201010682 九、發明說明: 【發明所屬之技術領域】 本發明係為一種關節植入物結構以及導引模板纟士構,特別 為一種應用於置換受損骨組織之關節植入物結構及3導引模= 【先前技術】 傳統的關節置換術會切除大部分或全部關節骨頭,造成病 ❹患受到相當大創傷,其缺點是術後復原慢,且曰後若需再進^ -第二次的置換時,將會有相當的困難度。隨著科技的進步,2 •工關節置換術已朝向微創手術化,人工植人物也朝向小型化, 目的很清楚,就是降低病患的創傷及所導致的副作用。因此, 進行人工關節置換術時,需減少健康骨絡的損傷,所切除之受 損區骨絡大小需在術前審慎診斷,能越小越好。又人工關節= 入體中之後需緊密固定於骨路上,以負荷日常活動之所需,否 ❹之=位等術後問題之可能’更嚴重時則 如中華民國發明專利第1231755號「插置式關節植入物及 該植入物之製造方法」中所揭露之—種插置式關節植入物,其 士有:厂上表面以及一下表面。其中上表面係與一關節之一第 β節面相對’以及下表面係與關節之—第二關節面相對。此 =表面或下表面中至少—者具有—種三維形狀而三維形 ·,、實質上匹配第-關節面及第二關節面t之—者之形狀。其 目的係在手術前製作與關節之受損部位相同之植人物,以避免 201010682 手術過程中造成過多的骨質量流失。 上述之先前技術雖提出與關節面相匹配之插置式關節植 入物結構’但當插置式關節植人物結構植人於關節中時,由於 Μ處之㈣須負荷大量日常活動之使用,且不同之使用姿 勢’會產生來自於不同方向之作用力,導致插置式關節植入物 植結構有產生移位之可能。 典又由於插置式關節植人物結構係、使用―錫狀裝置輔助與 骨=連接’然而此種錯狀裝置僅可使得插置式關節植入物結構 ❹固^於月絡之表面,因此在使用一段時間之後便會出現鬆動、 脫洛、移位等問題,導致患者術後生活品質受到影響。 【發明内容】 本發明係為一種關節植入物結構以及一種導引模板結 構’藉由使用植入物單元置換骨絡受損部,且植入物單元係與 固定件互相卡接結合,而固定件則用以固設於骨骼上。因此可 使得植人物單元緊密固定於㈣上,達到長㈣使用亦不會產 ©生鬆動現象之功效。 而導引模板結構係用以分別幫助鑽孔機及銑刀於骨骼上 鑽出固定件之正確固定方位及據以銑出與植人物單元相容之 =槽’使得岐件以及與固定件結合之植人物單元可正禮地固 疋於骨骼中,因此可避免植入時的不當接合。 為達上述功效,本發明提供一種關節植入物結構,其包 括-植入物單元,其具有:一第一表面;_第二表面其係 與第一表面之周緣相接,且第二表面與x_y平面平行之任一戴 7 201010682 :係二-類橢圓形’又第二表面具有一第一側面、一第二側 之⑽:側面及一第四側面;—第三表面,其係與第二表面 j緣相接,並設置於第-表面之相對位置,又第三表面係鱼 月骼受損部周遭骨骼表面匹配;以及至少一結合部,1係步 =於第-表面;以及至少一固定件,其具有:一支撐單元,其 -一螺栓結構,·以及-卡接單^ ’係由支樓單元延伸形成,且 卡接單元係與結合部結合為一體。201010682 IX. Description of the Invention: [Technical Field] The present invention relates to a joint implant structure and a guide template gentleman structure, in particular to a joint implant structure and a 3-guide for replacing damaged bone tissue. Introduction = [Prior Art] Traditional arthroplasty removes most or all of the joint bones, causing considerable trauma to the disease. The disadvantage is that the postoperative recovery is slow, and if you need to re-enter it later - the second time There will be considerable difficulty in the replacement. With the advancement of technology, 2 • Arthroplasty has been oriented towards minimally invasive surgery, and artificial implants have also been miniaturized. The purpose is clear, that is, to reduce the trauma and side effects of patients. Therefore, when performing artificial joint replacement, it is necessary to reduce the damage of the healthy bone network, and the size of the bone area of the damaged area to be removed should be carefully diagnosed before surgery, and the smaller the better. And artificial joints = need to be tightly fixed on the bone road after entering the body, to load the daily activities, or the possibility of postoperative problems such as the position = more serious, such as the Republic of China invention patent No. 1231755 "plug-in The joint implant and the method of manufacturing the same are disclosed in the invention. The insert joint implant has the following surfaces: the upper surface of the plant and the lower surface. Wherein the upper surface is opposite to the one of the one of the joints and the lower surface is opposite to the second joint. This = at least one of the surface or the lower surface has a three-dimensional shape and a three-dimensional shape, which substantially matches the shape of the first joint surface and the second joint surface t. The goal is to create the same implanted person as the damaged part of the joint before surgery to avoid excessive bone mass loss during the 201010682 procedure. Although the prior art described above proposes an interposed joint implant structure that matches the articular surface, but when the inserted joint implanted person structure is implanted in the joint, the use of a large amount of daily activities is required due to the use of the squatting place, and the difference is different. The use of the posture 'will produce forces from different directions, resulting in the possibility of displacement of the inserted joint implant structure. The code is also inserted into the joint structure of the character, using the "tin-like device to assist with the bone = connection". However, the sinusoidal device can only make the inserted joint implant structure sturdy on the surface of the moon, so it is used. After a period of time, problems such as loosening, detachment, and displacement may occur, which may affect the quality of life of patients after surgery. SUMMARY OF THE INVENTION The present invention is a joint implant structure and a guiding template structure 'by replacing the damaged portion of the bone by using the implant unit, and the implant unit and the fixing member are snap-fitted to each other, and The fixing member is fixed to the bone. Therefore, the planting unit can be tightly fixed on (4), and the long (four) use will not produce the effect of the loosening phenomenon. The guiding template structure is used to respectively help the drilling machine and the milling cutter to drill the correct fixing orientation of the fixing member on the bone and to mill out the groove corresponding to the implanting unit to make the element and the fixing member The planting unit can be fixed in the bones, thus avoiding improper engagement during implantation. To achieve the above effects, the present invention provides a joint implant structure comprising: an implant unit having: a first surface; a second surface attached to a periphery of the first surface, and a second surface Parallel to the x_y plane, wearing 7 201010682: a second-class elliptical shape and a second surface having a first side, a second side (10): a side surface and a fourth side surface; a third surface The second surface j is spliced and disposed at a relative position of the first surface, and the third surface is matched to the surface of the bone surrounding the damaged portion of the fish skeletal; and at least one joint, 1 step = at the first surface; At least one fixing member has: a supporting unit, a bolt structure, and a latching unit are formed by extending the branch unit, and the engaging unit is integrated with the joint portion.
為達上述功效,本發明又提供一種導引模板結構,其包 括:-第四表面,其係與一植入物單元結構中之一第三表面相 匹配,第五表面,其係與第四表面之周緣相接;一第六表面, 其係與第五表面之周緣相接,並與第四表面相對設置;以及至 少一導引孔,其係穿透第四表面及第六表面。 藉由本發明的實施,至少可達到下列進步功效: 一、固定件之設計為可深入嵌設於骨骼上,用以幫助植入物單 元之固定。 二、藉由植入物單元與固定件的卡接設計,使得關節植入物結 ® 構長期使用也不會產生移位、鬆動或脫落。 二' 植入物單元的類橢圓結構係可調整與骨骼缺陷周遭之骨 組織形狀匹配,使得植入物單元植入時,減少挖除骨骼缺 陷周遭之健康骨組織。 四、導引模板結構可使得固定件正確地固設於骨骼中,並幫助 與固定件接合之植入物單元精確的固設。 為了使任何熟習相關技藝者了解本發明之技術内容並據 以實施,且根據本說明書所揭露之内容、申請專利範圍及圖 201010682 式’任何熟習相關技藝者可輕易地理解本發明相關之目的及優 點,因此將在實施方式中詳細敛述本發明之詳細特徵以及優 【實施方式】 參 第1A圖係為本發明之一種關節植入物結構1〇立體分解實 施例圖一。第1B圖係為本發明之一種關節植入物結構1〇立體 分解實施例圖二。第2A圖係為本發明之一種植入物單元2〇 立體實施例圖-。第2B圖係為本發明之一種植入物單元2〇 •立體實施例圖二。第3A圖係為沿第2A圖中A_A剖線之剖視 ,實施顧-。第3B圖係為沿第2A圖中A_A剖線之剖視實施 例圖二。第3C圖係為沿第2A圖中Β_β剖線之立體剖視實施 例圖。第3D圖係為沿第2B圖中B_B剖線之立體剖視實施例 圖。第从圖係為本發明之一種固定件3〇立體實施例圖一。第 4B圖係為本發明之一種固定件3〇立體實施例圖二。第化圖 係為本發明之-種固定件3〇立體實 β發引模板結構姻與—^ 402之立體分解實施例圖一。’ 、、,,。構 、曰虚, 弟乂3圖係為第5Α圖結合後之俯 視實施例圖。第5C圖係為本發 後之俯 盥-種敍刀心… 鑽孔導引模板結構403 圖=刀導肠板結構4〇4之立體分解實施例圖二。第仍 圖係為第5 C圖結合後之俯視實施例圖。第$ 一種植入物單元20立體實施 ^ -之 種導引槎A j固—第犴圖係為本發明之一 種導㈣板結構4〇立體分解實施例圖 之一種導引糍杯社接^ 弟A圖係為本發明 導引拉板結構40應用於骨路5〇上之剖視實施例圓。第 9 201010682 6B圖係為本發明之一種導引模板結構4〇應用 立體實施例圖。第7A圖係為本發明之一種固 上之 5〇結合之分解實施例圖一。第7B圖係為本發明:與:路 3〇與骨絡50結合之分解實施例圖二。第8A圖 =件 本發明之一種鑽孔導引模板結構4〇3、銑刀導 糸為 與植入物單元20之應用流程實施例圖。 、板結構404 如第圖以及第1B圖所示,本實施例係為—種 入物結構10,其包括:-植入物單元2〇以及至少—固定件%。 參又植入物單元20與固定件3〇係相互卡接結合為一體。 如第2A圖及第2B圖所示,植入物單元2〇具有:一第一 表面21,一第二表面22 ;—第三表面23 ;以及至少―結合部 24。又植入物單元2〇係可以為一金屬材質或一合金材質。口 ° 植入物單元2G之第-表面2卜其係可以為—平面或一弧 面’且第-表面21係、為植入物單元2〇之底面,又植入物單元 20之第二表面22係與植入物單元2〇之第一表面21周緣相接。 如第3A圖及第3B圖所示’植入物單元20之第二表面22 具有一第一側面221、一第二側面222、一第三侧面223及一 第四侧面224。其中,當第一側面221及第三側面223係為一 平面或-弧面,且第二側面222及第四側面224係為一弧面或 圓弧面時’係使得第二表面22之與平行之任一截面形 成類橢圓形,因此植入物單元2〇為介於長方體與擴圓體間 之類橢圓柱或類橢圓錐狀結構。又第—側面221、第二側面 222、第三側面223及第四側面224皆可以為一粗糙面。 由於植入物單元20中第二表面22為類糖圓柱或錐狀結 201010682 構,其所具有的四個側面可設計於近似於骨骼受損部51之形 狀,如此使植入物單元20與骨骼受損部51經銑削成型後之形 狀趨近一致,因此可避免切除過多骨骼受損部51周遭之健康 骨骼50。 植入物單元20之第一表面21或植入物單元20之第二表 面22上係可以進一步結合有一生物活性材料,例如:氫氧基 填灰石(hydroxyapatite,HA )。當使用植入物單元20置換骨路 受損部51時,植入物單元20之第一表面21或植入物單元20 @之第二表面22上之生物活性材料,可使得骨骼受損部51周遭 之骨骼50易於附著並生長於植入物單元20之第一表面21或 植入物單元20之第二表面22上,使得植入物單元20可與周 遭之骨骼50結合為一體,藉此可強化植入物單元20與骨骼受 損部51周遭之骨骼50間的固定。 如第3C圖及第3D圖所示,植入物單元20之第三表面23 係與植入物單元20之第二表面22之周緣相接,並相對設置於 植入物單元20之第一表面21。植入物單元20之第一表面21 ❹與第二表面22相接之邊緣所形成之第一截面積係小於植入物 單元20之第三表面23與第二表面22相接之邊緣所形成之第 二載面積,使得植入物單元20形成類似倒橢圓錐狀之上寬下 窄形狀,以方便植入及拆卸。 又第一表面21與第三表面23亦可以具有相同之形狀,且 第一戴面積可以等於第二戴面積,使得植入物單元20形成一 類橢圓柱結構。當植入物單元20用以置換骨骼受損部51時, 植入物單元20之第三表面23係用以與被置換之骨骼受損部51 201010682 的周遭骨骼表面53匹配,使得植入物單元20之第三表面23 與周遭骨骼表面53形成一連續表面。 如第3C圖及第3D圖所示,植入物單元20係具有結合部 24,其係形成於植入物單元20中之第一表面21,用以與關節 植入物結構10之固定件30相互卡接結合。 如第1A圖以及第1B圖所示,固定件30具有:一支撐單 元31;以及一卡接單元32。支撐單元31係為一螺栓結構,且 卡接單元32係由支撐單元31延伸形成,且卡接單元32之外 ⑩形係與植入物單元20之結合部24相互匹配,使得卡接單元32 可與結合部24卡接結合為一體。又支撐單元31相對於卡接單 元32之另一側端部係進一步設有一引導部33。 植入物單元20之結合部24與固定件30之卡接單元32間 的卡接結合方式可以有多種結合方法,將依序說明如下: 如第1A圖所示,植入物單元20之結合部24係具有一第 一凹槽241,且結合部24之頂端係形成有一卡槽242時,固定 件30之卡接單元32間係形成有一第一擠壓空間321,又卡接 ❹單元32之頂部係分別向外形成至少二第一凸緣322。結合部 24頂端之卡槽242可用以與卡接單元32頂部之第一凸緣322 相互卡接結合為一體。而由於支撐單元31為螺栓結構,且支 撐單元31之側端部係設有引導部33,因此可藉由引導部33 之設置,用以引導固定件30深入及正確地固定於骨骼50之鑽 孔52中。 又如第1B圖所示,植入物單元20之結合部24係可以具 有至少一第一卡接部243與至少一第二卡接部244,且第一卡 12 201010682 與第二卡接部244係分別形成於第一表面2i,並於第 彳243與第二卡接部244之間形成有—第二擠壓 ‘有且第第一恤…3與第二卡接部244之頂部係分別向: 形成有一第二凸緣246。 卡接單元32之間係形成有一第二凹槽切,且卡接單 20 分別向内形成有一第三凸緣324。藉由植入物單元 鬌 $ 24之第二凸緣246,用以與固定件30中卡接單元 之第一凹槽323與第三凸緣324相互卡接結合為一體。又葬 固足件3G中支擇單^ 31的螺栓結構及蚊件30側端部幵^ ^之引導4 33 ’用以分別幫助固定件3〇深入及正確地引 定件30固定於骨骼5〇之鑽孔52中。 ,如第4ASj及第4B圖所示,固定件3〇之卡接單元以可 形成至少一第一凸緣322,例如二個或四個。又如第4A圖、 第4B圖及S 4C圖所示,固定件3〇可進一步具有一導引孔道 34,其係設置於貫穿較件3()長軸之中心位置。藉由導引孔 道34之設置,可使用自攻螺栓7〇…等,幫助固定件3〇固定於 骨路5G中。而藉由固定件3G之使用,當植人物單^ 2〇與固 定件30卡接結合後,可使得關節植入物結構1〇承受長時間使 用’且亦不產生移位、鬆動等問題。 關節植入物結構10之應用可舉例來說:當人體關節,例 如膝關卽、競關卽、肩關節、肘關節或指頭關節…等之局部軟 骨區因病變或傷害,導致局部軟骨區表面出現凹凸不平之受損 時,可先以電腦斷層(Computed Tomography,CT)、核磁共振 (Magnetic Resonance Imaging,MRI)…等醫學常用之影像技 13 201010682 術進行關節造影取像。經由造影取像所提供之影像資訊,可藉 由影像分析軟體及電腦技術進一步重建出關節之三維空間影 像模型,以取得關節之内部組成結構以及受損軟骨區之外觀形 狀。 建立關節三維空間影像模型後,便可由影像模型上判讀出 關節之軟骨區受損部,又影像模型可計算出關節之軟骨區受損 部面積大小,用以選擇面積匹配之植入物單元2〇。此時,再藉 由逆向工程(Reverse Engineering)之嵌合曲面技術 ❿Fitting)幫助建構出關節之軟骨區受損前之表面形狀,接著以 多軸機械加工或快速成型等方式雕塑植入物單元2〇之第三表 面23 ’以及導引模板結構40之第四表面4卜使得經過雕;後 之植入物單元20之第三表面23,以及導引模板結構4〇之第四 表面41,可符合受損前關節之局部軟骨區表面。 因此可使用雕塑後之植入物單元2〇置換關節之軟骨區為 損部,且雕塑後之植入物單元20《第三表面23係能與關 受損之局部軟骨區周遭之軟骨表㈣順接合,使得整體關節之 ®軟骨區表面回復為受損前之平咖圓狐面。如此可以避免 節使用時的不斷摩擦,而導致植入軟骨區之植入物單元2〇 : 相對應之骨組織因摩擦而產生碎屬,使得植入物單元2現 裂痕或骨溶蝕現象而縮短了使用壽命。 而亦可藉由醫學影像技術重建出植入物單元2〇之 間影像模型,再搭配關節之影像_,藉由兩者影像料以: 擬定位固定件30之適當植人方位。接著彻交互最近點料 (▲active C1〇sest Point,ICP),使得於影像模型上模擬之固 14 201010682 定件30植入方位可實際轉換至關節上,進而得知關節中軟骨 區需鑽孔之正確位置。因此可藉由使用方位量測裝置動態量測 鑽孔機轴向方位,並調整鑽孔機之軸向方位置上述之錢孔位 置’以正確無誤的於關節軟骨區上鑽孔,藉由鑽孔機形成之鑽 孔52用以植入固定件30 ’並且固定件30之卡接單元32亦可 與植入物單元20相互卡接結合’以使得植入物單元2〇可置換 受損前關節之局部軟骨區。 而為了於骨骼50鑽出正確位置之鑽孔52以植入固定件 ❹30,以及於骨骼50上銑出與植入物單元20相同尺寸或相容之 凹槽,可搭配使用一種導引模板結構40,如第5A圖、第5C 圖及第5F圖所示,導引模板結構40可以由一鑽孔導引模板結 構401、401,、403及一銑刀導引模板結構402、402’、404組 成。且鑽孔導引模板結構4(Π、403及銑刀導引模板結構402、 404係分別具有:一第四表面411、412、413、414 ; 一第五表 面 421、422、423、424 ; —第六表面 431、432、433、434 ; 以及至少一導引孔441、442、443、444。 ❹ 銑刀導引模板結構402、404之第四表面412、414係為一 與骨骼受損部51表面相匹配之曲面,且第四表面412、414亦 可以使用與植入物單元20之第三表面23相似之製作方式。 而鑽孔導引模板結構401、403之第四表面411、413係與 銑刀導引模板結構412、414之第六表面432、434相匹配。因 此如第5Α圖、第5C圖及第5F圖所示,鑽孔導引模板結構40卜 403與銑刀導引模板結構402、404係可以相互貼合並結合為一 體。並由於位於鑽孔導引模板結構401、403之第四表面411、 15 201010682 413可進一步具有突出部461、463,以及位於銑刀導引模板結 構402、404之第六表面432、434可進一步具有凹槽部462、 464,又突出部461、463係可以與凹槽部462、464卡接結合, 因此鑽孔導引模板結構401、403與銑刀導引模板結構402、404 上下卡接結合。 又鑽孔導引模板結構401、403與銑刀導引模板結構402、 404之第五表面421、422、423、424係為一平面或弧面,且與 第四表面411、412、413、414之周緣相接。 | 鑽孔導引模板結構401、403與銑刀導引模板結構402、404 之第六表面43卜432、433、434係與第五表面42卜422、423、 424之周緣相接,並與第四表面4U、412、413、414相對設置,, 且第六表面431、432、433、434係可以為一平面或一弧面。 鑽孔導引模板結構401、403與銑刀導引模板結構402、404之 導引孔44卜442、443、444係為穿過第六表面43卜432、433、 434及第四表面411、412、413、414之孔洞。 上述之鑽孔導引模板結構401、403及銑刀導引模板結構 ©402、404皆可以為任意之形狀,而不限定為矩形。 而鑽孔導引模板結構401、403及銑刀導引模板結構402、 404上之導引孔44卜442、443、444,於鑽孔導引模板結構4〇卜 403及銑刀導引模板結構402、404結合後,如何應用於骨骼 50上,其係說明如下: 如第5A圖所示,上方鑽孔導引模板結構401係可以具有 三個圓柱形導引孔441及兩個長方形導引槽451,而下方銑刀 導引模板結構402係可以具有一類橢圓形導引孔442。 16 201010682 如第5B圖所示,結合第5A圖中鑽孔導引模板結構401 與銑刀導引模板結構402,其係可形成具直邊之類橢圓形導引 孔442且具有三個圓柱形導引孔441,因此藉由使用鑽孔導引 模板結構401與銑刀導引模板結構402,係可於骨骼50上鑽出 及銑出一具直邊之類橢圓形凹槽54,並於類橢圓形凹槽542 中形成有三個圓柱形導引孔441。而類橢圓形凹槽54上之直 邊,係由銑刀依長方形導引槽451銑削成型。 又如第5C圖所示,上方之鑽孔導引模板結構403係可以 參具有三個圓柱形導引孔443,而下方之銑刀導引模板結構404 則可以為一具有複數凹部474之類橢圓形導引孔444,且凹部 之數目係與鑽孔導引模板結構403中圓柱型導引孔443之數量 相匹配。 如第5D·圖所示,結合第5C圖中之鑽孔導引模板結構403 與銑刀導引模板結構404,其係可形成具有複數凹部474之類 橢圓形導引孔444,並具有三個圓柱形導引孔443。因此利用 鑽孔導引模板結構403與銑刀導引模板結構404,係可於骨骼 © 50上鑽出一具有複數凹部474之類橢圓形凹槽54,並於類橢 圓形凹槽54中形成有三個圓柱形導引孔443。 除此之外,如第5F圖所示,鑽孔導引模板結構40Γ中之 二長方形導引槽451’係可以分別具有一弧邊,並配合下方銑刀 導引模板結構402之類橢圓形導引孔442,因此藉由第5F圖 中之鑽孔導引模板結構401’及導引模板結構402’,可以於骨骼 50上鑽出不具直邊之類橢圓型凹槽54。 又銑刀導引模板結構402、404之類橢圓形導引孔442、 17 201010682 444,係與植入物單元20之第二表面22最大戴面積相同,因 此可幫助銑刀80於骨骼受損部51上銑出與植入物單元20相 同尺寸或相容之凹槽54,因此可減少挖除骨骼受損部51周遭 之健康骨骼50。 舉例來說,當植入物單元20之形狀如第5E圖所示時,為 於骨骼50上形成與植入物單元20相同尺寸或相容之凹槽54, 係可以搭配如第5C圖所示之鑽孔導引模板結構403與銑刀導 引模板結構404。由於銑刀導引模板結構404中之具有複數凹 ⑩部474之類橢圓形導引孔444,其係與植入物單元20之形狀相 同,使得可以形成如第5D圖所示之具有複數凹部474之類橢 圓形凹槽54,所以可減少挖除骨骼受損部51周遭之健康骨骼 50 ° 如第6A圖所示,導引模板結構40除以上所述之組合結構 外,亦可以單獨使用,其係具有:一第四表面41 ; 一第五表面 42 ; —第六表面43 ;以及至少一導引孔44。 導引模板結構40之第四表面41係為一與骨骼受損部51 ❹表面相匹配之曲面,且第四表面41之製作方式係與植入物單 元20之第三表面23相似。又第五表面42係為一平面或一弧 面,且與第四表面41之周緣相接。第六表面43係與第五表面 42之周緣相接,並與第四表面41相對設置,且第六表面43 係可以為一平面或一弧面。導引孔44係為穿過第六表面43及 第四表面41之孔洞。 導引模板結構40之實施方式,可如下列所述: 如第6A圖所示,導引模板結構40係藉由第四表面41與 201010682 骨骼受損部51表面貼合,當使用鑽孔機之鑽頭60沿著圓柱型 導引孔44於骨骼受損部51表面向下鑽孔時,導引模板結構40 之第六表面43係用以支撐鑽孔機及調控鑽孔深度。而圓柱型 導引孔44則可幫助鑽孔機之鑽頭60達到定位之功效,使得鑽 孔機於骨骼50上鑽出固定件30或自攻螺栓70之正確位置。 又如第6B圖所示,導引模板結構40亦可搭配銑刀80之 使用,藉由與植入物單元20之第二表面22最大截面積相同或 大於之類橢圓形導引孔44,幫助銑刀80於骨骼受損部51上銑 φ出與植入物單元20相同尺寸或相容之凹槽54,因此可減少挖 除骨骼受損部51周遭之健康骨骼50。且銑刀80之一底面81 係可與導引模板40之第六表面43貼合,用以控制銑刀80之 銑削深度。 如第7A圖所示,當使用鑽孔機、銑刀80與導引模板結構 40於骨骼50上形成鑽孔52及凹槽54之後,固定件30之支撐 單元31係用以插入鑽孔52中,且由於支撐單元31為一螺栓 結構且其端部具有引導部33,因此可使得固定件30深入且正 ®確地固設於骨骼50中。 如第7B圖所示,當使用具有導引孔道34之固定件30固 設於骨骼50上時,首先需進行一前置作業,其係將一尺寸與 導引孔道34相匹配之自攻螺栓70,藉由搭配第6A圖中之導 引模板結構40使用,使得自攻螺栓70可以沿著導引孔44植 入骨骼受損部51之表面,並向下鑽入骨骼50中,用以形成鑽 孔52。當形成鑽孔52之後,再使用具導引孔道34之固定件 30,沿著導引孔道34將固定件30套設於自攻螺栓70上,將 19 201010682 可使得固定件30準確且不偏斜地固設於鑽孔52中,並可利用 固定件30中支撐單元31之螺栓結構向下鎖入骨骼50中,用 以使得後續結合關節植入物結構10時,可以準確的結合,因 此將不會產生移位、鬆動等問題。 而自攻螺栓70、銑刀80、鑽孔導引模板結構403及銑刀 導引模板結構404之應用如第8A圖至第8F圖所示。 如第8A圖所示,當使用鑽孔導引模板結構403與銑刀導 引模板結構404設置於骨骼50上時,係可以使用自攻螺栓70 @自鑽孔導引模板結構403上方鎖入骨骼50中,當拿掉上層之 鑽孔導引模板結構403之後,係形成如第8B圖所示。此時自 攻螺栓70已被鎖入骨骼50中,且外露於銑刀導引模板結構404 外之部份自攻螺栓70,係用以與銑刀80結合。 如第8C圖所示,藉由使用銑刀80之前端套入自攻螺栓 70,因此自攻螺栓70可幫助銑刀80於定點鑽孔挖掘,且銑刀 導引模板結構404之導引孔444寬度,係可剛好卡住銑刀80 前端,且第六表面434與銑刀80之底面81貼合,用以幫助銑 ©刀80之定位,以使銑刀80銑孔時保持正確的深度,以避免造 成位置、形狀錯誤或過深之凹槽54。 如第8D圖所示,移除銑刀80與銑刀導引模板結構404 後,由於銑刀導引模板結構404之導引孔444尺寸係與植入物 單元20之第二表面22截面積相等,因此骨骼50上藉由銑刀 80形成之凹槽54可與植入物單元20為相同尺寸或相容之凹槽 54 ° 因此如第8E圖所示,於銑刀80形成之凹槽54中藉由自 20 201010682 攻螺栓70之定位,可於正確位置植入具導引孔道34之固定件 30。且又由於固定件30中支撐單元31為螺栓結構,因此固定 件30係可以藉由螺栓結構而向下鎖入骨骼50中,且當固定件 30向下鎖入時,係可以使用器械頂住凹槽54之底部,藉以控 制固定件30之鎖入深度。 而固定件30與植入物單元20之卡接方式係如第8F圖所 示。移除自攻螺栓70後固定件30之卡接單元32可用以與植 入物單元20之結合部24相互卡接結合。且由於植入物單元20 參之第三表面23與骨骼受損部51之周遭骨骼表面53相匹配, 使得可形成一連續且光滑之表面。 惟上述各實施例係用以說明本發明之特點,其目的在使熟 習該技術者能暸解本發明之内容並據以實施,而非限定本發明 之專利範圍,故凡其他未脫離本發明所揭示之精神而完成之等 效修飾或修改,仍應包含在以下所述之申請專利範圍中。 【圖式簡單說明】 ❿第1A圖係為本發明之一種關節植入物結構立體分解實施例圖 —- 〇 第1B圖係為本發明之一種關節植入物結構立體分解實施例圖 _一 〇 第2A圖係為本發明之一種植入物單元立體實施例圖一。 第2B圖係為本發明之一種植入物單元立體實施例圖二。 第3A圖係為沿第2A圖中A-A剖線之剖視實施例圖一。 第3B圖係為沿第2A圖中A-A剖線之剖視實施例圖二。 21 201010682 第3C圖係為沿第2A圖中B-B剖線之立體剖視實施例圖。 第3D圖係為沿第2B圖中B-B剖線之立體剖視實施例圖。 第4A圖係為本發明之一種固定件立體實施例圖一。 第4B圖係為本發明之一種固定件立體實施例圖二。 第4C圖係為本發明之一種固定件立體實施例圖三。 第5A圖係為本發明之一種鑽孔導引模板結構與一種銑刀導引 模板結構之立體分解實施例圖一。 第5B圖係為第5A圖結合後之俯視實施例圖。 @第5C圖係為本發明之一種鑽孔導引模板結構與一種銑刀導引 模板結構之立體分解實施例圖二。 第5D圖係為第5C圖結合後之俯視實施例圖。 第5E圖係為本發明之一植入物單元立體實施例圖三。 第5F圖係為本發明之一種鑽孔導引模板結構與銑刀導引模板 結構之立體分解實施例圖四。 第6A圖係為本發明之一種導引模板結構應用於骨骼上之剖視 實施例圖。 〇第6B圖係為本發明之一種導引模板結構應用於骨骼上之立體 實施例圖。 第7A圖係為本發明之一種固定件與骨骼結合之分解實施例圖 〇 第7B圖係為本發明之一種固定件與骨骼結合之分解實施例圖 二。 第8A圖至第8F圖係為本發明之一種鑽孔導引模板結構、銑刀 導引模板結構與植入物單元之應用流程實施例圖。 22 201010682 【主要元件符號說明】 關節植入物結構 植入物單元 第一表面 第二表面 第一側面 第二側面 第三側面 第四側面 10··............................. 20............................... 21............................... 22............................... 221............................. 222.............................In order to achieve the above effects, the present invention further provides a guiding template structure comprising: a fourth surface matching a third surface of an implant unit structure, a fifth surface, and a fourth surface The periphery of the surface meets; a sixth surface that is in contact with the periphery of the fifth surface and disposed opposite the fourth surface; and at least one guide hole that penetrates the fourth surface and the sixth surface. By the implementation of the present invention, at least the following advancements can be achieved: 1. The fixture is designed to be deeply embedded in the bone to aid in the fixation of the implant unit. Second, by the snap-fit design of the implant unit and the fixture, the joint implant structure will not be displaced, loosened or detached for long-term use. The elliptical structure of the ''implant unit' can be adjusted to match the shape of the bone tissue surrounding the bone defect, so that when the implant unit is implanted, the healthy bone tissue surrounding the bone defect is removed. 4. The guiding template structure allows the fixing member to be properly fixed in the bone and to assist in the precise fixation of the implant unit engaged with the fixing member. In order to make the technical content of the present invention known to those skilled in the art and to implement it, and according to the disclosure of the present specification, the scope of the patent application, and the drawings of 201010682, any person skilled in the art can easily understand the related objects of the present invention and The detailed features of the present invention and the preferred embodiments thereof will be described in detail in the embodiments. FIG. 1A is a perspective exploded view of a joint implant structure of the present invention. Fig. 1B is a perspective exploded view of a joint implant structure of the present invention. Figure 2A is a perspective view of an embodiment of an implant unit 2 of the present invention. Fig. 2B is an implant unit 2 of the present invention. Fig. 2 is a perspective embodiment. Fig. 3A is a cross-sectional view taken along the line A_A in Fig. 2A, and the implementation of Gu-. Fig. 3B is a cross-sectional view of Fig. 2 taken along the line A-A of Fig. 2A. Fig. 3C is a perspective view showing an example of a cross section taken along line Β_β in Fig. 2A. Fig. 3D is a perspective view showing a cross-sectional view taken along line B_B of Fig. 2B. The first drawing is a three-dimensional embodiment of the fixing member 3 of the present invention. Figure 4B is a perspective view of a three-dimensional embodiment of a fixing member of the present invention. The first embodiment is a three-dimensional decomposition example of the three-dimensional real-time β-element template structure of the present invention. ‘,,,,. The structure, the sputum, and the scorpion 3 are the diagrams of the top view of the combination of the fifth map. The 5C figure is the post-spinning-synthesis of the hairpin... The drilling guide template structure 403 Fig. = the three-dimensional decomposition example of the knife-guided sausage structure 4〇4. The figure is a plan view of the top view after the combination of FIG. 5C. The first embodiment of the implant unit 20 is a three-dimensional implementation of the guide 槎A j solid-the third diagram is a guide (four) plate structure of the present invention. The figure A is the cross-sectional embodiment circle of the guiding pull plate structure 40 applied to the bone path 5 of the present invention. The 9th 201010682 6B diagram is a perspective embodiment of a guide template structure of the present invention. Fig. 7A is a diagram showing an exploded embodiment of the combination of the present invention. Figure 7B is a second embodiment of the present invention: an exploded embodiment of the combination of the road 3 and the bone network 50. Fig. 8A is a diagram showing an application flow diagram of the drilling guide template structure 4?3 and the milling cutter guide of the present invention. Plate Structure 404 As shown in the figures and Figure 1B, this embodiment is an implant structure 10 comprising: - an implant unit 2A and at least - a fastener %. The implant unit 20 and the fixing member 3 are coupled to each other in a single body. As shown in Figures 2A and 2B, the implant unit 2 has a first surface 21, a second surface 22, a third surface 23, and at least a "bonding portion 24." Further, the implant unit 2 can be made of a metal material or an alloy material. The first surface of the implant unit 2G can be a plane or a curved surface and the first surface 21 is the bottom surface of the implant unit 2, and the second of the implant unit 20 The surface 22 is in contact with the periphery of the first surface 21 of the implant unit 2A. The second surface 22 of the implant unit 20 has a first side 221, a second side 222, a third side 223 and a fourth side 224 as shown in Figures 3A and 3B. Wherein, when the first side surface 221 and the third side surface 223 are a plane or a curved surface, and the second side surface 222 and the fourth side surface 224 are a curved surface or a circular arc surface, the second surface 22 is Any of the parallel sections forms an elliptical shape, so the implant unit 2〇 is an elliptical or elliptical cone-like structure between the rectangular parallelepiped and the rounded body. Further, the first side surface 221, the second side surface 222, the third side surface 223, and the fourth side surface 224 may be a rough surface. Since the second surface 22 of the implant unit 20 is a sugar-like cylinder or a tapered knot 201010682, the four sides thereof can be designed to approximate the shape of the bone-damaged portion 51, thus allowing the implant unit 20 to Since the shape of the skeletal damaged portion 51 after milling is approached, it is possible to avoid the removal of the healthy bone 50 around the damaged portion 51 of the bone. The first surface 21 of the implant unit 20 or the second surface 22 of the implant unit 20 can be further incorporated with a bioactive material such as hydroxyapatite (HA). When the bone-damaged portion 51 is replaced with the implant unit 20, the bioactive material on the first surface 21 of the implant unit 20 or the second surface 22 of the implant unit 20 can cause damage to the bone The 51-day-old bone 50 is easily attached and grown on the first surface 21 of the implant unit 20 or the second surface 22 of the implant unit 20 such that the implant unit 20 can be integrated with the surrounding bone 50, This strengthens the fixation of the implant unit 20 with the bone 50 surrounding the bone lesion 51. As shown in Figures 3C and 3D, the third surface 23 of the implant unit 20 is in contact with the periphery of the second surface 22 of the implant unit 20 and is disposed first relative to the implant unit 20. Surface 21. The first cross-sectional area formed by the edge of the first surface 21 of the implant unit 20 that meets the second surface 22 is smaller than the edge of the third surface 23 of the implant unit 20 that meets the edge of the second surface 22. The second loading area allows the implant unit 20 to form a wide, narrow, and narrow shape like an inverted elliptical cone to facilitate implantation and disassembly. Further, the first surface 21 and the third surface 23 may have the same shape, and the first wearing area may be equal to the second wearing area such that the implant unit 20 forms an elliptical cylindrical structure. When the implant unit 20 is used to replace the skeletal lesion 51, the third surface 23 of the implant unit 20 is adapted to match the surrounding bone surface 53 of the displaced skeletal lesion 51 201010682 such that the implant The third surface 23 of the unit 20 forms a continuous surface with the surrounding bone surface 53. As shown in Figures 3C and 3D, the implant unit 20 has a joint 24 that is formed on the first surface 21 of the implant unit 20 for attachment to the joint implant structure 10. 30 mutual card combination. As shown in Figs. 1A and 1B, the fixing member 30 has: a supporting unit 31; and a snap unit 32. The support unit 31 is a bolt structure, and the snap unit 32 is formed by the support unit 31, and the outer portion 10 of the snap unit 32 and the joint portion 24 of the implant unit 20 are matched with each other, so that the snap unit 32 is matched. It can be integrated with the joint portion 24 to be integrated. Further, the supporting unit 31 is further provided with a guiding portion 33 with respect to the other end portion of the engaging unit 32. The manner of the engagement between the joint portion 24 of the implant unit 20 and the snap-in unit 32 of the fixture 30 can be combined in various ways, as follows: As shown in FIG. 1A, the combination of the implant unit 20 The portion 24 has a first recess 241, and when the top end of the joint portion 24 is formed with a card slot 242, a first pressing space 321 is formed between the latching units 32 of the fixing member 30, and the latching unit 32 is further engaged. The top portion forms at least two first flanges 322 outwardly. The card slot 242 at the top of the engaging portion 24 can be used to be engaged with the first flange 322 at the top of the engaging unit 32. The support unit 31 is a bolt structure, and the side end portion of the support unit 31 is provided with a guiding portion 33. Therefore, the guiding portion 33 can be disposed to guide the fixing member 30 to be deeply and correctly fixed to the bone 50. In the hole 52. As shown in FIG. 1B, the joint portion 24 of the implant unit 20 can have at least a first engaging portion 243 and at least a second engaging portion 244, and the first card 12 201010682 and the second engaging portion 244 is formed on the first surface 2i, respectively, and a second pressing portion is formed between the second opening 243 and the second engaging portion 244, and the top of the first shirt 3 and the second engaging portion 244 are formed. A second flange 246 is formed to: respectively. A second recess is formed between the latching units 32, and a third flange 324 is formed inwardly of the latching unit 20, respectively. The second flange 246 of the implant unit 鬌 24 is used to be engaged with the first recess 323 and the third flange 324 of the latching unit in the fixing member 30. In the burial part 3G, the bolt structure of the single piece 31 and the end of the mosquito piece 30 are used to help the fixing member 3 〇 deeply and correctly and the guiding member 30 is fixed to the skeleton 5〇. In the bore 52. As shown in Figs. 4ASj and 4B, the engaging unit of the fixing member 3A can form at least one first flange 322, for example, two or four. Further, as shown in Figs. 4A, 4B, and 4B, the fixing member 3''''''''''''''''''''''' By the arrangement of the guide holes 34, the self-tapping bolts 7, etc. can be used to help the fixing member 3〇 be fixed in the bone path 5G. By the use of the fixing member 3G, when the implanting member 2 is engaged with the fixing member 30, the joint implant structure 1 can be subjected to long-term use and there is no problem such as displacement or looseness. The application of the joint implant structure 10 can be exemplified by the fact that when the human joints, such as the knee joints, the joints, the shoulder joints, the elbow joints or the finger joints, etc., are caused by lesions or injuries, the surface of the local cartilage area is caused. When there is damage to the unevenness, the joint imaging can be performed with the commonly used imaging technique 13 201010682 such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Through the image information provided by the angiography image, the three-dimensional image model of the joint can be further reconstructed by image analysis software and computer technology to obtain the internal structure of the joint and the appearance of the damaged cartilage area. After establishing the three-dimensional image model of the joint, the damaged part of the cartilage area of the joint can be read by the image model, and the image model can calculate the size of the damaged part of the cartilage area of the joint to select the area matching implant unit 2 Hey. At this time, the surface shape of the joint of the cartilage area of the joint is assisted by the reverse fitting technique (Fitting) of the reverse engineering, and then the implant unit 2 is sculpted by multi-axis machining or rapid prototyping. The third surface 23' of the crucible and the fourth surface 4 of the guiding template structure 40 are embossed; the third surface 23 of the implant unit 20, and the fourth surface 41 of the guiding template structure 4 Meets the surface of the local cartilage area of the damaged front joint. Therefore, the scaffolding unit 2 can be used to replace the cartilage area of the joint as a lesion, and the post-sculpture implant unit 20 "the third surface 23 can be associated with the damaged cartilage area of the local cartilage area (4) The splicing makes the surface of the whole joint® cartilage area return to the flat coffee fox face before the damage. In this way, the constant friction during the use of the knot can be avoided, and the implant unit 2 implanted in the cartilage area can be caused: the corresponding bone tissue is broken due to friction, so that the implant unit 2 is shortened by the crack or bone dissolution phenomenon. The service life. The image model between the implant unit 2〇 can be reconstructed by medical imaging technology, and then the image of the joint is used, and the two images are used to: position the appropriate implant position of the fixture 30. Then, the nearest point material (▲ active C1〇sest Point, ICP) is used to make the simulation of the solid model 14 201010682 on the image model. The orientation of the implant 30 can be actually converted to the joint, and then the cartilage area in the joint needs to be drilled. The correct location. Therefore, the axial direction of the drill can be dynamically measured by using the azimuth measuring device, and the position of the money hole of the drilling machine can be adjusted to accurately drill the hole in the articular cartilage area by drilling. The hole 52 formed by the hole machine is used to implant the fixing member 30' and the locking unit 32 of the fixing member 30 can also be engaged with the implant unit 20 to make the implant unit 2 〇 replaceable before the damage Local cartilage area of the joint. In order to drill the hole 52 in the correct position for the bone 50 to implant the fixture 30, and to mill the same size or compatible groove on the bone 50 as the implant unit 20, a guiding template structure can be used in combination. 40, as shown in FIG. 5A, FIG. 5C and FIG. 5F, the guiding template structure 40 may be guided by a drilling guide template structure 401, 401, 403 and a milling cutter guiding template structure 402, 402', 404 composition. The drilling guide template structure 4 (Π, 403 and milling cutter guiding template structures 402, 404 respectively have: a fourth surface 411, 412, 413, 414; a fifth surface 421, 422, 423, 424; - a sixth surface 431, 432, 433, 434; and at least one guiding hole 441, 442, 443, 444. The fourth surface 412, 414 of the milling cutter guiding template structure 402, 404 is damaged by the bone The surface of the portion 51 matches the curved surface, and the fourth surface 412, 414 can also be fabricated in a manner similar to the third surface 23 of the implant unit 20. The fourth surface 411 of the drill guide template structure 401, 403, The 413 series is matched to the sixth surfaces 432, 434 of the milling cutter guide template structures 412, 414. Thus, as shown in Figures 5, 5C, and 5F, the drill guide template structure 40 403 and the milling cutter The guiding template structures 402, 404 can be integrally bonded to each other and integrated. Since the fourth surfaces 411, 15 201010682 413 of the drilling guiding template structures 401, 403 can further have protrusions 461, 463, and are located in the milling cutter. The sixth surfaces 432, 434 of the guiding template structures 402, 404 may further have a groove portion 4 62, 464, the protruding portions 461, 463 can be engaged with the groove portions 462, 464, so that the drilling guide template structures 401, 403 and the milling cutter guiding template structures 402, 404 are snap-fitted up and down. The hole guiding template structures 401, 403 and the fifth surfaces 421, 422, 423, 424 of the milling cutter guiding template structures 402, 404 are a plane or a curved surface, and with the fourth surface 411, 412, 413, 414 The peripheral edges are connected. The drilling guide template structures 401, 403 and the sixth surface 43 of the milling guide template structures 402, 404 are 432, 433, 434 and the periphery of the fifth surface 42 422, 423, 424 And connected to the fourth surface 4U, 412, 413, 414, and the sixth surface 431, 432, 433, 434 can be a plane or a curved surface. The drilling guide template structure 401, 403 and milling The guide holes 44 442, 443, 444 of the knife guiding template structures 402, 404 are holes that pass through the sixth surface 43 432, 433, 434 and the fourth surfaces 411, 412, 413, 414. The hole guiding template structures 401, 403 and the milling cutter guiding template structures © 402, 404 can all be of any shape, and are not limited to rectangular. The drilling guide template structures 401, 403 and the guide holes 44 on the milling guide template structures 402, 404, 442, 443, 444, in the drilling guide template structure 4 234 and the milling guide template structure After the combination of 402 and 404, how to apply to the bone 50 is as follows: As shown in FIG. 5A, the upper drilling guide template structure 401 can have three cylindrical guiding holes 441 and two rectangular guides. The slot 451, while the lower milling guide template structure 402 can have a type of elliptical guide aperture 442. 16 201010682 As shown in FIG. 5B, in combination with the drill guide template structure 401 and the milling guide template structure 402 of FIG. 5A, it can form an elliptical guide hole 442 having a straight edge and has three cylinders. The guiding hole 441, so by using the drilling guiding template structure 401 and the milling cutter guiding template structure 402, an elliptical groove 54 such as a straight edge can be drilled and milled on the bone 50, and Three cylindrical guide holes 441 are formed in the elliptical groove 542. The straight edge on the elliptical groove 54 is milled by a milling cutter in accordance with a rectangular guide groove 451. As shown in FIG. 5C, the upper drill guide template structure 403 can have three cylindrical guide holes 443, and the lower cutter guide template structure 404 can have a plurality of recesses 474 and the like. Elliptical guide holes 444, and the number of recesses matches the number of cylindrical guide holes 443 in the drill guide template structure 403. As shown in FIG. 5D, the hole guiding template structure 403 and the milling cutter guiding template structure 404 in FIG. 5C can be formed into an elliptical guiding hole 444 having a plurality of concave portions 474 and having three A cylindrical guide hole 443. Therefore, by using the drill guide template structure 403 and the milling cutter guide template structure 404, an elliptical groove 54 having a plurality of recesses 474 can be drilled on the skeleton © 50 and formed in the elliptical groove 54. There are three cylindrical guide holes 443. In addition, as shown in FIG. 5F, the two rectangular guiding grooves 451' of the drilling guide template structure 40 can have an arc edge respectively, and cooperate with the lower milling cutter to guide the template structure 402 and the like. The guiding hole 442, so by the drilling guiding template structure 401' and the guiding template structure 402' in the FIG. 5F, an elliptical groove 54 having no straight edge can be drilled on the bone 50. Further, the elliptical guide holes 442, 17 201010682 444, such as the milling guide template structures 402, 404, have the same maximum wear area as the second surface 22 of the implant unit 20, thereby helping the cutter 80 to be damaged in the bone. The groove 51 is milled out of the portion 51 of the same size or compatibility as the implant unit 20, thereby reducing the removal of the healthy bone 50 around the bone damaged portion 51. For example, when the shape of the implant unit 20 is as shown in FIG. 5E, a groove 54 having the same size or compatibility as the implant unit 20 is formed on the bone 50, and can be matched as shown in FIG. 5C. The drill guide template structure 403 and the milling cutter guide template structure 404 are shown. Since the milling guide template structure 404 has an elliptical guiding hole 444 having a plurality of concave portions 474, which are identical in shape to the implant unit 20, such that a plurality of recesses can be formed as shown in FIG. 5D. An elliptical groove 54 such as 474 can reduce the healthy bone surrounding the bone damaged portion 51 by 50 °. As shown in Fig. 6A, the guiding template structure 40 can be used alone in addition to the combined structure described above. And having a fourth surface 41; a fifth surface 42; a sixth surface 43; and at least one guiding hole 44. The fourth surface 41 of the guide template structure 40 is a curved surface that matches the surface of the skeletal lesion 51, and the fourth surface 41 is formed in a manner similar to the third surface 23 of the implant unit 20. Further, the fifth surface 42 is a flat surface or an arc surface and is in contact with the periphery of the fourth surface 41. The sixth surface 43 is in contact with the periphery of the fifth surface 42 and is disposed opposite the fourth surface 41, and the sixth surface 43 may be a flat surface or a curved surface. The guide holes 44 are holes that pass through the sixth surface 43 and the fourth surface 41. The embodiment of the guiding template structure 40 can be as follows: As shown in FIG. 6A, the guiding template structure 40 is adhered to the surface of the bone damaged portion 51 by the fourth surface 41, when using a drilling machine. When the drill bit 60 is drilled down the surface of the bone damage portion 51 along the cylindrical guide hole 44, the sixth surface 43 of the guide template structure 40 is used to support the drill and adjust the drilling depth. The cylindrical guide hole 44 assists the drill bit 60 of the drilling machine in achieving the positioning effect, so that the drilling machine drills the correct position of the fixing member 30 or the self-tapping bolt 70 on the bone 50. As also shown in FIG. 6B, the guide template structure 40 can also be used with the milling cutter 80, with the elliptical guide hole 44 being the same as or larger than the maximum cross-sectional area of the second surface 22 of the implant unit 20. The cutter 80 is assisted to mill a groove 54 of the same size or compatibility as the implant unit 20 on the bone damaged portion 51, thereby reducing the removal of the healthy bone 50 around the bone damaged portion 51. A bottom surface 81 of the milling cutter 80 is engageable with the sixth surface 43 of the guide template 40 for controlling the milling depth of the milling cutter 80. As shown in FIG. 7A, after the drill hole 52 and the groove 54 are formed on the bone 50 using the drill, the milling cutter 80 and the guide template structure 40, the support unit 31 of the fixing member 30 is used to insert the bore 52. In addition, since the support unit 31 has a bolt structure and the end portion has the guide portion 33, the fixing member 30 can be deeply and surely fixed in the bone 50. As shown in FIG. 7B, when the fixing member 30 having the guiding hole 34 is fixed to the bone 50, a pre-operation is first performed, which is a self-tapping bolt matching the size of the guiding hole 34. 70, by using the guiding template structure 40 in FIG. 6A, the self-tapping bolt 70 can be implanted along the guiding hole 44 into the surface of the bone damaged portion 51 and drilled down into the bone 50 for A bore 52 is formed. After the hole 52 is formed, the fixing member 30 with the guiding hole 34 is used, and the fixing member 30 is sleeved on the self-tapping bolt 70 along the guiding hole 34, so that the 19 201010682 can make the fixing member 30 accurate and not skewed. The grounding is fixed in the bore 52, and can be locked into the bone 50 by the bolt structure of the supporting unit 31 in the fixing member 30, so that when the joint structure 10 is subsequently combined, the joint can be accurately combined, so There are no problems such as shifting and loosening. The application of the self-tapping bolt 70, the milling cutter 80, the drill guide template structure 403 and the milling guide template structure 404 are shown in Figs. 8A to 8F. As shown in FIG. 8A, when the drill guide template structure 403 and the milling guide template structure 404 are disposed on the bone 50, the self-tapping bolt 70@ can be used to lock from above the drill guide template structure 403. In the skeleton 50, after the upper hole drilling guide template structure 403 is removed, it is formed as shown in Fig. 8B. At this time, the tapping bolt 70 has been locked into the bone 50, and a portion of the self-tapping bolt 70 exposed outside the milling cutter guiding template structure 404 is used to be combined with the milling cutter 80. As shown in FIG. 8C, by using the self-tapping bolt 70 at the front end of the milling cutter 80, the self-tapping bolt 70 can assist the milling cutter 80 in the point drilling, and the milling cutter guides the guide hole of the template structure 404. The 444 width is just enough to catch the front end of the milling cutter 80, and the sixth surface 434 is fitted to the bottom surface 81 of the milling cutter 80 to aid in the positioning of the milling cutter 80 so that the milling cutter 80 maintains the correct depth when milling the hole. To avoid the groove 54 that causes the position, shape is wrong or too deep. As shown in FIG. 8D, after the milling cutter 80 and the milling cutter guide template structure 404 are removed, the size of the guide hole 444 of the milling guide template structure 404 is the cross-sectional area of the second surface 22 of the implant unit 20. Equal, so that the groove 54 formed by the milling cutter 80 on the bone 50 can be the same size or compatible with the implant unit 20 as the groove 54. Therefore, as shown in Fig. 8E, the groove formed in the milling cutter 80 In the 54 position of the tapping bolt 70 from 20 201010682, the fixing member 30 with the guiding hole 34 can be implanted in the correct position. Moreover, since the supporting unit 31 in the fixing member 30 has a bolt structure, the fixing member 30 can be locked into the bone 50 by the bolt structure, and when the fixing member 30 is locked downward, the device can be used against the device. The bottom of the groove 54 is used to control the locking depth of the fixing member 30. The manner in which the fixing member 30 and the implant unit 20 are engaged is as shown in Fig. 8F. The snap-in unit 32 that removes the self-tapping bolt 70 rear mount 30 can be used to snap-fit with the joint 24 of the implant unit 20. And because the third surface 23 of the implant unit 20 is matched to the surrounding bone surface 53 of the bone damaged portion 51, a continuous and smooth surface can be formed. The embodiments are described to illustrate the features of the present invention, and the purpose of the present invention is to enable those skilled in the art to understand the present invention and to implement the present invention without limiting the scope of the present invention. Equivalent modifications or modifications made by the spirit of the disclosure should still be included in the scope of the claims described below. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a perspective exploded view of a joint implant structure of the present invention— FIG. 1B is a perspective exploded view of a joint implant structure of the present invention. Figure 2A is a perspective view of a three-dimensional embodiment of an implant unit of the present invention. 2B is a perspective view of a three-dimensional embodiment of an implant unit of the present invention. Fig. 3A is a cross-sectional view of Fig. 1 taken along line A-A of Fig. 2A. Fig. 3B is a cross-sectional view of Fig. 2 taken along line A-A of Fig. 2A. 21 201010682 The 3C figure is a perspective view of a cross-sectional view taken along line B-B of FIG. 2A. Fig. 3D is a perspective view showing a cross-sectional view taken along line B-B of Fig. 2B. Figure 4A is a perspective view of a three-dimensional embodiment of the fixing member of the present invention. Figure 4B is a perspective view of a fixed embodiment of the present invention. Figure 4C is a perspective view of a three-dimensional embodiment of the fixing member of the present invention. Fig. 5A is a perspective exploded view of a drill guide template structure and a milling cutter guide template structure of the present invention. Fig. 5B is a plan view of a plan view after the combination of Fig. 5A. @5C is a perspective exploded embodiment of a drill guide template structure and a milling cutter guide template structure of the present invention. Fig. 5D is a plan view of a plan view after the combination of Fig. 5C. Figure 5E is a perspective view of a three-dimensional embodiment of an implant unit of the present invention. Figure 5F is a perspective exploded view of a drill guide template structure and a milling cutter guide template structure of the present invention. Fig. 6A is a cross-sectional view showing an embodiment of a guide template structure applied to a bone of the present invention. Figure 6B is a perspective view of a three-dimensional embodiment of a guide template structure applied to a bone of the present invention. Fig. 7A is a disassembled embodiment of a fixing member and a bone in the present invention. Fig. 7B is a second embodiment of the disassembled embodiment of the fixing member and the bone in the present invention. 8A to 8F are diagrams showing an application flow of a drilling guide template structure, a milling guide template structure and an implant unit of the present invention. 22 201010682 [Description of main component symbols] Joint implant structure Implant unit First surface Second surface First side Second side Third side Fourth side 10··............ .................20...............................21 ............................... twenty two.................. ............. 221............................. 222... .......................
223 224 23 ...........................................第三表面 24 ...........................................結合部 241.........................................第一凹槽 242 卡槽 243 .........................................第一卡接部 244 .........................................第二卡接部 © 245.........................................第二擠壓空間 246.........................................第二凸緣 30...........................................固定件 31 ...........................................支撐單元 32 ...........................................卡接單元 321 .........................................第一擠壓空間 322 .........................................第一凸緣 323 .........................................第二凹槽 23 201010682 324 33.. 34.. 40.. 401 、 403 402 、 404 41 > 411 > 412 ' 413 ' 414 42 、 42卜 422 、 423 ' 424 ⑩ 43 、 43卜 432 、 433 ' 434 44、44 卜 442、443 ' 444 451 461 、 463 462 ' 464 474 50.. 51.. ❹52" 53.. 54" 60.. 70.· 80.. 81.. 第三凸緣 引導部 導引孔道 導引模板結構 鑽孔導引模板結構 銑刀導引模板結構 第四表面 第五表面 第六表面 導引孔 導引槽 突出部 凹槽部 凹部 骨骼 骨骼受損部 鑽孔 周遭骨路表面 凹槽 鑽頭 自攻螺栓 銑刀 底面 24223 224 23 ........................................... Third surface 24 .....................................Combination 241.... .....................................first groove 242 card slot 243 ..... ....................................The first card joint 244 ........ .................................Second card joints © 245.......... ...............................Secondary squeezing space 246............. ............................The second flange 30................. ..........................Fixed parts 31 ..................... ......................Support unit 32 ......................... ..................Cartridge unit 321 ............................ .............The first squeeze space 322 ............................... ..........first flange 323 ................................... ...the second groove 23 201010682 324 33.. 34.. 40.. 401 , 403 402 , 404 41 > 411 > 412 ' 413 ' 414 42 , 42 422 , 423 ' 424 10 43 , 43 432 , 433 ' 434 44 , 44 442 , 443 ' 444 451 461 , 463 462 ' 464 47 4 50.. 51.. ❹52" 53.. 54" 60.. 70.· 80.. 81.. Third flange guide guide channel guide template structure drill guide template structure milling guide template Structure fourth surface fifth surface sixth surface guiding hole guiding groove protruding portion groove portion concave portion skeletal bone damaged portion drilling peripheral road surface groove drill bit self-tapping bolt milling cutter bottom surface 24