TW201010671A - Respiratory monitoring system - Google Patents

Respiratory monitoring system Download PDF

Info

Publication number
TW201010671A
TW201010671A TW97134257A TW97134257A TW201010671A TW 201010671 A TW201010671 A TW 201010671A TW 97134257 A TW97134257 A TW 97134257A TW 97134257 A TW97134257 A TW 97134257A TW 201010671 A TW201010671 A TW 201010671A
Authority
TW
Taiwan
Prior art keywords
respiratory
monitoring system
focal
respiratory monitoring
computer system
Prior art date
Application number
TW97134257A
Other languages
Chinese (zh)
Inventor
Ming-Shing Young
Cheng-Chi Tai
Yu-Pei Huang
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW97134257A priority Critical patent/TW201010671A/en
Publication of TW201010671A publication Critical patent/TW201010671A/en

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Disclosed is a respiratory monitoring system including a pyroelectric sensor and a computer system. The pyroelectric sensor includes a housing having a surface configured for receiving the respiratory airflow of a user, a substrate disposed in the housing, and two sensing electrodes respectively disposed on the top surface and the bottom surface of the substrate. The top surface and bottom surface of the substrate are parallel to the airflow-receiving surface of the housing. The sensing electrodes produce a plurality of voltage values which vary as a function of the temperature difference between the top surface and bottom surface of the substrate. The computer system is electrically connected to the pyroelectric sensor to calculate out the user's respiratory air volumetric rate according to the area of the airflow-receiving surface of the housing and the voltage values, and calculate out the user's respiratory rate according to the variation period of the voltage values.

Description

201010671 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種呼·吸監測系統,特別是_有關於一 種可同時監測呼·吸速率和呼吸氣流流速之呼吸監測系統。 【先前技術】 呼吸為人體主要氣體交換的機制,一但此交換氣體的 機制出了問題’輕則影響正常的生活,嚴重者可能致命。 ❿ 所以,呼吸的監測是一個生命現象正常維持的重要指標, 尤其是對於一些具有睡眠窒息症狀的患者。這些患者常在 不自覺的情況下停止呼吸的動作,造成人體局部的供氧量 不足,嚴重者會造成猝死。另外對於氣喘病患者而言,呼 吸的監測也是相當的重要。若氣喘發作時又沒即時處理, 常常會發生不幸。在美國有超過1200萬人罹患睡眠呼吸暫 停症,此病症狀是呼吸會經常受到阻礙而中斷。如果我們 能在第一時間對這些情況做出反應,將能大大的降低傷害 ❿ 性°因此’需要—種呼吸監測純來監測人體的呼吸。 【發明内容】 因此,本發明之一方面係在提供一種呼吸監測系統, 以監測使用纟的呼吸速率和呼吸氣流的流i。 為達上述目的,本發明之實施例提供一種呼吸監測系 .,统1^呼吸監射、統至少包含焦電感測器和電腦系統。焦 . «測器至少包含有殼體、基材和至少兩個感測電極,其 中殼體具有用以接枚使用者呼吸氣流之表面,而基材係位 6 201010671 純體中。基材具有頂表面和底表面,此頂表面和底表面 . 係與殼體表面平行,而感測電極則分別位於頂表面和底表 面上。這些感測電極可根據頂表面和底表面之溫度變化來 產生複數個電壓值。電腦系統係電性連接至焦電感測器, 以根據殼體表面面積和電壓值來計算出使用者的呼吸氣流 流量,並根據電壓值之變化週期來計算出使用者之呼吸$ 率。 根據本發明另一實施例,此呼吸監測系統更包含電荷 β 放大器、濾波器和訊號放大器。電荷放大器係電性連接於 焦電感測器,以消除焦電感測器和訊號傳輸線的時間常數 效應。渡波器係電性連接至電荷放大器,以濾除焦電感測 器輸出訊號之雜訊。訊號放大器係電性連接於電腦系統和 訊號放大器之間,以放大焦電感測器輸出之訊號。 【實施方式】 請同時參照第丨圖和第2圖,第丨圖係繪示根據本發 參 明一實施例之呼吸監測系統100的功能方塊示意圖,第2 圖係繪示根據本發明一實施例之焦電感測器11〇的内部結 構示意圖。呼吸監測系統100包含焦電感測器u〇、電腦系 統120和面罩式承載裝置130。面罩式承載裝置13〇係用以 承載焦電感測器110’以將焦電感測器110置放於使用者鼻 孔下方’如此可使焦電感測器11 〇根據呼吸氣流的溫度變 化來輸出電子訊號至電腦系統120,而電腦系統12〇則利用 這些電子訊號來計算出使用者的呼吸速率和呼吸氣流的流 量’其中電腦系統120包含有資料擷取模組120a,此資料 7 201010671 操取模組120a可將電子訊號之格式轉換為電腦系統12〇可 接受之格式。在本實施例中,焦電感測器110為壓電陶莞, 其材料可包含有鍅酸鉛(PZ)、鈦酸鉛(ρτ)或鈦錯酸鉛 (ΡΖΤ) ’值得注意的是本實例只應用壓電陶瓷的焦電性 (pyroelectric)來進行感測。舉例而言,一適用於本發明之焦 電感測器為購自pro_Wave Electronics型號為400ER080的 感測器,其在殼體下直攝設有一壓電陶瓷隔膜。 在特定實施例中,焦電感測器110具有殼體,112、基材 114和訊號輸出接腳116&和116b。基材114具有感測電極 114a、114b、頂表面114c和底表面114d,其中頂表面mc 和底表面114d係平行於殼體表面112a,感測電極114&和 114b係刀別位於頂表面114c和底表面114d上且互相平 行。殼體表面112a係垂直於呼吸氣流fa的行進方向,以 使呼吸氣流Fa之溫度透過般體表面H2a而傳導至内部的 感測電極114a和114b。當殼體表面U2a受到呼吸氣流Fa 的衝擊後,由於焦電效應(pyroelectric effect)之作用,感測 電極114a和114b會感測到溫度變化而由訊號輸出接腳 116a和116b輸出電壓訊號。對於溫度傳導而言,感測電極 114a係位於上風處而感測電極114b係位於下風處,因此感 測電極114a將優先於感測電極114b感測到溫度變化。 在以下的内容中將說明如何利用呼吸監測系統1〇〇來 量測使用者的呼吸速率和呼吸氣體的流量。 首先對一個理想的壓電陶瓷而言,其本質方程式 (constitutive equation)可表示如下: ⑴201010671 IX. Description of the Invention: [Technical Field] The present invention relates to a respiratory monitoring system, and more particularly to a respiratory monitoring system capable of simultaneously monitoring a respiratory rate and a respiratory flow velocity. [Prior Art] Breathing is the main gas exchange mechanism of the human body. Once the mechanism of the exchange of gas has a problem, it will affect normal life, and serious people may be fatal. ❿ Therefore, monitoring of breathing is an important indicator of the normal maintenance of life phenomena, especially for some patients with symptoms of sleep apnea. These patients often stop breathing when they are unconsciously, resulting in insufficient oxygen supply to the human body. In severe cases, sudden death may occur. In addition, for asthma patients, monitoring of breathing is also quite important. If the asthma is not treated immediately, it often happens unfortunately. More than 12 million people in the United States suffer from sleep apnea, a condition that is often interrupted by breathing. If we can respond to these situations in the first place, it will greatly reduce the damage 因此. Therefore, it is necessary to monitor the breathing of the human body. SUMMARY OF THE INVENTION Accordingly, one aspect of the present invention is to provide a respiratory monitoring system for monitoring a respiratory rate of breathing using a helium and a flow i of a respiratory airflow. To achieve the above object, embodiments of the present invention provide a respiratory monitoring system, which includes at least a focal electrical sensor and a computer system. The detector includes at least a housing, a substrate and at least two sensing electrodes, wherein the housing has a surface for receiving a breathing air flow of the user, and the substrate is in a pure position. The substrate has a top surface and a bottom surface, the top surface and the bottom surface being parallel to the surface of the housing, and the sensing electrodes being located on the top surface and the bottom surface, respectively. These sensing electrodes can generate a plurality of voltage values based on temperature changes of the top and bottom surfaces. The computer system is electrically connected to the focal inductance detector to calculate the flow rate of the user's respiratory airflow according to the surface area and the voltage value of the casing, and calculate the breathing rate of the user according to the period of change of the voltage value. According to another embodiment of the invention, the respiratory monitoring system further comprises a charge beta amplifier, a filter and a signal amplifier. The charge amplifier is electrically connected to the focal inductor to eliminate the time constant effect of the focal inductor and the signal transmission line. The waver is electrically connected to the charge amplifier to filter out the noise of the output signal of the focus sensor. The signal amplifier is electrically connected between the computer system and the signal amplifier to amplify the signal output from the focal inductor. [Embodiment] Referring to both the drawings and FIG. 2, the figure is a functional block diagram of a respiratory monitoring system 100 according to an embodiment of the present invention, and FIG. 2 is a diagram showing an embodiment of the present invention. An example of the internal structure of the focal length detector 11〇. The respiratory monitoring system 100 includes a focal electrical sensor, a computer system 120, and a mask-type carrier 130. The mask type carrying device 13 is configured to carry the focal electrical detector 110' to place the focal electrical detector 110 under the user's nostril. Thus, the pyroelectric detector 11 can output an electronic signal according to the temperature change of the respiratory airflow. To the computer system 120, the computer system 12 uses these electronic signals to calculate the user's breathing rate and the flow rate of the respiratory airflow. The computer system 120 includes a data capture module 120a. This data 7 201010671 operation module 120a converts the format of the electronic signal into a format acceptable to the computer system 12 . In this embodiment, the focal electrical detector 110 is a piezoelectric ceramic, and the material thereof may include lead bismuth (PZ), lead titanate (ρτ) or lead stearate (ΡΖΤ). The pyroelectricity of the piezoelectric ceramic is applied only for sensing. For example, a focus sensor suitable for use in the present invention is a sensor commercially available from Pro_Wave Electronics Model 400ER080, which is provided with a piezoelectric ceramic diaphragm under the housing. In a particular embodiment, the focal electrical detector 110 has a housing, 112, a substrate 114 and signal output pins 116 & and 116b. The substrate 114 has sensing electrodes 114a, 114b, a top surface 114c and a bottom surface 114d, wherein the top surface mc and the bottom surface 114d are parallel to the housing surface 112a, and the sensing electrodes 114 & and 114b are located on the top surface 114c and The bottom surface 114d is parallel to each other. The casing surface 112a is perpendicular to the traveling direction of the breathing airflow fa so that the temperature of the breathing airflow Fa is transmitted to the internal sensing electrodes 114a and 114b through the body surface H2a. When the casing surface U2a is subjected to the impact of the breathing airflow Fa, the sensing electrodes 114a and 114b sense the temperature change and output voltage signals from the signal output pins 116a and 116b due to the pyroelectric effect. For temperature conduction, the sensing electrode 114a is located at the upwind and the sensing electrode 114b is located at the downwind, so the sensing electrode 114a will sense a temperature change in preference to the sensing electrode 114b. In the following, how to use the respiratory monitoring system 1 to measure the user's breathing rate and the flow rate of breathing gas will be explained. First, for an ideal piezoelectric ceramic, its constitutive equation can be expressed as follows: (1)

Di=[dijk]TXjk+[Kij]x>TEj+[pi]x ^ T, 8 201010671 其中D為產生的電荷密度;d為固定溫度τ下的壓電模數 (piezoelectric modulus) ;Κ為固定壓力χ和溫度τ下的介 電張量(dielectric c tensor) ; Ε為電場強度;ρ為固定壓力 下的焦電係數(pyroelectric coefficient) : j,j,k代表方向。在 本實施例中,由於電場的作用相對於其他因素為小,因此 方程式(1)可改寫如下:Di=[dijk]TXjk+[Kij]x>TEj+[pi]x ^ T, 8 201010671 where D is the generated charge density; d is the piezoelectric modulus at a fixed temperature τ; Κ is a fixed pressureχ And the dielectric tensor at temperature τ; Ε is the electric field strength; ρ is the pyroelectric coefficient at a fixed pressure: j, j, k represents the direction. In the present embodiment, since the effect of the electric field is small relative to other factors, Equation (1) can be rewritten as follows:

Di=[dijk]TXjk +[Ρΐ]χΔΤ, ⑺Di=[dijk]TXjk +[Ρΐ]χΔΤ, (7)

接著,由於殼艎表面112a ,與呼吸氣流Fa之行進方向垂 直,因此,呼吸氣體的動量可由下列方程式來表示: J=Jpu2dA= pii2 JdA= P^A=pq^/a (3) 其中J為呼吸氣流Fa衝擊壓電陶瓷前的動量;p為呼吸氣 流的氣體密度;u為呼吸氣流在水平方向的速度;a為殼體 表面11〇之面積;込為流量(volumetricfl〇wrate卜由於呼 吸氣流Fa衝擊壓電陶瓷後,在水平方向上不會具有任何速 度,因此殼體表面112a所承受的壓力χ可由下列方程式來 表示: X=3/A= pQ2v/A (4) 將方程式(1)和(4)合併可得到下列方程式:Then, since the crust surface 112a is perpendicular to the traveling direction of the respiratory airflow Fa, the momentum of the breathing gas can be expressed by the following equation: J = Jpu2dA = pii2 JdA = P^A = pq^/a (3) where J is The momentum of the respiratory airflow Fa before impacting the piezoelectric ceramic; p is the gas density of the respiratory airflow; u is the velocity of the respiratory airflow in the horizontal direction; a is the area of the shell surface 11〇; 込 is the flow rate (volumetricfl〇wrate) due to the respiratory airflow Fa impacts the piezoelectric ceramic and does not have any velocity in the horizontal direction, so the pressure 壳体 of the casing surface 112a can be expressed by the following equation: X=3/A= pQ2v/A (4) Equation (1) Combine with (4) to get the following equation:

Dj=Qs/A=p ΔΤ+d pQl/A2 (5) 其中Qs為產生的電荷;ΔΤ為呼吸所造成的溫度差異。根 據諧振頻率來適當地選擇壓電陶瓷,可減少壓電效應對於 電荷密度D的影響,例如:選擇諧振頻率遠大於人類呼吸 頻率之壓電陶瓷。當壓電效應對於電荷密度D之貢獻量遠 小於焦電效應之貢獻量時,方程式(5)可描述如下:Dj=Qs/A=p ΔΤ+d pQl/A2 (5) where Qs is the generated charge; ΔΤ is the temperature difference caused by breathing. Appropriate selection of piezoelectric ceramics according to the resonant frequency reduces the effect of the piezoelectric effect on the charge density D, for example, selecting a piezoelectric ceramic whose resonant frequency is much larger than the human respiratory frequency. When the contribution of the piezoelectric effect to the charge density D is much smaller than the contribution of the pyroelectric effect, equation (5) can be described as follows:

Qs=Ap ΔΤ (6) 9 201010671 在呼吸作用中’呼吸氣流的溫度差異ΔΤ係由呼氣作用和 吸氣作用所造成’而感測電極l14a和U4b係分別位於上 風處和下風處來感測溫度變化,因此訊號輸出接腳116&和 116b所輸出之電壓訊號v<)ut可根據方程式(6)來描述如下: d(T} m dt v~ dt ^out — Rl^Ap 其中rl為輸入阻抗;<τ>為電極感測的平均溫度;丨u代表Qs=Ap ΔΤ (6) 9 201010671 In the respiration, the temperature difference ΔΤ of the respiratory airflow is caused by exhalation and inhalation, while the sensing electrodes l14a and U4b are located at the upwind and the downwind, respectively. The temperature change is sensed, so the voltage signal v<)ut output by the signal output pins 116& and 116b can be described as follows according to equation (6): d(T} m dt v~ dt ^out — Rl^Ap where rl Is the input impedance; <τ> is the average temperature sensed by the electrode; 丨u stands for

上風處的感測電極114a而丨D代表下風處的感測電極 114b。 關於呼吸氣流Fa流量的量測,由於輸入阻抗Rl面積 A和係數p皆為常數,因此電壓訊號乂⑽係正比於呼吸氣 流的流速,而氣流的流量為流速乘上面積A。因此,在本 實施例中,需先進行校正動作(calibration)來測出電壓訊號 vout和流迷的關係。例如:進行校正動作得知電壓訊號 為〇.5伏特時,流速為3〇公分/秒,之後電腦系統12〇可根 據此對應關係來自動地算出電壓訊號乂加為〇1伏特,流 速為6公分/秒。 關於呼吸速率的量測,由於呼吸週期係由吸氣週期、 暫停週期和呼氣週期所形成,且呼吸作用的溫度變化也對 應此三個週期而變化,因此,只要計算出電壓訊號¥邮的 變化週期即可得到呼吸一次所需的時間,再換算成速率即 可。例如:利用電腦系統12〇來將電壓訊號V()ut製成波形 圖,再計算相鄰兩波峰的差值即可得到呼吸一次所需的時 間。 請同時參照第3圖和第4圖,第3圖係繪示根據本發 201010671 明一實施例之呼吸監測系統200的功能方塊示意圓,第4 圖係繪示根據本發明一實施例之電荷放大器210的電路示 意圖。呼吸監測系統200係類似於呼吸監測系統1 〇〇,但不 同之處在於呼吸監測系統200更包含電荷放大器210、濾波 器220和訊號放大器230。電荷放大器210係電性連接於焦 電感測器110’以消除焦電感測器和訊號傳輸線的時間常數 效應。濾波器220係電性連接至電荷放大器210,以濾除電 壓訊號Vout之雜訊。訊號放大器230係電性連接於電腦系 ❹ 統12〇和訊號放大器230之間,以放大電壓訊號v。^。 電荷放大器210包含輸入電容212、運算放大器214、 和回授電路216,其中回授電路216包含有互相並聯之回授 電容216a和回授電阻216b〇焦電感測器110之一端和輸入 電容212之一端係電性連接至運算放大器214之負端,而 焦電感測器110之另一端、輸入電容212之另一端和運算 放大器214之正端係電性連接至接地參考電位。回授電路 216係電性連接於運算放大器214之輸出端和負端之間,以 ❹ 回授運算放大器214之輸出訊號。適當地設計回授電容 216a和回授電阻216b之值,即可消除焦電感測器和訊號傳 輸線的時間常數效應》 請參照第5圖’其係緣示根據本發明一實施例之呼吸 監測系統300的功能方塊示意圖。呼吸監測系統3〇〇係類 似於呼吸監測系統100 ’但不同之處在於呼吸監測系統3〇〇 係使用耳戴式承載裝置310來承載焦電感測器11〇。由於耳 戴式承載裝置310之佩戴方式較面罩式承載裝置13〇方 便’因此呼吸監測系統300在使用上較呼吸監測系統1〇〇 201010671 更為便利。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何熟習此技藝者,在不脫離本發明之精神和範 圍内,當可作各種之更動與潤飾,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的.、特徵.、和優點能更明 © ㈣懂’上文特舉-較佳實施例’並配合所附圖式,作詳 細說明如下: 第1圖係繪不根據本發明一實施例之呼吸監測系統的 功能方塊示意圖。 第2圖係繪不根據本發明一實施例之焦電感測器的内 部結構示意圖。 第3圖係繪示根據本發明一實施例之呼吸監測系統的 功能方塊示意圖。 ® 第4圖係繪示根據本發明一實施例之電荷放大器的電 路示意圖。 第5圖係繪示根據本發明一實施例之呼吸監測系統的 功能方塊示意圖。。 【主要元件符號說明】 110 :焦電感測器 114 :基材 114b :感測電極 100 :呼吸監測系統 112 :殼艎 • 114a :感測電極 12 201010671 114c :頂表面 ' 116a :訊號輸出接腳 120 :電腦系統 130 :面罩式承載裝置 210 ··電荷放大器 214 :運算放大器 216a :回授電容 230:訊號放大器 〇 310 :耳戴式承載裝置 114d :底表面 116b :訊號輸出接腳 120a :資料擷取裝置 200 :呼吸監測系統 212 :輸入電容 216 :回授電路 216b :回授電阻 220 :滤波器 300 :呼吸監測系統The sensing electrode 114a at the upwind and 丨D represent the sensing electrode 114b at the downwind. Regarding the measurement of the flow rate of the respiratory airflow Fa, since the input impedance R1 area A and the coefficient p are constant, the voltage signal 乂(10) is proportional to the flow velocity of the respiratory gas flow, and the flow rate of the air flow is the flow velocity multiplied by the area A. Therefore, in this embodiment, a calibration is first performed to measure the relationship between the voltage signal vout and the flow fan. For example, when the calibration operation is performed to know that the voltage signal is 〇5 volts, the flow rate is 3 〇 cm/sec, and then the computer system 12 自动 can automatically calculate the voltage signal according to the correspondence 乂 1 volt, the flow rate is 6 Centimes/second. Regarding the measurement of the respiratory rate, since the respiratory cycle is formed by the inspiratory cycle, the pause cycle, and the expiratory cycle, and the temperature change of the respiratory action also changes corresponding to the three cycles, therefore, it is only necessary to calculate the voltage signal ¥ The change cycle can be used to obtain the time required for breathing once, and then converted into a rate. For example, using the computer system 12〇 to make the voltage signal V()ut into a waveform diagram, and then calculating the difference between the two adjacent peaks, the time required for breathing once can be obtained. Please refer to FIG. 3 and FIG. 4 at the same time. FIG. 3 is a functional block diagram of a respiratory monitoring system 200 according to an embodiment of the present invention, and FIG. 4 is a diagram showing a charge according to an embodiment of the present invention. A schematic diagram of the circuit of amplifier 210. The respiratory monitoring system 200 is similar to the respiratory monitoring system 1 〇〇, but differs in that the respiratory monitoring system 200 further includes a charge amplifier 210, a filter 220, and a signal amplifier 230. The charge amplifier 210 is electrically coupled to the focal inductor 110' to eliminate the time constant effect of the focal inductor and the signal transmission line. The filter 220 is electrically connected to the charge amplifier 210 to filter out the noise of the voltage signal Vout. The signal amplifier 230 is electrically connected between the computer system 12 and the signal amplifier 230 to amplify the voltage signal v. ^. The charge amplifier 210 includes an input capacitor 212, an operational amplifier 214, and a feedback circuit 216. The feedback circuit 216 includes a feedback capacitor 216a and a feedback resistor 216b connected in parallel with each other, and one end of the focal inductor 110 and the input capacitor 212. One end is electrically connected to the negative terminal of the operational amplifier 214, and the other end of the focal inductor 110, the other end of the input capacitor 212, and the positive terminal of the operational amplifier 214 are electrically connected to the ground reference potential. The feedback circuit 216 is electrically connected between the output terminal and the negative terminal of the operational amplifier 214 to feedback the output signal of the operational amplifier 214. By appropriately designing the values of the feedback capacitor 216a and the feedback resistor 216b, the time constant effect of the focal inductor and the signal transmission line can be eliminated. Referring to FIG. 5, the system of the respiratory monitoring system according to an embodiment of the present invention is shown. 300 functional block diagram. The respiratory monitoring system 3 is similar to the respiratory monitoring system 100' but differs in that the respiratory monitoring system 3 uses the ear-worn carrying device 310 to carry the focal electrical detector 11'. Since the ear-worn carrying device 310 is worn in a manner that is easier than the mask-type carrying device 13, the respiratory monitoring system 300 is more convenient to use than the respiratory monitoring system 1 201010671. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and retouched without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, and advantages of the present invention will become more apparent from the following description. : Fig. 1 is a functional block diagram showing a respiratory monitoring system not according to an embodiment of the present invention. Fig. 2 is a schematic view showing the internal structure of a focal electrical detector according to an embodiment of the present invention. Figure 3 is a functional block diagram showing a respiratory monitoring system in accordance with an embodiment of the present invention. ® Fig. 4 is a circuit diagram showing a charge amplifier according to an embodiment of the present invention. Figure 5 is a functional block diagram showing a respiratory monitoring system in accordance with an embodiment of the present invention. . [Main component symbol description] 110 : focal electrical detector 114 : substrate 114b : sensing electrode 100 : respiratory monitoring system 112 : housing 艎 • 114a : sensing electrode 12 201010671 114c : top surface ' 116a : signal output pin 120 : computer system 130: mask type carrier device 210 · charge amplifier 214: operational amplifier 216a: feedback capacitor 230: signal amplifier 〇 310: ear-mounted carrier 114d: bottom surface 116b: signal output pin 120a: data capture Device 200: Respiratory Monitoring System 212: Input Capacitor 216: Feedback Circuit 216b: Feedback Resistor 220: Filter 300: Respiratory Monitoring System

1313

Claims (1)

201010671 十、申請專利範園: 1. 一種呼吸監測系統,用以監測一使用者之一呼吸氣 流,其中該呼吸監測系統包含: 一焦電感測器’其包含一呼吸氣流接收表面,其中該 焦電感測器根據該呼吸氣流之溫度變化產生複數個電壓訊 號;以及 一電滕系統’電性連接至該焦電感測器,其中該電腦 系統係根據該呼吸氣流接收表面之面積和該些電壓訊號來 計算出該呼吸氣流之流量,並根據該些電壓訊號之一變化 週期來計算出該使用者之啤吸速率。 2. 如申請專利範圍第1項所述之呼吸監測系統,其中 該焦電感測器包含: 一殼體,具有一殼體表面作為該呼吸氣流接收表面; 一基材,位於該殼體中,其中該基材具有一頂表面和 一底表面’該頂表面和底表面係與該殻體表面平行;以及 至少二感測電極,分別位於該頂表面和該底表面上,以根 據該頂表面和該底表面之溫度變化來產生該些電壓訊號。 3. 如申請專利範圍第丨項所述之呼吸監測系統,更包 含一電荷放大器,電性連接於該焦電感測器和該電腦系統 之間’以消除焦電感測器的時間常數效應。 4_如申請專利範圍第2項所述之呼吸監測系統,更包 201010671 含一濾波器,電性連接於該放大器和該電腦系統之間,以 濾除該些電壓訊號之雜訊。 5. 如申請專利範圍第3項所述之呼吸監測系統,更包 含一訊號放大器,電性連接於該濾波器和該電腦系統之 間’以放大該些電壓訊號。 6. 如申請專利範圍第2項所述之呼吸監測系統,其中 參該電荷放大器至少包含: 一運算放大器,具有一正端、一負端和一輸出端,其 中該正端連接至一接地參考電壓,該負端係電性連接至該 焦電感測器; 回授電路,電性連接於該負端和該輸出端之間其 中該回授電路至少包含一回授電容和一回授電阻;以及以 及 一輸入電容,其中該回授電容之一端係電性連接至該 負端,該輸入電容之另一端係電性至該接地參考電壓。 7·如申請專利範圍第1項所述之呼吸監測系統,更包 含一承載裝置,用以設置於該使用者之臉部並承載該焦電 感測器,使該焦電感測器之該呼吸氣流接收表面大致垂直 於該呼吸氣流之行進方向。 8·如申請專利範圍第6項所述之呼吸監測系統,其中 該承載裝置為面罩式承載裝置。 15 201010671 9.如申請專利範圍第6項所述之呼吸監測系統,其中 該承载裝置為耳戴式承載裝置。 〇.如申請專利範圍第1項所述之呼吸監測系統,其 中該電腦系統更包含一資料擷取模組,用以《將該些電壓訊 號之格式轉換成該電腦系統可接受之格式。201010671 X. Patent application park: 1. A respiratory monitoring system for monitoring a respiratory airflow of a user, wherein the respiratory monitoring system comprises: a focal electrical detector comprising a respiratory airflow receiving surface, wherein the focal The electrical detector generates a plurality of voltage signals according to the temperature change of the respiratory airflow; and a power system is electrically connected to the focal electrical detector, wherein the computer system is based on the area of the respiratory airflow receiving surface and the voltage signals The flow rate of the respiratory airflow is calculated, and the beer suction rate of the user is calculated according to a change period of the voltage signals. 2. The respiratory monitoring system of claim 1, wherein the focal electrical sensor comprises: a housing having a housing surface as the respiratory airflow receiving surface; a substrate disposed in the housing Wherein the substrate has a top surface and a bottom surface 'the top surface and the bottom surface are parallel to the housing surface; and at least two sensing electrodes are respectively located on the top surface and the bottom surface to be according to the top surface And the temperature change of the bottom surface to generate the voltage signals. 3. The respiratory monitoring system of claim 2, further comprising a charge amplifier electrically coupled between the focal electrical detector and the computer system to eliminate the time constant effect of the focal electrical detector. 4_ The respiratory monitoring system of claim 2, wherein the 201010671 includes a filter electrically connected between the amplifier and the computer system to filter out noise of the voltage signals. 5. The respiratory monitoring system of claim 3, further comprising a signal amplifier electrically coupled between the filter and the computer system to amplify the voltage signals. 6. The respiratory monitoring system of claim 2, wherein the charge amplifier comprises at least: an operational amplifier having a positive terminal, a negative terminal, and an output terminal, wherein the positive terminal is coupled to a ground reference a voltage, the negative terminal is electrically connected to the focal inductor; a feedback circuit electrically connected between the negative terminal and the output terminal, wherein the feedback circuit comprises at least a feedback capacitor and a feedback resistor; And an input capacitor, wherein one end of the feedback capacitor is electrically connected to the negative terminal, and the other end of the input capacitor is electrically connected to the ground reference voltage. 7. The respiratory monitoring system of claim 1, further comprising a carrying device configured to be disposed on the face of the user and carrying the focal electrical sensor to cause the respiratory flow of the focal electrical sensor The receiving surface is substantially perpendicular to the direction of travel of the respiratory airflow. 8. The respiratory monitoring system of claim 6, wherein the carrying device is a mask-type carrying device. The respiratory monitoring system of claim 6, wherein the carrying device is an ear-worn carrying device. The respiratory monitoring system of claim 1, wherein the computer system further comprises a data capture module for converting the format of the voltage signals into a format acceptable to the computer system. ,如申請專利範圍第1項所述之呼吸監測 中該焦電感測器之請振頻率實質大於人類呼吸頻率、,。’其In the respiratory monitoring described in item 1 of the patent application scope, the frequency of the vibration of the focal inductance detector is substantially greater than the human respiratory rate. 'its
TW97134257A 2008-09-05 2008-09-05 Respiratory monitoring system TW201010671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97134257A TW201010671A (en) 2008-09-05 2008-09-05 Respiratory monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97134257A TW201010671A (en) 2008-09-05 2008-09-05 Respiratory monitoring system

Publications (1)

Publication Number Publication Date
TW201010671A true TW201010671A (en) 2010-03-16

Family

ID=44828276

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97134257A TW201010671A (en) 2008-09-05 2008-09-05 Respiratory monitoring system

Country Status (1)

Country Link
TW (1) TW201010671A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558377B (en) * 2014-04-24 2016-11-21 國立臺北科技大學 Measurement system, measurement method, and computer program product for measuring exhalation flow rate
TWI576090B (en) * 2014-11-25 2017-04-01 金宙科技有限公司 Human respiratory system function detecting device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI558377B (en) * 2014-04-24 2016-11-21 國立臺北科技大學 Measurement system, measurement method, and computer program product for measuring exhalation flow rate
TWI576090B (en) * 2014-11-25 2017-04-01 金宙科技有限公司 Human respiratory system function detecting device and method

Similar Documents

Publication Publication Date Title
US6517497B2 (en) Method and apparatus for monitoring respiration using signals from a piezoelectric sensor mounted on a substrate
US20060270941A1 (en) Device for measuring respiration during sleep
JP4045344B2 (en) Body motion detection sensor and body motion monitoring system using the same
KR20170048483A (en) Compliance monitoring module for a breath-actuated inhaler
CN104661587B (en) Respiratory monitoring system and method
WO2011010282A1 (en) A nebulizer
TW201347728A (en) Sensing structure for physiological signal, stethoscope therewith and manufacturing method thereof
CN107137085B (en) A kind of flexible surface acoustic wave sensor of respiratory state detection method and wireless and passive
CN107374632B (en) Respiratory sound monitoring device in surgical operation and use method thereof
CN107041751A (en) A kind of surface acoustic wave sensor of breathing state detecting system and wireless and passive
JP5353479B2 (en) Swallowing activity monitoring device, swallowing activity monitoring system, and swallowing activity monitoring program
Wei et al. Respiration detection chip with integrated temperature-insensitive MEMS sensors and CMOS signal processing circuits
TW201010671A (en) Respiratory monitoring system
Wei et al. A novel MEMS respiratory flow sensor
JP5180599B2 (en) Method and system for determining sleep state
US20220047009A1 (en) Smart mask with printed electronics
WO2011054548A1 (en) Respiration measurement sensor
JP2008110138A (en) Breathing program, recording medium, and apparatus for breath determination
TWI725839B (en) Physiological sensing system
CN114847924A (en) Self-powered respiration monitoring sensor, preparation method thereof and respiration monitoring system
JP4411580B2 (en) Biological data detection device
Huang et al. Respiratory rate monitoring gauze mask system based on a pyroelectric transducer
Yeh et al. Piezoelectric Film-Based Wearable Respiratory Monitoring Device With Breathing Air Temperature Sensing And Heating Functions
Chen et al. Wireless wearable ultrasound sensor to characterize respiratory behavior
CN219422802U (en) Portable miniature respiration sensing device and system