TW201011092A - Aluminate phosphor and preparation method thereof, and fluorescent lamp and liquid crystal display device using the aluminate phosphor - Google Patents

Aluminate phosphor and preparation method thereof, and fluorescent lamp and liquid crystal display device using the aluminate phosphor Download PDF

Info

Publication number
TW201011092A
TW201011092A TW098124986A TW98124986A TW201011092A TW 201011092 A TW201011092 A TW 201011092A TW 098124986 A TW098124986 A TW 098124986A TW 98124986 A TW98124986 A TW 98124986A TW 201011092 A TW201011092 A TW 201011092A
Authority
TW
Taiwan
Prior art keywords
phosphor
aluminate
general formula
aluminate phosphor
compound
Prior art date
Application number
TW098124986A
Other languages
Chinese (zh)
Inventor
Akio Umemoto
Kazuhiko Sawada
Reiji Ohtsuka
Kouichi Toriumi
Hirofumi Ishii
Masayo Matsuoka
Original Assignee
Mitsubishi Chem Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008270155A external-priority patent/JP2010095687A/en
Priority claimed from JP2009061087A external-priority patent/JP2010215701A/en
Application filed by Mitsubishi Chem Corp filed Critical Mitsubishi Chem Corp
Publication of TW201011092A publication Critical patent/TW201011092A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/38Devices for influencing the colour or wavelength of the light
    • H01J61/42Devices for influencing the colour or wavelength of the light by transforming the wavelength of the light by luminescence
    • H01J61/44Devices characterised by the luminescent material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention relates to an aluminate phosphor represented by the general formula (Ce.sub.xTb.sub.1-x).sub.2O.sub.3.y(Mg.sub.1-zMn.sub.z)O.nAl.sub.2O.sub.3 (provided that when 0 < x < 1, x, y, z, and n satisfies the conditions of 0.6 ≤ y ≤ 1.8, 0 ≤ z ≤ 1, 7 ≤ n respectively, when x=1, x, y, z, and n satisfies the conditions of 0.2 ≤ y ≤ 1.8, 0.1 ≤ z ≤ 1, 7 ≤ n respectively). Compared to the conventional phosphor, it can significantly increase brightness, also, significantly reduce 1 / 10 decay time. Also, the use amount of the rare element Tb can be reduced. The aluminate phosphor can suitably be used in a fluorescent lamp for lightening, or a backlight lamp, particularly by using an aluminate phosphor with short 1 / 10 decay time as a backlight lamp, and making it light intermittently to provide a liquid crystal display device with excellent animation features.

Description

201011092 六、發明說明: 【發明所屬之技術領域】 本發明係關於在紫外線及真空紫外線(特別為 18〇nm〜3〇〇nm)激發下,呈現出比先前更高亮度之綠色發光 的鋁酸鹽螢光體。 特別關於在Μη作為綠色發光母體之情形中,呈現出先前 螢光體約2倍的發光強度,並且,由其構造,比目前流通之 ❻Eu.Mn共同賦活之鋇•鎮·鋁酸鹽螢光體(以下,稱為βαμ 螢光體)(BAM: Eu,Mn)之壽命更優良之Μη賦活的鋁酸鹽螢 光體、及該螢光體的製造方法。 又’本發明係關於使用此類I呂酸鹽螢光體之亮度與色再現 範圍優良的螢光燈,特佳為冷陰極螢光燈。 又,關於呈現出與先前物質同等以上之高亮度綠色發光之 Tb賦活的鈽•鎂•鋁酸鹽螢光體及ΤΙ)·Μη共同賦活的鈽· ©鎂•鋁酸鹽螢光體。 本發明係關於在紫外線及真空紫外線、特別於 180nm〜30〇nm之紫外線的激發下,具有相比於先前物質大 約同等的明亮度,且殘光時間大幅縮短,且可實現削減材料 費用之呈現綠色發光之Tb賦活的鈽•鎂•鋁酸鹽螢光體。 更且’本發明係關於使用此等螢光體之殘光時間短的瑩光 燈’特佳為冷陰極螢光燈。 本發明係關於使用此等螢光體之顯示器、特佳為採用使用 098124986 201011092 此等螢光體之冷陰極螢光燈之背光元件的顯示器。 【先前技術】 先前,作為鋁酸鹽系的綠色發光螢光體,已知有Tb賦活 的鈽·鎂·鋁酸鹽螢光體(以下,稱為CAT螢光體)、和Eu · Μη共同賦活之鋇•鎂•鋁酸鹽螢光體等。但是,近年來Tb 的價格顯著攀高,加上難以逃避Tb^光之發光所造成的色 純度降低’又’於BAMf光體中有壽命短等之問題。 對於此等情況,作為藉由紫外線激發呈現高亮度綠色發光 的紐歸光體,例如,已提案組成為CeMg〇75Mn〇25Aln〇i9 等之Μη賦A的鈽·鎮·紹酸鹽榮光體(參照專利文獻^、 和將該螢光體的—部分Mg以其他:價金屬元素取代而成 的&amp;酸鹽螢光體(例如,參照專利文獻2〜句等。 但疋’市场巾經常期望開發出比先前品呈現出更高亮度發 光的螢光體’例如’關於使用作為冷陰極螢光燈(將采以外 之Ar、Xe等稀有氣體封人管内,並且藉由其放電所產生的 紫外線和真空紫外、線激發螢絲_的燈)之螢光膜用的綠 ,發光螢光體’亦期望開發出比先前物質產生更加明亮且高 亮度之綠色發光的螢光體。 J而上述之Μη賦活之鈽.鎂.銘酸鹽系榮光體,於肩 本未賦活_之情形中,在來自Ce之近紫外線區域(350ηη ,近)進订發光,於其中加入⑽,則_接受來自G的能 !而被激發,呈現出在來自二價之綠色波長區域㈣咖 098124986 201011092 附近)中具有波峯的發光。因此,此Μη賦活鈽·鎂·鋁酸 鹽系螢光體中’為了經由紫外線(特別於18〇nm〜300nm)激發 取得高亮度之綠色發光上,必須使三價Ce所吸收的能量可 有效率地被Μη再吸收(即能量傳遞)。 因此’此來自Ce之近’外線區域中的發光,係未由Ce 傳遞能量至Μη部分的發光’肉眼無法察見,因無助於發光 強度,因此亦期望儘可能將其抑制並且提高綠色光區域的發 〇光強度。 又,作為類似其構造之鋁酸鹽系的綠色發光螢光體之一, 已知有上述之Tb賦活的鈽.鎂·鋁酸鹽螢光體(以下,亦稱 為CAT螢光體)和Tb · Μη共同賦活的鈽·鎂.鋁酸鹽螢光 體(以下,亦稱為CAT : Μη螢光體)。 此等公知之CAT螢光體《(ce,Tb)MgAln019》及CAT: Μη螢光體《(Ce,Tb)(Mg,Mn)Alu〇i9》的化學計量組成,通 ❿常為(Ce+Tb) : Mg 或(Ce+Tb) : (Mg + Mn)大約為 1 : 1(即, 螢光體組成中之Ce + Tb與Mg之各莫耳比,或者201011092 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a green light-emitting aluminum acid exhibiting higher brightness than before, under excitation by ultraviolet light and vacuum ultraviolet rays (especially 18 〇 nm to 3 〇〇 nm). Salt phosphor. In particular, in the case of Μη as a green luminescent precursor, the luminescence intensity of about 2 times that of the previous phosphor is exhibited, and, by its structure, it is alive with the current circulation of Eu.Mn. A cerium-activated aluminate phosphor having a more excellent lifetime of a bulk (hereinafter referred to as βαμ phosphor) (BAM: Eu, Mn), and a method for producing the phosphor. Further, the present invention relates to a fluorescent lamp excellent in brightness and color reproduction range using such an I lynate phosphor, and particularly preferably a cold cathode fluorescent lamp. In addition, 钸·Magnesium·aluminate phosphors and ΤΙ··Μ 共同 呈现 © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © © The present invention relates to an ultraviolet light and a vacuum ultraviolet ray, particularly an ultraviolet ray of 180 nm to 30 〇 nm, which has approximately the same brightness as the prior material, and the residual light time is greatly shortened, and the material cost can be reduced. Green-emitting Tb-activated bismuth-magnesium-aluminate phosphor. Further, the present invention relates to a fluorescent lamp having a short afterglow time using such a phosphor, and particularly preferably a cold cathode fluorescent lamp. The present invention relates to a display using such a phosphor, and particularly preferably a display using a backlight element of a cold cathode fluorescent lamp using the phosphor of 098124986 201011092. [Prior Art] Conventionally, as an aluminate-based green light-emitting phosphor, a Tb-activated yttrium-magnesium aluminate phosphor (hereinafter referred to as a CAT phosphor) and Eu·Μn are known. Revitalizing 钡•Magnesium·aluminate phosphors, etc. However, in recent years, the price of Tb has risen remarkably, and it has been difficult to escape the decrease in color purity caused by the light emission of Tb^light, which has a problem of short life in BAMf light bodies. In such a case, as a neo-coloring body which exhibits high-intensity green light emission by ultraviolet light excitation, for example, a 钸······························ Reference is made to the patent document and the &amp;acid phosphor in which the part of Mg of the phosphor is substituted with another valence metal element (for example, refer to Patent Document 2 to sentence, etc. However, the market towel is often expected Developed a phosphor that emits light with higher brightness than the previous product, for example, regarding the use of ultraviolet light generated by a cold cathode fluorescent lamp (a rare gas such as Ar or Xe other than mining, and which is generated by discharge) Green, luminescent phosphors for fluorescent films with vacuum ultraviolet and line-excited filaments are also expected to develop phosphors that produce brighter and brighter green luminescence than previous substances. Μ 赋 赋 钸 钸. Magnesium. Ming acid is a glory body, in the case of the shoulder is not alive _, in the near ultraviolet region from Ce (350ηη, near Can be excited and presented In the green wavelength region of the divalent (4) coffee 098124986 201011092 (near), there is a peak of luminescence. Therefore, this Μ 赋 赋 镁 镁 镁 magnesium aluminate phosphor is 'in order to be excited by ultraviolet rays (especially 18 〇 nm to 300 nm) On high-brightness green luminescence, the energy absorbed by trivalent Ce must be efficiently reabsorbed by Μη (ie, energy transfer). Therefore, the luminescence from the outer region of Ce is not transmitted by Ce. The luminescence to the Μη portion is invisible to the naked eye, and since it does not contribute to the illuminating intensity, it is also desirable to suppress it as much as possible and to increase the intensity of the luminescent light in the green light region. Also, as the aluminate-like green of its structure One of the luminescent phosphors, a bismuth magnesium aluminate phosphor (hereinafter, also referred to as a CAT phosphor) which is activated by the above-mentioned Tb, and a bismuth magnesium aluminate which is co-activated by Tb · Μ Phosphor (hereinafter, also referred to as CAT: Μη phosphor). These well-known CAT phosphors ((ce, Tb) MgAln019" and CAT: Μ 萤 phosphor "(Ce, Tb) (Mg, Mn The stoichiometric composition of Alu〇i9, which is often (Ce+Tb): Mg (Ce + Tb): (Mg + Mn) is about 1: 1 (i.e., the phosphor composition molar ratio of Ce + Tb and each of Mg, or

Ce+Tb •.與Mg+Mn之各莫耳比大約相等)的組成。 - 例如,專利文獻5中’提案組成為The composition of Ce+Tb•. is approximately equal to the molar ratio of Mg+Mn. - For example, in Patent Document 5, the proposal is composed of

(Mgl.aMna)〇 . χΑ!2〇3 . yCe2〇3ZTb2〇3 ^ CAT · Μη J 於該組成式中,將(Ce.Tb) : (Mg + Mn)依舊固定於1 :卜 嘗試文Μη的取代量增加使明亮度變化。 又,於直 n i ’利文獻 6中,揭示組成為 098124986 5 201011092 (l/2-x-y)Ce2〇3 · xLa2〇3 · yTb203 · MgO · ρΑ1203 的一部分(Mgl.aMna)〇. χΑ!2〇3 . yCe2〇3ZTb2〇3 ^ CAT · Μη J In this composition formula, (Ce.Tb) : (Mg + Mn) is still fixed at 1: The increase in the amount of substitution causes the brightness to change. Further, in the straight n i' liter document 6, a part of the composition is disclosed as 098124986 5 201011092 (l/2-x-y) Ce2〇3 · xLa2〇3 · yTb203 · MgO · ρΑ1203

Ce以La取代的CAT螢光體中,即使由化學計量組成增加p 值(Al2〇3之量)’亦可取得匹敵或些微高於該化學計量組成 的光束。 除了關於此Tb或Tb與Μη賦活的綠色發光螢光體以外, 亦期望開發出比先前物質產生更高亮度之綠色發光的螢光 體。 更且,最近對於綠色螢光體的要求,除了亮度提高以外, 可列舉短殘光化。 即,液晶顯示器(LCD),係藉由背光和液晶簾(crystal shutter)組合而在平板上構成影像,更且藉由組合彩色濾光 片而可彩色顯示影像。 LCD中,全部的像素為同時顯示,且在1個畫框的映像 被下-個畫框取代為止’經常顯示出固定顯示。此固定顯示 中,由於人類眼睛所具有之感到殘餘像的特性,使得殘像感 不會肖失在運動郎目等之活動激烈的映像中,僅為非常具 有殘像感的映像。 附帶說明’世界中的電視映像信號’一秒鐘的顯示小段 數為約5G〜6G個畫框,於日本—般亦為每秒鐘6〇個 畫f ’ 1個畫框的顯示時間為約16msec。隨著技術的進步, 液:的應答迷度比16_e更短且殘像感㈣低但僅提高 應〇速度下,其更高之效果薄弱,例如即使可令應答速度為 098124986 201011092 0msec亦不會使殘像感消失。 如此’於LCD巾,㈣於簡㈣柄像巾必須盘進 行脈衝型顯示之彩色布朗管(CRT)同等程度的動畫特性。 為了使⑽中無殘像感,例如,以往係將每秒鐘60個畫 框的顯示提升U_120個晝框,使固定之影像縮短至一 半的8腦C,並對輪入功率的每1個畫框部分的映像信號, 進行全晝面的黑色顯示,使背光的發光時機選擇性進行,或 ©者組合兩者,實現擬似脈衝型顯示下,取得接近crt的動 畫特性。 另-方面,為了減低LCD的殘像感和輪靡的模糊,乃嘗 試使背光所用的冷陰極榮光燈(CCFL)同期於全畫面黑色顯 示並且進行閃爍。即使為6GHz的晝框周波數,隨著近年可 加速至ΠΟΗζ以上,可縮短CCFL的亮燈時間•關燈時間。 因此關於上述CCFL所用的螢光體,期望開發出殘光時間儘 ❹可能短的螢光體。 以往’作為液晶背光㈣CCTL,已使m形螢光 燈,於此等三波長形螢光燈中,使用在450、540及610nm 之各波長區域附近’具有強且半值寬狹窄之發光光譜波峯的 藍色、綠色、紅色螢光體。 代表性的CCFL用紅色螢光體之銪職活氧化釔螢光體(以 下,亦稱為YOX螢光體)的1/10殘光時間約為3 〇ms,代表 性的CCFL用藍色螢光體之銪賦活鋁酸鋇鎂螢光體(以下, 098124986 7 201011092 亦稱為BAM榮光體)的1/10殘光時間約為l.Gms以下,相 對地’經常使用作為現在CCFL用之代表性的綠色螢光體之 Ce及Tb #同賦活磷酸綱螢光體(以下,亦稱為LAp榮光體) 的1/10殘光時間為7.4ms。 此等紅色、藍色、及綠色螢光體中,特別以綠色螢光體的 殘光時間比其他2色長,54Gnm波長區域的綠色發光因為比 視感度尚,故具有綠色殘光顯著的問題。 另方面,作為上述LAP螢光體以外之綠色螢光體,已 去有銘酸鹽系之Tb· Μη共同賦活之錦·鎂.銘酸鹽榮光體 (以下,亦稱為CAT: Μη螢光體)和Tb賦活之鈽鎂.鋁酸 鹽螢光體(以下,亦稱為CAT螢光體)。 但是,專利文獻7中所記載之CAT : Μη螢光體,同上述 LAP螢光體,發光的殘光較長,且不利於作為要求短殘光 的LCD背光用。 關於CAT螢光體’例如若根據非專利文獻1,由明亮度 的觀點而言’以 Ce : Tb=2 : 1(即 Ce/Tb = 2.0)、Mg : (Ce + Tb)=l : 1(即Mg/(Ce+Tb)=l.〇)為最適當,但以此類比 率並非可使1/10殘光時間令人滿足。 另外,於本說明書中,所謂1/1〇殘光時間,係指對螢光 體照射紫外線使其發光’剛遮斷該激發光後之發光強度衰減 至1/10明亮度所需要的時間。 先前技術文獻 098124986 8 201011092 專利文獻In a CAT phosphor in which Ce is substituted with La, even if the p-value (amount of Al2〇3) is increased by the stoichiometric composition, a light beam which is comparable or slightly higher than the stoichiometric composition can be obtained. In addition to the green luminescent phosphors that are activated with respect to this Tb or Tb and Μη, it is also desirable to develop a phosphor that emits green light of higher brightness than the prior material. Further, recently, in response to the demand for a green phosphor, in addition to the improvement in brightness, short-lived photochemical is exemplified. That is, a liquid crystal display (LCD) is formed by combining a backlight and a crystal shutter to form an image on a flat plate, and a color filter can be combined to display an image in color. In the LCD, all the pixels are displayed at the same time, and the fixed display is often displayed until the image of one frame is replaced by the next frame. In this fixed display, because of the characteristics of the residual image felt by the human eye, the afterimage feeling is not lost in the intense image such as the sports Langmu, and is only a very image with a residual image. Incidentally, the number of display segments of the 'TV image signal in the world' is about 5G to 6G frames in one second. In Japan, it is also 6 frames per second. The display time of a frame is about 16msec. With the advancement of technology, the response of the liquid: is shorter than 16_e and the afterimage feeling is lower (four) but only increases the speed of the application, and its higher effect is weak, for example, even if the response speed is 098124986 201011092 0msec Make the afterimage disappear. Thus, in the case of the LCD towel, (4) the simple (four) handle towel must have the same degree of animation characteristics as the pulsed display color brown tube (CRT). In order to make the residual image in (10), for example, in the past, the display of 60 frames per second was raised by U_120 frames, the fixed image was shortened to half of the brain C, and each of the wheel powers was used. The image signal of the frame part is displayed in black on the full face, so that the illumination timing of the backlight is selectively performed, or the combination of both is realized, and the animation characteristic close to crt is obtained under the pseudo-pulse display. On the other hand, in order to reduce the residual image of the LCD and the blur of the rim, it is attempted to cause the cold cathode glory lamp (CCFL) used for the backlight to be displayed in full-frame black at the same time and flashed. Even with the 6 GHz frame cycle number, it can be accelerated to more than ΠΟΗζ in recent years, which can shorten the CCFL lighting time and turn off time. Therefore, regarding the phosphor used in the above CCFL, it is desired to develop a phosphor which may have a short afterglow time. In the past, as a liquid crystal backlight (4) CCTL, an m-shaped fluorescent lamp has been used. In such a three-wavelength fluorescent lamp, a light-emitting spectral peak having a strong and half-value width narrow is used in the vicinity of wavelength regions of 450, 540, and 610 nm. Blue, green, red phosphor. The representative 1st CCFL uses a red phosphor with a 1/10 afterglow time of the active cerium oxide phosphor (hereinafter also referred to as YOX phosphor), which is about 3 〇ms, and the representative CCFL uses blue fluorescing. The 1/10 afterglow time of the photoreceptive active aluminum strontium aluminate phosphor (hereinafter, 098124986 7 201011092 also known as BAM glory) is less than l.Gms, and relatively 'usually used as a representative for CCFL now. The 1/10 afterglow time of the Ce and Tb #-activated phosphoric acid phosphors (hereinafter also referred to as LAp glare) of the green phosphor is 7.4 ms. Among these red, blue, and green phosphors, the residual light time of the green phosphor is longer than the other two colors, and the green light of the 54 Gnm wavelength region has a problem of significant green residual light because of the higher visual sensitivity. . On the other hand, as the green phosphor other than the above-mentioned LAP phosphor, the Tb· Μ η 共同 · · · · · ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( And magnesium-aluminate phosphor (hereinafter also referred to as CAT phosphor) which is activated by Tb. However, the CAT: Μη phosphor described in Patent Document 7 has a long residual light emission with the above-mentioned LAP phosphor, and is disadvantageous for use as an LCD backlight requiring short afterglow. Regarding the CAT phosphor, for example, according to Non-Patent Document 1, from the viewpoint of brightness, 'Ce : Tb = 2 : 1 (ie, Ce / Tb = 2.0), Mg : (Ce + Tb) = 1 : 1 (ie, Mg/(Ce+Tb)=l.〇) is most appropriate, but such ratios do not make the 1/10 afterglow time satisfactory. In addition, in the present specification, the 1/1 〇 afterglow time means a time required for the phosphor to be irradiated with ultraviolet rays to illuminate the luminescence intensity immediately after the excitation light is blocked to 1/10 brightness. Prior Art Document 098124986 8 201011092 Patent Literature

專利文獻1 : 專利文獻2 : 專利文獻3 : 專利文獻4: 專利文獻5 = 專利文獻6 = 專利文獻7 = 曰本專利特開昭49-77893號公報 曰本專利第2663306號公報 曰本專利特開平4-255790號公報 曰本專利特開2000-169844號公報 曰本專利特開昭56-86983號公報 曰本專利特公昭57-61068號公報 曰本專利特開2008-308634號公報 非專利文獻Patent Document 1: Patent Document 2: Patent Document 3: Patent Document 4: Patent Document 5 = Patent Document 6 = Patent Document 7 = 曰 Patent Patent Publication No. Sho 49-77893, Japanese Patent No. 2663306 Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei.

非專利文獻 1: j. Electrochem. Soc., SOLID-STATE SCIENCE AND TECHNOLOGY (Dec. 1974 P1623-1627) A Survey of a Group of Phosphors, Based on Hexagonal Aluminate and Gallate Host Lattice (J.M.P.J. Verstegen) 【發明内容】 ❹(發明所欲解決之問題) 本發明係以提供在真空紫外線和紫外線激發下,呈現出比 先前物質更高亮度之綠色發光,且,對於先前品相比於近紫 外線區域之可見光區域的發光強度高且汞射線的吸收亦優 良之Μη賦活的鋁酸鹽螢光體、該螢光體之製造方法暨使用 該螢光體之一般照明用燈、冷陰極螢光燈為課題。 又’本發明之其他課題係提供在真空紫外線和紫外線激發 下’呈現出與先前物質同等以上之高亮度綠色發光之Tb賦 098124986 9 201011092 活的飾·鎂·鋁酸鹽螢光體和Tb · Μη共同賦活之飾.鎂· 鋁酸鹽螢光體。 更且,本發明之課題係在紫外線及真空紫外線、特別於 180nm〜300nm之紫外線的激發下,具有相比於先前物質大 約同等的明壳度,且殘光時間大幅縮短,且可實現削減材料 費用之呈現綠色發光之Tb賦活的鈽.鎂.鋁酸鹽螢光體、 該螢光體之製造方法、暨使用該螢光體之冷陰極螢光燈為課 題。 (解決問題之手段) ® 本發明者等人’為了解決上述問題,首先對於先前之施 賦活鈽·鎂·銘酸鹽螢光體㈣成與亮度等之發光特性的關 係詳細重複檢时。其結果,藉由將先前同系之鋁酸鹽螢光 體之化學計量組成(以下,將先前已知之Μη賦活鈽·錤· =酸,螢光體之ce..Mg+Mn為約1: i的組成略稱為「、化 學計量組成」)作成偏差之組成,使得如采射線般之激發光 的吸收提升接近2倍,且由Ce往Μη的能量傳遞效率亦提 高(來自Ce之35〇nm附近的發光與來自Mni517nm附近 的發光強度比,變化成來自Μη的發光變大的方向),發現 此綠色發光的亮度顯著提高,並且達成本發明。 如此,本發明之Μη賦活鋁酸鹽系螢光體(以下,亦單稱 為本發明之「鋁酸鹽螢光體」,以構成該螢光體之各金屬元 素的含有比率,由化學計量組成錯開,由此化學計量組成之 098124986 10 201011092 錯開(不定比性)造成該螢光體之結晶構造的變化和Y 質(發光特性)的變化,推測取得具有優良之諸特性, 體。 ^ b法的螢光體’ 本發明者等人發現,此見解不僅限於]yin赋济/ 七令 即使於Μη與Tb或僅Tb賦活的螢光體亦矸達成同樣的 度。 又’進一步重複詳細之檢討結果,得到 ❿ (°0螢光體中之Ce相對於Tb量(莫耳)減少’即以Non-Patent Document 1: j. Electrochem. Soc., SOLID-STATE SCIENCE AND TECHNOLOGY (Dec. 1974 P1623-1627) A Survey of a Group of Phosphors, Based on Hexagonal Aluminate and Gallate Host Lattice (JMPJ Verstegen) [Summary of the Invention] ❹ (Problems to be Solved by the Invention) The present invention provides green luminescence which exhibits higher brightness than prior substances under vacuum ultraviolet and ultraviolet excitation, and illuminates the visible light region of the prior product compared to the near ultraviolet region. An aluminate phosphor which is high in strength and excellent in absorption of mercury rays, an aluminate phosphor which is activated, a method for producing the phosphor, and a general illumination lamp and a cold cathode fluorescent lamp using the phosphor are the subject. Further, the other subject of the present invention is to provide a high-brightness green luminescence which exhibits the same or higher than that of the prior substance under vacuum ultraviolet ray and ultraviolet ray. 098124986 9 201011092 Living decoration magnesium aluminate phosphor and Tb ΜηCommonly revitalized. Magnesium·aluminate phosphor. Furthermore, the subject of the present invention is that under ultraviolet light and vacuum ultraviolet rays, particularly ultraviolet light of 180 nm to 300 nm, the light-emitting time is approximately equal to that of the prior material, and the residual light time is greatly shortened, and the material can be reduced. A magnesium-aluminate phosphor, a method for producing the phosphor, and a cold-cathode fluorescent lamp using the phosphor, which is a green light-emitting Tb-activated product, is a problem. (Means for Solving the Problems) In order to solve the above problems, the inventors of the present invention have repeatedly examined the relationship between the prior activity of the active magnesium oxide and the phosphoric acid (four) and the light-emitting characteristics such as brightness. As a result, by synthesizing the stoichiometric composition of the prior homologous aluminate phosphor (hereinafter, the previously known Μη is activated 钸·錤· = acid, the ce..Mg+Mn of the phosphor is about 1: i The composition is abbreviated as "stoichiometric composition". The composition of the deviation is such that the absorption of the excitation light is nearly doubled, and the energy transfer efficiency from Ce to Μ is also improved (from Ce to 35 〇 nm). The ratio of the nearby luminescence to the luminescence intensity from the vicinity of Mni 517 nm changes to the direction in which the luminescence from Μη becomes larger, and the luminance of the green luminescence is found to be remarkably improved, and the present invention has been attained. Thus, the Μη-activated aluminate-based phosphor of the present invention (hereinafter, simply referred to as "aluminate phosphor" of the present invention) constitutes a content ratio of each metal element of the phosphor, and is stoichiometrically The composition is staggered, and thus the stoichiometric composition of 098124986 10 201011092 staggered (indefinite ratio) causes a change in the crystal structure of the phosphor and a change in the Y quality (light-emitting property), and it is presumed that the properties are excellent, ^ b The phosphor of the method' has been found by the inventors to be limited to the fact that the yin is only limited to the same degree as the phosphor activated by Tb or Tb only. As a result of the review, ❿ (the decrease of Ce in the phosphor of 0° with respect to the amount of Tb (mole) is

Ce/Tb&gt;2.0(莫耳比), («螢光體中之(Ce + Tb)相對於Mg量(莫荨)滅少’即’以 Mg/(Ce + Tb)&lt;l.〇(莫耳比), (γ)組合此類Tb量減和Mg量減, 可取得具有相比於先前物質大約同等的明亮度,並且殘光時 間顯著縮短之綠色螢光體的發現。 Θ 更且,本發明者等人亦發現,若將此綠色螢光體使用於白 色螢光燈’則可更加抑制明亮度的降低。 認為其係因為螢光體中的Tb量若減低,則Ce發光增加 且Tb發光減低,故亮度有降低的傾向,但因Ce發光為激 發其他色螢光體(紅色螢光體、藍色勞光體),故作為白色燈 不會如此降低亮度。 又’如前述,LCD中因殘像感和輪廓的模糊減低,故採 用使背光閃爍,並且進-步更加縮短背光閃燦之間隔的方 098124986 ^ 201011092 種域鹽螢讀,其特徵為以 一般式: ⑴ 式’於此閃爍方式中必須瞬間開始明亮,故衰減時間(殘光 時間)短的螢光體開始的時間亦短,故有利作用於明亮度。 本發明為根據如下見解而完成者,以下列為要旨。°义 (CexTbl x)2°3 · y(MSi-zMnz)〇 - πΑ12〇3 (但’式中’x、y、z及η分別於〇&lt;χ&lt;ι時,為滿足㈣d8、 〇$zy、7$n之條件的數,χ==ι時,為滿足〜叫^ 8、 、7Sn之條件的數)所示。 (2)如上述⑴記载之銘酸鹽榮光體其中於上述一般式 中 ’ x=卜 〇.3Sy各 1.2 〇 (3)如上述(2)記载之紹酸鹽螢光體,其中,於上述一般式 中,x=卜 0.7Sd.2。 (4) 如上述(2)或(3)中任一項記載之鋁酸鹽螢光體,其中, 於上述一般式中,式中之η為12$η$40。 (5) —種鋁酸鹽螢光體,其為至少由鈽(Ce)、錳(Μη)、鎂❹ (Mg)、鋁(Α1)及氧(〇)所構成之螢光體,其特徵為以波長 254nm之紫外線激發時,350nm之發光強度相對於518nm 之發光強度之比為未滿15%。 (6)如上述(5)記載之鋁酸鹽螢光體,其中,上述螢光體為 以一般式;(CexTbk);^ · yiMguJVlnOO · ηΑ1203 表示,且 般式中,x、y、z及η分別為滿足χ= 1、〇.2$y$1.8、 0·1$Ζ$ 1、7$η之條件的數。 098124986 12 201011092 (7) 如上述(1)記載之鋁酸鹽螢光體,其中,上述一般式中, X 為 0&lt;x&lt;l,y 為 0.8SyS 1.6。 (8) 如上述(7)記載之鋁酸鹽螢光體,其中,上述一般式中, X 為 0.5 S xS 0.9。 (9) 如上述(1)至(3)中任一項記載之鋁酸鹽螢光體,其中, 上述一般式中,η為ll^n。 (10) 如上述(7)至(9)中任一項記載之鋁酸鹽螢光體,其 φ 中,上述一般式中,z為z=0。 (11) 如上述(1)記載之鋁酸鹽螢光體,其中,上述一般式 中,0.68SxS0.95,z=0。 (12) 如上述(11)記載之鋁酸鹽螢光體,其中,上述一般式 中,〇.7Sx$0.85。 (13) 一種鋁酸鹽螢光體,其為至少由鈽(Ce)、铽(Tb)、鎂 (Mg)、鋁(A1)及氧(0)所構成的螢光體,其特徵為1/10殘光 ❹時間為6.4ms以下。 (14) 如上述(1)至(13)中任一項記載之鋁酸鹽螢光體,其 中,藉由被覆物質將表面塗敷處理。 (15) 如上述(14)記載之鋁酸鹽螢光體,其中,上述被覆物 質為稀土類金屬的碳酸鹽。 (16) 如上述(15)記載之鋁酸鹽螢光體,其中,上述稀土類 金屬之碳酸鹽的被覆量,相對於螢光體為0.05〜5重量%。 (17) 一種鋁酸鹽螢光體之製造方法,其特徵為Ce、Tb、 098124986 13 201011092Ce/Tb&gt; 2.0 (Morbi), («Ce + Tb in the phosphor is less than the amount of Mg (Mole), ie, 'Mg/(Ce + Tb)&lt;l.〇( Mohr's, (γ) combination of such a decrease in the amount of Tb and a decrease in the amount of Mg, a green phosphor having approximately the same brightness as the previous substance and having a significantly reduced afterglow time can be obtained. The present inventors have also found that if the green phosphor is used in a white fluorescent lamp, the decrease in brightness can be further suppressed. It is considered that since the amount of Tb in the phosphor is reduced, the Ce emission is increased. Further, since the light emission of Tb is lowered, the brightness tends to decrease. However, since the Ce light emits light to excite other color phosphors (red phosphor, blue light body), the white light does not reduce the brightness as such. In the LCD, due to the residual image and the blur of the contour, the backlight is flickered, and the step of further shortening the interval of the backlight flashing is adopted. The 098124986 ^ 201011092 type of salt reading is characterized by the general formula: (1) 'This flashing mode must start brightly in an instant, so the decay time (after-light time) is short. The start time is also short, so it is advantageous for the brightness. The present invention has been completed based on the following findings, and the following are the main points: ° (CexTbl x) 2 ° 3 · y (MSi-zMnz) 〇 - π Α 12 〇 3 ( However, in the formula, 'x, y, z, and η are respectively 〇&lt;χ&lt;ι, which are the numbers satisfying the conditions of (4) d8, 〇$zy, and 7$n, χ==ι, to satisfy ~called ^ 8 (2) The number of conditions of 7Sn is shown in (2) as described in (1) above, in the above general formula, 'x = 〇. 3Sy each 1.2 〇 (3) as described in (2) above And the aluminate phosphor according to any one of the above (2) or (3), wherein the aluminate phosphor according to any one of the above (2) or (3), Wherein, in the above general formula, η in the formula is 12$η$40. (5) an aluminate phosphor which is at least composed of cerium (Ce), manganese (Mn), magnesium cerium (Mg), A phosphor composed of aluminum (Α1) and oxygen (〇) is characterized in that the ratio of the emission intensity at 350 nm to the emission intensity at 518 nm is less than 15% when excited by ultraviolet light having a wavelength of 254 nm. (5) The aluminate phosphor described in the above, wherein the phosphor is one (CexTbk);^ · yiMguJVlnOO · ηΑ1203 means, and in the general formula, x, y, z, and η are respectively satisfied χ = 1, 〇.2$y$1.8, 0·1$Ζ$1, 7$ The aluminate phosphor according to the above (1), wherein X is 0 &lt; x &lt; l, y is 0.8 SyS 1.6. (8) The aluminate phosphor according to (7) above, wherein, in the above general formula, X is 0.5 S xS 0.9. (9) The aluminate phosphor according to any one of the above (1) to (3) wherein, in the above general formula, η is ll^n. (10) The aluminate phosphor according to any one of the above (7) to (9) wherein, in φ, in the above general formula, z is z=0. (11) The aluminate phosphor according to (1) above, wherein in the above general formula, 0.68 S x S 0.95, z = 0. (12) The aluminate phosphor according to (11) above, wherein, in the above general formula, 〇.7Sx$0.85. (13) An aluminate phosphor which is a phosphor composed of at least cerium (Ce), cerium (Tb), magnesium (Mg), aluminum (A1), and oxygen (0), which is characterized by 1 The /10 afterglow time is below 6.4ms. (14) The aluminate phosphor according to any one of the above (1) to (13) wherein the surface is coated with a coating material. (15) The aluminate phosphor according to the above (14), wherein the coating material is a carbonate of a rare earth metal. (16) The aluminate phosphor according to the above (15), wherein the rare earth metal carbonate is coated in an amount of 0.05 to 5% by weight based on the amount of the phosphor. (17) A method for producing an aluminate phosphor characterized by Ce, Tb, 098124986 13 201011092

Mg、Μη、A1之化學計量組成式為以上述(1)至(4)、及(6)至 (12)中任一項記載之比例將ce化合物、Tb化合物、Mg化 合物、Μη化合物、及A1化合物予以混合、煅燒。 (18) 一種鋁酸鹽螢光體之製造方法,其特徵為ce、Tb、 Mg、Μη、及A1之化學計量組成式為以上述(1)至(4)、及(6) 至(12)中任一項記載之比例將:可藉由加熱變成鈽(Ce)之氧 化物的Ce化合物、可藉由加熱變成铽(Tb)之氧化物的Tb 化合物、可藉由加熱變成鎂(Mg)之氧化物的Mg化合物、可 藉由加熱變成猛(Μη)之氧化物的Mm匕合物、以及可藉由加 熱變成紹(A1)之氧化物的A1化合物加以混合、锻燒。 ㈣_種㈣燈’其特徵為制如上述⑴至⑽中任一項 記載之鋁酸鹽螢光體。 (20)如上述(19)記載之螢光燈,且中 〃 T ’上述螢光燈為冷陰 極螢光燈。 ⑼-種冷陰極螢光燈,其特徵為使用以如中請1至16 中任一項記載之鋁酸鹽螢光體作為綠色螢光體, 光膜 以·殘光時間為Oms以下之料體作為藍色榮光體, 殘光時間為3.Gms以下之㈣體作為紅色螢光體的榮 (22)如上述(21)記载之冷陰極螢光卢 東疋燈,其中,上述藍色螢 光體為Eu賦活銷•約•壤灰石替弁辦 疋餵或Eu賦活鋇•鎂鋁 酸鹽榮光體’上述紅色螢光體為Eu職活氧化㈣光體或Eu 098124986 14 201011092 賦活釩酸釔螢光體。 (23) 一種背光單元’其特徵為使用如上述(19)或(2〇)記戴 之榮光燈、或如上述(21)或(22)記載之冷陰極螢光燈。 (24) 一種液晶顯示裝置,其特徵為使用如上述(23)記載之 背光單元,使其擬似脈衝驅動。 (發明效果) 本發明之鋁酸鹽螢光體,儘管構成母體之各成分元素本身 ❹與先前螢光體相同之構成成分所構成’但藉由使各成分元素 之構成比率與先前同系者不同,則可取得比先前物質更高亮 度的綠色發光。 並且,由於較廉價之Al2〇3母體成分中所佔的比例高、較 昂貴之Tb母體成分中所佔的比例低,故具有製造費用減低 的優點。 更且,於使用Μη作為主要綠色發光賦活劑之情形(特別 ❹於χ=1之情形)’相比於無法以肉眼察見,無助於亮度之紫 外線區域的發光,可作成綠色區域的發光強度高者。 本發明之螢光體,其殘光相對於先前的綠色發光螢光體, 亦可顯著縮短。 又,本發明之螢光體為以螢光燈型式,使用作為先前之 Tb賦活磷酸鑭螢光體的代替品。 特別於冷陰極螢光燈中’藉由使用本發明之鋁酸鹽螢光 體,則可作成更高光束且提高光束維持率的冷陰極螢光燈。 098124986 15 201011092 特別’於使用Μη作為綠色發光賦活剤之使用本發明之紹 酸鹽螢光體(Ζ妾0之情形)的冷陰極螢光燈之情形中,可使色 再現範圍比使用先前之Tb賦活綠色螢光體的冷陰極螢光燈 更加寬廣,且亦可加寬TV等之色再現範圍。 又,亦可顯著縮短作為冷陰極燈的殘光時間,特別是使用 於間歇驅動之液晶顯示裝置用,可取得殘像感少的液晶顯示 裝置。 另外’本發明之鋁酸鹽螢光體不僅可應用於冷陰極螢光 燈,且即使應用於利用真空紫外線區域激發之電漿顯示器等 之真空紫外線發光元件,亦可察見其優良特性。 又’藉由適當選擇與本發明螢光體組合使用之激發用光源 的激發波長,則亦可適當使用於led等。 【實施方式】 本發明之鋁酸鹽螢光體係以一般式 (CexTU^ · y(Mgl_zMnz)〇 · nAl2〇3(但,式中,X、y、z 及n分別為〇&lt;x&lt;1時,滿足〇6巧^ 8、 之條件的數,x=l時,滿足似⑴8、〇 i如卜 之條件的數)所示之鋁酸鹽螢光體。 本發明之螢光體為具有i個一般式所示,相比於先前之鸯 光體,免度為顯著提高等之共通的特徵。 以下’說明關於⑴主要使用Mn作為賦活劑之情形⑺ 使用T4Mn作為賦活劑之情形、(3)主要使用几作為靖 098124986 201011092 活劑,且可極為縮短1/10殘光時間之情形的較佳3個實施 形態。 (本發明之第1實施形態) 本發明之第1實施形態中合適的鋁酸鹽螢光體,其特徵為 以一般式為(CexTbkhCb · yCMgi-zMnJO · ηΑ12〇3(但 x=1)表 - 示’該式中,y、z及η分別為滿足〇.2Sy$ 1.8、O.lSzSl、 之條件的數。 ❹ 即,本發明之第1實施形態之鋁酸鹽螢光體,其重要係由 先前之Μη賦活鈽.鎂·鋁酸鹽螢光體之化學計量組成,將 猛、鎂、及鋁之比率,根據綠色發光之亮度和所欲之色度、 近紫外線區域之發光與綠色區域之發光的強度比等,使上述 一般式中之X、y、2及11於此類範圍内調整。 另外,所謂先前之Μη賦活鈽·鎂·鋁酸鹽螢光體的化學 計量組成(Ce : Mg + Mn為約} : ,係於上述一般式中y ❹值為2’ z為任意數’ n值為 本發明之第1實施形態中之鋁酸鹽螢光體,與上述之化學 ' 计量組成相比較,具有Ce相對於錳與鎂之總和量為減少的 :特徵。上述-般式巾之y(螢光體巾之猛與鎂的總和比)若未 滿〇.2,則難取得充分的發光。另-方面,若超過1.8,則接 近先前的化學計量組成’無法達成發光亮度的提高。y值的 較佳範圍為0.3Sy,.2,更佳為〇i 2。 上述一般式中之z(螢光體中之叫+ —的·比率),若 098124986 17 201011092 在O.l^zSl之範圍内適當選擇即可,若未滿o.i,則Mn 過少且無法取得充分的發光,若追求更強的發光,則以〇2 以上、特佳為0.4以上為佳。另一方面,於Μη為多的部分, 難變成大問題。但是,於色度追求更深綠色之情形(追求寬 廣之色再現範圍的情形)中,以0.9以下為佳,又,於配合 NTSC(National Television System Committee,國際電視系統 委員會)座標追求高亮度之情形中,色度為0.9以上為最佳。 又,本發明之第1實施形態之鋁酸鹽螢光體中,上述一般 式中之η為7以上。此η值(x=l之螢光體中Ce203相對於 Α1ζ〇3的配合比)若未滿7,則亮度特性易降低。 如此,本發明之第1實施形態之鋁酸鹽螢光體中,與上述 專利文獻1等記載之公知組成相比較,可增加Al2〇3的份量。 若η值為12以上,螢光體結晶的形狀由平板形狀變化成 厚度增加且更接近球的形狀,因此在形成燈等之螢光膜的情 心中,塗佈媒體中的活動易配合其他螢光體難出現管端色 0 差,加上填充性方面亦為優良,易取得作為燈的充分光量。 另一方面,若超過40,則亮度慢慢降低,因此,作為η值, 以12$η$40為佳,更佳為12SnS30,特佳為ι2^η^20。 另外本發明之第1實施形態中的銘酸鹽螢光體,在不會 大為偏離本發明效果的範圍下,亦可在其組成巾含有其他元 素,若列舉具體例,則組成中的Mg,在不會大為阻礙本發 明效果的範圍下’對Mg以離子半徑接近之例如以和如般 098124986 18 201011092 的二價金屬予以少量取代亦無妨,又,Ce為同樣地以Υ, Gd,La等少量取代亦無妨,且一部分的Α1亦可經Ga及/ 或Sc所取代。 另外,關於本發明之第1實施形態之鋁酸鹽螢光體的組 成’可根據ICP發光分光(Inductively Coupled Plasma,誘導 性偶合電漿)予以確認組成。 本發明之第1實施形態之鋁酸鹽螢光體,因為其組成與先 ©前之化學計量組成物質大為不同,因此推定結晶構造發生變 化,但其詳細狀況仍未知曉,但是,若根據預備的測定,相 比於先前之化學計量組成物質,則a軸方向收縮,且c軸方 向延伸。 即’於 J. Electrochem. Soc. SOLID-STATE SCIENCE AND TECHNOLOGY MAY 1976 Vol. 123 No.5 P691 中,記载 CeMgA1ii〇i9(=Ce203 · 2(Mg)0 · llAl2〇3)的 a 軸為 5.61nm、c Φ 轴為 ai^nm'CeMnAluOWCeA · 2(Mn)〇 · 11A1203)的 a 轴為5.62nm、c軸為21_96nm,c軸長度/a軸長度為3 92以 下。相較於此,在本發明之n為12以上的螢光體構造中,a 軸為5.58nm以下,c軸為22.00nm以上,c轴長度/a轴長产 為3.93以上、特佳為c軸長度/a轴長度為3.94以上。 作為由本發明之第1實施形態之鋁酸鹽榮光體的特性方 面所察見的態樣,350nm之發光強度相對於518nm之發光 強度比為未滿15%為佳。由於通常之化學計量組成的發光強 098124986 19 201011092 度比為20%強’因此可知關於本發明之銘酸鹽榮光體,可由 Ce往Μη有效率進行能量傳遞。 以下,使用數據說明。 於本發明之第1實施形態之結酸鹽螢光體中,如表ι所示 般,將(^^、及则定於一定量’將峋量變化情形中 之以波長254mn的紫外線激發時嗜光波長5i8nm之發光 強度(♦)與發光強度35Gnm之發光強度(▲)的變化示於圖 1(A)。另外,表!中之y、&amp; z係表示上述一般式❹ (CexTbhW · y(Mgl.zMnz)0 · ηΑι2〇3(但 χ=1)中 y、及 z 之 值,y、及z以外的各數值,係為各構成元素的莫耳數。 又’以圖1(A)的數據為基準作成之伴隨Mg量變動之發光 波長518mn之發光相對於發光波長35〇11111之發光的強度比 不於圖1 (B)。 另外,於圖1(A)、及(B)之各圖中,χ軸表示上述一般式 (CexTbi-xLOs · y(Mgi_zMnz)0 · ηΑ12〇3(但 χ=ι)中之 y 值,因❹ 此,所谓化學計罝組成,係為Μη量為〇 21莫耳,Mg量為 0.79莫耳《上述一般式中,y=2、z=〇21、n=11,即,The stoichiometric composition formula of Mg, Μη, and A1 is a ce compound, a Tb compound, a Mg compound, a Μ 化合物 compound, and a ratio according to any one of the above (1) to (4), and (6) to (12). The A1 compound is mixed and calcined. (18) A method for producing an aluminate phosphor characterized by having a stoichiometric composition formula of ce, Tb, Mg, Μ, and A1 by the above (1) to (4), and (6) to (12) The ratio described in any one of them is: a Ce compound which can be converted into an oxide of cerium (Ce), a Tb compound which can be converted into an oxide of cerium (Tb) by heating, and can be changed into magnesium by heating (Mg) The Mg compound of the oxide, the Mm chelate compound which can be turned into an oxide of 猛η, and the A1 compound which can be turned into an oxide of the slag (A1) are mixed and calcined. (4) The aluminate phosphor described in any one of the above (1) to (10). (20) The fluorescent lamp according to (19) above, wherein the fluorescent lamp of the middle 〃T ′ is a cold cathode fluorescent lamp. (9) A cold-cathode fluorescent lamp characterized in that the aluminate phosphor according to any one of the above-mentioned items 1 to 16 is used as a green phosphor, and the light film has a residual light time of 0 ms or less. The body is a blue glory body, and the afterglow time is 3. Gms or less. (4) The body is a red fluorescent body. (22) The cold cathode fluorescent Ludong xenon lamp described in the above (21), wherein the blue color The phosphor is a live pin for Eu. • About • Limestone for 疋 或 or Eu 赋 镁 • Magnesium aluminate glory body 'The above red phosphor is Eu active oxidation (4) light body or Eu 098124986 14 201011092 Acid strontium phosphor. (23) A backlight unit' characterized by using a glory lamp as described in (19) or (2) above, or a cold cathode fluorescent lamp as described in (21) or (22) above. (24) A liquid crystal display device characterized by using the backlight unit of the above (23) to be pseudo-pulsed. (Effect of the Invention) The aluminate phosphor of the present invention, although the constituent elements constituting the matrix itself are composed of the same constituents as the former phosphors, "but by making the constituent ratios of the constituent elements different from those of the prior homologues , a green luminescence with a higher brightness than the previous substance can be obtained. Further, since the proportion of the relatively inexpensive Al2?3 parent component is high and the proportion of the relatively expensive Tb parent component is low, there is an advantage that the manufacturing cost is reduced. Moreover, in the case where Μη is used as the main green luminescent activating agent (particularly in the case of χ=1), it can be made into a green region illuminating compared to the illuminating in the ultraviolet region which cannot be visually observed and does not contribute to brightness. High intensity. In the phosphor of the present invention, the residual light can be remarkably shortened with respect to the previous green luminescent phosphor. Further, the phosphor of the present invention is in the form of a fluorescent lamp, and a substitute for the phosphoric acid phosphor of the prior Tb is used. Particularly in cold cathode fluorescent lamps, by using the aluminate phosphor of the present invention, a cold cathode fluorescent lamp having a higher beam and higher beam maintenance ratio can be produced. 098124986 15 201011092 In particular, in the case of using a cold cathode fluorescent lamp using the 发光n as a green light-emitting activating device of the present invention, the color reproduction range can be made larger than the previous one. The cold cathode fluorescent lamp that activates the green phosphor of Tb is wider, and can also widen the color reproduction range of TV and the like. Further, the residual light time of the cold cathode lamp can be remarkably shortened, and in particular, it is used for a liquid crystal display device which is intermittently driven, and a liquid crystal display device having a small residual image can be obtained. Further, the aluminate phosphor of the present invention can be applied not only to a cold cathode fluorescent lamp, but also to a vacuum ultraviolet light-emitting element such as a plasma display which is excited by a vacuum ultraviolet region. Further, by appropriately selecting the excitation wavelength of the excitation light source used in combination with the phosphor of the present invention, it can be suitably used for LED or the like. [Embodiment] The aluminate fluorescent system of the present invention has a general formula (CexTU^·y(Mgl_zMnz)〇·nAl2〇3 (however, in the formula, X, y, z, and n are respectively 〇&lt;x&lt;1 When the number of conditions satisfying the condition of 〇6, 8 is satisfied, the aluminate phosphor of the present invention satisfies the number of conditions (1) and 〇i. As shown in the general formula, the degree of exemption is a common feature similar to that of the conventional phosphor. The following is a description of (1) the case where Mn is mainly used as an activator (7) the case where T4Mn is used as an activator, ( 3) It is preferable to use three embodiments as the active agent of Jing 098124986 201011092, and it is possible to extremely shorten the 1/10 afterglow time. (First embodiment of the present invention) The first embodiment of the present invention is suitable. The aluminate phosphor is characterized by the general formula (CexTbkhCb · yCMgi-zMnJO · ηΑ12〇3 (but x=1) - in the formula, y, z and η respectively satisfy 〇.2Sy The number of conditions of $1.8, O.lSzSl, ❹, that is, the aluminate phosphor of the first embodiment of the present invention is important from the previous η 活活钸. The stoichiometric composition of the magnesium aluminate phosphor, the ratio of violent, magnesium, and aluminum, according to the brightness of the green luminescence and the desired chromaticity, the luminescence of the near ultraviolet region and the luminescence of the green region The intensity ratio, etc., such that X, y, 2, and 11 in the above general formula are adjusted within such a range. In addition, the so-called Μ 赋 赋 化学 镁 镁 镁 镁 镁 镁 镁 镁 ( ( ( ( C C C C C C C C Mn is about: : , in the above general formula, y ❹ is 2' z is an arbitrary number 'n value is the aluminate phosphor of the first embodiment of the present invention, and the above chemical 'metering composition phase In comparison, there is a decrease in the total amount of Ce relative to manganese and magnesium: the above-mentioned y (the ratio of the stimuli of the fluorescent towel to the magnesium) is less than 22, and it is difficult to obtain sufficient In other respects, if it exceeds 1.8, the improvement of the illuminance is not achieved close to the previous stoichiometric composition. The preferred range of the y value is 0.3 Sy, .2, more preferably 〇i 2 . z (the ratio of the + in the phosphor), if 098124986 17 201011092 is within the range of Ol^zSl If it is less than oi, Mn is too small and sufficient light emission cannot be obtained. If more light emission is desired, it is preferably 〇2 or more, and particularly preferably 0.4 or more. On the other hand, the Μη is a large part. It is difficult to become a big problem. However, in the case where the chromaticity pursues a darker green (in the case of pursuing a wide range of color reproduction), it is preferably 0.9 or less, and is compatible with NTSC (National Television System Committee). In the case where the coordinates pursue high brightness, the chromaticity of 0.9 or more is optimal. Further, in the aluminate phosphor of the first embodiment of the present invention, η in the above general formula is 7 or more. If the η value (the mixing ratio of Ce203 to Α1ζ〇3 in the phosphor of x=l) is less than 7, the luminance characteristics are liable to lower. In the aluminate phosphor of the first embodiment of the present invention, the amount of Al2〇3 can be increased as compared with the known composition described in Patent Document 1 and the like. When the η value is 12 or more, the shape of the crystal of the phosphor changes from the shape of the flat plate to the thickness and is closer to the shape of the ball. Therefore, in the case of forming a fluorescent film such as a lamp, the activity in the coating medium is easily matched with other flickers. It is difficult for the light body to have a color difference of 0 in the tube end, and the filling property is also excellent, and it is easy to obtain a sufficient amount of light as a lamp. On the other hand, if it exceeds 40, the luminance gradually decreases. Therefore, as the η value, 12$η$40 is preferable, and 12SnS30 is more preferable, and ι2^η^20 is particularly preferable. Further, the crystal salt phosphor according to the first embodiment of the present invention may contain other elements in the composition sheet without greatly deviating from the effects of the present invention, and examples of the composition include Mg in the composition. In the range that does not greatly hinder the effects of the present invention, it is also possible to replace the Mg with an ionic radius close to, for example, a divalent metal such as 098124986 18 201011092, and Ce is the same as Υ, Gd, A small amount of substitution such as La may also be possible, and a part of Α1 may also be replaced by Ga and/or Sc. In addition, the composition of the aluminate phosphor of the first embodiment of the present invention can be confirmed by ICP luminescence (Inductively Coupled Plasma). In the aluminate phosphor according to the first embodiment of the present invention, since the composition is significantly different from that of the first stoichiometric composition, the crystal structure is estimated to be changed. However, the details are not known, but The preliminary measurement is contracted in the a-axis direction and extends in the c-axis direction compared to the previous stoichiometric composition. That is, in the J. Electrochem. Soc. SOLID-STATE SCIENCE AND TECHNOLOGY MAY 1976 Vol. 123 No. 5 P691, the a-axis of CeMgA1ii〇i9 (=Ce203 · 2(Mg)0 · llAl2〇3) is 5.61. The nm and c Φ axes are ai^nm'CeMnAluOWCeA · 2(Mn)〇·11A1203), the a-axis is 5.62 nm, the c-axis is 21-96 nm, and the c-axis length/a-axis length is 3 92 or less. In contrast, in the phosphor structure in which n is 12 or more in the present invention, the a-axis is 5.58 nm or less, the c-axis is 22.00 nm or more, and the c-axis length/a-axis length is 3.93 or more, particularly preferably c. The shaft length / a-axis length is 3.94 or more. As a characteristic aspect of the aluminate glaze according to the first embodiment of the present invention, it is preferable that the ratio of the luminescence intensity at 350 nm to the luminescence intensity at 518 nm is less than 15%. Since the luminous intensity of the usual stoichiometric composition is 098124986 19 201011092, the ratio is 20% strong. Therefore, it is known that the etched glory of the present invention can efficiently transfer energy from Ce to Μη. Below, use the data description. In the sulphate phosphor of the first embodiment of the present invention, as shown in the table, when (^^, and then set to a certain amount, the ultraviolet ray having a wavelength of 254 nm is excited in the case where the amount of enthalpy is changed. The change in the luminous intensity (♦) of the luster wavelength of 5i8 nm and the luminous intensity (▲) of the luminous intensity of 35 Gnm is shown in Fig. 1(A). In addition, in the table, y, & z represent the above general formula ❹ (CexTbhW· y(Mgl.zMnz)0 · ηΑι2〇3 (but χ=1) The values of y and z, and the values other than y and z are the number of moles of each constituent element. The data of A) is the ratio of the intensity of the light emission of the light-emitting wavelength of 518 nm with respect to the change of the amount of Mg to the light-emitting wavelength of 35〇11111, which is not the same as FIG. 1(B). In addition, in FIGS. 1(A) and (B) In each of the graphs, the χ axis represents the y value in the above general formula (CexTbi-xLOs · y(Mgi_zMnz)0 · ηΑ12〇3 (but χ=ι), because the so-called chemical composition is Μη The amount is 〇21 mol, and the amount of Mg is 0.79 mol. In the above general formula, y=2, z=〇21, n=11, ie,

Ce203 · 2(Mn〇.21Mg〇.79)0 · llAl2〇3 的紹酸鹽螢光體》。 如此,由圖1(A)、及(B)可知,由化學計量組成(y=2.〇)於 減少y的方向上錯開時’來自Ce之近紫外線區域的發光強 度,相對於來自Μη之綠色光區域的發光強度為顯著上升。 [表1] 098124986 20 201011092Ce203 · 2 (Mn〇.21Mg〇.79) 0 · llAl2〇3 of the acid salt phosphor. As can be seen from Fig. 1 (A) and (B), when the stoichiometric composition (y = 2. 〇) is shifted in the direction of decreasing y, the luminescence intensity from the near ultraviolet region of Ce is relative to that from Μη. The luminous intensity of the green light region is significantly increased. [Table 1] 098124986 20 201011092

Ce 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Mg 0.12 0.18 0.24 0.29 0.35 0.46 0.59 0.71 0.82 0.94 1.06 1.18 Μη 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 A1 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 y 0.66 0.78 0.90 1.00 1.12 1.34 1.60 1.84 2.06 2.30 2.54 2.78 z 0.64 ^54 0.47 0.42 0.37 0.31 0.26 0.23 0.20 0.18 0.17 0.15 又’本發明之第1實施形態之鋁酸鹽螢光體,相對於先前 之化學計量組成物質,不僅上述由Ce往Μη的能量傳遞改 善’且對於汞發光的吸收亦被改善。 圖2為示出此情事。化學計量組成之先前的螢光體,於 VUV(VacuumUltra_Violet 光,真空紫外光)(172nm)之範圍, 汞射線之發光(主要254nm)亦顯示大約相同程度的激發光 譜強度’相對地,由化學計量組成(y=2.〇)於減少y的方向上 錯開之本發明的螢光體中’可知以汞射線的激發,比νυν 的激發提高接近2倍。 本發明之第1實施形態之鋁酸鹽螢光體的製造方法,若使 用通常製作螢光體時所用的方法即可,並無特別限定。較 β佳,若將Ce化合物、Mg化合物、]Vin化合物、及A1化合 物,以化學計量上’使Ce、Mg、Μη、及A1之組成比與第 1實施形態之紹酸鹽螢光體的組成比為—致般混合,並且.緞 燒即可。更佳為,將可藉由加熱變成鈽(Ce)之氧化物的Ce 化合物、可藉由加熱變成鎂(Mg)之氧化物的Mg化合物,可 藉由加熱變成錳(Μη)之氧化物的Μη化合物、及可藉由加熱 變成紹(Α1)之氧化物的Α1化合物,予以混合、煅燒。 作為本發明較佳使用之螢光體原料,可列舉碳酸飾、氧化 098124986 21 201011092 鈽、碳酸鎂、氧化鎂、碳酸錳、氧化錳、氧化鋁等、及其他 進行強熱可輕易變成氧化物的鹽。 本發明之第1實施形態之鋁酸鹽螢光體的具體製造方 法,例如,以如下之手續進行。 (1)將如上之原料秤量指定量,並且藉由使用球磨、V 型混合機專之混合手段充分混合。 (2)將所得之混合物填充至氧化鋁坩堝等之对熱容器, 亦包含於高溫爐中爐升 鲁 於還原環境氣體中以1400〜160CTC, 降溫所需之時間,烺燒1〇〜26小時。 (3)對所付之煅燒物,施以通常之螢光體製造時所應用 之後處理步驟同樣的分散、洗淨、乾燥之各種處理。 本發明中,在供於煅燒之螢光體原料化合物的混合物中, 與取得公知之鋁酸鹽螢光體之情況同樣地,為了促進反應, 可添加氟化鋁等之氟化物或硼酸和氧化硼等作為助熔劑。 關於本發明之第i實施形態之織鹽螢光體的粒徑,並無〇 特別限定,但在應用於本發明之冷陰料光燈&lt;營光膜等之 情形中,由操作度以及顏色均勻性方面而言以fsss粒度 為1〜20左右之範圍中任意選擇即可,較佳為2〜8,更佳為 2〜7 〇 本發明之螢光燈,除了使用如此處理所得之本發明的減 鹽螢光體作為螢光膜以外,同先前之螢光燈處理製造。冷陰 極螢光燈(包含外部電極型)亦為同樣。 098124986 22 201011092 即,將本發明之第1實施形態之鋁酸鹽螢光體,例如,與 低熔點玻璃粉末、微粒子金屬氧化物、或微粒子金屬硼酸鹽 或磷酸鹽等之黏著劑同時於水或醋酸丁酯、異丙醇等有機溶 劑之溶劑中懸浮,調製螢光體塗佈膠漿,將其塗佈至玻璃管 •内壁並且乾燥形成螢光膜後,將其烘烤後進行汞封入、減 -壓、密封、裝配電極即可。當然此時顯然可混合其他顏色之 螢光體作成白色供使用。 ® 本發明之第1實施態樣之鋁酸鹽螢光體暨使用其的螢光 燈,較佳使用作為一般照明用,更且,色再現範圍相比於先 前的冷陰極螢光燈(通常,使用BAM螢光體作為藍色、[Αρ 螢光體作為綠色、γ〇χ(氧化釔)螢光體作為紅色),可再現 較廣之範圍。 將本發明之螢光體使用作為照明用之螢光燈之情形中通 常,混合藍與紅之螢光體,使其發出白色光供使用。此時所 ©使用之螢光體,可運用與先前之LAP螢光體組合使用者。 例如’作為藍色發光者,可使用Eu賦活的BAM或SCA勞 ·· 光體。使用作為照明用之燈時,以發光光譜之半值寬較廣的 物質為適於使用。因此,例如’若為bam,則以添加Mn 和Sr者為適於使用,若為SCA,則以適當變更Sr、Ba、ca、 4配合量者為適於使用。又’紅色以Y2〇3 : Eu和γ(ρ, V〇)4:Eu等為適於使用,且於其中視需要(例如食用肉用照 明)’添加3.5MgO · 0.5MgF2 · Ge〇2 : Μη等作為深紅色螢 098124986 23 201011092 光體亦佳。當然本發明之螢光體亦可使用作為不會激發汞的 稀有氣體燈,此時,於作成白色時之適當組合,可適當選擇 BAM、與Y(P,V0)4 : Eu等,在真空紫外線下可充分取得 發光的物質。 另一方面,將本發明之螢光體,使用於CCFL·般之顯示影 像目的所用之燈時,比先前的LAp螢光體,可表現更深的 、、’彔色,因此作成廣色再現範圍用之燈為佳。如此,例如森林 等,相比於先前之LAP之稍微黃綠色,可以更加真實的綠 色型式表現。此時組合的螢光體為以CCFL用型式,與、 Μη共同賦活BAM組合使用的螢光體為適於使用,例如, 作為藍色螢光體,可適當使用丫值為小於〇 〇7()的Bam螢 光體’或者,y值為小於0 04〇的SCa等,作為紅色螢光體, 可適當使用Y203:Eu和Y(P,VO)4:Eu等,特佳為γν〇4:Ce 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Mg 0.12 0.18 0.24 0.29 0.35 0.46 0.59 0.71 0.82 0.94 1.06 1.18 Μη 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 A1 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.9 y 0.66 0.78 0.90 1.00 1.12 1.34 1.60 1.84 2.06 2.30 2.54 2.78 z 0.64 ^54 0.47 0.42 0.37 0.31 0.26 0.23 0.20 0.18 0.17 0.15 Further, the aluminate phosphor of the first embodiment of the present invention is compared with the prior art. The stoichiometric composition material not only improves the above-described energy transfer from Ce to Μη but also improves the absorption of mercury luminescence. Figure 2 shows this situation. The stoichiometric composition of the previous phosphor, in the range of VUV (Vacuum Ultra_Violet light, vacuum ultraviolet light) (172 nm), the luminescence of the mercury ray (mainly 254 nm) also shows approximately the same degree of excitation spectral intensity 'relatively, by stoichiometry In the phosphor of the present invention in which the composition (y = 2. 〇) is shifted in the direction of decreasing y, it is known that the excitation by the mercury ray is nearly twice as high as the excitation of ν υ ν. The method for producing an aluminate phosphor according to the first embodiment of the present invention is not particularly limited as long as it is a method generally used for producing a phosphor. It is preferable that the Ce compound, the Mg compound, the]Vin compound, and the A1 compound are stoichiometrically made to have a composition ratio of Ce, Mg, Μ, and A1 to that of the phosphoric acid of the first embodiment. The composition ratio is - mixed, and satin can be burned. More preferably, a Ce compound which can be converted into an oxide of cerium (Ce) by heating, and a Mg compound which can be converted into an oxide of magnesium (Mg) by heating can be converted into an oxide of manganese (Mn) by heating. The Μ 化合物 compound and the ruthenium 1 compound which can be converted into an oxide of 绍 1 are mixed and calcined. The phosphor raw material which is preferably used in the present invention may be exemplified by carbonic acid, oxidized 098124986 21 201011092 strontium, magnesium carbonate, magnesium oxide, manganese carbonate, manganese oxide, aluminum oxide, etc., and others which can be easily converted into oxides by strong heat. salt. The specific production method of the aluminate phosphor of the first embodiment of the present invention is carried out, for example, in the following procedure. (1) The above-mentioned raw materials are weighed in a specified amount, and thoroughly mixed by a mixing means using a ball mill or a V-type mixer. (2) Filling the obtained mixture into a heat container such as alumina crucible, which is also included in a high-temperature furnace, and is heated in a reducing atmosphere to a temperature of 1400 to 160 CTC, and the time required for cooling is simmered for 1 to 26 hours. . (3) The calcined material to be applied is subjected to various treatments such as dispersing, washing, and drying in the same manner as in the subsequent processing of the conventional phosphor. In the present invention, in the mixture of the phosphor raw material compound to be calcined, in the same manner as in the case of obtaining a known aluminate phosphor, in order to promote the reaction, a fluoride such as aluminum fluoride or boric acid and oxidation may be added. Boron or the like acts as a flux. The particle size of the woven salt phosphor of the first embodiment of the present invention is not particularly limited, but in the case of being applied to the cold smolder light &lt; camping film of the present invention, the degree of operation and In terms of color uniformity, the fsss particle size may be arbitrarily selected from the range of about 1 to 20, preferably 2 to 8, more preferably 2 to 7. The fluorescent lamp of the present invention is used in addition to the treatment. The salt-reducing phosphor of the invention is produced as a fluorescent film in the same manner as the conventional fluorescent lamp. The same is true for cold cathode fluorescent lamps (including external electrode type). 098124986 22 201011092 In other words, the aluminate phosphor of the first embodiment of the present invention is simultaneously added to water or a binder such as a low-melting glass powder, a fine particle metal oxide, or a fine metal borate or phosphate. The solvent is coated in a solvent such as butyl acetate or isopropyl alcohol to prepare a phosphor coating paste, which is applied to the inner wall of the glass tube and dried to form a fluorescent film, which is baked and then sealed with mercury. Reduce-pressure, seal, and assemble the electrode. Of course, it is obvious that the phosphor of other colors can be mixed with white for use. The aluminate phosphor of the first embodiment of the present invention and the fluorescent lamp using the same are preferably used for general illumination, and the color reproduction range is compared with the prior cold cathode fluorescent lamp (usually A BAM phosphor is used as the blue color, [Αρ phosphor is used as the green, and γ〇χ (yttria) phosphor is used as the red color), and a wide range can be reproduced. In the case where the phosphor of the present invention is used as a fluorescent lamp for illumination, a blue and red phosphor is mixed to emit white light for use. At this time, the phosphor used can be used in combination with the previous LAP phosphor. For example, as a blue illuminator, Eu-activated BAM or SCA labor light body can be used. When a lamp for illumination is used, a substance having a wide half-value width of the luminescence spectrum is suitable for use. Therefore, for example, if it is bam, it is suitable to use Mn and Sr, and if it is SCA, it is suitable to use suitably to change the amount of Sr, Ba, ca, and 4. Also 'red is Y2〇3: Eu and γ(ρ, V〇)4:Eu, etc. are suitable for use, and in which as needed (for example, for meat lighting) 'add 3.5MgO · 0.5MgF2 · Ge〇2 : Μη, etc. as the deep red firefly 098124986 23 201011092 light body is also good. Of course, the phosphor of the present invention can also be used as a rare gas lamp that does not excite mercury. In this case, BAM, Y(P, V0)4: Eu, etc. can be appropriately selected in a vacuum when appropriately combined in white. A substance that emits light sufficiently under ultraviolet light. On the other hand, when the phosphor of the present invention is used in a CCFL-like lamp for displaying an image, it can exhibit a deeper color than the previous LAp phosphor, and thus a wide-color reproduction range is produced. The lamp is better. Thus, for example, a forest or the like, which is slightly yellowish green compared to the previous LAP, can be expressed in a more realistic green form. In this case, the phosphors to be combined are in the form of CCFL, and the phosphors used in combination with BNA in combination with Μη are suitable for use. For example, as a blue phosphor, a 丫 value of less than 〇〇7 can be suitably used. Bam phosphor 'or s value is less than 0 04 〇 SCa, etc., as a red phosphor, Y203:Eu and Y(P,VO)4:Eu, etc., particularly preferably γν〇4 :

Eu。本發明之螢光體可在液晶顯示裝置用之背光元件中組 合使用’又,使用本發明螢光體的液晶顯示裝置,可取得寬 廣的色再現範圍。此時,由加寬色再現範圍的觀點而言與 本發明第1實施態樣之鋁酸鹽螢光體組合使用的適當營光 體,若為藍色則係為Eu賦活之BAM螢光體或y值為〇 〇4 以下的SCA螢光體,紅色為γοχ或VY〇4螢光體為佳。 又,即使作為LED用螢光體,亦可藉由適當選擇其激發 波長而供使用。 (本發明之第2實施態樣) 098124986 24 201011092 適於本發明之第2實施態樣的叙酸鹽鸯光體,係以一般式 (CexTbl-x)2〇3 · ^(啦-推2)〇 · ηΑ12〇3(但,式中,x、y、z 及η分別為滿足〇&lt;χ&lt;1、〇 之條 件的數)所示之鋁酸鹽螢光體。 另外本發明之弟2實施形態的紹酸鹽榮光體,在不會大 為偏離本發明效果的範圍下,亦可在其組成中含有其他元 素,若列舉具體例,則關於Mg與Mn,與上述第1實施態 ®樣之鋁酸鹽螢光體同樣地,在不會大為阻礙本發明第2實施 形態之鋁酸鹽螢光體效果的範圍下,對馗§和Mn#離子半 徑接近之例如Sr和Ba般的二價金屬予以少量取代亦無妨, 又’ Ce為同樣地以γ、Gd、La等少量取代亦無妨,且一部 分的A1亦可經Ga及/或Sc所取代。 適於本發明之第2實施態樣的鋁酸鹽螢光體,相比於先前 之CAT : Μη螢光體之化學計量組成《(Ce+Tb)的總莫耳: ❹(Mg + Mn)的總莫耳之比為約1 : 1的組成》,具有根據綠色 發光之免度和所欲之色度專’使(Ce + Tb的總莫耳):(Mg + Μη的總莫耳)錯開成2 : 0.6〜1.8之組成上的特徵。 另外,所謂先前之CAT : Μη螢光體的化學計量组成,係 於一般式中X為任意之數,y值為2,ζ值為〇&lt;ζ$ι,η值 為1卜 一般式中之x(Ce取代螢光體中之Tb的比率),若於〇&lt;χ&lt;1 之範圍内適當選擇即可,於取得更高亮度之螢光體上,以 098124986 25 201011092 0.5SxS0.9 為佳。 一般式中之y(螢光體中Ce203與Tb203之總和相對於(Mg + Μη)的比率)若未滿0.6,則難取得充分的發光。另一方面, 若超過1.8,則變成接近先前的化學計量組成,無法達成發 光亮度的提高。y值的較佳範圍為〇.8Sx、xS1.6,更佳為 1.1 Sy、1.6。 一般式中之z(螢光體中之Mg + Mn中的Μη比率)於 O^zSl之範圍内,以取得所欲之色度和亮度般適當選擇即 可,但由色度點和亮度方面而言,以OSzS0.2為佳。最佳 為z=0。z=0,即不含有Μη之螢光體時,色度點的選擇範 圍變窄,例如藉由與本發明之第1實施態樣之螢光體適當混 合,亦可調整色度點。 又,一般式中之η(螢光體中之Ce203與Tb203之總和相對 於Al2〇3的比率)為7以上。如上述,本發明之螢光體中, 可增加Al2〇3的份量。另一方面,此η值若未滿7,則因亮 度特性降低故為不佳。 若η值為11以上,則結晶形狀帶圓狀,因為可輕易提高 塗佈時的螢光膜膜質,故為佳,另一方面,若超過20,則 亮度開始降低,故發光亮度方面之η值為ll$nS20為更佳。 本發明之第2實施態樣之鋁酸鹽螢光體亦同第1實施態樣 之螢光體,若使用通常製作螢光體時所用的方法即可,並無 特別限定。較佳,若將Ce化合物、Tb化合物、Mg化合物、 098124986 26 201011092 Μη化合物、及A1化合物,以化學計量上,使Ce、Tb、 Μη、及A1之組成比與第2實施形態之鋁酸鹽螢光體的組成 比為一致般混合,並且煅燒即可。更佳為,將(i)氧化鈽、或 碳酸鈽、硝酸鈽等可藉由加熱變成鈽(Ce)之氧化合物的Ce 化合物、(ii)氧化铽、或碳酸铽、硝酸铽、氯化軾等可藉由 -加熱變成铽(Tb)之氧化物的Tb化合物、(iii)氧化鎂、或碳酸 鎂等可藉由加熱變成鎂(Mg)之氧化物的Mg化合物、及(^) ❹氧化鋁、或硫酸紹等可藉由加熱變成鋁(A1)之氧化物的义 化合物’以化學計量組成式為該一般式: (CexTbi-xhOs · yiMgi.zMriz^O · ηΑ12〇3(但,式中,χ、 y、ζ 及η分別為滿足0$χ&lt;1、O.gym 〇&lt;d、〜之條 件的數)之比例予以混合,锻燒即可。 本發明之第2實施形態之鋁酸鹽螢光體的具體製造方 法,例如,以如下之手續進行。 ❹⑴將如上述之原料秤量指定量’並且藉由使用球磨、v 型混合機等之混合手段充分混合。 - (2)將所得之混合物填充至氧化鋁坩堝等之耐熱容器, :於還原環境氣體令以1400〜160〇ec,亦包含於高溫爐中爐升 降溫所需之時間,烺燒1 〇〜26小時。 (3)對所得之崎物,施輯常之螢細製造時所應用 之後處理步制樣之分散、洗淨、乾燥之各種處理。 本發明中,在供於锻燒之螢光體原料化合物的混合物中, 098124986 27 201011092 與取得公知之鋁酸鹽螢光體之情況同樣地,為了促進反應, 亦可添加氟化鋁等之氟化物或硼酸和氧化硼等作為助熔劑。 關於本發明之第2實施態樣之鋁酸鹽螢光體的粒徑,並無 特別限定’但在應用於本發明之螢光燈和冷陰極螢光燈之螢 光膜等之情形中,由操作度以及顏色均勻性方面而言以 FSSS粒度為1〜20左右之範圍中任意選擇即可,較佳為2〜8。 本發明之螢光燈和冷陰極螢光燈,除了使用如此處理所得 之本發明的鋁酸鹽螢光體作為螢光膜以外,同先前之冷陰極 螢光燈(當然亦包含外部電極型之所謂的EEFL)處理製造。 即,將本發明之第2實施形態之鋁酸鹽螢光體,視需要與 其他顏色之螢光體同時,與例如,低熔點玻璃粉末、微粒子 金屬氧化物、或微粒子金屬硼酸鹽或磷酸鹽等之黏著劑同時 於水或醋酸丁酯、異丙醇等有機溶劑之溶劑中懸浮,調製螢 光體塗佈膠漿,將其塗佈至玻璃管内壁並且乾燥形成螢^臈 後,將其烘烤後進行汞封入、減壓、密封、裝配電極即可。 本發明之第2實施態樣之鋁酸鹽螢光體暨使用其的螢光 燈’較佳使用作為-般照明用,更且,色再現範_比於先 前的冷陰極螢光燈(通常,使用BAM螢光體作為藍色、LAp 螢光體作為綠色、YOX(氧化釔)螢光體作為紅色),可再現 較廣之範圍。因此,可使用於装入液晶顯示裝置用之背光元 件’又’藉由使用本發明之螢光體作為液晶顯示裝置,則可 取得寬廣的色再現範圍。 098124986 28 201011092 又,即使作為LED用螢光體,亦可藉由適當選擇其激發 波長而供使用。 (本發明之第3實施態樣) 本發明之第3實施態樣係在本發明之第2實施態樣所含組 成中,基於具有1/10殘光時間上具有極優良特性之組成, 由於其係為通常之化學計量組成之螢光體所無法取得之效 果,故另外以第3實施態樣型式詳述。 ❹ 本發明之第3態樣之鋁酸鹽螢光體,至少由ce、Tb、Mg、 A1及Ο所構成的螢光體,以1/1〇殘光時間為6 4ms以下為 其特徵的鋁酸鹽螢光體。 另外,本發明說明書所用之「所構成」之用語,不被限於 第3實施癌樣部分’在不會大為阻礙本發明效果之範圍下, 亦包含含有其他物質的物質。 i/io殘光時間若長於6.4ms ’則與先前品無大差別,不適 ❹於作為要求短殘光時間的LCD背光用,較佳為6〇ms以下、 更佳為5.7ms以下。 本發明之第3實施形癌之铭酸鹽螢光體的特徵,係至少由 Ce、Tb、Mg、A1&amp;0所構成的螢光體,在於作出1/1〇殘 光時間為6.4ms以下的物質’其組成並無特別限定。較佳為 般式(CexTbi-xLC^ · yCMgiJVlndO · ηΑ12〇3(但,式中,χ、 y z 及 η 分別為滿足 〇 68 $ 0.95、0.6Sy$ 1 g、z=〇、7gn 之條件的數)所示之螢光體。 098124986 29 201011092 另外/1述—般式所*之螢光體,在不會大為偏離本發明 效果的範圍下’亦可在其組射含有其他元素,若列舉具體 例’則關於%與Mn’與上述h態樣同樣地,在不會大 為阻礙本發明效果的範圍下,對%和Μη以離子半徑接近 之例如Sf和^般的二價金屬予以少量取代亦無妨,又Ce 為同樣地以Y、Gd、La等少量取代亦無妨且一部分的Μ 亦可經Ga及/或Sc所取代。 上述一般式所示之鋁酸鹽螢光體,相比於先前之CAT螢❹ 光體之較佳組成Ce/Tb=2 〇或化學計量組成卿(Ce +Eu. The phosphor of the present invention can be used in combination with a backlight element for a liquid crystal display device. Further, a liquid crystal display device using the phosphor of the present invention can achieve a wide color reproduction range. In this case, a suitable camping body used in combination with the aluminate phosphor of the first embodiment of the present invention from the viewpoint of widening the color reproduction range is a BAM phosphor which is Eu-activated in the case of blue. Or an SCA phosphor having a y value of 〇〇4 or less, and a red γοχ or VY〇4 phosphor is preferred. Further, even if it is used as a phosphor for LED, it can be used by appropriately selecting the excitation wavelength. (Second embodiment of the present invention) 098124986 24 201011092 A sulphate phosphor suitable for the second embodiment of the present invention is a general formula (CexTbl-x) 2 〇 3 · ^ (la-push 2 〇· ηΑ12〇3 (however, in the formula, x, y, z, and η are each an aluminate phosphor represented by the number of 〇&lt;χ&lt;1, 〇). Further, the sulphate glaze of the embodiment of the present invention 2 may contain other elements in its composition without greatly deviating from the effects of the present invention, and specific examples include Mg and Mn, and In the same manner as the aluminate phosphor of the first embodiment, the ionic radius of the 馗§ and Mn# is close to the extent that the effect of the aluminate phosphor of the second embodiment of the present invention is not greatly impaired. For example, a divalent metal such as Sr and Ba may be substituted in a small amount, and 'C' may be substituted by a small amount such as γ, Gd or La, and a part of A1 may be substituted by Ga and/or Sc. The aluminate phosphor suitable for the second embodiment of the present invention has a stoichiometric composition of (Ce+Tb) compared to the previous CAT: Μn phosphor: ❹(Mg + Mn) The total molar ratio is about 1:1 composition, with the basis of the green illuminance and the desired color chromaticity (to the total molar of Ce + Tb): (Mg + Μ total molar) Staggered into 2: 0.6~1.8 composition of the features. In addition, the stoichiometric composition of the former CAT: Μη phosphor is in the general formula where X is an arbitrary number, the y value is 2, and the ζ value is 〇&lt;ζ$ι, η is 1 in the general formula. x (Ce replaces the ratio of Tb in the phosphor), if it is appropriately selected within the range of 〇&lt;χ&lt;1, on the phosphor for obtaining higher brightness, 098124986 25 201011092 0.5SxS0.9 It is better. In the general formula y (the ratio of the sum of Ce203 and Tb203 in the phosphor to (Mg + Μη)), if it is less than 0.6, it is difficult to obtain sufficient luminescence. On the other hand, if it exceeds 1.8, it becomes close to the previous stoichiometric composition, and the improvement of the brightness of the luminescence cannot be achieved. The preferred range of y values is 〇.8Sx, xS1.6, more preferably 1.1 Sy, 1.6. In the general formula, z (the ratio of Μ in Mg + Mn in the phosphor) is within the range of O^zSl, and can be appropriately selected to obtain desired chromaticity and brightness, but by chromaticity point and brightness In terms of OSzS0.2, it is better. The best is z=0. When z = 0, that is, a phosphor having no Μη, the selection range of the chromaticity point is narrowed, and the chromaticity point can be adjusted by, for example, appropriately mixing with the phosphor of the first embodiment of the present invention. Further, in the general formula, η (the ratio of the total of Ce203 to Tb203 in the phosphor to Al2〇3) is 7 or more. As described above, in the phosphor of the present invention, the amount of Al2〇3 can be increased. On the other hand, if the value of η is less than 7, the brightness characteristic is deteriorated, which is not preferable. When the η value is 11 or more, the crystal shape is rounded, and since the film quality at the time of coating can be easily improved, it is preferable, and if it exceeds 20, the brightness starts to decrease, so that the luminescence brightness is η. A value of ll$nS20 is preferred. The aluminate phosphor of the second embodiment of the present invention is not particularly limited as long as it is a method for producing a phosphor in the same manner as the phosphor of the first embodiment. Preferably, the Ce compound, the Tb compound, the Mg compound, the 098124986 26 201011092 Μη compound, and the A1 compound are stoichiometrically made to have a composition ratio of Ce, Tb, Μη, and A1 and the aluminate of the second embodiment. The composition ratio of the phosphor is uniformly mixed, and calcination is sufficient. More preferably, (i) cerium oxide, or cerium carbonate, cerium nitrate or the like, a Ce compound which can be converted into an oxygen compound of cerium (Ce) by heating, (ii) cerium oxide, or cerium carbonate, cerium nitrate, cerium chloride A Mg compound which can be converted into an oxide of magnesium (Mg) by heating, such as a Tb compound which is heated to become an oxide of cerium (Tb), or a magnesium compound such as magnesium oxide or magnesium carbonate which is heated to become an oxide of magnesium (Mg) A general formula of a stoichiometric composition of aluminum, or sulphate or the like which can be converted into an oxide of aluminum (A1) by heating is: (CexTbi-xhOs yiMgi.zMriz^O · ηΑ12〇3 (however, In the middle, χ, y, ζ and η are respectively mixed in a ratio satisfying the conditions of 0$χ&lt;1, O.gym 〇&lt;d, 〜, and calcination. The second embodiment of the present invention The specific production method of the aluminate phosphor is carried out, for example, in the following procedure: (1) The raw materials are weighed as specified in the above-mentioned materials and thoroughly mixed by a mixing means such as a ball mill or a v-type mixer. Filling the obtained mixture into a heat-resistant container such as alumina crucible, and reducing the ambient gas to 1400 to 160 〇ec, The time required for the furnace to be raised and lowered in a high-temperature furnace is simmered for 1 〇 to 26 hours. (3) For the obtained saki, the application of the conventional fluorination is applied to the dispersion and washing of the sample. In the present invention, in the mixture of the phosphor raw material compound for calcination, 098124986 27 201011092 may be added in order to promote the reaction, similarly to the case of obtaining a known aluminate phosphor. Fluoride such as aluminum fluoride, boric acid, boron oxide, or the like is used as a flux. The particle size of the aluminate phosphor according to the second embodiment of the present invention is not particularly limited, but is applied to the present invention. In the case of a fluorescent film or a fluorescent film of a cold cathode fluorescent lamp, the FSSS particle size may be arbitrarily selected from the range of about 1 to 20 in terms of the degree of operation and color uniformity, and is preferably 2 to 8. The fluorescent lamp and the cold cathode fluorescent lamp of the present invention are the same as the prior art cold cathode fluorescent lamp except that the aluminate phosphor of the present invention thus obtained is used as a fluorescent film (of course, an external electrode type is also included. The so-called EEFL) processing manufacturing. The aluminate phosphor according to the second embodiment of the present invention may be, for example, a low-melting glass powder, a fine particle metal oxide, or a fine particle metal borate or phosphate, together with a phosphor of another color. The adhesive is simultaneously suspended in water or a solvent such as butyl acetate or isopropyl alcohol to prepare a phosphor coating paste, which is applied to the inner wall of the glass tube and dried to form a firefly, which is then baked. After that, the mercury is sealed, decompressed, sealed, and the electrode is assembled. The aluminate phosphor of the second embodiment of the present invention and the fluorescent lamp using the same are preferably used for general illumination, and further, Color reproduction mode is better than previous cold cathode fluorescent lamps (usually, using BAM phosphors as blue, LAp phosphors as green, and YOX (yttria) phosphors as red), which can reproduce a wide range . Therefore, it is possible to obtain a wide color reproduction range by using the phosphor of the present invention as a liquid crystal display device by using the backlight member for mounting a liquid crystal display device. 098124986 28 201011092 Further, even if it is used as a phosphor for LED, it can be used by appropriately selecting the excitation wavelength. (Third embodiment of the present invention) The third embodiment of the present invention is based on the composition having the excellent characteristics of 1/10 afterglow, in the composition of the second embodiment of the present invention. This is an effect that cannot be obtained by a phosphor having a normal stoichiometric composition, and therefore, it will be described in detail in the third embodiment.铝 The aluminate phosphor of the third aspect of the present invention is characterized in that the phosphor composed of at least ce, Tb, Mg, A1 and ytterbium is characterized by a 1/1 〇 afterglow time of 6 4 ms or less. Aluminate phosphor. Further, the term "constituted" as used in the specification of the present invention is not limited to the third embodiment of the cancer-like portion, and includes substances containing other substances insofar as it does not greatly impair the effects of the present invention. If the i/io afterglow time is longer than 6.4 ms', it is not significantly different from the previous product, and is not suitable for LCD backlights requiring a short afterglow time, and is preferably 6 〇ms or less, more preferably 5.7 ms or less. The third embodiment of the present invention is characterized in that the phosphor of the cancer is a phosphor composed of at least Ce, Tb, Mg, and A1 &amp; 0, and the residual light time of 1/1 为 is 6.4 ms or less. The substance 'its composition is not particularly limited. Preferably, it is a general formula (CexTbi-xLC^ · yCMgiJVlndO · ηΑ12〇3 (however, χ, yz and η are the numbers satisfying the conditions of 〇68 $ 0.95, 0.6Sy$ 1 g, z=〇, 7gn, respectively). The phosphor shown in the above. 098124986 29 201011092 In addition, the phosphor of the general formula * can not be greatly deviated from the scope of the present invention, and can also contain other elements in its group, if enumerated In the specific example, as for the % and Mn', as in the above-described h-form, a small amount of divalent metal such as Sf and ^, which is close to the ionic radius, is close to % and Μ in a range which does not greatly impair the effect of the present invention. It is also possible to substitute, and Ce is similarly substituted with a small amount of Y, Gd, La, etc., and some of the ruthenium may be substituted by Ga and/or Sc. The aluminate phosphor shown in the above general formula is compared. The preferred composition of the previous CAT fluorescene body is Ce/Tb=2 〇 or stoichiometric composition (Ce +

Tb) 1.0纟’具有根據綠色發光之亮度和所欲之殘光時間 等,使Ce相對於Tb之比率(上述式中,χ/(ι_χ)比)或(ce +Tb) 1.0纟' has a ratio of Ce to Tb according to the brightness of the green light and the desired afterglow time (in the above formula, χ/(ι_χ) ratio) or (ce +

Tb)相對於Mg之比率(上述式中,y值)錯開之特徵。 如此’本發明之第3實施形態之鋁酸鹽螢光體,使構成螢 光體之各金屬元素的含有比率,由先前之CAT螢光體合適 之組成和化學計量組成中錯開,此錯開(不定比性)造成螢光 〇 體結晶構造的變化和光學性質(殘光特性)的變化,並且推測 可取得具有各種優良特性的螢光體。另外,所謂先前之CAT 螢光體的化學計量組成’係指一般式中之X為任意數,y值 為2’ z值為0, η值為11。 一般式中之1-χ(取代螢光體中之Ce的Tb比率)若變小’ 則螢光體亮度有降低之傾向,但藉由短殘光時間化,使得亮 度的開始時間縮短,因此對明亮度為有利作用。但是,若 098124986 30 201011092 l-x為未滿0.05,即,x為超過〇·95,則Tb發光(綠色發光) 為過度降低,連帶使螢光體全體的明亮度降低。 另一方面,若1-x值為0.32以上,即xO.68,則變成接 近先前的較佳組成,無法達成殘光時間的縮短化。因此,較 佳之X值範圍為0.68SxS0.95,X值的更佳範圍為 0.7^xS0.85,若考慮其中與亮度之平衡,則更佳為 0.7$χ$0·75,又,若更加重視殘光時間特性,則為 ❹ 0.75$χ$0.85。 螢光體中之Ce相對於Tb量減少(即,一般式中X值為〇.68 以上),可實現殘光時間的縮短化,並且藉由開始快速的效 果’使得χ=0·95左右即可維持大約同等於先前物質的明亮 度。又,由於較昂貴2Tb於母體成分中所佔的比例變低, 故亦可實現製造費用的減低化。The ratio of Tb) to Mg (the y value in the above formula) is staggered. In the aluminate phosphor of the third embodiment of the present invention, the content ratio of each of the metal elements constituting the phosphor is shifted from the composition and the stoichiometric composition of the conventional CAT phosphor, and this is staggered ( The indefinite ratio causes a change in the crystal structure of the fluorescent body and a change in the optical property (afterglow characteristic), and it is presumed that a phosphor having various excellent characteristics can be obtained. Further, the stoichiometric composition of the prior CAT phosphor means that X in the general formula is an arbitrary number, the y value is 2' z value is 0, and the η value is 11. In the general formula, 1-χ (instead of the Tb ratio of Ce in the phosphor) becomes smaller, the phosphor brightness tends to decrease, but by shortening the residual light, the start time of the luminance is shortened. It is beneficial to brightness. However, if 098124986 30 201011092 l-x is less than 0.05, that is, when x is more than 〇95, the Tb light emission (green light emission) is excessively lowered, and the brightness of the entire phosphor is reduced. On the other hand, if the 1-x value is 0.32 or more, i.e., xO.68, the composition is close to the previous one, and the reduction of the afterglow time cannot be achieved. Therefore, the preferred X value range is 0.68SxS0.95, and the better value of the X value is 0.7^xS0.85. If the balance between the brightness and the brightness is considered, it is more preferably 0.7$χ$0·75. The afterglow time characteristic is ❹ 0.75$χ$0.85. In the phosphor, the amount of Ce is reduced relative to the amount of Tb (that is, the X value in the general formula is 〇.68 or more), and the afterglow time can be shortened, and by starting the fast effect, χ=0·95 or so It can maintain approximately the same brightness as the previous material. Further, since the proportion of the relatively expensive 2Tb in the matrix component is low, the manufacturing cost can be reduced.

一般式中的y值(螢光體中。2〇3與几2〇3之總和相對於 MgO的比率)若未滿〇6,則殘光時間變得更短,難以取得 充分的發光n面’若超過18則同樣易降低亮度。υ 值之較佳範圍為0.69a 8,更佳為〇虹…6。 隨著螢光體中之Ce相對於Tb量減少,(Ce + Tb)相對於 Mg量減少,可大幅縮短殘光時間。 一般式中的η值(螢光體中%〇3與化办之總和相辦於In the general formula, the y value (in the phosphor, the ratio of the sum of 2〇3 and several 2〇3 to MgO) is less than ,6, the afterglow time becomes shorter, and it is difficult to obtain sufficient light-emitting n-plane. 'If it exceeds 18, it will also reduce the brightness. The preferred range of υ is 0.69a 8, more preferably 〇虹...6. As the amount of Ce relative to Tb in the phosphor decreases, (Ce + Tb) decreases with respect to the amount of Mg, and the afterglow time can be greatly shortened. The value of η in the general formula (% of the phosphor in the phosphor and the sum of the chemical

Al2〇3的比率)為7以上。若此n值未滿7,則亮度特性降低, 故為不佳。 098124986 31 201011092 更且,若η值為u以上,則結晶形狀帶圓狀,因為可輕 易提高塗佈時之螢光膜膜質,故為佳,另一方面,若超過 3〇 ’則亮度開始降低’故發光亮度方面《η值的更佳下限值 為11以上,較佳之上限值為3〇以下,更佳為2〇以下。 當然,此一般式所示之螢光體的較佳殘光時間為64ms 以下。 若1/10殘光時間長於6.4ms,則不適切作為要求短殘光的 LCD背光用,較佳為6 〇ms以下’更佳為”咖以下。 本發明之第3實施態樣之紹酸鹽螢光體亦同第β施態樣 之螢光體,若使用通常製作榮光體時所用的方法即可,並無 特別限定。較佳,若將Ce化合物、Tb化合物、%化合物、 及Μ化合物,以化學計量上,使以、Tb、岣、及ai之組 成比與第3實施形態之純鹽螢光體的組成比為一致般混 合’並且煅燒即可。更佳為,將(i)氧化錦、或碳酸鋅、硝酸 鈽等可藉由加熱變成鈽(Ce)之氧化物的Ce化合物、(ii)氧化 轼―或反、硝酸試、氯化辑等可藉由加熱變成試(刊) 之氧化物的Tb化合物、㈣氧化鎂、或碳酸鎂等可藉由加 熱變成鎮(Mg)之氧化物的Mg化合物、及(iv)氧化紹、或硫 酸銘等可#由加熱變成雖1)之氧化物❺A1化合物,以化 學計量組成式為該一般式: ^χΤνχ)2〇3 · y(Mgi zMnz)〇 ·福2〇3(但,式中,X、^、z 及 11 分別為滿足 0 68$χ^〇.95、0.6$ym z=〇、7^η 098124986 32 201011092 之條件的數)之比例予以混合、煅燒即可。 本發明之第3實施態樣之鋁酸鹽螢光體的製造方法,係與 本發明之第1、及第2實施態樣之鋁酸鹽螢光體的製造方法 同樣,例如,以如下之手續進行。 -⑴將如上述之原料#量指定量’鼓藉由使用球磨、v - 型混合機等之混合手段充分混合。 (2) 將所得之混合物填充至氧化鋁坩堝等之耐熱容器, ❹於還原環境氣體中以14〇〇〜w〇(Tc ’亦包含於高溫爐中爐升 降溫所需之時間,煅燒10〜26小時。 (3) 對所得之煅燒物,施以通常之螢光體製造時所應用之 後處理步驟同樣之分散、洗淨、乾燥之各種處理。 本發明中,在供於烺燒之螢光體原料化合物的混合物中, 與取得公知之鋁酸鹽螢光體之情況同樣地,為了促進反應, 亦可添加氣化銘等之氟化物或硼酸和氧化硼等作為助炼劑。 ⑩ 關於本發明之第3實施態樣之鋁酸鹽螢光體的粒徑,並無 特別限疋’但在應用於本發明之螢光燈和冷陰極螢光燈之螢 光膜4之情形中,由操作度以及顏色均勻性方面而言,以 :FSSS粒度為1〜20左右之範圍中任意選擇即可,較佳為2〜8。 本發明之螢光燈或冷陰極螢光燈,除了使用如此處理所得 之本發明的鋁酸鹽螢光體作為螢光膜以外,同先前之螢光 燈、冷陰極螢光燈處理製造。 即,將本發明之鋁酸鹽螢光體,視需要與其他顏色之螢光 098124986 33 201011092 體同時,與例如,低熔點玻璃粉末、微粒子金屬氧化物、或 微粒子金屬硼酸鹽或磷酸鹽等之黏著劑同時於水或醋酸丁 酯、異丙醇等有機溶劑之溶劑中懸浮’調製螢光體塗佈膠 漿。將所得之膠漿,塗佈至玻璃管内壁’以溫風等乾燥形成 螢光膜後,將其烘烤後進行汞封入、減壓、密封、裝配電極 即可。 本發明之冷陰極螢光燈中,使用目前說明之本發明之第3 實施形態的紹酸鹽螢光體,作為綠色榮光體,並將其中混合_ 1/10殘光時間為LOms以下之藍色螢光體、和·殘光時 間為3.0ms以下之紅色螢光體而成的混合榮光體,使用作為 螢光膜為佳。 作為1/10殘光時間為10ms以下的藍色榮光體可列舉The ratio of Al2〇3 is 7 or more. If the value of n is less than 7, the luminance characteristic is lowered, which is not preferable. 098124986 31 201011092 Moreover, when the η value is u or more, the crystal shape is rounded, and since the film quality of the fluorescent film at the time of coating can be easily improved, the brightness is preferably lowered if it exceeds 3 〇'. 'Therefore, the lower limit value of the η value is 11 or more, and the upper limit is preferably 3 Å or less, more preferably 2 Å or less. Of course, the preferred afterglow time of the phosphor shown in this general formula is 64 ms or less. If the 1/10 afterglow time is longer than 6.4 ms, it is not suitable for LCD backlights requiring short afterglow, and is preferably 6 〇ms or less, more preferably "below". The third embodiment of the present invention is acid. The salt phosphor is also the same as the β-stacted phosphor, and the method used in the usual production of the glare is not particularly limited. Preferably, the Ce compound, the Tb compound, the % compound, and the ruthenium are used. The compound is stoichiometrically mixed with the composition ratio of Tb, 岣, and ai in accordance with the composition ratio of the pure salt phosphor of the third embodiment, and calcined. More preferably, (i a chromic oxide, or a zinc carbonate, a cerium nitrate or the like, a Ce compound which can be converted into an oxide of cerium (Ce), (ii) cerium oxide- or a reversed, a nitric acid test, a chlorination series or the like can be converted into a test by heating ( The Tb compound of the oxide, (IV) magnesium oxide, or magnesium carbonate, etc., which can be converted into an oxide of the town (Mg) by heating, and (iv) oxidized or sulphuric acid, etc. 1) The oxide ❺A1 compound, which has the stoichiometric composition formula: ^χΤνχ)2〇3 · y(Mgi zMn z)〇·福2〇3 (However, in the formula, X, ^, z, and 11 are the numbers satisfying the conditions of 0 68$χ^〇.95, 0.6$ym z=〇, 7^η 098124986 32 201011092, respectively. The method of producing the aluminate phosphor according to the third embodiment of the present invention is the aluminate phosphor of the first and second embodiments of the present invention. The manufacturing method is similarly carried out, for example, by the following procedure: - (1) The above-mentioned raw material #amount specified amount is sufficiently mixed by a mixing means such as a ball mill or a v-type mixer. (2) The obtained mixture is obtained. Filled into a heat-resistant container such as alumina crucible, and immersed in a reducing atmosphere for 14 〇〇 to w 〇 (Tc ' is also included in the time required for the furnace to rise and fall in a high-temperature furnace, and calcined for 10 to 26 hours. (3) The obtained calcined product is subjected to various treatments which are similarly dispersed, washed, and dried after the application of the usual phosphor, and in the present invention, in the mixture of the phosphor raw material compound for the calcination, In the same manner as in the case of obtaining a known aluminate phosphor, in order to promote the reaction, it is also possible to add Fluoride, such as gasification, or boric acid, boron oxide, etc. as a refining agent. 10 The particle size of the aluminate phosphor according to the third embodiment of the present invention is not particularly limited, but is applied to the present invention. In the case of the fluorescent film 4 of the fluorescent lamp of the invention and the cold cathode fluorescent lamp, it is preferable that the FSSS particle size is about 1 to 20 in terms of the degree of operation and color uniformity, and preferably. 2 to 8. The fluorescent lamp or the cold cathode fluorescent lamp of the present invention is the same as the fluorescent lamp and the cold cathode fluorescent lamp except the aluminate phosphor of the present invention obtained by the treatment. Lamp processing manufacturing. That is, the aluminate phosphor of the present invention is optionally combined with other color phosphors 098124986 33 201011092, for example, low melting glass powder, particulate metal oxide, or particulate metal borate or The adhesive such as phosphate is simultaneously suspended in a solvent such as water or an organic solvent such as butyl acetate or isopropyl alcohol to prepare a phosphor coating paste. The obtained dope is applied to the inner wall of the glass tube to form a fluorescent film by drying with warm air or the like, and then baked, followed by mercury sealing, decompression, sealing, and assembly of the electrode. In the cold cathode fluorescent lamp of the present invention, the phosphoric acid phosphor of the third embodiment of the present invention described above is used as a green glare, and the _1/10 afterglow time is blue or less. A mixed phosphor which is a color phosphor and a red phosphor having a residual light time of 3.0 ms or less is preferably used as a fluorescent film. A blue glory body having a 1/10 afterglow time of 10 ms or less can be cited.

Eu賦活錄· _灰石螢光體(以下,亦稱為SCA螢光體)、 BAM螢光體等,其中,可適當使用SCA榮光體。Eu Fu Shi Lu _ ash stone phosphor (hereinafter also referred to as SCA phosphor), BAM phosphor, etc., wherein the SCA glory body can be suitably used.

作為mo絲時間為3 Gms以下岐色螢光體可列 yox螢光體、Eu賦活叙酸記螢光體(以下,亦稱為γν〇 光體)等,其中,可適當使用γ〇χ螢光體。 本發明之第3實施態樣之減鹽螢総,具有1/10殘 時間短的特徵’因此藉由如上述適當選擇與其組合的多色 光體’即可作雜殘光時_㈣燈,❹其可取得短殘 的背光元件’或者藉由間歇亮燈’則可取得動晝 液晶顯示裝置。 — 098124986 34 201011092 於本發月之螢光體中,於其全部實施態樣之螢光體中,在 抑制亮度之經時惡化和提高壽命特料之目的下,亦可將無 機化合物和有機化合物所構成的被覆物質,塗敷處理螢光體 的表面。 作為塗敷處理的方法,並無特別限定,例如,將微粒子塗 敷物質’與被覆之螢光體混合,使其乾燥並附著的方法;使 塗敷物質於被覆螢光體表面析出,進行調整PH等之方法. ©利用電位吸黏至被覆螢光體表面之方法;或者另外混合作為 黏合劑物質並且被覆之方法等,可根據被覆榮光想與塗敷物 質的特性而任意選擇。 作為被覆物質之具體例,可列舉例如氧化鎮、氧化爛、氧 化記等各魏化H類金屬碳_及稀土類金屬碳酸鹽 等之碳酸鹽;氫氧化料之氫氧化物等。其中,以日本專利 ㈣別號記載之稀土類金屬的碳酸鹽予以被覆,使用作為 ©燈時’改善壽命之效果大,故為佳。 作為稀土類金屬之碳酸鹽,以碳酸纪、碳酸鑭等為佳,又, 其被覆量相對於螢光體為0·05〜5重量%為佳,且以〇 重量%為更佳。 [實施例] 以下,使用實施例更加詳細說明本發明,但本發明只要不 超出其要旨,不被解釋為限定於實施例。 (本發明之第1實施形態對應之實施例) 098124986 35 201011092 [y值及z值之檢討1 : Μη與A1為一定時之Mg份量的定比 變化] Μ與紹為一定量時使鎂量變化,檢討發光亮度之改良。 [實施例5] • Ce203 : 1.00 莫耳 • MgC03 : 0.47 莫耳 • Μη02 : 0.42 莫耳 • Α1203(α 類型):12.94 莫耳 • A1F3 : 0.02 莫彳 ® 將上述原料充分混合後,填充至坩堝,再將鉛塊放置於螢 光體原料上,加蓋並於含有水蒸氣之氮氣環境氣體中,以 1550°C包含升降溫時間歷24小時锻燒。 其次,對於煅燒粉,進行分散、洗淨、乾燥、過篩處理, 取得其組成式為以 Ce2〇3 · 〇.42MnO · 〇.47MgO · 12 9Al2〇3 《即 ’Ce2〇3 * 0_89(Mn0.47,Mg0.53)〇 · ΠΑΛΙΟ〗》所示之 Mn2+ © 賦活鋁酸鹽螢光體。另外,AIR為製造螢光體所一般使用 的助溶劑。 關於所得螢光體之發光色度及亮度,示於表2。另外,表 2中,Al2〇3襴為表示η值,Mg + Mn欄為表示y值,Mn/(Mg + Μη)棚為表示z值。 又’關於色亮度之測定方法,使用色彩亮度計(K〇nica Minolta公司製:CS200),以市售之铽賦活磷酸鑭螢光體(化 098124986 36 201011092 成Optonix公司製:螢光體LP-G2)作為標準品之亮度視為 100,測定亮度。The moiré phosphor having a moier time of 3 Gms or less may be a yox phosphor, an Eu-activated phosphor (hereinafter also referred to as a γν phosphor), and γ 〇χ 适当 may be suitably used. Light body. According to the third aspect of the present invention, the reduced-salt sputum has a characteristic of a short period of 1/10 of the residual time. Therefore, when the polychromatic light body combined with the above is appropriately selected, the residual light can be used as the _(four) lamp. It is possible to obtain a short-lasting backlight element 'or by intermittent lighting' to obtain a dynamic liquid crystal display device. — 098124986 34 201011092 In the phosphors of this month, in the phosphors of all the embodiments, inorganic compounds and organic compounds can be used for the purpose of suppressing the deterioration of brightness and improving the life characteristics. The coated material is coated on the surface of the treated phosphor. The method of the coating treatment is not particularly limited. For example, a method in which the fine particle coating material ' is mixed with the coated phosphor, and dried and adhered; and the coating material is deposited on the surface of the coated phosphor to be adjusted. Method such as PH. © A method of adhering to the surface of the coated phosphor by a potential; or a method of additionally mixing and coating the material as a binder, and arbitrarily selecting according to the characteristics of the coated glare and the substance to be coated. Specific examples of the coating material include carbonates such as oxidized towns, oxidized rots, and oxidized materials, such as oxidized H-based metal carbons and rare earth metal carbonates; and hydroxides of hydroxides. Among them, the carbonate of the rare earth metal described in Japanese Patent No. (4) is coated, and it is preferable to use it as a lamp to improve the life. The carbonate of the rare earth metal is preferably carbonated or strontium carbonate, and the coating amount thereof is preferably 0.05 to 5% by weight based on the weight of the phosphor, and more preferably 5% by weight. [Examples] Hereinafter, the present invention will be described in more detail with reference to the preferred embodiments, however, the invention should not be construed as limited. (Example according to the first embodiment of the present invention) 098124986 35 201011092 [Review of y value and z value 1 : a ratio change of Mg content when Μη and A1 are constant] 镁 and 绍 are a certain amount of magnesium Change, review the improvement of luminous brightness. [Example 5] • Ce203: 1.00 Mohr • MgC03 : 0.47 Mohr • Μ 02 02 : 0.42 Mo Er • Α 1203 (α type): 12.94 Mo Er • A1F3 : 0.02 Mo 彳 将 Mix the above materials thoroughly and fill them into 坩埚Then, the lead block is placed on the phosphor material, and is capped and calcined in a nitrogen atmosphere containing water vapor at a temperature of 1550 ° C for 24 hours. Next, the calcined powder is dispersed, washed, dried, and sieved to obtain a composition formula of Ce2〇3 · 〇.42MnO · 〇.47MgO · 12 9Al2 〇 3 "that is, 'Ce2 〇 3 * 0_89 (Mn0 .47, Mg0.53) Mn· ΠΑΛΙΟ 〗 》 Mn2+ © activating aluminate phosphor. In addition, AIR is a co-solvent commonly used in the manufacture of phosphors. The luminosity and brightness of the obtained phosphor are shown in Table 2. Further, in Table 2, Al2〇3襕 represents the η value, the Mg + Mn column represents the y value, and the Mn/(Mg + Μη) shed represents the z value. In addition, a color luminance meter (manufactured by K〇nica Minolta Co., Ltd.: CS200) was used as a commercially available yttrium phosphate phosphor (Chemical 098124986 36 201011092 manufactured by Optonix Co., Ltd.: phosphor LP-) G2) The brightness as a standard is regarded as 100, and the brightness is measured.

098124986 37 201011092 [表2] CC2〇3 MgO MnO AI2O3 Mg+Mn Mn/(Mg+Mn) 色亮度 η y z X y 亮度 FSSS 實施例-1 1 0.00 0.42 12.9 0.42 1.00 0.187 0.604 87 實施例-2 1 0.12 0.42 12.9 0.54 0.78 0.187 0.631 88 實施例-3 1 0.24 0.42 12.9 0.66 0.64 0.172 0.666 87 實施例·4 1 0.35 0.42 12.9 0.78 0.55 0.173 0.720 91 實施例-5 1 0.47 0.42 12.9 0.89 0.47 0.173 0.746 93 實施例-6 1 0.59 0.42 12.9 1.01 0.42 0.172 0.765 92 實施例-7 1 0.71 0.42 12.9 1.13 0.37 0.171 0.763 89 實施例-8 1 0.71 0.42 12.9 1.13 0.37 0.171 0.777 87 實施例-9 1 0.82 0.42 12.9 1.25 0.34 0.169 0.770 86 實施例-10 1 0.92 0.42 12.9 1.34 0.32 0.169 0.775 82 實施例-11 1 1.06 0.42 12.9 1.48 0.29 0.168 0.762 80 實施例-12 1 1.18 0.42 12.9 1.60 0.26 0.167 0.764 72 比較例-1 1 1.41 0.42 12.9 1.84 0.23 0.168 0.765 49 比較例-2 1 1.65 0.42 12.9 2.07 0.20 0.166 0.764 49 比較例-3 1 1.88 0.42 12.9 2.31 0.18 0.162 0.770 48 比較例*4 1 2.12 0.42 12.9 2.54 0.17 0.164 0.757 49 比較例-5 1 2.35 0.42 12.9 2.78 0.15 0.161 0.735 48 實施例-13 1 0.00 0.80 13.0 0.80 1.00 0.210 0.717 102 實施例-14 1 0.92 0.31 12.9 1.22 0.25 0.164 0.759 77 實施例-15 1 0.92 0.35 12.9 1.27 0.28 0.166 0.756 80 實施例-16 1 0.92 0.42 12.9 1.34 0.32 0.168 0.775 84 實施例-17 1 0.92 0.49 12.9 1.41 0.35 0.169 0.760 82 實施例-18 1 0.92 0.56 12.9 1.48 0.38 0.171 0.780 82 實施例-19 1 0.92 0.64 12.9 1.55 0.41 0.176 0,785 75 實施例-20 1 0.92 0.71 12.9 1.62 0.43 0.180 0.781 62 實施例-21 1 0.58 0.42 8.0 1.00 0.42 0.170 0.740 75 實施例-22 1 0.58 0.42 9.0 1.00 0.42 0.171 0.739 84 4.7 實施例-23 1 0.58 0.42 12.0 1.00 0.42 0.176 0.730 92 4.2 資施例-24 1 0.58 0.42 13.0 1.00 0.42 0.185 0.721 91 3.5 實施例-25 1 0.58 0.42 14.0 LOO 0.42 0.185 0.725 92 3.4 實施例-26 r 1 0.58 0.42 16.0 1.00 0.42 0.183 0.722 93 3.0 實施例-27 1 0.58 0.42 20.0 1.00 0.42 0.182 0.719 91 2.9 實施例-28 1 0.58 0.42 25.0 1.00 0.42 0.182 0.722 90 3.1 實施例-29 1 0.58 0.42 33.0 1.00 0.42 0.181 0.721 80 [實施例1〜4、6〜12,及比較例1〜5] 除了使用表2所示之組成以外,同上述實施例5處理,取 38 098124986 201011092 得實施例1〜4 ’ 6〜12及比較例1, 6之Mn2+賦活銬岐峡聲 先 關於所得之各螢光體的色度及亮度,合併示於表2 關於以表2之結果為基礎伴隨y值變化的亮度, 又, 之圖中。 ’、於_ 3 [y值及z值之檢討2 : Mg與A1為一定時之Mn份| 變化] ❹ 鎂與鋁為一定時使錳量變化,檢討發光亮度之改良 [實施例14〜20] ^ ° 除了使用表2所示之組成以外,同上述實施例s声 得實施例14〜20之Mn2+賦活鋁酸鹽螢光體。 叟,故 關於所得之各螢光體的色度及亮度,合併示於表2 [η值之檢討:Μη與Mg為一定時之A1量的定比變化 猛與鎂為-定時仙量變化,檢討發光亮度之改良〕 β [實施例21〜29] ^ ° 除了使用表2所示之組成以外,同上述實施例5 - 得實施例21〜29之Μη2+賦活鋁酸鹽螢光體。 里,取 關於所得之各螢光體的色度、亮度及以FSSS法所挪定 平均粒徑’合併示於表2。 又,以表2之結果為基礎,關於Ai量變化所伴隨的布度 示於圖4。圖4中,橫軸為11值(螢光體中的氧化鋩耋)。, 更且,關於實施例22〜28,以表2之結果為基礎,關於 098124986 201011092 A1量變化所伴隨的粒徑示於圖5之圖中。圖5中,橫軸為 螢光體中的A1量(莫耳)。 [Mg量之檢討] [實施例13] 除了使用表2所示之組成以外’同上述實施例5處理,取 得實施例13之Mn2+賦活鋁酸鹽螢光體。 關於所得螢光體之色度及亮度’合併示於表2。 如上述’實施例1〜29均較比較例1〜5,呈現出更高亮度 的綠色發光。 又’由實施例22〜28之結果’可知若a1203的份量增加, 則平均粒徑有變小的傾向。 (本發明之第2實施形態對應之實施例) [CAT螢光體] [實施例30〜37、70、及比較例6、7] 將 6 種原料(Ce02、Tb407、MgC03、Αΐ2〇3(α 類型)、 Η3Β〇3、及A1F3)分別以表3所示之組成充分浪合後’填充 至坩堝,再將鉛塊放置於螢光體原料上,加蓋ϋ於含有水蒸 氣之氮氣環境氣體中,以最高溫度155CTC包含升降溫時間 歷24小時煅燒。原料中的Η3Β〇3與A1F3為製造螢光體所一 般使用的助溶劑。 其次’對於煅燒粉,進行分散、洗淨、乾燥、過筛處理’ 取得實施例30〜37、70及比較例6、7之Tb賦活銘酸鹽螢 098124986 40 201011092 光體。另外,關於組成’以ICP確認。 關於所得之各螢光體的發光色(色度)、相對亮度及以FSSS 法(費歇爾Subsieve Size〇^)所測定之平均粒徑,合併示於 表3。 另外,於色度之測定中’使用色彩亮度計(Konica-Minolta 公司製商品名”CS200”)°關於發光亮度’將市售之冷陰極 螢光燈用试賦活構酸鑛螢光體(化成〇Pt〇nix公司製商品 0 名,’LP-G2”)作為標準品之亮度視為100時,將各實施例之螢 光體同樣測定’以相對值表示。 [表3] 螢光體組成 發光色(色度) 相對亮度 FSSS [X] [y] m 粒度 實施例30 (Ce〇.67,Tb〇,33)2〇3 · l-8MgO · 13Α12〇3 0.338 0.596 102 4.7 實施例31 (Ce〇.67,Tb〇.33)2〇3 · 1.6MgO · 13Al2〇3 0.338 0.598 102 5.4 實施例321 (Ce〇.67,Tb〇,33)2〇3 . 1.4MgO · IIAI2O3 0.340 0.597 104 7.1 實施例331 (Ce〇.67,Tb〇.33)2〇3 · 1.4MgO · 13AI2〇3 0.337 0.600 105 5.5 實施例341 (Ce〇.67,Tb〇.33)2〇3 · 1.2MgO · ΠΑΙ2Ο3 0.338 0.603 106 5.8 實施例35 (Ce〇.67,Tb〇.33)2〇3 · MgO · IIAI2O3 0.340 0.592 100 6.3 實施例36 (Ce〇.67,Tb〇.33)2〇3 · MgO · 13Al2〇3 0.340 0.597 101 6.3 實施例37 (Ce〇.67jTb〇.33)2〇3 * 〇-8MgO · I3AI2O3 0.340 0.597 100 7.4 比較例6 (Ce〇.67,Tb0.33)2〇3 · 2MgO · IIAI2O3 0.340 0.594 102 6.2 比較例7 (Ce〇.67&gt;Tb〇.33)2〇3 * 2MgO * I3AI2O3 0.338 0.596 101 4.8 實拖例38 (Ce〇.67,Tb〇,33)2〇3 · l-4(Mg〇.93 · Nfa〇.〇7)〇 · IIAI2O3 0.245 0.680 .105 5.6 實施例39 (Ce〇.67,Tb〇.33)2〇3 · 1.4(Mg).93 · Mn〇 〇7)0 · 13Al2〇3 0.243 0.683 107 5.3 比較例8 (Ce〇.67,Tb〇33)2〇3 · 2(Mg〇.95 · Μη〇·〇5)0 · IIAI2O3 0.247 0.675 96 6.0 比較例9 (Cea67,Tb〇-33)2〇3 · 2(Mg〇.95 · Μη〇·〇5)0 · 13Al2〇3 0.252 0.673 97 4.2 實施例70 (Ce〇.67,Tb〇.33)2〇3 _ 0_4MgO · I3AI2O3 0.340 0.567 79 6.7 ❷ 又,以表3之結果(實施例30〜37、7〇及比較例6、7)為基 礎,關於η值(Ce+Tb之總莫耳相對於A1203量之莫耳數) 分別為U.〇(X符號)、及13.〇(·符號)之螢光體’關於y值 41 098124986 201011092 ((Ce + Tb)之總莫耳相對之量)之變化所伴隨之各螢光體 之發光亮度的變化,示於圖6。 另外,雖未圖示,但於本發明之螢光體中,於上述n值為 11.0、或13.0以外之值的情形中,亦確認y值與其發光亮度 之相關關係,大約與圖6所示之相關為類似之關係。 圖7為例不將實施例3〇〜34及比較例6之各螢光體,以波 長254nm之紫外線激發時之發光光譜圖,圖8中,示出將 圖7之光谱的主要波峯附近的波長區域光譜予以放大者。 於圖7、圖8中’實施例之螢光體的發光光譜,相對於 542nm的發光強度,545nm的發光強度變大,又,於490nm、 580nm、及620nm附近之次要波峯的發光強度上因未察見變 化,故相對的不需要的發光減少,使用作為發光顯示器用之 螢光體時,預測改善交調失真。其理由係為藍色發光之 450nm附近之490nm的次要波峯,不會被藍色濾光片完全 濾除,使藍色的色純度惡化。同樣地,58〇nm之發光使紅色 的色純度惡化。本發明之螢光體雖然此等次要波峯的絕對強 度未改變,但使用作為綠色的主要發光(542nm與的 &amp; «十)於強度上升,故取得相對地次要波峯變低之相同效果。 [CAT : Μη螢光體] [實施例38、實施例39、比較例8、及比較例9] 將 7 種原料(Ce02、Tb4〇7、MgC03、MnC03、Αΐ2〇3(α 類 型)、_〇3、及AIF3)分別以表3所示之組成充分混合後, 098124986 42 201011092 同實施例30〜37、70及比較例7處理,進行烺燒、分散、 洗淨、乾燥、過篩處理’取得實施例38、39、及比較例8、 9之Tb2+ · Mn2+共同賦活鋁酸鹽螢光體。另外,關於組成, 以ICP確認。 關於所得螢光體之發光色(色度)、相對亮度及以FSSS法 (費歇爾Subsieve Sizer法)所測定之平均粒徑,合併示於表 3 ° ❺ 關於色度、相對亮度、粒徑之測定方法,與實施例30〜37、 70及比較例6、7相同。 圖9為例示將實施例38、實施例39、比較例8、及比較 例9之螢光體,以波長254nm之紫外線激發時之發光光譜 圖。 如圖9所知般,實施例(38及39)之螢光體,與CAT螢光 體之情形相同’可知542nm相對於545nm的發光強度提高 〇之同時’於517nm附近之Μη的發光強度亦提高。 又,如圖10所示般,本發明之鋁酸鹽螢光體(實施例38、 及39) ’相對於化學計量組成之物質(比較例8、9),汞之發 光相對的吸收亦被改善。 由圖10可知,由化學計量組成(y=2.0)於減少y之方向上 錯開之本發明的鋁酸鹽螢光體,比化學計量組成之先前的螢 光體,於包含波長172nm之VUV的波長區域、以及波長 254nm之汞射線的波長區域範圍,均為激發強度上升。特別 098124986 43 201011092 於激發強度之上升中,以140nm至300nm為佳,且更佳為 180nm 至 300nm。 (本發明之第3實施形態對應之實施例) [螢光體] [實施例40〜55、71、72及比較例12、14、15] 將 6 種原料(ce〇2、Tb407、MgC03、Α12〇3(α 類型)、 Η3Β〇3、及A1F3)分別以表4所示之組成充分混合後,填充 至坩堝,再將鉛塊放置於螢光體原料上,加蓋並於含有水蒸 氣之氮氣環境氣體中,以最高溫度1550。(:包含升降溫時間 歷24小時煅燒。原料中的η3Β03與A1F3為製造螢光體所一 般使用的助熔劑。另外,表4中的1-x、X、y、及η欄之各 數值,分別表示上述一般式(Cei-xTbx)203 · yMgO · ηΑ1203 中(因無Μη故省略含有ζ)之ι_χ、χ、y、及^之值,且Mg 棚之各數值為榮光體中之Mg的莫耳數。 其次,對於烺燒粉,進行分散、洗淨、乾燥、過篩處理, 取得實施例40〜55、71、72及比較例12、14、15之Tb賦 活紹酸鹽螢光體。另外,關於組成,以Icp確認。實施例 40〜55、7卜72及比較例12、14、15係以示出使Tb量變化 時之1/10殘光時間、與相對亮度之關係為主要目的。 098124986 44 201011092 [表4]098124986 37 201011092 [Table 2] CC2〇3 MgO MnO AI2O3 Mg+Mn Mn/(Mg+Mn) Color brightness η yz X y Brightness FSSS Example-1 1 0.00 0.42 12.9 0.42 1.00 0.187 0.604 87 Example-2 1 0.12 0.42 12.9 0.54 0.78 0.187 0.631 88 Example-3 1 0.24 0.42 12.9 0.66 0.64 0.172 0.666 87 Example 4 1 0.35 0.42 12.9 0.78 0.55 0.173 0.720 91 Example-5 1 0.47 0.42 12.9 0.89 0.47 0.173 0.746 93 Example-6 1 0.59 0.42 12.9 1.01 0.42 0.172 0.765 92 Example-7 1 0.71 0.42 12.9 1.13 0.37 0.171 0.763 89 Example-8 1 0.71 0.42 12.9 1.13 0.37 0.171 0.777 87 Example-9 1 0.82 0.42 12.9 1.25 0.34 0.169 0.770 86 Example -10 1 0.92 0.42 12.9 1.34 0.32 0.169 0.775 82 Example-11 1 1.06 0.42 12.9 1.48 0.29 0.168 0.762 80 Example-12 1 1.18 0.42 12.9 1.60 0.26 0.167 0.764 72 Comparative Example-1 1 1.41 0.42 12.9 1.84 0.23 0.168 0.765 49 Comparative Example-2 1 1.65 0.42 12.9 2.07 0.20 0.166 0.764 49 Comparative Example-3 1 1.88 0.42 12.9 2.31 0.18 0.162 0.770 48 Comparative Example *4 1 2.12 0.42 12.9 2.54 0.17 0.164 0.7 57 49 Comparative Example-5 1 2.35 0.42 12.9 2.78 0.15 0.161 0.735 48 Example-13 1 0.00 0.80 13.0 0.80 1.00 0.210 0.717 102 Example-14 1 0.92 0.31 12.9 1.22 0.25 0.164 0.759 77 Example-15 1 0.92 0.35 12.9 1.27 0.28 0.166 0.756 80 Example-16 1 0.92 0.42 12.9 1.34 0.32 0.168 0.775 84 Example-17 1 0.92 0.49 12.9 1.41 0.35 0.169 0.760 82 Example-18 1 0.92 0.56 12.9 1.48 0.38 0.171 0.780 82 Example-19 1 0.92 0.64 12.9 1.55 0.41 0.176 0,785 75 Example-20 1 0.92 0.71 12.9 1.62 0.43 0.180 0.781 62 Example-21 1 0.58 0.42 8.0 1.00 0.42 0.170 0.740 75 Example-22 1 0.58 0.42 9.0 1.00 0.42 0.171 0.739 84 4.7 Example-23 1 0.58 0.42 12.0 1.00 0.42 0.176 0.730 92 4.2 Example-24 1 0.58 0.42 13.0 1.00 0.42 0.185 0.721 91 3.5 Example-25 1 0.58 0.42 14.0 LOO 0.42 0.185 0.725 92 3.4 Example -26 r 1 0.58 0.42 16.0 1.00 0.42 0.183 0.722 93 3.0 Example-27 1 0.58 0.42 20.0 1.00 0.42 0.182 0.719 91 2.9 Example-28 1 0.58 0.42 25.0 1.00 0.42 0.182 0.722 90 3.1 Real Example -29 1 0.58 0.42 33.0 1.00 0.42 0.181 0.721 80 [Examples 1 to 4, 6 to 12, and Comparative Examples 1 to 5] In the same manner as in the above Example 5 except that the composition shown in Table 2 was used, 38 was taken. 098124986 201011092 The chromaticity and brightness of each of the obtained phosphors are shown in Examples 1 to 4' 6 to 12 and Comparative Example 1, 6 Mn2+, and the results are shown in Table 2. Based on the brightness of the y value change, and in the figure. ', _ 3 [Review of y value and z value 2 : Mn content when Mg and A1 are constant | change] ❹ Magnesium and aluminum change the amount of manganese when necessary, and review the improvement of luminescence brightness [Examples 14 to 20 ] ^ ° In addition to the composition shown in Table 2, the Mn2+-activated aluminate phosphors of Examples 14 to 20 were obtained in the same manner as in the above Examples.叟, so the chromaticity and brightness of each of the obtained phosphors are shown in Table 2. [The review of η value: the ratio of the A1 amount of Μη and Mg is constant and the change of magnesium to -the timing, Improvement of Luminance Brightness] β [Examples 21 to 29] ^ ° In addition to the compositions shown in Table 2, the above-mentioned Example 5 - Examples 2 to 29 were obtained as the ?n2+-activated aluminate phosphors. Here, the chromaticity and brightness of each of the obtained phosphors and the average particle diameter by the FSSS method are combined and shown in Table 2. Further, based on the results of Table 2, the degree of cloth accompanying the change in the amount of Ai is shown in Fig. 4. In Fig. 4, the horizontal axis is 11 (yttrium oxide in the phosphor). Further, regarding Examples 22 to 28, based on the results of Table 2, the particle size accompanying the change in the amount of 098124986 201011092 A1 is shown in the graph of Fig. 5. In Fig. 5, the horizontal axis represents the amount of A1 (mole) in the phosphor. [Review of Mg amount] [Example 13] The Mn2+ activating aluminate phosphor of Example 13 was obtained by the same treatment as in Example 5 except that the composition shown in Table 2 was used. The chromaticity and brightness of the obtained phosphors are shown in Table 2. As in the above, all of Examples 1 to 29 exhibited green light emission of higher brightness than Comparative Examples 1 to 5. Further, from the results of Examples 22 to 28, it is understood that when the amount of a1203 is increased, the average particle diameter tends to be small. (Examples corresponding to the second embodiment of the present invention) [CAT phosphor] [Examples 30 to 37, 70, and Comparative Examples 6 and 7] Six kinds of raw materials (Ce02, Tb407, MgC03, Αΐ2〇3) α type), Η3Β〇3, and A1F3) are fully filled with the composition shown in Table 3, and then filled to the crucible, and then placed on the phosphor material, and sealed with nitrogen gas atmosphere containing water vapor. In the middle temperature, the maximum temperature of 155 CTC contains the temperature rise and fall time for 24 hours of calcination. Η3Β〇3 and A1F3 in the raw materials are the co-solvents commonly used in the manufacture of phosphors. Next, the calcined powder was subjected to dispersion, washing, drying, and sieving treatment. In Examples 30 to 37, 70 and Comparative Examples 6 and 7, Tb was revitalized with 129124986 40 201011092. In addition, the composition was confirmed by ICP. The luminescent color (chromaticity), the relative luminance, and the average particle diameter measured by the FSSS method (Fisher Subsieve Size) of each of the obtained phosphors are shown in Table 3. In addition, in the measurement of chromaticity, a color luminance meter (trade name "CS200" manufactured by Konica-Minolta Co., Ltd.) was used. 0Pt〇nix company product 0, 'LP-G2') When the brightness of the standard product is regarded as 100, the phosphors of the respective examples are measured in the same manner as 'relative values'. [Table 3] Phosphor composition Luminous color (chroma) Relative brightness FSSS [X] [y] m Particle size Example 30 (Ce〇.67, Tb〇, 33) 2〇3 · l-8MgO · 13Α12〇3 0.338 0.596 102 4.7 Example 31 ( Ce〇.67, Tb〇.33) 2〇3 · 1.6MgO · 13Al2〇3 0.338 0.598 102 5.4 Example 321 (Ce〇.67, Tb〇, 33) 2〇3 . 1.4MgO · IIAI2O3 0.340 0.597 104 7.1 Example 331 (Ce〇.67, Tb〇.33) 2〇3 · 1.4MgO · 13AI2〇3 0.337 0.600 105 5.5 Example 341 (Ce〇.67, Tb〇.33) 2〇3 · 1.2MgO · ΠΑΙ2Ο3 0.338 0.603 106 5.8 Example 35 (Ce〇.67, Tb〇.33) 2〇3 · MgO · IIAI2O3 0.340 0.592 100 6.3 Example 36 (Ce〇.67, Tb〇.33) 2〇3 · MgO · 13Al2 〇3 0.340 0.597 101 6.3 Example 37 (Ce〇.67jTb〇.33) 2〇3*〇-8MgO · I3AI2O3 0.340 0.597 100 7.4 Comparative Example 6 (Ce〇.67, Tb0.33)2〇3 · 2MgO · IIAI2O3 0.340 0.594 102 6.2 Comparison Example 7 (Ce〇.67&gt;Tb〇.33) 2〇3 * 2MgO * I3AI2O3 0.338 0.596 101 4.8 Real drag 38 (Ce〇.67, Tb〇, 33) 2〇3 · l-4 (Mg〇. 93 · Nfa〇.〇7)〇·IIAI2O3 0.245 0.680 .105 5.6 Example 39 (Ce〇.67, Tb〇.33) 2〇3 · 1.4(Mg).93 · Mn〇〇7)0 · 13Al2〇 3 0.243 0.683 107 5.3 Comparative Example 8 (Ce〇.67, Tb〇33) 2〇3 · 2 (Mg〇.95 · Μη〇·〇5)0 · IIAI2O3 0.247 0.675 96 6.0 Comparative Example 9 (Cea67, Tb〇 -33)2〇3 · 2(Mg〇.95 · Μη〇·〇5)0 · 13Al2〇3 0.252 0.673 97 4.2 Example 70 (Ce〇.67, Tb〇.33) 2〇3 _ 0_4MgO · I3AI2O3 0.340 0.567 79 6.7 ❷ Further, based on the results of Table 3 (Examples 30 to 37, 7〇 and Comparative Examples 6, 7), regarding the η value (the total number of moles of Ce+Tb relative to the amount of A1203) ) U. 〇 (X symbol), and 13. 〇 (· symbol) phosphor 'About y value 41 098124986 201011092 ((Ce + Tb) total molar relative amount) Changes in emission luminance of each phosphor accompanied with the variation shown in FIG. Further, although not shown, in the phosphor of the present invention, in the case where the n value is a value other than 11.0 or 13.0, the correlation between the y value and the light emission luminance is also confirmed, which is approximately as shown in FIG. The correlation is a similar relationship. Fig. 7 is a chart showing the luminescence spectrum of each of the phosphors of Examples 3A to 34 and Comparative Example 6 when excited by ultraviolet rays having a wavelength of 254 nm, and Fig. 8 shows the vicinity of the main peak of the spectrum of Fig. 7; The wavelength region spectrum is magnified. In Fig. 7 and Fig. 8, the luminescence spectrum of the phosphor of the embodiment is such that the luminescence intensity at 545 nm is increased with respect to the luminescence intensity at 542 nm, and the luminescence intensity of the minor peaks at 490 nm, 580 nm, and 620 nm is further increased. Since the change is not observed, the relative unnecessary light emission is reduced, and when the phosphor used for the light-emitting display is used, it is predicted to improve the crosstalk. The reason for this is that the secondary peak of 490 nm in the vicinity of 450 nm of blue light emission is not completely filtered by the blue filter, and the color purity of blue is deteriorated. Similarly, the 58 〇 nm luminescence deteriorates the color purity of red. Although the phosphor of the present invention does not change the absolute intensity of these minor peaks, the main luminescence (green 542 nm and &amp; «10) is used to increase the intensity, so that the same effect is obtained when the secondary peaks become lower. . [CAT : Μη phosphor] [Example 38, Example 39, Comparative Example 8, and Comparative Example 9] Seven kinds of raw materials (Ce02, Tb4〇7, MgC03, MnC03, Αΐ2〇3 (α type), _ 〇3, and AIF3) were thoroughly mixed with the compositions shown in Table 3, respectively, 098124986 42 201011092 treated with Examples 30 to 37, 70 and Comparative Example 7, and subjected to calcination, dispersion, washing, drying, and sieving treatment. The Tb2+·Mn2+ of the Examples 38 and 39 and Comparative Examples 8 and 9 were obtained to jointly activate the aluminate phosphor. In addition, the composition was confirmed by ICP. The luminescent color (chromaticity) and relative brightness of the obtained phosphor and the average particle diameter measured by the FSSS method (Fisher Subsieve Sizer method) are shown in Table 3 ° ❺ About chromaticity, relative brightness, and particle size The measurement methods were the same as those of Examples 30 to 37 and 70 and Comparative Examples 6 and 7. Fig. 9 is a chart showing the luminescence spectra of the phosphors of Example 38, Example 39, Comparative Example 8, and Comparative Example 9 excited by ultraviolet rays having a wavelength of 254 nm. As is known from Fig. 9, the phosphors of the examples (38 and 39) are the same as in the case of the CAT phosphor, and it is understood that the luminescence intensity of Μ at a wavelength of 542 nm with respect to 545 nm and Μ near 517 nm is also improve. Further, as shown in Fig. 10, the aluminate phosphor of the present invention (Examples 38 and 39) was relatively absorbed by the luminescence of the substance with respect to the stoichiometric composition (Comparative Examples 8 and 9). improve. As can be seen from Fig. 10, the aluminate phosphor of the present invention having a stoichiometric composition (y = 2.0) shifted in the direction of decreasing y, compared to the stoichiometric composition of the prior phosphor, is contained in VUV having a wavelength of 172 nm. The wavelength region and the wavelength region of the mercury ray having a wavelength of 254 nm are all increased in excitation intensity. In particular, 098124986 43 201011092 is preferably from 140 nm to 300 nm, and more preferably from 180 nm to 300 nm, in the rise of the excitation intensity. (Example according to the third embodiment of the present invention) [Fluorescent body] [Examples 40 to 55, 71, 72 and Comparative Examples 12, 14, and 15] Six kinds of raw materials (ce〇2, Tb407, MgC03, Α12〇3 (α type), Η3Β〇3, and A1F3) are thoroughly mixed in the composition shown in Table 4, filled into 坩埚, and then placed on the phosphor material, covered and contained in water vapor. In a nitrogen atmosphere, the maximum temperature is 1550. (: calcination is carried out for 24 hours in the temperature rise and fall time. η3Β03 and A1F3 in the raw material are fluxes generally used for the production of phosphors. In addition, the values of the columns 1-x, X, y, and n in Table 4, The values of ι_χ, χ, y, and ^ in the above general formula (Cei-xTbx) 203 · yMgO · ηΑ1203 (the ζ is omitted because Μ Μ is omitted), and the values of the Mg shed are Mg in the glory body. Next, the smoldering powder was dispersed, washed, dried, and sieved to obtain Tb-activated acid sulfates of Examples 40 to 55, 71, and 72 and Comparative Examples 12, 14, and 15. In addition, the composition was confirmed by Icp. Examples 40 to 55, 7 and 72, and Comparative Examples 12, 14, and 15 show that the relationship between the 1/10 afterglow time and the relative brightness when the amount of Tb was changed was Main purpose. 098124986 44 201011092 [Table 4]

❹ 參 以下述之評估方法評估所得各螢光體的發光色(色度)、相 十儿度1/1 〇殘光時間、平均粒徑。結果示於表4。另外, 關於平均粒徑’僅對於實施例4〇〜50的螢光體測定。 (a) 色度:使用色彩亮度計(Konica Minolta公司製商品 名” CS200”)測定。 (b) 相對亮度:以作為標準品,同各實施例之螢光體處理 測定、市售之冷陰極螢光燈用铽賦活磷酸鑭螢光體(化成 Optonix公司製商品名” LP-G2”)之發光強度視為100時 之相對值表示。 098124986 45 201011092 (c) 平均粒徑:根據FSSS法(費歇爾Subsieve Sizer法)測 定。 (d) l/l〇殘光時間:使用曰立製作所製、商品名” f-4500 型分光螢光光度計,,,以磷光測定型式(磷光短壽命)測定。 照射波長254nm之紫外線使發光後,停止該紫外線之照射 後’求出測定開始時之54〇nm附近之波峯波長的發光強度 為衰減至1/10為止的時間(ms)。 以表4之結果(實施例40~55、71、72及比較例12、Η、 15)為基準’關於y值為1 3、η值為13.〇之螢光體’與y值 為2,0、n值為13.0之螢光體,關於1-x值(Ce量相對於Tb 量)之變化所伴隨之各螢光體的1/1〇殘光時間的變化,示 圖η。 ' 又’X值變化所伴隨之各螢光體的亮度變化示於圖12。比 較例14為化學計量組成且公知文獻的確實組成, + Tb=2。 另外’雖未圖示,但於本發明之螢光體中,y值為13、η 值為13.0以外之值的情形中,X值與其殘光時間的相關關 係,確認大約與圖11所示之相關和類似的關係。另一方面, 如圖11所示闞明般,y值為2.0,η值為13.0之情形,印, 若依舊保持化學計量組成且改變鈽和铽的份量,則1/1()殘 光時間的縮短效果相對變小。另一方面,由圖12可知, 值愈低則亮度有愈高之傾向,但亮度與X的相關關係不會賴 098124986 46 201011092 受y值影響。可知亮度在χ為0.85以上急速降低。 [實施例56〜61、80及比較例16〜19] 同上述實施例40,以表5所示之組成比,製作實施例 56〜61、80及比較例16〜19的螢光體。其結果亦合併上述實 施例47之結果,示於表5和圖13、14(關於表5中的數值, • 同表4)。此處,將X值固定於推薦組成的x=0.67,使y值 變化。另外,關於平均粒徑,僅測定實施例56〜61、80及比 φ 較例18、19的螢光體。 由圖13之1/10殘光時間的數據可判定,若y小於化學計 量組成的y=2,則1/10殘光時間急速變短。另一方面,若 由亮度方面來看,則如圖14所示般,y為0.6以上為佳。 [表5] 1-x X y η 色座標 亮度 殘光 Ce Tb Mg A1 X y Y 1/10殘光 FSSS粒度 比較例16 0.67 0.33 3.00 6.00 13.0 0.338 0.581 80 6.62 — 比較例17 0.67 0.33 2.00 4.00 13.0 0.341 0.595 101 6.46 — 比較例18 0.67 0.33 1.50 3.00 13.0 0.339 0.597 104 6.55 4.2 比較例19 0.67 0.33 1.00 2.00 11.0 0.340 0.594 102 6.67 6.2 實施例56 0.67 0.33 0.90 1.80 13.0 0.338 0.596 102 6.38 4.7 實施例57 0.67 0.33 0.75 1.50 13.0 0.338 0.6 105 6.15 4.7 實施例47 0.67 0.33 0.65 1.30 13.0 0.337 0.602 106 5.76 5.3 實施例58 0.67 0.33 0.60 1.20 13.0 0.338 0.603 106 5.68 5.8 實施例59 0.67 0.33 0.55 1.10 13.0 0.34 0.603 105 5.74 4.6 實施例60 0.67 0.33 0.50 1.00 13.0 0.34 0.597 100 5.09 6.3 實施例61 0.67 0.33 0.40 0.80 13.0 0.34 0.597 89 5.19 7.4 實施例80 0.67 0.33 0.20 0.40 13.0 0.34 0.567 79 4.67 6.7❹ 评估 The luminescent color (chromaticity), the 1/1 〇 afterglow time, and the average particle diameter of each of the obtained phosphors were evaluated by the following evaluation methods. The results are shown in Table 4. Further, the average particle diameter was measured only for the phosphors of Examples 4 to 50. (a) Chroma: Measured using a color luminance meter (trade name "K200" manufactured by Konica Minolta Co., Ltd.). (b) Relative Brightness: As a standard, the phosphoric acid treatment of the cold-cathode fluorescent lamps and the commercially available cold-phosphorus fluorescent lamps are commercially available as a standard, and the product name is LP-G2 manufactured by Optonix. The luminous intensity of the light is expressed as a relative value at 100 hours. 098124986 45 201011092 (c) Average particle size: Measured according to the FSSS method (Fisher Subsieve Sizer method). (d) l/l 〇 afterglow time: Measured by the spectrophotometer type (phosphorescence short-life) by the F-4500 spectrofluorometer, manufactured by 曰立制. Thereafter, after the irradiation of the ultraviolet ray was stopped, the time (ms) at which the luminescence intensity at the peak wavelength near 54 〇 nm at the start of the measurement was attenuated to 1/10 was obtained. The results of Table 4 (Examples 40 to 55, 71, 72 and Comparative Example 12, Η, 15) are the reference 'fluorescents with a y value of 1 3, an η value of 13. 〇, and a phosphor having a y value of 2,0 and an n value of 13.0, The change of the 1/1 〇 afterglow time of each phosphor associated with the change of the 1-x value (the amount of Ce relative to the amount of Tb) is shown in Fig. η. 'And the respective phosphors accompanying the change in the X value. The change in luminance is shown in Fig. 12. Comparative Example 14 is a stoichiometric composition and the true composition of the known document, + Tb = 2. Further, although not shown, in the phosphor of the present invention, the y value is 13, η In the case where the value is a value other than 13.0, the correlation between the X value and the afterglow time is confirmed to be approximately related to and similar to that shown in Fig. 11. On the other hand, As shown in Fig. 11, when the y value is 2.0 and the η value is 13.0, if the stoichiometric composition is maintained and the amount of yttrium and ytterbium is changed, the shortening effect of the 1/1() afterglow time is relatively changed. On the other hand, as shown in Fig. 12, the lower the value, the higher the brightness tends to be, but the correlation between the brightness and X does not depend on the y value of 098124986 46 201011092. It can be seen that the brightness rapidly decreases when the value is 0.85 or more. [Examples 56 to 61, 80 and Comparative Examples 16 to 19] In the same manner as in the above Example 40, the phosphors of Examples 56 to 61, 80 and Comparative Examples 16 to 19 were produced at the composition ratios shown in Table 5. The results are also combined with the results of the above Example 47, which are shown in Table 5 and Figures 13 and 14 (for the values in Table 5, • the same as Table 4). Here, the X value is fixed to the recommended composition of x = 0.67, so that y In addition, regarding the average particle diameter, only the phosphors of Examples 56 to 61 and 80 and the ratio of φ to Examples 18 and 19 were measured. From the data of the 1/10 afterglow time of Fig. 13, it can be judged that if y is smaller than When y=2 of the stoichiometric composition, the 1/10 afterglow time is rapidly shortened. On the other hand, if it is from the viewpoint of brightness, as shown in Fig. 14, y 0.6 or more is preferable. [Table 5] 1-x X y η Color coordinate brightness residual light Ce Tb Mg A1 X y Y 1/10 afterglow FSSS particle size comparison example 16 0.67 0.33 3.00 6.00 13.0 0.338 0.581 80 6.62 - Comparative Example 17 0.67 0.33 2.00 4.00 13.0 0.341 0.595 101 6.46 - Comparative Example 18 0.67 0.33 1.50 3.00 13.0 0.339 0.597 104 6.55 4.2 Comparative Example 19 0.67 0.33 1.00 2.00 11.0 0.340 0.594 102 6.67 6.2 Example 56 0.67 0.33 0.90 1.80 13.0 0.338 0.596 102 6.38 4.7 Implementation Example 57 0.67 0.33 0.75 1.50 13.0 0.338 0.6 105 6.15 4.7 Example 47 0.67 0.33 0.65 1.30 13.0 0.337 0.602 106 5.76 5.3 Example 58 0.67 0.33 0.60 1.20 13.0 0.338 0.603 106 5.68 5.8 Example 59 0.67 0.33 0.55 1.10 13.0 0.34 0.603 105 5.74 4.6 Example 60 0.67 0.33 0.50 1.00 13.0 0.34 0.597 100 5.09 6.3 Example 61 0.67 0.33 0.40 0.80 13.0 0.34 0.597 89 5.19 7.4 Example 80 0.67 0.33 0.20 0.40 13.0 0.34 0.567 79 4.67 6.7

[實施例62〜65、及比較例20] 同上述實施例40,以表6所示之組成比,製作實施例 47 098124986 201011092 62〜65、及比較例20之螢光體。其結果示於表6和圖15、 及圖16(關於表6中之數值’同表4)。此處,將X值固定於 推薦組成之l-x=0.33,y值1.3,使η值變化。 由圖15之1/1〇殘光時間的數據可判定,若η小於7,則 1/10殘光時間急速變長。另一方面’由亮度方面,η為11 以上為更佳。 [表6] 1-x X y η 色座標 亮度 殘光 Ce Tb Mg A1 X y Y 1/10殘光 FSSS粒度 比較例20 0.67 0.33 0.65 1.30 6.5 0.331 0.563 63 7.14 4.6 實施例62 0.67 0.33 0.65 1.30 9.0 0.340 0.575 86 5.01 4.4 實施例63 0.67 0.33 0.65 1.30 11.0 0.340 0.598 102 5.27 3.4 實施例64 0.67 0.33 0.65 1.30 20.0 0.339 0.598 98 5.29 3.3 實施例65 0.67 0.33 0.65 1.30 30.0 0.338 0.599 94 5.23 3.0 [白色螢光燈] [實施例66] 使用實施例45記載之螢光體,作為綠色螢光體,並與化 成Optonix公司製藍色螢光體「LP-B4」(ΒΑΜ螢光體)、和 化成Optonix公司製紅色螢光體「LP-RE1」(YOX螢光體) 混合’製作色度點為(x/y=0.270/0.240)的白色冷陰極燈。 [比較例22] 除了使用比較例6記載之螢光體,作為綠色螢光體以外, 同上述實施例66,製作色度點為(x/y=〇.270/0.240)的白色冷 陰極燈。 [比較例23] 098124986 48 201011092 除了使用化成Optonix公司製綠色螢光體rLP_G2」(LAp 螢光體)’作為綠色螢光體以外,同上述實施例66,製作色 度點為(x/y=〇.270/0.240)的白色冷陰極燈。 測定此等實施例66、比較例22、及比較例23之燈亮度時, ,以比較例23之燈亮度視為1〇〇時,比較例22、及實施例66 之燈均為99之亮度。由此結果可判定,於燈亮度中,本發 明之短殘光時間的鋁酸鹽螢光體,具有與先前品同等的燈亮 _ 度,為可實用。 (產業上之可利用性) 本發明之鋁酸鹽螢光體,比先前公知之Mn賦活鈽·鎂· 鋁酸鹽螢光體呈現更高亮度的綠色發光,並且,對於先前品 相比於近紫外線區域於可見光區域的發光強度高,且采射線 的吸收亦優良。 又,本發明之鋁酸鹽螢光體,呈現出與先前公知之Tb賦 ⑩活的鈽.鎂·鋁酸鹽螢光體和Tb.Mn共同賦活之鈽.鎂. 銘酸鹽鸯光體同等以上之高亮度的綠色發光。 , 更且,本發明之鋁酸鹽螢光體,具有與先前公知之丁乜賦 :活㈣镁·紹酸鹽螢光體大約同等之明亮度,並且呈現綠 色發光,且大幅縮短殘光時間。 /、=上述特性之本發明的鋁酸鹽螢光體,係於利用真空紫 線區域和紫外線區域之激發的冷陰極螢光燈、稀有氣體 燈水燈、背光元件、液晶顯示裝置、電漿顯示器、咖 098124986 49 201011092 等之廣範圍領域中可適當使用。 另外’2008年7月24曰申請之曰本專利申請2008-190855 號、2008年1〇月2〇日申請之日本專利申請2008-270155 號、及2009年3月13日申請之日本專利申請2009-061087 號之說明書、申請專利範圍、圖面及摘要之全部内容於此處 引用’並且以本發明之說明書的揭示型式併入。 【圖式簡單說明】 圖 1 中(A)為示出以一般式(CexTbi x)2〇3 · y(Mgi zMnz)〇 · ηΑ12〇3(但x=l)所示之鋁酸鹽螢光體,以波長254ηπι之紫外 線激發時’一般式中之y與發光波長518nm之發光強度 (♦)、及發光波長350nm之發光強度(▲)的相關圖。(B)為 示出上述y、與發光波長518nm之發光強度相對於發光波長 350nm之發光強度之比的相關圖。 圖 2 為示出一般式(CexTUWs · yCMgi.zMnJO · ηΑ1203 (但x=l)所不之紹酸鹽螢光體中之一般式中之y、與l72nm 之激發強度相對於254nm之激發強度之比的相關圖。 圖 3 為示出一般式(〇βχΤνχ)2〇3 · yCMguzMnJO · ηΑ12〇3 (但x=l)所示之鋁酸鹽螢光體中之一般式中之y、與亮度的 相關圖。 圖 4 為示出一般式(CexTbkhOs · WMgiJVtnJO · ηΑ12〇3 (但x= 1)所示之鋁酸鹽螢光體中之一般式中之n、與亮度的 相關圖。 098124986 50 201011092 圖 5 為示出一般式(CexTUaC^ · yCMgrzMnJO · ηΑ12〇3 (但x=l)所示之鋁酸鹽螢光體中之η與FSSS法(費歇爾 Subsieve Sizer法)之平均粒徑的相關圖。 圖 6 為示出一般式(CexTbrxhC^ · yCMghzMnJO · ηΑ1203 • (但z=0)所示之鋁酸鹽螢光體中之y與亮度的相關圖、及n 與亮度的相關圖。 圖7為例示實施例30〜34及比較例6中之螢光體的各發光 ❿光譜圖。 圖8為圖7所示之圖的主要波峯放大圖。 圖9為例示實施例38、39及比較例8、9之螢光體的各發 光光譜圖。 圖10為例示實施例38、39及比較例8、9之螢光體的各 激發光譜圖。 圖 11 為示出一般式(CexTUaC^ · · ηΑ12〇3 ⑩(但ζ=0)所示之銘酸鹽螢光體中之一般式中之X與1/10殘光 時間的相關圖。 , 圖 12 為示出一般式(CexTbi_x)2〇3 · yCMghzMnJO · ηΑ1203 . (但z=0)所示之鋁酸鹽螢光體中之一般式中之χ與亮度的相 關圖。 圖 13 為示出一般式(CexTbbxhC^ · yCMgi.JVtnJO · 11AI2O3 (但z=0)所示之鋁酸鹽螢光體中之一般式中之y與1/10殘光 時間的相關圖。 098124986 51 201011092 圖 14 為示出一般式(CexTbuxhO〗· yiMgi-zMnJO · ηΑ1203 (但z=0)所示之鋁酸鹽螢光體中之一般式中之y與亮度的相 關圖。 圖 15 為示出一般式(CexTbbxhC^ · yiMgrzMnJO · ηΑ1203 (但z=0)所示之鋁酸鹽螢光體中之一般式中之η與1/10殘光 時間的相關圖。 圖 16 為示出一般式(CexTbbxhOs · yiMgkMnJO · ηΑ1203 (但ζ=0)所示之鋁酸鹽螢光體中之一般式中之η與亮度的相 關圖。 098124986 52[Examples 62 to 65, and Comparative Example 20] In the same manner as in the above Example 40, the phosphors of Examples 47 098124986 201011092 62 to 65 and Comparative Example 20 were produced at the composition ratios shown in Table 6. The results are shown in Table 6 and Figure 15, and Figure 16 (the values in Table 6 are the same as Table 4). Here, the X value is fixed to the recommended composition of l-x = 0.33, and the y value is 1.3, so that the value of η is changed. It can be judged from the data of the residual light time of 1/1 of Fig. 15, and if η is less than 7, the 1/10 afterglow time is rapidly increased. On the other hand, η is preferably 11 or more in terms of brightness. [Table 6] 1-x X y η color coordinate brightness residual light Ce Tb Mg A1 X y Y 1/10 residual light FSSS particle size comparison example 20 0.67 0.33 0.65 1.30 6.5 0.331 0.563 63 7.14 4.6 Example 62 0.67 0.33 0.65 1.30 9.0 0.340 0.575 86 5.01 4.4 Example 63 0.67 0.33 0.65 1.30 11.0 0.340 0.598 102 5.27 3.4 Example 64 0.67 0.33 0.65 1.30 20.0 0.339 0.598 98 5.29 3.3 Example 65 0.67 0.33 0.65 1.30 30.0 0.338 0.599 94 5.23 3.0 [White Fluorescent Lamp] [Example 66] The phosphor described in Example 45 was used as a green phosphor, and was converted into a blue phosphor "LP-B4" (ΒΑΜ phosphor) manufactured by Optonix Co., Ltd., and a red color manufactured by Optonix Co., Ltd. Phosphor "LP-RE1" (YOX phosphor) was mixed to produce a white cold cathode lamp with a chromaticity point of (x/y = 0.270/0.240). [Comparative Example 22] A white cold cathode lamp having a chromaticity point of (x/y = 270.270/0.240) was produced as in the above Example 66, except that the phosphor described in Comparative Example 6 was used as the green phosphor. . [Comparative Example 23] 098124986 48 201011092 In addition to the use of green fluorescent body rLP_G2" (LAp phosphor) manufactured by Optonix Co., Ltd. as a green phosphor, the same chromaticity point as in the above Example 66 was made (x/y =白色.270/0.240) white cold cathode lamp. When the lamp brightness of Example 66, Comparative Example 22, and Comparative Example 23 was measured, when the brightness of the lamp of Comparative Example 23 was regarded as 1 ,, the lamps of Comparative Example 22 and Example 66 were all 99. . From this result, it was judged that among the lamp brightness, the aluminate phosphor of the short afterglow time of the present invention has the same brightness as the previous product, and is practical. (Industrial Applicability) The aluminate phosphor of the present invention exhibits higher luminance green luminescence than the previously known Mn-activated yttrium-magnesium aluminate phosphor, and is comparable to the prior product. The near-ultraviolet region has a high luminescence intensity in the visible light region, and the absorption of the ray is also excellent. Further, the aluminate phosphor of the present invention exhibits a synergistic effect with a previously known Tb-doped magnesium-aluminate phosphor and Tb.Mn. Magnesium. High-brightness green light of equal or higher. Further, the aluminate phosphor of the present invention has approximately the same brightness as the conventionally known di-anthracene: living (tetra) magnesium-salt phosphor, and exhibits green luminescence and greatly reduces the afterglow time. The aluminate phosphor of the present invention having the above characteristics is a cold cathode fluorescent lamp, a rare gas lamp, a backlight device, a liquid crystal display device, and a plasma which are excited by a vacuum violet region and an ultraviolet region. It can be used in a wide range of fields such as monitors and coffee makers 098124986 49 201011092. In addition, Japanese Patent Application No. 2008-190855, filed on July 24, 2008, and Japanese Patent Application No. 2008-270155, filed on Jan. 2, 2008, and Japanese Patent Application No. 2009, filed on March 13, 2009 The specification, the scope of the patent application, the drawings and the abstract of the specification of the specification of the specification of BRIEF DESCRIPTION OF THE DRAWINGS (A) in Fig. 1 is an aluminate fluorescent lamp shown by a general formula (CexTbi x) 2 〇 3 · y (Mgi zMnz) 〇 η Α 12 〇 3 (but x = 1) The correlation between the y in the general formula and the illuminating intensity (♦) of the luminescent wavelength of 518 nm and the luminescent intensity (▲) of the luminescent wavelength of 350 nm when excited by ultraviolet light having a wavelength of 254 η π. (B) is a correlation diagram showing the ratio of the above y, the emission intensity of the emission wavelength of 518 nm to the emission intensity of the emission wavelength of 350 nm. 2 is a graph showing the general formula (CexTUWs · yCMgi.zMnJO · ηΑ1203 (but x=l), which is not in the general formula of the phosphor of the acid salt, and the excitation intensity of l72 nm with respect to the excitation intensity of 254 nm. Figure 3 is a graph showing the y and brightness in the general formula of the aluminate phosphor shown by the general formula (〇βχΤνχ)2〇3 · yCMguzMnJO · ηΑ12〇3 (but x=l) Fig. 4 is a graph showing the correlation between n and luminance in a general formula (CexTbkhOs · WMgiJVtnJO · ηΑ12〇3 (but x = 1)) in an aluminate phosphor. 098124986 50 201011092 Fig. 5 is a graph showing the average particle diameter of η and FSSS method (Fisher Subsieve Sizer method) in the aluminate phosphor represented by the general formula (CexTUaC^ · yCMgrzMnJO · ηΑ12〇3 (but x=l) Fig. 6 is a correlation diagram showing the correlation between y and luminance in the aluminate phosphor represented by the general formula (CexTbrxhC^ · yCMghzMnJO · ηΑ1203 • (but z=0), and the correlation between n and luminance. Fig. 7 is a luminescence spectrum of each of the phosphors of Examples 30 to 34 and Comparative Example 6. Fig. 8 is an enlarged view of the main peak of the graph shown in Fig. 7. Fig. 9 is a graph showing the respective luminescence spectra of the phosphors of Examples 38 and 39 and Comparative Examples 8 and 9. Fig. 10 is a view showing the respective excitation spectra of the phosphors of Examples 38 and 39 and Comparative Examples 8 and 9. Fig. 11 is a correlation diagram showing the X and 1/10 afterglow time in the general formula of the fluorate phosphor represented by the general formula (CexTUaC^ · · ηΑ12〇3 10 (but ζ = 0). Fig. 12 is a graph showing the correlation between enthalpy and brightness in the general formula of the aluminate phosphor shown by the general formula (CexTbi_x) 2 〇 3 · yCMghzMnJO · η Α 1203 . (but z = 0). To show the correlation between y and 1/10 afterglow time in the general formula in the aluminate phosphor shown by the general formula (CexTbbxhC^ · yCMgi.JVtnJO · 11AI2O3 (but z = 0). 098124986 51 201011092 Fig. 14 is a graph showing the correlation between y and luminance in the general formula in the aluminate phosphor represented by the general formula (CexTbuxhO yiMgi-zMnJO · η Α 1203 (but z = 0). Correlation diagram between η and 1/10 afterglow time in the general formula in the aluminate phosphor represented by the formula (CexTbbxhC^ · yiMgrzMnJO · ηΑ1203 (but z=0). Fig. 16 is a graph showing the correlation between η and luminance in the general formula of the aluminate phosphor represented by the general formula (CexTbbxhOs · yiMgkMnJO · ηΑ1203 (but ζ = 0). 098124986 52

Claims (1)

201011092 七、申請專利範圍: 1.一種鋁酸鹽螢光體,其特徵為以一般式所示: ^CexTbi-x)2〇3 * y(Mgi.zMnz)0 · ηΑ1203 (但,式中,X、y、z&amp;n於〇&lt;χ&lt;1時,為分別滿足 1.8、、7$η之條件的數,χ= i時,為滿足 〇.2Sy$1.8、O.lszy、7^η 之條件的數)。201011092 VII. Patent application scope: 1. An aluminate phosphor characterized by the general formula: ^CexTbi-x)2〇3 * y(Mgi.zMnz)0 · ηΑ1203 (However, in the formula, When X, y, z &amp;n is 〇&lt;χ&lt;1, it is a number satisfying the conditions of 1.8, 7$η, respectively, and when χ=i, it satisfies 〇.2Sy$1.8, O.lszy, 7^η The number of conditions). 參 2·如申請專利範圍第1項之鋁酸鹽螢光體,其中,於上述 一般式中,X=1、〇.3$d 2。 3.如申4專利範圍第2項之鋁酸鹽螢光體,其中,於上述 一般式中,X=1、0.7各yg 2。 4’如申5月專利圍第2或3項之銘酸鹽螢光體,其中,於 上述一般式中 5. 一種銘酸鹽螢光體,其為至少由鈽(Ce)、猛(Μη)、鎂 (g) ^S(Al)及氧(〇)所構成之榮光冑其特徵為以波長 發時波長別腿之發光強度相對於 518證之發光強度之比為未滿15%。 6. 如申請專利範圚给 固第5項之鋁酸鹽螢光體,其中,上述螢 光體為以一般式〜 一 %τνχ)2〇3 · ^^MgbzMnJO · nAl2〇3 表 示’且一般式中,X、ν y、z及η分別為滿足x=i、〇.2SyS1.8、 〇·_1、7“之條件的數。 7. 如申請專利範園 间第1項之鋁酸鹽螢光體,其中,上述一 般式中,X為〇&lt;XC1 y 為 0.8^y$ 1·6。 098124986 53 201011092 8. 如申請專利範圍第7項之鋁酸鹽螢光體,其中,上述一 般式中,X為0.5$χ$〇.9。 9. 如申請專利範圍第1至3項中任一項之鋁酸鹽螢光體, 其中,上述一般式中,n為11$η。 10. 如申請專利範圍第7至9項中任一項之鋁酸鹽螢光 體’其中’上述一般式中,z為z=〇。 11. 如申請專利範圍第丨項之鋁酸鹽螢光體,其中,上述 一般式中,0.68Sxg0.95,z=0。 12. 如申請專利範圍第u項之鋁酸鹽螢光體,其中,上述 一般式中,0.7Sx$〇.85。 13‘一種鋁酸鹽螢光體,其為至少由鈽(Ce)、轼(Tb)、鎂 (Mg)、銘(A1)及氧(〇)所構成的螢光體,其特徵為&quot;I。殘光 時間為6.4ms以下。 14. 如申明專利範圍第1至13項中任一項之銘酸鹽螢光 體’其中’藉由被覆物質將表面進行塗敷處理。 15. 如申請專利範圍第14項之鋁酸鹽螢光體,其中,上述 被覆物質為稀土類金屬的碳酸鹽。 16. 如申請專利範圍第15項之鋁酸鹽螢光體其中,上述 稀土類金屬之碳酸鹽的被覆量,相對於螢光體為〇.〇5〜5重 量%。 17_ —種鋁酸鹽螢光體之製造方法,其特徵為ce、Tb、 Mg、Μη及A1之化學計量組成式為以申請專利範圍第丄至 098124986 54 201011092 ' 4及6至項中任-項之比例將Ce化合物、几化合物、 Mg化合物、Mn化合物、及AJ化合物予以混合並鍛燒。 18.-種減鹽螢光體之製造方法,其特徵為〜丁卜 Mg、Mn、及A1之化學計量組成式為以申請專利範圍第^ 至4及6至12項中任—項之比例,將可藉由加熱變成筛(Ce) 之氧化物的Ce化合物、可藉由加熱變成寧)之氧化物的 Tb 4匕合物、可藉由加熱變成鎂(Mg)之氧化物的吨化合物、 ❹可藉由加熱變成摩啦氧化物的合物、以及可藉由 加熱變成銘⑽之氧化物的A1化合物予以混合並鍛燒。 A-種螢光燈,其特徵為使用申請專利範圍第別項 中任一項之鋁酸鹽螢光體。 20.如”專利範圍第19項之螢光燈,其中,上述榮光燈 為冷陰極螢光燈。 儿-種冷陰極榮光燈,其特徵為以中請專利範圍第^至 -6項中任-項之_鹽螢光體作為綠色螢光體,以謂殘 時間為L〇mS以下之螢光體作為藍色螢光體,U謂殘 1為3.Gms以下之螢光體作為紅色鸯光體,使用 光膜。 22.如申請專利範圍第21項之冷陰極螢光燈,其中,上述 藍色螢光體為EU賦減· _灰石$光體或㉛賦活頷· 鎮紹酸鹽螢総,上述紅色螢光體為Eu賦活氧偏乙螢光體 或Eu賦活鈒酸紀鸯光體。 098124986 55 201011092 23. —種背光單元,其特徵為使用申請專利範圍第19或20 項之螢光燈、或申請專利範圍第21或22項之冷陰極螢光燈。 24. —種液晶顯示裝置,其特徵為使用申請專利範圍第23 項之背光單元,使其擬似脈衝驅動。 098124986 56An aluminate phosphor according to the first aspect of the patent application, wherein, in the above general formula, X = 1, 〇.3$d 2 . 3. The aluminate phosphor of claim 2, wherein in the above general formula, X = 1, 0.7 each yg 2 . 4', for example, in the second or third term of the patent patent, the acid salt phosphor, wherein, in the above general formula, a kind of acid crystal phosphor, which is at least 钸 (Ce), 猛 (Μη ), magnesium (g) ^S (Al) and oxygen (〇) is characterized by a ratio of the luminous intensity of the wavelength-independent wavelength to the luminous intensity of the 518 proof of less than 15%. 6. For example, if the patent application is to provide a fixed amount of the aluminate phosphor of the fifth item, wherein the above-mentioned phosphor is expressed by the general formula ~1% τνχ)2〇3 · ^^MgbzMnJO · nAl2〇3' In the formula, X, ν y, z, and η are the numbers satisfying the conditions of x=i, 〇.2SyS1.8, 〇·_1, and 7′, respectively. a phosphor, wherein, in the above general formula, X is 〇 &lt; XC1 y is 0.8^y$1·6. 098124986 53 201011092 8. Aluminate phosphor according to claim 7 of the patent application, wherein In the general formula, X is 0.5$χ$〇.9. 9. The aluminate phosphor according to any one of claims 1 to 3, wherein, in the above general formula, n is 11$η. 10. The aluminate phosphor of any one of claims 7 to 9 wherein 'in the above general formula, z is z = 〇. 11. Aluminate fluorite as claimed in the scope of claim The light body, wherein, in the above general formula, 0.68 Sxg 0.95, z = 0. 12. The aluminate phosphor of claim u, wherein, in the above general formula, 0.7 Sx $ 〇.85. 13' an aluminate a phosphor which is a phosphor composed of at least cerium (Ce), strontium (Tb), magnesium (Mg), indium (A1), and oxygen (〇), and is characterized by &quot;I. The afterglow time is 6.4ms or less. 14. The strontium silicate phosphor of any one of claims 1 to 13 wherein the surface is coated by a coating material. 15. As claimed in claim 14 An aluminate phosphor, wherein the coating material is a carbonate of a rare earth metal. 16. The aluminate phosphor of claim 15 wherein the amount of the rare earth metal carbonate is relatively The phosphor is 〇.〇5~5 wt%. 17_- A method for producing aluminate phosphor, characterized in that the stoichiometric composition of ce, Tb, Mg, Μη and A1 is in the scope of patent application丄 to 098124986 54 201011092 'The ratio of any of items 4 and 6 to the item - Ce compound, several compounds, Mg compound, Mn compound, and AJ compound are mixed and calcined. 18. - Production of salt-reducing phosphor The method is characterized in that the stoichiometric composition formula of ~butb Mg, Mn, and A1 is based on the scope of the patent application. The ratio of any of items 4 to 6 to 12, which can be obtained by heating a Ce compound which becomes an oxide of a sieve (Ce), a Tb 4 composition which can be converted into an oxide of crystallization by heating, can be borrowed The ton compound which is heated to become an oxide of magnesium (Mg), ruthenium can be mixed and calcined by a compound which is heated to become a ruthenium oxide, and an A1 compound which can be converted into an oxide of the ingot (10) by heating. A-type fluorescent lamp characterized by using an aluminate phosphor according to any one of the claims. 20. The fluorescent lamp of claim 19, wherein the glory lamp is a cold cathode fluorescent lamp. The cherries-type cold cathode glory lamp is characterized by any of the patent scopes ^ to -6 - Item _ Salt phosphor is a green phosphor, and a phosphor having a residual time of L 〇 mS or less is used as a blue phosphor, and U is a residual phosphor of 3. Gms or less as a red 鸯22. A cold cathode fluorescent lamp according to claim 21, wherein the blue phosphor is a EU reduction _ 灰石$光体 or 31 活活颔·镇绍酸In the case of salt sputum, the above-mentioned red phosphor is an oxygen-emitting partial phosphor or Eu-activated strontium sulphate. 098124986 55 201011092 23. A backlight unit characterized by using the patent of the 19th or 20th patent A light lamp, or a cold cathode fluorescent lamp of claim 21 or 22. 24. A liquid crystal display device characterized in that the backlight unit of claim 23 is used to make it pseudo-pulsed. 098124986 56
TW098124986A 2008-07-24 2009-07-24 Aluminate phosphor and preparation method thereof, and fluorescent lamp and liquid crystal display device using the aluminate phosphor TW201011092A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008190855 2008-07-24
JP2008270155A JP2010095687A (en) 2008-10-20 2008-10-20 Aluminate phosphor, method for producing the same, cold cathode fluorescent lamp using the phosphor
JP2009061087A JP2010215701A (en) 2009-03-13 2009-03-13 Aluminate phosphor, method for producing the same, and cold cathode fluorescent lamp using the phosphor

Publications (1)

Publication Number Publication Date
TW201011092A true TW201011092A (en) 2010-03-16

Family

ID=41570407

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098124986A TW201011092A (en) 2008-07-24 2009-07-24 Aluminate phosphor and preparation method thereof, and fluorescent lamp and liquid crystal display device using the aluminate phosphor

Country Status (2)

Country Link
TW (1) TW201011092A (en)
WO (1) WO2010010947A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432934B (en) * 2020-11-05 2021-07-06 北京中科生仪科技有限公司 Emitted light detection method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3599914B2 (en) * 1996-08-08 2004-12-08 株式会社東京化学研究所 Method for producing aluminate-based phosphor
JP3366987B2 (en) * 1997-03-27 2003-01-14 株式会社東京化学研究所 Method for producing aluminate phosphor
JP4199530B2 (en) * 2001-11-15 2008-12-17 化成オプトニクス株式会社 Fluorescent substance for mercury vapor discharge lamp and mercury vapor discharge lamp
JP4303989B2 (en) * 2003-02-14 2009-07-29 化成オプトニクス株式会社 Fluorescent substance and fluorescent lamp
JP2006274088A (en) * 2005-03-29 2006-10-12 Nichia Chem Ind Ltd Uv excited luminescent phosphor, mixed phosphor having the same, and fluorescent lamp and cold cathode fluorescent lamp using the same
JP4702565B2 (en) * 2007-06-18 2011-06-15 日亜化学工業株式会社 Manganese-activated rare earth aluminate phosphor and fluorescent lamp using the same

Also Published As

Publication number Publication date
WO2010010947A1 (en) 2010-01-28

Similar Documents

Publication Publication Date Title
KR100926898B1 (en) Deep red phosphor and method for preparing same
EP0908502B1 (en) Aluminate phosphor, process for preparing the same, and vacuum ultraviolet-excited light emitting device
TW200828386A (en) Blue luminance alkaline earth chlorophosphate fluorescence useful in cold cathode, cold cathode fluorescent lamp, and color liquid crystal dispaly
JP4561194B2 (en) Alkaline earth aluminate phosphor for cold cathode fluorescent lamp and cold cathode fluorescent lamp
JP2000144130A (en) Red light-emitting fluorescent material and luminous screen using the same
US9045690B2 (en) Silicate luminescent material and production method thereof
JP4770160B2 (en) Phosphor for UV-excited light emitting device
JPH09143464A (en) High-luminance long-afterglow phosphorescent material and its production
TW201011092A (en) Aluminate phosphor and preparation method thereof, and fluorescent lamp and liquid crystal display device using the aluminate phosphor
JP2000034480A (en) Phosphorescent phosphor
JP3098266B2 (en) Light-emitting composition and fluorescent lamp
JP2863160B1 (en) Phosphorescent phosphor
JP2001172625A (en) Vacuum ultraviolet excitable fluorescent substance and light emitting device using the same
JP2008308634A (en) Manganese-activated rare earth aluminate phosphor and fluorescent lamp using the same
JP3575821B2 (en) Phosphor and fluorescent lamp using the same
JPH0885787A (en) Aluminate phosphor
JP2003234089A (en) Cold cathode discharge tube and unit for lighting the same
JP2011202002A (en) Phosphor
JP2009102524A (en) Fluorescent body and fluorescent lamp using the same
JP2011074268A (en) Terbium-activated rare earth magnesium aluminate phosphor, method for producing the same, as well as fluorescent lamp for backlight and liquid crystal display device using the phosphor
JP2006073209A (en) Fluorescent lamp
JPH04270782A (en) Stimulable phosphor and fluorescent lamp using the same
JPH08143863A (en) Aluminate fluorescent substance
JP2004244614A (en) Green light emitting phosphor and fluorescent lamp using it
JP2010215701A (en) Aluminate phosphor, method for producing the same, and cold cathode fluorescent lamp using the phosphor