置在此介電基板的另一主面上;導線,被設置在 前述介電基板上,且從前述介電基板的端部起僅隔著預定 距離被設置在其内側上;及IC晶片,在此導線的内部構 成細長形的槽孔,經由此槽孔被電氣地連接至前述導線, 且被插入至前述介電基板的前述孔部。 本發明的RFID標藏係可設置在預定曲率的曲面上之 射頻識別標籤,其包括:介電基板,在一主面的中央部上 ❹ 具有孔部,且具有至少前述預定曲率彎曲的硬度;接地導 線,被设置在此介電基板的另一主面上;薄膜基材;導線, 被設置在此薄膜基材上,且從前述薄膜基材的端部起僅隔 著預定距離被設置在其内側上;及IC晶片,在此導線的 内部構成細長形的槽孔,經由此槽孔被電氣地連接至前述 導線,且被插入至前述介電基板的前述孔部。 本發明的RFID標籤中,前述介電基板在前述比晶片 周邊的硬度係比在前述Ic晶片周邊以外的位置之硬度高。 本發明的RFID標籤係可設置在預定曲率的曲面上之 2275-10007-PF 13 201011657 m 射頻識別標籤’其包括:第1介電基板,在—主面的中央 部上具有凹部,且具有至少前述預定曲率彎曲的硬度第 2介電基板,被設置在前述凹部的内部,且在前逑第^介 電基板的一主面側上具有孔部’且硬度比前述第丨介電基 板高;接地導線,被設置在前述第i介電基板的另—主面 上,導線,被設置在前述第1介電基板及前述第2介電美 板上,且從前述第1介電基板的端部起僅隔著預定距離被 設置在其内側上;及1C晶片,在此導線的内部構成細長 形的槽孔,經由此槽孔被電氣地連接至前述導線,且被插 入至前述第2介電基板的前述孔部。 本發明的RFID標籤係可設置在預定曲率的曲面上之 射頻識別標籤,其包括:第1介電基板,在-主面的中央 部上具有凹部,且具有至少前述預定曲率彎曲的硬度;第 2介電基板,被設置在前述凹部的内冑,且在前述第丄介 電基板的-主面側上具有孔部,且硬度比前述第^電^ 板高;接地導線,被設置在前述第丨介電基板的另一主面 上;薄膜基材;導線’被設置在此薄膜基材上,且從 薄膜基材的端部起僅隔著預定距離被設置在其内側上:及 IC晶片’在此導線的内部構忐 饵或細長形的槽孔,經由此槽孔 被電氣地連接至前述導線,且祜奸 a 的m I被插入至則述第2介電基板 的則述孔部。 本發明的RFID標籤係可設置在預定曲率的 射頻識別標籤,其包括:第U電基板,纟中央部 從一主面貫通至另一主面的;八有 巧王少刖述預定2275-10007-PF 201011657 The end of the dielectric substrate is disposed on the inner side thereof only by a predetermined distance; the electrical connection portion, the inside of the wire constitutes an elongated slot, and from the width direction constituting the slot The opposite sides of the opposite wires extend to the inner sides of the slots, respectively; and the IC chips are electrically connected to the electrical connections and are inserted into the holes of the dielectric substrate. The RFID tag of the present invention is a radio frequency identification tag that can be disposed on a curved surface of a predetermined curvature, and includes: a dielectric substrate having a hole portion φ on a central portion of a main surface and having a hardness of at least the aforementioned predetermined curvature; a grounding wire is disposed on the other main surface of the dielectric substrate; the wire is disposed on the dielectric substrate, and is disposed on the inner side thereof from the end of the dielectric substrate by a predetermined distance And an IC chip in which an elongated slot is formed inside the wire, through which the wire is electrically connected to the wire and inserted into the hole portion of the dielectric substrate. The RFID tag of the present invention is a radio frequency identification tag that can be disposed on a curved surface of a predetermined curvature, and includes: a dielectric substrate having a hole portion at a central portion of a main surface and having a hardness of at least the aforementioned predetermined curvature; a grounding wire disposed on the other main surface of the dielectric substrate; a film substrate; a wire disposed on the film substrate, and disposed at a predetermined distance from an end of the film substrate On the inner side thereof; and an IC chip, an elongated slot is formed inside the wire, through which the wire is electrically connected to the wire and inserted into the hole portion of the dielectric substrate. In the RFID tag of the present invention, the dielectric substrate has a higher hardness than a periphery of the wafer than the periphery of the Ic wafer. The RFID tag of the present invention can be disposed on a curved surface of a predetermined curvature. The 2275-10007-PF 13 201011657 m radio frequency identification tag includes: a first dielectric substrate having a recess on a central portion of the main surface, and having at least The second dielectric substrate having a predetermined curvature curvature is provided inside the concave portion, and has a hole portion ' on a main surface side of the front dielectric substrate and has a hardness higher than that of the second dielectric substrate; a grounding conductor is disposed on the other main surface of the ith dielectric substrate, and the wiring is disposed on the first dielectric substrate and the second dielectric slab, and from the end of the first dielectric substrate The portion is disposed on the inner side only by a predetermined distance; and the 1C wafer, the inside of the wire is formed as an elongated slot through which the wire is electrically connected to the wire and inserted into the second layer The aforementioned hole portion of the electric substrate. The RFID tag of the present invention is a radio frequency identification tag which is disposed on a curved surface of a predetermined curvature, and includes: a first dielectric substrate having a concave portion at a central portion of the main surface and having a hardness of at least the aforementioned predetermined curvature; a dielectric substrate provided on the inner side of the concave portion and having a hole portion on a main surface side of the second dielectric substrate, and having a hardness higher than that of the first electric plate; the grounding wire is provided in the foregoing The other main surface of the second dielectric substrate; the film substrate; the wire 'on which is disposed on the film substrate, and is disposed on the inner side thereof only from the end of the film substrate by a predetermined distance: and IC The wafer is configured to have a bait or an elongated slot inside the wire, through which the wire is electrically connected to the wire, and the m I of the rape a is inserted into the hole of the second dielectric substrate unit. The RFID tag of the present invention is a radio frequency identification tag which is disposed at a predetermined curvature, and includes: a U-th electric substrate, the central portion of the crucible is penetrated from one main surface to the other main surface;

2275-10007-PF 14 201011657 m 曲率蠻曲2¾ 、硬度;第2介電基板’被設置在前述貫通孔的 ^ 在4述第1介電基板的一主面側上具有孔部,且 J述第1介電基板高;接地導線,被設置在前 1介電基板的另_ ^ · 3«· «4 、x 主面上,導線’被設置在前述第1介電 第2介電基板上’且從前述第1介電基板的 部起僅隔著預定距離被設置在其内側上;及1C晶片,在 匕導線的内"卩構成細長形的槽孔,經由此槽孔被電氣地連 ❹:至前述導線’且被插入至前述第2介電基板的前述孔 本發明的RFID標籤係可設置在預定曲率的曲面上之 射頻識別標籤,其包括:第1介電基板’在中央部上具有 從主至另-纟面的貫通孔,且具有至少前述預定 曲率管曲的硬度;第2介電基板,被設置在前述貫通孔的 内部,且在前述第1介電基板的一主面側上具有孔部,且 硬f比前述第i介電基板高;接地導線,被設置在前述第 % 1介電基板的另一主面上;薄膜基材;導線,被設置在此 薄膜基材上,且從前述薄膜基材的端部起僅隔著預定距離 被又置在,、内側上,及J C晶片,在此導線的内部構成細 長形的槽孔,經由此槽孔被電氣地連接至前述導線,且被 插入至前述第2介電基板的前述孔部。 本發明的RFID標籤係可設置在預定曲率的曲面上之 射頻識別標藏,其包括:第1介電基板,在中央部上具有 從主面貫通至另一主面的貫通孔,且具有至少前述預定 曲率彎曲的硬度;第2介電基板,被設置在前述貫通孔的2275-10007-PF 14 201011657 m curvature is substantially curved and hardness; the second dielectric substrate 'is provided in the through hole, and has a hole portion on one main surface side of the first dielectric substrate, and The first dielectric substrate is high; the grounding wire is disposed on the other main surface of the first dielectric substrate, and the wire is disposed on the first dielectric second dielectric substrate 'and the inner surface of the first dielectric substrate is disposed on the inner side thereof only by a predetermined distance; and the 1C wafer is formed in the inner side of the meandering wire to form an elongated slot through which the ground hole is electrically The above-mentioned hole of the present invention is inserted into the aforementioned second dielectric substrate. The RFID tag of the present invention is a radio frequency identification tag which is disposed on a curved surface of a predetermined curvature, and includes: the first dielectric substrate 'in the center The portion has a through hole from the main portion to the other surface, and has a hardness of at least the predetermined curvature of the tube; the second dielectric substrate is disposed inside the through hole, and one of the first dielectric substrates The main surface side has a hole portion, and the hard f is higher than the aforementioned ith dielectric substrate; the grounding wire is And disposed on the other main surface of the first dielectric substrate; the film substrate; the wire is disposed on the film substrate, and is further disposed at a predetermined distance from the end of the film substrate The inner side and the JC wafer have an elongated slot formed inside the lead wire, and are electrically connected to the lead via the slot and inserted into the hole portion of the second dielectric substrate. The RFID tag of the present invention is a radio frequency identification tag that can be disposed on a curved surface of a predetermined curvature, and includes: a first dielectric substrate having a through hole penetrating from the main surface to the other main surface at the central portion, and having at least The hardness of the predetermined curvature curvature; the second dielectric substrate is disposed in the through hole

2275-10007-PF 15 201011657 内部,且在前奸、松 硬度比前述第介電ΐ板的一主面側上具有孔部,且 1介電基板的另基板r,_接地導線,被設置在前述第 介電基板的另:則述第2介電基板内之前述第1 的另一主面側上;導線,被設置在前述第丨介雷 土板及⑴述第2介電基板上’且從前述第1介電基板的端 部起僅隔著預定距離被設置在其内側上;& ic晶片,在 此導=的内部構成細長形的槽孔,㈣此槽孔被電氣地連2275-10007-PF 15 201011657 Internal, and having a hole portion on the main surface side of the first dielectric plate, and a second substrate r, _ ground wire of the dielectric substrate In the second dielectric substrate, the first dielectric surface of the first dielectric substrate is on the first main surface side of the first dielectric substrate; and the lead wires are provided on the second dielectric layer and the (1) second dielectric substrate. And the inner surface of the first dielectric substrate is disposed on the inner side thereof only by a predetermined distance; the & ic wafer has an elongated slot formed therein, and (4) the slot is electrically connected

接至前述導線’且被插人至前述第2介電基板的前述孔 部0 - 本發月的RFID標籤係可設置在預定.曲率的曲面上之 射頻識別標籤The above-mentioned hole portion □ is inserted into the aforementioned second dielectric substrate. The RFID tag of the present month is a radio frequency identification tag which can be placed on a curved surface of a predetermined curvature.

m 具包括.第1介電基板,在中央部上具有 從一主面貫通至另_纟面的貫通孔’且具有至少前述預定 曲率彎曲的硬度;第2介電基板,被設置在前述貫通孔的 内部,且在前述第1介電基板的一主面侧上具有孔部,且 硬度比前述第1介電基板高;接地導線,被設置在前述第 1介電基板的另一主面及前述第2介電基板内之前述第i 介電基板的另一主面側上;薄膜基材;導線,被設置在此 薄膜基材上’且從前述薄膜基材的端部起僅隔著預定距離 被设置在其内侧上;及I c晶片,在此導線的内部構成細 長形的槽孔’經由此槽孔被電氣地連接至前述導線,且被 插入至刖述第2介電基板的前述孔部。 本發明的RFID標籤係包括固定裝置,固定被形成在 前述薄膜基材上的前述導線及前述介電基板的一主面。 本發明的RF ID標籤中,前述凹部或前述貫通孔係圓 2275-10007-PF 16 201011657 形或多角形。 本發明的RFID標籤中,前述第2介電基板係將製模 材料固化者。 本發明的RFID標蕺中,前述導線及前述接地導線中 的至少一個係以金屬纖維板構成。 本發明的RFID標籤中,前述接地導線具有切除其一 部分的缺口部。 本發明的RFID標籤中,前述接地導線係格狀圖案或 P曲折圖案。 本發明的RFID標籤中,前述IC晶片係與從構成前述 槽孔的别述導線之寬度方向的兩侧起分別延伸至前述槽 孔的内側之電氣連接部電氣地連接。 根據本發明,因為槽孔產生的電場方向與貼片天線的 電場方向一致,交又極化成分被抑制成相當低且因為構 成槽孔的導線係做為貼片天線的放射部,不僅是非導線 • 性,即使是設置導電性的設置物的情況,也幾乎不影響天 線的放射特性,而為經由槽孔將ic晶片電氣地連接至導 線的結構,所以可降低饋電損失,因此,得到可通信的距 離不縮短的效果,此外,因為係將IC晶片插入至介電基 板的孔部的結構,也就是,透過内藏在介電基板内,而不 發生ic晶片造成的膨脹,在由衝擊等造成Ic的破損或由 2籤印表機印刷的情況中,將1(:晶片夾在滾輪或滚筒上, 仲到由此造成的ic晶片的破損變少的效果。 又,根據本發明,在未使用薄膜基材的結構中,可將 2275-10007-pp 17 201011657 RFID標籤全體的厚度薄型化。由於槽孔部分的導體未被覆 蓋槽孔的大小變得容易調整。也就是,阻抗變得容易調 整。由於未使用薄膜基材,而具有RFID標蕺的成本下降 等的效果。 再者,根據本發明,由於將具有以預定曲率彎曲的硬 度之介電基板使用於RFID標籤的基材,且IC晶片被設置 在RFID標籤的中央周邊,所以可得到不僅是平面,也可 設置於預定曲率的曲面狀之設置面的效果。 ❹ 【實施方式】 以下,為了更詳細地說明本發明,根據附加的圖式說 明用以實施本發明的最佳實施例。 實施例1 以下,說明本發明之實施例〗。圏丨係 參 標籤的構成圖。圖1(aKUFID標藏的平面圖,圖ι⑻ 係在圖1(a)中由A-A,線切斷時的截面圖,圖1(c)係將圓 1(a)所不之RFID標籤的槽孔附近擴大的平面圖。在圖i t ’在介電基板1的一主面(表面)上被設置導線2。如圖 1(a)所示’導線2係從介電基板μ縱向及橫向的端部起 僅隔著距離d形成在其内側。如圖1(a)所示,在導線2 的中央部上形成細長形的槽孔3。此槽孔3可經由蝕刻處 理、碾磨處理、蒸鍍、印刷等形成導線2。然後,此槽孔 3的長度及寬度可根據使用的頻率加以決定。在介電基板 ί的一主面上被形成孔部(凹部)4〇 IC晶片·5係由後述的 2275-10007-PF 18 201011657 此1C晶片5係經由槽孔3電氣地連接至 相同的符號標示相同或相當的部分,並省 在此’說明1C晶片5及導線2的連接結構。如圖1(a) 及=所示,突起狀的電氣連接部6、6係從在構成槽孔3 的寬度方向内相對的導線2、2的兩侧起分別延伸至槽孔3 的内側,且分別連續地連接以電氣地連接槽孔3的兩側内The m dielectric device includes a first dielectric substrate having a through hole formed in a central portion from a main surface to the other surface and having a hardness that is curved at least in the predetermined curvature. The second dielectric substrate is disposed in the through-hole a hole portion having a hole portion on a main surface side of the first dielectric substrate and having a higher hardness than the first dielectric substrate; and a ground lead wire provided on the other main surface of the first dielectric substrate And on the other main surface side of the ith dielectric substrate in the second dielectric substrate; a film substrate; a wire disposed on the film substrate ′ and separated from the end of the film substrate a predetermined distance is disposed on an inner side thereof; and an IC chip, wherein an elongated slot is formed inside the wire, through which the wire is electrically connected to the wire, and is inserted into the second dielectric substrate The aforementioned hole portion. The RFID tag of the present invention includes a fixing means for fixing the lead wire formed on the film substrate and a main surface of the dielectric substrate. In the RF ID tag of the present invention, the recess or the through hole is 2275-10007-PF 16 201011657 shaped or polygonal. In the RFID tag of the present invention, the second dielectric substrate is formed by curing a molding material. In the RFID tag of the present invention, at least one of the wire and the ground wire is made of a metal fiber plate. In the RFID tag of the present invention, the grounding wire has a notch portion from which a part thereof is cut. In the RFID tag of the present invention, the grounding conductor has a lattice pattern or a P-fold pattern. In the RFID tag of the present invention, the IC chip is electrically connected to an electrical connection portion extending from the both sides in the width direction of the other wire constituting the slot to the inside of the slot. According to the present invention, since the direction of the electric field generated by the slot coincides with the direction of the electric field of the patch antenna, the cross-polarized component is suppressed to be relatively low and since the wire constituting the slot is used as the radiating portion of the patch antenna, not only the non-wire • The property, even in the case of providing a conductive article, does not affect the radiation characteristics of the antenna, but is a structure in which the ic wafer is electrically connected to the wire via the slot, so that the feed loss can be reduced, and thus, The effect of the communication distance is not shortened, and in addition, since the IC wafer is inserted into the hole portion of the dielectric substrate, that is, through the built-in dielectric substrate, the expansion caused by the ic wafer does not occur, and the impact is caused by the impact. In the case where the Ic is broken or printed by the 2 printer, 1 (the wafer is sandwiched on the roller or the roller, and the resulting ic wafer is less damaged. Further, according to the present invention, In the structure in which the film substrate is not used, the thickness of the entire RFID tag of 2275-10007-pp 17 201011657 can be made thinner. Since the conductor of the slot portion is not covered by the size of the slot, it becomes easy to adjust. That is, the impedance is easily adjusted. Since the film substrate is not used, the cost of the RFID tag is lowered, etc. Further, according to the present invention, a dielectric substrate having a hardness bent at a predetermined curvature is used. In the base material of the RFID tag, and the IC chip is provided at the center of the RFID tag, it is possible to obtain an effect of not only a flat surface but also a curved surface-shaped mounting surface having a predetermined curvature. 实施 [Embodiment] BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail with reference to the accompanying drawings. The plan view of Fig. 1(a) is a cross-sectional view taken along line AA of Fig. 1(a), and Fig. 1(c) is a plan view showing the vicinity of the slot of the RFID tag not shown by circle 1(a). In the figure, 'the main surface (surface) of the dielectric substrate 1 is provided with a wire 2. As shown in Fig. 1(a), the wire 2 is separated from the longitudinal and lateral ends of the dielectric substrate μ by a distance. d is formed on the inner side thereof, as shown in Fig. 1(a), An elongated slot 3 is formed in the central portion of the slot 2. The slot 3 can be formed into a wire 2 by etching, grinding, evaporation, printing, etc. The length and width of the slot 3 can then be used according to the frequency of use. It is determined that a hole portion (concave portion) is formed on one main surface of the dielectric substrate ί. 4 〇 IC wafer 5 is 2275-10007-PF 18 201011657 which will be described later. The 1C wafer 5 is electrically connected to the via hole 3 through the slot 3 The same reference numerals are given to the same or corresponding parts, and the connection structure of the 1C wafer 5 and the wires 2 is explained here. As shown in Fig. 1 (a) and =, the protruding electrical connecting portions 6, 6 are constructed. The two sides of the opposite conductors 2, 2 in the width direction of the slot 3 extend to the inner side of the slot 3, respectively, and are continuously connected to electrically connect the two sides of the slot 3, respectively.

的導線2、2。這些電氣連接部6&6可與導線2的形成同 時被形成。IC晶片5的端子(未圖示)連接至這些電氣連接 邠6、6。在ic晶片5的尺寸與槽孔3的寬度相同或較小 時’雖然其將在槽孔3的寬度内,此時,Ic晶片5的二個 端子(未圖示)係與電氣連接部6、6連接。不 u r 片5的尺寸比槽孔3的寬度大時,κ晶片的端子(未圖示) 可電氣地連接至經由槽孔之導線2的靠近槽孔3的部分。 因此在此If况中,不需設置如前所述的電氣連接部6、已。Wires 2, 2. These electrical connections 6&6 can be formed simultaneously with the formation of the wires 2. Terminals (not shown) of the IC chip 5 are connected to these electrical connections 邠 6, 6. When the size of the ic wafer 5 is the same as or smaller than the width of the slot 3, 'although it will be within the width of the slot 3, at this time, the two terminals (not shown) of the Ic wafer 5 are connected to the electrical connection portion 6. , 6 connections. When the size of the sheet 5 is larger than the width of the slot 3, the terminal (not shown) of the κ wafer can be electrically connected to the portion of the lead 2 passing through the slot near the slot 3. Therefore, in this case, it is not necessary to provide the electrical connection portion 6, as described above.

記憶體等構成。 導線2。圖中, 略其詳細說明。 又,雖然在圖l(a)中,Ic晶片5係在槽孔3的長度 方向中配置於中央部,但也可不配置在其中央部,而是= 置在沿著設定於圖1(a)的槽孔3之箭號移動的槽孔3之長 度方向的端部。由於介電基板i的孔部4係為了插入k 晶片5而形成,其深度及其寬度係對應於IC晶片的大小。 不過,在使用用以固定〗c晶片的製模材料或黏著劑時, 必須補足那些容積。關於形成其孔部4的位置,當然是根 據將1C晶片5配置在槽孔3的哪一個位置而決定。在任 情況中’槽孔3的形狀及尺寸必須匹配安裝的I。晶片5 2275-10007-PF 19 201011657 的電氣連接部6的數目及特性阻 匹配’除了微調整槽孔3的形狀^仏’為了得到阻抗 接端子的接腳為2個的情況中 IC晶片5的連 度之2根電氣連接部6。又,在^阻抗匹配的寬 面)上被設置接地導線7。介電基板1的另—主面(背 圖2係RFID系統的基本構虑Memory and other components. Wire 2. In the figure, a detailed description is given. Further, in Fig. 1(a), the Ic wafer 5 is disposed in the center portion in the longitudinal direction of the slot 3, but may not be disposed at the center portion thereof, but may be placed along the setting in Fig. 1 (a). The end of the slot 3 in which the arrow of the slot 3 moves in the longitudinal direction. Since the hole portion 4 of the dielectric substrate i is formed for insertion of the k wafer 5, the depth and the width thereof correspond to the size of the IC wafer. However, when using molding materials or adhesives for fixing the c-chip, it is necessary to make up those volumes. The position at which the hole portion 4 is formed is of course determined depending on which position of the slot 3 the 1C wafer 5 is placed. In any case, the shape and size of the slot 3 must match the installed I. The number of the electrical connection portions 6 of the wafer 5 2275-10007-PF 19 201011657 and the characteristic resistance match 'except for the shape of the micro-adjustment slot 3' in the case where the number of pins of the impedance-connecting terminal is two, the IC chip 5 Two electrical connections 6 of the degree of connection. Further, the grounding conductor 7 is provided on the wide side of the impedance matching. The other main surface of the dielectric substrate 1 (the back view 2 is the basic consideration of the RFID system)

^ ^ 稱成圖圖2(a)係繪示在RFID 標斌與RFID讀寫器之間進行 _ 仃得送接收的情況之概念圖。^ ^ 称 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图

圖2(b)係RFID標藏的構成圖 尺固将別係功能地顯示1C晶片 6的内部結構之方塊圖。在 一 你固Z(a)、(b)中,RFID標藏8 係圖1顯示之結構的RFID標藏。被設置在此腳標藏8 上的天線部9係相當於在圖i中形成槽孔3的導線2者。 做為RFID標藏8的天線部9,如前述圖(所示由於在介 電基板1的一主面(表面)上設置具有槽孔3的導線2,且 在介電基板1的另一主面(背面)上設置接地導線7,故 RFID標籤8係做為貼片天線。亦即,具有槽孔3的導線2 係做為天線場型(放射部)^導線2及槽孔3被調整以得到 用以激發的RFID系統的使用頻率與IC晶片5的阻抗匹 配。由於此調整也與介電基板1的厚度及相對介電常數有 重大關係,透過符合此等條件而調整並設計,可得到期望 的放射場型及增益。又,槽孔3被形成在導線2的中央部 以使導線2的放射場型變好係如前所述。透過符合這些條 件加以調整並設計,得到RFID標籤内之期望的放射場型 及增益,可不使RFID標籤8(亦即介電基板1)大型化,而 得到例如約1〜8m的通信距離。 2275-10007-PF 20 201011657 又’在RFID讀寫器l〇上被設置天線部u,天線部 11係與RFID標籤8的天線部9進行無線通信。ic晶片5 係在圖1中說明的1C晶片,其具體結構係如圖2(b)所示 的結構。類比部12係透過RFID標籤8的天線部9接收來 自RFID讀寫器1〇的傳送波,並輸出至後段的數位部19 之類比部。A/D變換部13將傳送波A/D變換的A/D變換 部。電源控制部14係以整流電路將天線部9接收的傳送 波平滑化以產生電力,並進行對RFID標藏8的各電路之 ® 饋電及電源控制的電源控制部。記憶部15係被安裝於 RF ID標籤8並儲存固體識別資訊等的標籤資訊之記愧 部。解調部16係將傳送波解調變的解調部,控制部17係 根據在解調部16解調變的傳送波控制包含記憶部15的ic 晶片5内的電路之控制部。調變部18係將經由控制部i7 從記憶部15取出的資訊調變的調變部。數位部19係由解 調部15、控制部16及調變部17構成。D/A變換部2〇係 參將從調變部18被傳送出的信號D/A變換,並輸出至類比 4 12的D/A變換部。圖中,相同的符號標示相同或相當 的部分,並省略其詳細說明。 在此,說明關於此種RFID系統的基本操作。根據利 用此種RF ID系統的用途(生物.物品的門禁管理及物流管 理)將其標籤為訊儲存在RF ID標籤8的記憶部15,RF ID 讀寫器10在本身的傳送接收區域内可在㈣標籤8(被貼 附在做為門禁管理及物流管理的對象之生物物品上)存 在或移動時進行標籤資訊的更新、寫入或讀出。叮⑺讀寫 2275-10007-pp 21 201011657 器ίο將命令RFID標籤8更新、寫入或讀出等的命令信號 做為傳送波從RFID讀寫器10的天線部u傳送至卯⑺標 籤8的天線部9。RFID標籤8的天線部9接收傳送波,傳 送波經由電源控制部14被檢波.蓄電(平滑化),以產生 RFID軚蕺8的操作電源,並將操作電源供給至rfid標藏 8的各電路。又,傳送波係經由解調部16將命令信號解調 變。控制部17由被解調變的命令信號的命令内容進行資 春料處理’並指示記憶部15進行標籤資訊的更新、寫入或 §的4或一者,根據此控制部17的指示由記憶部15 輸出之讀出信號係經由調變冑18調變成回覆波,且此回 覆波係經由類比部12從天線部9被傳送至rfid讀寫器1〇 的天線部U ’ RFID讀寫器1〇接收讀出信號,並得到期望 的資訊。圖中,相同的符號標示相同或相當的部分,並省 略其詳細說明。 ^再者,在詳細說明使用實施例1的RFID標籤之RFID φ 系統的操作時,RFID讀寫器10係將命令RFID標籤8更 新寫入或讀出等的命令信號做為傳送波從RFID讀寫器 10的=線部11料至RFID標的天線部9。做為構成 隨標藏8的介電基板1的電波之放射部的導線2接收傳 达波,在槽孔3的相對部分間產生電位差,以將傳送波供 $ 了 p a μ r ,’ 曰曰片5,如上所述,被供給至ic晶片5的傳送波 f經由電源控制部14被檢波.蓄電(平滑化),以產生KFID ^藏8的操作電源,並將操作電源供給至RFID標藏8的 (C B曰片5),命令信號從傳送波被解調變,由被解 2275-10007-pp 22 201011657 調變的命令信號之命令内容對記憶部丨5進行標籤資訊的 更新、寫人或讀出的任-或二者,以記憶_ 15輸出的讀 出信號做為回覆波循著跟將傳送波供給至 ^ i曰曰片5相同 的路徑,從做為放射部的導線2將回覆波傳送至RFID續 寫器10, RFID讀寫器1〇的天線部u接收回覆波,而得 到期望的資訊。R F丨D系統進行的無線通信的資料的内容= 以是舊的或新的’由於在介電基板丨的背面形成接地導線 7,利用使介電基板1的背面侧朝向設置對象的表面因 為可便宜地製造與設置對象是導H料^關而設置 之構造簡單的RFID標籤,故可在需要大量的Rm標藏的 物流管理、倉庫管理、機材管理、汽車的進出場管理等廣 泛領域加以利用,即使設置對象或設置對象的表面是導 性物體等的導體,也都可以設置。 實施例1的難標籤的製造方法也可為在前述專利 文獻1〜5(專利文獻6係在導體板上開啟槽孔而除外)等上 ,載之-般的RFID標籤的製造方法。使用圖3及圖4簡 早地說明製造方法的例子。目3係形成用以在介電基板1 的一主面上插入1C晶# 5的孔部4之介電基板!的平面 圖(形成有孔部的介電基板1之構成圖)。再者,此孔部4 係經由切削等在基板上形成且若是由射出成型法造成的 基板則在成型時形成等。圖4係將實施例工的肥。標籤 的製以方法分成(W)〜(H)、(& —2卜(d 2)、(H)〜 (d 3)一個的製造程序圖。在此三個製造方法中,圖 4(a 1)、圖4(a-2)、圖4(a-3)係顯示各個製造方法的初Fig. 2(b) is a block diagram showing the internal structure of the 1C wafer 6 in a functional form of the RFID tag. In a solid Z(a), (b), the RFID tag 8 is the RFID tag of the structure shown in Figure 1. The antenna portion 9 provided on this foot tag 8 corresponds to the wire 2 in which the slot 3 is formed in Fig. i. As the antenna portion 9 of the RFID tag 8, as shown in the foregoing figure (the wire 2 having the slot 3 is provided on one main surface (surface) of the dielectric substrate 1 and the other main body of the dielectric substrate 1 The grounding wire 7 is provided on the surface (back surface), so the RFID tag 8 is used as a patch antenna. That is, the wire 2 having the slot 3 is used as an antenna field type (radiation portion). The wire 2 and the slot 3 are adjusted. The frequency of use of the RFID system for excitation is matched with the impedance of the IC chip 5. Since this adjustment is also significantly related to the thickness and relative dielectric constant of the dielectric substrate 1, it is adjusted and designed by meeting these conditions. The desired radiation pattern and gain are obtained. Further, the slot 3 is formed in the central portion of the wire 2 so that the radiation pattern of the wire 2 is improved as described above. The RFID tag is obtained by adjusting and designing in accordance with these conditions. The desired radiation field type and gain can be obtained without increasing the size of the RFID tag 8 (that is, the dielectric substrate 1), for example, a communication distance of about 1 to 8 m. 2275-10007-PF 20 201011657 The antenna portion u is disposed on the device l, and the antenna portion 11 is connected to the RFID tag 8 The antenna unit 9 performs wireless communication. The ic chip 5 is a 1C wafer described in Fig. 1, and its specific structure is as shown in Fig. 2(b). The analog portion 12 is received from the RFID portion 9 through the antenna portion 9 of the RFID tag 8. The transmission wave of the reader/writer 1〇 is output to the analog portion of the digit unit 19 in the subsequent stage. The A/D conversion unit 13 converts the A/D conversion unit that converts the A/D conversion. The power supply control unit 14 is a rectification circuit. The transmission wave received by the antenna unit 9 is smoothed to generate electric power, and a power supply control unit that supplies and supplies power to each circuit of the RFID tag 8 is mounted. The memory unit 15 is mounted on the RF ID tag 8 and stores solid identification. The demodulation unit 16 is a demodulation unit that demodulates the transmission wave, and the control unit 17 controls the ic chip including the memory unit 15 based on the transmission wave demodulated by the demodulation unit 16. The control unit of the circuit in 5. The modulation unit 18 is a modulation unit that changes information extracted from the storage unit 15 via the control unit i7. The digital unit 19 is composed of a demodulation unit 15, a control unit 16, and a modulation unit 17. The D/A conversion unit 2 converts the signal D/A transmitted from the modulation unit 18 and outputs it to the class. The same reference numerals are used to designate the same or equivalent parts, and the detailed description thereof is omitted. Here, the basic operation of such an RFID system will be described. According to the use of such an RF ID system The use (biological. Access control and logistics management of the item) is tagged as the information stored in the memory part 15 of the RF ID tag 8. The RF ID reader/writer 10 can be attached to the (4) tag 8 in its own transmission and reception area (attached) Update, write or read the tag information when it exists or moves on the biological object that is the object of access control management and logistics management.叮(7)Reading and writing 2275-10007-pp 21 201011657 The command signal for instructing the RFID tag 8 to be updated, written or read is transmitted as a transmission wave from the antenna portion u of the RFID reader/writer 10 to the 卯(7) tag 8. Antenna portion 9. The antenna unit 9 of the RFID tag 8 receives the transmission wave, and the transmission wave is detected by the power supply control unit 14. The power is stored (smoothed) to generate an operation power of the RFID device 8, and the operation power is supplied to each circuit of the rfid tag 8. . Further, the transmission wave demodulates the command signal via the demodulation unit 16. The control unit 17 performs the processing of the command information of the demodulated command signal and instructs the memory unit 15 to perform the update, writing, or § of the tag information, and the memory is instructed by the control unit 17 based on the instruction. The read signal outputted by the unit 15 is modulated into a reply wave via the modulation 胄18, and the echo signal is transmitted from the antenna unit 9 via the analog unit 12 to the antenna unit U' RFID reader/writer 1 of the rfid reader/writer 1 〇 Receive the readout signal and get the desired information. In the figures, the same reference numerals are used to refer to the same or equivalent parts, and the detailed description is omitted. Further, when the operation of the RFID φ system using the RFID tag of Embodiment 1 is explained in detail, the RFID reader/writer 10 commands the command to update the writing or reading of the RFID tag 8 as a transmission wave to read from the RFID. The = line portion 11 of the writer 10 is fed to the antenna portion 9 of the RFID tag. The wire 2 constituting the radiation portion of the radio wave of the dielectric substrate 1 of the standard 8 receives a transmission wave, and a potential difference is generated between the opposite portions of the slot 3 to supply the transmission wave with Pa μ r , ' 曰曰As described above, the transport wave f supplied to the ic chip 5 is detected by the power supply control unit 14. The power is stored (smoothed) to generate an operation power supply of the KFID, and the operation power is supplied to the RFID tag. 8 (CB slice 5), the command signal is demodulated from the transmitted wave, and the command content of the command signal modulated by the solution 2275-10007-pp 22 201011657 is used to update the tag information of the memory unit 、5, writing the person Or any of the read-out or both, the readout signal outputted by the memory_15 is used as the reply wave followed by the same path as the transmission wave to the ^5 chip, from the wire 2 as the radiation portion The echo wave is transmitted to the RFID sequel 10, and the antenna portion u of the RFID reader/writer 1 receives the reply wave to obtain desired information. The content of the data of the wireless communication performed by the RF 丨D system = the old or the new 'Because the grounding wire 7 is formed on the back surface of the dielectric substrate ,, the back side of the dielectric substrate 1 is oriented toward the surface of the setting object because It is cheap to manufacture and install RFID tags that are easy to install and set up. It can be used in a wide range of fields such as logistics management, warehouse management, machine management, and vehicle entry and exit management, which require a large number of Rm tags. Even if the surface of the setting object or the setting object is a conductor such as a conductive object, it can be set. The manufacturing method of the difficult label of the first embodiment may be a method of manufacturing an RFID tag as described in the above Patent Documents 1 to 5 (the patent document 6 is a method of opening a slot in a conductor plate). An example of the manufacturing method will be described briefly using Figs. 3 and 4 . The third substrate forms a dielectric substrate for inserting the hole portion 4 of the 1C crystal #5 on one main surface of the dielectric substrate 1! A plan view (a configuration diagram of a dielectric substrate 1 having a hole portion formed therein). Further, the hole portion 4 is formed on the substrate by cutting or the like, and if the substrate is formed by the injection molding method, it is formed at the time of molding. Figure 4 is a fertilizer that will be an embodiment. The manufacturing method of the label is divided into manufacturing diagrams of (W) ~ (H), (& - 2 Bu (d 2), (H) ~ (d 3). Among the three manufacturing methods, Figure 4 ( a 1), Fig. 4 (a-2), and Fig. 4 (a-3) show the beginning of each manufacturing method.

2275-10007-PF 23 201011657 期階段,各自的構造係共同的,且係在介電基板1的一主 面(表面)上設置孔部4、在另一主面(背面)上設置接地導 線7的狀態。接地導線7的形成方法也可使用一般基板的 製造方法。另外’圖4中,完成的RFID標籤係與圖1 (b) 相同,繪示以對應於在圖中由A-A’線切斷時的截面 圖。圖中係以相同的符號標示相同或相當的部分,並且省 略其詳細說明。2275-10007-PF 23 201011657 stage, the respective structures are common, and a hole portion 4 is provided on one main surface (surface) of the dielectric substrate 1, and a ground wire 7 is provided on the other main surface (back surface). status. As a method of forming the grounding wire 7, a method of manufacturing a general substrate can also be used. Further, in Fig. 4, the completed RFID tag is the same as Fig. 1(b), and is shown in a cross-sectional view corresponding to the line A-A' cut in the drawing. In the drawings, the same or corresponding parts are designated by the same symbols, and the detailed description is omitted.

說明圖4(a-l)〜圖4(c-l)所示的製造方法。將1C 瞻 晶片5載置在前述圖4(a-1 ),也就是,初期狀態的介電基 板1的孔部4上,而成為4(b-l)的狀態。其次,經由印刷 及蒸鍍在介電基板1的表面上形成導線2(包含槽孔3及電 氣連接部6)。在形成導線2時,1C晶片5的二個端子(未 圖示)連接至那些電氣連接部6、6。藉此,完成圖4(c-l) 所示的RFID標藏。其次,說明圖4(a-2)〜圖4(d-2)所 示的製造方法。此方法係在將1C晶片5載置至介電基板1 _ 的孔部4而變成圖4(b-2)的狀態之後,在介電基板1的表 面上形成導體層21 (圖4 (c-2)),然後’經由蝕刻及碾磨 導體層21 ’而在介電基板1上形成導線2(包含槽孔3及 電氣連接部6)。藉此,完成圖4(d_2)所示的RFID標籤。 另外’在形成導體層21時,1C晶片5的端子(未圖示)被 連接至對應於最後形成電氣連接部6、6的位置之導體層 2卜 接者’說明圖4(a-3)〜圖4(d-3)所示的製造方法。 此方法與岫述圖4(a-2)~圖4(d-2)的方法相比較,由於 2275-10007-PF 24 201011657 (d-2)及(d-3)的程序幾乎相同,故說明不同的程序(b — 及(c-3)。最初,使導體笛22相對於介電基板ι的表面(圖 4(b-3))。此時,在導體箱22上安裝IC晶片5, ^晶片5 的二個端子(未圖示)被連接至對應於最後形成電氣連接 邛6、6的位置之導體箔22。然後,匹配孔部4及Ic晶片 5的位置而將導體荡22載置於介電基板i的表面上%圖 4(c-3))。再者,即使是此種一般的基板加工方法或 ❹標籤製造方法以外的方法,只要可實現實施例丨的咖 標籤的構成,則沒有特別的製造方法的限制。 如上所述,由於實施例i的RFID標籤係將ic晶片5 插入至在介電基板i的一主面上形成的孔部4,並透過晶 片接合使1C晶片5電氣地與導線2連接的結構,即使是 對RFID標籤施加衝撞等時,可大幅減低Ie晶片5的破損 或1C晶片5及電氣連接部6之電氣的連接不良或連接的 斷裂等的發生率。又,使介電基板1的孔部的大小變成如 _ 何係可相對1C晶片5的容積考慮將IC晶片5插入孔部* 時的良率加以設定。 圖5係顯示有關實施例i的RFID標籤的電場(以箭號 I:入)的電場圖。在圖5中也一併顯示Ic晶片5周邊的部 分擴大圖,肖時在該部分擴大圖巾以箭號顯示電場的樣 子。圖5所示的箭號係顯示接地導線7及導線2間的電場, 因為此等電場係被形成在導體間,電場在槽孔3的相對部 分之間進行,以產生電位差。以在介電基板丨的厚度方^ 中電場為零的位置做為〗c晶片的饋電點。如圖$所示j 2275-l〇〇〇7-pp 25 201011657 在介電基板1的内部中,因為左右的電場彼此抵消,在沿 著槽孔3的長邊方向(在圖5中係深度方向)的轴之位置, 電場的強度為零。若在此位置配置IC晶片5的電氣連接 部6,可大幅地減低饋電損失。因此,當如此構成時因 為在槽孔3上產生的電場方向及貼片天線的電場方向一 致父又極化成分被抑制至相當低。此外,因為以在貼片 天線(導線2)的中央設置槽孔3做為基礎’由於正偏波的 场1變成左右對稱,可使導線2的放射場型的對稱性變得 良好如此’對導線2的放射場型的對稱性之不良影響變 小’可大幅地延長可通信的距離,又,即使結構簡單,也 可達成得到性能大幅提升的RFID標箴的效果。圖中係以 相同的符號標示相同或相當的部分,並且省略其詳細說 明。 圖6係顯示有關實施例1的RFID標籤中之特性阻抗 變化的樣子之特性圖。在前述中,雖然記載從介電基板i 參的端部起僅隔著預定距離d形成導線2的要旨,這是因為 在介電基板1的另一主面上整面地形成接地導線7,如圖 5所示’預定距離d可為在導線2及接地導線7的四個角 落中的尺寸差。若如此,即使是未在介電基板1的另一主 面上整面地形成接地導線7的情況,預定距離d可同樣地 被視為在導線2及接地導線7的四個角落中的尺寸差。在 圖6中’橫軸係表示關於預定距離或尺寸差d之RFID標 籤的使用頻率的波長比,縱軸Κ[Ω]& Χ[Ω]係分別表示特 性阻抗的實數部及虛數部。不過,橫轴的λ係使用頻率的 2275-10007-PF 26 201011657 :長。根據圖6的特性圖,在預定距離“ 〇 ΐ3λ以上的 ’月:中’ID標籤8的特性阻抗幾乎固定。因此,透過使 預定距離d為上,與咖標籤的設 參 參 ^導體的物體無關即使是浮在空中的狀態,由於 聽標籤的特性阻抗幾乎固定,可不使rfid的性能變 差,而使得跟RFID讀寫器10 $無線通信成為可能。並且, 因為係介電基板1的孔部4的位置中電場強度為零的位 置’故可說是與在沒有孔部4的情況中之rfid標籤也 就是在1C晶4 5未被内插至介電基板w狀態中,與做 為貼片天線的放射部之導線的形狀跟導線2相同的隨 標籤的特性阻抗之變化幾乎相同。 實施例2 使用圖7說明本發明之實施例2。圖7係顯示有㈣ 施例2的RFID標藏的結構之平面圖。圖?(〇係mD標藏 的平面圖,圖7⑻係將圖7(a)所示的咖標籤的槽孔附 近擴大的平面圖。圖中係以相同的符號標示相同或相當的 部分’並且省略其詳細說明。在此,雖然在實施⑹的情 况中係說明1C晶片5的端子(未圖示)係2個,亦即,使 用2個接腳的1(;晶片的情況’在安裝 4個的情況中,在實施例丨中說明的電氣連接部6的、= -個上’使2個空焊墊23、23在槽孔3中的内侧,且設 置於電氣連接部6、6的附近。這些空焊墊23、23的形成 方法係與形成電氣連接部6、6同時形成。又空焊墊& 23係做為未電氣連接導線2及電氣連接部.6、6之簡單的 2275-100Q7-PF 27 201011657 空焊墊之焊墊。如此,由於可靈活地對應於在RFID上安 裝的1C晶片5的規格的改變,可便宜地製造構造簡單的 RFID標籤。空焊墊的數目不限於2個。另外,在後面的實 施例3中,使用具有空焊墊23的RFID標籤進行說明。 實施例3 使用圖8~圖10說明本發明之實施例3。圖8係顯示 有關實施例3的RFID標籤的構成圖。圖8(a)係RFID標籤 的平面圖,圖8(b)係實施例3的RFID標藏的槽孔擴大圖。 圖9係實施例3的RFID標藏的構成圖,圖1 〇係實施例3 的RFID標籤的構成圖,在圖8〜圖10中,錐形槽孔24被 形成以從IC晶片5被配置的位置起相反方向地變寬,電 氣長度調整部25係切除狀地被設置在導線2的端部。槽 孔2 6係相對於導線2的邊具有角度被形成,且對導線2 使用擾動方式以放射圓形極化波的槽孔。圖中係以相同的 符號標示相同或相當的部分’並且省略其詳細說明。下 面’使用圖8-圖10說明實施例3的RFID標籤的構造及動 作。在實施例3中係有關RFID標籤之由寬頻帶化、電氣 長度調整方法、擾動造成的圓形極化波的傳送接收,其基 本的構成及發明的效果則與實施例1及2相同。 圖8(a)(b)係有關1^11)標籤的寬頻帶化,槽孔24係 從1C晶片5被配置的位置起相反方向地變寬而變成錐 形。若與圖1的槽孔3比較,槽孔3的相對部分除去電氣 連接部6,在相反方向上均形成固定的寬度。如此,透過 使槽孔24變成錐形,可實現卯1]}標籤的使用頻率之寬頻 2275-10007-PF 28 201011657 帶化’且頻帶可藉由調整錐形擴張的大小加以選擇。因 此’因為可將RFID系統的通信可能頻帶變成寬頻帶,不 僅可容易地使阻抗匹配以減低製造誤差造成之產率的吳 化’並可得到經由RFID標籤設置的周圍的環境而附著水 滴或污潰且對阻抗變化具有強的耐環境性的RFID標藏。 另外也有根據設置在1C晶片5上的端子的接腳的數目 而不需要空焊墊23的情況。 圖9係有關RFID標籤的電氣長度調整方法,與圖丄 ❹ & RFID標籤的重大差異係如圖所示在導線2的侧部形成 有像缺口的形狀之電氣長度調整部25的導線2<>由於電氣 長度調整部25係被設置在與槽孔3垂直的位置,導線2 的有效電氣長度變得比外表的長度長,且即使RFI])系統 的使用頻率固定,由於可使導線2的大小變小,故可縮小 RFID標籤8整體的大小。若其小於導線2的長度,由於可 改變電氣長度調整部25的長度,經由調整長度及切割的 程度加以設計,使RFID標藏整體的大小成為名片大小或 是成為匹配設置對象的大小,在某程度的範圍内均是可能 的。因此’因為標籤的大小、形狀的自由度(換言之,限 制被.改善)增加,可使得設置地點的自由度變得比以前 大並且除了電氣長度調整部25的調整之外,與實施 例1相同,由於介電基板Μ厚度及相對介電常數了導線 2、槽孔3的尺寸等大大地相關’經由匹配並調整此等條 件而加以設置,可得到_標藏8的大小及期望的放射 場型與增益。又,也可僅設置於導線2的-側。. 2275-10007-PF 29 201011657 圖10係有關於由RFID標籤的擾動造成的圓形極化波 的傳送接收,與圖i的RFID標籤的重大差異係如圖1〇所 不,槽孔26的位置係相對於導線2傾斜被設置。當與圖土 的槽孔3比較時’槽孔26係以IC晶片5為中心傾斜約45。 而被形成(傾斜的方向係根據傳送接收的電波為右旋性或 左旋性而決定)。由於被設置在此種位置,槽孔26係做為 導線2的擾動元件(攝動元件)而動作。也就是,近似地, 由於得到可傳送接收具有接近將與圖1的RFID標籤的放 射場型相同的放射場型移動π/2並堆積的放射場型之放射 場型的圓形極化波的RFI β標藏,即使圓形極化波的電波 被使用於RFII)系統的無線通信,對應是可能的。另外, 通常,雖然擾動元件係相對於導線2傾斜約45。而被形成, 為了以饋電點的影響得到良好的放射場型,傾斜角度不是 、’勺45 ,而疋必須進行微調整。不過,由於本發明係將饋 電點(1C晶片5)設置在電場為〇的位置,微調整的寬度相 _ 對地變窄’且調整變得容易。再者,實施例3中之通過rfid 標籤的電氣長度調整方法、寬頻帶化、擾動造成的圓形極 化波之傳送接收可組合各個加以實施。 實施例4 圖11係本實施例4的RFID標籤的結構。圖U(a)係 RFID標籤的平面圖,圖ii(b)係在圖u(a)中由a-a’線 切斷時的截面圖(在導線及接地導線上沒有薄膜基材的狀 態)’圖11 (c)係係在圖11 (a)中由A-A,線切斷時的截面 圖。在圖1*1中,介電基板Γ係由例如低硬度(例如, 2275-10007-PF 30 201011657 J I S-A5 5)的稀煙系熱塑性5成橡勝構成的介電基板。做為 熔化的流體樹脂,雖然沒必要是塑膠等熔化的有機物,而 可為利用鎮合金等具有的觸變性之無機流體物或活性流 體物,不過,選擇具有大約可對應於設置RFID標藏的曲 面之曲率彎曲的低硬度材質。當然,能夠設置的曲面之曲 率是有界限的。換言之,其係取決於使用的低硬度材料可 f曲的曲率之界限值(預定曲率薄膜基材2,係被設置 在設置於介電基板Γ的一主面(表面)之導線3,上及後 述的設置於介電基板Γ的另一主面(背面)之接地導線 8,上。 Φ 此薄膜基材2’可使用薄膜聚乙烯對苯二甲酸酯 (PET)、聚亞醯胺、聚對萘二甲酸乙二酿、聚氣乙烯等, 導線3或接地導線8’則係以真空蒸鍍法、電鍍法、或 印刷法等形成。又,薄膜基材2,可為具有其他柔軟性者, 也可為並非如此的基板,又,可為透明,也可為有色半透 明的。如圖11(b)所示,可不在薄膜基材2,上形成導線 3’及接地導線8’ ,而直接在介電基板丨’上以印刷等形 成導線,3及接地導線8,。並且,在圖u(a)顯示在薄膜 基材2’係透明性的情況中,通過薄膜基材2,看到介電 基板Γ㈣態。下面’雖然係以僅在導線上使用薄膜基 材2的圖式進行說明’本發明也可適用於 的導…接地導線8.的腳揉藏或只在= 線8上设置薄膜基材2,的RFID標籤。 在此假定薄膜基材2’及介電基板1,在平面中係相The manufacturing method shown in Fig. 4 (a-1) to Fig. 4 (c-1) will be described. The 1C wafer 5 is placed in the above-mentioned Fig. 4 (a-1), that is, in the hole portion 4 of the dielectric substrate 1 in the initial state, and is in a state of 4 (b-1). Next, a wire 2 (including the slit 3 and the electrical connection portion 6) is formed on the surface of the dielectric substrate 1 by printing and vapor deposition. When the wire 2 is formed, two terminals (not shown) of the 1C wafer 5 are connected to those of the electrical connections 6, 6. Thereby, the RFID tag shown in Fig. 4 (c-1) is completed. Next, the manufacturing method shown in Fig. 4 (a-2) to Fig. 4 (d-2) will be described. This method is to form the conductor layer 21 on the surface of the dielectric substrate 1 after the 1C wafer 5 is placed on the hole portion 4 of the dielectric substrate 1_ to become the state of FIG. 4(b-2) (FIG. 4 (c) -2)), then the wire 2 (including the slot 3 and the electrical connection 6) is formed on the dielectric substrate 1 by etching and grinding the conductor layer 21'. Thereby, the RFID tag shown in FIG. 4 (d_2) is completed. Further, when the conductor layer 21 is formed, the terminal (not shown) of the 1C wafer 5 is connected to the conductor layer 2 corresponding to the position at which the electrical connection portions 6, 6 are finally formed. FIG. 4(a-3) ~ Manufacturing method shown in Figure 4 (d-3). This method is compared with the method of FIG. 4 (a-2) to FIG. 4 (d-2). Since the procedures of 2275-10007-PF 24 201011657 (d-2) and (d-3) are almost the same, Different procedures (b - and (c-3) are explained. Initially, the surface of the conductor flute 22 is opposed to the dielectric substrate ι (Fig. 4 (b-3)). At this time, the IC wafer 5 is mounted on the conductor case 22. The two terminals (not shown) of the wafer 5 are connected to the conductor foil 22 corresponding to the position where the electrical connections 邛6, 6 are finally formed. Then, the positions of the hole portion 4 and the Ic wafer 5 are matched to sway the conductor. Placed on the surface of the dielectric substrate i% Figure 4 (c-3)). Further, even in the case of such a general substrate processing method or a method other than the ruthenium label production method, there is no particular limitation on the manufacturing method as long as the configuration of the coffee slab of the embodiment is realized. As described above, the RFID tag of the embodiment i is a structure in which the ic wafer 5 is inserted into the hole portion 4 formed on one main surface of the dielectric substrate i, and the 1C wafer 5 is electrically connected to the wire 2 through wafer bonding. Even when a collision is applied to the RFID tag or the like, the damage of the Ie wafer 5 or the electrical connection failure of the 1C wafer 5 and the electrical connection portion 6 or the breakage of the connection can be greatly reduced. Further, the size of the hole portion of the dielectric substrate 1 is set such that the yield of the IC wafer 5 inserted into the hole portion * can be set with respect to the volume of the 1C wafer 5. Fig. 5 is a view showing an electric field of an electric field (in arrow I: in) of the RFID tag of the embodiment i. Also shown in Fig. 5 is a partial enlarged view of the periphery of the Ic wafer 5, in which the enlarged image of the figure shows the electric field in an arrow. The arrow shown in Fig. 5 shows the electric field between the grounding conductor 7 and the conductor 2 because these electric fields are formed between the conductors, and an electric field is made between the opposite portions of the slot 3 to generate a potential difference. The position at which the electric field is zero in the thickness of the dielectric substrate 做 is used as the feeding point of the c-chip. As shown in FIG. $j 2275-l〇〇〇7-pp 25 201011657 In the interior of the dielectric substrate 1, since the left and right electric fields cancel each other, in the longitudinal direction along the slot 3 (depth in FIG. 5) The position of the axis of the direction, the intensity of the electric field is zero. When the electrical connection portion 6 of the IC wafer 5 is disposed at this position, the feed loss can be greatly reduced. Therefore, when constructed in this way, the direction of the electric field generated on the slot 3 and the direction of the electric field of the patch antenna are suppressed to be relatively low. In addition, since the slot 3 is provided in the center of the patch antenna (wire 2) as the basis of the field 1 of the forward depolarization becomes symmetrical, the symmetry of the radiation pattern of the wire 2 can be made so good. The adverse effect of the symmetry of the radiation pattern of the wire 2 is small, which can greatly extend the distance that can be communicated, and even if the structure is simple, the effect of obtaining an RFID tag with greatly improved performance can be achieved. In the drawings, the same or corresponding parts are designated by the same reference numerals, and the detailed description thereof is omitted. Fig. 6 is a characteristic diagram showing a state of variation in characteristic impedance in the RFID tag of the first embodiment. In the above description, it is described that the wire 2 is formed only from the end portion of the dielectric substrate i with a predetermined distance d. This is because the ground wire 7 is formed over the entire other surface of the dielectric substrate 1 . As shown in FIG. 5, the predetermined distance d may be a dimensional difference in the four corners of the wire 2 and the grounding wire 7. If so, even if the grounding conductor 7 is not formed over the entire other surface of the dielectric substrate 1, the predetermined distance d can be similarly regarded as the size in the four corners of the conductor 2 and the grounding conductor 7. difference. In Fig. 6, the horizontal axis indicates the wavelength ratio of the frequency of use of the RFID tag with respect to the predetermined distance or the size difference d, and the vertical axis Κ [Ω] & Ω [Ω] indicates the real part and the imaginary part of the characteristic impedance, respectively. However, the λ system of the horizontal axis uses the frequency of 2275-10007-PF 26 201011657: long. According to the characteristic diagram of Fig. 6, the characteristic impedance of the ID tag 8 in the 'month: middle' of the predetermined distance " 〇ΐ 3λ or more is almost fixed. Therefore, by making the predetermined distance d upper, the object of the col Regardless of the state of floating in the air, since the characteristic impedance of the listening tag is almost fixed, it is possible to make wireless communication with the RFID reader 10 $ without making the performance of the rfid worse, and because the hole of the dielectric substrate 1 is made. The position where the electric field strength is zero in the position of the portion 4 can be said to be the same as the rfid label in the case where the hole portion 4 is not provided, that is, the state in which the 1C crystal 4 is not interpolated into the dielectric substrate w, and The shape of the wire of the radiating portion of the patch antenna is almost the same as the change in the characteristic impedance of the tag as in the wire 2. Embodiment 2 Embodiment 2 of the present invention will be described using Fig. 7. Fig. 7 shows the RFID of the fourth embodiment. A plan view of the structure of the standard. Figure (8) is a plan view showing the vicinity of the slot of the coffee label shown in Figure 7(a). The same symbol is used to indicate the same or Quite part 'and omitted Here, in the case of carrying out (6), two terminals (not shown) of the 1C wafer 5 are described, that is, 1 using two pins (the case of the wafer is installed at 4) In the case of the electrical connection portion 6 described in the embodiment, the two empty pads 23 and 23 are provided inside the slot 3 and are provided in the vicinity of the electrical connection portions 6, 6. These empty pads 23, 23 are formed simultaneously with the formation of the electrical connections 6, 6 and the empty pads & 23 are used as the simple 2275 for the electrical connection wires 2 and the electrical connections. 6,6 -100Q7-PF 27 201011657 Solder pad of the empty pad. Thus, since the specification of the 1C wafer 5 mounted on the RFID can be flexibly adapted, the RFID tag of simple construction can be manufactured inexpensively. The number of empty pads is not In addition, in the following third embodiment, an RFID tag having an empty pad 23 will be described. Embodiment 3 Embodiment 3 of the present invention will be described with reference to Figs. 8 to 10. Fig. 8 shows a related embodiment. Figure 3 (a) is a plan view of the RFID tag, and Figure 8 (b) is the RFID of the embodiment 3. Figure 9 is a block diagram of the RFID tag of the third embodiment, and Figure 1 is a block diagram of the RFID tag of the third embodiment. In Figures 8 to 10, the tapered slot 24 is The formation is widened in the opposite direction from the position where the IC wafer 5 is disposed, and the electrical length adjustment portion 25 is provided at the end of the wire 2 in a cut-away manner. The slot 26 is formed at an angle with respect to the side of the wire 2. And use the perturbation mode for the wire 2 to emit a circularly polarized wave slot. The same reference numerals are used to designate the same or corresponding parts in the drawings, and the detailed description thereof will be omitted. The following describes the embodiment using FIGS. 8 to 10. The structure and operation of the 3 RFID tag. In the third embodiment, the transmission and reception of the circularly polarized waves caused by the widening of the RFID tag, the method of adjusting the electrical length, and the disturbance are performed, and the basic configuration and effects of the invention are the same as those of the first and second embodiments. 8(a) and 8(b) show the widening of the label of the 1/11), and the slot 24 is tapered in a direction opposite to the position at which the 1C wafer 5 is placed. When compared with the slot 3 of Fig. 1, the opposite portions of the slot 3 are removed from the electrical connection portion 6, and a fixed width is formed in the opposite direction. Thus, by making the slot 24 tapered, it is possible to achieve a wide frequency of the frequency of use of the 卯1]} tag 2275-10007-PF 28 201011657 banding and the frequency band can be selected by adjusting the size of the taper expansion. Therefore, 'because the communication possible frequency band of the RFID system can be changed into a wide frequency band, not only the impedance can be easily matched to reduce the yield of the manufacturing error, but also the surrounding environment set via the RFID tag can be attached to the water droplet or the dirt. An RFID tag that has a strong environmental resistance to impedance changes. There is also a case where the number of pins of the terminals provided on the 1C wafer 5 is not required, and the dummy pads 23 are not required. Fig. 9 is a diagram showing a method for adjusting the electrical length of the RFID tag, and the difference between the figure and the RFID tag is as shown in the figure, the wire 2 of the electrical length adjusting portion 25 having the shape of a notch formed on the side of the wire 2 as shown. > Since the electrical length adjusting portion 25 is disposed at a position perpendicular to the slot 3, the effective electrical length of the wire 2 becomes longer than the length of the outer surface, and even if the frequency of use of the RFI] system is fixed, the wire 2 can be made The size of the RFID tag 8 is reduced as the size of the RFID tag 8 is reduced. If it is smaller than the length of the wire 2, the length of the electrical length adjusting portion 25 can be changed, and the length of the RFID tag can be adjusted to the size of the business card or the size of the matching setting object. Within the scope of the degree is possible. Therefore, because the degree of freedom of the size and shape of the label (in other words, the limitation is improved), the degree of freedom of the installation place can be made larger than before and the same as the embodiment 1 except for the adjustment of the electric length adjustment portion 25. Since the thickness of the dielectric substrate and the relative dielectric constant of the wire 2 and the size of the slot 3 are greatly related to each other by matching and adjusting these conditions, the size of the _8 and the desired radiation field can be obtained. Type and gain. Further, it may be provided only on the side of the wire 2. 2275-10007-PF 29 201011657 Figure 10 is related to the transmission and reception of circular polarized waves caused by the disturbance of the RFID tag, and the significant difference from the RFID tag of Figure i is as shown in Figure 1, the slot 26 The position is set obliquely with respect to the wire 2. When compared with the slot 3 of the soil, the slot 26 is inclined by about 45 around the IC wafer 5. It is formed (the direction of the tilt is determined by whether the radio wave received and received is dextrorotatory or left-handed). Since it is placed at such a position, the slot 26 acts as a disturbance element (the perturbation element) of the wire 2. That is, approximately, a circularly polarized wave of a radiation field type of a radiation field type which can be transmitted and received with a radiation field type which is close to the radiation field type of the RFID tag of FIG. The RFI β is classified, and even if the circularly polarized wave is used for wireless communication of the RFII) system, a correspondence is possible. Additionally, in general, although the disturbance element is inclined about 45 relative to the wire 2. However, in order to obtain a good radiation field type by the influence of the feeding point, the inclination angle is not , 'spoon 45', and the crucible must be finely adjusted. However, since the present invention sets the feed point (1C wafer 5) at a position where the electric field is 〇, the width of the fine adjustment is narrowed toward the ground' and the adjustment becomes easy. Further, in the third embodiment, the electric length adjustment method by the RFID tag, the wide band, and the transmission and reception of the circular polarization caused by the disturbance can be combined and implemented. Embodiment 4 FIG. 11 shows the structure of an RFID tag of Embodiment 4. Figure U(a) is a plan view of the RFID tag, and Figure ii(b) is a cross-sectional view taken along line a-a' in Figure u(a) (the state in which there is no film substrate on the wire and the ground wire) Fig. 11 (c) is a cross-sectional view taken along line AA of Fig. 11 (a). In Fig. 1*1, the dielectric substrate is a dielectric substrate composed of, for example, a low-hardness (e.g., 2275-10007-PF 30 201011657 J I S-A5 5) thin-smoke thermoplastic 5 to rubber. As the molten fluid resin, although it is not necessarily a molten organic substance such as plastic, it may be a thixotropy inorganic fluid or active fluid having a town alloy or the like, but the selection may have an approximately corresponding RFID setting. A low-hardness material with curved curvature of the surface. Of course, the curvature of the surface that can be set is bounded. In other words, it depends on the limit value of the curvature of the low-hardness material to be used (the predetermined curvature film substrate 2 is disposed on the wire 3 provided on one main surface (surface) of the dielectric substrate ,, and The grounding lead 8 provided on the other main surface (back surface) of the dielectric substrate 后 will be described later. Φ The film substrate 2' can be made of a film of polyethylene terephthalate (PET) or polyamine. Polyethylene naphthalene dicarboxylate, polyethylene gas, etc., the wire 3 or the ground wire 8' is formed by vacuum evaporation, electroplating, printing, etc. Further, the film substrate 2 may have other softness. The person may also be a substrate which is not so, and may be transparent or colored translucent. As shown in FIG. 11(b), the wire 3' and the grounding wire 8 may not be formed on the film substrate 2. ', the wire, 3 and the grounding wire 8 are formed directly on the dielectric substrate 丨' by printing, etc. Moreover, in the case where the film substrate 2' is transparent in the figure u(a), the film substrate is passed through the film substrate. 2, see the dielectric substrate Γ (four) state. Below 'Although the film substrate is used only on the wire 2 The illustration of the invention is also applicable to the foot strap of the grounding conductor 8. or the RFID label of the film substrate 2 only on the = line 8. It is assumed here that the film substrate 2' and Electrical substrate 1, in the plane

2275-10007-PF 31 2010116572275-10007-PF 31 201011657

同尺寸。導線3’係被設置在薄膜基材2’上的導線。如 圖11(a)所示,導線3’係從薄膜基材2’的縱向及橫向的 端部起僅隔著距離d而被形成在其内側。此時,也可說是 導線3’係從介電基板Γ的縱向及橫向的端部起僅隔著 距離d而被形成在其内侧。另一方面’可將薄膜基材2, 從介電基板1’的縱向及橫向的端部起僅隔著距離d而酉己 置在介電基板的一主面上。此時,也可將導線3,設置於 整個薄膜基材2’上。如圖11(a)所示’在導線3,的中央 部上形成細長形的槽孔4’ ^此槽孔4,可透過將導線3, 蝕刻處理及碾磨處理而形成。當然,也可與經由蝕刻處 理、真空蒸鍍法、電鍍法或印刷法等形成導線3,同時形 成槽孔4’ 。然後,可根據使用頻率決定此槽孔4,的長 度及寬度。孔部5,係形成於介電基板1,的一主面上的 孔部。1C晶片6’係由後述的記憶體等構成。此Ic晶片6, 係經由槽孔4,電氣地連接至導線3’ 。 在此,說明1C晶片6,及導線3,的連接結構。如圖 11(a)及(b)所示,7’ 、7,係從在構成槽孔4,的寬度方Same size. The wire 3' is a wire provided on the film substrate 2'. As shown in Fig. 11 (a), the lead wire 3' is formed on the inner side of the film substrate 2' from the longitudinal direction and the lateral direction of the film substrate 2' with only a distance d therebetween. In this case, it can be said that the lead wire 3' is formed on the inner side thereof only from the end portion of the dielectric substrate 纵向 in the longitudinal direction and the lateral direction with a distance d therebetween. On the other hand, the film substrate 2 can be placed on one main surface of the dielectric substrate with a distance d from the longitudinal and lateral ends of the dielectric substrate 1'. At this time, the wire 3 can also be disposed on the entire film substrate 2'. As shown in Fig. 11 (a), an elongated slot 4' is formed in the center portion of the wire 3, and the slot 4 is formed by etching the wire 3, etching, and grinding. Of course, the wire 3 may be formed by etching, vacuum evaporation, plating, printing, or the like, while forming the slit 4'. Then, the length and width of the slot 4 can be determined according to the frequency of use. The hole portion 5 is formed in a hole portion on one main surface of the dielectric substrate 1. The 1C wafer 6' is composed of a memory or the like which will be described later. This Ic wafer 6 is electrically connected to the wire 3' via the slot 4. Here, the connection structure of the 1C wafer 6 and the wires 3 will be described. As shown in Figs. 11(a) and (b), 7' and 7 are formed from the width of the slot 4.

向内相對的導線3,、3,的兩側起分別延伸至槽孔4,的 内側之突起狀的電氣連接部,且分別連續地連接以電氣地 連接槽孔4’㈣側㈣導線3,、3,。這些電氣連接部 7、7可與透過蝕刻形成導線3’同時形成]c晶“, 的端子(未圖示)連接至這些電氣連接部7, 、7,。在ICInwardly opposite sides of the wires 3, 3, respectively, extend to the inner protruding protruding electrical connection portions of the slot 4, and are continuously connected to electrically connect the slots 4' (four) side (four) wires 3, 3,. These electrical connecting portions 7, 7 can be connected to the electrical connecting portions 7, 7, by a terminal (not shown) which forms a "c crystal" while forming a wire 3' by etching.

晶片6’的尺寸與槽孔4, @寬度相同 U 將在槽的寬度内,此時,IC晶片6,㈣子(未圖y') 2275-10007-pp 32 201011657 係與電氣連接部7, 、Γ連接。不過,在1C晶片6’的 尺寸比槽孔4,的寬度大時,1C晶片的端子(未圖示)可電 氣地連接至通過槽孔之導線3’的靠近槽孔4’的部分。 因此’在此情況中,不需設置如前所述的電氣連接部7,、 Ί’ 。 又,雖然在圖11(a)中,1C晶 鲁 長度方向中配置於中央部,但也可不配置在其中央部,而 是配置在沿著設定於圖11(a)的槽孔4,之箭號移動的槽 孔4之長度方向的端部,在以沿著槽孔4’的長度方向 的線上做為基點將RFID標籤谷摺或山摺時,透過使介電 基板1’弯曲而產生的對導線3,(IC晶“,)的拉應力 係從沿著槽孔4的長度方向的線上起朝向RFID標籤的 端部變大,換言之,由於施加在IC晶片6,上的拉應力 小,故沒有問題。不過,在以沿著槽孔4,的寬度方向的 線上或長度方向以外的任意線上做為基點將只HD標藏谷 摺或山擅時’由於透過使介電基板1,弯曲而產生的對導 線3’(IC晶片6,)的拉應力係從沿著槽孔^,的寬度方 向的線上或長度方向以外的任音 的任意線上起朝向RFID標藏的 端部變大,當1C晶片6,從搞枯 ,,^ τ 從RFII)標籤的中央部分離時, 連接1C晶片6,及導線3,的 的可能性。 ^有由於拉應力而降低 由於介電基板i,的孔部5, , 而形成,其深度及其寬产 、"” 入 曰日片6 在ic曰“,二於iC晶片的大小。當然, c日曰片6的周圍配置製模材料時^ ^ 1才峙’孔部5 必然變得The size of the wafer 6' is the same as the slot 4, @width U will be within the width of the slot, at this time, the IC chip 6, (four) sub (not shown y') 2275-10007-pp 32 201011657 is connected to the electrical connection portion 7, , Γ connect. However, when the size of the 1C wafer 6' is larger than the width of the slot 4, the terminal (not shown) of the 1C wafer can be electrically connected to the portion of the lead 3' passing through the slot close to the slot 4'. Therefore, in this case, it is not necessary to provide the electrical connecting portions 7, Ί' as described above. Further, although the center portion is disposed in the longitudinal direction of the 1C crystal in Fig. 11(a), it may be disposed along the slot 4 provided in Fig. 11(a) instead of being disposed at the center portion thereof. The end portion of the slot 4 in which the arrow moves in the longitudinal direction is formed by bending the dielectric substrate 1' when the RFID tag is folded or folded in the line along the longitudinal direction of the slot 4'. The tensile stress on the wire 3, (IC crystal ",) becomes larger toward the end of the RFID tag from the line along the length direction of the slot 4, in other words, the tensile stress applied to the IC chip 6 is small. Therefore, there is no problem. However, in the line along the width direction of the slot 4, or any line other than the length direction, only the HD mark is folded or the mountain is not good. The tensile stress on the wire 3' (IC chip 6,) generated by the bending becomes larger toward the end of the RFID tag from any line on the line along the width direction of the slot hole or other than the length direction. When the 1C wafer 6 is separated from the central portion of the RFII) tag, the 1C wafer 6 is connected. And the possibility of the wire 3. There is a decrease in the hole portion 5 due to the tensile stress due to the tensile stress, and its depth and its wide production, "" into the 曰 片 6 in ic曰", the size of the iC chip. Of course, when the molding material is placed around the c-strip 6 ^ ^ 1 峙 'hole 5 must become

2275-l〇〇〇7^PF 33 201011657 比1C晶片6’的外形大。關 關於形成其孔部5,的位置,當 然疋根據將1C晶片6,配 , 置在槽孔4 的哪一個位置而決 定。在任-情況中,槽孔4,的形狀及尺寸必須匹配安裝 的1C晶片β’的電翕 礼連接部7,的數目及特性阻抗。例 如,為曰了得到阻抗匹配,除了微調整槽孔4,的形狀之外, 在1C晶片6’的連接端子的聊為2個的情泥中,可形成得 到阻抗匹配的寬度之2根電氣連接部7’。又,接地導線 ❹ 8,係設置於介電練Γ的另-主面(背面)上的接地導 線:黏著片9’係黏著介電基板卩與導線3,或是形成接 地導線8的薄膜基材2’的黏著片。黏著片9,可在形成 導線3’的介電基板丨,的表面(一主面)上設置對應於κ 晶片(孔部5,)以外的部分之部分’以黏著及固定介電基 板1及薄膜基材2’ 。並且,也可採用黏著片9’以外的 黏著方法。 圖12(a)係繪示在rFID標籤與RFII)讀寫器之間進行 φ 傳送接收的情況之概念圖。圖12(b)係RFID標籤的構成 圖’特別係功能地顯示IC晶片6的内部結構之方塊圖。 在圖12(a)(b)中,RFID標籤1〇’係圖11顯示之結構的 RFID標籤。被設置在rFIE)標籤1〇,的天線部u,係相當 於在圖11中形成槽孔4,的導線3,者。如前述圖11 及(b)所示’在rfid標籤1〇,的天線部11,中,由於在 介電基板Γ的一主面(表面)上設置具有槽孔4’的導線 3’ ’且在介電基板1,的另一主面(背面)上設置接地導線 8, ’故RFID標籤1 〇’係做為貼片天線。亦即,具有槽孔 342275-l〇〇〇7^PF 33 201011657 is larger than the shape of the 1C wafer 6'. Regarding the position at which the hole portion 5 is formed, it is determined depending on which position of the slot 4 is placed in the 1C wafer 6. In any case, the shape and size of the slot 4 must match the number and characteristic impedance of the electrical connection 7 of the mounted 1C wafer β'. For example, in order to obtain impedance matching, in addition to the shape of the micro-adjusting slot 4, in the case where the connection terminal of the 1C wafer 6' is two, two electrical circuits having an impedance matching width can be formed. Connection portion 7'. Moreover, the grounding conductor ❹8 is a grounding conductor disposed on the other main surface (back surface) of the dielectric bonding: the adhesive sheet 9' is adhered to the dielectric substrate 卩 and the wire 3, or the film base forming the grounding wire 8 Adhesive sheet of 2'. The adhesive sheet 9 is provided with a portion corresponding to a portion other than the κ wafer (hole portion 5) on the surface (a main surface) of the dielectric substrate 形成 on which the wire 3' is formed to adhere and fix the dielectric substrate 1 and Film substrate 2'. Further, an adhesive method other than the adhesive sheet 9' can also be employed. Fig. 12(a) is a conceptual diagram showing a case where φ transmission reception is performed between the rFID tag and the RFII) reader/writer. Fig. 12 (b) is a block diagram of an RFID tag. Fig. 4 is a block diagram showing the internal structure of the IC chip 6 in a functional manner. In Fig. 12 (a) and (b), the RFID tag 1 〇 ' is an RFID tag of the structure shown in Fig. 11. The antenna portion u provided in the rFIE) tag 1 is equivalent to the wire 3 in which the slot 4 is formed in Fig. 11. As shown in the above-mentioned FIGS. 11 and 11(b), in the antenna portion 11 of the rfid tag, the lead wire 3'' having the slot 4' is provided on one main surface (surface) of the dielectric substrate 且. A ground lead 8 is provided on the other main surface (back surface) of the dielectric substrate 1, so that the RFID tag 1 〇' is used as a patch antenna. That is, having the slot 34

2275-10007-PF 201011657 4,的導線3係做為天線場型(放射部)。導線3,及槽孔 4曰被調整以仔到用以激發的rfid系統的使用頻率與π 晶片6的阻抗匹配。由於此調整也與介電基板丨,的厚 度=相對介電常數有重大關係,透過符合此等條件而調整 並設計,可得到期望的放射場型及增益。又,槽孔4,被 形f在導線3,的中央部以使導線3,的放射場型變好係 如刚所述。透過符合這些條件加以調整並設計,得到RFID 標籤内之期望的放射場型及增益,可不使RFID標藏 10 (亦即介電基板1,)大型化,而得到例如約i〜8m 的通信距離〇 又’在RFID讀寫器12’上被設置有天線部13,,天 線邻13係與RFID標籤10,的天線部11,進行無線通 信。1C晶片6’係在圖π中說明的Ic晶片,其具體結構 係如圖12(b)所示的結構。類比部ι4,係透過rFII)標籤 1〇’的天線部11’接收來|RFID讀寫器12’的傳送波並 輸出至後段的數位電路21,之類比部。a/D變換部15’將 馨 傳送波A/D變換的A/D變換部,電源控制部16,係以整流 電路將類比部1Γ接收的傳送波平滑化以產生電力,並進 行對RFID標蕺10’的各電路之饋電及電源控制的電源控 制部。記憶部17’係被安裝於RFID標籤10,並儲存固體 識別資訊等的標籤資訊之記憶部。解調部18’係將傳送波 解調變的解調部,控制部19’係根據在解調部18’解調 變的傳送波控制包含記憶部17’的1C晶片6’内的電路 之控制部。調變部20’係將經由控制部19,從記憶部 2275-10007-PF 35 201011657 17,’取出的資訊調變的調變部。數位部2i,係由解調部 15’ '控制部16’及調變部17,構成。D/A變換部 係將從調變部20,被傳送出的信號β/Α變換,並輪出至類 比部14’的D/A變換部。 在此,說明關於此種RF〗D系統的基本操作。根據利 用此種RFID系統的用途(生物.物品的門禁管理及物流管 理),將其標籤資訊儲存在RFID標籤1〇,的記憶部17,, RFID讀寫器12’在本身的傳送接收區域内可在rfid標籤 β 10’(被貼附在做為門禁管理及物流管理的對象之生物. 物品上)存在或移動時進行標籤資訊的更新、寫入或讀 出。RFID讀寫器12’將命令RFID標籤1〇,更新、寫入或 讀出等的命令信號做為傳送波從RFID讀寫器12,的天線 部13傳送至KFID標蕺1〇,的天線部丨〗,eRFI])標籤 10,的天線部U,接收傳送波,傳送波經由電源控制部 16被檢波.蓄電(平滑化),以產生RFI])標籤1〇,的操作 電源,並將操作電源供給至RFID標籤1〇,的各電路。又, 傳达波係經由解調部丨8,將命令信號解調變。控制部19, 由被解調變的命令信號的命令内容進行資料處理,並指示 記憶部17’進行標籤資訊的更新、寫入或讀出的任一或二 者,根據此控制部19,的指示由記憶部17,輸出之讀出 信號係經由調變部2〇,調變成回覆波,且此回 類比部從天線部Π,被傳送至RFID讀寫器,…的天 線部13,,RFID讀寫器12,接收讀出信號,並得到期望 的資訊。 2275-10007-PF 362275-10007-PF 201011657 4, the wire 3 is used as the antenna field type (radiation part). The wire 3, and the slot 4, are adjusted to match the impedance of the π-wafer 6 to the frequency of use of the rfid system for excitation. Since this adjustment is also related to the thickness of the dielectric substrate = = relative dielectric constant, the desired radiation field type and gain can be obtained by adjusting and designing in accordance with these conditions. Further, the slot 4 is shaped f in the central portion of the wire 3 so that the radiation pattern of the wire 3 is improved as described. By adjusting and designing in accordance with these conditions, the desired radiation pattern and gain in the RFID tag can be obtained, and the RFID tag 10 (that is, the dielectric substrate 1) can be enlarged, and a communication distance of, for example, about i8 mm can be obtained. Further, the antenna unit 13 is provided on the RFID reader/writer 12', and the antenna 13 is connected to the antenna unit 11 of the RFID tag 10 to perform wireless communication. The 1C wafer 6' is an Ic wafer described in Fig. π, and its specific structure is as shown in Fig. 12(b). The analogy unit ι4 receives the transmitted wave from the RFID reader/writer 12' via the antenna portion 11' of the rFII) tag 1〇' and outputs it to the digital circuit 21 of the subsequent stage, analogous portion. The a/D conversion unit 15' A/D conversion unit that converts the A/D conversion of the sinusoidal transmission wave, and the power supply control unit 16 smoothes the transmission wave received by the analog unit 1Γ by the rectification circuit to generate electric power, and performs the RFID tag.电源10's the power supply control unit for the feeding and power control of each circuit. The memory unit 17' is attached to the RFID tag 10 and stores a memory portion of tag information such as solid identification information. The demodulation unit 18' is a demodulation unit that demodulates the transmission wave, and the control unit 19' controls the circuit in the 1C chip 6' including the memory unit 17' based on the transmission wave demodulated by the demodulation unit 18'. Control department. The modulation unit 20' is a modulation unit that changes information extracted from the storage unit 2275-10007-PF 35 201011657 17,' via the control unit 19. The digital unit 2i is composed of a demodulation unit 15'' control unit 16' and a modulation unit 17. The D/A conversion unit converts the transmitted signal β/Α from the modulation unit 20, and rotates it to the D/A conversion unit of the analog unit 14'. Here, the basic operation of such an RF D system is explained. According to the use of such an RFID system (access control and logistics management of biological items), the tag information is stored in the memory unit 17 of the RFID tag 1 , and the RFID reader 12 ′ is in its own transmission and reception area. The tag information can be updated, written or read out when the rfid tag β 10' (attached to the object being used as the object of access control management and logistics management) is present or moved. The RFID reader/writer 12' transmits a command signal for instructing the RFID tag 1〇, updating, writing, or reading as a transmission wave from the antenna portion 13 of the RFID reader/writer 12 to the antenna portion of the KFID tag 1〇.天线, eRFI]) The antenna unit U of the tag 10 receives the transmission wave, and the transmission wave is detected by the power supply control unit 16. The battery is stored (smoothed) to generate an RFI]) tag, and the operation power is supplied and operated. The power is supplied to each circuit of the RFID tag. Further, the transmission wave is demodulated by the demodulation unit 丨8. The control unit 19 performs data processing on the command content of the demodulated command signal, and instructs the memory unit 17' to perform either or both of updating, writing, or reading of the tag information, according to the control unit 19 The readout signal outputted from the memory unit 17 is modulated into a reply wave via the modulation unit 2, and the analogy portion is transmitted from the antenna unit to the antenna unit 13 of the RFID reader/writer, ..., RFID The reader/writer 12 receives the readout signal and obtains the desired information. 2275-10007-PF 36

201011657 再者’在詳細說明使用實施例4的RFII)標籤之 系統的操作時’ 讀寫器12,係將命令RFID標藏10, 更新、寫入或讀出等的命令信號做為傳送波從讀寫 器12的天線部13’傳送至RFID標籤10,的天線部 11 。做為構成RFID標籤1〇,的介電基板丨,的電波之 放射部的導線3’接收傳送波’在槽孔4,的相對部分間 產生電位差’以將傳送波供給至IC晶片6 ’ ,如上所述, 被供給至IC晶片6’的傳送波係經由電源控制部16,被 檢波·蓄電(平滑化),以產生RFID標籤1〇,的操作電源, 並將操作電源供給至RFID標藏1〇,的各電路GC晶片 6 )命令彳5號從傳送波被解調變,由被解調變的命令信 號之命令内容對記憶部17,進行標籤資訊的更新、寫入或 讀出的任一或二者,以記憶部17,輸出的讀出信號做為回 覆波循著跟將傳送波供給至IC晶片6,相同的路徑,從做 為放射部的導線3’將回覆波傳送至RFID讀寫器12,, RFID讀寫器12的天線部13’接收回覆波,而得到期望 的μ訊。RFID系統進行的無線通信的資料的内容可以是舊 的或新的,由於在介電基板丨,的背面形成接地導線8,, 利用使介電基板1,的背面侧朝向設置對象的表面,因為 可便宜地製造與言史置對象是導體或非導體#關而設置之 構造簡單的RFID標籤’故可在需要大量的奸11}標籤的物 流管理、倉庫管理、機材管理、汽車的進出場管理等廣泛 領域加以利用,即使設置對象或設置對象的表面是導電性 物體等的導體,也都可以設置。 2275—10007-PF 37 201011657 其次,圖13(a)〜(d)係有關實施例的RFID標籤的製 造方法中之導線3’的形成方法及1C晶片6,的安裝方 法,基於其截面圖說明各製造步驟。在圖13(a)中係繪示 在薄膜基材2’上(薄膜基材2’的背面側)形成導體層 23 的導體層形成步驟。如圖13(b)所示,其係顯示將應 形成導線3’的區域及在槽孔4’的内侧應形成電氣連接 部7’ 、7’區域遮蔽,透過蝕刻等同時形成導線3’及電 氣連接部7’ 、7’的導線形成步驟。並且,也可不在薄膜 β 基材2’上進行導體層形成步驟,而在薄膜基材上形成導 線。如圖13(c)及圖13(d)所示,在1C晶片連接步驟中, 經由焊接將1C晶片6’的連接端子24’ 、24,電氣地連 接至電氣連接部7’ 、7’ 。做為此電氣連接方法,雖然一 般是由迴焊造成的熱壓接合,但也可由其他方法連接。圖 中係以相同的符號標示相同或相當的部分,並且省略其詳 細說明。 又,圖14係在薄膜基材的整個表面上形成導體層的 ❹ 平面圖。圖15(a)係形成導線3’及槽孔4,之後的薄膜基 材2’的背面圖。如圖14所示,其係顯示在薄膜基材2, 的背面側全面地形成導體層2’者之中,透過餘刻處理等 將從薄膜基材2’ (介電基板Γ )的端部起僅隔著預定距 離d的周圍部分及除了電氣連接部7, 、7’之外的槽孔 4’部分的導體層除去後的導線3’的結構。由此時的薄膜 基材2’的表面觀看時的薄膜基材2’的結構係顯示於圖 15(b)。薄膜基材2’有透明或半透明的情況。又,圖.16(a) 2275-10007-PF 38 201011657 係將1C晶片6’安裝至薄膜基材2,上的槽孔4,的内側 之狀態的背面圖。圖16(b)係從薄膜基材2,的表面侧觀 看將1C晶片6,安裝於薄膜基材2’狀態時的狀態圖,透 過透明或半透明的薄膜基材2’可看到電氣連接部7,、 7及1C晶片6’ 。如圖17所示,將如此製作的薄膜基材 2’貼附至透過蝕刻及碾磨等形成孔部5,的介電基板厂 上(也可在射出成型時,在射出成型模具上設置對應於孔 部5的突起物以製作孔部5,),以製造叮11)標籤。圖 17係具有孔部的介電基板的表面圖(上面圖),其係形成有 用以將1C晶片6,插入至介電基板丨’的一主面之孔部 5’的介電基板1,。圖中係以相同的符號標示相同或相當 的部分,並且省略其詳細說明。 對於不使用薄膜基材2’而在介電基板〗,上形成導 線3’ ,也可在將1C晶片6,載置於介電基板丨,的孔部 5’之後,透過印刷及蒸鍍等將導線3,設置於介電基板 Γ的一主面上。又,也可在將IC晶片6,安裝至銅结等 的導電性薄膜之後,將導電性薄膜固定於介電基板丨,的 一主面上,蝕刻該導電性薄膜以形成導線3,。此時,不 用說1C晶片6’必須安裝於導電性薄膜利用蝕刻等最後 變成槽孔4’ (電氣連接部7,)的位置。在完成叮⑺標籤 之後,若設置從RFID標藏除去薄膜基材2,的步驟,即使 不使用上述方法,也可製造沒有薄膜基材2,的rfid標 籤。 圖18.係顯示有關實施例的RFID標籤的電場(以箭號 2275-10007-Pf 39 201011657 參 ❹ n己入)的電場圖。在圖18中也一併顯示1C晶片6,周邊的 部分擴大圖,同時在該部分擴大圖中以箭號顯示電場的樣 子。圖中係以相同的符號標示相同或相當的部分,並且省 略其詳細說明。圖18所示的箭號係顯示接地導線8,及導 線3’間的電場,因為此等電場係被形成在導體間,電場 在槽孔4’的相對部分之間進行,以產生電位差。以在介 電基板Γ的厚度方向中電場為零的位置做為ic晶片的 饋電點。如圖18所示,在介電基板丨,的内部中,因為左 右的電場彼此抵消’在沿著槽孔4,#長邊方向(在圖18 中係深度方向)的軸之位置’電場的強度為零。因此,若 在此位置配置1C晶片6’的電氣連接部7,,可大幅地減 低饋電損Α ϋ此,當如此構成時,對導線3,的放射場 型的對稱性之不良影響變小,可大幅地延長可通信的距 離’又’即使結構簡單,也可達成得到性能大幅提升的隨 標鐵的效果。 圖19係顯示有關實施例的RFID標籤中之特性阻抗變 化的樣子之特性圖。圖中係以相同的符號標示相同或相當 ,P刀it且省略其詳細說明。在前述中,雖然記載從薄 2’的端部起僅隔著預定距離d形成導^,的要 曰’這是因為在介雷其麻1, AA £ + 板1的另一主面上整面地形成接 、’ ’如圖18所示,預定距離d可為在導線3,及 接地導線8,的四個角 *导猓及 在介電基板Γ的另=二 此’即使是未 面上整面地形成接地導線8,的 情況,預定距離d可回士篆 冋樣地被視為在導線3,及接地導線201011657 In the operation of the system of 'in detail using the RFII of the embodiment 4', the reader/writer 12 will command the RFID tag 10 to update, write or read the command signal as a transmission wave. The antenna portion 13' of the reader/writer 12 is transmitted to the antenna portion 11 of the RFID tag 10. The wire 3' of the radiation portion of the radio wave constituting the dielectric substrate 构成 constituting the RFID tag 1 receives a transmission wave 'a potential difference Between the opposite portions of the slot 4' to supply the transmission wave to the IC wafer 6', As described above, the transmission wave supplied to the IC chip 6' is detected and stored (smoothed) via the power supply control unit 16, and the operation power of the RFID tag 1 is generated, and the operation power is supplied to the RFID tag. Each of the circuits GC chip 6) command 彳5 is demodulated from the transmission wave, and the command information of the demodulated command signal is used to update, write or read the tag information to the memory unit 17. Either or both, the readout signal outputted by the memory unit 17 is used as a reply wave and the transmission wave is supplied to the IC chip 6, and the same path is transmitted from the wire 3' serving as the radiation portion to the return wave. The RFID reader/writer 12, the antenna portion 13' of the RFID reader/writer 12 receives the echo wave to obtain a desired μ signal. The content of the data of the wireless communication performed by the RFID system may be old or new. Since the grounding wire 8 is formed on the back surface of the dielectric substrate, the back side of the dielectric substrate 1 is oriented toward the surface of the object to be placed because It is cheap to manufacture and design a simple RFID tag with a conductor or a non-conductor. Therefore, logistics management, warehouse management, machine management, and car entry and exit management are required in a large number of tags. It can be used in a wide range of fields, even if the surface of the setting object or the setting object is a conductor such as a conductive object. 2275—10007-PF 37 201011657 Next, FIGS. 13( a ) to 13 ( d ) show a method of forming the lead 3 ′ and a method of mounting the 1 C wafer 6 in the method of manufacturing the RFID tag according to the embodiment, based on a cross-sectional view thereof. Each manufacturing step. In Fig. 13 (a), a conductor layer forming step of forming the conductor layer 23 on the film substrate 2' (the back side of the film substrate 2') is shown. As shown in FIG. 13(b), it is shown that the region where the wire 3' should be formed and the inner portion of the slot 4' should be shielded by the electrical connection portions 7', 7', and the wire 3' is formed by etching or the like. The wire forming step of the electrical connections 7', 7'. Further, the conductor layer forming step may not be performed on the film β substrate 2', and a wire may be formed on the film substrate. As shown in Figs. 13(c) and 13(d), in the 1C wafer connection step, the connection terminals 24' and 24 of the 1C wafer 6' are electrically connected to the electrical connection portions 7' and 7' via soldering. To do this electrical connection method, although it is generally a thermocompression bonding by reflow, it can be connected by other methods. In the drawings, the same or corresponding parts are designated by the same reference numerals, and the detailed description is omitted. Further, Fig. 14 is a plan view showing the formation of a conductor layer on the entire surface of the film substrate. Fig. 15 (a) is a rear view showing the wire 3' and the slit 4, and the film substrate 2' thereafter. As shown in Fig. 14, it is shown that the conductor layer 2' is entirely formed on the back side of the film substrate 2, and the end portion of the film substrate 2' (dielectric substrate 透过) is transmitted through a residual process or the like. The structure of the wire 3' after the conductor layer of the portion of the slot 4' except the electrical connection portions 7, 7' is separated only by the peripheral portion of the predetermined distance d. The structure of the film substrate 2' when viewed from the surface of the film substrate 2' at this time is shown in Fig. 15(b). The film substrate 2' is transparent or translucent. Further, Fig. 16(a) 2275-10007-PF 38 201011657 is a rear view showing a state in which the 1C wafer 6' is attached to the inside of the slit 4 on the film substrate 2. Fig. 16 (b) is a view showing a state in which the 1C wafer 6 is attached to the film substrate 2' as viewed from the surface side of the film substrate 2, and electrical connection can be seen through the transparent or translucent film substrate 2'. Part 7, 7, and 1C wafer 6'. As shown in FIG. 17, the film substrate 2' thus produced is attached to a dielectric substrate factory which is formed into a hole portion 5 by etching, grinding, or the like (it can also be provided on the injection molding die at the time of injection molding). The protrusions of the hole portion 5 are formed to form the hole portion 5, for manufacturing the 叮11) label. 17 is a surface view (top view) of a dielectric substrate having a hole portion, which is formed with a dielectric substrate 1 for inserting a 1C wafer 6 into a hole portion 5' of a main surface of a dielectric substrate 丨', . In the drawings, the same or corresponding parts are designated by the same reference numerals, and the detailed description is omitted. The lead 3' may be formed on the dielectric substrate without using the film substrate 2', and the 1C wafer 6 may be placed on the hole portion 5' of the dielectric substrate, and then printed, vapor-deposited, etc. The wire 3 is disposed on a main surface of the dielectric substrate 。. Further, after the IC wafer 6 is attached to a conductive film such as a copper junction, the conductive film may be fixed to one main surface of the dielectric substrate, and the conductive film may be etched to form the wires 3. In this case, it is not necessary to say that the 1C wafer 6' must be mounted at a position where the conductive film finally becomes the slot 4' (electrical connection portion 7,) by etching or the like. After the completion of the 叮(7) label, if the film substrate 2 is removed from the RFID package, the rfid label without the film substrate 2 can be produced without using the above method. Figure 18. is an electric field diagram showing the electric field of the RFID tag of the embodiment (in arrows 2275-10007 - Pf 39 201011657). Also shown in Fig. 18 is a 1C wafer 6, a partial enlarged view of the periphery, and an electric field is indicated by an arrow in the enlarged view. In the drawings, the same or corresponding parts are designated by the same symbols, and the detailed description is omitted. The arrows shown in Fig. 18 show the electric field between the grounding conductor 8 and the conductor 3' because these electric fields are formed between the conductors, and the electric field is made between the opposite portions of the slots 4' to generate a potential difference. A position at which the electric field is zero in the thickness direction of the dielectric substrate 做 is used as a feeding point of the ic wafer. As shown in FIG. 18, in the interior of the dielectric substrate ,, since the left and right electric fields cancel each other 'in the position along the slot 4, the long axis direction (the depth direction in FIG. 18), the electric field The intensity is zero. Therefore, if the electrical connection portion 7 of the 1C wafer 6' is disposed at this position, the feed loss can be greatly reduced. Thus, when configured in this way, the adverse effect on the symmetry of the radiation pattern of the wire 3 becomes small. It can greatly extend the distance that can be communicated. 'And even if the structure is simple, it can achieve the effect of greatly improving the performance of the standard iron. Fig. 19 is a characteristic diagram showing the appearance of a characteristic impedance change in the RFID tag of the embodiment. In the drawings, the same symbols are used to designate the same or equivalent, and the P-cut is omitted. In the foregoing, although it is described that the guide is formed only from the end portion of the thin 2' by a predetermined distance d, this is because the other main surface of the AA £+ board 1 is on the medium. As shown in FIG. 18, the predetermined distance d can be four corners of the wire 3, and the grounding wire 8, and the other two of the dielectric substrate 即使In the case where the grounding conductor 8 is formed over the entire surface, the predetermined distance d can be regarded as the conductor 3 and the grounding conductor

2275-10007-PF 40 201011657 8’的四個角落中的尺寸差。在圖19中,橫轴係表示關於 預定距離或尺寸差d之RFID標籤的使用頻率的波長比, 縱轴R[Q]及χ[Ω]係分別表示特性阻抗的實數部及虛數 部。不過,橫轴的λ係使用頻率的波長。根據圖19的特性 圖,在預定距離d為0.13λ以上的情況中,RFID標籤1〇, 的特性阻抗幾乎固定。因此,透過使預定距離4為〇 ΐ3λ 以上,與RFID標籤的設置對象是導體或非導體的物體無 關,又,即使是浮在空中的狀態,由於RFID標籤的特性 阻抗幾乎固定,可不使RFID的性能變差,而使得跟rfid 讀寫器的無線通信成為可能。並且,因為係介電基板p 的孔部5’的位置中電場強度為零的位置,故可說是舆在 沒有孔部5’的情況中之RFID標藏的特性阻抗幾乎相同。 圖20係顯示有關實施例4的RFID標籤的結構之平面 圖圖21係將圖20所示的槽孔周邊擴大的平面圖。圖2ΐ(&) 係未安裝1C晶片時的平面圖,圖21(b)係1C晶片安裝完 〇 成時的平面圖。目前為止,雖然係說明連接端子24,係2 個,亦即,使用2個接腳的1C晶片的情況,在安裝連接 端子24’為4個的1C晶片的情況中,在電氣連接部7,、 7’中的一個上,使2個空焊墊25, 、25,在槽孔4中的 内側’且設置於連接端子的附近。這些空焊墊25, 、25, 的形成方法係與形成電氣連接部7’ 、7’同時形成。又, 從圖20、圖21可通過薄膜基材看到的空焊墊25, 、25, 係做為未電氣連接導線3,及電氣連接部7’ 、7, η 沾办 疋間早 的二焊墊之焊墊。如此,由於可靈活地對應於在上 2275—1〇 41 201011657 安裝的1C晶片6,的規格的改變,可便宜地製造構造簡單 的RFID標籤。空焊墊的數目不限於2個。圖中係以相同 的符號標示相同或相當的部分,並且省略其詳細說明。 如此,有關實施例4的RFID標籤具有不產生由晶 片6’造成的膨脹、不僅是平面,也可設置於具有預定曲 率的曲面狀之設置面等優點,再者,透過圖22〜24說明 提升性能的結構。圖22係實施例4的RF ID標籤之接地導 線的形狀圖,圖22(a)係格狀圖案的接地導線的形狀圖, ❹ 圖22(a)係曲折圖案的接地導線的形狀圖。圖23係實施例 4的RFID標籤的接地導線用之金屬纖維板的形狀圖。圖 23(a)係金屬纖維板的表面圖,圖23(b)係在圖23(a)中由 A-A’線切斷時的截面圖,圖23(c)係在圖23(b)的金屬纖 維板上施加外力的模式圖。圖24係實施例4的RFID標籤 的接地導線用之金屬纖維板的形狀圖,圖24(3)係格狀圖 案的接地導線的形狀圖,圖24(a)係曲折圖案的接地導線 的形狀圖,接地導線26’係格狀地切除導體而具有格狀圖 案的接地導線’缺口部27,係接地導線26’的缺口部, 接地導線28’係經由缺口部29’曲折狀地切除導體而具 有曲折狀圖案。金屬纖維板3〇,係通常為數_厚的不鏽 鋼纖維板等之被使用於電磁屏蔽或靜電防止板的金屬纖 維板。接地導線31,係格狀地切除金屬纖維板3〇,而具 有格狀圖案。缺口部32,係接地導線31,的缺口部。接 地導線33,係曲折狀地切除金屬纖維板3〇,❿具有曲折 狀圖案的接地導線,34,係接地導線33,㈣口部。圖中 2275-10007-ρρ 42 201011657 係以相同的符號標示相同或相當的部分,並且省略其 說明。 、砰,田 目前為止,雖然已說明電氣連接做為在彎曲r川標 籤10’時的天線場型之導線3,(電氣連接部7,)及^ 晶片6’的可靠度,透過彎曲RFID標籤1〇,,受到影響 的不僅是電氣連接導線3,(電氣連接部7, 、7,)及/1(: 晶片6’ ’也影響導線3’與介電基板【,及接地導線8, 與介電基板1’的黏著,由介電基板r (RFID標籤)的彎 曲產生的拉應力造成不良的影響。特別,對於通常設置在 介電基板Γ的整個另一主面(背面)上之接地導線8,造 成不良的影響。例如,# RFID標籤f曲以使得接地導線 8’側(介電基板1’的另一主面侧)變成谷時,從介電基板 Γ的端部朝向介電基板丨’的外側在接地導線8,上造成 大的拉應力,而有使介電基板丨’的端部之接地導線8, 破斷或從介電基板Γ剝離的可能性。 又,當RFID標籤彎曲以使得接地導線8,侧(介電基 板Γ的另一主面側)變成山時,從介電基板丨,的端部朝 向介電基板Γ的中央在接地導線8,上造成大的拉應 力’介電基板Γ的中央之接地導線8,鬆弛,根據從介 電基板Γ剝離的可能性或接地導線8,之與基板的黏著 情況,與將RFID標籤彎曲以使得接地導線8,側變成谷時 相同’有使介電基板1的端部之接地導線8’破斷或從 介電基板Γ剝離的可能性。下面說明取代此種接地導線 8’ ’透·過使用接地導線26’及28’ 、金屬纖維板3〇,、 2275-10007-PF 43 201011657 = = 3(r造成的接地導線3ι’及^,做為州d ΐ的接地^體’在彎曲RFID標籤時,可減低在_標 臧的接地導體上產生的各種問題。 :22(a)及(b)顯示的形成格狀圖案的接地導線 及=曲折圖案的接地導線28’具有切除接地導線8,的 。刀之缺口部27,及29,。透過這些缺口部W及 依附在接地導體的全面上的拉應力經由缺口部27, ❹釋放,而大幅地減低破斷或鬆他造成的接地導體 板1制離的可能性。又,缺口部的形狀並非限 ^圖22U)及⑻所示者’其保護接地導體不受到拉應力2275-10007-PF 40 201011657 The difference in size between the four corners of 8'. In Fig. 19, the horizontal axis indicates the wavelength ratio of the frequency of use of the RFID tag with a predetermined distance or size difference d, and the vertical axes R[Q] and χ[Ω] indicate the real part and the imaginary part of the characteristic impedance, respectively. However, the λ of the horizontal axis uses the wavelength of the frequency. According to the characteristic diagram of Fig. 19, in the case where the predetermined distance d is 0.13λ or more, the characteristic impedance of the RFID tag 1〇 is almost fixed. Therefore, by making the predetermined distance 4 〇ΐ3λ or more, regardless of the object to which the RFID tag is set to be a conductor or a non-conductor, even if it is floating in the air, since the characteristic impedance of the RFID tag is almost fixed, the RFID can be prevented. The performance is degraded, making wireless communication with the rfid reader possible. Further, since the electric field intensity is zero at the position of the hole portion 5' of the dielectric substrate p, it can be said that the characteristic impedance of the RFID tag is almost the same in the case where the hole portion 5' is not provided. Fig. 20 is a plan view showing the structure of the RFID tag of the embodiment 4. Fig. 21 is a plan view showing the periphery of the slot shown in Fig. 20. Fig. 2 (&) is a plan view when the 1C wafer is not mounted, and Fig. 21(b) is a plan view when the 1C wafer is mounted. Heretofore, although two connection terminals 24 have been described, that is, a case where two pins of a 1C wafer are used, in the case where four connection 1C wafers are mounted, in the electrical connection portion 7, On one of the 7's, the two empty pads 25, 25 are placed inside the slot 4 and are disposed in the vicinity of the connection terminal. These empty pads 25, 25 are formed simultaneously with the formation of the electrical connections 7', 7'. Further, from Fig. 20 and Fig. 21, the empty pads 25, 25 which can be seen through the film substrate are used as the unconnected wires 3, and the electrical connecting portions 7', 7 and η are smeared twice. Solder pad pads. Thus, since the specification of the 1C wafer 6 mounted on the upper 2275-1 〇 41 201011657 can be flexibly adapted, the RFID tag having a simple structure can be manufactured inexpensively. The number of empty pads is not limited to two. In the drawings, the same or corresponding parts are designated by the same reference numerals, and the detailed description is omitted. As described above, the RFID tag of the fourth embodiment has the advantages of not causing expansion by the wafer 6', not only a flat surface, but also a curved surface-shaped mounting surface having a predetermined curvature, and further, the lifting is illustrated by Figs. The structure of the performance. Fig. 22 is a view showing the shape of the grounding conductor of the RF ID tag of the fourth embodiment, and Fig. 22(a) is a view showing the shape of the grounding conductor of the lattice pattern, and Fig. 22(a) is a view showing the shape of the grounding conductor of the meandering pattern. Fig. 23 is a view showing the shape of a metal fiber board for a grounding conductor of the RFID tag of the fourth embodiment. Fig. 23 (a) is a surface view of a metal fiber board, Fig. 23 (b) is a cross-sectional view taken along line A-A' in Fig. 23 (a), and Fig. 23 (c) is shown in Fig. 23 (b) A pattern diagram of an external force applied to a metal fiberboard. Figure 24 is a view showing the shape of a metal fiber board for a grounding conductor of the RFID tag of Embodiment 4, Figure 24 (3) is a shape diagram of a grounding conductor of a lattice pattern, and Figure 24 (a) is a shape diagram of a grounding conductor of a meandering pattern. The grounding wire 26' is a grounding wire 'notch portion 27 having a lattice pattern in a lattice shape, and is a notch portion of the grounding wire 26'. The grounding wire 28' has a meandering shape by a notch portion 29'. A zigzag pattern. The metal fiber board 3 is a metal fiber board which is usually used for electromagnetic shielding or static electricity prevention plates, such as a number of thick stainless steel fiberboard. The grounding wire 31 cuts the metal fiber board 3' in a lattice shape and has a lattice pattern. The notch portion 32 is a notch portion of the grounding wire 31. The grounding wire 33 is formed by meandering the metal fiber board 3〇, the grounding wire having a meandering pattern, 34, the grounding wire 33, and (4) the mouth. In the figure, 2275-10007-ρρ 42 201011657 are denoted by the same reference numerals, and the description thereof will be omitted.砰, 田, so far, although the electrical connection has been described as the reliability of the antenna 3, (electrical connection 7,) and ^6' of the antenna field type when bending the r-label 10', the RFID tag is bent through 1〇,, not only the electrical connection wires 3, (electrical connections 7, 7, 7) and /1 (: the wafer 6'' also affects the wires 3' and the dielectric substrate [, and the grounding conductor 8, The adhesion of the dielectric substrate 1' is adversely affected by the tensile stress generated by the bending of the dielectric substrate r (RFID tag). In particular, the grounding is generally provided on the entire other main surface (back surface) of the dielectric substrate The wire 8 causes a bad influence. For example, the #RFID tag f is curved so that the ground wire 8' side (the other main surface side of the dielectric substrate 1') becomes a valley, from the end of the dielectric substrate 朝向 toward the dielectric The outer side of the substrate 丨' causes a large tensile stress on the grounding conductor 8, and there is a possibility that the grounding conductor 8 of the end of the dielectric substrate 丨' is broken or peeled off from the dielectric substrate 。. The label is bent so that the grounding wire 8 is on the side (the other of the dielectric substrate is When the surface side becomes a mountain, a large tensile stress is generated on the ground lead 8 from the end of the dielectric substrate 朝向 toward the center of the dielectric substrate ', and the ground lead 8 of the dielectric substrate , is loosened. The possibility of the dielectric substrate being peeled off or the grounding wire 8, the adhesion to the substrate, and the bending of the RFID tag such that the grounding wire 8 is turned into the same valley as the grounding wire 8 having the end of the dielectric substrate 1 'The possibility of breaking or peeling off from the dielectric substrate. The following description replaces the grounding conductor 8'' through the use of the grounding conductors 26' and 28', the metal fiberboard 3〇, 2275-10007-PF 43 201011657 = = 3 (The grounding conductors 3ι' and ^ caused by r, as the grounding body of the state d ' can reduce the problems caused by the grounding conductor of the _ standard when bending the RFID tag. : 22(a) and (b) The grounding conductors and the grounding conductors 28' of the zigzag pattern are shown with the grounding conductors 8', and the notched portions 27, 29 of the blades are passed through the notched portions W and attached to the grounding conductors. The overall tensile stress is released through the notch 27, ❹ However, the possibility of the grounding conductor plate 1 being broken by the breaking or loosening is greatly reduced. Moreover, the shape of the notch portion is not limited to the one shown in Figs. 22U) and (8), and the protective grounding conductor is not subjected to tensile stress.

造成之不良的影響,以古八A 誓以充/刀地操作以做為RFID標籤的貼 天、的接地導體。換言之,可電氣地與接地導線8,等 效。又,複數個缺口部的形狀不需要相同,可由「在拉應 力大^ 立置配置面積大的缺口部」、「朝向拉應力變大的 位置慢地增大缺口部的面積」、「矩形以外的圓形等的 瘳圓依附的形狀」等、介電基板1,的硬度、κ晶“,的 位置及大小、設置RFID標籤(貼附)的面之曲率等要素權 衡,以選擇使接地導線的導體變薄的量或變薄的形狀。「切 除」、「缺口部」等的表示係用於指形狀,而非限定於在 接地導線形成後實際切除導線而形成者,可考慮如前述形 成導線3的槽孔4,尊的圖案的技術之各種技術。 又,也可不形成缺口部而使用圖23(a)〜(c)所示的 金屬纖維板30’取代接地導線8,。金屬纖維板別,係編 織金屬纖維的板狀的導體,厚度(截面長)很薄,除了可做. 2275-10007-PF 44 201011657 為RFID標籤的接地導體外,如圖23(c)所示,對於外力造 成的變形具有充分的可撓性,可取代缺口部做為拉應力的 緩衝材料。再者,由於係薄板狀,故可透過模切等自由地 改變形狀’如圖2 2所示’可對金屬纖維板附加缺口部, 以可提升做為拉應力的緩衝材料的性能及使金屬纖維板 變輕。又,由於金屬纖維板以外的特點與圖22所示之形 成格狀圖案的接地導線26,及形成曲折圖案的接地導線 ❹ 28或在圖18中之前述内容(段落號碼「〇〇75」的記載) 相同,故省略圖24所示之形成格狀圖案的金屬纖維板 31及形成曲折圖案的金屬纖維板33’的說明。又,由於 可如别所述透過模切等自由地改變形狀,此金屬纖維板 30不僅可使用於接地導線8’ ,也可使用於導線3,。 由於金屬纖維在製造(編織)時容易在期望的位置設置孔 洞,利用此特點,可在製造時設置成為拉應力的緩衝材料 之开> 狀及數目的孔,並以其取代缺口部。 籲 使用圖25〜27說明將本實施例4的RFID標籤實際 貼附在曲面上的步驟。圖25係本實施例4的RFID標籤的 構成圖。圖25(a)係在圖u(a)中由A_A’線切斷時的截面 圖’圖25(b)係在將雙面膠帶形成於接地導線上的圖n(b) 中顯示的RFID標籤,在圖25中,接地導線肚係接地導 線8’ 、接地導線(格狀)26,、接地導線(曲折狀)28,、 金屬纖維板30,、接地導線(格狀)31,、接地導線(曲折 狀)33’中的任一個之接地導線(接地導體層)。雙面膠帶 35’係被設置在接*地導線8χ的下部。圖中係以相同的符 2275-10007-PF 45 201011657 號標示相同或相當的部分,並且省略其詳細說明。在將本 實施例4的RFID標籤貼附於管理對象的物體時,因為將 形成有做為天線場型的導線3,之介電基板1’的一主面 側朝向外側以容易接收來自RFID讀寫器的電波,在形成 有接地導線8x之介電基板1,的另一主面側上必須設置 與管理對象的物體之設置面固定的材料(黏著層)。根據設 置面的材質’此固定的材料通常使用市售的雙面膠帶即以 ❻ 足夠。又’若將具有導電性者使用於黏著層,在導線8χ 上具有缺口部的情況中,即使缺口部的面積變大,可得到 在設置後以充分的性能操作的rFID標藏,根據情況,即 使不將導線8x設置在介電基板Γ上,也可操作RFID標 籤。不過’此時並不保證設置前的rFID標籤的操作。 圖26係本實施例4的RFID標籤及RFID標籤設置對 象物的構成圖,圖26(a)係圖25(b)所示的RFID標籤。又, 圖26(b)係RFID標籤設置對象物(設置面為凸型),圖26(c) _ 係RFiD標籤設置對象物(設置面為凹型),其分別被附加 符號36’ 、37’ 。圖中係以相同的符號標示相同或相當的 部分,並且省略其詳細說明。在本發明的RFID標籤的性 質上,RFID標籤設置對象物36’及37’可為導體,也可 不為導體。將圖26(a)所示的rfID標籤之跟雙面膠帶35, 的與RFID標籤黏著的面相對的面放在RFID標籤設置對象 物36’或37’以進行設置。 其次’使用圖27說明設置RFID標籤設置對象物36,The adverse effects caused by the ancient eight A swear to operate as a grounding conductor for the RFID tag. In other words, it can be electrically connected to the ground conductor 8, which is equivalent. Further, the shape of the plurality of notch portions need not be the same, and the "notch portion having a large tensile stress and a large vertical arrangement area" and "the area of the notch portion is gradually increased toward a position where the tensile stress is increased" and "outside the rectangle" The shape of the circular shape, such as a circular shape, etc., the hardness of the dielectric substrate 1, the position and size of the κ crystal, and the curvature of the surface on which the RFID tag (attach) is placed are weighed to select the grounding wire. The amount of thinning or thinning of the conductor. The expressions such as "cut" and "notch" are used to refer to the shape, and are not limited to those formed by actually cutting the wire after the grounding wire is formed, and may be formed as described above. The slot 4 of the wire 3, the various techniques of the pattern of the statue. Further, instead of forming the notch portion, the metal fiber plate 30' shown in Figs. 23(a) to (c) may be used instead of the ground wire 8. The metal fiber board is a plate-shaped conductor of woven metal fiber, and the thickness (long section) is thin, except that it can be made. 2275-10007-PF 44 201011657 is the grounding conductor of the RFID tag, as shown in Fig. 23(c), The deformation caused by the external force has sufficient flexibility to replace the notch portion as a cushioning material for tensile stress. Further, since it is in the form of a thin plate, the shape can be freely changed by die cutting or the like 'as shown in FIG. 2', a notch portion can be added to the metal fiber board to improve the performance of the cushioning material as the tensile stress and to make the metal fiber board. Lighten. Further, the characteristics other than the metal fiber board and the grounding wire 26 forming the lattice pattern shown in Fig. 22, and the grounding wire 28 forming the meandering pattern or the above contents in Fig. 18 (the description of the paragraph number "〇〇75") Since they are the same, the description of the metal fiber sheet 31 forming the lattice pattern and the metal fiber sheet 33' forming the meander pattern shown in Fig. 24 will be omitted. Further, since the shape can be freely changed by die cutting or the like as described above, the metal fiber board 30 can be used not only for the grounding wire 8' but also for the wire 3. Since the metal fiber is easily provided with a hole at a desired position during the manufacturing (braiding), it is possible to provide the opening and the number of holes of the cushioning material which is a tensile stress at the time of manufacture, and replace the notch portion with it. The procedure of actually attaching the RFID tag of the fourth embodiment to a curved surface will be described with reference to Figs. Figure 25 is a view showing the configuration of an RFID tag of the fourth embodiment. Figure 25 (a) is a cross-sectional view taken along line A_A' in Figure u (a) ' Figure 25 (b) is the RFID shown in Figure n (b) of the double-sided tape formed on the grounding wire Label, in Figure 25, grounding conductor belly grounding conductor 8', grounding conductor (grid) 26, grounding conductor (zigzag) 28, metal fiberboard 30, grounding conductor (grid) 31, grounding conductor Ground wire (grounding conductor layer) of any of (zigzag) 33'. The double-sided tape 35' is placed on the lower portion of the grounding wire 8'. In the drawings, the same or equivalent parts are designated by the same symbols 2275-10007-PF 45 201011657, and the detailed description thereof is omitted. When the RFID tag of the fourth embodiment is attached to the object to be managed, since the wire 3 as the antenna field type is formed, one main surface side of the dielectric substrate 1' faces outward to be easily received from the RFID reading. The radio wave of the writer must be provided with a material (adhesive layer) fixed to the installation surface of the object to be managed on the other main surface side of the dielectric substrate 1 on which the grounding conductor 8x is formed. Depending on the material of the setting surface, this fixed material is usually sufficient using commercially available double-sided tape. Further, in the case where the conductive layer is used for the adhesive layer and the notch portion is provided on the lead wire 8χ, even if the area of the notch portion is increased, the rFID mark which is operated with sufficient performance after the setting can be obtained, depending on the case, The RFID tag can be operated even if the wire 8x is not placed on the dielectric substrate. However, the operation of the rFID tag before the setting is not guaranteed at this time. Fig. 26 is a view showing the configuration of the RFID tag and the RFID tag setting object of the fourth embodiment, and Fig. 26(a) is the RFID tag shown in Fig. 25(b). 26(b) is an RFID tag setting object (the mounting surface is convex), and FIG. 26(c) _ is an RFiD tag setting object (the setting surface is concave), which are respectively provided with symbols 36', 37' . In the drawings, the same or corresponding parts are designated by the same reference numerals, and the detailed description is omitted. In the nature of the RFID tag of the present invention, the RFID tag setting objects 36' and 37' may or may not be conductors. The surface of the rfID tag shown in Fig. 26(a) opposite to the face to which the RFID tag is attached is placed on the RFID tag setting object 36' or 37'. Next, the installation of the RFID tag setting object 36 will be described using FIG.

及37’後的狀態。圖27係本實施例4的RFID標籤及RFID 2275-10007-PF 46 201011657 標籤《X置對象物的構成圖,圖27(a)係被設置於RFID標籤 設置對象物(設置面為凸型)的RFID標籤,圖27(b)係被設 置於RFID標藏設置對象物(設置面為凹型)者。圖中係以 相同的符號標示相同或相當的部分,並且省略其詳細說 明°如圖27所示’對於本實施例4的RFII)標籤,設置面 為凸狀或凹狀,均與平面同樣容易設置,即使導線3,彎 曲’由於電氣長度沒有變化,雖然放射場型稍微變形,對 ❹ 於導線3’做為RFID標籤的電波放射部的操作並無障 礙。又’在圖27(a)及(b)之外,即使是在設置面上同時存 在凹凸起伏(波動)的RFID標籤設置對象物,若是某程度 的凹凸起伏(波動),仍可進行設置。 在如上所述的本發明的實施例4中,使用低硬度(例 如,JIS-A55)的烯烴系熱塑性合成橡膠等,以製造介電基 板Γ ’由於可製造由具有可撓性的介電基板造成的可撓 的RFID標籤’可得到可沿著具有鋼桶等的曲面之物體的 φ 曲面設置的RFII)標藏。又,樹脂成型的基板,相對於貼 合數張印刷基板而多層化的介電基板,使用以樹脂(熱塑 性樹脂)射出成型的介電基板者不僅可大幅地降低基板成 本(製造成本),用於RFID標籤的介電基板的介電質(材 質)’在一般於印刷基板上使用的聚四氟乙烯(氟樹脂)、 陶瓷、環氧玻璃等的介電質的情況中,難以製造任意厚度 的基板,對於無法靈活地對應由RFID標藏的設置位置要 求的尺寸之變化,因為在樹脂成型的基板中,僅改變模 具’可輕易地變更厚度及形狀,故可容易地製造各種變化 2275-10007-PF 47 201011657 的RFID標籤。又,利肖以在樹脂(熱塑性樹脂)中具有介 電消散因子低的特性之稀煙系聚合物樹脂做為奶D標藏 的介電基板’可提升放射效率,並可製造高增益的關 標蕺。 者稀&系&合物樹脂的比重大約係、—般的印刷基 板的一半,故可使RFID標籤輕量化。再者,在安裝至如 以一般於印刷基板上使用的聚四氟乙烯(氟樹脂)、陶甍、 環氧玻璃等構成的介電基板之硬且具有厚度的材質上 時’1C標籤6沒有安裝的專用設備,不得不一個一個安 裝而耗費時間,至於樹脂成型基板,在市場上出現許多將 1C晶片6’安裝至薄膜基材2,的設備,而可一次大量地 生產’包含孔部5’的形成,可大幅地減少製造時間及成 本。即使是下面的實施例5 ,優點也可說是相同。 實施例5 ❿ 在實施例4中係說明取決於1C晶片6,的位置及接地 導線的形狀及材質而可貼附至曲面的RFID標籤在本實 施例5中,進一步使用圖28〜圖35說明提高Ic晶片及 導線(槽孔、電氣連接部)的電氣連接的可靠度之可貼附至 曲面的RFID標籤。圖中係以相同的符號標示相同或相當 的部分,並且省略其詳細說明。實施例5係有關於構成ic 曰曰片6周邊的硬度比IC晶片6’的周邊以外(在實施例4 顯示的低硬度的介電基板)高的基板,以改善IC晶片及導 線的電氣連接的可靠度,且係使用在實施例4顯示的對策 2275-10007-pf 48 201011657 使得由彎曲RFID標籤造成的拉應力對接地導線等的不良 影響大之基板部分(RFID標籤的端部)更加彎曲地強化的 RFID標籤。換言之,在因為RFID標籤的彎曲而影響強的 部分上使用低硬度的基板’在因為RFII)標籤的彎曲而影 響弱的部分上使用高硬度的基板,可以說在高硬度的基板 上係配置對彎曲的耐性較弱的IC晶片及導線的電氣連接 的位置。 參下面說明有關具體的構造,實施例5的rfID標箴之 圖面上的外表特徵的尺寸(RFID標籤的外形及槽孔的尺寸) 係與實施例4的RF ID標籤相同,這是因為在比較及說明 之後可優先地理解,實際上由於實施例4中的介電基板 Γ的材料常數(介電常數、介電消散因子等)與實施例5 中的複合的介電基板(使用介電基板丨,及其他的介電基 板兩種基板)之實效的材料常數並不相同,做為RFID標 籤’實施例5的RF ID標籤為了得到與實施例4的rf ID標 & 籤等效的性能’必須再調整RFID標籤(導體及基板)的各 尺寸。當然,預疋距離d .也改變。因此,在實施例4及實 施例5中,肯定可以說,RFID標籤的各尺寸不同。在實施 例5中’可以說這些在說明某些種類的rFII)標蕺中也相 同。 圖28係實施例5的RFID標籤的構成圖,圖28(3)係 RFID標籤的平面圖’圖28(b)係在圖28(a)中由A-A’線 切斷時的戴面圖’圖29係實施例5的RFID標籤的構成圖, 圖29(a)係RFID標籤的平面圖,圖29’(b)係在圖29(a)中 2275 —10007 —FT 49 201011657 由A_A’線切斷時的截面圖。在圖28所示的RFID標籤38, 中,第1介電基板39,係以與介電基板丨,相同的材料構 成,圓形的凹部40’係被設置在第1介電基板39,的一 主面上。第2介電基板41,係被插入至凹部40,(或是後 述的凹部44 、凹部46,、凹部48,、貫通孔50,、貫 通孔52 、段差部54,),且具有比第】介電基板39,高 的硬度。孔部42’係在i介電基板39,的一主面側中被 形成於第2介電基板41’上,且係與實施例4的孔部5, 相等者。在圖29所示的RFID標籤43,中,矩形的凹部 44,係被設置在第丄介電基板39,的一主面上之矩形的 凹部。 如圖28及圖29所示,由於形成载置IC晶片6,的孔 部42之第2介電基板41’係使用硬度比第1介電基板 39’高的基板,可減低由RFII)標籤38’或RFID標籤43, 的彎曲對於1C晶片6’及導線3,(電氣連接部了,、7,) 的電氣連接造成的影響。又,凹部4〇, 、44’及第2介電 基板的截面形狀不限於圓形及矩形,也可為橢圓形、十字 形、星形、及多角形。由於若以樹脂成型製造第i介電基 板39’及第2介電基板41’ ,可將各個基板製造為任意 的形狀,故可根據RFID標籤的彎曲方式及彎曲方向選擇 形狀。再者,凹部40’ 、44’及第2介電基板的頭頂部至 底部不需要為相同的截面形狀。例如,如圖28所示,也 可不為圓柱形的凹部40’ 、44’及第2介電基板,而為從 頭頂部至底部錐形地變細的圓錐。RFID標籤38,及44’ 2275-100Q7-PF 50 201011657 的製造方法,除了在製造第!介電基板39’及第2介電基 板41’之後,將第2介電基板41,嵌合或黏著至第i介 電基板39’之外,與實施例4說明的RFID標籤1〇,相同, 故省略說明。在實施例4中,擴張載置Ic晶片6,的孔部 5’ ,做為凹部40’或44,,取代第2介電基板而將製模 材料注入至凹部4〇’或44,,也可實現如圖28及圖29 的結構。 ❺ 圖係實施例5的RF ID標籤的構成圖。圖3〇(a)係 RFID標籤的平面圖,圖3〇(b)係在圖u(a)中由a_a,線 切斷時的截面圖,圖31係實施例5的RFID標籤的構成圖, 圖31(a)係rfid標籤的平面圖,圖31(b)係在圖31(a)中 由A-A’線切斷時的截面圖,在圖3〇所示的RnD標蕺", 中,凹部46’係直徑比槽孔4’的長度方向的長度大之圓 形的凹部。在圖31所示的RFID標藏47,中,凹部48, 係一邊的長度比槽孔4’的長度方向的長度大之矩形的凹 參 部。當圖28及圖29所示的RFID標藏做為基本結構或RFID 標籤時功能相同,但圖30及圖31所示的RFID標藏在下 列各點中不同,由於槽孔4’僅在第2介電基板41,上具 有場型,在彎曲RFID標籤時,附加在第1介電基板39, 及第2介電基板41’的接觸面(嵌合面、黏著面)上的負荷 未附加於槽孔4,的沿端,負荷不僅是在薄膜基材2,而 是在導線3’及薄膜基材2,被抑制,且防止由槽孔4,的 場型的破斷或鬆弛造成之場型從基板剝離的效果更高。 又,凹部46, 、48’及第2介電基板的截面形狀不限 2275-10007-pp 51 201011657 於圓形及矩形’也可為橢圓形、十字形、星形、及多角形。 由於若以樹脂成型製造第1介電基板39,及第2介電基板 41’ ,可將各個基板製造為任意的形狀,故可根據rFID 標籤的彎曲方式及彎曲方向選擇形狀。再者,凹部46,、 48’及第2介電基板的頭頂部至底部不需要為相同的截面 形狀。例如’如圖30所示,也可不為圓柱形的凹部46,、 48’及第2介電基板,而為從頭頂部至底部錐形地變細的 ❹ 圓錐。RFID標蕺45’及47,的製造方法,除了在製造第 1介電基板39’及第2介電基板41’之後,將第2介電基 板41’被:合或黏著至第1介電基板39,之外,與實施例4 說明的RFID標籤1〇’相同,故省略說明。 圖32係實施例5的RFID標籤的構成圖。圖32(a)係 RFID標籤的平面圖,圖32(b)係在圖32(a)中由A-A,線 切斷時的截面圖,圖33係實施例5的RFID標蕺的構成圖, 圖33(a)係RFID標簸的平面圖,圖33(b)係在圖33(a)中 ❸ 由A-A’線切斷時的截面圖,在圖32所示的RFID標籤49’ 中,貫通孔50’係直徑比槽孔4’的長度方向的長度大之 圓形的貫通孔。在圖33所示的rFID標籤51,中,貫通孔 52’係一邊的長度比槽孔4,的長度方向的長度大之矩形 的貫通孔。雖然圖30及圖31所示的RFID標籤做為基本 結構或RFID標籤其功能相同,但圖3〇及圖31所示的rhd 標籤之第2介電基板41,,由於體積及面積比圖28及圖 29所示的RFID標籤的第2介電基板41’大,在彎曲RFID 標籤時;因為第1介電基板39,及第2介電基板41,的 2275-10007-PF 52 201011657 接觸面(嵌合面、黏著面)靠近RFID標籤的端部,附加在 其接觸面上的負荷變大,而有第1介電基板39,及第2 介電基板41,分離的可能性,在圖32及圖33所示的rFid 標籤中’由於在第1介電基板39,上設置貫通孔5〇,或 貫通孔52’ ,並將第2介電基板41,插入.固定於該處, 故第1介電基板39,及第2介電基板41,的接觸面變多, 可減低第1介電基板39,及第2介電基板41,分離的可 能性。當然,也可在圖28及圖29所示的RFID標籤的第j 介電基板39,上設置貫通孔,並插入.固定對應於該貫通 孔的形狀之第2介電基板41,。 又,貫通孔50’ 、52,及第2介電基板的截面形狀不 Ο 限於圓形及矩形,也可為橢圓形、十字形、星形、及多角 形。由於右以樹脂成型製造第1介電基板39’及第2介電 基板41’ ,可將各個基板製造為任意的形狀,故可根據 RFID標藏的彎曲方式及彎曲方向選擇形狀。再者,貫通孔 50’ 、52’及第2介電基板的頭頂部至底部不需要為相同 的截面形狀。例如,如圖32所示,也可不為圓柱形的貫 通孔5G’、52’及第2介電基板,而為從頭頂部至底部錐 形地變細的圓錐。RFID標籤49,及51’的製造方法, 了在製造第1介電基板39’及第2介電基板41,之後了 將第2介電基板41’嵌合或黏著至第1介電基板39, 外,與實施例4說明的RFID標籤ι〇,相同,故省略說明1 再者,如前所述,由於1C晶片6,周邊的電場集中於槽孔 4’的附近(圖18),在該電場集中的位置的正下 万之第1 2275-10007-PF 53 201011657 介電基板39’的另一主面側中的第2介電基板41’上’ 也可不設置接地導線8χ。也就是,這是指在固定(嵌合、 黏著)第1介電基板39,及第2介電基板41’之前’没 有必要設置接地導線8Χ,結果得到增加可選擇的製造方法 的變化之效果。 圖34係實施例5的RFID標籤的構成圖。圖34(a)係 RFID標籤的平面圖,圖34(b)係在圖34(a)中由A-A’線 切斷時的截面圖,在圖34所示的RFID標籤53,中,段差 部54’係從第1介電基板39’的中央及第1介電基板 39’對向的側邊起被設置於侧邊的段差部。RFID標籤53, 係與圖28〜33所示的RFID標籤不同,取代在第1介電 基板39’上將凹部及貫通孔等開口設置在第1介電基板 39’的一主面上,由於採用將第2介電基板41’嵌合或黏 著至在第1介電基板39,的一主面及側面上設置開口的 凹部狀的段差部54,的構造,從第1介電基板39,的一 ❹ 主面側將第2介電基板41’插入,並從第1介電基板gg, 的侧面將第2介電基板41,插入,而得到容易匹配第J 介電基板39’及第2介電基板41’的位置之效果。 又,不必使段差部54,及第2介電基板41’的表面 為平坦的,也可在表面上設置波狀的波動或嵌合用的凹 凸,以提高第1介電基板39,及第2介電基板41,的衅 合強度’且段差部5 4沒有必要對於槽孔4,平行地形 成,也可根據RFID標籤的彎曲方式及彎曲方向選擇方。/ 再者’段差部54 &第2介電基板的頭頂部至底部不需要 2275-10007-PF 54 201011657 為相同的截面形狀。例如,如圖34所示,也 體的段差部54,及第2介電基板,而為從頭頂部至 形地變細的梯形錐。RFID標籤53,的製造方法,除 製造第1介電基板39’及第2介電基板41,之後,將 介電基板41,嵌合或㈣至第!介電基板39,之外,座 實施例4說明的园標籤1〇’相同,故省略說明。” 圖35係實施例5的RFID標籤的構成圖◦圖3 ❹_標籤的平面圖’目35(b)係在圖35(a)中由a_a,線 切斷時的截面圖。在RFID標藏55,巾,連接面%, 丨介電基板39,肖第2介電基板39,㈣接面。RFiD標 籤55係廢除圖34所示的rfid標籤53,的段差; 54’ ,經由連接面56,將第i介電基板39,配置於第% 介電基板41’的側面上’而結合第1介電基板39,及第2 介電基板41’者’首先’在製作第2介電基板41’之後, 透過將第2介電基板41,放入至射出成型的模具,接著將 _做為介電基板39 _樹脂放入而被製造。簡單地說,也可 分別製造第1介電基板39’與第2介電基板41,並以連 接面56’黏貼在一起。 又,不必使連接面56,中的第1介電基板39,與第2 介電基板4Γ $平坦的’也可在表面上設置波狀的波動或 嵌合用的凹凸’以提高第1介電基板39, &第2介電基板 1的'”強度且連接Φ56,沒有必要對於槽孔4,平 行地形成,也可根據_標籤的彎曲方式及彎曲方向選 擇方向。再者,連接面56’中的第1介電基板39,與第2 2275-10007-PF 55 201011657 介電基板41 ’的頭頂部至底部彳彳. 、代 主面至另一主面)不 需要為相同的截面形狀。例如,如 如圖35所示,也可不為 垂直的連接面56,,而為從一主而5兑 , 王曲至另一主面錐形地變細 的連接面。RFID標藏5 5,的製诰古、土 h 丄L人綠 造方法,由於在結合第2 介電基板41’及第1介雷其如q〇, 乐丨冤基板39之後係與實施例4說 明的RFID標籤1〇’相同’故省略說明。And the state after 37'. 27 is a configuration diagram of an RFID tag and an RFID 2275-10007-PF 46 201011657 tag of the fourth embodiment, and FIG. 27(a) is a device for setting an RFID tag (the mounting surface is convex). In the RFID tag, FIG. 27(b) is provided in the RFID tag setting object (the mounting surface is concave). In the drawings, the same or corresponding portions are designated by the same reference numerals, and the detailed description thereof is omitted. As shown in Fig. 27, the RFII of the present embodiment 4 has a convex or concave surface, which is as easy as a flat surface. It is set that even if the wire 3, the bending 'has not changed due to the electrical length, although the radiation field type is slightly deformed, the operation of the radio wave radiating portion of the wire 3' as the RFID tag is unobstructed. Further, in addition to the (FIG. 27 (a) and (b)), the RFID tag setting object in which the undulations (fluctuations) are present on the installation surface can be set if the undulations (fluctuations) are to some extent. In the fourth embodiment of the present invention as described above, an olefin-based thermoplastic elastomer or the like having a low hardness (for example, JIS-A55) is used to manufacture a dielectric substrate Γ 'since a flexible dielectric substrate can be manufactured The resulting flexible RFID tag 'is available in RFII that can be placed along the φ surface of an object having a curved surface such as a steel drum. In addition, the resin-molded substrate can be used not only for a dielectric substrate that is molded by a resin (thermoplastic resin) but also for a dielectric substrate that is formed by laminating a plurality of printed substrates, thereby reducing the substrate cost (manufacturing cost). The dielectric material (material) of the dielectric substrate of the RFID tag is difficult to manufacture in any thickness in the case of a dielectric such as polytetrafluoroethylene (fluororesin), ceramic, or epoxy glass which is generally used for a printed circuit board. The substrate can be flexibly adapted to the change in the size required by the RFID-set mounting position. Since the thickness and shape can be easily changed by merely changing the mold in the resin-molded substrate, various changes can be easily made 2275- 10007-PF 47 201011657 RFID tag. In addition, Leisho uses a thin-type polymer resin having a low dielectric dissipating factor in a resin (thermoplastic resin) as a dielectric substrate labeled with milk D to improve radiation efficiency and produce high gain. Standard. The thinner &amplifier& resin has a specific gravity of about half that of a general printed substrate, so that the RFID tag can be made lighter. In addition, when mounted on a hard and thick material of a dielectric substrate made of polytetrafluoroethylene (fluororesin), ceramic enamel, epoxy glass or the like which is generally used on a printed substrate, the '1C label 6 does not have The special equipment to be installed has to be installed one by one and it takes time. As for the resin-molded substrate, many devices for mounting the 1C wafer 6' to the film substrate 2 are available on the market, and the hole portion 5 can be produced in large quantities at one time. 'The formation can greatly reduce manufacturing time and cost. Even in the following embodiment 5, the advantages can be said to be the same. [Embodiment 5] In Embodiment 4, an RFID tag attachable to a curved surface depending on the position of the 1C wafer 6, and the shape and material of the grounding conductor is described. In the fifth embodiment, the description will be further described with reference to FIGS. 28 to 35. The reliability of the electrical connection of the Ic chip and the wire (slot, electrical connection) can be attached to the curved RFID tag. In the drawings, the same or corresponding parts are designated by the same reference numerals, and the detailed description is omitted. In the fifth embodiment, a substrate having a higher hardness than the periphery of the IC wafer 6' (the low-hardness dielectric substrate shown in the embodiment 4) is formed to improve the electrical connection between the IC chip and the wires. The reliability of the substrate portion (the end portion of the RFID tag) in which the tensile stress caused by the curved RFID tag has a large adverse effect on the grounding wire or the like is more curved, using the countermeasures shown in Embodiment 4, 2275-10007-pf 48 201011657. Enhanced RFID tags. In other words, it is possible to use a substrate having a high hardness on a portion where a low-hardness substrate is affected by bending of the RFID tag due to bending of the RFID tag, and it can be said that a pair of substrates having a high hardness is disposed on a substrate having a high hardness. The position of the electrical connection of the IC wafer and the wire with weaker resistance to bending. Referring to the specific configuration, the size of the outer surface feature (the shape of the RFID tag and the size of the slot) on the surface of the rfID label of the embodiment 5 is the same as the RF ID label of the embodiment 4, because After comparison and explanation, it can be preferentially understood that, in fact, due to the material constant (dielectric constant, dielectric dissipation factor, etc.) of the dielectric substrate 实施 in Example 4 and the composite dielectric substrate in Example 5 (using dielectric The material constants of the substrate 丨 and other dielectric substrates are not the same. As the RFID tag, the RF ID tag of the embodiment 5 is equivalent to the rf ID tag & Performance 'The dimensions of the RFID tag (conductor and substrate) must be adjusted. Of course, the distance d. also changes. Therefore, in the fourth embodiment and the fifth embodiment, it can be said that the respective sizes of the RFID tags are different. In the embodiment 5, it can be said that these are the same in the specification of some kinds of rFII. 28 is a configuration diagram of the RFID tag of the fifth embodiment, and FIG. 28(3) is a plan view of the RFID tag. FIG. 28(b) is a front view when the line A-A' is cut in FIG. 28(a). Figure 29 is a configuration diagram of the RFID tag of Embodiment 5, Figure 29(a) is a plan view of the RFID tag, and Figure 29'(b) is in Figure 29(a) 2275 - 10007 - FT 49 201011657 by A_A' line Sectional view at the time of cutting. In the RFID tag 38 shown in FIG. 28, the first dielectric substrate 39 is made of the same material as the dielectric substrate, and the circular recess 40' is provided on the first dielectric substrate 39. On the main face. The second dielectric substrate 41 is inserted into the concave portion 40 (or the concave portion 44, the concave portion 46, the concave portion 48, the through hole 50, the through hole 52, and the step portion 54), which will be described later, and has a ratio The dielectric substrate 39 has a high hardness. The hole portion 42' is formed on the second dielectric substrate 41' on one main surface side of the i dielectric substrate 39, and is equal to the hole portion 5 of the fourth embodiment. In the RFID tag 43 shown in Fig. 29, a rectangular recess 44 is provided in a rectangular recess on one main surface of the second dielectric substrate 39. As shown in FIG. 28 and FIG. 29, the second dielectric substrate 41' of the hole portion 42 on which the IC wafer 6 is placed is formed by using a substrate having a higher hardness than the first dielectric substrate 39', thereby reducing the RFII) label. The bending of 38' or RFID tag 43, affects the electrical connection of 1C wafer 6' and wire 3, (electrical connections, 7,). Further, the cross-sectional shapes of the recessed portions 4A, 44' and the second dielectric substrate are not limited to a circular shape and a rectangular shape, and may be an elliptical shape, a cross shape, a star shape, or a polygonal shape. When the i-th dielectric substrate 39' and the second dielectric substrate 41' are formed by resin molding, each of the substrates can be manufactured in an arbitrary shape. Therefore, the shape can be selected in accordance with the bending manner and the bending direction of the RFID tag. Further, the recesses 40' and 44' and the top to bottom of the second dielectric substrate do not need to have the same cross-sectional shape. For example, as shown in Fig. 28, the cylindrical recesses 40' and 44' and the second dielectric substrate may not be tapered, and the cone may be tapered from the top to the bottom. RFID tag 38, and 44' 2275-100Q7-PF 50 201011657 manufacturing method, in addition to the manufacturing! After the dielectric substrate 39' and the second dielectric substrate 41', the second dielectric substrate 41 is fitted or adhered to the i-th dielectric substrate 39', and is the same as the RFID tag 1A described in the fourth embodiment. Therefore, the description is omitted. In the fourth embodiment, the hole portion 5' on which the Ic wafer 6 is placed is expanded as the concave portion 40' or 44, and the molding material is injected into the concave portion 4' or 44 instead of the second dielectric substrate. The structure of FIGS. 28 and 29 can be realized.构成 The diagram of the RF ID tag of the embodiment 5 is shown. 3(a) is a plan view of the RFID tag, FIG. 3(b) is a cross-sectional view taken along line a-a in FIG. u(a), and FIG. 31 is a configuration diagram of the RFID tag of the fifth embodiment. Figure 31 (a) is a plan view of the rfid tag, and Figure 31 (b) is a cross-sectional view taken along line A-A' in Figure 31 (a), and the RnD label " shown in Figure 3A, In the middle, the recess 46' is a circular recess having a diameter larger than the length of the slot 4' in the longitudinal direction. In the RFID tag 47 shown in Fig. 31, the concave portion 48 is a rectangular concave portion having a length larger than the length of the slit 4' in the longitudinal direction. The functions of the RFID tag shown in FIG. 28 and FIG. 29 are the same as the basic structure or the RFID tag, but the RFID tags shown in FIG. 30 and FIG. 31 are different in the following points, since the slot 4' is only in the The dielectric substrate 41 has a field type thereon, and when the RFID tag is bent, the load applied to the contact surface (fitting surface, adhesion surface) of the first dielectric substrate 39 and the second dielectric substrate 41' is not added. At the edge of the slot 4, the load is suppressed not only on the film substrate 2 but on the wire 3' and the film substrate 2, and is prevented from being broken or loosened by the field of the slot 4. The field type is more effective in peeling off from the substrate. Further, the cross-sectional shapes of the recesses 46, 48' and the second dielectric substrate are not limited to 2275-10007-pp 51 201011657. The circular and rectangular shapes may be elliptical, cross-shaped, star-shaped, and polygonal. When the first dielectric substrate 39 and the second dielectric substrate 41' are formed by resin molding, each of the substrates can be manufactured into an arbitrary shape. Therefore, the shape can be selected according to the bending method and the bending direction of the rFID label. Further, the recesses 46, 48' and the top to bottom of the second dielectric substrate do not need to have the same cross-sectional shape. For example, as shown in Fig. 30, the cylindrical recesses 46, 48' and the second dielectric substrate may not be tapered, but may be tapered from the top to the bottom. In the manufacturing method of the RFID tags 45' and 47, after the first dielectric substrate 39' and the second dielectric substrate 41' are manufactured, the second dielectric substrate 41' is bonded or adhered to the first dielectric. The substrate 39 is the same as the RFID tag 1A' described in the fourth embodiment, and thus the description thereof is omitted. Figure 32 is a view showing the configuration of an RFID tag of the fifth embodiment. 32(a) is a plan view of the RFID tag, FIG. 32(b) is a cross-sectional view taken along line AA of FIG. 32(a), and FIG. 33 is a block diagram of the RFID tag of the embodiment 5. 33(a) is a plan view of the RFID tag, and Fig. 33(b) is a cross-sectional view taken along line A-A' in Fig. 33(a), in the RFID tag 49' shown in Fig. 32, The through hole 50' is a circular through hole having a diameter larger than the length of the slot 4' in the longitudinal direction. In the rFID tag 51 shown in Fig. 33, the through hole 52' is a rectangular through hole having a length longer than the length of the slot 4 in the longitudinal direction. Although the RFID tag shown in FIGS. 30 and 31 has the same function as the basic structure or the RFID tag, the second dielectric substrate 41 of the rhd tag shown in FIG. 3 and FIG. 31 has a volume and area ratio as shown in FIG. The second dielectric substrate 41' of the RFID tag shown in FIG. 29 is large, and when the RFID tag is bent, the contact surface of the first dielectric substrate 39 and the second dielectric substrate 41 is 2275-10007-PF 52 201011657. (the fitting surface and the adhesive surface) are close to the end of the RFID tag, and the load attached to the contact surface is increased, and the first dielectric substrate 39 and the second dielectric substrate 41 are separated. In the rFid tag shown in FIG. 33 and FIG. 33, "the through hole 5" or the through hole 52' is provided in the first dielectric substrate 39, and the second dielectric substrate 41 is inserted and fixed thereto. The contact faces of the first dielectric substrate 39 and the second dielectric substrate 41 are increased, and the first dielectric substrate 39 and the second dielectric substrate 41 can be reduced and separated. Of course, a through hole may be formed in the j-th dielectric substrate 39 of the RFID tag shown in Figs. 28 and 29, and the second dielectric substrate 41 having a shape corresponding to the through hole may be inserted. Further, the cross-sectional shapes of the through holes 50' and 52 and the second dielectric substrate are not limited to a circular shape and a rectangular shape, and may be an elliptical shape, a cross shape, a star shape, or a polygonal shape. Since the first dielectric substrate 39' and the second dielectric substrate 41' are formed by resin molding on the right side, each of the substrates can be manufactured in an arbitrary shape. Therefore, the shape can be selected in accordance with the bending mode and the bending direction of the RFID tag. Further, the through holes 50' and 52' and the top to bottom of the second dielectric substrate do not need to have the same cross-sectional shape. For example, as shown in Fig. 32, the cylindrical through holes 5G' and 52' and the second dielectric substrate may not be tapered, and the cone may be tapered from the top to the bottom. In the method of manufacturing the RFID tags 49 and 51', the first dielectric substrate 39' and the second dielectric substrate 41 are manufactured, and then the second dielectric substrate 41' is fitted or adhered to the first dielectric substrate 39. The same as the RFID tag 〇 described in the fourth embodiment, the description is omitted. As described above, the electric field in the vicinity of the 1C wafer 6 is concentrated in the vicinity of the slot 4' (Fig. 18). The first electric power substrate 41' on the other main surface side of the dielectric substrate 39' may be provided with no grounding conductor 8χ. That is, this means that it is not necessary to provide the grounding conductor 8 before fixing (fitting, adhering) the first dielectric substrate 39 and the second dielectric substrate 41', and as a result, the effect of the variation of the alternative manufacturing method is increased. . Figure 34 is a view showing the configuration of an RFID tag of the fifth embodiment. Figure 34 (a) is a plan view of the RFID tag, and Figure 34 (b) is a cross-sectional view taken along line A-A' in Figure 34 (a). In the RFID tag 53, shown in Figure 34, the step is The portion 54' is a step portion provided on the side from the center of the first dielectric substrate 39' and the side opposite to the first dielectric substrate 39'. Unlike the RFID tag shown in FIGS. 28 to 33, the RFID tag 53 is provided on one main surface of the first dielectric substrate 39' instead of the opening of the first dielectric substrate 39' instead of the first dielectric substrate 39'. A structure in which the second dielectric substrate 41' is fitted or adhered to the concave portion 54 having an opening formed on one main surface and the side surface of the first dielectric substrate 39 is formed from the first dielectric substrate 39. The first dielectric substrate 41' is inserted into the main surface side, and the second dielectric substrate 41 is inserted from the side surface of the first dielectric substrate gg to obtain an easy-matching J-th dielectric substrate 39' and 2 The effect of the position of the dielectric substrate 41'. Further, it is not necessary to make the step portion 54 and the surface of the second dielectric substrate 41' flat, and it is also possible to provide a wave-like wave or a fitting unevenness on the surface to improve the first dielectric substrate 39 and the second. The bonding strength of the dielectric substrate 41 and the step portion 5 4 are not necessarily formed in parallel with respect to the slot 4, and may be selected according to the bending manner and the bending direction of the RFID tag. / Further, the top portion to the bottom of the second dielectric substrate do not need 2275-10007-PF 54 201011657 to have the same cross-sectional shape. For example, as shown in Fig. 34, the step portion 54 of the body and the second dielectric substrate are trapezoidal cones which are tapered from the top of the head. In the manufacturing method of the RFID tag 53, the first dielectric substrate 39' and the second dielectric substrate 41 are manufactured, and then the dielectric substrate 41 is fitted or (4) to the first! The dielectric substrate 39 is the same as the garden label 1 〇' described in the fourth embodiment, and thus the description thereof is omitted. Fig. 35 is a view showing the configuration of the RFID tag of the fifth embodiment. Fig. 3 is a plan view of the ❹_tag, and Fig. 35(b) is a cross-sectional view taken from the line a-a in Fig. 35(a). 55, towel, connecting surface %, 丨 dielectric substrate 39, xiao second dielectric substrate 39, (four) junction. RFiD label 55 is abolished by the segmentation of the RFID tag 53 shown in Figure 34; 54', via the connection surface 56 The first dielectric substrate 39 is placed on the side surface of the first dielectric substrate 41' to bond the first dielectric substrate 39, and the second dielectric substrate 41' is first formed in the second dielectric substrate. After 41', the second dielectric substrate 41 is placed in a mold for injection molding, and then _ is used as a dielectric substrate 39 _ resin. In a simple manner, the first dielectric can be separately manufactured. The substrate 39' and the second dielectric substrate 41 are adhered to each other by the connection surface 56'. Further, the first dielectric substrate 39 of the connection surface 56 and the second dielectric substrate 4 are not required to be flat. Wave-like fluctuations or fitting unevennesses may be provided on the surface to improve the strength of the first dielectric substrate 39, the second dielectric substrate 1, and the connection Φ56, and it is not necessary for the groove. 4, formed in parallel, may be selected according to the bending direction and the bending direction _ mode tag. Furthermore, the first dielectric substrate 39 in the connection surface 56' and the second 2275-10007-PF 55 201011657 dielectric substrate 41' from the top to the bottom ., on behalf of the main surface to the other main surface) Need to be the same cross-sectional shape. For example, as shown in Fig. 35, it may not be a vertical connecting surface 56, but a connecting surface which is tapered from one main portion to the other main surface. The RFID-based method for manufacturing the 诰 、 、 、 、 人 , , , , , , , , 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 结合 RFID RFID RFID RFID RFID RFID RFID RFID RFID RFID RFID RFID RFID RFID RFID RFID The description of the RFID tag 1 〇 'same' is omitted.

如上所述,在本發明的實施例5中,在標籤的 介電基板中,由於使H:晶片6,周邊的硬度變高且心 片6’周邊以外的位置的硬度也變高,除了本發明之實施 例4的RFID標籤的效果之外,達成得到在將rfi])標藏放 至曲面上時使1C晶片6,及導線3,(電氣連接部7,、7,) 的電氣連接的可靠度更高的RFID標籤的效果。 【圖式簡單說明】 圖Ua)、(b)係本發明的實施例1的RFII)標籤的構成 圖。 圖2(a)、(b)係RFID系統的基本構成圖。 圖3係本發明之孔部被形成的介電基板構成圖。 ® 4U-1:)〜(d-3)係本發明之RFID標籤的製造程序 圖。 圖5係顯示本發明之RFID標籤的電場的電場圖。 ® 6係顯示本發明之RFII)標籤中的特性阻抗的變化 之狀況的特性圖。 圖7(a)、(b)係顯示本發明的實施例2之RFID標藏的As described above, in the fifth embodiment of the present invention, in the dielectric substrate of the label, the hardness of the periphery is increased by the H:wafer 6, and the hardness of the position other than the periphery of the core sheet 6' is also increased. In addition to the effect of the RFID tag of the fourth embodiment of the invention, it is achieved that the 1C wafer 6, and the wires 3, (electrical connections 7, 7, 7) are electrically connected when the rfi]) is placed on the curved surface. The effect of a more reliable RFID tag. BRIEF DESCRIPTION OF THE DRAWINGS Figures Ua) and (b) are diagrams showing the configuration of an RFII) tag according to a first embodiment of the present invention. 2(a) and 2(b) are diagrams showing the basic configuration of an RFID system. Fig. 3 is a view showing a configuration of a dielectric substrate in which a hole portion of the present invention is formed. ® 4U-1:)~(d-3) is a manufacturing procedure diagram of the RFID tag of the present invention. Fig. 5 is a view showing an electric field of an electric field of the RFID tag of the present invention. The ® 6 shows a characteristic diagram showing the state of change in the characteristic impedance in the RFII) tag of the present invention. 7(a) and 7(b) are diagrams showing the RFID tag of the embodiment 2 of the present invention.

227 5-10〇〇7-PF 56 201011657 構成之平面圖。 圖8(a)、(b)係顯示本發明的實施例3之RFID標籤的 構成之平面圖。 圖9係顯示本發明的實施例3之RF1D標籤的構成之 平面圖。 圖10係顯示本發明的實施例3之RFID標籤的構成之 平面圖。 圖ll(a)~(c)係顯示本發明的實施例4之RFID標籤的 ❹構成圖。 圖12(a)、(b)係rFII)系統的基本構成圖。 圖13(a)〜(d)係由本發明的RFID標籤的製造方法製 造的RFID標籤製造步驟圖。 圖14係本發明的薄膜基材的構成圖。 圖15(a)、(b)係在本發明的薄膜基材上形成的導線 圖。 圖16(a)、(b)係在本發明的薄膜基材上形成的導線圖 (IC晶片連接完成)。 圖17(a)、(b)係本發明之孔部被形成的介電基板的構 成圖。 圖18係本發明的叮^標籤的電場圖。 圖19係本發明的RFID標籤的特性阻抗圖。 圖20係由本發明之實施例i的標籤的製造方法 製造的RFID標籤的構成圖(具有空焊墊 圖21(a) (b)係本發明之實施例4的RFID標籤的槽 2275-10007-PF 57 201011657 孔周邊擴大圖(具有空焊塾)。 圖22(a)、(b)係本發明之實施例4的RFID標籤的接 地導線的形狀圖。 圖23(a)〜(c)係本發明之實施例4的RFID標籤的接地 導線用的金屬纖維板的形狀圖。 圖24(a)、(b)係本發明之實施例4的RFID標籤的接 地導線用的金屬纖維板的形狀圖。 圖25(a) ' (b)係本發明之實施例4的RFID標籤的構 罾成圖。 圖26(a)〜(c)係本發明之實施例4的RFID標籤及RFID 標籤設置對象物的構成圖。 圖27(a)、(b)係本發明之實施例4的RFID標籤及ip 標籤設置對象物的構成圖。 圖28(a)、(b)係本發明之實施例5的RFID標籤的構 成圖。 參圖29(a)、(b)係本發明之實施例5的RFID標籤的構 成圖。 圖30(a)、(b)係本發明之實施例5的RFID標籤的構 成圖。 圖31(a)、(b)係本發明之實施例5的RFID標籤的構 成圖。 圖32(a)、(b)係本發明之實施例5的RFID標籤的構 成圖。 圖33(a)、(b)係本發明之實施例.5的rFID標籤的構 2275-10007-?^ 58 201011657 成圖。 圖34(a)、(b)係本發明之實施例5的RFID標籤的構 成圖。 圖35(a)、(b)係本發明之實施例5的RFID標籤的構 成圖。 【主要元件符號說明】 1、 1’ :介電基板;227 5-10〇〇7-PF 56 201011657 The plan of the composition. Fig. 8 (a) and (b) are plan views showing the configuration of an RFID tag of a third embodiment of the present invention. Fig. 9 is a plan view showing the configuration of an RF1D tag of Embodiment 3 of the present invention. Fig. 10 is a plan view showing the configuration of an RFID tag of a third embodiment of the present invention. Figures 11(a) to (c) are views showing the structure of the RFID tag of the fourth embodiment of the present invention. Fig. 12 (a) and (b) are diagrams showing the basic configuration of the rFII system. Figures 13(a) through 13(d) are diagrams showing the steps of manufacturing an RFID tag manufactured by the method for manufacturing an RFID tag of the present invention. Fig. 14 is a view showing the configuration of a film substrate of the present invention. Fig. 15 (a) and (b) are diagrams of the wires formed on the film substrate of the present invention. Fig. 16 (a) and (b) are diagrams of the wiring formed on the film substrate of the present invention (the IC wafer is connected). Fig. 17 (a) and (b) are views showing the construction of a dielectric substrate in which the hole portion of the present invention is formed. Figure 18 is an electric field diagram of the 标签^ tag of the present invention. Figure 19 is a characteristic impedance diagram of the RFID tag of the present invention. Figure 20 is a configuration diagram of an RFID tag manufactured by the method for manufacturing a label of the embodiment i of the present invention (having an empty pad Fig. 21 (a) (b) is a groove 2275-10007 of the RFID tag of the embodiment 4 of the present invention - PF 57 201011657 An enlarged view of the periphery of the hole (with a blank weld). Fig. 22 (a) and (b) are diagrams showing the shape of the grounding conductor of the RFID tag of the fourth embodiment of the present invention. Fig. 23 (a) to (c) Fig. 24 (a) and (b) are views showing the shape of a metal fiber board for a grounding conductor of an RFID tag according to a fourth embodiment of the present invention. Fig. 25(a) is a diagram showing the configuration of an RFID tag according to a fourth embodiment of the present invention. Figs. 26(a) to 6(c) are diagrams showing an RFID tag and an RFID tag setting object according to a fourth embodiment of the present invention. Fig. 27 (a) and (b) are diagrams showing the configuration of an RFID tag and an ip tag setting object according to a fourth embodiment of the present invention. Figs. 28(a) and (b) are views showing a fifth embodiment of the present invention. Fig. 29(a) and Fig. 29(b) are diagrams showing the configuration of an RFID tag according to a fifth embodiment of the present invention. Figs. 30(a) and (b) are diagrams showing an RFID tag according to a fifth embodiment of the present invention. Fig. 31 (a) and (b) are diagrams showing the configuration of an RFID tag according to a fifth embodiment of the present invention. Fig. 32 (a) and (b) are views showing the configuration of an RFID tag according to a fifth embodiment of the present invention. 33(a) and (b) are diagrams showing the structure of the rFID tag of the embodiment of the present invention. 2275-10007-?58 201011657. Fig. 34(a) and (b) are the fifth embodiment of the present invention. Fig. 35 (a) and (b) are diagrams showing the configuration of an RFID tag according to a fifth embodiment of the present invention. [Description of main component symbols] 1. 1': dielectric substrate;

2’ :薄膜基材; 201 :具有導體的薄膜基材(具有導體層(接地導線 8’)); 20 2:具有導體的薄膜基材(具有導線3’ ); 2、 3’ :導線; 3、 4,:槽孔; 孔部; IC晶片, 電氣連接部; 7、 8,:接地導線; 9’ :黏著片; 8、 10’ : RFID 標籤; 9、 1 Γ :天線部(標籤);. 10、 12’ : RFID 讀寫器; 11、 13’天線部(讀寫器); 12、14’ :類比部; 2275-10007-PF 59 2010116572': film substrate; 201: film substrate having a conductor (having a conductor layer (grounding wire 8')); 20 2: a film substrate having a conductor (having a wire 3'); 2, 3': a wire; 3, 4,: slot; hole; IC chip, electrical connection; 7, 8, grounding wire; 9': adhesive sheet; 8, 10': RFID tag; 9, 1 Γ: antenna (label) ; 10, 12' : RFID reader; 11, 13' antenna (reader); 12, 14': analogy; 2275-10007-PF 59 201011657

13、 15 A/D變換部; 14 ' 16 > 電源控制部; 15、 17, 記憶部; 16 ' 18 ) 解調部; 17、 19 > 控制部; 18、 20 > 調變部; 19 ' 21 > 數位部; 20 ' 22 9 D/A變換部; 21 : 導 體 層 9 22 : 導 體 箔 f 23, 導 體 層; 24, • 連接端子; 23 ' 25 y • 空焊墊; 24、 26 槽 孔; 25 : 電 氣長度調整部; 26, 接地 導線(格狀); 27, 缺 σ 部; 28, 接地 導線(曲折狀) 29, 缺 口 部; 30’ 金 屬 纖維板; 31, 接 地 導線(格狀); 32, 缺 σ 部; 33’ 接地 導線(曲折狀) 34, 缺 π 部; 2275—10007—PF 60 201011657 35’ :雙面膠帶; 3 6’ : RFID標藏設置對象物(設置面為凸型); 3 7’ : RFID標籤設置對象物(設置面為凹型); 38’ : RFID 標籤; 39’ :第1介電基板; 4 0 ’ :凹部(圓形); 41’ :第2介電基板; 42’ :孔部; ❹ 43,: RFID標籤; 44’ :凹部(矩形); 45’ : RFID 標籤; 46’ :凹部(圓形); 47’ : RFID 標籤; 48’ :凹部(矩形); 49’ : RFID 標籤; 50’ :貫通孔(圓形); 51’ : RFID 標籤; 52’ :貫通孔(矩形); 53’ : RFID 標籤; 54’ :段差部; 55’ : RFID 標籤; 5 6’ :連接面。 2275-10007-PF 6113, 15 A/D conversion unit; 14 '16 > power supply control unit; 15, 17, memory unit; 16 '18) demodulation unit; 17, 19 > control unit; 18, 20 > modulation unit; 19 ' 21 > digital part; 20 ' 22 9 D/A conversion part; 21 : conductor layer 9 22 : conductor foil f 23 , conductor layer; 24, • connection terminal; 23 ' 25 y • empty pad; 26 slot; 25: electrical length adjustment; 26, grounding conductor (grid); 27, missing σ; 28, grounding conductor (zigzag) 29, notched; 30' metal fiberboard; 31, grounding conductor 32) lacking σ; 33' grounding wire (zigzag) 34, lacking π; 2275—10007—PF 60 201011657 35': double-sided tape; 3 6' : RFID tag setting object (setting surface) 3): RFID tag setting object (setting surface is concave); 38' : RFID tag; 39': 1st dielectric substrate; 4 0 ' : recess (circular); 41': 2 dielectric substrate; 42': hole; ❹ 43,: RFID tag 44': recess (rectangular); 45': RFID tag; 46': recess (circular); 47': RFID tag; 48': recess (rectangular); 49': RFID tag; 50': through hole ( Round); 51': RFID tag; 52': through hole (rectangular); 53': RFID tag; 54': step section; 55': RFID tag; 5 6': connection face. 2275-10007-PF 61

Claims (1)

201011657 十、申請專利範圍: 1. 一種射頻識別標籤,包括: 介電基板’在一主面上具有孔部; 接地導線,被設置在此介電基板的另一主面上; 導線,被設置在前述介電基板的一主面上,且從前述 介電基板的端部起僅隔著預定距離被設置在其内側上;及 1C晶片,在此導線的内部構成槽孔,經由此槽孔被電 ❻ t地連接至前述導線,且被插人至前述介電基板的前述孔 部。 2. —種射頻識別標籤,包括: 介電基板’在一主面上具有孔部; 接地導線,被設置在此介電基板的另一主面上; 導線,被設置在前述介電基板的一主面上,且從前述 介電基板的端部起僅隔著預定距離被設置在其内侧上;及 1C晶片,在此導線的内部構成細長形的槽孔,經由此 ❹槽孔被電氣地連接至前述導線,且被插入至前述介電基板 的前述孔部。 3. —種射頻識別標籤,包括: 介電基板’在一主面上具有孔部; 接地導線,被設置在此介電基板的另一主面上; 導線,被設置在前述介電基板的一主面上,且從前述 介電基板的端部起僅隔著預定距離被設置在其内侧上; 電氣連接部,在此導線的内部構成槽孔,且從構成此 槽孔的前述導線的兩側起分別延伸至前述槽孔的内侧;及. 2275-10007-PF 62 201011657 ic晶片,被電氣地連接至這些電氣連接部,且被插入 至前述介電基板的前述孔部。 4. 一種射頻識別標藏,包括: 介電基板,在一主面上具有孔部;接地導線,被設置 在此介電基板的另一主面上; 導線’被設置在前述介電基板的一主面上,且從前述 介電基板的端部起僅隔著預定距離被設置在其内侧上; 電氣連接部,在此導線的内部構成細長形的槽孔,且 從構成此槽孔的寬度方向中之相對的前述導線的兩側起 分別延伸至前述槽孔的内側;及 1C晶片,被電氣地連接至這些電氣連接部,且被插入 至前述介電基板的前述孔部。 5. 一種射頻識別標籤,可設置在預定曲率的曲面 上,其包括: 介電基板,在一主面的中央部上具有孔部,且具有至 少以前述預定曲率彎曲的硬度; 接地導線’被設置在此介電基板的另一主面上; 導線’被設置在前述介電基板上,且從前述介電基板 的端部起僅隔著預定距離被設置在其内侧上;及 Ϊ C晶片,在此導線的内部構成細長形的槽孔,經由此 槽孔被電氣地連接至前述導線,且被插入至前述介電基板 的前述孔部。 6. 如申請專利範圍第5項所述的射頻識別標籤,其 中’前述介電基·板在前述1C晶片周邊的硬度係比在前述 2275-10007-pp 63 201011657 i c晶片周邊以外的位置之硬度高。 7. 如申請專利範圍第5項所述的射頻識別標籤,其 中’前述導線及前述接地導線中的至少一個係以金屬纖維 板構成。 8. 如申請專利範圍第5項所述的射頻識別標籤,其 中’前述接地導線具有切除其一部分的缺口部。 9. 如申請專利範圍第5項所述的射頻識別標藏,其 中,前述接地導線係格狀圖案或曲折圖案。 10·如申請專利範圍第5項所述的射頻識別標籤,其 中’前述IC晶片係與從構成前述槽孔的前述導線之寬度 方向的兩侧起分別延伸至前述槽孔的内侧之電氣連接部 電氣地連接。 11, 一種射頻識別標籤,可設置在預定曲率的曲面 上,其包括: 介電基板’在一主面的中央部上具有孔部,且具有至 0 少前述預定曲率彎曲的硬度; 接地導線’被設置在此介電基板的另一主面上; 薄膜基材; 導線,被設置在此薄膜基材上,且從前述薄膜基材的 端部起僅隔者預定距離被設置在其内侧上;及 IC晶片’在此導線的内部構成細長形的槽孔,經由此 槽孔被電亂地連接至剛述導線’且被插入至前述介電基板 的前述孔部。 12.如申請專利範圍第11項所述的射頻識別標籤, 2275-10007-PF 64 201011657 更包^較裝置,駭被形成在前述薄臈基材上的前 線及前述介電基板的一主面。 13. —種射頻識別標籤,可設置在預定曲率的 上,其包括: 卸 第1介電基板’在一主面的中央部上具有凹部,且具 有至少前述預定曲率彎曲的硬度; 、 第2介電基板,被設置在前述凹部的内部,且在前述 ❹201011657 X. Patent application scope: 1. A radio frequency identification tag comprising: a dielectric substrate having a hole portion on a main surface; a grounding wire disposed on the other main surface of the dielectric substrate; the wire being set On one main surface of the dielectric substrate, and disposed on the inner side of the dielectric substrate from the end portion of the dielectric substrate by a predetermined distance; and a 1C wafer, the inside of the wire forms a slot through which the slot is formed. The wire is electrically connected to the wire and inserted into the hole portion of the dielectric substrate. 2. A radio frequency identification tag comprising: a dielectric substrate having a hole portion on a main surface; a ground wire disposed on the other main surface of the dielectric substrate; and a wire disposed on the dielectric substrate a main surface, and disposed on the inner side of the dielectric substrate only by a predetermined distance; and a 1C wafer, wherein the inside of the wire forms an elongated slot through which the electrical hole is electrically The ground wire is connected to the aforementioned wire and inserted into the aforementioned hole portion of the dielectric substrate. 3. A radio frequency identification tag comprising: a dielectric substrate having a hole portion on a main surface; a ground wire disposed on the other main surface of the dielectric substrate; and a wire disposed on the dielectric substrate a main surface, and is disposed on the inner side thereof only from a predetermined distance from an end portion of the dielectric substrate; an electrical connection portion, a slot is formed inside the wire, and the aforementioned wire constituting the slot The two sides extend to the inner side of the slot, respectively; and the 2275-10007-PF 62 201011657 ic chip is electrically connected to the electrical connection portion and is inserted into the aforementioned hole portion of the dielectric substrate. 4. A radio frequency identification tag comprising: a dielectric substrate having a hole portion on a main surface; a ground wire disposed on the other main surface of the dielectric substrate; and a wire 'disposed on the dielectric substrate a main surface, and is disposed on the inner side thereof only from a predetermined distance from an end portion of the dielectric substrate; an electrical connection portion in which an elongated slot is formed inside the wire, and from which the slot is formed The opposite sides of the opposite wires in the width direction extend to the inside of the slots, respectively; and the 1C wafer is electrically connected to the electrical connections and is inserted into the aforementioned holes of the dielectric substrate. 5. A radio frequency identification tag, which is disposed on a curved surface of a predetermined curvature, comprising: a dielectric substrate having a hole portion at a central portion of a main surface and having a hardness bent at least at the aforementioned predetermined curvature; the ground wire 'is Provided on the other main surface of the dielectric substrate; the wire 'is disposed on the dielectric substrate, and is disposed on the inner side thereof from the end of the dielectric substrate by a predetermined distance; and ΪC wafer An elongated slot is formed in the interior of the wire, through which the wire is electrically connected to the wire and inserted into the hole of the dielectric substrate. 6. The radio frequency identification tag according to claim 5, wherein the hardness of the dielectric substrate of the foregoing 1C wafer is greater than the hardness of the periphery of the 2275-10007-pp 63 201011657 ic wafer. high. 7. The radio frequency identification tag according to claim 5, wherein at least one of the aforementioned conductor and the grounding conductor is formed of a metal fiberboard. 8. The radio frequency identification tag of claim 5, wherein the aforementioned grounding conductor has a notch portion that cuts a portion thereof. 9. The radio frequency identification according to claim 5, wherein the grounding conductor is in a lattice pattern or a zigzag pattern. 10. The radio frequency identification tag according to claim 5, wherein the 'IC chip is an electrical connection portion extending from both sides in a width direction of the wire constituting the slot to an inner side of the slot. Electrically connected. 11. A radio frequency identification tag, which is disposed on a curved surface of a predetermined curvature, comprising: a dielectric substrate having a hole portion at a central portion of a main surface and having a hardness that is bent to a predetermined curvature of less than zero; a grounding wire Provided on the other main surface of the dielectric substrate; a film substrate; a wire disposed on the film substrate, and disposed on the inner side thereof at a predetermined distance from the end of the film substrate And the IC chip 'in the inside of the wire constitutes an elongated slot through which the wire is electrically connected to the wire and inserted into the aforementioned hole portion of the dielectric substrate. 12. The radio frequency identification tag according to claim 11, wherein the 2275-10007-PF 64 201011657 further comprises a front surface of the thin germanium substrate and a main surface of the dielectric substrate. 13. A radio frequency identification tag, which is disposed on a predetermined curvature, comprising: unloading a first dielectric substrate 'having a recess on a central portion of a main surface and having a hardness of at least the aforementioned predetermined curvature; 2nd a dielectric substrate disposed inside the recess, and in the foregoing 第1介電基板的一主面側上具有孔部,且硬度比前述 介電基板高; 接地導線’被設置在前述第丨介電基板的另一主面上; 導線,被設置在前述第丨介電基板及前述第2介電基 板上,且從前述第1介電基板的端部起僅隔著預定距離被 設置在其内側上;及 ic晶片’在此導線的内部構成細長形的槽孔,經由此 槽孔被電氣地連接至前述導線,且被插入至前述第2介電 基板的前述孔部。 14.如申請專利範圍第13項所述的射頻識別標籤, 其中,前述凹部係圓形或多角形。 15·如申請專利範圍第1 3項所述的射頻識別標籤, 其中,前述第2介電基板係將製模材料固化者。 16· 一種射頻識別標籤,可設置在預定曲率的曲面 上,其包括: 第1介電基板,在一主面的中央部上具有凹部,且具 有至少前述預定曲率彎曲的硬度; 2275—10007—pF 65 201011657 第2介電基板,被設置在前述凹部的内部,且在前述 第1介電基板的-主面側上具有孔部,且硬度比前述第; 介電基板高; 接地導線’被設置在前述第丨介電基板的另—主面上. 薄膜基材; ^ 導線’被設置在此薄骐基材上,且從前述薄膜基材的 端部起僅隔著預定距離被設置在其内側上;及The first dielectric substrate has a hole portion on one main surface side and has a higher hardness than the dielectric substrate; the ground wire 'is disposed on the other main surface of the second dielectric substrate; the wire is disposed in the foregoing The dielectric substrate and the second dielectric substrate are disposed on the inner side of the first dielectric substrate from each other with a predetermined distance therebetween; and the ic chip is formed in an elongated shape inside the wire. The slot is electrically connected to the lead via the slot, and is inserted into the hole portion of the second dielectric substrate. The radio frequency identification tag according to claim 13, wherein the concave portion is circular or polygonal. The radio frequency identification tag according to claim 13, wherein the second dielectric substrate is a curing material of the molding material. 16 . A radio frequency identification tag, which can be disposed on a curved surface of a predetermined curvature, comprising: a first dielectric substrate having a concave portion on a central portion of a main surface and having a hardness of at least the aforementioned predetermined curvature; 2275—10007— pF 65 201011657 The second dielectric substrate is provided inside the concave portion, and has a hole portion on the main surface side of the first dielectric substrate, and has a hardness higher than that of the first dielectric substrate; the ground wire is Provided on the other main surface of the second dielectric substrate. The film substrate; ^ wire ' is disposed on the thin substrate, and is disposed on the inner side thereof from the end of the film substrate only by a predetermined distance Up; and ❹ 1C晶片,在此導線的内部構成細長形的槽孔,經由此 槽孔被電氣地連接至前述導線,且被插入至前述第2介電 基板的前述孔部。 17· —種射頻識別標籤,可設置在預定曲率的曲面 上’其包括: 第1介電基板,在中央部上具有從一主面貫通至另一 主面的貫通孔,且具有至少前述預定曲率彎曲的硬度; 第2介電基板,被設置在前述貫通孔的内部,且在前 述第1介電基板的一主面侧上具有孔部,且硬度比 1介電基板高; ' 接地導線,被設置在前述第丨介電基板的另—主面上; 導線,被設置在前述第丨介電基板及前述第2介電基 板上,且從前述第1介電基板的端部起僅隔著預定距離被 設置在其内側上;及 1C晶片,在此導線的内部構成細長形的槽孔,經由此 槽孔被電氣地連接至前述導線,且被插入至前述第2介電 基板的前述孔部。 2275-10007-PF 66 201011657 18. 如申請專利範圍第17項所述的射頻識別標藏, 其中,前述貫通孔係圓形或多角形。 19. 一種射頻識別標籤,可設置在預定曲率的曲面 上,其包括: 第1介電基板,在中央部上具有從一主面貫通至另一 主面的貫通孔’且具有至少前述預定曲率彎曲的硬度; 第2介電基板,被設置在前述貫通孔的内部,且在前 述第1介電基板的一主面侧上具有孔部,且硬度比前述第 1介電基板高; 接地導線,被設置在前述第1介電基板的另一主面上; 薄膜基材; 導線,被設置在此薄膜基材上,且從前述薄膜基材的 端部起僅隔著預定距離被設置在其内側上;及 Ϊ C晶片,在此導線的内部構成細長形的槽孔,經由此 槽孔被電氣地連接至前述導線,且被插入至前述第2介電 基板的前述孔部。 20. 一種射頻識別標鐵’可設置在預定曲率的曲面 上’其包括: 第1介電基板’在中央部上具有從一主面貫通至另一 主面的貫通孔’且具有至少前述預定曲率彎曲的硬度; 第2介電基板’被設置在前述貫通孔的内部,且在前 述第1介電基板的一主面側上具有孔部,且硬度比前述第 1介電基板高; 接地,導線,被設置在前述第1介電基板的另一主面及 2275-10007-PF 67 201011657 前述第2介電基板内之前述第丨介電基板的另一主面 上; 導線,被設置在前述第丨介電基板及前述第2介電基 板上’且從前述第!介電基板的端部起僅隔著預定距離被 設置在其内側上;及 1C晶片,在此導線的内部構成細長形的槽孔,經由此 槽孔被電氣地連接至前述導線,且被插入至前述第2介電 基板的前述孔部。 21.-種射頻識別標籤’可設置在預定曲率的曲面 上,其包括: 第1介電基板’在中央部上具有從一主面貫通至另一 主面的貫通孔’且具有至少前述預定曲率弯曲的硬度. "第2介電基板,被設置在前述貫通孔的内部,:在前 述第1介電基板的一主面側上具有 1介電基板高; 、有孔部i硬度比前述第 ❹ 接地導線,被設置在前述第!介電基板的另_主面及 前述第2介電基板内之前述第1介電基板的另—主面側 , 薄膜基材; 導線,倾置在此薄媒基材上,且從前述薄膜基材的 知部起僅隔著預定距離被設置在其内側上;及 IC晶片,在此導線的内部構成 ^ , 取細長形的槽孔,經由此 槽孔被電氣地連接至前述導線, 基板的前述孔部。 被插入至别述第2介電 2275-10007-PF 68The ❹ 1C wafer has an elongated slot formed inside the lead, through which the lead is electrically connected to the lead and inserted into the hole of the second dielectric substrate. A radio frequency identification tag, which is disposed on a curved surface of a predetermined curvature, includes: a first dielectric substrate having a through hole penetrating from one main surface to the other main surface at the central portion, and having at least the foregoing predetermined The second dielectric substrate is provided inside the through hole, and has a hole portion on one main surface side of the first dielectric substrate, and has a hardness higher than that of the one dielectric substrate; 'grounding wire And being disposed on the other main surface of the second dielectric substrate; the wires are disposed on the second dielectric substrate and the second dielectric substrate, and only from the end of the first dielectric substrate And a 1C wafer, wherein the inside of the wire forms an elongated slot through which the wire is electrically connected to the wire and inserted into the second dielectric substrate The aforementioned hole portion. The radio frequency identification according to claim 17, wherein the through hole is circular or polygonal. 19. A radio frequency identification tag, which is disposed on a curved surface of a predetermined curvature, comprising: a first dielectric substrate having a through hole 'through a main surface to a main surface at a central portion and having at least the aforementioned predetermined curvature The hardness of the second dielectric substrate is provided inside the through hole, and has a hole portion on one main surface side of the first dielectric substrate, and has a higher hardness than the first dielectric substrate; Provided on the other main surface of the first dielectric substrate; a film substrate; a wire disposed on the film substrate, and disposed at a predetermined distance from an end portion of the film substrate On the inner side; and the ΪC wafer, an elongated slot is formed in the inside of the lead, and the slot is electrically connected to the lead via the slot and inserted into the hole portion of the second dielectric substrate. 20. A radio frequency identification target 'can be disposed on a curved surface of a predetermined curvature' comprising: a first dielectric substrate having a through hole 'through a main surface to a main surface at a central portion and having at least the foregoing predetermined The second dielectric substrate ′ is provided inside the through hole, and has a hole portion on one main surface side of the first dielectric substrate, and has a higher hardness than the first dielectric substrate; a wire disposed on the other main surface of the first dielectric substrate and the other main surface of the second dielectric substrate in the second dielectric substrate of 2275-10007-PF 67 201011657; On the second dielectric substrate and the second dielectric substrate 'and from the above! The end of the dielectric substrate is disposed on the inner side thereof only by a predetermined distance; and the 1C wafer, the inside of the wire is formed as an elongated slot through which the wire is electrically connected to the aforementioned wire and inserted The hole portion of the second dielectric substrate. 21. The radio frequency identification tag ′ can be disposed on a curved surface of a predetermined curvature, and includes: the first dielectric substrate ′ having a through hole passing through a main surface to the other main surface at the central portion and having at least the foregoing predetermined The hardness of the curvature is curved. The second dielectric substrate is disposed inside the through hole, and has a dielectric substrate height on one main surface side of the first dielectric substrate; and a hole portion i hardness ratio The aforementioned 接地 grounding wire is set in the aforementioned! a further main surface of the dielectric substrate and another main surface side of the first dielectric substrate in the second dielectric substrate, a film substrate; a lead wire is poured on the thin film substrate, and the film is formed from the film The immersed portion of the substrate is disposed on the inner side thereof only by a predetermined distance; and the IC chip is formed inside the wire, and an elongated slot is taken through which the wire is electrically connected to the wire, the substrate The aforementioned hole portion. Inserted into the second dielectric 2275-10007-PF 68
TW97135013A 2008-09-12 2008-09-12 FRID tag TW201011657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97135013A TW201011657A (en) 2008-09-12 2008-09-12 FRID tag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97135013A TW201011657A (en) 2008-09-12 2008-09-12 FRID tag

Publications (1)

Publication Number Publication Date
TW201011657A true TW201011657A (en) 2010-03-16

Family

ID=44828707

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97135013A TW201011657A (en) 2008-09-12 2008-09-12 FRID tag

Country Status (1)

Country Link
TW (1) TW201011657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462023B (en) * 2012-02-08 2014-11-21 Favite Inc Electronic tag capable of coupling to metal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI462023B (en) * 2012-02-08 2014-11-21 Favite Inc Electronic tag capable of coupling to metal

Similar Documents

Publication Publication Date Title
TWI423519B (en) Radio frequency identification tag
TWI384403B (en) Radio frequency identification tag, manufacturing method of radio frequency identification tag, and setting method of radio frequency identification tag
TWI292558B (en) Radio frequency ic tag and bolt with an ic tag
US8081121B2 (en) Article having electromagnetic coupling module attached thereto
US8870080B2 (en) RFID antenna modules and methods
JP4363409B2 (en) RFID tag and manufacturing method thereof
JP5703977B2 (en) Metal articles with wireless communication devices
JPWO2009005080A1 (en) Wireless IC device and component for wireless IC device
CN208141425U (en) Component built-in device and RFID tag
JP2008148122A (en) Rfid tag
JP2010109692A (en) Rfid tag
JP4487977B2 (en) RFID tag and manufacturing method thereof
TW201011657A (en) FRID tag
JP4710844B2 (en) RFID tag
US20210319278A1 (en) Rfic module and rfid tag
JP4730417B2 (en) RFID tag
JP7179264B2 (en) IC tag
JP4935829B2 (en) RFID tag
JP4453730B2 (en) RFID tag manufacturing method
JP4706677B2 (en) RFID tag manufacturing method
JP4438844B2 (en) RFID tag
JP4479765B2 (en) RFID tag
JP2011142681A (en) Rfid tag
JP2009003829A (en) Radio tag
JP4715823B2 (en) RFID tag