TW201010235A - Wireless energy transmitting method, wireless energy receiving method, and wireless energy transferring system, transmitting end device, and receiving end device using thereof - Google Patents

Wireless energy transmitting method, wireless energy receiving method, and wireless energy transferring system, transmitting end device, and receiving end device using thereof Download PDF

Info

Publication number
TW201010235A
TW201010235A TW097131842A TW97131842A TW201010235A TW 201010235 A TW201010235 A TW 201010235A TW 097131842 A TW097131842 A TW 097131842A TW 97131842 A TW97131842 A TW 97131842A TW 201010235 A TW201010235 A TW 201010235A
Authority
TW
Taiwan
Prior art keywords
energy
receiving
transmitting
circuit
processor
Prior art date
Application number
TW097131842A
Other languages
Chinese (zh)
Other versions
TWI376858B (en
Inventor
Jung-Kuo Hsu
Chih-Lung Lin
Zuei-Chown Jou
Original Assignee
Darfon Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Darfon Electronics Corp filed Critical Darfon Electronics Corp
Priority to TW097131842A priority Critical patent/TWI376858B/en
Priority to CN200810213778A priority patent/CN101667753A/en
Publication of TW201010235A publication Critical patent/TW201010235A/en
Application granted granted Critical
Publication of TWI376858B publication Critical patent/TWI376858B/en

Links

Abstract

A wireless energy transmitting method applied in an transmitting end device, includes the following steps. Firstly, transmit first energy via first energy transmitting module and corresponding wireless energy transmitting path. Then receive a replay radio frequency signal. Then determine whether energy can be effectively transmitted via the first wireless transmitting path in response to the replay radio frequency signal, if not, reset the transmitting end device to transmit energy via second energy transmitting module.

Description

201010235 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種能量傳輸系統,且特別是有關於 一種可無線地進行能量傳輸之能量傳輸系統。 【先前技術】 傳統上’多種無線傳輸技術已廣泛地被應用在通訊領 域中。目前的無線傳輸技術大部分係使用於在訊號的接收 ❹與發送上,故多半只能達成低功率之訊號傳輸。由於使用 無線傳輸技術的電子產品越來越多,藉由無線傳輸方式來 達到更高功率之傳輸技術的開發係越來越受到重視。因 此,如何設計出可無線地進行能量傳輸之能量傳輸系統乃 業界不斷致力的方向之一。 【發明内容】 本發明係有關於一種能量傳輸系統及其能量發送與 此量接收之方法,相較於傳統能量傳輸系統,本發明相關 之能量傳輸系統具有可無線地進行能量傳輸之優點。 根據本發明提出一種無線能量發送方法,應用於發送 端聢置,無線能量發送方法包括下列之步驟。首先經由第 能量發送模組進行能量發送,以經由第一無線能量傳輸 路徑輪出能量。接著接收回覆射頻訊號。然後回應於回覆 射頻訊號判斷發送端裝置是否有效地經由第 一無線能量 傳輸路徑輸出能量,若否,執行步驟(d)。之後重新設定 201010235 發送端裝置經由第二能量發送模組進行能量發送。 根據本發明提出-種無線能量接收方法,應用於接收 端裝置,無線能量接收方法包括下列之步驟。首先利用m 個能量接收模組分別經由M個無線能量傳輸路徑來接收m 筆接收能量,並將相對應之能量分別儲存於M個能量接收 模組,Μ為自然數。接著根據㈣能量接收模組中儲存之 電能,判斷Μ個能量接收模組中是否具有至少一較佳能量 接收效率之能量接收模組,若是,執行步驟⑹。然後在 ©特定操作期間中經由至少一較佳能量接收效率之能量接 收模組接收能量,並將相對應之能量接收模組中儲存之電 能提供至系統電能電路。之後提供回覆射頻訊號,表示接 收端裝置可有效地經由較佳能量接收效率之能量接收模 組進行能量接收。 根據本發明提出一種發送端裝置,包括Ν個能量發送 钿^县射頻(Radl〇 FreqUenCy)訊藏接收電路及處理器。Ν •出:詈發N送Γ組分別經由相對應之無線能量傳輸路徑輸 •二Μ : ^於1之自然數。射續訊號接收電路用以接 第-妒量=ί;處理器用以驅動N個能量發送模組中之 出第-能量,處理無線能量傳輸路徑輸 送端裝置是否成功地發送第一能量。復射頻訊就來判斷發 根據本發明提出一種接收端農置, 電路、Μ個能量接收棋組及處理器訊號發送 組分別經由《個無線能量傳輸路徑來接收二:= 7 201010235 數。處理器用以判斷Μ個能量接收模組中是否包括至少— 較佳能量接收效率之能量接收棋組,並對應地驅動射頻訊 號發送電路產生回覆射頻訊號’以表示接收端裝置可有效 地經由較佳能量接收效率之能量接收模組進行能量接收。 根據本發明提出一種能量傳輸系統,包括發送端装置 及接收端裝置。發送端裝置包括Ν個能量發送模組、射頻 訊號接收電路及第一處理器’接收端裝置包括射頻訊號發 送電路、Μ個能量接收模組及第二處理器。ν個能量發送 ❹模組分別經由相對應之無線能量傳輸路徑輸出能量,Ν為 大於1之自然數。第一處理器用以驅動Ν個能量發送模組 其中之一,以經由對應之無線能量傳輸路徑輸出第—能 量。Μ個能量接收模組分別經由相對應之無線能量傳輪路 徑接收能量,Μ為自然數。第二處理器用以判斷肘個能量 接收模組中是否包括至少一較佳能量接收效率之能量接 收模組,並對應地驅動射頻訊號發送電路產生回覆射頻訊 號,以請求發送端裝置經由與至少一較佳能量接收效率之 ❹能量接收模組對應之能量發送模組進行能量發送。其中, 發送端裝置係經由射頻訊號接收電路接收回覆射頻訊 號,第一處理器係根據回覆射頻訊號來驅動Ν個能量發送 模組中相對應之能量發送模組發送能量。 為讓本發明之上述内容能更明顯易懂,下文特舉一較 佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 201010235 本發明實施例提出之能量傳輸系統係應用共振器間 之非輻射能量傳輸來無線地進行能量傳輸。 請參照第1圖,其繪示依照本發明實施例之能量傳輸 系統的方塊圖。能量傳輸系統1包括發送端裝置12及接 收端裝置14。發送端裝置12具有N個能量發送模組 12al-12aN、射頻(Radio Frequency)訊號接收電路 12b 及 處理器12c,其中N為大於1之自然數。N個能量發送模 組12al-12aN分別用以經由相對應之無線能量傳輸路徑輸 ❹出能量Stel-SteN。處理器12c用以驅動N個能量發送模 組12a卜12aN其中之部分或全部,以經由對應之無線能量 傳輸路徑輸出能量Stel-SteN其中之部分或全部。 接收端裝置14具有Μ個能量接收模組14al-14aM、射 頻訊號發送電路14a及處理器14c,其中Μ為大於1之自 然數。Μ個能量接收模組i4ai-i4aM分別用以經由相對應 之無線能量傳輸路徑接收能量Srel-SreM。第二處理器14c 用以判斷Μ個能量接收模組Mai-HaM中是否包括一個或 © —個以上之較佳能量接收效率之能量接收模組,並對應地 驅動射頻訊號發送電路14b產生回覆射頻訊號Sr,以請求 發送端裝置12經由與一個或一個以上之較佳能量接收效 率之能量接收模組對應之能量發送模組進行能量發送。 發送端裝置12更經由射頻訊號接收電路丨沘接收回 覆射頻訊號Srs ’並將其提供至處理器12c。處理器12c 根據回覆射頻訊號Srs驅動能量發送模組似卜湖 中相對應之-個或-個以上之能量發送模組來發送能 9 201010235 量。接下來’係舉例對本實施例之能量傳輸系統1作更進 一步的說明。 請參照第2圖,其繪示依照本發明實施例之能量傳輸 系統之發送端裝置的方塊圖。發送端裝置22包括能量發 送模組22a卜22aN、射頻訊號接收電路22b、處理器22c、 電麼轉換器(Voltage Converter)22d、電源電路22e及解 多工器(De-multiplexer)22f ’其中N為大於1之自然數。 ❹ 電源電路22e用以接收多個電源訊號,並回應於選擇 訊號Csl選擇性地提供此些電源訊號其中之一做為系統電 源訊號Psys輸出。舉例來說,此些電源訊號中包括市電 電源訊號Psa、電池電源訊號Psb、太陽能轉換電能訊號201010235 IX. Description of the Invention: [Technical Field] The present invention relates to an energy transmission system, and more particularly to an energy transmission system capable of wirelessly transmitting energy. [Prior Art] Traditionally, a variety of wireless transmission technologies have been widely used in the field of communication. Most of the current wireless transmission technologies are used in the reception and transmission of signals, so most of them can only achieve low-power signal transmission. As more and more electronic products use wireless transmission technology, development systems that achieve higher power transmission technology by wireless transmission are receiving more and more attention. Therefore, how to design an energy transmission system that can perform energy transmission wirelessly is one of the directions that the industry is constantly striving for. SUMMARY OF THE INVENTION The present invention is directed to an energy delivery system and method for energy transmission and reception thereof. The energy transmission system of the present invention has the advantage of being capable of wirelessly transmitting energy compared to conventional energy transmission systems. According to the present invention, a wireless energy transmitting method is proposed, which is applied to a transmitting device, and the wireless energy transmitting method includes the following steps. Energy is first transmitted via the first energy transmitting module to rotate energy through the first wireless energy transmission path. Then receive the reply RF signal. Then, in response to the reply RF signal, it is determined whether the transmitting device is effective to output energy via the first wireless energy transmission path, and if not, step (d) is performed. Then reset 201010235 The transmitting device transmits energy via the second energy transmitting module. According to the present invention, a wireless energy receiving method is applied to a receiving device, and the wireless energy receiving method includes the following steps. Firstly, the m energy receiving modules respectively receive the m pen receiving energy via the M wireless energy transmission paths, and store the corresponding energy in the M energy receiving modules, respectively, and are natural numbers. Then, according to (4) the energy stored in the energy receiving module, it is determined whether the energy receiving modules have at least one energy receiving module with better energy receiving efficiency, and if so, step (6) is performed. The energy is then received by the energy receiving module of the at least one preferred energy receiving efficiency during a particular operation period and the electrical energy stored in the corresponding energy receiving module is provided to the system power circuit. A reply RF signal is then provided to indicate that the receiving device is effectively capable of receiving energy via the energy receiving module with better energy receiving efficiency. According to the present invention, a transmitting end device is provided, comprising: an energy transmitting 钿^ radio frequency (Radl〇 FreqUenCy) message receiving circuit and a processor. Ν • Out: The N-send group is sent via the corresponding wireless energy transmission path. • Two: ^ is a natural number of 1. The continuation signal receiving circuit is configured to receive the first 妒 quantity = ί; the processor is configured to drive the first energy in the N energy transmitting modules, and process whether the wireless energy transmission path transmitting end device successfully transmits the first energy. According to the present invention, a receiving end farm, a circuit, an energy receiving chess group and a processor signal transmitting group are respectively received via a "wireless energy transmission path": = 7 201010235. The processor is configured to determine whether the energy receiving module includes at least the energy receiving efficiency of the energy receiving module, and correspondingly drives the RF signal sending circuit to generate the reply RF signal to indicate that the receiving device can effectively pass the better energy. The energy receiving module of the receiving efficiency performs energy reception. According to the present invention, an energy transmission system is provided, comprising a transmitting end device and a receiving end device. The transmitting device comprises: an energy transmitting module, a radio frequency signal receiving circuit and a first processor. The receiving device comprises a radio frequency signal transmitting circuit, an energy receiving module and a second processor. The ν energy transmission ❹ modules respectively output energy via the corresponding wireless energy transmission path, and Ν is a natural number greater than 1. The first processor is configured to drive one of the energy transmitting modules to output the first energy via the corresponding wireless energy transmission path. Each of the energy receiving modules receives energy through a corresponding wireless energy transfer path, and is a natural number. The second processor is configured to determine whether the elbow energy receiving module includes at least one energy receiving module with better energy receiving efficiency, and correspondingly drive the RF signal sending circuit to generate a reply RF signal to request the transmitting device to communicate with at least one The energy receiving module corresponding to the energy receiving efficiency of the energy receiving module performs energy transmission. The transmitting device receives the RF signal through the RF signal receiving circuit, and the first processor drives the corresponding energy transmitting module in the energy transmitting module to transmit energy according to the RF signal. In order to make the above-mentioned content of the present invention more comprehensible, the following is a detailed description of the preferred embodiment and the following description of the accompanying drawings: [Embodiment] 201010235 The energy transmission system application of the embodiment of the present invention is applied. The non-radiative energy transmission between the resonators wirelessly performs energy transfer. Referring to Figure 1, a block diagram of an energy transfer system in accordance with an embodiment of the present invention is shown. The energy transmission system 1 includes a transmitting device 12 and a receiving device 14. The transmitting device 12 has N energy transmitting modules 12al-12aN, a radio frequency (Radio Frequency) signal receiving circuit 12b and a processor 12c, where N is a natural number greater than one. The N energy transmitting modules 12al-12aN are respectively used to output the energy Stel-SteN via the corresponding wireless energy transmission path. The processor 12c is configured to drive part or all of the N energy transmitting modules 12a, 12aN to output part or all of the energy Stel-SteN via the corresponding wireless energy transmission path. The receiving device 14 has a plurality of energy receiving modules 14al-14aM, a radio frequency signal transmitting circuit 14a and a processor 14c, wherein Μ is a natural number greater than one. The energy receiving modules i4ai-i4aM are respectively configured to receive the energy Srel-SreM via the corresponding wireless energy transmission path. The second processor 14c is configured to determine whether the energy receiving module Mai-HaM includes one or more energy receiving modules with better energy receiving efficiency, and correspondingly drives the RF signal transmitting circuit 14b to generate a reply RF The signal Sr is used to request the transmitting device 12 to perform energy transmission via an energy transmitting module corresponding to one or more energy receiving modules of preferred energy receiving efficiency. The transmitting device 12 further receives and returns the RF signal Srs' via the RF signal receiving circuit to the processor 12c. The processor 12c transmits the energy amount according to the corresponding RF signal Srs driving the energy transmitting module to the corresponding one or more energy transmitting modules. Next, the energy transmission system 1 of the present embodiment will be further described by way of example. Referring to FIG. 2, a block diagram of a transmitting device of an energy transmission system in accordance with an embodiment of the present invention is shown. The transmitting device 22 includes an energy transmitting module 22a, 22aN, a radio frequency signal receiving circuit 22b, a processor 22c, a voltage converter 22d, a power circuit 22e, and a de-multiplexer 22f' Is a natural number greater than 1. The power circuit 22e is configured to receive a plurality of power signals, and selectively provide one of the power signals as the system power signal Psys in response to the selection signal Cs1. For example, the power signals include the mains power signal Psa, the battery power signal Psb, and the solar energy conversion signal.

Pss。在一個例子中,電源電路22e包括多工器 (Multiplexer),用以回應於選擇訊號Csl來選擇此些電 源訊號其中之一做為系統電源訊號psys輸出。 電壓轉換器22d受控於處理器22c來對系統電源訊號 ❹Psys進行電壓轉換,以對應輸出傳送電源訊號pt。解多 工器22f用以受控於處理器22c提供之選擇訊號Cs2,將 電壓轉換器轉換後之傳送電源訊號pt提供至^個能量發 送模組22al-22aN中之部分或全部,以驅動其發送對 能量Pte卜PteN。 、 '應之 能量發送模組22al-22aN中係包括多個經由至少一種 無線能量傳輸路徑進行能量傳輸之能量發送模組。^例來 說,能量傳輸模組22al-22aN係透過共振器間之非輻射能 201010235 量轉移(Non-radiative Energy Transfer)來進行能量傳 輸。 此些經由非輻射能量轉移進行能量傳輪之能量傳輸 模組具有特定能量傳輸範圍。在本實施例中,此些能量傳 輸模組係依照特定方式進行配置,以使一個操作環境中之 各個區域可被此些能量傳輸模組之能量傳輸範圍涵蓋。舉 例來說,此操作環境例如為會議室,透過設置多個能量傳 輸模組於此會議室中,以使此會議室中各個區域被涵蓋在 ⑩一個或一個以上之能量傳輸模組之能量傳輸範圍中。 在另一個例子中,能量傳輸模組22al-22aN中之部分 月匕量傳輸模組係透過能量輕合(gnergy c〇Up 1 i ng , E-coupling)來進行能量傳輸。 射頻訊號接收電路22b包括射頻天線22bl及射頻訊 號處理電路22b2。射頻天線22bl用以接收射頻訊號St, 並將其提供至射頻訊號處理電路22b2。射頻訊處理器22b2Pss. In one example, the power circuit 22e includes a multiplexer for selecting one of the power signals as the system power signal psys output in response to the selection signal Cs1. The voltage converter 22d is controlled by the processor 22c to perform voltage conversion on the system power signal ❹Psys to correspond to the output transmission power signal pt. The multiplexer 22f is configured to be controlled by the selection signal Cs2 provided by the processor 22c, and the converted power transmission signal pt of the voltage converter is supplied to some or all of the energy transmitting modules 22al-22aN to drive the multiplexer 22f. Send a pair of energy Pte PteN. The energy transmission module 22al-22aN includes a plurality of energy transmission modules for energy transmission via at least one wireless energy transmission path. For example, the energy transfer module 22al-22aN transmits energy through a non-radiative energy transfer between the resonators 201010235. Such energy transfer modules for energy transfer via non-radiative energy transfer have a specific energy transfer range. In this embodiment, the energy transfer modules are configured in a specific manner such that each of the operating environments can be covered by the energy transfer ranges of the energy transfer modules. For example, the operating environment is, for example, a conference room, by setting a plurality of energy transmission modules in the conference room, so that each area in the conference room is covered by energy transmission of one or more energy transmission modules. In the scope. In another example, some of the energy transfer modules 22al-22aN transmit energy through a gnergy c〇Up 1 i ng (E-coupling). The RF signal receiving circuit 22b includes a radio frequency antenna 22b1 and a radio frequency signal processing circuit 22b2. The RF antenna 22bb is configured to receive the RF signal St and provide it to the RF signal processing circuit 22b2. RF signal processor 22b2

用以對射頻訊號St進行諸如編解碼及解調變操作後產生 控制訊號Cs3 ’並將控制訊號Cs3提供至處理器22c。處 理器22C根據控制訊號Cs3對各能量傳輸模組22a卜22aN 進行對應之控制操作。 在,Ή子中射頻訊號St係由能量傳輸系統中與 ,送端裝置22相對應之接收端裝置提供,其係包括接收 端裝置中各能量接收模組之能量接收情形之資訊。如此, 回應於根據射頻訊號St產生之控制訊號The control signal Cs3' is generated after the RF signal St is subjected to, for example, a codec and a demodulation operation, and the control signal Cs3 is supplied to the processor 22c. The processor 22C performs a corresponding control operation on each of the energy transfer modules 22a and 22aN based on the control signal Cs3. In the dice, the RF signal St is provided by the receiving device corresponding to the transmitting device 22 in the energy transmission system, and includes information on the energy receiving situation of each energy receiving module in the receiving device. In this way, in response to the control signal generated according to the RF signal St

Cs3,處理器22c 可選擇性地致能能量傳輸模組他卜中一個或一個以 201010235 上具有較佳傳輸效率之能量傳輸模組,使得本實施例之能 量傳輸系統具有較佳之能量傳輸效率。 請參照第3圖’其繪示依照本發明實施例之接收端裝 置的方塊圖。接收端裝置24包括能量接收模組 24al-24aM、射頻訊號發送電路24b、處理器24c、偵測電 路24d、系統電能電路24e、電荷泵(Charge Pump)24f及 多工器24g。能量接收模組24al-24aM分別經由對應之無 線能量傳輸通道接收能量pre 1 _pr,以提供對應之電壓 ❹訊號Vdl-VdM。 在一個例子中,能量接收模組24al-24aM係透過共振 器間之非輻射能量轉移來進行能量接收。由於各能量接收 模組24al-24aM之電路具有相似之結構,接下來係僅以能 量接收模組24al-24aM中之能量接收模組24ai為例作說 明,i為小於或等於Μ之自然數。 請參照第4圖,其繪示乃第3圖之能量接收模組24ai 的詳細方塊圖。能量接收模組24ai包括共振器rs、整流 ❹電路Rec及電容C。舉例來說’能量接收模組24ai係與發 送端裝置22中之能量發送模組22ai對應,能量發送模組 22ai輸出之能量Ptei係耦合至共振器rs,使共振器Rs 具有能量Prei。整流電路Rec用以對能量prei進行整流 操作,以輸出對應之整流後之能量prei’。電容C用以儲 存能量Prei’,以對應地記錄儲存電壓Vdi。舉例來說, 整流電路Rec為橋式整流器(Bridge Rectifier)。 受控於處理器24c,多工器24g將儲存於能量接收模 201010235 組24al-24aM中之能量prel’ _preM’提供至系統電能電路 24e ’以對應地儲存系統電壓Vs。系統電能電路24e例如 包括超級電容’此超級電容例如為電容值遠大於電容C之 電容》 清參照第5圖,其繪示乃第3圖之偵測電路的詳細方 塊圖。偵測電路24d包括電壓選擇電路24dl、24d2、偏壓 電路24d3及比較器24d4。偏壓電路24d3包括偏壓電阻 串,用以根據電壓Vcc及vss提供參考電壓Vrl及Vr2。 ❿ 電壓選擇電路24d2用以接收電壓vdl-VdM及系統電 壓Vs,並受控於處理器24c,提供電壓Vdl_VdM及系統電 壓Vs其中之一做為待測電壓以輸出。在一個例子中,處 理器24c係執行輪詢(p〇lling)操作,來依序地提供電壓 Vdl-VdM及系統電壓vs至比較器24d4,以偵測電壓 Vdl-VdM及系統電壓Vs之位準。處理器24c例如執行κ次 輪詢操作’ Κ為大於1之自然數。 電壓選擇電路24dl用以接收參考電壓vri及Vr2,I ❿受控於處理器24c選擇性地提供參考電壓Vrl及Vr2其中 之一做為參考電壓Vf輸出。在本實施例中,參考電壓Vrl 例如為電壓Vdl~VdM之臨界電壓,參考電壓Vr2例如為系 統電壓Vs之臨界電壓。當電壓選擇電路24d2受控於處理 器24c提供電壓Vdl_VdM其中之一做為待測電壓νχ時, 處理器24c係對應地控制電壓選擇電路24dl提供參考電 壓Vrl做為參考電壓vf。當電壓選擇電路24(12受控於處 理器24c &供系統電壓ys做為待測電壓νχ時,處理器24c 201010235 係對應地控制電壓選擇電路24dl提供參考電壓Vr2做為 參考電壓vf。 比較器24d4用以比較待測電壓vx及參考電壓Vf,並 據以提供控制訊號Cs4至處理器24c。透過接收控制訊號Cs3, the processor 22c can selectively enable one or one of the energy transmission modules to have an energy transmission module with better transmission efficiency on 201010235, so that the energy transmission system of the embodiment has better energy transmission efficiency. Referring to Figure 3, a block diagram of a receiving end device in accordance with an embodiment of the present invention is shown. The receiving device 24 includes an energy receiving module 24al-24aM, a radio frequency signal transmitting circuit 24b, a processor 24c, a detecting circuit 24d, a system power circuit 24e, a charge pump 24f, and a multiplexer 24g. The energy receiving modules 24a-24aM respectively receive the energy pre 1 _pr via the corresponding wireless energy transmission channel to provide a corresponding voltage ❹ signal Vdl-VdM. In one example, the energy receiving modules 24al-24aM receive energy through non-radiative energy transfer between the resonators. Since the circuits of the energy receiving modules 24a-24aM have similar structures, the energy receiving module 24ai in the energy receiving modules 24al-24aM is taken as an example, and i is a natural number less than or equal to Μ. Please refer to FIG. 4, which is a detailed block diagram of the energy receiving module 24ai of FIG. The energy receiving module 24ai includes a resonator rs, a rectifying Re circuit Rec, and a capacitor C. For example, the energy receiving module 24ai corresponds to the energy transmitting module 22ai in the transmitting device 22, and the energy Ptei output from the energy transmitting module 22ai is coupled to the resonator rs to have the energy Prei. The rectifier circuit Rec is used to rectify the energy prei to output a corresponding rectified energy prei'. The capacitor C is used to store the energy Prei' to correspondingly record the storage voltage Vdi. For example, the rectifier circuit Rec is a bridge rectifier. Controlled by the processor 24c, the multiplexer 24g supplies the energy prel'_preM' stored in the energy receiving mode 201010235 group 24al-24aM to the system power circuit 24e' to correspondingly store the system voltage Vs. The system power circuit 24e includes, for example, a supercapacitor. The supercapacitor is, for example, a capacitor having a capacitance value much larger than that of the capacitor C. Referring to Fig. 5, a detailed block diagram of the detecting circuit of Fig. 3 is shown. The detecting circuit 24d includes voltage selecting circuits 24d1, 24d2, a bias circuit 24d3, and a comparator 24d4. The bias circuit 24d3 includes a bias resistor string for providing reference voltages Vrl and Vr2 in accordance with the voltages Vcc and vss. The voltage selection circuit 24d2 is configured to receive the voltage vdl-VdM and the system voltage Vs, and is controlled by the processor 24c to provide one of the voltage Vdl_VdM and the system voltage Vs as the voltage to be measured for output. In one example, the processor 24c performs a polling operation to sequentially supply the voltage Vdl-VdM and the system voltage vs to the comparator 24d4 to detect the voltage Vdl-VdM and the system voltage Vs. quasi. The processor 24c, for example, performs a k-th polling operation ' 自然 is a natural number greater than one. The voltage selection circuit 24d1 is configured to receive the reference voltages vri and Vr2, and the I ❿ is controlled by the processor 24c to selectively provide one of the reference voltages Vrl and Vr2 as the reference voltage Vf. In the present embodiment, the reference voltage Vrl is, for example, a threshold voltage of the voltages Vd1 to VdM, and the reference voltage Vr2 is, for example, a threshold voltage of the system voltage Vs. When the voltage selection circuit 24d2 is controlled by the processor 24c to supply one of the voltages Vdl_VdM as the voltage to be measured ν, the processor 24c controls the voltage selection circuit 24d1 to provide the reference voltage Vrl as the reference voltage vf. When the voltage selection circuit 24 (12 is controlled by the processor 24c & for the system voltage ys as the voltage to be measured νχ, the processor 24c 201010235 correspondingly controls the voltage selection circuit 24d1 to supply the reference voltage Vr2 as the reference voltage vf. The device 24d4 is configured to compare the voltage to be tested vx and the reference voltage Vf, and accordingly provide the control signal Cs4 to the processor 24c.

Cs4 ’處理器24c可俄測得知電壓vdl -VdM及系統電壓vs 之位準。舉例來說’當電壓Vdi的位準實質上大於參考電 壓Vf(=Vrl)時,處理器24c提供選擇訊號Cs5控制多工器 24g將對應之能量接收模組24ai中儲存之能量prei,提供 ❿至系統電能電路24e ’並將其暫存在系統電能電路24e中。 如此,透過處理器24與偵測電路24d之操作,系統電能 電路24e可儲存各能量接收模組24al-24aM所接收之能 量。 當系統電壓Vs之位準實質上大於參考電壓Vf(=Vf2) 時’處理器24c提供控制訊號Cs6致能電荷泵24f,使其 根據系統電能電路24e中之電能來產生系統電能訊號Ed, 以對位於接收端裝置24端之電子裝置(未繪示)中之電池 ©(未繪示)進行充電。如此’本實施例之接收端裝置24可 無線地接收發送端裝置22提供之能量,並據以對位於接 收端裝置24端之電子裝置進行供電。 處理器24c更透過偵測控制訊號Cs4之位準變化來找 出能量接收模組24al-24aM中能量接收效率較佳之能量接 收模組。處理器24c更透過射頻訊號發送電路24b將前述 能量接收效率較佳之能量接收模組的資訊提供至發送端 裝置22,以驅動其透過與能量接收效率較佳之能量接收模 組對應之能量發送模組進行能量傳遞。 在一個例子中’處理器24c定義電壓訊號vdl-VdM之 位準實質上大於參考電壓Vf〇參考電壓Vr2)之事件為特 定事件Evtl-EvtM。在處理器24c所執行之各次輪詢操作 中,處理器24c更用以回應於觸發事件Evtl_EvtM來分別 對计數值Val-VaM進行計數操作。由於各計數值yai_vaM 之操做為實質上相同,接下來以處理器24c對計數值Vaj· 之計數操作為例作說明,j為小於或等於Μ之自然數。計 ❹數值Va]•之初始數值為〇,處理器24c係回應於觸發事件 Evtj將計數值Vaj遞增丨。相似地操作亦被執行於計數值 Val-VaM中其他之計數值,如此,處理器2切在κ次 操作後計算得到計數值Val-VaM。 處理器24c更選擇計數值Val-VaM中具有最大數值之 一筆或一筆以上之計數值對應之能量接收模組為能量接 收效率較佳之能量接收模組,並在特定操作期間中,經由 此一個或一個以上之能量接收效率較佳之能量接收模組 Φ接收能量。處理器24c對應地產生射頻訊號以來記錄能 量接收效率較佳之能量接收模組之資訊,並將射頻訊號St 經由射頻訊號發送電路24b輸出至射頻訊號接收電路22卜 射頻訊號接收電路24b包括射頻天線24bl及射頻訊 號處理電路24b2。射頻訊號處理電路24b2用以對射頻訊 號St進行諸如編解碼及解調變操作後經由射頻天線“Μ 輸出。如此,發送端裝置22可回應於接收端装置24提供 之射頻訊號St選擇發送端裝置22中對應之能量發送模组 15 201010235 來進行能量傳輸。 在本實施例中,雖僅以處理器24c透過輪詢操作來對 偵測電路24d中之電壓選擇電路24d2及24dl進行控制的 情形為例作說明,然,本實施例之處理器24c並不侷限於 此。在另一個例子中,處理器24c更例如具有使用者介面 模式,可回應於使用者提供之指令來進行前述電壓選擇電 路24d2及24dl之控制。在此例子中,處理器24c例如是 8051微處理器。 ❿ 在本實施例中,雖僅以能量接收模組24al-24aM接收 之能量Pre卜PreM經由多工器24g之多工操作提供至系統 電能電路24e的情形為例作說明,然,能量接收模組 24a卜24aM接收之能量prei-preM並不侷限於經由前述路 徑提供至系統電能電路24e。 在一個例子中,接收端裝置24更具有能量電路p,其 受控於處理器24c,在能量接收模組24w_24aM接收之能 量非常微弱時統一蒐集所有能量接收模組24al-24aM接收 ❿之能量’並據以對電子裝置進行供電。舉例來說,處理器 24c係以於執行K次輪詢操作後得到之計數值VM_VaM小 於或等於低臨界值時判斷能量接收模組24al_24aM接收之 能量非常微弱’並致能能量電路p來蒐集所有能量接收模 組24al-24aM接收之能量。 請參照第6圖,其繪示乃第3圖之接收端裝置24的 傳輸路徑的示意圖。能量電路P包括加總電路Pa及整流 電路Pc。加總電路Pa包括Μ個開關電路swi-SWM,其分 16 201010235 別设置於能量接收模組24al-24aM中。各開關電路SW卜SWM 係受控於處理器24c提供之控制訊號Cs7來進行切換。在 正常操作下,處理器24c係提供第一位準之控制訊號Cs7。 此時’開關SW1-SWM係導通對應之共振器RS與整流電路 Rec間之路徑,使對應之能量接收模組24al_24aM執行前 述之能量接收操作。 在處理器24c判斷能量接收模組24a卜24aM接收之能 量非常微弱時,處理器24c係提供第二位準之控制訊號 ❹Cs7。此時,開關SW1_SWM係將所有共振器RS耦接至整流 電路Pc。如此,透過加總電路pa之操作可對能量接收模 組24a卜24aM接收到之能量pre卜preM進行加總。而能量The Cs4' processor 24c can detect the level of the voltage vdl - VdM and the system voltage vs. For example, when the level of the voltage Vdi is substantially greater than the reference voltage Vf (=Vrl), the processor 24c provides the selection signal Cs5 to control the multiplexer 24g to provide the energy prei stored in the corresponding energy receiving module 24ai. The system power circuit 24e' is temporarily stored in the system power circuit 24e. Thus, through the operation of the processor 24 and the detecting circuit 24d, the system power circuit 24e can store the energy received by each of the energy receiving modules 24al-24aM. When the level of the system voltage Vs is substantially greater than the reference voltage Vf (= Vf2), the processor 24c provides the control signal Cs6 to enable the charge pump 24f to generate the system power signal Ed according to the power in the system power circuit 24e. The battery © (not shown) in the electronic device (not shown) at the end of the receiving device 24 is charged. Thus, the receiving device 24 of the present embodiment can wirelessly receive the energy provided by the transmitting device 22, and thereby supply power to the electronic device at the terminal end of the receiving device 24. The processor 24c further detects the level change of the control signal Cs4 to find an energy receiving module with better energy receiving efficiency in the energy receiving module 24al-24aM. The processor 24c further provides the information of the energy receiving module with better energy receiving efficiency to the transmitting device 22 through the RF signal transmitting circuit 24b to drive the energy transmitting module corresponding to the energy receiving module with better energy receiving efficiency. Conduct energy transfer. In one example, the event that processor 24c defines the level of voltage signal vdl-VdM to be substantially greater than reference voltage Vf 〇 reference voltage Vr2 is a particular event Evtl-EvtM. In each polling operation performed by the processor 24c, the processor 24c is further configured to perform a counting operation on the count value Val-VaM in response to the trigger event Evtl_EvtM, respectively. Since the operation of each count value yai_vaM is substantially the same, the counting operation of the count value Vaj· by the processor 24c will be described as an example, and j is a natural number less than or equal to Μ. The initial value of the value Va] is 〇, and the processor 24c increments the count value Vaj in response to the trigger event Evtj. The similar operation is also performed on the other count values in the count value Val-VaM, so that the processor 2 calculates the count value Val-VaM after the κ operation. The processor 24c further selects the energy receiving module having the highest value of one or more than one of the count values Val-VaM as the energy receiving module with better energy receiving efficiency, and during the specific operation period, via the one or More than one energy receiving module Φ with better energy receiving efficiency receives energy. The processor 24c correspondingly generates the information of the energy receiving module with better energy receiving efficiency since the RF signal is generated, and outputs the RF signal St to the RF signal receiving circuit 22 via the RF signal transmitting circuit 24b. The RF signal receiving circuit 24b includes the RF antenna 24bl. And RF signal processing circuit 24b2. The RF signal processing circuit 24b2 is configured to perform an output operation such as a codec and a demodulation operation on the RF signal St via the RF antenna. Thus, the transmitting device 22 can select the transmitting device in response to the RF signal St provided by the receiving device 24. Energy transfer is performed by the corresponding energy transmitting module 15 201010235 in Fig. 22. In the present embodiment, the case where the voltage selection circuits 24d2 and 24d in the detecting circuit 24d are controlled by the processor 24c only through the polling operation is For example, the processor 24c of the embodiment is not limited thereto. In another example, the processor 24c further has a user interface mode, and the voltage selection circuit can be performed in response to an instruction provided by the user. Control of 24d2 and 24dl. In this example, the processor 24c is, for example, an 8051 microprocessor. ❿ In this embodiment, only the energy received by the energy receiving modules 24al-24aM is pre-PreM via the multiplexer 24g. The case where the multiplex operation is provided to the system power circuit 24e is exemplified. However, the energy prei-preM received by the energy receiving module 24a 24aM is not limited to The path is provided to system power circuit 24e. In one example, receiver device 24 further has an energy circuit p that is controlled by processor 24c to collectively collect all energy receiving modes when the energy received by energy receiving module 24w_24aM is very weak. The group 24al-24aM receives the energy of the device and supplies power to the electronic device. For example, the processor 24c determines the energy reception when the count value VM_VaM obtained after performing the K-th polling operation is less than or equal to the low threshold value. The energy received by the module 24al_24aM is very weak' and the energy circuit p is enabled to collect the energy received by all the energy receiving modules 24al-24aM. Please refer to FIG. 6 , which shows the transmission path of the receiving device 24 of FIG. 3 . The energy circuit P includes a summing circuit Pa and a rectifying circuit Pc. The summing circuit Pa includes a switching circuit swi-SWM, which is disposed in the energy receiving module 24al-24aM by 16 201010235. The SWM is controlled by the control signal Cs7 provided by the processor 24c for switching. Under normal operation, the processor 24c provides the first level of the control signal Cs7. The SW1-SWM system turns on the path between the corresponding resonator RS and the rectifying circuit Rec, so that the corresponding energy receiving module 24al_24aM performs the aforementioned energy receiving operation. The processor 24c determines that the energy received by the energy receiving module 24a 24aM is very When the faint is weak, the processor 24c provides the second level of the control signal ❹Cs7. At this time, the switch SW1_SWM couples all the resonators RS to the rectifying circuit Pc. Thus, the operation of the summing circuit pa can be used for the energy receiving module. The energy preb preM received by 24abu 24aM is summed. And energy

Pre卜PreM之加總結果係透過整流電路Pc之操作,產生系 統電能訊號Ed’,以對位於接收端裝置24端之電子裝置進 行供電。 在本實施例中,雖僅以處理器22c根據射頻訊號St 選擇經由能量發送模組22al-22aN其中之部分或全部來傳 ❹輸能量的情形為例作說明,然,處理器22c並不侷限於執 行此操作。在一個例子中,處理器22c係一次僅致能能量 發送模組22al-22aN中的一個能量發送模組。如此,接收 端裝置24回應之射頻訊號st表示接收端裝置24是否可 有效地經由與此能量發送模組對應之能量接收模組接收 能量。當射頻訊號St表示接收端裝置24不能有效地接收 能量時’處理器22c係驅動能量發送模組22al-22aN中之 另一能量發送模組來進行能量傳輸。 201010235 5旁參照第7圖,其徐+穴士 送方法的、4顚乂、…、乃本發明實施例之無線能量發 ==I,個例子中,無線能量發送方法包括 下狀步驟。首先如步驟⑷,4The total result of the Pre PreM is generated by the operation of the rectifying circuit Pc to generate a system power signal Ed' to supply power to the electronic device located at the receiving end device 24. In this embodiment, the processor 22c only selects a part or all of the energy transmitting modules 22al-22aN to transmit the energy according to the RF signal St. However, the processor 22c is not limited. Do this. In one example, processor 22c only enables one of the energy transmitting modules 22al-22aN at a time. Thus, the RF signal st responded by the receiving device 24 indicates whether the receiving device 24 can effectively receive energy via the energy receiving module corresponding to the energy transmitting module. When the RF signal St indicates that the receiving device 24 is unable to efficiently receive energy, the processor 22c drives another energy transmitting module of the energy transmitting modules 22al-22aN for energy transfer. 201010235 5 Referring to FIG. 7 , the wireless energy transmission method of the embodiment of the present invention is 4=, I, in the example, the wireless energy transmission method includes the following step. First as step (4), 4

Cs2,以控制解多工器22 ㈣徑制㈣Cs2, to control the multiplexer 22 (four) diameter system (four)

中之第-M b量發送模組22al —22aN 中之第月匕量發補組發送能量 能f傳輸路徑料能量。職如㈣ 經由射頻訊號接收電路22h 糸 并f 接射頻訊號St。舉例來說, =量發送模組為能量發送模組22al。 tto驟(C) ’處理器版回應於射頻訊號St判斷 輸出能#. 1是否有效地經由此第一無線能量傳輸路徑 ^ ’右’係執行步驟⑷’處理器22c提供控制 1ΓΓ、、以控制發送端裝置22經由第二能量發送模組進 ::?9 9送。舉例來說’此第二能量發送模組為能量發送 、,且j ’其係受控於處理器22。發送能量加卜 舌、f ^如步驟⑷’處理器22c於延遲特定傳輸時間後 ❹ 行步驟⑻,以接收下一筆射頻訊號st,並據以執 ::驟(c)之判斷。其中,當處理器22。於步驟⑹中判斷 =裝置22可有效地經由對應之無線能量傳輸路徑輸 出月b量時,係執行步驟(e)。 ”_線此量發送方法於步驟(a)之前更例如包括步驟 槿彳,理器22C判斷發送端裝置22是否操作於自動發送 行^以經由自動發送模式來進行能量發送;若是,係執 :去驟’若否,係執行步驟(g),處理器22c回應於使 操作來辦發送端敦置22進行設定,以執行對應之發 201010235 送操作。 請參照第8A、8B及8C圖,其繪示乃本發明實施例之 無線能量接收方法的流程圖。在一個例子中,無線能量接 收方法包括下列之步驟。首先如步驟(a),處理器24c利 用Μ個能量接收模組24al-24aM分別經由Μ個無線能量傳 輸路徑來接收Μ筆能量Prel-PreM ’並將相對應之能量分 別儲存於對應之能量接收模組24al-24aM中。 接著如步驟(b),處理器24c根據Μ個能量接收模組 © 24al_24aM中儲存之電能,判斷Μ個能量接收模組 24al-24aM中是否具有較佳能量接收效率之能量接收模 組;若是,執行步驟(c),在特定操作期間中,接收端裝 置24係經由此較佳能量接收效率之能量接收模組接收能 然後如步驟(d),處理器24c係經由射頻訊號發送電 路24b來提供射頻訊號^至發送端裝置22。在一個例子 中,發送端裝置22例如根據射頻訊號St判斷接收端裝 ❿24是否可有效地經由此較佳能量接收效率之能量接收模 在-個例子中,與第7圖所绛示之能量發送方 地,第8A圖所緣示之能量接枚方法更包括步驟⑷與l 在-個例子中,步驟(_包括步驟⑽,' ° 下來,係對步驟(bl)_(bll)作進一步說明。 接 於步驟⑻中,首先係執行步驟(bl),處理器24 據控制⑽CS4找出能量接收模植2如_2械中滿足第根一 201010235 特定條件之能量接收模組。舉例來說,此第一特定條件為 此能量接收模組提供之㈣的位準實質上大於參考電壓 Vf(-參考電壓Vf2)之條件。舉例來說,處理器24c例如俊 序地判斷接收模組24a卜24aM是否滿足此第-特定條件。 接著執行步驟(b2),處理器24c將與滿足此第一特地 條件之能量接收模組相對應之計數值遞增工,並提供控制 訊號Cs5控制多工器24g將對應之能量接收模組 24a卜24aM中儲存之能量儲存至系統電能電路24e。 ❹ 然後如步驟(b3),處理器24c判斷是否已經執行 步驟〇3二,Κ為大於1之自然、數;若否,重複執行步驟 (bl),若是,執行步驟(b6),處理器24c判斷河個計數值 Val VaM疋否滿足一特疋條件。舉例來說此特定條件為 全部Μ個計數值va卜VaM均]、於或等於低臨界值之條件。 當各Μ個計數们3卜_不滿足此特定條件時,執行步驟 (b7) ’處理器24c以Μ個計數值VaHaM中具有最高計數 值對應之-個或-個以上之能量接收模組做為較佳能量 ❹接收效率之能量接收模組。如此,在步驟(c)中,係可透 過此在接下來之特定操作期間中經由此一個或一個以上 之能量接收模組進行能量接收操作。 如第8D圖所示,於步驟⑷之後,本實施例之能量接 收方法更執行步驟(g) ’處理器24c係在延遲此特定操作 期間後,判斷與此-個或一個以上之較佳能量接收效率之 能量接收模組中儲存之能量是否大於臨界值;若是,表示 此-個或-個以上之較佳能量接收效率之能量接收模組、 20 201010235 具有理想之接收效率,此時係重複執行步驟(b7),以持續 地經由此-個或-個以上之較佳能量接收效率之能量接 收模組接收月d,右否,表示此一個或一個以上之較佳能 量接收效率之能量接收模組具有較差之接收效率 ,此時係 以執行步驟(a)。 s在步驟(b7)中,若處理器24c判斷請計數值卜μ ^否滿足此特定條件則執行步驟⑽,處理器W提供控 ϋ眚^^S?致月b此量電路P中之加總電路Pa’以對M個能 =㈣組24al-24aM接收之能量進行加總,並經過變壓 二b:整流電路Pc產生系統電能訊號肋、接著執行步 步驟24係在延遲特定操作期間後,重複執行 步驟⑷’以重頭執行本實施例之能量接收方法。 個例子中’能量接收方法在步驟⑽與⑽之間 步驟⑽’處理器24c判斷系統電能電路W是否 食第一特疋條件。舉例來說’此第二特定條件為系統電 不滿二Γ 11於步驟(b4)中’若判斷系統電能電路24e /足此第一特定條件時係執行步驟(b3)。 當處理器24C判斷系統電能電路%滿足此第二特定 動電23驟广5),處理器W係提供控制訊號Cs6驅 電Si ::荷泵…根據系統電壓VS來產生驅動 犯汛嬈Ed。於步驟(b5)後,係執行步驟(b3)。 驟αΓηΊ例子卜於步驟⑽與(⑻之間更例如包括步 ),處理器24c係透過使用者介面觸發警示事件。 21 201010235 本實施例之能量傳輸系統及其能量發送與能量接收 之方法係應用若干無線能量傳輸模組來無線地進行能量 傳輸。如此,相較於傳統能量傳輸系統,本實施例之能量 傳輸系統具有可無線地進行能量傳輸之優點。 另外,本實施例之能量傳輸系統更透過射頻訊號發送 與接收電路來達到能量傳輸系統中之發送端裝置進行能 量傳輸控制。如此,本實施例之能量傳輸系統更具有可對 能量傳輸系統中之發送端裝置進行控制之優點。 綜上所述,雖然本發明已以一較佳實施例揭露如上, 然其並非用以限定本發明。本發明所屬技術領域中具有通 常知識者,在不脫離本發明之精神和範圍内,當可作各種 之更動與潤飾。因此,本發明之保護範圍當視後附之申請 專利範圍所界定者為準。 22 201010235 【圖式簡單說明】 第1圖繪示依照本發明實施例之能量傳輸系統的方塊 圖。 第2圖繪示依照本發明實施例之能量傳輸系統之發送 端裝置的方塊圖。 第3圖繪示依照本發明實施例之接收端裝置的方塊 圖。 第4圖繪示乃第3圖之能量接收模組24ai的詳細方 ❹塊圖。 第5圖繪示乃第3圖之偵測電路的詳細方塊圖。 第6圖繪示乃第3圖之接收端裝置24的傳輸路徑的 示意圖。 第7圖繪示乃本發明實施例之無線能量發送方法的流 程圖。 第8A、8B、8C及8D圖繪示乃本發明實施例之無線能 量接收方法的流程圖。 鲁 【主要元件符號說明】 1 :能量傳輸系統 12、22 :發送端裝置 12al-12aN、22a卜22aN、:能量發送模組 12b、22b :射頻訊號接收電路 12c、22c :處理器 14、24 :接收端裝置 23 201010235 14a卜14aM、24a卜24aM :能量接收模組 14b、24b :射頻訊號發送電路 14c、24c :處理器 22bl、24bl :天線 22b2、24b2 :射頻訊號處理電路 22d :電壓轉換器 22e :電源電路 22f :解多工器 φ 24d:偵測電路 24e :系統電能電路 24f :電荷泵 24g :多工器 Rs :共振器 Rec :整流電路 C :電容 24dl、24d2 :電壓選擇電路 ❹ 24d3 :偏壓電路 24d4 :比較器 P :能量電路 Pa :加總電路 Pb :變壓器 Pc :整流電路 24The first month of the first-M b amount transmitting module 22al-22aN transmits the energy of the transmission energy energy f transmission path energy. For example, (4) via RF signal receiving circuit 22h 糸 and f to receive RF signal St. For example, the = quantity transmitting module is the energy sending module 22al. Tto (C) 'The processor version responds to the RF signal St to determine whether the output energy #. 1 is effectively passed through the first wireless energy transmission path ^ 'Right' to perform the step (4) 'The processor 22c provides control 1 ΓΓ to control The transmitting device 22 sends the message through the second energy transmitting module::9. For example, the second energy transmitting module is powered by, and j' is controlled by the processor 22. The transmit energy add-on, f ^ as in step (4) processor 22c, after delaying the specific transmission time, step (8) to receive the next RF signal st, and according to the judgment of step (c). Among them, the processor 22 is used. When it is judged in the step (6) that the device 22 can effectively output the monthly b amount via the corresponding wireless energy transmission path, the step (e) is performed. The "_ line" method of transmitting the quantity further includes, for example, the step 步骤 before the step (a), and the processor 22C determines whether the source device 22 operates on the automatic transmission line to perform energy transmission via the automatic transmission mode; if yes, the system performs: If no, step (g) is executed, and the processor 22c responds to the operation to set the transmitting terminal 22 to perform the corresponding sending operation of the 201010235. Referring to Figures 8A, 8B and 8C, A flowchart of a wireless energy receiving method according to an embodiment of the present invention is shown. In one example, the wireless energy receiving method includes the following steps. First, as step (a), the processor 24c utilizes one energy receiving module 24al-24aM. The pen energy Prel-PreM′ is received via the two wireless energy transmission paths respectively, and the corresponding energy is stored in the corresponding energy receiving modules 24al-24aM respectively. Then, as in step (b), the processor 24c is configured according to the The energy stored in the energy receiving module © 24al_24aM determines whether the energy receiving modules 24al-24aM have energy receiving modules with better energy receiving efficiency; if yes, step (c) is performed. During the operation period, the receiving device 24 receives the energy through the energy receiving module of the preferred energy receiving efficiency. Then, in step (d), the processor 24c provides the RF signal to the transmitting device via the RF signal transmitting circuit 24b. 22. In one example, the transmitting device 22 determines, based on the RF signal St, whether the receiving device 24 can effectively receive the energy receiving mode via the preferred energy receiving efficiency, in an example, as shown in FIG. The energy transmitting method, the energy receiving method shown in Fig. 8A further includes steps (4) and l. In the example, the step (_ includes step (10), '° down, and the step (bl)_(bll) Further, in step (8), the first step (bl) is performed, and the processor 24 determines, according to the control (10) CS4, an energy receiving module that meets the specific conditions of the first root of 201010235. It is said that the first specific condition is that the level of (4) provided by the energy receiving module is substantially greater than the condition of the reference voltage Vf (-reference voltage Vf2). For example, the processor 24c determines the receiving module 24a, for example, in order. Whether the 24aM satisfies the first-specific condition. Next, in step (b2), the processor 24c increments the count value corresponding to the energy receiving module that satisfies the first special condition, and provides the control signal Cs5 to control the multiplexer 24g. The energy stored in the corresponding energy receiving module 24a 24a is stored in the system power circuit 24e. ❹ Then, as in step (b3), the processor 24c determines whether the step 〇3 2 has been performed, which is a natural number greater than 1. If not, the step (bl) is repeatedly executed, and if so, the step (b6) is executed, and the processor 24c determines whether the river count value Val VaM does not satisfy a special condition. For example, this specific condition is a condition that all of the count values va, VaM, are at or equal to a low threshold. When each of the counts 3 does not satisfy the specific condition, step (b7) is executed. 'The processor 24c performs the energy receiving module with the highest count value corresponding to one or more of the count values VaHaM. An energy receiving module for receiving energy with better energy. Thus, in step (c), the energy receiving operation can be performed via the one or more energy receiving modules during the next specific operation period. As shown in FIG. 8D, after the step (4), the energy receiving method of the embodiment further performs the step (g). The processor 24c determines the better energy with the one or more after delaying the specific operation period. Whether the energy stored in the energy receiving module of the receiving efficiency is greater than a critical value; if so, the energy receiving module indicating the one or more preferred energy receiving efficiencies, 20 201010235 has an ideal receiving efficiency, and is repeated at this time Performing step (b7) to continuously receive the month d, or right, via the energy receiving module of the one or more preferred energy receiving efficiencies, indicating energy reception of the one or more preferred energy receiving efficiencies The module has poor reception efficiency, and step (a) is performed at this time. In step (b7), if the processor 24c determines that the count value does not satisfy the specific condition, the step (10) is executed, and the processor W provides the control unit ^^S? The total circuit Pa' is summed with the energy received by the M energy=(four) groups 24al-24aM, and is transformed by the voltage transformer bb: the rectifier circuit Pc generates the system power signal rib, and then the step 24 is performed after delaying the specific operation period. The step (4) is repeatedly performed to perform the energy receiving method of the present embodiment. In the example, the 'energy receiving method is between steps (10) and (10). The step (10)' processor 24c determines whether the system power circuit W is eating the first characteristic condition. For example, the second specific condition is that the system power is not satisfied with the second step 11 in step (b4). If the system power circuit 24e is judged/the first specific condition is satisfied, the step (b3) is performed. When the processor 24C determines that the system power circuit % satisfies the second specific power 23, the processor W provides the control signal Cs6 to drive the Si::charge pump to generate the drive er according to the system voltage VS. After the step (b5), the step (b3) is performed. The example of the step (10) and ((8) includes, for example, a step), and the processor 24c triggers an alert event through the user interface. 21 201010235 The energy transfer system of the present embodiment and its method of energy transmission and energy reception apply a number of wireless energy transfer modules to wirelessly perform energy transfer. Thus, the energy transmission system of the present embodiment has the advantage of being able to perform energy transmission wirelessly as compared with the conventional energy transmission system. In addition, the energy transmission system of the embodiment further transmits the energy transmission control to the transmitting device in the energy transmission system through the RF signal transmitting and receiving circuit. Thus, the energy transfer system of the present embodiment has the advantage of being able to control the transmitting device in the energy transfer system. In view of the above, the present invention has been disclosed in a preferred embodiment, and is not intended to limit the present invention. It will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. 22 201010235 [Simple Description of the Drawings] Fig. 1 is a block diagram showing an energy transmission system in accordance with an embodiment of the present invention. Figure 2 is a block diagram of a transmitting device of an energy transfer system in accordance with an embodiment of the present invention. Figure 3 is a block diagram of a receiving device in accordance with an embodiment of the present invention. Fig. 4 is a block diagram showing the details of the energy receiving module 24ai of Fig. 3. Figure 5 is a detailed block diagram of the detection circuit of Figure 3. Fig. 6 is a view showing the transmission path of the receiving device 24 of Fig. 3. Figure 7 is a flow chart showing a wireless energy transmitting method according to an embodiment of the present invention. 8A, 8B, 8C and 8D are flowcharts showing a wireless energy receiving method according to an embodiment of the present invention. Lu [Main component symbol description] 1 : Energy transmission system 12, 22: transmitting device 12al-12aN, 22a, 22aN, energy transmitting module 12b, 22b: RF signal receiving circuit 12c, 22c: processor 14, 24: Receiving device 23 201010235 14a, 14aM, 24a, 24aM: energy receiving module 14b, 24b: RF signal transmitting circuit 14c, 24c: processor 22b1, 24b1: antenna 22b2, 24b2: RF signal processing circuit 22d: voltage converter 22e : power supply circuit 22f: demultiplexer φ 24d: detection circuit 24e: system power circuit 24f: charge pump 24g: multiplexer Rs: resonator Rec: rectifier circuit C: capacitor 24dl, 24d2: voltage selection circuit ❹ 24d3: Bias circuit 24d4: comparator P: energy circuit Pa: summing circuit Pb: transformer Pc: rectifying circuit 24

Claims (1)

201010235 十、申請專利範圍: 1. -種減能量發送方法,應驗―發送端裝置, 該無線能量發送方法包括: 楚⑷:::甚:一能量發送模紐進行能量發送’以經由 一第一無線能量傳輸路徑輸出能量; (b)接收一回覆射頻訊號;, 古回覆射頻訊號’判斷該發送端裝置是否 二趿二。崎能量傳輸路徑輸出能量,若否,執 φ 行步驟(d);以及 机 (dii新設定該發送端裝置經由—第二能量發送模电 進行能量發送。 n 2.如申4專利範圍第丨項所述之無線能量發送方 法’其中#在步领(c)中判斷該發送端裝置可有效地緩由 該第一無線能量傳輪路徑發送能量時,執行步驟: (e)延遲-特定傳輸相後,重複執行步驟⑻。 3·如申4專利範圍第1項所述之無線能量發 參法,其中步驟(d)之後更包括: (e)延遲t一特定傳輸時間後,重複執行步驟(b)。 4·如申凊專利範圍第1項所述之無線能量發送方 法,更包括: ⑴判斷該發送蠕裝置是否經由—自動發送模式來進 行能量發送’若是,執行步驟(a) ’若否,執行步驟⑷; 及 , (g)回應於一使用者操作來對該發送端裝置進行設 25 201010235 定。 5. 如申請專利範圍第1項所述之無線能量發送方 法’其中該第一及該第二能量發送模組其中之一係經由非 輻射能量轉移(Non-radiative Energy Transfer)來傳送能量。 6. —種無線能量接收方法,應用於一接收端裝置, 該無線能量接收方法包括: (a)利用Μ個能量接收模組分別經由μ個無線能量傳 輪路徑來接收Μ筆接收能量,並將相對應之能量分別儲存 Φ於Μ個能量接收模組,Μ為自然數; (b)根據該Μ個能量接收模組中儲存之電能,判斷該 1個成量接收模組中是否具有至少—較佳能量接收效率之 月*=*量接收模組,若是,執行步驟(c); ^符疋操作期間中,經由該至少一較佳能量接 模量接收模組接收能量,並將相對應之能量接收 、諸,之電能提供至—系統電能電路;以及 粵地瘦(由一回覆射頻訊號’表示該接收端裝置可有效 ^由該較佳能量接收效率之能量接收模組進行能量接 法,7其中如步申驟圍第6項所述之無嶋^ 件之Li二组 至Μ個計數值;、、、中該M個能量接收模組係分別對應 將〃各滿足該第一特定條件之能量接收模組相 26 201010235 * 對應之計數值遞增l ;及 (b3)判斷是否執行K次步驟(bl),若否,重複執行 步驟(bl),K為大於1之自然數。 8. 如申請專利範圍第7項所述之無線能量接收方 法,其中步驟(b2)更包括: 將相對應之能量接收模組中儲存之電能儲存至該系 統電能電路。 9. 如申請專利範圍第8項所述之無線能量接收方 φ 法,其中步驟(b2)與(b3)之間更包括: (b4)判斷該系統電能電路是否滿足一第二特定條 件,若是,執行步驟(b5),若否,執行步驟(b3);及 (b5)驅動一電荷栗(Charge Pump)根據該系統電能電 路中之電能來產生一驅動電能; 其中,於步驟(b5)之後係執行步驟(b3)。 10. 如申請專利範圍第7項所述之無線能量接收方 法,其中若於步驟(b3)中判斷已經執行K次步驟(bl),係 ©執行步驟: (b6)判斷該Μ個計數值是否滿足一第三特定條件, 若否,執行步驟(b7);及 (b7)以該Μ個計數值中至少一最高計數值對應之至 少一能量接收模組做為該至少一較佳能量接收效率之能 量接收模組。 11. 如申請專利範圍第10項所述之無線能量接收方 法,其中於步驟(b6)之中,若判斷該Μ個計數值滿足該第 27 201010235 三特定條件時,係執行步驟: ⑽對該Μ個能量接收模組接枚 (Sum),以產生一系統電能;及 敗*订加〜 ⑽延遲-特定操作期間後重複執行 12.如申請專利範圍第u項所述 丄 法,其中於步驟(b8)及⑽)之間更包括:“U接收方 (blO)觸發一警示事件。 Ο 13·如申請專利範圍第10項所述之無線能量接收方 法’其中於步驟(g)之後更包括: d接收方 (g)延遲-肢操作期間後,判斷該至少—較佳能量 ,收效率之能量接收模組中之能量是否大於―臨界值,若 是,執行步驟(b7),若否,執行步驟。 14.如申請專利範圍第6項所述之無線能量接收方 法’其中於步驟(a)之前更包括: “⑷判斷是否進入-自動模式,若是,執行步驟⑷, 若否,執行步驟(g);及 ❿ ⑴回應於-使用者操作來對該發送端裝置進行設 定。 15. 如申請專利範圍第6項所述之無線能量接收方 法’其中該Μ慨量接收模組其中之―係經由非輻射能量 轉移(Noiwadiative Energy Transfer)來接收該發送端裝置 提供之能量。 16. —種發送端裝置,包括: 請知量發送模組’用以分別經由相對應之無線能量 28 201010235 傳輸路徑輸出能量’ N為大於1之自然數; 用以接收 一射頻(Radio Frequency)訊號接收電路, 一回覆射頻訊號;以及 一處理器,用以驅動該N個能量發送模組中之— 能量發送模組,以經由相對應之無線能量傳輪路徑輪=一 第一能量,該處理器更用以回應於該回覆射類訊號^ — 該發送端裝置是否成功地發送該第一能量。 ^斷201010235 X. The scope of application for patents: 1. - A method for transmitting energy reduction, the device for transmitting - the transmitting device, the method for transmitting wireless energy includes: Chu (4)::: Very: an energy transmitting module for energy transmission 'through a first The wireless energy transmission path outputs energy; (b) receiving a reply RF signal; and the ancient reply RF signal 'determining whether the transmitting device is second or second. The energy transmission path of the Kawasaki energy transmission path, if not, the φ step (d); and the machine (dii newly sets the transmitting device to transmit energy via the second energy transmitting mode. n 2. For example, the scope of the patent application 丨The wireless energy transmitting method described in the item [where # in step (c) determines that the transmitting device can effectively slow the transmission of energy by the first wireless energy carrying path, performing the steps of: (e) delay-specific transmission After the phase, the step (8) is repeated. 3. The wireless energy method according to claim 1, wherein after step (d), the method further comprises: (e) delaying t after a specific transmission time, repeating the steps (b) The method of transmitting wireless energy according to claim 1, further comprising: (1) determining whether the transmitting device transmits energy via an automatic transmission mode, if yes, performing step (a)' If not, performing step (4); and, (g) responding to a user operation to set the transmitting device to the current device. 5. The wireless energy transmitting method according to claim 1, wherein the first One And one of the second energy transmitting modules transmits energy via a non-radiative energy transfer. 6. A wireless energy receiving method is applied to a receiving device, where the wireless energy receiving method includes (a) using one of the energy receiving modules to receive the pen receiving energy via the μ wireless energy transfer paths, respectively, and storing the corresponding energy Φ in the energy receiving modules, respectively, as a natural number; b) determining, according to the energy stored in the one energy receiving module, whether the one receiving module has at least a monthly energy receiving efficiency of the preferred energy receiving module, and if so, performing the step (c) During the operation period, the receiving module receives the energy via the at least one preferred energy receiving module, and supplies the corresponding energy receiving, the electrical energy to the system power circuit; A reply RF signal ' indicates that the receiving device can effectively perform the energy connection by the energy receiving module of the preferred energy receiving efficiency, 7 wherein the method is as follows: And the M energy receiving modules respectively increase the count value corresponding to the energy receiving module phase 26 201010235* satisfying the first specific condition by 1; and (b3) It is judged whether or not the K step (bl) is performed, and if not, the step (bl) is repeatedly performed, and K is a natural number greater than 1. 8. The wireless energy receiving method according to claim 7, wherein the step (b2) The method further includes: storing the electrical energy stored in the corresponding energy receiving module to the electrical energy circuit of the system. 9. The wireless energy receiving φ method according to claim 8 of the patent application, wherein steps (b2) and (b3) Further comprising: (b4) determining whether the system power circuit meets a second specific condition, and if so, performing step (b5), if not, performing step (b3); and (b5) driving a charge pump (Charge Pump) A driving electric energy is generated according to the electric energy in the electric energy circuit of the system; wherein, after the step (b5), the step (b3) is performed. 10. The wireless energy receiving method according to claim 7, wherein if it is judged in the step (b3) that the K step (bl) has been performed, the step is: (b6) determining whether the count value is Satisfying a third specific condition, if not, performing step (b7); and (b7) using at least one energy receiving module corresponding to at least one of the highest count values as the at least one preferred energy receiving efficiency Energy receiving module. 11. The wireless energy receiving method according to claim 10, wherein in the step (b6), if it is determined that the count value satisfies the specific condition of the 27th 201010235, the step is performed: (10)能量 an energy receiving module is connected (Sum) to generate a system of power; and * 订 订 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定 特定Between (b8) and (10)), the following includes: "The U receiver (blO) triggers a warning event. Ο 13. The wireless energy receiving method of claim 10, wherein after step (g) : d receiving party (g) delay - after the limb operation period, determining whether the energy in the energy receiving module of the at least-better energy, efficiency is greater than a "critical value", and if so, performing step (b7), if not, executing 14. The wireless energy receiving method of claim 6, wherein before step (a), further comprising: "(4) determining whether to enter - automatic mode, if yes, performing step (4), if not, performing the step ( g); and ❿ (1) The sender device is set in response to the user operation. 15. The wireless energy receiving method of claim 6, wherein the generous amount receiving module receives the energy provided by the transmitting device via a noniwadiative energy transfer. 16. A transmitting device, comprising: a quantity transmitting module for outputting energy 'N is a natural number greater than 1 respectively via a corresponding wireless energy 28 201010235; for receiving a radio frequency (Radio Frequency) a signal receiving circuit, a relay RF signal; and a processor for driving the energy transmitting module of the N energy transmitting modules to pass a corresponding wireless energy transfer path wheel=a first energy, The processor is further configured to respond to the replied signal - whether the transmitting device successfully transmits the first energy. ^断 Π.如申請專利範圍第16項所述之發送端裝置, 中’當該處理器判斷該發送端裝置無法輸出該第—能量# 時,該處理器係驅動該N個能量發送模組中之一第二能售 發送模組,以經由相對應之無線能量傳輸路後輪出—第_ 能量; "" 其中,該處理器更用以回應於下一個時間點接收到之 該回覆射頻訊號來判斷該發送端裝置是否成功地輸出該 第二能量。 18. 如申請專利範圍第16項所述之發送端裝置,其 ⑩中更包括: 一電源電路,用以接收複數個電源電路提供之複數個 輸入電能,並受控於該處理器將該些輸入電能其中之一做 為一第一電能輸出。 19. 如申請專利範圍第18項所述之發送端裝置,更 包括: 一電壓轉換器(Voltage Converter),用以受控於該 處理器,來對該第一電能進行電壓轉換;及 29 一解多工器(De-multiplexer),用以受控於該處理器 將該電壓轉換器轉換後之該第一電能提供至該N個能量發 送模組其中之一,以驅動其發送對應之能量。 20. 如申請專利範圍第16項所述之發送端裝置,其 中該N個能量發送模組其中之一係經由非輻射能量轉移 (Non-radiative Energy Transfer)來輸出能量。 21. —種接收端裝置,包括: 一射頻(Radio Frequency)訊號發送電路; ❹ Μ個能量接收模組,分別用以經由Μ個無線能量傳輸 路徑來接收電能,Μ為自然數;以及 一處理器,用以判斷該Μ個能量接收模組中是否包括 至少一較佳能量接收效率之能量接收模組,並對應地驅動 該射頻訊號發送電路產生一回覆射頻訊號,以表示該接收 端裝置可有效地經由該較佳能量接收效率之能量接收模 組進行能量接收。 22. 如申請專利範圍第21項所述之接收端裝置,各 _該Μ個能量接收模組包括: 一電容;及 一整流電路,用以對相對應之能量接收模組接收到之 電能進行整流,並據以對以對該電容進行充電。 23. 如申請專利範圍第22項所述之接收端裝置’更 包括一偵測電路,用以偵測該Μ個能量接收模組之電能’ 以對應地產生一偵測訊號,該偵測電路包括: 一電壓選擇電路,受控於該處理器提供一參考電壓及 201010235 一待偵測電壓,該待偵測電壓係相關於該Μ個能量接收模 組其中之一儲存之電能;及 一比較器,其用以對該訊號選擇電路提供之該參考電 壓及該待偵測電壓進行比較,以產生該偵測訊號; 其中,該處理器係根據該偵測訊號來判斷該Μ個能量 接收模組中是否具有至少一較佳能量接收效率之能量接 收模組。 24. 如申請專利範圍第22項所述之接收端裝置,更 φ 包括: 一系統電能電路;及 一傳輸電路,用以受控於該處理器,將與該至少一較 佳能量接收效率之能量接收模組對應之能量接收模組儲 存之能量提供至該系統電能電路。 25. 如申請專利範圍第24項所述之接收端裝置,更 包括: 一電荷栗(Charge Pump),用以受控於該處理器,根 參據該系統電能電路中儲存之電能產生一系統電能。 26. 如申請專利範圍第21項所述之接收端裝置,更 包括: 一加總電路,用以受控於該處理器,對該Μ個能量接 收模組接收到之能量進行加總,以產生一加總電能; 一變壓器(Transformer),用以對該加總電能進行轉 換,以產生一變壓後加總電能;及 一整流電路,用以對該變壓後加總電能進行整流,以 31 201010235 產生一系統電能。 27. 如申凊專利範圍第21項所述之接收端裝置,其 中該Μ個能量接收模組其中之一係經由非輻射能量轉移 (Non-radiative Energy Transfer)來接收該發送端裝置提供 之能量。 28. —種能量傳輸系統,包括: 一發送端裝置,包括: N個能量發送模組,分別用以經由相對應之無線 〇 能量傳輸路徑輸出能量’ N為大於1之自然數; 一射頻(Radio Frequency)訊號接收電路;及 一第一處理器,用以驅動該N個能量發送模組其 中之一,以經由對應之無線能量傳輸路徑輸出一第一能 量;以及 一接收端裝置,包括: 一射頻訊號發送電路; Μ個能量接收模組,分別用以經由相對應之無線 ©能量傳輸路徑接收能量’ Μ為自然數;及 一第二處理器,用以判斷該Μ個能量接收模組中 是否包括至少一較佳能量接收效率之能量接收模組,並對 應地驅動該射頻訊號發送電路產生一回覆射頻訊號’以請 求該發送端裝置經由與該至少一較佳能量接收效率之能 量接收模組對應之能量發送模組進行能量發送; 其中,該發送端裝置係經由該射頻訊號接收電路接收 該回覆射頻訊號,該第一處理器係根據該回覆射頻訊號來 32 201010235 驅動該N個能量發送模組中相對應之能量發送模組發送能 量。 29. 如申請專利範圍第28項所述之能量傳輸系統, 其中該Μ個能量接收模組包括: 一電容;及 一整流電路,用以對相對應之能量接收模組接收到之 電能進行整流,並據以對以對該電容進行充電。 30. 如申請專利範圍第29項所述之能量傳輸系統, φ 其中該接收端裝置更包括一偵測電路,用以偵測該Μ個能 量接收模組之電能,以對應地產生一偵測訊號,該偵測電 路包括: 一電壓選擇電路,受控於該第二處理器提供一參考電 壓及一待偵測電壓,該待偵測電壓係相關於該Μ個能量接 收模組其中之一儲存之電能;及 一比較器,其用以對該電壓選擇電路提供之該參考電 壓及該待偵測電壓進行比較,以產生該偵測訊號; 〇 其中,該第二處理器係根據該偵測訊號來判斷該Μ個 能量接收模組中是否具有至少一較佳能量接收效率之能 量接收模組。 31. 如申請專利範圍第29項所述之能量傳輸系統, 其中該接收端裝置更包括: 一系統電能電路;及 一傳輸電路,用以受控於該第二處理器,將與該至少 一較佳能量接收效率之能量接收模組對應之能量接收模 33 201010235 組儲存之能量提供至該系統電能電路。 32. 如申請專利範圍第31項所述之能量傳輸系統, 其中該接收端裝置更包括: 一電荷栗(Charge Pump),用以受控於該第二處理器, 根據該系統電能電路中儲存之電能產生一系統電能。 33. 如申請專利範圍第28項所述之接收端裝置,更 包括: 一加總電路,用以受控於該第二處理器,對該Μ個能 φ 量接收模組接收到之能量進行加總,以產生一加總電能 量; 一變壓器(Transformer),用以對該加總電能進行轉 換,以產生一變壓後加總電能;及 一整流電路,用以對該變壓後加總電能進行整流,以 產生一系統電能。 34. 如申請專利範圍第28項所述之能量傳輸系統, 其中當該第一處理器電路判斷該發送端裝置無法輸出該 ©第一能量時,該第一處理器係驅動該N個能量發送模組中 之一第二能量發送模組,以經由相對應之無線能量傳輸路 徑輸出一第二能量; 其中,該第一處理器更用以回應於下一個時間點接收 到之該回覆射頻訊號來判斷該發送端裝置是否成功地輸 出該第二能量。 35. 如申請專利範圍第28項所述之能量傳輸系統, 其中該發送端裝置更包括: 34 201010235 一電源電路,用以接收複數個電源電路提供之複數個 輸入電能,並受控於該第一處理器將該些輸入電能其中之 一做為一第一電能輸出。 36. 如申請專利範圍第35項所述之能量傳輸系統, 其中該發送端裝置更包括: 一電壓轉換器(Voltage Converter),用以受控於該 第一處理器,來對該第一電能進行電壓轉換;及 一解多工器(De-multiplexer),用以受控於該第一處 φ 理器將該電壓轉換器轉換後之該第一電能提供至該N個能 量發送模組其中之一,以驅動其發送對應之能量。 37. 如申請專利範圍第28項所述之能量傳輸系統, 其中該N個能量發送模組其中之一係經由非輻射能量轉移 來輸出能量。 35发送. As claimed in claim 16, in the transmitting device, when the processor determines that the transmitting device cannot output the first energy #, the processor drives the N energy transmitting modules. a second saleable transmission module to rotate through the corresponding wireless energy transmission path - the first energy; "" wherein the processor is further configured to respond to the response RF received at the next time point A signal is used to determine whether the transmitting device successfully outputs the second energy. 18. The transmitting device of claim 16, wherein the method further comprises: a power circuit for receiving a plurality of input powers provided by the plurality of power circuits, and controlling the processor to: One of the input electrical energy is used as a first electrical energy output. 19. The transmitting device of claim 18, further comprising: a voltage converter for controlling voltage conversion of the first electrical energy by the processor; and De-multiplexer for controlling the first electric energy converted by the voltage converter to be supplied to one of the N energy transmitting modules to drive the corresponding energy . 20. The transmitting device of claim 16, wherein one of the N energy transmitting modules outputs energy via a non-radiative energy transfer. 21. A receiving device, comprising: a radio frequency (Radio Frequency) signal transmitting circuit; Μ one energy receiving module for receiving power through two wireless energy transmission paths, respectively, as a natural number; and a processing The device is configured to determine whether the energy receiving module includes at least one energy receiving module with better energy receiving efficiency, and correspondingly drives the RF signal transmitting circuit to generate a reply RF signal to indicate that the receiving device is Energy reception is efficiently performed via the energy receiving module of the preferred energy receiving efficiency. 22. The receiving device according to claim 21, wherein each of the energy receiving modules comprises: a capacitor; and a rectifying circuit configured to perform electrical energy received by the corresponding energy receiving module Rectify and then charge the capacitor. 23. The receiving device of claim 22, further comprising a detecting circuit for detecting power of the one of the energy receiving modules to correspondingly generate a detecting signal, the detecting circuit The method includes: a voltage selection circuit controlled by the processor to provide a reference voltage and a voltage to be detected in 201010235, wherein the voltage to be detected is related to energy stored in one of the energy receiving modules; and a comparison Comparing the reference voltage and the voltage to be detected provided by the signal selection circuit to generate the detection signal; wherein the processor determines the one energy receiving mode according to the detection signal Whether the group has at least one energy receiving module with better energy receiving efficiency. 24. The receiving device of claim 22, wherein: φ comprises: a system power circuit; and a transmission circuit for controlling the processor to communicate with the at least one preferred energy receiving efficiency The energy stored by the energy receiving module corresponding to the energy receiving module is supplied to the system power circuit. 25. The receiving device of claim 24, further comprising: a charge pump for controlling the processor, the root generating a system according to the electrical energy stored in the power circuit of the system Electrical energy. 26. The receiving device of claim 21, further comprising: a summing circuit for controlling the processor to sum the energy received by the one of the energy receiving modules to Generating a total electric energy; a transformer (transformer) for converting the total electric energy to generate a total electric energy after the transformation; and a rectifying circuit for rectifying the total electric energy after the transformation Generate a system of electricity at 31 201010235. 27. The receiving device according to claim 21, wherein one of the one energy receiving modules receives the energy provided by the transmitting device via a non-radiative energy transfer. . 28. An energy transmission system, comprising: a transmitting device, comprising: N energy transmitting modules for respectively outputting energy 'N is a natural number greater than 1 via a corresponding wireless energy transmission path; a radio frequency receiving circuit; and a first processor for driving one of the N energy transmitting modules to output a first energy via a corresponding wireless energy transmission path; and a receiving end device comprising: An RF signal transmitting circuit; an energy receiving module for respectively receiving energy through a corresponding wireless source energy transmission path' is a natural number; and a second processor for determining the one energy receiving module Whether the energy receiving module includes at least one preferred energy receiving efficiency, and correspondingly drives the RF signal transmitting circuit to generate a reply RF signal 'to request the transmitting device to receive energy through the at least one preferred energy receiving efficiency The energy sending module corresponding to the module performs energy transmission; wherein the transmitting device receives the signal through the RF signal The circuit receives the RF signal, and the first processor drives the energy of the corresponding energy transmitting module of the N energy transmitting modules according to the RF signal to be transmitted. 29. The energy transfer system of claim 28, wherein the one energy receiving module comprises: a capacitor; and a rectifying circuit for rectifying the electrical energy received by the corresponding energy receiving module And according to the pair to charge the capacitor. 30. The energy transmission system of claim 29, wherein the receiving device further comprises a detecting circuit for detecting power of the one energy receiving module to correspondingly generate a detecting The detection circuit includes: a voltage selection circuit controlled by the second processor to provide a reference voltage and a to-be-detected voltage, wherein the to-be-detected voltage is related to one of the energy receiving modules a stored energy; and a comparator for comparing the reference voltage provided by the voltage selection circuit with the voltage to be detected to generate the detection signal; wherein the second processor is based on the detection The signal signal determines whether the energy receiving module has at least one energy receiving module with better energy receiving efficiency. The energy transmission system of claim 29, wherein the receiving device further comprises: a system power circuit; and a transmission circuit for controlling the second processor to be associated with the at least one The energy receiving module corresponding to the energy receiving module of the preferred energy receiving efficiency 33 201010235 is stored in the energy circuit of the system. 32. The energy transfer system of claim 31, wherein the receiving device further comprises: a charge pump for controlling the second processor, according to the system for storing in the power circuit The electrical energy produces a system of electrical energy. 33. The receiving device as claimed in claim 28, further comprising: a summing circuit for controlling the energy received by the one of the φ quantity receiving modules by the second processor Adding to generate a total electric energy; a transformer (transformer) for converting the total electric energy to generate a transformer and adding total electric energy; and a rectifying circuit for adding the transformer The total electrical energy is rectified to produce a system of electrical energy. 34. The energy transfer system of claim 28, wherein the first processor drives the N energy transmissions when the first processor circuit determines that the transmitting device is unable to output the first energy. a second energy transmitting module of the module, configured to output a second energy via a corresponding wireless energy transmission path; wherein the first processor is further configured to respond to the replying RF signal received at the next time point It is determined whether the transmitting device successfully outputs the second energy. The energy transmission system of claim 28, wherein the transmitting device further comprises: 34 201010235 a power circuit for receiving a plurality of input powers provided by the plurality of power circuits and controlled by the A processor uses one of the input powers as a first power output. 36. The energy transfer system of claim 35, wherein the transmitting device further comprises: a voltage converter for controlling the first processor to control the first electrical energy And performing a voltage conversion; and a de-multiplexer for controlling the first power to convert the first power converted by the voltage converter to the N energy transmitting modules. One to drive it to send the corresponding energy. 37. The energy delivery system of claim 28, wherein one of the N energy delivery modules outputs energy via non-radiative energy transfer. 35
TW097131842A 2008-08-20 2008-08-20 Wireless energy transmitting method, wireless energy receiving method, and wireless energy transferring system, transmitting end device, and receiving end device using thereof TWI376858B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW097131842A TWI376858B (en) 2008-08-20 2008-08-20 Wireless energy transmitting method, wireless energy receiving method, and wireless energy transferring system, transmitting end device, and receiving end device using thereof
CN200810213778A CN101667753A (en) 2008-08-20 2008-09-04 Wireless energy transmitting and receiving methods, transmitting system and transmitting and receiving devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW097131842A TWI376858B (en) 2008-08-20 2008-08-20 Wireless energy transmitting method, wireless energy receiving method, and wireless energy transferring system, transmitting end device, and receiving end device using thereof
CN200810213778A CN101667753A (en) 2008-08-20 2008-09-04 Wireless energy transmitting and receiving methods, transmitting system and transmitting and receiving devices

Publications (2)

Publication Number Publication Date
TW201010235A true TW201010235A (en) 2010-03-01
TWI376858B TWI376858B (en) 2012-11-11

Family

ID=55080259

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097131842A TWI376858B (en) 2008-08-20 2008-08-20 Wireless energy transmitting method, wireless energy receiving method, and wireless energy transferring system, transmitting end device, and receiving end device using thereof

Country Status (2)

Country Link
CN (1) CN101667753A (en)
TW (1) TWI376858B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427942B (en) * 2011-04-08 2014-02-21 Realtek Semiconductor Corp Communication apparatus with transmission rate detecting function and method thereof
TWI565182B (en) * 2012-03-06 2017-01-01 愛德萬測試股份有限公司 Wireless power receiving and supplying apparatus, and wireless power supplying system
TWI637584B (en) * 2017-06-06 2018-10-01 緯創資通股份有限公司 Voltage regulator and control method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5804694B2 (en) * 2010-11-29 2015-11-04 キヤノン株式会社 Electronic apparatus and method
JP5804698B2 (en) * 2010-12-10 2015-11-04 キヤノン株式会社 Power supply apparatus and method
CN103460553B (en) * 2011-01-30 2016-08-17 海尔集团公司 Wireless power supply system and remained capacity control method thereof
CN103326477A (en) * 2013-06-26 2013-09-25 中国电子科技集团公司第四十九研究所 Non-contact signal and energy coupling transmitting device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI427942B (en) * 2011-04-08 2014-02-21 Realtek Semiconductor Corp Communication apparatus with transmission rate detecting function and method thereof
TWI565182B (en) * 2012-03-06 2017-01-01 愛德萬測試股份有限公司 Wireless power receiving and supplying apparatus, and wireless power supplying system
US9742201B2 (en) 2012-03-06 2017-08-22 Advantest Corporation Wireless power receiving apparatus
TWI637584B (en) * 2017-06-06 2018-10-01 緯創資通股份有限公司 Voltage regulator and control method
US10148173B1 (en) 2017-06-06 2018-12-04 Wistron Corporation Voltage regulator and control method
CN109004828A (en) * 2017-06-06 2018-12-14 纬创资通股份有限公司 Voltage stabilizer and control method

Also Published As

Publication number Publication date
CN101667753A (en) 2010-03-10
TWI376858B (en) 2012-11-11

Similar Documents

Publication Publication Date Title
TW201010235A (en) Wireless energy transmitting method, wireless energy receiving method, and wireless energy transferring system, transmitting end device, and receiving end device using thereof
JP6670852B2 (en) Adapter and charge control method
US8432071B2 (en) Method and apparatus for energy harvest from ambient sources
JP6669931B2 (en) Fast charging method and system, terminal and charger
JP2019216602A (en) Adapter and charging control method
TW200908509A (en) Power source detection system, charger can provide power source detection and the detection method thereof
TW200937855A (en) Driving circuit and driving method for MOS transistor and power management system thereof
CN107547967B (en) Electric quantity control method and device of wireless earphone
TW202105897A (en) Communication through the flyback power transformer by the usage of the zero voltage switching pulse
JPWO2016121273A1 (en) Power control apparatus, power control method, and power control system
JP2011182538A (en) Charger and charging system
AU2016275411B2 (en) Power storage system, power storage device, and operation method for power storage device
JP5902213B2 (en) System and method for signal detection using dynamic thresholds
EP2575236B1 (en) Power storage control apparatus and power storage control method
KR101943082B1 (en) Wireless power transmission device, wireless power receiving device and wireless power transmission system
KR101814556B1 (en) Combination system and method of energy harvesting and wireless power receiver
EP2701293A2 (en) Improved dual-input power supply
CN103545850A (en) Electronic device
WO2012066807A1 (en) Power supply device
CN111316522B (en) Method based on voltage sag in power transmission system
TW201448398A (en) Voltage-stacked system
US20110101925A1 (en) Feedback-adjustable charging system and method thereof
Nicot et al. Remote RF powering of ambient sensors
EP3270483B1 (en) Apparatus and associated method for battery charging
WO2018008287A1 (en) Power control device and power control method