TW201009503A - Underlayer film composition - Google Patents

Underlayer film composition Download PDF

Info

Publication number
TW201009503A
TW201009503A TW098124182A TW98124182A TW201009503A TW 201009503 A TW201009503 A TW 201009503A TW 098124182 A TW098124182 A TW 098124182A TW 98124182 A TW98124182 A TW 98124182A TW 201009503 A TW201009503 A TW 201009503A
Authority
TW
Taiwan
Prior art keywords
group
film
structural unit
polymer
underlayer film
Prior art date
Application number
TW098124182A
Other languages
Chinese (zh)
Other versions
TWI453544B (en
Inventor
Yousuke Konno
Shinya Minegishi
Mitsuo Satou
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW201009503A publication Critical patent/TW201009503A/en
Application granted granted Critical
Publication of TWI453544B publication Critical patent/TWI453544B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a underlayer film composition which could be used for forming a underlayer film that has excellent embedability, few sublimation amount; besides, also has excellent etching resistance, great values of refraction coefficient and decay coefficient. An underlayer film composition comprises (A) polymer having desired structure unit, (B) cross-linking agent having butyl ether group, and (C) solvent.

Description

201009503 六、發明說明: 【發明所屬之技術領域】 本發明係關於下層膜形成組成物。更詳而言之,係關 於除了埋入性優異、昇華物量少之外,耐鈾刻性優異、折 射係數及衰退係數之數値良好的形成下層膜之下層膜形成 組成物。 【先前技術】 半導體裝置的製造製程係大多包含在矽晶圓上堆積作 Ο 爲被加工膜之複數個物質,且分別在該被加工膜上形成所 望的圖案(圖案化)之步驟。具體而言,該圖案化係首先將光 阻(感光性物質)堆積於被加工膜上以形成光阻膜,並對該光 阻膜的規定領域進行曝光。接著,利用顯像處理去除光阻 膜的曝光部或未曝光部以形成光阻圖案。隨後,以該光阻 圖案作爲蝕刻遮罩來乾式蝕刻被加工膜。 在該製程中,使用ArF準分子雷射等的紫外光作爲對 π於光阻膜施加曝光用的曝光光源。現在,對於大規模積體 電路(LSI)微細化的要求係日益增高,且爲必要的解析度變 爲爲曝光光線的波長以下。像這樣使解析度爲曝光光線的 波長以下,則曝光量容差、聚焦容差等的曝光製程容差變 得不足。爲了補償該曝光製程容差的不足,薄化光阻膜的 膜厚而提昇解像性雖然有效,但是另一方面確保對於被加 工膜的蝕刻爲必要的光阻膜厚係變得困難。 有鑑於此,對於在被加工膜上形成光阻下層膜(以下, 僅記載爲「下層膜」),並在暫時將光阻圖案轉印至下層膜 201009503 以形成下層膜圖案之後,使用該下層膜圖案作爲蝕刻遮罩 轉印至被加工膜之製程(亦稱爲多層製程)的檢討係正爲盛 行。在該製程中,較佳係下層膜由具有耐蝕刻性之材料所 構成者。例如,作爲形成該下層膜之材料,已提案含有具 有吸收蝕刻中的能量、有耐蝕刻性之苊烯骨架的聚合物之 組成物等(例如,參照專利文獻1 ~ 5)。 可是,一形成0.13 m以下的微細度之LSI圖案線 (pattern rule),則配線延遲給予LSI高速化的影響變多 了,依照現狀的LSI製程技術係難以使LSI的高性能化有 進展。因此,目前爲了縮小配線延遲而使用的材料(配線材} 之一已知爲Cu。而且,爲了將配線材從A1變成Cu而導入 之技術係有雙重鑲嵌(Dual damascene)製程(例如,參照專 利文獻6)。在該雙重鑲嵌製程,相較於以往的配線材A1之 基板’變成可在微細且縱橫比(凹凸)大的基板上形成下層 膜。 在此,專利文獻1~4中所記載之下層膜形成組成物雖 然具有苊烯骨架特有的良好耐蝕刻性與抗反射機能,但是 不能充分地埋入微細且縱橫比大的基板。 爲此,埋入縱橫比大的基板上之方法、亦即提昇埋入 性之方法,有使下層膜形成組成物中的聚合物(具有苊烯骨 架之聚合物)分子量成爲2000以下之報告(參照專利文獻 5)。又’在專利文獻7,有下層膜形成組成物中的聚合物的 分子量爲3000以下之報告。 專利文獻1特開2000-143937號公報 201009503 專利文獻2 專利文獻3 專利文獻4 專利文獻5 專利文獻6 專利文獻7 特開200 1 -40293號公報 特開2004- 168748號公報 特開2005-250434號公報 特開2005-15532號公報 美國專利第6057239號說明書 特開2000-29450 4.號公報 【發明內容】 發明所欲解決之課題 〇 然而,一使得下層膜形成組成物中的聚合物、特別是 具有苊烯骨架之聚合物的分子量變小,則在利用該下層膜 形成組成物形成下層膜之際,聚合物中的低分子成分、其 分解物係爲昇華。如此一昇華低分子成分或其分解物{亦 即,產生昇華物),形成下層膜用的裝置就會有受到污染的 問題。 如此一來,以提昇下層膜形成組成物的埋入性爲目的 來降低聚合物的分子量時,就會產生所謂昇華物量增加的 問題。因此,開發除了對於縱橫比大的基板之埋入性優異 之外,能降低於形成下層膜之際所產生的昇華物的量之下 層膜形成組成物係受到殷切期盼。 本發明係有助於解決上述的以往技術之課題者,可提 供一種能形成除了埋入性優異、昇華物量少之外’耐蝕刻 性優異、折射係數及衰退係數之數値良好的下層膜之下層 膜形成組成物。 解決課題之手段 201009503 依照本發明,能提供以下的下層膜形成組成物。 [1] 一種下層膜形成組成物,其係含有 式(2) 及下 (A) 具有下述通式(1)所表示之構造單元、下述通 所表示之構造單元、下述通式(3)所表示之構造單元、 述通式(4)所表示之構造單元的聚合物, (B) 具有丁基醚基之交聯劑,與 〇 (C)溶劑。201009503 6. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to an underlayer film forming composition. More specifically, in addition to the excellent embedding property and the small amount of sublimation, the composition of the underlayer film formation is excellent in that the urethane resistance is excellent, the refractive index and the coefficient of decay are good. [Prior Art] A manufacturing process of a semiconductor device often includes a plurality of substances deposited on a germanium wafer as a film to be processed, and a desired pattern (patterning) is formed on the film to be processed. Specifically, the patterning first deposits a photoresist (photosensitive substance) on the film to be processed to form a photoresist film, and exposes a predetermined region of the photoresist film. Next, the exposed portion or the unexposed portion of the photoresist film is removed by a developing process to form a photoresist pattern. Subsequently, the film to be processed is dry etched using the photoresist pattern as an etch mask. In this process, ultraviolet light such as an ArF excimer laser is used as an exposure light source for applying π to the photoresist film. Nowadays, the demand for miniaturization of large-scale integrated circuits (LSI) is increasing, and the necessary resolution is set to be equal to or lower than the wavelength of exposure light. When the resolution is equal to or lower than the wavelength of the exposure light, the exposure process tolerance such as the exposure amount tolerance and the focus tolerance becomes insufficient. In order to compensate for the shortage of the exposure process tolerance, it is effective to reduce the film thickness of the photoresist film to improve the resolution, but on the other hand, it is difficult to ensure the thickness of the photoresist film necessary for etching the film to be processed. In view of this, a photoresist underlayer film (hereinafter, simply referred to as "lower film") is formed on the film to be processed, and after the photoresist pattern is temporarily transferred to the underlayer film 201009503 to form an underlayer film pattern, the lower layer is used. The review of the film pattern as a process for transferring an etch mask to a film to be processed (also referred to as a multilayer process) is prevailing. In the process, it is preferred that the underlayer film is composed of a material having etching resistance. For example, a composition of a polymer having a terpene skeleton which absorbs energy during etching and has etching resistance is proposed as a material for forming the underlayer film (see, for example, Patent Documents 1 to 5). However, when the LSI pattern rule of 0.13 m or less is formed, the influence of the wiring delay on the speed of the LSI is increased, and it is difficult to improve the performance of the LSI in accordance with the current LSI process technology. Therefore, one of the materials (wiring materials) currently used to reduce the wiring delay is known as Cu. Moreover, the technique for introducing the wiring material from A1 to Cu is a dual damascene process (for example, refer to the patent). In the case of the double damascene process, the lower layer film is formed on the substrate having a finer aspect ratio (concavity and convexity) than the substrate of the conventional wiring material A1. Here, Patent Documents 1 to 4 describe The underlayer film forming composition has excellent etching resistance and anti-reflection function unique to the terpene skeleton, but cannot sufficiently embed a substrate having a large aspect ratio and a large aspect ratio. Therefore, a method of embedding a substrate having a large aspect ratio, In the method of improving the embedding property, there is a report that the molecular weight of the polymer (polymer having a terpene skeleton) in the underlayer film forming composition is 2000 or less (see Patent Document 5). Further, in Patent Document 7, there is The molecular weight of the polymer in the underlayer film-forming composition is 3,000 or less. Patent Document 1 JP-A-2000-143937, 201009503 Patent Document 2 Patent Document 3 Patent Document 4 Japanese Unexamined Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. OBJECTS OF THE INVENTION PROBLEM TO BE SOLVED BY THE INVENTION However, when a polymer of a lower film formation composition, particularly a polymer having a terpene skeleton, has a small molecular weight, a composition is formed by using the underlayer film. When the underlayer film is formed, the low molecular component in the polymer and the decomposition product thereof are sublimed. Such a sublimation low molecular component or its decomposition product {that is, a sublimate is produced), and the device for forming the underlayer film is subject to The problem of pollution. As a result, when the molecular weight of the polymer is lowered for the purpose of improving the embedding property of the underlayer film forming composition, there arises a problem that the amount of the sublimated substance increases. Therefore, in addition to the excellent embedding property for a substrate having a large aspect ratio, the development of the film formation composition under the amount of the sublimate generated at the time of forming the underlayer film is eagerly expected. In the present invention, it is possible to provide an underlayer film which is excellent in etch resistance and has a good number of refractive index and decay coefficient, in addition to excellent embedding property and small amount of sublimation material. The underlying film forms a composition. Means for Solving the Problem 201009503 According to the present invention, the following underlayer film forming composition can be provided. [1] A lower layer film-forming composition comprising the structural unit represented by the following formula (1) and the structural unit represented by the following general formula (1), and the following structural formula: a structural unit represented by the above, a polymer of the structural unit represented by the above formula (4), (B) a crosslinking agent having a butyl ether group, and a solvent of cerium (C).

⑴ 6的 碳數 基、 子、 (但是,前述通式(1)中,R1表示氫原子、碳數 亦可取代之烷基、羥基、碳數1~6的烷氧基、羧基、 1~6的烷氧基羰基、碳數1~6的烷氧基羰氧基、羥甲 ®或碳數卜6的烷氧基羥甲基,R2及R3係各自表示氫n 或碳數1~6的亦可取代之烷基) R4 —{~CH2—C-)— c=o 〇/ (2) \5(1) A carbon number group of 6 (in the above formula (1), R1 represents a hydrogen atom, an alkyl group which may be substituted by a carbon number, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, a carboxyl group, 1~ Alkoxycarbonyl group of 6, alkoxycarbonyloxy group having 1 to 6 carbon atoms, alkoxymethylol group of hydroxymethyl group or carbon number 6, and R2 and R3 each represent hydrogen n or carbon number 1 to 6 Also substituted for alkyl) R4 —{~CH2—C—)— c=o 〇/ (2) \5

II

OH 201009503 (但是,前述通式(2)中,R4表示氫原子或甲基,R5表 示碳數卜4的伸烷基1 R7OH 201009503 (However, in the above formula (2), R4 represents a hydrogen atom or a methyl group, and R5 represents an alkyl group 1 R7 of a carbon number of 4;

(但是’前述通式(3)中,R6表示氫原子、碳數1~6的 亦可取代之烷基、羥基、碳數的烷氧基、羧基、碳數 1〜6的烷氧基羰基、碳數卜6的烷氧基羰氧基、羥甲基、 或碳數卜6的烷氧基羥甲基,r7表示氫原子或碳數卜6的 亦可取代之院基,η表示ι~3的整數) R9(But, in the above formula (3), R6 represents a hydrogen atom, an alkyl group which may be substituted with 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having a carbon number, a carboxyl group, or an alkoxycarbonyl group having 1 to 6 carbon atoms. , alkoxycarbonyloxy group of carbon number 6, hydroxymethyl group, or alkoxymethylol of carbon number 6, r7 represents a hydrogen atom or a carbon number of 6 can also be substituted for the yard, η represents ι An integer from ~3) R9

Rio—〇——c-C- ⑷Rio—〇—c-C- (4)

© II Ο R8 (但是,前述通式(4)中,R8、R9及R10係各自獨立地 表示氫原子、碳數1~6的亦可取代之烷基)。 [2】如前述[1]中記載的下層膜形成組成物,其中前述 (Α)聚合物的聚苯乙烯換算之重量平均分子量(Mw)爲 500~10000 ° [3】如前述[1】或[2】中記載的下層膜形成組成物,其中 前述(B)交聯劑爲下述通式(5)或(6)所表示之化合物。 201009503© II Ο R8 (However, in the above formula (4), R8, R9 and R10 each independently represent a hydrogen atom and an alkyl group which may have a carbon number of 1 to 6). [2] The underlayer film forming composition according to the above [1], wherein the (Α) polymer has a polystyrene-equivalent weight average molecular weight (Mw) of 500 to 10000 ° [3] as described above [1] or The underlayer film forming composition according to [2], wherein the (B) crosslinking agent is a compound represented by the following formula (5) or (6). 201009503

⑸ (但是,前述通式(5)中,R11係各自獨立地表示氫原子、 甲基、正丁基、或異丁基;但是,4個的R11之中的2個以 ❹ 上爲正丁基或異丁基) OR12 OR12(5) (However, in the above formula (5), R11 each independently represents a hydrogen atom, a methyl group, a n-butyl group or an isobutyl group; however, two of the four R11 groups are positively on the ruthenium. Base or isobutyl) OR12 OR12

⑹ (但是,前述通式(6)中,R12係各自獨立地表示氫原子、 甲基、正丁基、或異丁基;但是,6個的R12之中的2個以 ❹ W上爲正丁基或異丁基)。 [4]如前述丨1]~丨3]項中任一項之下層膜形成組成物, 其中 前述(A)聚合物中所含有的以前述通式(1)所表示之構 造單元的比例,係相對於前述(A)聚合物的全構造單元1〇〇 莫耳%爲5 ~ 8 0莫耳% ; 前述(A)聚合物中所含有的以前述通式(2)所表示之構 造單元的比例,係相對於前述(A)聚合物的全構造單元1〇〇 莫耳%爲5 ~ 8 0莫耳。/。; 201009503 前述(A)聚合物中所含有的以前述通式(3)所表示之構 造單元的比例,係相對於前述(A)聚合物的全構造單元1〇〇 莫耳%爲0.1 ~ 5 0莫耳% » [5]如前述[1]~[4]項中任一項之下層膜形成組成物, 其中更含有(D)酸發生劑。 發明的效果 本發明的下層膜形成組成物係表示出能形成除了埋入 性優異、昇華物量少以外,耐蝕刻性優異、折射係數及衰 n 退係數之數値良好的下層膜之效果。 【實施方式】 實施發明之最佳形態 以下,就實施本發明用的最佳形態加以説明,惟本發 明不必受限於以下的實施形態。亦即,在不脫離本發明宗 旨之範圍內,基於該業者的通常知識,包含對於以下的實 施形態做適宜的變更、改良等,亦可理解爲屬於本發明之 ©範圍內者。 [1]下層膜形成組成物: 本發明的下層膜形成組成物的一實施形態係含有(A)具 有下述通式(1)所表示之構造單元、下述通式(2)所表示之構 造單元、下述通式(3)所表示之構造單元、及下述通式(4)所 表示之構造單元的聚合物,(B)具有丁基醚基之交聯劑,與 (C)溶劑。該下層膜形成組成物係可形成除了埋入性優異、 昇華物量少以外’耐蝕刻性優異、折射係數及衰退係數之 數値良好的下層膜。 201009503 R2 R3(6) (However, in the above formula (6), R12 each independently represents a hydrogen atom, a methyl group, a n-butyl group or an isobutyl group; however, two of the six R12 groups are positive on ❹ W Butyl or isobutyl). [4] The film formation composition according to any one of the above items (1) to (3), wherein the ratio of the structural unit represented by the above formula (1) contained in the polymer (A), The % structural unit % of the total structural unit of the polymer (A) is 5 to 80% by mole; the structural unit represented by the above formula (2) contained in the above (A) polymer The ratio of the total structural unit relative to the above (A) polymer is 1 to 8 mol. /. 201009503 The ratio of the structural unit represented by the above formula (3) contained in the above (A) polymer is 0.1 to 5 with respect to the total structural unit of the above (A) polymer. [0] The film formation composition of any one of the above [1] to [4], which further contains (D) an acid generator. EFFECTS OF THE INVENTION The underlayer film forming composition of the present invention exhibits an effect of forming an underlayer film which is excellent in embedding property, small in etch resistance, and excellent in the number of refractive indices and fading coefficients. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the best mode for carrying out the invention will be described, but the present invention is not necessarily limited to the following embodiments. In other words, it is also possible to make appropriate changes, improvements, and the like in the following embodiments based on the general knowledge of the present invention within the scope of the present invention, and it is also understood to be within the scope of the present invention. [1] Lower film formation composition: The embodiment of the lower film formation composition of the present invention contains (A) a structural unit represented by the following general formula (1) and represented by the following general formula (2). a structural unit, a structural unit represented by the following formula (3), and a polymer of a structural unit represented by the following formula (4), (B) a crosslinking agent having a butyl ether group, and (C) Solvent. The underlayer film forming composition system can form an underlayer film which is excellent in etch resistance and has a good refractive index and a coefficient of decay, in addition to excellent embedding property and a small amount of sublimation. 201009503 R2 R3

⑴ R1 (但是,前述通式(1)中,R1表示氫原子、 亦可取代之烷基、羥基、碳數1~6的烷氧基 的烷氧基羰基、碳數卜6的烷氧基羰氧 或碳數1~6的烷氧基羥甲基,R2及R3係各自 或碳數1~6的亦可取代之烷基) 碳數1~6的 、羧基、碳數 S、羥甲基、 表示氫原子、(1) R1 (However, in the above formula (1), R1 represents a hydrogen atom, an alkyl group which may be substituted, a hydroxyl group, an alkoxycarbonyl group having an alkoxy group having 1 to 6 carbon atoms, or an alkoxy group having a carbon number of 6 Carbonyloxy or alkoxymethylol having 1 to 6 carbon atoms, R2 and R3 each or a substituted alkyl group having 1 to 6 carbon atoms, a carboxyl group having 1 to 6 carbon atoms, a carbon number S, and a hydroxyl group Base, representing a hydrogen atom,

(但是’前述通式(2)中,R4表示氫原子或 甲基,R5表 示碳數 卜4的伸烷基) R7(However, in the above formula (2), R4 represents a hydrogen atom or a methyl group, and R5 represents an alkyl group of a carbon number of 4) R7

-10- (3) 201009503 (但是’前述通式(3)中,R6表示氫原子、碳數1~6的 亦可取代之烷基、羥基、碳數的烷氧基、羧基 '碳數 1~6的烷氧基羰基、碳數卜6的烷氧基羰氧基、羥甲基、 或碳數的烷氧基羥甲基,r7表示氫原子或碳數的 亦可取代之院基,η.表示ι~3的整數) R9 厂 -cIR 1 CMHNO ο I ο R1 (但是,前述通式(4)中,R8、R9及R10係各自獨立地 表示氫原子、碳數1~6的亦可取代之烷基} [1-1](A)聚合物: 含有本實施形態之下層膜形成組成物的(A)聚合物係具 有通式(1)所表示之構造單元(以下,有記載爲「構造單元 (1)」之情形)、通式(2)所表示之構造單元(以下,有記載爲 「構造單元(2)」之情形)、通式(3)所表示之構造單元(以下, 有記載爲「構造單元(3)」之情形)、及通式(4)所表示之構 造單元(以下,有記載爲「構造單元(4)」之情形)。藉由具 有該聚合物,由於含有很多脂肪族的主鏈、構造單元中的 脂肪族、末端的酯基能提昇樹脂全體的柔軟性’所以具有 所謂特別對於直徑小的通孔、溝渠之埋入變得良好之優點。 [1-1-1]通式(1)所表示之構造單元: -II- 201009503 由於(A)聚合物含有通式(1)所表示之構造單元,所以本 實施形態之下層膜形成組成物能夠形成耐鈾刻性優異之下 層膜。 通式(1)中,Ri爲碳數1~6的烷氧基,可舉例如甲氧基、 乙氧基、正丙氧基、異丙氧基、正丁氧基、卜甲基丙氧基、 2-甲基丙氧基、第三丁氧基、正戊氧基、正己氧基等。 碳數1~6的烷氧基羰基係可舉例如甲氧基羰基、乙氧 基羰基、正丙氧基羰基、異丙氧基羰基、正丁氧基羰基、 〇 1-甲基丙氧基羰基、2-甲基丙氧基羰基、第三丁氧基羰基、 正戊氧基羰基、正己氧基羰基等。 碳數1~6的烷氧基羰氧基係可舉例如甲氧基羰氧基、 乙氧基羰氧基、正丙氧基羰氧基、異丙氧基羰氧基、正丁 氧基羰氧基、1-甲基丙氧基羰氧基、2-甲基丙氧基羰氧基、 第三丁氧基羰氧基、正戊氧基羰氧基、正己氧基羰氧基等^ 碳數1~6的烷氧基羥甲基係可舉例如甲氧基羥甲基、 0乙氧基羥甲基、正丙氧基羥甲基、異丙氧基羥甲基、正丁 氧基羥甲基、1-甲基丙氧基羥甲基、2-甲基丙氧基羥甲基、 第三丁氧基羥甲基、正戊氧基羥甲基、正己氧基羥甲基等。 通式(1)中,R2及R3爲碳數1~6的亦可取代之烷基係 可舉例如甲基、丁基、己基等。此等之中,尤以甲基爲佳。 提供該通式(1)所表示之構造單元的單體,係可舉例如 苊烯、3-羥基甲基苊烯、4_羥基甲基苊烯、5_羥基甲基苊 嫌、1-甲基-3-羥基甲基苊烯、1-甲基-4-羥基甲基苊烯、 1-甲基-5-羥基甲基苊烯甲基_6_羥基甲基苊烯、卜甲基 -12- .201009503 -7-羥基甲基苊烯、1-甲基-8_羥基甲基苊烯4,2-二甲基- 3_ 羥基甲基苊烯、1、2-二甲基-4-羥基甲基苊烯、1、2-二甲 基-5-羥基甲基苊烯、1-苯基_3_羥基甲基苊烯苊烯、^苯基 -4-羥基甲基苊烯苊烯、1_苯基-5-羥基甲基苊烯苊烯、卜 苯基-6-羥基甲基苊烯苊烯、1_苯基-7-羥基甲基苊烯、1-苯基-8-羥基甲基苊烯苊烯、ι、2-二苯基-3-羥基甲基苊烯、 1、2-二苯基-4-羥基甲基苊烯、1、2-二苯基-5-羥基甲基 苊烯等的羥基甲基苊烯類;3-甲氧基甲基苊烯、4-甲氧基 〇 甲基苊烯、5-甲氧基甲基苊烯、1-甲基-3-甲氧基甲基苊烯、 1-甲基-4-甲氧基甲基危稀、1-甲基-5-甲氧基甲基危嫌、 1-甲基-6-甲氧基甲基危嫌、1-甲基-7-甲氧基甲基危嫌、 1-甲基-8-甲氧基甲基苊烯、1、2-二甲基-3-甲氧基甲基苊 烯、1、2-二甲基-4-甲氧基甲基苊烯、1、2-二甲基-5-甲 氧基甲基苊烯、1-苯基-3-甲氧基甲基苊烯、1-苯基-4-甲氧 基甲基苊烯、1-苯基-5-甲氧基甲基苊烯、1-苯基-6-甲氧基 &甲基苊烯、1-苯基-7-甲氧基甲基苊烯、1-苯基-8-甲氧基甲 〇 基苊烯、1、2-二苯基-3-甲氧基甲基苊烯、1、2-二苯基- 4-甲氧基甲基苊烯、1、2-二苯基-5-甲氧基甲基苊烯等的甲 氧基甲基苊烯類;3-苯氧基甲基苊烯、4-苯氧基甲基苊烯、 5-苯氧基甲基苊烯、3-乙烯氧基甲基苊烯、4-乙烯氧基甲 基苊烯、5-乙烯氧基甲基苊烯、3-乙醯氧基甲基苊烯、4-乙醯氧基甲基苊烯、5-乙醯氧基甲基苊烯等。此外,此等 之單體係可單獨1種使用、亦可組合2種以上來使用。 -13- 201009503 此等之中,尤以苊烯、3-羥基甲基苊烯、4_經基甲基 苊烯、5-羥基甲基苊烯、3-甲氧基甲基苊烯、4_甲氧基甲 基苊烯、5-甲氧基甲基苊烯爲佳。 (A)聚合物中所含有的通式(1)所表示之構造單元的比 例,係相對於(A)聚合物的全構造單元100莫耳%爲5~8〇 莫耳%爲佳,30~80莫耳%爲更佳,50~70莫耳%爲特佳。 上述比例低於5莫耳%時’則由於耐餓刻性降低,會有不能 在蝕刻時圖案轉印之虞。另一方面,超過80莫耳。/。,則由 於抗反射機能降低’會有不能充分地得到微影法技術的圖 案形成能力之虞。 [1-1-2】通式(2)所表示之構造單元: 由於(A)聚合物含有通式(2)所表示之構造單元,所以成 爲聚合物(A)的玻璃轉移溫度降低、能賦予柔軟性、對縱橫 比大的基板之埋入性爲良好的組成物。並且,利用加熱或 曝光能得到在分子鏈間發生交聯反應之特性,變得能夠控 ❹ 制聚合物(A)的交聯度(硬化度 (intermixing)。 且能夠防止混雜 通式(2)中,R5爲碳數2~4的伸烷基係可舉例如伸乙 基、伸丙基、異伸丙基、伸丁基、異伸丁基等。 提供該通式(2)所表示之構造單元的單體係可舉例如2-丙烯酸羥基乙酯、2-甲基丙烯酸羥基乙酯、2-丙烯酸羥基 丙酯、2 -丙烯酸羥基丁酯。此外,此等之單體係可單獨1 種使用、亦可組合2種以上來使用。 -14- 201009503 (A)聚合物中所含有的通式(2)所表示之構造單元的比 例,係相對於(A)聚合物的全構造單元1〇〇莫耳%爲5~8〇 莫耳%爲佳,5~60莫耳。/。爲更佳,5~50莫耳%爲特佳。由 於上述比例低於5莫耳%,就難以充分地形成交聯構造,所 以會有在中間層製膜時與中間層發生混雜,且蝕刻選擇性 降低之虞。另一方面’由於超過80莫耳。/。就耐蝕刻性會降 低’所以會有不能因蝕刻而圖案轉印之虞。 [1-1-3]通式(3)所表示之構造單元: 由於(A)聚合物含有通式(3)所表示之構造單元,所以可 以控制所形成之下層膜的反射率。具體而言,增大構造單 元(3)的含有比例’則可增大在ArF波長的消光係數(k値)。 通式(3)中,R6係可例示與通式(i)中的…相同者。 通式(3)中,R7爲碳數1~6的亦可取代之烷基係可例示 與通式(1)中的R2或R3爲碳數1~6的亦可取代之烷基相同 者。 供給該通式(3)所表示之構造單元的單體係可舉例如苯 乙烯、羥基苯乙烯、第三丁氧基苯乙烯、第三丁氧基羰氧 基苯乙烯、α-甲基苯乙烯、4-甲基苯乙烯、2-甲基苯乙烯、 3 -甲基苯乙烯、4 -甲氧基苯乙烯、4-羥基甲基苯乙烯、3-羥基甲基苯乙烯、4 -乙基苯乙烯、4-乙氧基苯乙烯、3,4-二甲基苯乙烯、3,4-二乙基苯乙烯、2-氯基苯乙烯、3-氯 基苯乙烯、4-氯基-3-甲基苯乙烯、4-第三丁基苯乙烯、2,4-二氯基苯乙烯、2,6-二氯基苯乙烯等。此外,此等之單體係 可單獨1種使用、亦可組合2種以上來使用。 -15- 201009503 此等之中,尤以苯乙烯、4-羥基甲基苯乙烯、3-羥基 甲基苯乙烯、第三丁氧基苯乙烯、第三丁氧基羰氧基苯乙 稀爲佳® (A)聚合物中所含有的通式(3)所表示之構造單元的比 例,係相對於(A)聚合物的全構造單元1〇〇莫耳%爲〇.1~50 莫耳%爲佳,1~30莫耳%爲更佳,3~20莫耳。/。爲特佳。由 於上述比例低於〇. 1莫耳%就會降低抗反射機能,所以會有 不能充分地得到微影法技術的圖案形成能力之虞。又,由 於在超過50莫耳%之情形中亦會降低抗反射機能,所以也 會有不能充分地得到微影法技術的圖案形成能力之虞。 [卜I-4]通式(4)所表示之構造單元·· 由於(A)聚合物含有通式(4)所表示之構造單元、亦即由 於構造單元(4)係位置於(A)聚合物的末端,所以除了給予樹 脂((A)聚合物)柔軟性之外,由於難以分解(A)聚合物,所以 能夠得到埋入性變得良好且同時低昇華性之下層膜形成組 成物。 通式(4)中,R8、R9及1〇爲碳數卜6的亦可取代之烷 基,係可例示與通式(1)中的R2或R3爲碳數1~6的亦可取 代之烷基相同者。 該通式(4)所表示之構造單元係來自於在製造聚合物(A) 時所使用的自由基聚合引發劑之構造單元。該自由基聚合 引發劑的市售品係可以全部商品名來舉例如:「V-60 1」、 「VE-057」、「V-501」、「VA-057」(以上,和光純藥公司 -16- 201009503 製)等。此等之中’由於能以酯基來保護,且從樹脂((八)聚 合物)的末端爲柔軟的骨架之觀點來看,較佳爲「V_601」。 (A)聚合物中所含有的通式(4)所表示之構造單元的比 例’係相對於(A)聚合物的全構造單元1〇〇莫耳。/。爲 0.01~50莫耳%爲佳,〇.1~30莫耳%爲更佳,1~20莫耳% 爲特佳。由於上述比例低於0.01莫耳%就會降低了樹脂的 柔軟性’所以有降低埋入性之虞。另一方面,由於超過50 莫耳%就會降低耐蝕刻性,所以有降低圖案轉印能力之虞。 ❹ [1-1-5】其他的構造單元: (A)聚合物係除了上述之構造單元(1)、構造單元(2)、構 造單元(3)、及構造單元(4)以外,亦可含有其他的構造單 元。提供其他構造單元之單體係可舉例如甲基丙烯酸縮水 甘油酯、乙烯基蒽、乙烯基咔唑、乙酸乙烯酯、丙酸乙烯 酯、己酸乙烯酯、(甲基)丙烯腈、氯基丙烯腈、偏二氰 乙烯、(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯 酸正丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲 〇 基)丙烯酸第三丁酯、(甲基)丙烯酸正己酯、(甲基)丙烯酸縮 水甘油酯、乙二醇二(甲基)丙烯酸酯、丙二醇二(甲基)丙烯 酸酯、(甲基)丙烯酸乙烯酯、二甲基·乙烯基·(甲基)丙烯酿 氧基甲基矽烷、氯基乙基乙烯基醚、氯基乙酸乙烯酯、氯 基乙酸烯丙酯、(甲基)丙烯醯胺、丁烯酸醯胺等。此等之中, 尤以甲基丙烯酸縮水甘油酯爲佳。 (Α)聚合物中所含有的其他構造單元之比例,係相對於 (Α)聚合物的全構造單元100莫耳%爲1~50莫耳。/。爲佳。 -17- 201009503 (A)聚合物係以其聚苯乙烯換算的重量平均分子量(Mw> 爲500~10000爲佳,1 500~5000爲更佳。上述重量平均 分子量(Mw)—低於500,則會在形成下層膜之際增大來自 下層膜之昇華物量,而有污染了成膜裝置之虞。另一方面, 一超過10000,就會有使對於縱橫比大的基板之埋入性變 得惡化之虞。在此,在本說明書中「聚苯乙烯換算的重量 平均分子量(Mw)」,係依照凝膠滲透層析法所測定之聚苯乙 烯換算的重量平均分子量之値。 又,重量平均分子量(Mw)爲1500~5000之情形中,能 夠得到可以充分抑制在下層膜形成時來自下層膜之昇華物 量,且同時即使對於縱橫比大的基板亦可以良好埋入的下 層膜形成組成物》 爲了製造(A)聚合物,例如,首先將由提供構造單元(1) 之單體、提供構造單元(2)之單體、提供構造單元(3)之單 體、及提供其他的構造單元之單體所構成之單體成分,溶 解於可溶解該單體成分之溶媒(例如,甲基乙基酮、甲基異 丁基酮等)中溶解,以得到溶解液。接著,於該溶解液中, 加入提供構造單元(4)之單體(亦即,自由基聚合引發劑>。 接著,使其昇溫至規定的溫度(例如,50~90°C )進行聚合4~8 小時,以得到聚合反應液。隨後,藉由正庚烷與甲醇等的 有機溶媒使聚合反應液再沈澱可得到(A)聚合物。 此外,自由基聚合引發劑的使用量係可依照具有所望 的重量平均分子量之(A)聚合物來適宜選擇,惟在得到重量 平均分子量爲500~10000的(A)聚合物之情形中,相對於 -18- 201009503 聚合中所使用之總單體的量(提供構造單元(1)之單體、提供 構造單元(2)之單體、提供構造單元(3)之單體、提供構造單 元(4)之單體、及提供其他的構造單元之單體的總量)1〇〇質 量份,以〇.5~30質量份爲佳,1~20質量份爲更佳,3~15 質量份爲特佳。 本實施形態的下層膜形成組成物中所含有的(A)聚合物 之含有比例係可依照所形成之下層膜的膜厚來適宜選擇, 相對於下層膜形成組成物的固形成分含量,以5~30質量% ¥爲佳,8〜15質量%爲更佳。該(A)聚合物的含有比例一低於 5質量%,就有得不到具有充分膜厚之下層膜之虞。另一方 面,一超過30質量%,就有下層膜形成組成物的黏度變得 過高,且對基板的埋入性惡化之虞。 此外,本實施形態的下層膜形成組成物中所含有的(A} 聚合物係可僅含有1種、亦可含有2種以上。 [1-2】(B)交聯劑: ^ 本實施形態的下層膜形成組成物中所含有之(B)交聯劑 係具有丁基醚基。該(B)交聯劑一般係具有防止光暈作用的 成分。經由含有(B)交聯劑,由於可提昇下層膜的膜密度, 所以會有所謂的不易與中間層發生混雜,且可提昇耐蝕刻 性之優點》 (B)交聯劑係沒有特別地限制,較佳爲下述通式(5)或(6) 所表示之化合物。爲該通式(5)或(6)所表示之化合物時,由 於可降低揮發性,所以有所謂難以昇華之優點。 -19- 201009503-10- (3) 201009503 (However, in the above formula (3), R6 represents a hydrogen atom, an alkyl group which may be substituted with 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having a carbon number, and a carboxyl group of 1 carbon number; ~6 alkoxycarbonyl group, carbon number 6 alkoxycarbonyloxy group, hydroxymethyl group, or carbon number alkoxy hydroxymethyl group, and r7 represents a hydrogen atom or a carbon number which can also be substituted. η. represents an integer of ι~3) R9 Plant-cIR 1 CMHNO ο I ο R1 (However, in the above formula (4), R8, R9 and R10 each independently represent a hydrogen atom and a carbon number of 1 to 6 (A) polymer: The polymer (A) containing the layer film-forming composition of the present embodiment has a structural unit represented by the formula (1) (hereinafter, it is described) In the case of "structural unit (1)", the structural unit represented by general formula (2) (hereinafter referred to as "structural unit (2)"), and the structural unit represented by general formula (3) ( Hereinafter, it is described as "the structural unit (3)") and the structural unit represented by the general formula (4) (hereinafter, referred to as "structural unit (4)"). In addition, since it contains a lot of aliphatic main chain, an aliphatic group in a structural unit, and a terminal ester group can improve the softness of the whole resin, it has the advantage that the penetration of a through-hole and a ditch which is small in diameter is favorable. [1-1-1] The structural unit represented by the formula (1): -II- 201009503 Since the (A) polymer contains the structural unit represented by the general formula (1), the layer film forming composition under the present embodiment A layer film having excellent uranium resistance can be formed. In the formula (1), Ri is an alkoxy group having 1 to 6 carbon atoms, and examples thereof include a methoxy group, an ethoxy group, a n-propoxy group, and an isopropoxy group. , n-butoxy, b-propylpropoxy, 2-methylpropoxy, tert-butoxy, n-pentyloxy, n-hexyloxy, etc. The alkoxycarbonyl group having 1 to 6 carbon atoms may, for example, be a Oxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, decyl 1-methylpropoxycarbonyl, 2-methylpropoxycarbonyl, tert-butoxy a carbonyl group, a n-pentyloxycarbonyl group, a n-hexyloxycarbonyl group, etc. The alkoxycarbonyloxy group having 1 to 6 carbon atoms may, for example, be a methoxycarbonyloxy group or a Oxycarbonyloxy, n-propoxycarbonyloxy, isopropoxycarbonyloxy, n-butoxycarbonyloxy, 1-methylpropoxycarbonyloxy, 2-methylpropoxycarbonyloxy Examples of the alkoxymethylol group having 1 to 6 carbon atoms, such as a methoxymethylol group, may be mentioned, for example, a methoxymethylol group, or a hexyloxycarbonyloxy group, a n-pentyloxycarbonyloxy group, a n-hexyloxycarbonyloxy group or the like. 0 ethoxymethylol, n-propoxymethylol, isopropoxyhydroxymethyl, n-butoxyhydroxymethyl, 1-methylpropoxyhydroxymethyl, 2-methylpropoxy Hydroxymethyl, tert-butoxymethylol, n-pentyloxymethylol, n-hexyloxymethylol, etc. In the formula (1), R2 and R3 may be substituted by a carbon number of 1 to 6. The alkyl group may, for example, be a methyl group, a butyl group or a hexyl group. Among these, methyl is preferred. The monomer which provides the structural unit represented by the general formula (1) is, for example, terpene, 3-hydroxymethyl decene, 4-hydroxymethyl decene, 5-hydroxymethyl oxime, 1-methyl 3-hydroxymethyl decene, 1-methyl-4-hydroxymethyl decene, 1-methyl-5-hydroxymethyl decene methyl -6-hydroxymethyl decene, methyl-12- .201009503 -7-Hydroxymethyl decene, 1-methyl-8-hydroxymethyl decene 4,2-dimethyl- 3 hydroxymethyl decene, 1, 2-dimethyl-4-hydroxyl Base olefin, 1, 2-dimethyl-5-hydroxymethyl decene, 1-phenyl-3-hydroxymethyl decene decene, phenyl-4-hydroxymethyl decene decene, 1 _Phenyl-5-hydroxymethyldecene decene, phenylphenyl-6-hydroxymethyl decene decene, 1-phenyl-7-hydroxymethyl decene, 1-phenyl-8-hydroxyl Terpene terpene, iota, 2-diphenyl-3-hydroxymethyldecene, 1,2-diphenyl-4-hydroxymethylnonene, 1,2-diphenyl-5-hydroxyl Hydroxymethyl decenes such as decenes; 3-methoxymethyl decene, 4-methoxy fluorene methyl decene, 5-methoxymethyl decene, 1-methyl-3- Methoxymethyl decene, 1-methyl-4-methoxymethyl dilute, 1- 5--5-methoxymethyl critical, 1-methyl-6-methoxymethyl critical, 1-methyl-7-methoxymethyl critical, 1-methyl-8-A Oxymethyl decene, 1, 2-dimethyl-3-methoxymethyl decene, 1, 2-dimethyl-4-methoxymethyl decene, 1, 2-dimethyl 5-5-methoxymethyl decene, 1-phenyl-3-methoxymethyl decene, 1-phenyl-4-methoxymethyl decene, 1-phenyl-5-methoxy Methyl decene, 1-phenyl-6-methoxy & methyl decene, 1-phenyl-7-methoxymethyl decene, 1-phenyl-8-methoxyformamidine Base olefin, 1, 2-diphenyl-3-methoxymethyl decene, 1, 2-diphenyl-4-methoxymethyl decene, 1, 2-diphenyl-5- a methoxymethyl decene such as methoxymethyl decene; 3-phenoxymethyl decene, 4-phenoxymethyl decene, 5-phenoxymethyl decene, 3- Vinyloxymethyl decene, 4-vinyloxymethyl decene, 5-vinyloxymethyl decene, 3-ethoxymethoxymethyl decene, 4-ethyl methoxymethyl decene, 5-Ethyloxymethyl decene and the like. Further, these single systems may be used alone or in combination of two or more. -13- 201009503 Among these, especially terpenes, 3-hydroxymethyl decene, 4-cyanomethyl decene, 5-hydroxymethyl decene, 3-methoxymethyl decene, 4 Preferably, methoxymethyl decene or 5-methoxymethyl decene is preferred. The proportion of the structural unit represented by the formula (1) contained in the polymer (A) is preferably 5 to 8 mol% based on 100% of the total structural unit of the (A) polymer, 30 ~80% of the mole is better, 50% to 70% of the mole is particularly good. When the above ratio is less than 5 mol%, the pattern resistance is lowered at the time of etching because the hung resistance is lowered. On the other hand, more than 80 moles. /. , because the anti-reflection function can be reduced, there will be a problem that the pattern forming ability of the lithography technique cannot be sufficiently obtained. [1-1-2] The structural unit represented by the formula (2): Since the (A) polymer contains the structural unit represented by the formula (2), the glass transition temperature of the polymer (A) is lowered and the energy is lowered. The embedding property of the substrate which imparts flexibility and has a large aspect ratio is a favorable composition. Further, by heating or exposure, the crosslinking reaction occurs between the molecular chains, and the degree of crosslinking (intermixing) of the polymer (A) can be controlled, and the hybrid formula (2) can be prevented. In the above, R5 is an alkylene group having 2 to 4 carbon atoms, and examples thereof include an exoethyl group, a propyl group, an exo-propyl group, a butyl group, an isobutylene group, etc., which are represented by the formula (2). The single system of the structural unit may, for example, be 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate or 2-hydroxy acrylate. Further, these single systems may be separately 1 It is also possible to use two or more types in combination. -14- 201009503 (A) The ratio of the structural unit represented by the formula (2) contained in the polymer is based on the total structural unit of the (A) polymer. 1〇〇% of the ear is 5~8〇%, preferably 5~60mol./ is better, 5~50% is especially good. Since the above ratio is less than 5m%, It is difficult to fully form the cross-linking structure, so there is a possibility that the intermediate layer is mixed with the intermediate layer and the etching selectivity is lowered. On the other hand' When the etching resistance is more than 80%, the etching resistance is lowered. Therefore, there is a problem that the pattern cannot be transferred by etching. [1-1-3] Structural unit represented by the general formula (3): Since (A) Since the polymer contains the structural unit represented by the general formula (3), the reflectance of the underlying film can be controlled. Specifically, increasing the content ratio of the structural unit (3) can increase the extinction at the ArF wavelength. In the formula (3), R6 is the same as in the formula (i). In the formula (3), R7 is an alkyl group which may have a carbon number of 1 to 6 and may be substituted. The same as the alkyl group which may be substituted with R2 or R3 in the formula (1) and having a carbon number of 1 to 6. The single system to which the structural unit represented by the above formula (3) is supplied may, for example, be benzene. Ethylene, hydroxystyrene, tert-butoxystyrene, tert-butoxycarbonyloxystyrene, α-methylstyrene, 4-methylstyrene, 2-methylstyrene, 3-methyl Styrene, 4-methoxystyrene, 4-hydroxymethylstyrene, 3-hydroxymethylstyrene, 4-ethylstyrene, 4-ethoxystyrene, 3,4-dimethylbenzene Ethylene, 3,4-diethyl Ethylene, 2-chlorostyrene, 3-chlorostyrene, 4-chloro-3-methylstyrene, 4-tert-butylstyrene, 2,4-dichlorostyrene, 2,6 - Dichlorostyrene, etc. Further, these single systems may be used alone or in combination of two or more. -15- 201009503 Among these, especially styrene, 4-hydroxymethyl Styrene, 3-hydroxymethylstyrene, tert-butoxystyrene, and tert-butoxycarbonyloxystyrene are represented by the formula (3) contained in the (A) polymer. The proportion of the structural unit is preferably 1 to 50 mol%, more preferably 1 to 30 mol%, more preferably 3 to 20 mol%, relative to the total structural unit of the (A) polymer. . /. It is especially good. Since the above ratio is less than 0.1% by mole, the antireflection function is lowered, so that the pattern forming ability of the lithography technique cannot be sufficiently obtained. Further, since the antireflection function is also lowered in the case of more than 50 mol%, there is a possibility that the pattern forming ability of the lithography technique cannot be sufficiently obtained. [I-4] The structural unit represented by the general formula (4): Since the (A) polymer contains the structural unit represented by the general formula (4), that is, since the structural unit (4) is located at (A) In addition to the flexibility of the resin ((A) polymer), it is difficult to decompose the (A) polymer, so that it is possible to obtain a film forming composition which is excellent in embedding property and low sublimation property. . In the formula (4), R8, R9 and 1 are an alkyl group which may be substituted with a carbon number of 6 and may be substituted with R2 or R3 in the formula (1) as a carbon number of 1 to 6. The alkyl group is the same. The structural unit represented by the formula (4) is derived from a structural unit of a radical polymerization initiator used in the production of the polymer (A). The commercially available product of the radical polymerization initiator may be, for example, "V-60 1", "VE-057", "V-501", or "VA-057" (above, Wako Pure Chemical Co., Ltd.) -16- 201009503 system) and so on. Among these, 'V_601' is preferred because it can be protected by an ester group and from the viewpoint that the end of the resin ((oc)polymer) is a soft skeleton. (A) The ratio of the structural unit represented by the formula (4) contained in the polymer is relative to the total structural unit of the (A) polymer. /. It is preferably 0.01 to 50 mol%, more preferably 1 to 30 mol%, and 1 to 20 mol% is particularly good. Since the above ratio is less than 0.01 mol%, the flexibility of the resin is lowered, so that the embedding property is lowered. On the other hand, since the etching resistance is lowered by more than 50% by mole, there is a problem in that the pattern transfer ability is lowered. ❹ [1-1-5] Other structural units: (A) The polymer system may be in addition to the above-mentioned structural unit (1), structural unit (2), structural unit (3), and structural unit (4). Contains other structural units. The single system providing other structural units may, for example, be glycidyl methacrylate, vinyl hydrazine, vinyl carbazole, vinyl acetate, vinyl propionate, vinyl hexanoate, (meth) acrylonitrile, chloro group. Acrylonitrile, divinyl cyanoethylene, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate , (meth) butyl butyl acrylate, n-hexyl (meth) acrylate, glycidyl (meth) acrylate, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, ( Methyl)vinyl acrylate, dimethyl vinyl (meth) propylene oxymethyl decane, chloroethyl vinyl ether, vinyl chloroacetate, allyl chloroacetate, (methyl ) acrylamide, decyl decanoate, and the like. Among them, glycidyl methacrylate is preferred. The proportion of other structural units contained in the (Α) polymer is from 1 to 50 moles per 100% of the total structural unit of the (Α) polymer. /. It is better. -17- 201009503 (A) The polymer is preferably a polystyrene-equivalent weight average molecular weight (Mw > 500 to 10,000, more preferably 1,500 to 5,000. The above weight average molecular weight (Mw) is less than 500, When the underlayer film is formed, the amount of sublimation material from the underlayer film is increased, and the film formation device is contaminated. On the other hand, when it exceeds 10,000, the embedding property of the substrate having a large aspect ratio is changed. In the present specification, the "weight-average molecular weight (Mw) in terms of polystyrene" is based on the polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography. When the weight average molecular weight (Mw) is 1500 to 5,000, it is possible to obtain an underlayer film which can sufficiently suppress the amount of the sublimate from the underlayer film when the underlayer film is formed, and which can be well embedded even for a substrate having a large aspect ratio. In order to manufacture the (A) polymer, for example, the monomer providing the structural unit (1), the monomer providing the structural unit (2), the monomer providing the structural unit (3), and other structural units are provided. The monomer component composed of the monomer is dissolved in a solvent (for example, methyl ethyl ketone or methyl isobutyl ketone) which can dissolve the monomer component, and is dissolved to obtain a solution. Then, the solution is dissolved. In the liquid, a monomer which provides the structural unit (4) (that is, a radical polymerization initiator) is added. Next, the temperature is raised to a predetermined temperature (for example, 50 to 90 ° C) to carry out polymerization for 4 to 8 hours. The polymerization reaction liquid is obtained. Then, the polymerization reaction liquid is reprecipitated by an organic solvent such as n-heptane and methanol to obtain (A) a polymer. Further, the radical polymerization initiator is used in an amount according to the desired weight. The (A) polymer having an average molecular weight is suitably selected, but in the case of obtaining the (A) polymer having a weight average molecular weight of 500 to 10,000, the amount of the total monomer used in the polymerization is compared with -18 to 201009503 (provided The monomer of the structural unit (1), the monomer providing the structural unit (2), the monomer providing the structural unit (3), the monomer providing the structural unit (4), and the total of the monomers providing the other structural unit Quantity) 1〇〇 part by mass, 〇.5~30 mass The component is preferably 1 to 20 parts by mass, more preferably 3 to 15 parts by mass. The content ratio of the (A) polymer contained in the underlayer film-forming composition of the present embodiment may be in accordance with the lower layer formed. The film thickness of the film is suitably selected, and the solid content of the composition of the underlayer film is preferably 5 to 30% by mass, more preferably 8 to 15% by mass, and the content of the (A) polymer is low. At 5% by mass, the film having a sufficient film thickness is not obtained. On the other hand, when it exceeds 30% by mass, the viscosity of the underlying film forming composition becomes too high, and the substrate is buried. In addition, the (A} polymer system contained in the underlayer film forming composition of the present embodiment may contain only one type or two or more types. [1-2] (B) Crosslinking agent: The (B) crosslinking agent contained in the underlayer film forming composition of the present embodiment has a butyl ether group. The (B) crosslinking agent is generally a component having a halo preventing effect. By containing the (B) crosslinking agent, since the film density of the underlayer film can be increased, there is a so-called difficulty in mixing with the intermediate layer and the etching resistance can be improved. (B) The crosslinking agent is not particularly limited. It is preferably a compound represented by the following formula (5) or (6). When the compound represented by the formula (5) or (6) is used, since the volatility can be lowered, there is an advantage that it is difficult to sublimate. -19- 201009503

R11C R11CR11C R11C

OR11 OR11 (但是,前述通式(5)中,R1i係各自獨立地表示氫原子、 甲基、正丁基、或異丁基;但是,4個的R11之中的2個以 〇上爲正丁基或異丁基) OR12 〇R12OR11 OR11 (However, in the above formula (5), R1i each independently represents a hydrogen atom, a methyl group, a n-butyl group, or an isobutyl group; however, two of the four R11 groups are positively on the ruthenium Butyl or isobutyl) OR12 〇R12

VV

(但是,前述通式(6)中,R12係各自獨立地表示氫原子、 0甲基、正丁基、或異丁基;但是,6個的R12之中的2個以 上爲正丁基或異丁基} 通式(5)所表示之化合物係由於藉由使4個的Rii之中 的2個以上爲正丁基或異丁基,可更抑制(B)交聯劑的昇華 性’且藉由來自於下層膜形成組成物之昇華物,可抑制塗 布裝置受到污染。此外,由於正丁基的數目越多,越能抑 制(B)交聯劑的昇華,所以較佳係4個的Rii全部爲正丁基。 通式(6)所表示之化合物係由於藉由使6個的Ri2之中 的2個以上爲正丁基或異丁基,可更抑制(B)交聯劑的昇華 -20- 201009503 性’且藉由來自於下層膜形成組成物之昇華物,可抑制塗 布裝置受到污染。此外,由於正丁基的數目越多,越能抑 制(B)交聯劑的昇華’所以較佳係6個的r 1 2全部爲正丁基》 (B)交聯劑的配合量係相對於(A)聚合物1〇〇質量份, 以1~50質量份爲佳,5〜30質量份爲更佳。上述配合量一 低於1質量份,就有交聯性能劣化、於下層膜產生光暈之 虞。另一方面,一超過50質量份,則由於未反應的(B)交 聯劑(亦即’未與(A)聚合物反應者)係大多殘留於下層膜 ◎ 中’所以會有下層膜的耐蝕刻性劣化之虞。 本實施形態的下層膜形成組成物中,除了(B)交聯劑以 外’亦可含有其他的交聯劑成分。其他的交聯劑成分係可 舉例如多核酚類與硬化劑等。 多核酚類係可舉例如4,4’-聯苯基二醇、4,4’-亞甲基雙 酚、4,4’-亞乙基雙酚、雙酚A等的2核酚類;4,4’,4”-次 甲基三酚、4,4’-〔 1-{4-(1-[4-羥基苯基】-1-甲基乙基)苯基} Λ亞乙基〕雙酚等的3核酚類;酚醛清漆等的多酚類等。 〇 硬化劑係可舉例如2,3-二異氰酸甲苯酯、2,4_二異氰 酸甲苯酯、3,4-二異氰酸甲苯酯、3,5-二異氰酸甲苯酯、 4,4’-二苯基甲烷二異氰酸酯、六亞甲基二異氰酸酯、1,4-環己基二異氰酸酯等的二異氰酸酯類等。 硬化劑的市售品係可舉例如以下全部的商品名: EPICOAT 812、同 815、同 826、同 828、同 834、同 836' 同 871、同 1001、同 1〇〇4、同 1007、同 1009、同 1〇31(以 上’油化殻牌環氧公司製)、Araldite 6600、同6700、同 -21- 201009503 6800、同 502、同 6071、同 6084、同 6097、同 6099(以 上,Ciba Geigy 公司製)、DER331、同 332、同 333、同 661、同644、同667 (以上,道耳化學公司製)等的環氧化 合物;CYMEL 300、同 301、同 303、同 350、同 370、 同 771、同 325、同 327、同 703、同 712、同 701、同 272、同 202、MYCOAT 506、同 508(以上,三井 Cyan amid 公司製)等的三聚氰胺系硬化劑;CYMEL 1 123、同 1123-10、同 1128、MYCOAT 102、同 105、同 106、同 13 0(以上,三井Cyanamid(股)製)等的苯并胍胺系硬化劑; CYMEL 1170、同 1172(以上,三井 Cyanamid 公司製)、 .Nicarack N-2702(三和化學公司製)等的甘脲系硬化劑等。 [1-3】{C)溶劑: 本實施形態的下層膜形成組成物中所含有的(C)溶劑只 要可溶解(A)聚合物、(B)交聯劑、及(D)酸發生劑等的話沒 有特別地限制,可適當使用以往眾所周知者。 Q (C)溶劑係可舉例如乙二醇單甲基醚' 乙二醇單乙基 醚、乙二醇單-正丙基醚、乙二醇單-正丁基醚等的乙二醇單 烷基醚類;乙二醇單甲基醚乙酸酯、乙二醇單乙基醚乙酸 酯、乙二醇單-正丙基醚乙酸酯、乙二醇單-正丁基醚乙酸酯 等的乙二醇單烷基醚乙酸酯類;二甘醇二甲基醚、二甘醇 二乙基醚、二甘醇二-正丙基醚、二甘醇二-正丁基醚等的二 甘醇二烷基醚類;三乙二醇二甲基醚、三乙二醇二乙基醚 等的三乙二醇二烷基醚類; -22- 201009503 丙二醇單甲基醚、丙二醇單乙基醚、丙二醇單-正丙基 醚、丙二醇單-正丁基醚等的丙二醇單烷基醚類;丙二醇二 甲基醚、丙二醇二乙基醚、丙二醇二-正丙基醚、丙二醇二-正丁基醚等的丙二醇二烷基醚類;丙二醇單甲基醚乙酸 酯、丙二醇單乙基醚乙酸酯、丙二醇單-正丙基醚乙酸酯、 丙二醇單-正丁基醚乙酸酯等的丙二醇單烷基醚乙酸酯類; 乳酸甲酯、乳酸乙酯、乳酸正丙酯、乳酸異丙酯、乳 酸正丁酯、乳酸異丁酯等的乳酸酯類;甲酸甲酯、甲酸乙 @酯、甲酸正丙酯、甲酸異丙酯、甲酸正丁酯、甲酸異丁酯、 甲酸正戊酯、甲酸異戊酯、乙酸甲酯、乙酸乙酯、乙酸正 丙酯、乙酸異丙酯、乙酸正丁酯、乙酸異丁酯、乙酸正戊 酯、乙酸異戊酯、乙酸正己酯、丙酸甲酯、丙酸乙酯、丙 酸正丙酯、丙酸異丙酯、丙酸正丁酯、丙酸異丁酯、丁酸 甲酯、丁酸乙酯、丁酸正丙酯、丁酸異丙酯、丁酸正丁酯、 丁酸異丁酯等的脂肪族羧酸酯類; 羥基乙酸乙酯、2-羥基-2-甲基丙酸乙酯、3-甲氧基- 2-甲基丙酸甲酯、2-羥基-3-甲基丁酸甲酯、甲氧基乙酸乙酯、 乙氧基乙酸乙酯、3-甲氧基丙酸甲酯、3-乙氧基丙酸乙酯、 3-甲氧基丙酸乙酯、3-甲氧基丙基乙酸酯、3-甲氧基丁基 乙酸酯、3-甲基-3-甲氧基丁基乙酸酯、3-甲基-3-甲氧基丁 基丙酸酯、3-甲基-3-甲氧基丁基丁酸酯、乙醯乙酸甲酯、 丙酮酸甲酯、丙酮酸乙酯等的其他酯類;甲苯、二甲苯等 的芳香族烴類;甲基乙基酮、甲基-正丙基酮、甲基-正丁基 酮、2-庚酮、3-庚酮、4-庚酮、環己酮等的酮類;N-甲基 -23- 201009503 甲醯胺、N,N-二甲基甲醯胺、N-甲基乙醯胺、N,N-二甲基 乙醯胺、N -甲基吡咯啶酮等的醯胺類;r-丁內酯等的內醋 類等。此外,此等之(C)溶劑係可單獨1種使用、亦可組合 2種以上來使用》 此等之中,尤以乙二醇單乙基醚乙酸酯、乳酸乙酯、 乙酸正丁酯、3 -乙氧基丙酸乙酯、3 -甲氧基丙酸甲酯、2-庚酮、環己酮爲佳。 (C)溶劑的配合量係可依照所形成之下層膜的膜厚等來 適宜選擇,惟所得到的下層膜形成組成物之固形成分濃度 在0·0卜70質量%之範圍爲佳,爲〇.〇5~60質量%之範圍 爲更佳’爲0.1~50質量%之範圍爲特佳。上述固形成分濃 度一低於0_01質量%,就有難以形成具有充分膜厚之下層 膜之虞。另一方面,一超過70質量%,則由於黏度變得過 高,所以會有膜的形成變得困難之虞。 [1-4](D)酸發生劑: 本實施形態的下層膜形成組成物係除了(A)聚合物、(B) 交聯劑、及(C)溶劑以外,可更含有(D)酸發生劑。該(D)酸 發生劑係經由曝光或加熱而產生酸的成分。更含有該(D)酸 發生劑時,由於可提昇下層膜的硬化性,所以會有所謂更 有效率且更容易製膜的優點。又,藉由提昇下層膜中的酸 濃度,則有所謂遮斷氨等的胺成分之優點。 經由曝光而產生酸之(D)酸發生劑(以下,亦稱爲「光酸 發生劑」)係可舉例如二苯基碘鑷三氟甲烷磺酸酯、二苯基 碘鎗九氟-正丁烷磺酸酯、二苯基碘鎗芘磺酸酯、二苯基碘 -24- 201009503 鎗正-十二烷基苯磺酸酯、二苯基碘鎗ίο-樟腦磺酸酯、二 苯基碘鎗萘磺酸酯、二苯基碘鑰六氟銻酸酯、雙(4-第三丁 基苯基)碘鑰三氟甲烷磺酸酯、雙(4-第三丁基苯基)碘鑰九 氟-正丁烷磺酸酯、雙(4-第三丁基苯基)碘鑰正-十二烷基苯 磺酸酯、雙(4-第三丁基苯基)碘鎗10-樟腦磺酸酯、雙(4-第三丁基苯基)碘鎗萘磺酸酯、雙(4-第三丁基苯基)碘鑰六 氟銻酸酯、三苯基銃三氟甲烷磺酸酯、三苯基鏑九氟-正丁 烷磺酸酯、三苯基銃正-十二烷基苯磺酸酯、三苯基銃萘磺 〇 酸酯、三苯基毓10-樟腦磺酸酯、三苯基鏡六氟銻酸酯、4-羥基苯基·苯基·甲基鏑p-甲苯磺酸酯、4-羥基苯基·苄基· 甲基銃P-甲苯磺酸酯、環己基·甲基·2-氧基環己基銃三氟 甲烷磺酸酯、2-氧基環己基二環己基銃三氟甲烷磺酸酯、 2-氧基環己基二甲基銃三氟甲烷磺酸酯、1-萘基二甲基锍 三氟甲烷磺酸酯、卜萘基二乙基锍三氟甲烷磺酸酯、4-氰 基-卜萘基二甲基銃三氟甲烷磺酸酯、4-氰基-1-萘基二乙基 &锍三氟甲烷磺酸酯、4-硝基-卜萘基二甲基锍三氟甲烷磺酸 酯、4 -硝基-1-萘基二乙基锍三氟甲烷磺酸酯、4 -甲基-1-萘基二甲基毓三氟甲烷磺酸酯、4-甲基-1-萘基二乙基銃三 氟甲烷磺酸酯、4-羥基-1-萘基二甲基銃三氟甲烷磺酸酯、 4-羥基-1-萘基二乙基銃三氟甲烷磺酸酯、1-(4-羥基萘-1-基}四氫噻吩鑰三氟甲烷磺酸酯、1-(4-甲氧基萘-1-基)四氫 噻吩鎗三氟甲烷磺酸酯、1-(4-乙氧基萘-卜基)四氫噻吩鎗 三氟甲烷磺酸酯、1-(4-甲氧基甲氧基萘-卜基)四氫噻吩鎗 三氟甲烷磺酸酯、1-(4-乙氧基甲氧基萘-1-基)四氫噻吩鎗 -25- 201009503 三氟甲烷磺酸酯、l-〔 4-(1-甲氧基乙氧基)萘-1-基〕四氫 噻吩鎗三氟甲烷磺酸酯、1-〔 4-(2-甲氧基乙氧基)萘-1-基〕 四氫噻吩鎗三氟甲烷磺酸酯、1-(4-甲氧基羰氧基萘-1-基) 四氫噻吩鎗三氟甲院磺酸醋、1-(4 -乙氧基羯氧基萘-1-基) 四氫噻吩鎗三氟甲烷磺酸酯、1-(4-正丙氧基羰氧基萘-1- 基)四氫噻吩鎗三氟甲烷磺酸酯、1-(4-異丙氧基羰氧基萘 -1-基)四氫噻吩鎗三氟甲烷磺酸酯、1-(4_正丁氧基羰氧基 萘_卜基)四氫噻吩鎗三氟甲烷磺酸酯、1-(4_第三丁氧基羰 氧基萘-1-基)四氫噻吩鎗三氟甲烷磺酸酯、i-〔 4-(2-四氫 呋喃氧基)萘-1-基〕四氫噻吩鎗三氟甲烷磺酸酯、i-〔 4-(2- 四氫吡喃基氧基)萘-1-基〕四氫噻吩鐵三氟甲烷磺酸酯、 1-(4-苄氧基)四氫噻吩鑰三氟甲烷磺酸酯、1_(萘基乙醯甲 基)四氫噻吩鑰三氟甲烷磺酸酯等的鎗鹽系光酸發生劑類; 苯基雙(三氯甲基)-s-三畊、4-甲氧基苯基雙(三氯甲基)-s- 三畊、1-萘基雙(三氯甲基)-s-三畊等的鹵素含有化合物系 ^光酸發生劑類;1,2-萘醌二迭氮基-4-磺醯氯、1,2-萘醌二 ❹ 迭氮基-5-磺醯氯、2,3,4,4’-四氫二苯基酮的1,2-萘醌二迭 氮基-4-磺酸酯或1,2-萘醌二迭氮基-5-磺酸酯等的重氮酮 化合物系光酸發生劑類:4-三苯醯甲基颯、采基苯醯甲基 楓、雙(苯基磺醯)甲烷等的颯化合物系光酸發生劑類;苯偶 姻甲苯磺酸酯、焦掊酚的三(三氟甲烷磺酸酯)、硝基苄基 -9,10-二乙氧基蒽-2-磺酸酯、三氟甲烷磺醯雙環[2,2,1]庚 -5-烯-2,3-二碳化二亞胺、N-羥基琥珀醯亞胺基三氟甲烷磺 -26- 201009503 酸酯、1,8-萘二羧酸醯亞胺三氟甲烷磺酸酯等的碾氧化合物 系光酸發生劑類等。 此等之光酸發生劑之中,較佳係二苯基碘鎗三氟甲烷 磺酸酯、二苯基碘鎗九氟-正丁烷磺酸酯、二苯基碘鎗芘磺 酸酯、二苯基碘鎗正-十二烷基苯磺酸酯、二苯基碘鑰1〇_ 樟腦磺酸酯、二苯基碘鎗萘磺酸酯、雙(4-第三丁基苯基) 碘鎗三氟甲烷磺酸酯、雙(4-第三丁基苯基)碘鎗九氟-正丁 烷磺酸酯、雙(4-第三丁基苯基)碘鑰正-十二烷基苯磺酸 ◎ 酯、雙(4-第三丁基苯基)碘鑰10-樟腦磺酸酯、雙(4-第三丁 基苯基)碘鑰萘磺酸酯。此外,此等之光酸發生劑係可單獨 1種使用、亦可組合2種以上來使用^ 經由加熱而產生酸之(D)酸發生劑(以下,亦稱爲「熱酸 發生劑j )係可舉例如2,4,4,6-四溴基環己二烯酮、苯并異 甲苯磺酸酯、2-硝基苄基甲苯磺酸酯、烷基磺酸酯類等。 此外,此等之熱酸發生劑係可單獨1種使用、亦可組合2 A種以上來使用。又,亦可倂用光酸發生劑與熱酸發生劑。 ❹ (D)酸發生劑的配合量係相對於(A)聚合物1〇〇質量 份’以100質量份以下爲佳,0.1-30質量份爲更佳,〇·ι~ι〇 質量份爲特佳,0.5~10質量份爲最佳。上述配合量一低於 〇·1質量份,就有於下層膜中無法充分地產生酸,且膜的硬 化性受損之虞。又,會有補集阻礙光阻形成用組成物的化 學反應之氨等的胺成分’且無法充分地防止胺成分擴散於 光阻膜中之虞。另一方面,超過30質量份,則會有於下層 膜中所產生的過剩的酸擴散於光阻膜中,使得光阻膜的形 -27- 201009503 狀變得惡化之虞。再者,在形成下層膜之際,(D)酸發生劑 的分解物變成昇華物,而有終將污染塗布成膜裝置之虞。 [1-5】其他的添加劑: 本實施形態的下層膜形成組成物係除了(A)聚合物、(B) 交聯劑、(C)溶劑、及(D)酸發生劑以外,可含有其他的添加 劑。其他的添加劑係可舉例如熱硬化性樹脂、放射線吸收 劑、界面活性劑、保存安定劑、消泡劑、接著助劑等。 熱硬化性樹脂係具有經由加熱硬化而變得不溶於溶劑 〇 中,且可在所得之下層膜、與形成於其上的光阻膜之間防 止混雜之作用的成分。 該熱硬化性樹脂係可使用各種的熱硬化性樹脂,可舉 例如丙烯酸系樹脂類(熱硬化丙烯酸系樹脂類)、酚樹脂類、 尿素樹脂類、三聚氰胺樹脂類、胺基系樹脂類、芳香族烴 樹脂類、環氧樹脂類、醇酸樹脂類等。此等之中,尤以尿 素樹脂類、三聚氰胺樹脂類、芳香族烴樹脂類爲佳。 _ 熱硬化性樹脂的配合量係相對於(A)聚合物100質量(In the above formula (6), R12 each independently represents a hydrogen atom, 0 methyl group, n-butyl group or isobutyl group; however, two or more of the six R12 groups are n-butyl groups or Isobutyl} The compound represented by the formula (5) is more resistant to the sublimation of the (B) crosslinking agent by making two or more of the four Rii groups be n-butyl or isobutyl. Further, by the sublimate from the underlayer film forming composition, contamination of the coating device can be suppressed. Further, since the number of n-butyl groups is more, the sublimation of the (B) crosslinking agent can be suppressed, so that it is preferably four. All of Rii is an n-butyl group. The compound represented by the formula (6) is more resistant to (B) a crosslinking agent by making two or more of the six Ri2s be n-butyl or isobutyl. Sublimation -20-201009503 Sex' and by the sublimate from the underlying film forming composition, the coating device can be inhibited from contamination. Furthermore, since the number of n-butyl groups is increased, the (B) crosslinking agent can be inhibited. Sublimation 'so 6 series of r 1 2 are all n-butyl groups. (B) The amount of the crosslinking agent is 1 part by mass relative to the (A) polymer. It is preferably 1 to 50 parts by mass, more preferably 5 to 30 parts by mass, and if the amount is less than 1 part by mass, the crosslinking property is deteriorated and halo is generated in the underlayer film. When the amount is more than 50 parts by mass, the unreacted (B) crosslinking agent (that is, the 'reactive to (A) polymer) is mostly left in the underlayer film ◎, so the etching resistance of the underlayer film is deteriorated. In the underlayer film forming composition of the present embodiment, other crosslinking agent components may be contained in addition to the (B) crosslinking agent. Examples of the other crosslinking agent component include polynuclear phenols and curing agents. Examples of the polynuclear phenols include 2-nuclear phenols such as 4,4′-biphenyl diol, 4,4′-methylene bisphenol, 4,4′-ethylene bisphenol, and bisphenol A; 4,4',4"-methinetriol, 4,4'-[ 1-{4-(1-[4-hydroxyphenyl]-1-methylethyl)phenyl} fluorene ethylene a trinuclear phenol such as bisphenol or a polyphenol such as a novolac. The hydrazine curing agent may, for example, be a toluene 2,3-diisocyanate or a toluene 2,4-diisocyanate or the like. 4-Diisocyanate toluene, 3,5-diisocyanate toluene, 4,4'- A diisocyanate such as phenylmethane diisocyanate, hexamethylene diisocyanate or 1,4-cyclohexyl diisocyanate. The commercially available product of the curing agent may, for example, be the following: EPICOAT 812, 815, Same as 826, same as 828, same as 834, same as 836' with 871, same as 1001, same as 1〇〇4, same as 1007, same as 1009, same as 1〇31 (above 'oily shell epoxy company'), Araldite 6600, Same as 6700, same as -21-201009503 6800, same as 502, same as 6071, same as 6084, same as 6097, same as 6099 (above, Ciba Geigy company), DER331, same 332, same 333, same 661, same 644, same 667 ( The epoxy compound of the above, manufactured by Dow Chemical Co., Ltd.; CYMEL 300, 301, 303, 350, 370, 771, 325, 327, 703, 712, 701, 272, Melamine-based hardeners such as 202, MYCOAT 506, and 508 (above, Mitsui Cyan amid); CYMEL 1 123, same as 1123-10, same as 1128, MYCOAT 102, same 105, same 106, same 13 0 (above) , benzoguanamine-based hardeners such as Mitsui Cyanamid Co., Ltd.; CYMEL 1170 With 1172 (the above, manufactured by Mitsui-Cyanamid Ltd.), .Nicarack N-2702 (Sanwa Chemical Co., Ltd.) glycoluril-based hardener. [1-3] {C) Solvent: The (C) solvent contained in the underlayer film forming composition of the present embodiment is soluble in (A) polymer, (B) crosslinking agent, and (D) acid generator. There is no particular limitation on the basis of the above, and those well known in the past can be used as appropriate. The Q (C) solvent may, for example, be an ethylene glycol monomethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether or ethylene glycol mono-n-butyl ether. Alkyl ethers; ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, ethylene glycol mono-n-butyl ether Ethylene glycol monoalkyl ether acetates such as acid esters; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether Diethylene glycol dialkyl ethers; triethylene glycol dialkyl ethers such as triethylene glycol dimethyl ether and triethylene glycol diethyl ether; -22- 201009503 propylene glycol monomethyl ether, a propylene glycol monoalkyl ether such as propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether or propylene glycol mono-n-butyl ether; propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, Propylene glycol dialkyl ethers such as propylene glycol di-n-butyl ether; propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol mono-n-propyl ether acetate, propylene glycol mono-n-butyl C, ethyl acetate, etc. Glycol monoalkyl ether acetates; lactate esters such as methyl lactate, ethyl lactate, n-propyl lactate, isopropyl lactate, n-butyl lactate, isobutyl lactate; methyl formate, formic acid@@ Ester, n-propyl formate, isopropyl formate, n-butyl formate, isobutyl formate, n-amyl formate, isoamyl formate, methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, N-butyl acetate, isobutyl acetate, n-amyl acetate, isoamyl acetate, n-hexyl acetate, methyl propionate, ethyl propionate, n-propyl propionate, isopropyl propionate, n-propionate An aliphatic carboxylic acid ester of an ester, isobutyl propionate, methyl butyrate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, n-butyl butyrate, isobutyl butyrate; Ethyl hydroxyacetate, ethyl 2-hydroxy-2-methylpropanoate, methyl 3-methoxy-2-methylpropanoate, methyl 2-hydroxy-3-methylbutanoate, methoxyacetic acid Ethyl ester, ethyl ethoxyacetate, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-methoxypropyl acetate , 3-methoxybutyl acetate, 3- 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl propionate, 3-methyl-3-methoxybutyl butyrate, methyl acetate Other esters such as methyl pyruvate and ethyl pyruvate; aromatic hydrocarbons such as toluene and xylene; methyl ethyl ketone, methyl-n-propyl ketone, methyl-n-butyl ketone, 2 Ketones such as heptanone, 3-heptanone, 4-heptanone, cyclohexanone, etc.; N-methyl-23- 201009503 formamide, N,N-dimethylformamide, N-methyl b An amide such as guanamine, N,N-dimethylacetamide or N-methylpyrrolidone; or an internal vinegar such as r-butyrolactone. Further, these (C) solvents may be used singly or in combination of two or more. In particular, ethylene glycol monoethyl ether acetate, ethyl lactate, and n-butyl acetate are used. The ester, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, 2-heptanone or cyclohexanone is preferred. (C) The amount of the solvent to be added may be appropriately selected depending on the film thickness of the underlayer film to be formed, and the solid content concentration of the obtained underlayer film forming composition is preferably in the range of 0·0 Bu 70% by mass. 〇.〇5~60% by mass is better in the range of 0.1~50% by mass. When the concentration of the solid component is less than 0 - 01% by mass, it is difficult to form a film having a film thickness under a sufficient film thickness. On the other hand, when it exceeds 70% by mass, the viscosity becomes too high, so that formation of a film becomes difficult. [1-4] (D) Acid generator: The underlayer film forming composition of the present embodiment may further contain (D) acid in addition to the (A) polymer, (B) crosslinking agent, and (C) solvent. Incidence agent. The (D) acid generator is a component which generates an acid by exposure or heating. When the (D) acid generator is further contained, since the hardenability of the underlayer film can be enhanced, there is an advantage that it is more efficient and easier to form a film. Further, by increasing the acid concentration in the underlayer film, there is an advantage that the amine component such as ammonia is blocked. The (D) acid generator (hereinafter also referred to as "photoacid generator") which generates an acid by exposure may, for example, be diphenyliodonium trifluoromethanesulfonate or diphenyliodide pentafluorofluorene-positive Butane sulfonate, diphenyl iodonium sulfonate, diphenyl iodine-24- 201009503 gun n-dodecylbenzene sulfonate, diphenyl iodine gun ίο-camphor sulfonate, diphenyl Base iodine naphthalene sulfonate, diphenyl iodine hexafluoroantimonate, bis(4-tert-butylphenyl) iodine trifluoromethane sulfonate, bis(4-tert-butylphenyl) Iodine-free nonafluoro-n-butane sulfonate, bis(4-t-butylphenyl) iodine-n-dodecylbenzenesulfonate, bis(4-t-butylphenyl) iodine gun 10 - camphorsulfonate, bis(4-t-butylphenyl) iodine gun naphthalenesulfonate, bis(4-t-butylphenyl) iodine hexafluoroantimonate, triphenylsulfonium trifluoromethane Sulfonate, triphenylsulfonium nonafluoro-n-butanesulfonate, triphenylsulfonium n-dodecylbenzenesulfonate, triphenylsulfonium naphthalenesulfonate, triphenylsulfonium 10-quinone Sulfonic acid ester, triphenyl mirror hexafluoroantimonate, 4-hydroxyphenyl phenyl methyl hydrazine p-toluene sulfonate 4-hydroxyphenyl·benzyl·methylhydrazine P-tosylate, cyclohexyl·methyl·2-oxycyclohexylfluorene trifluoromethanesulfonate, 2-oxycyclohexyldicyclohexylfluorene Fluoromethanesulfonate, 2-oxycyclohexyldimethylsulfonium trifluoromethanesulfonate, 1-naphthyldimethyltrifluoromethanesulfonate, naphthyldiethyltrifluoromethanesulfonate, 4-cyano-p-naphthyldimethylsulfonium trifluoromethanesulfonate, 4-cyano-1-naphthyldiethyl & fluorene trifluoromethanesulfonate, 4-nitro-p-naphthyldimethylhydrazine Fluoromethanesulfonate, 4-nitro-1-naphthyldiethyltrifluoromethanesulfonate, 4-methyl-1-naphthyldimethyltrifluoromethanesulfonate, 4-methyl 1-naphthyldiethylphosphonium trifluoromethanesulfonate, 4-hydroxy-1-naphthyldimethyltrifluoromethanesulfonate, 4-hydroxy-1-naphthyldiethylphosphonium trifluoromethane Sulfonate, 1-(4-hydroxynaphthalen-1-yl}tetrahydrothiophene trifluoromethanesulfonate, 1-(4-methoxynaphthalen-1-yl)tetrahydrothiophene trifluoromethanesulfonic acid Ester, 1-(4-ethoxynaphthalenyl-bu)tetrahydrothiophene trifluoromethanesulfonate, 1-(4-methoxymethoxynaphthalene-bu)tetrahydrothiophene Trifluoromethanesulfonate, 1-(4-ethoxymethoxynaphthalen-1-yl)tetrahydrothiophene gun-25- 201009503 trifluoromethanesulfonate, 1-[4-(1-methoxy) Ethoxy)naphthalen-1-yl]tetrahydrothiophene trifluoromethanesulfonate, 1-[4-(2-methoxyethoxy)naphthalen-1-yl]tetrahydrothiophene trifluoromethanesulfonate Acid ester, 1-(4-methoxycarbonyloxynaphthalen-1-yl) tetrahydrothiophene trifluoromethanesulfonate, 1-(4-ethoxymethoxynaphthalen-1-yl)tetra Hydrothiophene trifluoromethanesulfonate, 1-(4-n-propoxycarbonyloxynaphthalen-1-yl)tetrahydrothiophene trifluoromethanesulfonate, 1-(4-isopropoxycarbonyloxyl) Naphthyl-1-yl)tetrahydrothiophene trifluoromethanesulfonate, 1-(4-n-butoxycarbonyloxynaphthalene)-tetrahydrothiophene trifluoromethanesulfonate, 1-(4 _T-butoxycarbonyloxynaphthalen-1-yl)tetrahydrothiophene gun trifluoromethanesulfonate, i-[4-(2-tetrahydrofuranyloxy)naphthalen-1-yl]tetrahydrothiophene gun trifluoride Methanesulfonate, i-[4-(2-tetrahydropyranyloxy)naphthalen-1-yl]tetrahydrothiophene iron trifluoromethanesulfonate, 1-(4-benzyloxy)tetrahydrothiophene Key trifluoromethanesulfonate, 1_(naphthylacetamidine a gun salt-based photoacid generator such as tetrahydrothiophene trifluoromethanesulfonate; phenylbis(trichloromethyl)-s-three tillage, 4-methoxyphenylbis(trichloromethyl) )-s- tri-crop, 1-naphthylbis(trichloromethyl)-s-three-till, etc., halogen-containing compound-based photoacid generators; 1,2-naphthoquinonediazide-4-sulfonate 1,2-naphthoquinonediazide-4-, chloro, 1,2-naphthoquinone diazide, azide-5-sulfonyl chloride, 2,3,4,4'-tetrahydrodiphenyl ketone A diazoketone compound such as a sulfonate or a 1,2-naphthoquinonediazide-5-sulfonate is a photoacid generator: 4-triphenylsulfonium methylhydrazine, benzyl quinone methyl maple, Anthracene compounds such as bis(phenylsulfonyl)methane are photoacid generators; benzoin tosylate, tris(trifluoromethanesulfonate) of pyrogallol, nitrobenzyl-9,10- Diethoxyanthracene-2-sulfonate, trifluoromethanesulfonylbicyclo[2,2,1]hept-5-ene-2,3-dicarbodiimide, N-hydroxysuccinimide Fluoromethanesulfon-26-201009503 acid-generating agent such as acid ester or octadecyl trifluoromethanesulfonate of 1,8-naphthalene dicarboxylate. Among these photoacid generators, preferred are diphenyl iodine trifluoromethanesulfonate, diphenyl iodine gun nonafluoro-n-butane sulfonate, diphenyl iodonium sulfonate, Diphenyl iodine gun n-dodecylbenzene sulfonate, diphenyl iodine 1 〇 樟 磺酸 sulfonate, diphenyl iodine naphthalene sulfonate, bis (4-tert-butylphenyl) Iodine gun trifluoromethanesulfonate, bis(4-tert-butylphenyl) iodine gun nonafluoro-n-butane sulfonate, bis(4-tert-butylphenyl) iodine-n-dodecane Benzobenzenesulfonic acid ◎ ester, bis(4-t-butylphenyl) iodine 10-camphorsulfonate, bis(4-t-butylphenyl) iodine naphthalenesulfonate. In addition, these photoacid generators may be used alone or in combination of two or more. (D) acid generator (hereinafter also referred to as "thermal acid generator j") which generates an acid by heating. For example, 2,4,4,6-tetrabromocyclohexadienone, benzoisotosylate, 2-nitrobenzyl tosylate, alkylsulfonate, etc. These thermal acid generators may be used singly or in combination of two or more kinds. Alternatively, a photoacid generator and a thermal acid generator may be used. ❹ (D) The amount of the acid generator It is preferably 100 parts by mass or less, more preferably 0.1 to 30 parts by mass, more preferably 〇·ι~ι〇 parts by mass, and 0.5 to 10 parts by mass, based on 1 part by mass of the (A) polymer. When the amount of the above-mentioned compounding amount is less than 1 part by mass, the acid may not be sufficiently generated in the underlayer film, and the hardenability of the film may be impaired. Further, there may be a composition which hinders the formation of the photoresist. The amine component such as ammonia in the chemical reaction does not sufficiently prevent the amine component from diffusing in the photoresist film. On the other hand, if it exceeds 30 parts by mass, it will be present in the underlayer film. The excess acid that is generated is diffused in the photoresist film, which causes the shape of the photoresist film to deteriorate. In addition, when the underlayer film is formed, the decomposition product of the (D) acid generator becomes sublimation. (1) Other additives: The underlayer film forming composition of the present embodiment is in addition to (A) polymer, (B) crosslinking agent, (C) Other additives may be contained in addition to the solvent and the (D) acid generator. Examples of the other additives include a thermosetting resin, a radiation absorber, a surfactant, a storage stabilizer, an antifoaming agent, and a bonding aid. The thermosetting resin has a component which is insoluble in a solvent enthalpy by heat curing, and can prevent mixing between the obtained underlayer film and the photoresist film formed thereon. The thermosetting resin is a thermosetting resin. Various thermosetting resins can be used, and examples thereof include acrylic resins (thermosetting acrylic resins), phenol resins, urea resins, melamine resins, amine resins, aromatic hydrocarbon resins, and rings. Oxygen resin Among them, urea resin, melamine resin, and aromatic hydrocarbon resin are preferred. _ The amount of thermosetting resin is based on the mass of (A) polymer 100.

Q 份,以20質量份以下爲佳,1~10質量份爲更佳。上述配 合量超過20質量份,就無法良好地防止在所得之下層膜、 與形成於其上的光阻膜之間的混雜。The Q portion is preferably 20 parts by mass or less, and more preferably 1 to 10 parts by mass. When the amount exceeds 20 parts by mass, the mixing between the obtained underlayer film and the photoresist film formed thereon cannot be satisfactorily prevented.

放射線吸收劑係可舉例如油溶性染料、分散染料、鹽 基性染料、次甲基系染料、吡唑系染料、咪唑系染料、羥 基偶氮系染料等的染料類;胭脂木酯衍生物、降胭脂木酯、 芪、4,4’-二胺基芪衍生物、香豆素衍生物、吡唑啉衍生物 等的螢光增白劑類;羥基偶氮系染料、商品名「TINUVIN -28- 201009503 2 34」、「TINUVIN 1 130」(以上,Ciba Geigy 公司製)等的 紫外線吸收劑類;蒽衍生物、蒽醌衍生物等的芳香族化合 物等。此外,此等之放射線吸收劑係可單獨1種使用、亦 可組合2種以上來使用》 放射線吸收劑的配合量係相對於(A)聚合物1〇〇質量 份,以100質量份以下爲佳,1~ 50質量份爲更佳。 界面活性劑係具有可改良塗布性、條紋(striation)、濕 潤性、顯像性等作用之成分。界面活性劑係可舉例如聚氧 〇 乙烯月桂基醚、聚氧乙烯硬脂基醚、聚氧乙烯油烯基醚、 聚氧乙烯-正辛基苯基醚、聚氧乙烯-正壬基苯基醚、聚乙二 醇二月桂酸酯、聚乙二醇二硬脂酸酯等的非離子系界面活 性劑,與以下全部的商品名:「DYNAFLOW」(JSR公司製}、 「SURFYNOL」(Air-Products 公司製}、「SURFYNOL 衍生 物」(Air-Products 公司製)、「DYNOL」(Air-Products 公 司製)、「DYNOL 衍生物」(Air-Products 公司製)、 「OLFINE」(Air-Products 公司製)、「OLFINE 衍生物」 (Air-Products公司製)、「KP341」(信越化學工業公司製}、 「POLYFLOW Νο·75」、「同Νο·95」(以上,共榮社油脂化 學工業公司製)、「FDOPE EF101」、「同 EF204」、「同 EF303」、「同 EF352」(以上,Tohchem Products 公司製)、 「MEGAFAC F171」、「同F172」、「同F173」(以上,大日 本油墨化學工業公司製)、「FLUORIDFC430」、「同 FC431」、「同FC135」、「同FC93」(以上,住友3M公司 製)、「AsahiGuard AG710」、「SURFLON S382」、「同 -29- 201009503 SC101」、「同 SC102」、「同 SC103」、「同 SC104」、「同 SC105」、「同SC106」(以上,旭硝子公司製)等。 此外,此等之界面活性劑係可單獨1種使用、亦可組 合2種以上來使用。 界面活性劑的配合量係相對於(A)聚合物100質量份, 以15質量份以下爲佳,0· 00 1~1〇質量份爲更佳。 [2] 下層膜形成組成物的調製方法: 本實施形態的下層膜形成組成物的調製方法係沒有特 ❹ 別地限定,例如,首先混合(A)聚合物、(B)交聯劑及(D)酸 發生劑,在該混合物中添加(C)溶劑,並調整成規定的固形 成分濃度。隨後,利用孔徑左右的過濾器進行過 濾。如此可得到下層膜形成組成物。 [3] 使用下層膜形成組成物之雙重鑲嵌構造的形成方 法: 本實施形態的下層膜形成組成物係適於使用於多層光 β阻製程。亦即,使用下層膜形成組成物時,除了可得到良 ❹ 好的光阻圖案,下層膜形成組成物係由於埋入性優良,所 以可良好地形成無機被膜(低介電絶緣膜)的損傷少之雙重 鑲嵌構造。 雙重鑲嵌構造的形成方法係可舉例如具有:經由在形 成於規定圖案形狀之第一凹部的第一低介電絶緣膜的上述 第一凹部中埋入導電材料,以形成規定的第一配線之形成 第一配線層的步驟(第一配線形成步驟);經由在形成於規定 圖案形狀之第二凹部的第二低介電絶緣膜的上述第二凹部 -30- 201009503 中埋入導電材料,以形成規定的第二配線之形成第二配線 層的步驟(第二配線形成步驟);與經由在形成於規定圖案形 狀之第三凹部的第三低介電絶緣膜的上述第三凹部中埋入 導電材料,以形成規定的第三配線之形成第三配線層的步 驟(第三配線形成步驟)的方法。 圖5係表示在第二低介電絶緣膜7與第三低介電絶緣 膜9之間形成蝕刻停止層8,且在第三低介電絶緣膜9與 下層膜1 1之間形成鈾刻停止層1 0之狀態的例子。 ❹ [3-1]第一配線形成步驟: 本實施形態的下層膜形成組成物係爲了形成上述凹部 而使用者,在第一配線形成步驟中,形成上述凹部之方法 係具體而言可舉例如含有:在第一低介電絶緣膜形成之晶 圓的第一低介電絶緣膜上,經由本實施形態的下層膜形成 組成物而形成下層膜之步驟(下層膜形成步驟):在所形成之 下層膜上形成光阻膜之步驟(光阻膜形成步驟);在該光阻膜 @上形成光阻圖案之步驟(光阻圖案形成步驟);使用形成有光 阻圖案之光阻膜作爲遮罩,經由蝕刻轉印光阻膜的光阻圖 案於下層膜之轉印步驟(第一轉印步驟);使用轉印有光阻圖 案之下層膜作爲遮罩,將下層膜的光阻圖案轉印於配置在 下層膜下方的第一低介電絶緣膜之轉印步驟(第二轉印步 驟);與在轉印光阻圖案於第一低介電絶緣膜之後,經由電 漿灰化以去除光阻膜及下層膜之除去步驟(膜除去步驟)的 方法。 [3-1-1]下層膜形成步驟: -31- 201009503 首先,在形成第一低介電絶緣膜之晶圓的第一低介電 絶緣膜上,經由本實施形態的下層膜形成組成物進行形成 下層膜之步驟(下層膜形成步驟)。使用如此之本實施形態的 下層膜形成組成物時,由於該下層膜形成組成物的埋入性 爲良好,所以在蝕刻時可防止低介電絶緣膜曝露於電漿 中。爲此,不會對低介電絶緣膜造成損傷且可良好地形成 雙重鑲嵌構造。 第一低介電絶緣膜(Low-k膜)係只要能配置於下層膜 〇 的下方的話,其種類等沒有特別地限制,例如可使用無機 被膜。該無機被膜係可利用例如氧化矽、氮化矽、氮氧化 矽、聚矽氧烷等而形成。特別是可利用「Black Diamond」 (AMAT公司製)、「SYLK」(道耳化學公司製)、「LKD5109」 (JSR公司製)等的市售品而形成。 第一低介電絶緣膜係例如被覆晶圓等的基板而形成的 膜。第一低介電絶緣膜的形成方法係沒有特別地限制,可 q使用眾所周知的方法。例如可使用塗布法(SOD: Spin On Dielectric)與化學氣相蒸鍍法(CVD : Chemical Vapor Deposition)等。 利用本實施形態的下層膜形成組成物以形成下層膜之 方法係沒有特別地限定,可舉例如旋轉塗布法、噴塗法、 浸漬塗布法等。 下層膜的膜厚係沒有特別地限定,以100~2000nm爲 佳,200~ lOOOnm爲更佳,200~500nm爲特佳。下層膜 的膜厚低於lOOnm時,則不能在加工基板上形成充分的遮 -32- 201009503 罩量,而有無法加工基板之虞。另—方面,超過2000nm 時,例如在形成行與間隔(line and space)的光阻圖案之 際,行部分的縱/橫比(縱橫比)變得過大,而有行部分終將 倒塌之虞。 [3-1-2】光阻膜形成步驟: 接著,進行在所形成之下層膜上形成光阻膜之步驟。 可利用光阻組成物形成光阻膜。該光阻組成物係可使用以 往眾所周知的組成物’可舉例如含有光酸發生劑之正型或 〇 負型的化學增幅型光阻組成物、由鹼可溶性樹脂與醌二迭 氮基系感光劑所構成之正型光阻組成物、由鹼可溶性樹脂 與交聯劑所構成之負型光阻組成物等。 將光阻膜形成於下層膜上之方法係沒有特別地限定, 可舉例如旋轉塗布法等。具體而言,利用旋轉塗布法塗敷 光阻組成物於下層膜上,隨後進行預烘烤,經由使塗膜中 的溶劑揮發,可形成光阻膜。此外,預烘烤的溫度係可依 π照所使用之光阻組成物的種類等做適宜調整,以30~200°C 爲佳,50~150°C爲更佳》 光阻膜的膜厚係沒有特別地限定,l〇〇~20000nm爲 佳,100~200nm爲更佳。 [3- 1-3]光阻圖案形成步驟: 接著,進行在光阻膜形成光阻圖案之步驟。光阻圖案 的形成係可藉由透過描寫所望裝置設計之遮罩(中間掩膜) 將放射線等的光照射(曝光)光阻膜之後,進行顯像而形成。 -33- 201009503 照射光阻膜之放射線係可依照光阻膜中所含有的(D)酸 發生劑的種類做適宜選擇,可舉例如可見光線、紫外線、 遠紫外線、X射線、電子束、7·線、分子射線、離子束等。 此等之中,尤以遠紫外線爲佳,特佳係KrF準分子雷射 (248nm)、ArF準分子雷射(I93nm>、F2準分子雷射(波長 15 7nm)、Kr2準分子雷射(波長147nm)、ArKr準分子雷射 (波長134nm)、遠紫外線(波長I3nm等)。 可使用於顯像之顯像液係可依照光阻組成物的種類做 適宜選擇。含有正型化學增幅型光阻組成物與鹸可溶性樹 脂之正型光阻組成物中所使用的顯像液係可舉例如氫氧化 鈉、氫氧化鉀、碳酸鈉、矽酸鈉、偏矽酸鈉、氨、乙基胺、 正丙基胺、二乙基胺、二-正丙基胺、三乙基胺、甲基二乙 基胺、二甲基.乙醇胺、三乙醇胺、羥基化四甲基銨、羥基 化四乙基銨、吡咯、哌啶、膽碱、1,8 -二氮雜雙環[5.4.0]-7-十一碳烯、1,5-二氮雜雙環[4.3.0]-5-壬烯等的鹼性水溶 q液。又,此等之鹼性水溶液中,亦可適當添加水溶性有機 溶劑、例如甲醇、乙醇等的醇類、與界面活性劑。 此外,顯像光阻膜之後,較佳係洗淨、乾燥該光阻膜。 又,爲了使解析度、圖案輪廓、顯像性等提昇,亦可在曝 光後,顯像前進行後烘烤。 [3-1-4】第一轉印步驟: 接著,進行使用形成光阻圖案之光阻膜作爲遮罩,且 利用蝕刻將光阻膜的光阻圖案轉印於下層膜之步驟。例 如,如圖1所示,先於基板1上,從該基板1側依序配置 -34- 201009503 第一低介電絶緣膜2、下層膜3、光阻膜20,在本步驟係 使用形成有光阻圖案14之光阻膜20作爲遮罩,且利用蝕 刻將光阻膜20的光阻圖案14轉印至下層膜3。此外,圖 1~圖10係說明雙重鑲嵌構造的形成方法之一步驟的模式 圖。 蝕刻的法係沒有特別地限制,可利用眾所周知的方法 來進行。亦即,可以爲乾式蝕刻、亦可爲濕式蝕刻。使用 乾式蝕刻之情形,來源氣體係可舉例如使用〇2、CO、co2 〇 等的含有氧原子之氣體,He、N2、Ar等的不活性氣體、Cl2、 BCI2等的氯系氣體、其他的H2、NH2等。此外,此等之來 源氣體係可單獨1種使用、亦可組合2種以上來使用。 [3-1-5]第二轉印步驟: 接著,進行使用轉印光阻圖案之下層膜作爲遮罩,且 在配置於下層膜下方的第一低介電絶緣膜上轉印下層膜的 光阻圖案之步驟。轉印下層膜的光阻圖案於第一低介電絶 @緣膜之方法係沒有特別地限制,可舉例如上述之蝕刻等的 方法。此外,本步驟係可藉由利用上述之第一轉印步驟將 光阻圖案轉印(亦即,形成)於下層膜之後,繼續進行蝕刻來 進行。 例如,如圖2所示,在本步驟係使用轉印光阻圖案之 下層膜3作爲遮罩,且在配置於下層膜3下方的第一低介 電絶緣膜2上轉印下層膜3的光阻圖案,而在第一低介電 絶緣膜2上形成第一凹部4。 [3-1-6]膜除去步驟: -35- 201009503 接著,進行轉印光阻圖案於第一低介電絶緣膜之後, 利用電漿灰化去除光阻膜及下層膜之步驟。在此,所謂的 「電漿灰化」係意味著在氣相中使氧等的反應氣體產生電 漿,利用該電漿,將光阻膜及下層膜等的有機物分解、去 除成cox與h2o等。 電漿灰化的條件係只要能去除光阻膜及下層膜者即 可,沒有特別地限制,例如,施加於加熱台的高頻電力係 以 100~1000W爲佳,100~500W爲更佳。又,加熱台溫 度係以20~100°C爲佳,20~60°c爲更佳。又,處理容器内 的壓力係以l~300mtorr爲佳,30~100mtorr爲更佳。 電漿灰化所使用的氣體只要能去除光阻膜及下層膜的 話即可,沒有特別地限制,從利用電漿灰化能抑制第一低 介電絶緣膜的比介電率的上昇之觀點來看,較佳係含有由 氮、氫、氨及氬所構成群組中所選擇之至少1種。特佳係 氮與氫的混合氣體、氨與氬的混合氣體,及氨、氮及氫的 Λ混合氣體。 ❹ 又,使用氮與氫的混合氣體之情形中,以容量比計, 相對於氮100,氫較佳爲20以下,氫較佳爲1~10。又, 使用氨與氬的混合氣體之情形中,以容量比計,相對於氨 100,氬較佳爲10以下。 圖3係表示利用電漿灰化去除圖2所示之光阻膜20及 下層膜3,而殘留有基板1、與配置於基板1上且轉印光阻 圖案(形成第一凹部4)之第一低介電絶緣膜2的狀態。 -36- 201009503 接著,埋入第一低介電絶緣膜的凹部之導電材料係可 舉例如銅、鋁等。埋入導電材料之方法係可舉例如電解電 鍍銅法等。如此藉由將導電材料埋入光阻圖案’可形成所 望的配線構造。圖5係表示在形成第一低介電絶緣膜2之 光阻圖案(第一凹部4)上埋入銅,而形成第一配線6之狀態 的例子。 [3-卜7]其他步驟: 上述之雙重鑲嵌構造的形成方法係除了上述各步驟以 外,亦可進行在光阻膜與下層膜之間形成中間層之步驟(中 間層形成步驟)、在膜除去步驟後於第一低介電絶緣膜的表 面、及基板的一部分上形成障蔽金屬層之步驟(障蔽金屬層 形成步驟)。 [3-l-7a]中間層形成步驟: 在中間層形成步驟,中間層係在光阻圖案形成中,彌 補下層膜、光阻膜、及此等兩方不足的機能用之層。亦可 @形成中間層。亦即,例如在下層膜抗反射機能不足的情形 下,可在該中間層應用具有抗反射機能之膜》 中間層的材質係可依照必要的機能而適宜選擇有機化 合物與無機氧化物。此外,光阻膜爲有機化合物之情形, 亦可於中間層應用無機氧化物。 形成中間層用的有機化合物的市售品係全部爲商品名, 可舉例如:「DUV-42」、「DUV-44」、「ARC-28」、 「ARC-29」(以上,Brewer Science 公司製)、「AR-3」、 「AR-19」(以上,R〇hn and Hass公司製)等》又,形成 -37- 201009503 中間層用的無機氧化物係可舉例如聚矽氧烷、氧化鈦、氧 化鋁、氧化鎢等。此等之市售品係全部爲商品名,可舉例 如:「NFC SOG01」、「NFC SOG04」(以上,JSR 公司製} 等。 中間層的形成方法係可使用如塗布法與CVD法等。此 等之中,較佳係使用形成下層膜之後,可連續形成中間層 用的塗布法。 中間層的膜厚係可依照中間層所求得之機能來選擇適 ❹ 宜的膜厚,以10~3000nm爲佳,20~300nm爲更佳。該 中間層的膜厚低於l〇nm,就有在進行蝕刻下層膜的途中削 減了中間層之虞。另一方面,超過3000nm,就有在將光阻 膜的光阻圖案轉印至中間層之際,顯著地發生加工變換差 異之虞。 [3-l-7b]障蔽金屬層形成步驟: 在障蔽金屬層形成步驟中,障蔽金屬層係提昇埋入光 q阻圖案內(亦即,形成於第一低介電絶緣膜之凹部)之導電材 料與低介電絶緣膜的接著性。再者,防止導電材料擴散(轉 移作用)於低介電絶緣膜中。 障蔽金屬層的材料係可舉例如钽、氮化钽、鈦、氮化 駄、釘等。 障蔽金屬層的形成方法係例如可依照CVD法等來進 行。 -38- 201009503 圖4係表示在第一低介電絶緣膜2的表面、及第一低 介電絶緣膜2之第一凹部4的表面上,形成障蔽金屬層5 的狀態。 此外,積層步驟後,附著於低介電絶緣膜表面之導電 材料與障蔽金屬層,較佳係依照化學的硏磨(CMP)去除,同 時平坦化低介電絶緣膜的表面。 [3-2]第二配線形成步驟及第三配線形成步驟: 在第二配線形成步驟及第三配線形成步驟中,形成上 述凹部之方法係可採用與在上述之第一配線形成步驟中形 成凹部之方法相同的方法,較佳係利用以下所示之方法來 形成凹部。亦即,較佳係同時形成第二配線層與第三配線 層。 首先,在依照第一配線形成步驟所形成之第一配線層 上,形成第三低介電絶緣膜》隨後,在第三低介電絶緣膜 上形成第二低介電絶緣膜。此外,第二低介電絶緣膜及第 三低介電絶緣膜係可使用與上述之第一低介電絶緣膜相同Examples of the radiation absorbing agent include dyes such as oil-soluble dyes, disperse dyes, salt-based dyes, methine dyes, pyrazole dyes, imidazole dyes, and hydroxy azo dyes; Fluorescent whitening agents such as saponin, hydrazine, 4,4'-diamino hydrazine derivatives, coumarin derivatives, pyrazoline derivatives, etc.; hydroxy azo dyes, trade name "TINUVIN - 28-201009503 2 34", ultraviolet absorbers such as "TINUVIN 1 130" (above, manufactured by Ciba Geigy Co., Ltd.); aromatic compounds such as anthracene derivatives and anthracene derivatives. In addition, these radiation absorbers may be used alone or in combination of two or more. The blending amount of the radiation absorber is 100 parts by mass or less based on 1 part by mass of the (A) polymer. Good, 1~50 parts by mass is better. The surfactant has a component which can improve the applicability, the striation, the wettability, the developing property and the like. The surfactant may, for example, be polyoxyethylene ethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene oleyl ether, polyoxyethylene-n-octylphenyl ether, polyoxyethylene-n-decylbenzene. A nonionic surfactant such as a base ether, polyethylene glycol dilaurate or polyethylene glycol distearate, and all of the following product names: "DYNAFLOW" (manufactured by JSR Corporation), "SURFYNOL" ( Air-Products, Inc., "SURFYNOL Derivatives" (made by Air-Products), "DYNOL" (made by Air-Products), "DYNOL Derivatives" (made by Air-Products), "OLFINE" (Air- Products company), "OLFINE derivative" (made by Air-Products), "KP341" (manufactured by Shin-Etsu Chemical Co., Ltd.), "POLYFLOW Νο·75", "同Νο·95" (above, Kyoeisha oleochemicals) Industrial Company), "FDOPE EF101", "Same EF204", "Same EF303", "Same EF352" (above, Tohchem Products), "MEGAFAC F171", "Same F172", "Same F173" (above, Dainippon Ink Chemical Industry Co., Ltd.) FLUORIDFC430", "with FC431", "same FC135", "same as FC93" (above, Sumitomo 3M), "AsahiGuard AG710", "SURFLON S382", "Same -29-201009503 SC101", "Same SC102", "Same as SC103", "same as SC104", "same as SC105", "same as SC106" (above, manufactured by Asahi Glass Co., Ltd.), etc. In addition, these surfactants may be used alone or in combination of two or more. The amount of the surfactant to be added is preferably 15 parts by mass or less, more preferably 0. 00 1 to 1 part by mass, based on 100 parts by mass of the (A) polymer. [2] Lower film forming composition Modulation method: The preparation method of the underlayer film forming composition of the present embodiment is not particularly limited. For example, first, (A) a polymer, (B) a crosslinking agent, and (D) an acid generator are mixed in the mixture. The (C) solvent is added and adjusted to a predetermined solid component concentration. Subsequently, filtration is carried out using a filter having a pore diameter. Thus, an underlayer film forming composition can be obtained. [3] A double damascene structure using the underlayer film to form a composition Forming method: The underlayer film forming composition of the present embodiment is suitably used for a multilayer photo-resistance process. That is, when a composition is formed using an underlayer film, in addition to obtaining a good photoresist pattern, the underlayer film forming composition is buried. Since the intrinsic property is excellent, a double damascene structure in which the inorganic film (low dielectric insulating film) is less damaged can be formed satisfactorily. The method of forming the dual damascene structure includes, for example, embedding a conductive material in the first recessed portion of the first low dielectric insulating film formed in the first recessed portion of the predetermined pattern shape to form a predetermined first wiring. a step of forming a first wiring layer (first wiring forming step); embedding a conductive material in the second recess -30-201009503 of the second low dielectric insulating film formed in the second recess of the predetermined pattern shape, a step of forming a second wiring layer of a predetermined second wiring (second wiring forming step); and embedding in the third recess portion via a third low dielectric insulating film formed in a third recess portion of a predetermined pattern shape A method of forming a third wiring layer (third wiring forming step) by forming a conductive material. 5 shows that an etch stop layer 8 is formed between the second low dielectric insulating film 7 and the third low dielectric insulating film 9, and uranium engraving is formed between the third low dielectric insulating film 9 and the underlying film 11. An example of the state of the stop layer 10 is stopped. ❹ [3-1] First wiring forming step: The lower film forming composition of the present embodiment is a user who forms the concave portion in order to form the concave portion, and the method of forming the concave portion in the first wiring forming step is specifically, for example And a step of forming a lower layer film by forming a composition on the first low dielectric insulating film of the wafer formed of the first low dielectric insulating film (the lower film forming step): formed a step of forming a photoresist film on the underlayer film (resist film formation step); a step of forming a photoresist pattern on the photoresist film @ (resist pattern formation step); using a photoresist film formed with a photoresist pattern as a mask, a transfer step of transferring the photoresist pattern of the photoresist film to the underlayer film by etching (first transfer step); using a lower layer film with a photoresist pattern transferred as a mask, and a photoresist pattern of the underlying film a transfer step (second transfer step) transferred to the first low dielectric insulating film disposed under the lower film; and after the transfer of the photoresist pattern to the first low dielectric insulating film, via plasma ashing To remove the photoresist film A method of removing step underlayer film (film-removing step) is. [3-1-1] Lower film formation step: -31-201009503 First, a composition is formed through the underlayer film of the present embodiment on the first low dielectric insulating film forming the wafer of the first low dielectric insulating film The step of forming an underlayer film (underlayer film forming step) is performed. When the composition of the underlayer film of the present embodiment is used, the embedding property of the underlayer film forming composition is good, so that the low dielectric insulating film can be prevented from being exposed to the plasma during etching. For this reason, damage to the low dielectric insulating film is not caused and the dual damascene structure can be favorably formed. The first low dielectric insulating film (Low-k film) is not particularly limited as long as it can be disposed under the lower film ,. For example, an inorganic film can be used. The inorganic film system can be formed by, for example, ruthenium oxide, ruthenium nitride, ruthenium oxynitride, polysiloxane or the like. In particular, it can be formed by using commercially available products such as "Black Diamond" (manufactured by AMAT Corporation), "SYLK" (manufactured by Dow Chemical Co., Ltd.), and "LKD5109" (manufactured by JSR Corporation). The first low dielectric insulating film is, for example, a film formed by coating a substrate such as a wafer. The method of forming the first low dielectric insulating film is not particularly limited, and a well-known method can be used. For example, a coating method (SOD: Spin On Dielectric) and a chemical vapor deposition method (CVD: Chemical Vapor Deposition) can be used. The method of forming the composition by the underlayer film of the present embodiment to form the underlayer film is not particularly limited, and examples thereof include a spin coating method, a spray coating method, and a dip coating method. The film thickness of the underlayer film is not particularly limited, and is preferably 100 to 2000 nm, more preferably 200 to 100 nm, and particularly preferably 200 to 500 nm. When the film thickness of the underlayer film is less than 100 nm, a sufficient amount of the cover can not be formed on the processed substrate, and there is a possibility that the substrate cannot be processed. On the other hand, when it exceeds 2000 nm, for example, when a line and space resist pattern is formed, the vertical/horizontal ratio (aspect ratio) of the line portion becomes too large, and the line portion eventually collapses. . [3-1-2] Photoresist film forming step: Next, a step of forming a photoresist film on the formed underlayer film is performed. A photoresist film can be formed using the photoresist composition. As the photoresist composition, a conventionally known composition can be used, for example, a positive or negative type chemically amplified photoresist composition containing a photoacid generator, and an alkali-soluble resin and a quinone diazide-based photosensitive layer. A positive-type photoresist composition composed of an agent, a negative-type photoresist composition composed of an alkali-soluble resin and a crosslinking agent, and the like. The method of forming the photoresist film on the underlayer film is not particularly limited, and examples thereof include a spin coating method and the like. Specifically, the photoresist composition is applied onto the underlayer film by a spin coating method, followed by prebaking, and a photoresist film is formed by volatilizing the solvent in the coating film. In addition, the prebaking temperature can be appropriately adjusted according to the type of the photoresist composition used in the π photolithography, preferably 30 to 200 ° C, and 50 to 150 ° C is better. The film thickness of the photoresist film. The system is not particularly limited, and l〇〇~20000 nm is preferred, and 100 to 200 nm is more preferable. [3- 1-3] Resistive Pattern Forming Step: Next, a step of forming a photoresist pattern on the photoresist film is performed. The formation of the photoresist pattern can be formed by irradiating (exposing) the photoresist film with light such as radiation through a mask (intermediate mask) designed to describe the device. -33- 201009503 The radiation system for irradiating the photoresist film can be appropriately selected according to the type of (D) acid generator contained in the photoresist film, and examples thereof include visible light, ultraviolet light, far ultraviolet light, X-ray, electron beam, and 7 • Lines, molecular rays, ion beams, etc. Among them, especially ultraviolet light is preferred, especially KrF excimer laser (248nm), ArF excimer laser (I93nm>, F2 excimer laser (wavelength 17 7nm), Kr2 excimer laser (wavelength) 147nm), ArKr excimer laser (wavelength 134nm), far ultraviolet (wavelength I3nm, etc.). The imaging liquid used for imaging can be selected according to the type of photoresist composition. It contains positive chemical amplification light. The developing liquid used in the positive resist composition of the resist composition and the cerium soluble resin may, for example, be sodium hydroxide, potassium hydroxide, sodium carbonate, sodium citrate, sodium metasilicate, ammonia or ethylamine. , n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, triethanolamine, hydroxylated tetramethylammonium, hydroxylated tetraethylidene Base ammonium, pyrrole, piperidine, choline, 1,8-diazabicyclo[5.4.0]-7-undecene, 1,5-diazabicyclo[4.3.0]-5-decene An alkaline water-soluble q solution, etc. Further, in such an alkaline aqueous solution, a water-soluble organic solvent such as an alcohol such as methanol or ethanol or a surfactant may be appropriately added. Further, after the development of the photoresist film, it is preferable to wash and dry the photoresist film. Further, in order to improve the resolution, pattern outline, and developability, post-baking may be performed after exposure and before development. [3-1-4] First Transfer Step: Next, a step of using a photoresist film forming a photoresist pattern as a mask and transferring the photoresist pattern of the photoresist film to the underlayer film by etching is performed. As shown in FIG. 1 , the first low dielectric insulating film 2 , the lower film 3 , and the photoresist film 20 are sequentially disposed on the substrate 1 from the side of the substrate 1 in the order of -34-201009503, and are formed in this step. The photoresist film 20 of the photoresist pattern 14 serves as a mask, and the photoresist pattern 14 of the photoresist film 20 is transferred to the underlayer film 3 by etching. Further, FIGS. 1 to 10 illustrate one of the formation methods of the dual damascene structure. A schematic diagram of the step. The etching method is not particularly limited and can be carried out by a well-known method, that is, dry etching or wet etching. In the case of dry etching, the source gas system can be used, for example. 〇2, CO, co2 〇, etc., gas containing oxygen atoms, He, N2 Inert gas such as Ar, chlorine gas such as Cl2 or BCI2, and other H2, NH2, etc. These source gas systems may be used alone or in combination of two or more. -5] second transfer step: next, using a lower layer film of the transfer resist pattern as a mask, and transferring a photoresist pattern of the underlying film on the first low dielectric insulating film disposed under the lower layer film The method of transferring the photoresist pattern of the underlayer film to the first low dielectric barrier film is not particularly limited, and examples thereof include a method such as etching described above. Further, this step can be performed by using the above A transfer step is performed after the photoresist pattern is transferred (that is, formed) to the underlying film and etching is continued. For example, as shown in FIG. 2, in this step, the underlying film 3 of the transfer resist pattern is used as a mask, and the underlying film 3 is transferred onto the first low dielectric insulating film 2 disposed under the underlying film 3. The photoresist pattern is formed on the first low dielectric insulating film 2 to form the first recess 4. [3-1-6] Film removal step: -35 - 201009503 Next, a step of removing the photoresist film and the underlayer film by plasma ashing after transferring the photoresist pattern to the first low dielectric insulating film is performed. Here, the term "plasma ashing" means that a plasma of a reaction gas such as oxygen is generated in a gas phase, and an organic substance such as a photoresist film or a lower layer film is decomposed and removed into cox and h2o by the plasma. Wait. The condition of the plasma ashing is not particularly limited as long as the photoresist film and the underlayer film can be removed. For example, the high frequency power applied to the heating stage is preferably 100 to 1000 W, and more preferably 100 to 500 W. Further, the temperature of the heating stage is preferably 20 to 100 ° C, and more preferably 20 to 60 ° C. Further, the pressure in the processing container is preferably from 1 to 300 mtorr, and more preferably from 30 to 100 mtorr. The gas used for the plasma ashing is not particularly limited as long as the photoresist film and the underlayer film can be removed, and the viewpoint of suppressing the increase in the specific dielectric constant of the first low dielectric insulating film from the viewpoint of plasma ashing can be suppressed. In view of the above, it is preferred to contain at least one selected from the group consisting of nitrogen, hydrogen, ammonia, and argon. It is a mixed gas of nitrogen and hydrogen, a mixed gas of ammonia and argon, and a mixed gas of ammonia, nitrogen and hydrogen. Further, in the case of using a mixed gas of nitrogen and hydrogen, hydrogen is preferably 20 or less and hydrogen is preferably 1 to 10 in terms of a capacity ratio with respect to nitrogen 100. Further, in the case of using a mixed gas of ammonia and argon, argon is preferably 10 or less with respect to ammonia 100 in terms of a capacity ratio. 3 is a view showing that the photoresist film 20 and the underlayer film 3 shown in FIG. 2 are removed by plasma ashing, and the substrate 1 is left and disposed on the substrate 1 and the photoresist pattern is transferred (the first recess 4 is formed). The state of the first low dielectric insulating film 2. -36- 201009503 Next, the conductive material buried in the concave portion of the first low dielectric insulating film may be, for example, copper, aluminum or the like. The method of embedding the conductive material may, for example, be an electrolytic copper plating method. Thus, the desired wiring structure can be formed by embedding the conductive material in the photoresist pattern'. Fig. 5 shows an example in which copper is buried in the photoresist pattern (first recess 4) in which the first low dielectric insulating film 2 is formed, and the first wiring 6 is formed. [3-Bu 7] Other Steps: The above-described method of forming the dual damascene structure may be a step of forming an intermediate layer between the photoresist film and the underlayer film in addition to the above steps (intermediate layer forming step), in the film The step of forming a barrier metal layer on the surface of the first low dielectric insulating film and a portion of the substrate after the removing step (the barrier metal layer forming step). [3-l-7a] Intermediate layer forming step: In the intermediate layer forming step, the intermediate layer is formed in the resist pattern to fill the underlayer film, the photoresist film, and the layers which are insufficient for both functions. Can also form an intermediate layer. That is, for example, in the case where the anti-reflection function of the underlayer film is insufficient, the material of the intermediate layer in which the antireflection function can be applied to the intermediate layer can appropriately select the organic compound and the inorganic oxide in accordance with the necessary functions. Further, in the case where the photoresist film is an organic compound, an inorganic oxide may be applied to the intermediate layer. Commercially available products of the organic compound for forming the intermediate layer are all trade names, and examples thereof include "DUV-42", "DUV-44", "ARC-28", and "ARC-29" (above, Brewer Science, Inc.) "), "AR-3", "AR-19" (above, R〇hn and Hass), etc., forming -37-201009503 The inorganic oxide used for the intermediate layer is, for example, polyoxyalkylene. Titanium oxide, aluminum oxide, tungsten oxide, and the like. For example, "NFC SOG01" or "NFC SOG04" (manufactured by JSR Corporation), etc., may be used, and a method of forming an intermediate layer may be, for example, a coating method or a CVD method. Among these, a coating method for continuously forming an intermediate layer after forming an underlayer film is preferably used. The film thickness of the intermediate layer can be selected according to the function of the intermediate layer to select an appropriate film thickness to 10 ~3000nm is preferable, and 20~300nm is more preferable. The film thickness of the intermediate layer is lower than l〇nm, and the intermediate layer is cut in the middle of etching the underlayer film. On the other hand, if it exceeds 3000 nm, there is When the photoresist pattern of the photoresist film is transferred to the intermediate layer, the difference in processing change is remarkably caused. [3-l-7b] barrier metal layer forming step: in the barrier metal layer forming step, the barrier metal layer is formed Enhancing the adhesion of the conductive material and the low dielectric insulating film in the embedded light q-resist pattern (that is, the recess formed in the first low dielectric insulating film). Further, preventing the conductive material from diffusing (transfer) at a low level In the dielectric insulating film, the material of the barrier metal layer can be For example, tantalum, tantalum nitride, titanium, tantalum nitride, nails, etc. The method of forming the barrier metal layer can be performed, for example, according to a CVD method or the like. -38 - 201009503 Fig. 4 shows the first low dielectric insulating film 2 a surface, and a surface of the first recess 4 of the first low dielectric insulating film 2, a state in which the barrier metal layer 5 is formed. Further, after the lamination step, the conductive material and the barrier metal layer adhered to the surface of the low dielectric insulating film Preferably, the surface of the low dielectric insulating film is planarized by chemical honing (CMP) removal. [3-2] Second wiring forming step and third wiring forming step: in the second wiring forming step and In the three-wiring forming step, the method of forming the concave portion may be the same as the method of forming the concave portion in the first wiring forming step, and it is preferable to form the concave portion by the method described below. A second wiring layer and a third wiring layer are simultaneously formed. First, a third low dielectric insulating film is formed on the first wiring layer formed in accordance with the first wiring forming step. Subsequently, in the third low dielectric insulating film Upper shape A second low-dielectric insulating film. Further, a second low-dielectric insulating film and the third low-dielectric insulating film can be used with the system of the above-described first low-dielectric insulating film the same

G 者’第二低介電絶緣膜及第三低介電絶緣膜的形成方法係 可採用與上述之第一低介電絶緣膜相同的方法。 接著’在第二低介電絶緣膜及第三低介電絶緣膜形成 第三凹部。形成第三凹部之方法係可採用與形成上述第一 凹部之方法相同的方法。圖6係表示在第二低介電絶緣膜9 及第三低介電絶緣膜7形成第三凹部12之狀態的例子。 -39- 201009503 接著,在第二低介電絶緣膜形成第二凹部。形成第二 凹部之方法係可採用與形成上述第一凹部之方法相同的方 法。具體而言,可如以下般來進行。 首先,除了在第二低介電絶緣膜上塗布本實施形態的 下層膜形成組成物,在第二低介電絶緣膜及第三低介電絶 緣膜埋入所形成之第三凹部以外,在第二低介電絶緣膜的 表面形成膜(下層膜)。此外,形成下層膜形成組成物之方法 係沒有特別地限定,可舉例如旋轉塗布法、噴塗法、浸漬 〇 塗布法等。 接著,在所形成之下層膜上形成光阻膜之後,在該光 阻膜形成光阻圖案。接著,使用光阻圖案形成之光阻膜作 爲遮罩,且利用蝕刻將光阻膜的光阻圖案轉印至下層膜。 圖7係表示使用光阻圖案形成之光阻膜22作爲遮罩,且利 用蝕刻將光阻膜22的光阻圖案轉印至下層膜13之狀態。 接著,使用光阻圖案轉印之下層膜作爲遮罩,且將下 β層膜的光阻圖案轉印至配置於下層膜下方的第二低介電絶 ❹ 緣膜上。圖8係表示使用光阻圖案轉印之下層膜13作爲遮 罩,且將下層膜13的光阻圖案轉印至配置在下層膜13下 方的第二低介電絶緣膜9上(形成第二凹部14)之狀態。 接著,利用電漿灰化去除光阻膜及下層膜。此時,利 用電漿灰化,亦去除了埋入形成於第三低介電絶緣膜之第 三凹部的下層膜形成組成物經硬化者。圖9係表示利用電 漿灰化來去除圖8所示之光阻膜22及下層膜13,且分別 -40- 201009503 在第二低介電絶緣膜9及第三低介電絶緣膜7上形成第二 凹部14與第三凹部12的狀態。 接著’藉由將導電材料埋入第二凹部與第三凹部,可 同時形成第二配線、與連接第—配線及第二配線之第三配 線。此外’在將導電材料埋入第二凹部與第三凹部之前, 亦可形成上述之障蔽金屬層。圖1〇係表示藉由在將導電材 料埋入圖9所示第二凹部14與第三凹部12之前形成障蔽 金屬層15,隨後將導電材料埋入第二凹部14與第三凹部 〇 12,可同時形成第二配線31、與連接第一配線6及第二配 線31之第三配線16的狀態。如此可製造具有:形成第一 配線6之第一配線層25'形成第二配線31之第二配線層 29、形成連接上述第一配線6及上述第二配線31之第三配 線16的第三配線層27的雙重鑲嵌構造體100。 此外,在將導電材料埋入第二凹部與第三凹部之後, 可進行化學的硏磨(CMP)。 β 實施例 以下,按照實施例及比較例來具體地説明本發明,惟 本發明係不受限於此等實施例及比較例。此外’實施例記 載中的「份」及「%」如沒有特別記載的話爲質量基準。 (合成例1) 在具備溫度計之分離燒瓶中’於氣氮雰圍氣下’進料 作爲提供通式(1)所示構造單元的單體(表i、2中’表示爲 「單體(1)」)之苊嫌(表1<2中’表示爲「M_1_1」)70份、 作爲提供通式(2)所示構造單元的單體(表i、2中’表示爲 -41- 201009503 「單體(2)」)之甲基丙烯酸羥基乙酯(表1中,表示爲 「M-2-l」)20份、作爲提供通式(3)所示構造單元之單體(表 1、2中,表示爲「單體(3)」)的苯乙烯(表1、2中,表示 爲「M-3-1」)10份、作爲自由基聚合引發劑(通式(4)所表 示之提供構造單元的單體)之2,2’ -偶氮雙(2-甲基丁酸二 甲酯)(和光純藥公司製、商品名「V-60 1」,表1中表示爲 「聚合引發劑[V-6011」)10份、及甲基異丁基酮400份, 一邊攪拌一邊在90°C聚合4小時。聚合終了後,水冷聚合 溶液且冷卻至30 °C以下。冷却後,將該聚合溶液投入大量 的甲醇中,使白色固體析出。隨後,利用傾析法分離析出 之白色固體,且用大量的甲醇洗淨分離之白色固體。洗淨 後,在50°C乾燥17小時而得到聚合物(A-1)。 關於所得到的聚合物(A- 1)’利用以下所示之條件,測 定重量平均分子量(Mw)。 [重量平均分子量(Mw)的測定】: 使用TOSO公司製的GPC管柱(G2000HXL: 2本、 G3000HXL : 1本),在流量:l.OmL/分、溶出溶劑:四氫 呋喃、管柱溫度:40°C的分析條件下,利用單分散聚苯乙 嫌爲標準的凝膠渗透層析儀(檢測器·微差熱分析計)來測 定。此外,表1及表2中,表示爲「分子量」。 在本合成例所得之聚合物(A-1)的重量平均分子量(Mw) 爲 2800。 (合成例2~26) -42- 201009503 表示於表1之單體及自由基聚合引發劑係除了以表1 所示之配合量來使用以外,與合成例1同樣地合成聚合物 (A-2)~聚合物(A-26),並對各聚合物測定重量平均分子量 (Mw)。其結果表不於表1。此外,表1~表4中,「份」表 示質量份。The method of forming the second low dielectric insulating film and the third low dielectric insulating film of the G can be the same as the first low dielectric insulating film described above. Next, a third recess is formed in the second low dielectric insulating film and the third low dielectric insulating film. The method of forming the third recess may be the same as the method of forming the first recess described above. FIG. 6 shows an example of a state in which the third low dielectric insulating film 9 and the third low dielectric insulating film 7 form the third concave portion 12. -39- 201009503 Next, a second recess is formed in the second low dielectric insulating film. The method of forming the second recess may be the same as the method of forming the first recess described above. Specifically, it can be carried out as follows. First, in addition to coating the underlayer film forming composition of the present embodiment on the second low dielectric insulating film, the second low dielectric insulating film and the third low dielectric insulating film are buried in the third recess formed, A film (lower film) is formed on the surface of the second low dielectric insulating film. Further, the method of forming the underlayer film forming composition is not particularly limited, and examples thereof include a spin coating method, a spray coating method, and a dip coating method. Next, after a photoresist film is formed on the formed underlayer film, a photoresist pattern is formed on the photoresist film. Next, a photoresist film formed using a photoresist pattern is used as a mask, and the photoresist pattern of the photoresist film is transferred to the underlayer film by etching. Fig. 7 shows a state in which the photoresist film 22 formed using the photoresist pattern is used as a mask, and the photoresist pattern of the photoresist film 22 is transferred to the underlayer film 13 by etching. Next, the underlying film was transferred as a mask using a photoresist pattern, and the photoresist pattern of the lower β layer film was transferred onto the second low dielectric insulating film disposed under the underlying film. 8 is a view showing that the underlayer film 13 is transferred as a mask using a photoresist pattern, and the photoresist pattern of the underlayer film 13 is transferred onto the second low dielectric insulating film 9 disposed under the underlayer film 13 (forming a second The state of the recess 14). Next, the photoresist film and the underlayer film are removed by plasma ashing. At this time, the plasma ashing is used, and the underlayer film forming composition buried in the third recess formed in the third low dielectric insulating film is also removed. FIG. 9 is a view showing that the photoresist film 22 and the underlying film 13 shown in FIG. 8 are removed by plasma ashing, and -40-201009503 on the second low dielectric insulating film 9 and the third low dielectric insulating film 7, respectively. A state in which the second recess 14 and the third recess 12 are formed. Then, by embedding the conductive material in the second recess and the third recess, the second wiring and the third wiring connecting the first wiring and the second wiring can be simultaneously formed. Further, the barrier metal layer described above may be formed before the conductive material is buried in the second recess and the third recess. 1 shows that the barrier metal layer 15 is formed before the conductive material is buried in the second recess 14 and the third recess 12 shown in FIG. 9, and then the conductive material is buried in the second recess 14 and the third recess 12, The second wiring 31 and the third wiring 16 connecting the first wiring 6 and the second wiring 31 can be simultaneously formed. Thus, the second wiring layer 29 having the first wiring layer 25' forming the first wiring 6 and the second wiring layer 29 forming the second wiring 31, and the third wiring 16 connecting the first wiring 6 and the second wiring 31 can be manufactured. The dual damascene structure 100 of the wiring layer 27. Further, after the conductive material is buried in the second recess and the third recess, chemical honing (CMP) can be performed. (Examples) Hereinafter, the present invention will be specifically described by way of Examples and Comparative Examples, but the present invention is not limited to the Examples and Comparative Examples. Further, "parts" and "%" in the "Examples" are quality standards unless otherwise specified. (Synthesis Example 1) In a separation flask equipped with a thermometer, 'in a gas nitrogen atmosphere' was fed as a monomer for providing a structural unit represented by the general formula (1) (in Tables i and 2, 'represented as "monomer (1) 70% of the sputum (indicated as "M_1_1" in Table 1 < 2], as a monomer providing the structural unit represented by the general formula (2) (in Tables i and 2, 'represented as -41-201009503' 20 parts of hydroxyethyl methacrylate (indicated as "M-2-l" in Table 1) of the monomer (2)"), and a monomer which provides a structural unit represented by the general formula (3) (Table 1, In 2, 10 parts of styrene (indicated as "M-3-1" in Tables 1 and 2), which is represented by "monomer (3)"), is represented as a radical polymerization initiator (expressed by the formula (4)). Provided as 2,2'-azobis(2-methylbutyrate dimethyl ester) of the monomer of the structural unit (manufactured by Wako Pure Chemical Industries, Ltd., trade name "V-60 1"), which is indicated in Table 1 as " 10 parts of a polymerization initiator [V-6011" and 400 parts of methyl isobutyl ketone were polymerized at 90 ° C for 4 hours while stirring. After the end of the polymerization, the solution was water-cooled and cooled to below 30 °C. After cooling, the polymerization solution was poured into a large amount of methanol to precipitate a white solid. Subsequently, the precipitated white solid was separated by decantation, and the separated white solid was washed with a large amount of methanol. After washing, it was dried at 50 ° C for 17 hours to obtain a polymer (A-1). The weight average molecular weight (Mw) of the obtained polymer (A-1) was measured by the conditions shown below. [Measurement of weight average molecular weight (Mw)]: GPC column (G2000HXL: 2, G3000HXL: 1) manufactured by TOSO Co., Ltd., flow rate: 1.0 mL/min, solvent: tetrahydrofuran, column temperature: 40 Under the analysis conditions of °C, the monodisperse polyphenylene was used as a standard gel permeation chromatograph (detector/differential thermal analyzer). In addition, in Table 1 and Table 2, it shows the "molecular weight." The weight average molecular weight (Mw) of the polymer (A-1) obtained in the present synthesis example was 2,800. (Synthesis Example 2 to 26) -42-201009503 The monomer and the radical polymerization initiator shown in Table 1 were synthesized in the same manner as in Synthesis Example 1 except that the compounding amount shown in Table 1 was used. 2) ~ Polymer (A-26), and the weight average molecular weight (Mw) of each polymer was measured. The results are shown in Table 1. In addition, in Tables 1 to 4, "parts" means parts by mass.

-43- 201009503-43- 201009503

表1 聚合物 單體(1) (種類/份) 單體⑵ (種類/份) 單體(3) (種類/份) 聚合 引發劑 [V-601] (份) 分子量 (Mw) 合成例1 Α-1 Μ-1-1/70 Μ- 2-1/20 Μ-3-1/10 10 2800 合成例2 Α-2 Μ-1-1/70 Μ-2-1/20 Μ-3-1/10 15 2000 合成例3 Α-3 Μ-1-1/70 Μ-2-1/20 Μ-3-2/10 20 1600 合成例4 Α-4 Μ-1-1/70 Μ-2-1/20 Μ-3-3/10 10 2500 合成例5 Α-5 Μ-1-1/60 Μ-2-1/20 Μ-3-1/20 10 2400 合成例β Α-6 Μ-1-1/60 Μ-2-1/20 Μ-3-2/20 10 2800 合成例7 Α-7 Μ-1-1/60 Μ-2-1/20 Μ-3-3/20 10 2900 合成例8 Α-8 Μ-1-1/60 Μ-2-2/20 Μ-3-1/20 10 2900 合成例9 Α-9 Μ-1-1/60 Μ-2-1/10 Μ-3-1/20 Μ-3-2/10 10 2200 合成例10 Α-10 M-l-1/50 Μ-2-1/20 Μ-3-1/30 10 2700 合成例11 Α-11 Μ-1-1/50 Μ-2-1/10 Μ-3-1/20 Μ-3-2/20 10 2400 合成例12 Α-12 Μ-1-1/50 Μ-2-1/10 Μ-3-1/20 Μ-3-2/20 20 1800 合成例13 Α-13 Κ4-1-1/50 Μ-2-1/30 Μ-3-1/20 10 2800 合成例14 Α-14 Μ-1-1/55 Μ-2-1/20 Μ-3-1/25 10 2700 合成例15 Α-15 Μ-1-1/30 Μ-1-2/20 Μ-2-2/20 Μ-3-1/30 10 2700 合成例16 Α-16 Μ-1-1/4 Μ-2-1/48 Μ-3-1/48 10 2500 合成例17 Α-17 Μ-1-1/6 Μ-2-1/47 Μ-3-1/47 10 2800 合成例18 Α-18 Μ-1-1/85 Μ-2-1/10 Μ-3-1/5 10 2700 合成例19 Α-19 Μ-1-1/48 Μ-1-1/4 Μ-3-1/48 10 2700 合成例20 Α-20 Μ-3-1/47 Μ-1-1/6 Μ-3-1/47 10 2800 合成例21 Α-21 Μ-1-1/5 Μ-1-1/85 Μ-3-1/10 10 2800 合成例22 Α-22 Μ-1-1/74 Μ-2-1/25 Μ-3-1/1 10 2700 合成例23 Α-23 Μ-1-1/30 Μ-2-1/25 Μ-3-1/45 10 2700 合成例24 Α-24 Μ-1-1/20 Μ-2-1/25 Μ-3-1/55 10 2500 合成例25 Α-25 Μ-1-1/55 Μ-2-1/20 Μ-3-1/25 25 400 合成例26 Α-26 Μ-1-1/55 Μ-2-1/20 Μ-3-1/25 20 600 -44- 201009503 (合成例27) 在具備溫度計之分離燒瓶中,於氣氮雰圔氣T , 苊烯50份、羥基甲基苊烯(表1及2中,表示爲「m_12 份、作爲自由基聚合引發劑之偶氮異丁腈(表2φ,_ 「聚合引發劑[AIBN】」)25份、及甲基異丁基_ 4〇〇 一邊攪拌、一邊在60 °C聚合15小時。聚合終了後, 聚合溶液並冷卻至30 °C以下。冷却後,將該聚合溶液 大量的正庚烷,析出白色固體。隨後,利用傾析法分 〇 出之白色固體,並以大量的正庚烷加以洗淨。洗淨後 50°C乾燥17小時而得到聚合物(CA-1}。 在本合成例所得之聚合物(CA-1)的重量平均分 (Mw)爲 1 300。 (合成例28~3 1) 除了以表2所示之配合量使用表2所示之單體及 基聚合引發劑以外,與合成例30同樣地合成聚 ❹(CA-2)~聚合物(CA-5},就各聚合物測定重量平均分 (Mw)。其結果表示於表2。 進料 j) 5〇 份, 水冷 投入 離析 ,在 子量 自由 合物 子量 -45- 201009503 表2 聚合物 單體⑴ (種類/份) 單體(2) (種類/份) 單體(3) (種類/份) 聚合 引發劑 [AIBN] (份) 分子置 (Mw) 合成例27 CA-1 M-1-1/50 M-1-2/50 - — AIBN/25 1300 合成例28 CA-2 M-1-1/50 M-1-2/50 — — AIBN/10 2800 合成例29 CA-3 M-1-1/55 M-2-1/20 M-3-1/25 AIBN/10 2500 合成例30 CA-4 M-1-1/70 一 M-3-1/30 AIBN/10 2500 合成例31 CA-5 M-1-1/50 一 M-3-1/20 M-3-2/30 AIBN/10 2600 此外,表1及2中’「M-2-2」表示丙烯酸羥基乙酯, 「M-3-2」表示羥基甲基苯乙烯,「M-3-3」表示第三丁氧 基苯乙烯。 (實施例1) 混合在合成例1所得之聚合物(A-l)lO.O份、作爲(B) ©交聯劑之下述式(7)所示的化合物(四丁氧基甲基甘脲(曰本 CARBIDE公司製)、表3、4中,表示爲「B-l」)3.〇份、 作爲(C)溶劑之丙二醇單甲基醚乙酸酯(表3、4中,表示爲 「C-1」)86_5份、及作爲(D)酸發生劑之雙(4-第三丁基苯 基)碘鎩九氟-正丁烷磺酸酯(綠化學公司製、商品名 「BBI-109」、表3、4中,表示爲「D-1」}0.5份後,使其 溶解而得到混合溶液。以孔徑的薄膜過濾器過濾所 得之混合溶液,以調製下層膜形成組成物。 -46- 201009503 /7-〇4,Hg A7-C4H9Table 1 Polymer monomer (1) (type/part) Monomer (2) (type/part) Monomer (3) (type/part) Polymerization initiator [V-601] (part) Molecular weight (Mw) Synthesis Example 1 Α-1 Μ-1-1/70 Μ- 2-1/20 Μ-3-1/10 10 2800 Synthesis Example 2 Α-2 Μ-1-1/70 Μ-2-1/20 Μ-3- 1/10 15 2000 Synthesis Example 3 Α-3 Μ-1-1/70 Μ-2-1/20 Μ-3-2/10 20 1600 Synthesis Example 4 Α-4 Μ-1-1/70 Μ-2 -1/20 Μ-3-3/10 10 2500 Synthesis Example 5 Α-5 Μ-1-1/60 Μ-2-1/20 Μ-3-1/20 10 2400 Synthesis Example β Α-6 Μ- 1-1/60 Μ-2-1/20 Μ-3-2/20 10 2800 Synthesis Example 7 Α-7 Μ-1-1/60 Μ-2-1/20 Μ-3-3/20 10 2900 Synthesis Example 8 Α-8 Μ-1-1/60 Μ-2-2/20 Μ-3-1/20 10 2900 Synthesis Example 9 Α-9 Μ-1-1/60 Μ-2-1/10 Μ -3-1/20 Μ-3-2/10 10 2200 Synthesis Example 10 Α-10 Ml-1/50 Μ-2-1/20 Μ-3-1/30 10 2700 Synthesis Example 11 Α-11 Μ- 1-1/50 Μ-2-1/10 Μ-3-1/20 Μ-3-2/20 10 2400 Synthesis Example 12 Α-12 Μ-1-1/50 Μ-2-1/10 Μ- 3-1/20 Μ-3-2/20 20 1800 Synthesis Example 13 Α-13 Κ4-1-1/50 Μ-2-1/30 Μ-3-1/20 10 2800 Synthesis Example 14 Α-14 Μ -1-1/55 Μ-2-1/20 Μ-3-1/25 10 2700 Synthesis Example 15 Α-15 Μ-1-1/30 Μ-1-2/20 Μ-2-2/ 20 Μ-3-1/30 10 2700 Synthesis Example 16 Α-16 Μ-1-1/4 Μ-2-1/48 Μ-3-1/48 10 2500 Synthesis Example 17 Α-17 Μ-1-1 /6 Μ-2-1/47 Μ-3-1/47 10 2800 Synthesis Example 18 Α-18 Μ-1-1/85 Μ-2-1/10 Μ-3-1/5 10 2700 Synthesis Example 19 Α-19 Μ-1-1/48 Μ-1-1/4 Μ-3-1/48 10 2700 Synthesis Example 20 Α-20 Μ-3-1/47 Μ-1-1/6 Μ-3- 1/47 10 2800 Synthesis Example 21 Α-21 Μ-1-1/5 Μ-1-1/85 Μ-3-1/10 10 2800 Synthesis Example 22 Α-22 Μ-1-1/74 Μ-2 -1/25 Μ-3-1/1 10 2700 Synthesis Example 23 Α-23 Μ-1-1/30 Μ-2-1/25 Μ-3-1/45 10 2700 Synthesis Example 24 Α-24 Μ- 1-1/20 Μ-2-1/25 Μ-3-1/55 10 2500 Synthesis Example 25 Α-25 Μ-1-1/55 Μ-2-1/20 Μ-3-1/25 25 400 Synthesis Example 26 Α-26 Μ-1-1/55 Μ-2-1/20 Μ-3-1/25 20 600 -44- 201009503 (Synthesis Example 27) In a separation flask equipped with a thermometer, in a nitrogen atmosphere Xenon T, 50 parts of decene, hydroxymethyl decene (in Tables 1 and 2, it is expressed as "m_12 parts, azo-isobutyronitrile as a radical polymerization initiator (Table 2 φ, _ "Polymerization Initiator [AIBN] 】") 25 parts and methyl isobutyl _ 4 聚合 were stirred at 60 ° C for 15 hours while stirring. After the end of the polymerization, the solution was polymerized and cooled to below 30 °C. After cooling, the polymerization solution was a large amount of n-heptane to precipitate a white solid. Subsequently, the white solid was separated by decantation and washed with a large amount of n-heptane. After washing, it was dried at 50 ° C for 17 hours to obtain a polymer (CA-1). The weight average molecular weight (Mw) of the polymer (CA-1) obtained in the present synthesis example was 1,300. (Synthesis Example 28 to 3 1 In the same manner as in Synthesis Example 30 except that the monomer and the base polymerization initiator shown in Table 2 were used in the amounts shown in Table 2, polyfluorene (CA-2) to polymer (CA-5) was synthesized. The polymer was measured for the weight average fraction (Mw). The results are shown in Table 2. Feed j) 5 parts, water-cooled, isolated, in the amount of free compound -45-201009503 Table 2 Polymer monomer (1) (type /part) Monomer (2) (type/part) Monomer (3) (type/part) Polymerization initiator [AIBN] (part) Molecular (Mw) Synthesis Example 27 CA-1 M-1-1/50 M-1-2/50 - — AIBN/25 1300 Synthesis Example 28 CA-2 M-1-1/50 M-1-2/50 — — AIBN/10 2800 Synthesis Example 29 CA-3 M-1-1 /55 M-2-1/20 M-3-1/25 AIBN/10 2500 Synthesis Example 30 CA-4 M-1-1/70 One M-3-1/30 AIBN/10 2500 Synthesis Example 31 CA- 5 M-1-1/50 M-3-1/20 M-3-2/30 AIBN/10 2600 In addition, in Tables 1 and 2, 'M-2-2' means hydroxyethyl acrylate, "M -3-2" means hydroxymethylstyrene "M-3-3" represents a third butoxystyrene. (Example 1) The polymer (Al) obtained in Synthesis Example 1 was mixed in an amount of 1.0 part by weight as the (B)-crosslinking agent. (7) The compound (tetrabutoxymethyl glycoluril (manufactured by CAR本CARBIDE), Tables 3 and 4, expressed as "Bl") 3. 〇, propylene glycol monomethyl as (C) solvent Ethyl ether acetate (expressed as "C-1" in Tables 3 and 4) 86_5 parts, and bis(4-t-butylphenyl) iodonium nonafluoro-n-butyl as (D) acid generator The alkane sulfonate (manufactured by Green Chemical Co., Ltd., trade name "BBI-109", and Tables 3 and 4, expressed as "D-1"} 0.5 parts, and dissolved to obtain a mixed solution. The resulting mixed solution was filtered to prepare an underlayer film-forming composition. -46- 201009503 /7-〇4, Hg A7-C4H9

N NN N

N、 .N ⑺N, .N (7)

Sn-C4Hg /T-C4Hg 就所調製之下層膜形成組成物進行以下所示之各性能 ©評價。 (1) 耐蝕刻性: 利用旋轉塗布法塗布下層膜形成組成物於矽基板上, 在220 °c煅燒60秒鐘後,形成膜厚300 nm的下層膜。隨 後,蝕刻處理(壓力:〇.〇3Torr、高頻電力:300W、 Ar/CF4 = 40/lOOsccm、基板溫度:2 0 °C )下層膜,並測定 於蝕刻處理後下層膜的膜厚。而且,從膜厚的減少量與處 理時間的關係算出蝕刻速率(nm/分),作爲耐蝕刻性(表5 ^及6中,表示爲「蝕刻速率(nm/分)」)的評價基準。此外, 該蝕刻速率之數値越小,耐蝕刻性越優異。 (2) 埋入性: 將下層膜形成組成物良好地浸入通路孔内,並針對是 否良好地埋入進行下述的評價。 首先,在形成通孔尺寸:70nm、通孔間距:1H/1.2S、 深度:40〇nm的通路孔之四乙基原矽酸酯(TEOS)的基板 上,旋轉塗布下層膜形成組成物之後,在200 °C加熱板上 加熱60秒鐘。如此在通路孔内與TEOS表面上製作下層 -47- 201009503 膜。此外,下層膜的膜厚爲3 0 0nm。接著,利用掃瞄型電 子顕微鏡.觀察埋入通路孔内之下層膜的狀態,並評價埋入 性。評價基準係當下層膜形成於通路孔内之情形、亦即有 埋入通路孔内之情形爲「〇」,下層膜沒有埋入通路孔内之 情形爲「X」。 (3)硬化溫度: 利用旋轉塗布法塗布下層膜形成組成物於矽基板上, 並在140 ~400°C煅燒60秒鐘而得到下層膜。於室溫下將所 〇 得之下層膜浸漬於丙基乙二醇單甲基醚乙酸酯中1分鐘。 而且,使用分光橢圓計「UV1280E」(KLA-TENCOR公司 製)測定浸漬前後的下層膜的膜厚變化,並進行評價。評價 基準係在上述規定的溫度之中,認爲沒有膜厚變化之最低 溫度作爲「硬化溫度」(表5及6中,表示爲「硬化溫度 (°C)」)。此外,在250°C的溫度下、經煅燒之情形下,觀 察到膜厚變化之情形下,也設爲「X」。 q (4)昇華物量: 在直徑8吋的矽基板上旋轉塗布下層膜形成組成物。 隨後,在140~400°C加熱板上加熱60秒鐘,而得到膜厚 300nm的下層膜。 測定此時從下層膜所產生之昇華物的量(表5及6中, 表示爲「昇華物量(mg)」)。此外,昇華物的捕集係下述般 進行。首先,準備加熱板。接著,使預先測定重量之8吋 矽晶圓附著於該加熱板的蓋板上。其次,加熱加熱板之後, 旋轉塗布下層膜形成組成物於矽基板上,用加熱板加以加 -48- 201009503 熱。接著,在旋轉塗布該下層膜形成組成物之矽基板的下 層膜上,旋轉塗布下層膜形成組成物,用加熱板加以加熱。 而且,進行此等步驟100次。隨後,測定附著於蓋板之8 吋矽晶圓的重量。其次,算出8吋矽晶圓重量的差異當作 昇華物量,確認昇華物量的大小。 (5) 折射係數: 利用旋轉塗布法塗布下層膜形成組成物於矽基板上, 在2 00°C煅燒60秒鐘後,得到膜厚300nm的下層膜。隨 後,使用分光橢圓計「VUV-VASE」(J.A.Woollam公司製), 算出在波長193nm的光學常數(折射係數)(表5及6中,表 示爲「折射係數(η値)」)。此外,折射係數(η値)在1.40 ~ 1.60 的範圍内時,可判斷是在ArF曝光光阻步驟中具有作爲抗 反射膜的充分機能者。 (6) 消光係數: 利用旋轉塗布法塗布下層膜形成組成物於矽基板上,Sn-C4Hg / T-C4Hg The properties shown below were evaluated for the film formation composition under preparation. (1) Etch resistance: The underlayer film was coated by a spin coating method to form a composition on a ruthenium substrate, and after calcination at 220 ° C for 60 seconds, an underlayer film having a film thickness of 300 nm was formed. Subsequently, an underlayer film was etched (pressure: 〇.〇3 Torr, high-frequency power: 300 W, Ar/CF4 = 40/lOOsccm, substrate temperature: 20 °C), and the film thickness of the underlayer film after the etching treatment was measured. Further, the etching rate (nm/min) was calculated from the relationship between the amount of decrease in film thickness and the treatment time, and was used as an evaluation criterion for etching resistance (indicated as "etching rate (nm/min)" in Tables 5 and 6). Further, the smaller the number of etching rates, the more excellent the etching resistance. (2) Buried property: The underlayer film forming composition was well immersed in the via hole, and the following evaluation was performed as to whether or not the film was buried well. First, after forming a composition by spin coating a lower layer film on a substrate having a via hole size of 70 nm, a via pitch of 1 H/1.2 S, and a depth of 40 Å. Heat on a hot plate at 200 °C for 60 seconds. Thus, a lower layer of -47-201009503 film was formed on the surface of the TEOS in the via hole. Further, the film thickness of the underlayer film was 300 nm. Next, the state of the underlying film buried in the via hole was observed by a scanning type electron micromirror, and the embedding property was evaluated. The evaluation criteria are the case where the underlayer film is formed in the via hole, that is, the case where the underlayer film is buried in the via hole, and the case where the underlayer film is not buried in the via hole is "X". (3) Hardening temperature: The underlayer film was coated by a spin coating method to form a composition on a ruthenium substrate, and calcined at 140 to 400 ° C for 60 seconds to obtain an underlayer film. The underlying film was immersed in propyl glycol monomethyl ether acetate for 1 minute at room temperature. Further, the film thickness change of the underlayer film before and after the immersion was measured using a spectroscopic ellipsometer "UV1280E" (manufactured by KLA-TENCOR Co., Ltd.) and evaluated. In the evaluation, the lowest temperature at which the film thickness is not changed is referred to as the "hardening temperature" (in Tables 5 and 6, it is expressed as "hardening temperature (°C)"). Further, in the case of calcination at a temperature of 250 ° C, when the film thickness was observed to change, it was also set to "X". q (4) Sublimation amount: The underlayer film was spin-coated on a ruthenium substrate having a diameter of 8 Å to form a composition. Subsequently, it was heated on a hot plate at 140 to 400 ° C for 60 seconds to obtain an underlayer film having a film thickness of 300 nm. The amount of the sublimate produced from the underlayer at this time was measured (in Tables 5 and 6, it is expressed as "sublimation amount (mg)"). Further, the capture of the sublimate is carried out as follows. First, prepare a heating plate. Next, the 8 吋 矽 wafer of the previously measured weight was attached to the cover of the heating plate. Next, after heating the heating plate, the lower layer film is spin-coated to form a composition on the crucible substrate, and a heating plate is used to apply heat of -48 to 201009503. Next, on the underlayer film of the substrate on which the underlayer film was formed by spin coating, the underlayer film was spin-coated to form a composition, which was heated by a hot plate. Moreover, these steps are performed 100 times. Subsequently, the weight of the 8 吋矽 wafer attached to the cover was measured. Next, the difference in weight of the 8 吋矽 wafer was calculated as the amount of sublimation, and the amount of sublimation was confirmed. (5) Refractive index: The composition film was applied onto a ruthenium substrate by a spin coating method, and calcined at 200 ° C for 60 seconds to obtain an underlayer film having a film thickness of 300 nm. Then, using a spectroscopic ellipsometer "VUV-VASE" (manufactured by J.A. Woollam Co., Ltd.), an optical constant (refractive index) at a wavelength of 193 nm was calculated (in Tables 5 and 6, "refractive index (?)"). Further, when the refractive index (??) is in the range of 1.40 to 1.60, it can be judged that it has sufficient function as an antireflection film in the ArF exposure resist step. (6) Extinction coefficient: The underlayer film is coated by a spin coating method to form a composition on the ruthenium substrate,

在200°C煅燒60秒鐘後,得到膜厚300nm的下層膜。隨 後,使用分光橢圓計「VUV-VASE」(J.A.Woollam公司製), 算出在波長193nm的光學常數(消光係數)(表5及6中,表 示爲「消光係數(k値)」)。此外,消光係數(k値)在0.25-0.40 的範圍内時,可判斷是在ArF曝光光阻步驟中具有作爲抗 反射膜的充分機能者。 在本實施例中,上述之各性能評價的結果係耐蝕刻性 爲67,埋入性爲「〇」,硬化溫度爲180°C,昇華物量爲 1.8mg,折射係數爲1.55,消光係數爲0.28» -49- 201009503 (實施例2~36、比較例1~10) 除了成爲表3及4所示之各種成分及配合量以外,與 實施例1同様地調製下層膜形成組成物,就該下層膜形成 組成物進行上述之各性能評價。評價結果表示於表5及6。 ❹After calcination at 200 ° C for 60 seconds, an underlayer film having a film thickness of 300 nm was obtained. Then, using a spectroscopic ellipsometer "VUV-VASE" (manufactured by J.A. Woollam Co., Ltd.), an optical constant (extinction coefficient) at a wavelength of 193 nm (indicated as "extinction coefficient (k値)" in Tables 5 and 6) was calculated. Further, when the extinction coefficient (k値) is in the range of 0.25 to 0.40, it can be judged that it has sufficient function as an antireflection film in the ArF exposure photoresist step. In the present embodiment, the results of the respective performance evaluations were 67 in etching resistance, the embedding property was "〇", the hardening temperature was 180 ° C, the sublimation amount was 1.8 mg, the refractive index was 1.55, and the extinction coefficient was 0.28. » -49- 201009503 (Examples 2 to 36, Comparative Examples 1 to 10) In addition to the various components and blending amounts shown in Tables 3 and 4, the lower layer film forming composition was prepared in the same manner as in Example 1, and the lower layer was formed. The film-forming composition was subjected to the above various performance evaluations. The evaluation results are shown in Tables 5 and 6. ❹

-50- 201009503-50- 201009503

聚合物(A) 溶劑(B) 交聯劑(C) |酸發生劑(D) I 種類 配合量 (份) 種類 配合量 (份) 種類 配合量 (份) 種類 配合量 (份) 實施例1 A-1 10.0 B-1 86.5 C-1 3.0 D-1 0.5 實施例2 A-1 10.0 B-1 87.5 C-1 2.0 D-1 0.5 實施例3 A-1 10.0 B-1 87.5 C-2 2.0 D-1 0.5 實施例4 A-2 10.0 B-1 86.5 C-1 3.0 D-1 0.5 實施例5 A-2 10.0 B-1 87.5 C-1 2.0 D-1 0.5 實施例6 A-2 10.0 B-1 87.5 C-2 2.0 D-1 0.5 實施例7 A- 3 10.0 B-1 86.5 C-1 3.0 D-1 0.5 實施例8 A-3 10.0 B-1 87.5 C-1 2.0 D-1 0.5 實施例9 A-4 10.0 B-1 86.5 C-1 3.0 D-1 0.5 實施例10 A-5 10.0 B-1 86.5 C-1 3.0 D-1 0.5 實施例11 A—6 10.0 B-1 86.5 C-1 3.0 D-1 0.5 實施例12 A-7 10.0 B-1 86.5 C-1 3.0 D-1 0.5 實施例13 A-8 10.0 B-1 86.5 C-1 3.0 D-1 0.5 實施例14 A-9 10.0 B-1 86.5 C-1 3.0 D-1 0.5 實施例15 A-10 10.0 B-1 86.5 C-1 3.0 D-1 0.5 實施例16 A-11 10.0 B-1 86.5 C-1 3.0 D-1 0.5 實施例17 A-11 10.0 B-1 88.0 C-1 1.5 D-1 0.5 實施例18 A-12 10.0 B-1 86.5 C-1 3.0 D-1 0.5 實施例19 A-12 10.0 B-1 87.5 C-1 2.0 D-1 0.5 實施例20 A-13 10.0 B-1 86.5 C-1 3.0 D-1 0.5 實施例21 A-13 10.0 B-1 87.5 C-1 2.0 D-1 0.5 實施例22 A-14 10.0 B-1 87.5 C-1 2.0 D-1 0.5 實施例23 A-14 10.0 B-1 88.5 C-1 1.0 D-1 0.5 實施例24 A-14 10.0 B-1 88.5 C-2 3.0 D-1 0.5 實施例25 A-15 10.0 B-1 87.5 C-1 2.0 D-1 0.5 實施例26 A-16 10.0 B-1 87.5 C-1 3.0 D-1 0.5 實施例27 A-17 10.0 B-1 87.5 C-1 3.0 D-1 0.5 實施例28 A-18 10.0 B-1 87.5 C-1 3.0 D-1 0.5 實施例29 A-19 10.0 B-1 87.5 C-1 3.0 D-1 0.5 實施例30 A-20 10.0 B-1 87.5 C-1 3.0 D-1 0.5 A-21 10.0 B-1 87.5 C-1 3.0 D-1 0.5 A-22 10.0 B-1 87.5 C-1 3.0 D-1 0.5 A-23 10.0 B-1 87.5 C-1 3.0 D-1 0.5 A-24 10.0 B-1 87.5 C-1 3.0 D-1 0.5 A-25 10.0 B-1 87.5 C-1 3.0 D-1 0.5 A-26 10.0 B-1 87.5 C-1 3.0 D-1 0.5 -51- 201009503 表4 聚合物(A) 溶劑(B) 交聯劑忙) 酸發生劑(D) 種類 配合量 (份) 種類 配合量 (份) 種類 配合量 (份) 種類 配合量 (份) 比較例1 CA-1 10.0 B-1 89.0 C-1 0.5 D-1 0.5 比較例2 CA-1 10.0 B-1 89.0 C-2 0.5 D-1 0.5 比較例3 CA-1 10.0 B-1 89.0 C-3 0.5 D-1 0.5 比較例4 CA-2 10.0 B-1 86.5 C-1 1.0 D-1 0.5 比較例5 CA-3 10.0 B-1 86.5 C-1 3.0 D-1 0.5 比較例6 CA-3 10.0 B-1 89.0 C-3 3.0 D-1 0.5 比較例7 CA-4 10.0 B-1 86.5 C-1 3.0 D-1 0.5 比較例8 CA-4 10.0 B-1 89.1 C-3 3.0 D-1 0.5 比較例9 CA-5 10.0 B-1 86.6 C-1 3.0 D-1 0.5 比較例10 CA-5 10.0 B-1 86.5 C-3 3.0 D-1 0.5 此外,表3及4中,「B-2」表示下述式(8)所表示之化 合物(正丁基醚化六羥甲基三聚氰胺),「B-3」表示下述式(9) 所表示之化合物(四甲氧基甲基甘脲) n-C4HgPolymer (A) Solvent (B) Crosslinking agent (C) | Acid generator (D) I Type compounding amount (part) Type compounding amount (part) Type compounding amount (part) Type compounding amount (part) Example 1 A-1 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Example 2 A-1 10.0 B-1 87.5 C-1 2.0 D-1 0.5 Example 3 A-1 10.0 B-1 87.5 C-2 2.0 D-1 0.5 Example 4 A-2 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Example 5 A-2 10.0 B-1 87.5 C-1 2.0 D-1 0.5 Example 6 A-2 10.0 B -1 87.5 C-2 2.0 D-1 0.5 Example 7 A- 3 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Example 8 A-3 10.0 B-1 87.5 C-1 2.0 D-1 0.5 Implementation Example 9 A-4 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Example 10 A-5 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Example 11 A-6 10.0 B-1 86.5 C- 1 3.0 D-1 0.5 Example 12 A-7 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Example 13 A-8 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Example 14 A-9 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Example 15 A-10 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Example 16 A-11 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Example 17 A-11 10.0 B-1 88.0 C-1 1.5 D-1 0.5 Example 18 A-12 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Example 19 A-12 10.0 B-1 87.5 C-1 2.0 D-1 0.5 Example 20 A-13 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Example 21 A-13 10.0 B -1 87.5 C-1 2.0 D-1 0.5 Example 22 A-14 10.0 B-1 87.5 C-1 2.0 D-1 0.5 Example 23 A-14 10.0 B-1 88.5 C-1 1.0 D-1 0.5 Implementation Example 24 A-14 10.0 B-1 88.5 C-2 3.0 D-1 0.5 Example 25 A-15 10.0 B-1 87.5 C-1 2.0 D-1 0.5 Example 26 A-16 10.0 B-1 87.5 C- 1 3.0 D-1 0.5 Example 27 A-17 10.0 B-1 87.5 C-1 3.0 D-1 0.5 Example 28 A-18 10.0 B-1 87.5 C-1 3.0 D-1 0.5 Example 29 A-19 10.0 B-1 87.5 C-1 3.0 D-1 0.5 Example 30 A-20 10.0 B-1 87.5 C-1 3.0 D-1 0.5 A-21 10.0 B-1 87.5 C-1 3.0 D-1 0.5 A- 22 10.0 B-1 87.5 C-1 3.0 D-1 0.5 A-23 10.0 B-1 87.5 C-1 3.0 D-1 0.5 A-24 10.0 B-1 87.5 C-1 3.0 D-1 0.5 A-25 10.0 B-1 87.5 C-1 3.0 D-1 0.5 A-26 10.0 B-1 87.5 C-1 3.0 D-1 0.5 -51- 201009503 Table 4 Polymer (A) Solvent (B) Crosslinker Busy) Acid generation (D) Type of compound (parts) Type of compound (parts) Type of compound (parts) Type of compound (parts) Comparative example 1 C A-1 10.0 B-1 89.0 C-1 0.5 D-1 0.5 Comparative Example 2 CA-1 10.0 B-1 89.0 C-2 0.5 D-1 0.5 Comparative Example 3 CA-1 10.0 B-1 89.0 C-3 0.5 D-1 0.5 Comparative Example 4 CA-2 10.0 B-1 86.5 C-1 1.0 D-1 0.5 Comparative Example 5 CA-3 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Comparative Example 6 CA-3 10.0 B -1 89.0 C-3 3.0 D-1 0.5 Comparative Example 7 CA-4 10.0 B-1 86.5 C-1 3.0 D-1 0.5 Comparative Example 8 CA-4 10.0 B-1 89.1 C-3 3.0 D-1 0.5 Comparison Example 9 CA-5 10.0 B-1 86.6 C-1 3.0 D-1 0.5 Comparative Example 10 CA-5 10.0 B-1 86.5 C-3 3.0 D-1 0.5 In addition, in Tables 3 and 4, "B-2" The compound represented by the following formula (8) (n-butyl etherified hexamethylol melamine) and "B-3" represent a compound represented by the following formula (9) (tetramethoxymethyl glycoluril) n-C4Hg

/7-C4H9 /7-C4Hg -52- 201009503 h3c/7-C4H9 /7-C4Hg -52- 201009503 h3c

(9)

h3cH3c

οο

-53- 201009503-53- 201009503

表5 蝕刻速率 (nm/分) 埋入性 硬化溫度 CC) 昇華物量 (mg) 折射係數 [n値] (193nm) 衰退係數 [kffi] (I93nm) 實施例1 67 〇 180 1.8 1.55 0.28 實施例2 67 〇 190 1.6 1.45 0.29 實施例3 65 〇 180 2.0 1.54 0.29 實施例4 69 〇 200 3.3 1.55 0.28 實施例5 69 〇 210 3.5 1.54 0.29 實施例6 69 〇 200 3.2 1.54 0.29 實施例7 72 〇 200 4.5 1.56 0.27 實施例8 72 〇 210 4.2 1.55 0.28 實施例9 71 〇 180 1.3 1.57 0.26 實施例10 76 〇 180 1.7 1.53 0.30 實施例11 77 〇 180 1.7 1.53 0.29 實施例12 76 〇 180 1.9 1.54 0.29 實施例13 75 〇 180 1.6 1.54 0.29 實施例14 72 〇 180 1.5 1.48 0.33 實施例15 78 〇 180 1.8 1.49 0.32 實施例16 72 〇 180 1.5 1.44 0.36 實施例17 71 〇 200 1.8 1.41 0.38 實施例18 73 〇 180 3.0 1.44 0.36 實施例19 73 〇 200 3.6 1.43 0.37 實施例20 79 〇 180 2.2 1.56 0.26 實施例21 80 〇 190 1.8 1.55 0.27 實施例22 75 〇 180 1.6 1.54 0.28 實施例23 77 〇 200 1.9 1.53 0.30 實施例24 78 〇 190 2.1 1.55 0.28 實施例25 76 〇 190 1.9 1.56 0.28 實施例26 96 〇 180 1.9 1.56 0.56 實施例27 93 〇 180 1.8 1.55 0.54 實施例28 60 〇 210 2.1 1.54 0.18 實施例29 65 〇 230 1.9 1.53 0.55 實施例30 68 〇 230 2.0 1.55 0.55 實施例31 78 〇 180 1.8 1.56 0.20 實施例32 76 〇 180 2.1 1.55 0.16 實施例33 82 〇 180 1.9 1.56 0.50 實施例34 85 〇 190 2.0 1.55 0.53 實施例35 75 〇 220 9.8 1.54 0.30 實施例36 73 〇 220 8.5 1.53 0.30 -54- 201009503 表6 蝕刻速率 (nm/分) 埋入性 硬化溫度 (V) 昇華物暈 (mg) 折射係數 [η値] (I93nm) 衰退係數 [k値] (193nm) 比較例1 70 〇 200 8.2 1.46 0.28 比較例2 70 〇 200 8.8 1.45 0.2¾ 比較例3 69 〇 200 12.5 1.46 0.28 比較例4 73 X 200 6.2 1.46 0.28 比較例5 78 〇 180 2.1 1.50 0.23 比較例6 80 〇 180 6.2 1.49 0.24 比較例7 74 X X 1.9 1.46 0.27 比較例8 72 X X 6.6 1.45 0.28 比較例9 72 X 190 1.8 1.41 0.42 比較例10 80 X 190 6.3 1.40 0.43Table 5 Etching rate (nm/min) Buried hardening temperature CC) Sublimation amount (mg) Refractive index [n値] (193 nm) Recession coefficient [kffi] (I93 nm) Example 1 67 〇 180 1.8 1.55 0.28 Example 2 67 〇 190 1.6 1.45 0.29 Example 3 65 〇 180 2.0 1.54 0.29 Example 4 69 〇 200 3.3 1.55 0.28 Example 5 69 〇 210 3.5 1.54 0.29 Example 6 69 〇 200 3.2 1.54 0.29 Example 7 72 〇 200 4.5 1.56 0.27 Example 8 72 〇 210 4.2 1.55 0.28 Example 9 71 〇 180 1.3 1.57 0.26 Example 10 76 〇 180 1.7 1.53 0.30 Example 11 77 〇 180 1.7 1.53 0.29 Example 12 76 〇 180 1.9 1.54 0.29 Example 13 75 〇 180 1.6 1.54 0.29 Example 14 72 〇 180 1.5 1.48 0.33 Example 15 78 〇 180 1.8 1.49 0.32 Example 16 72 〇 180 1.5 1.44 0.36 Example 17 71 〇 200 1.8 1.41 0.38 Example 18 73 〇 180 3.0 1.44 0.36 Example 19 73 〇200 3.6 1.43 0.37 Example 20 79 〇180 2.2 1.56 0.26 Example 21 80 〇190 1.8 1.55 0.27 Example 22 75 〇180 1.6 1.54 0.28 Example 23 77 〇200 1.9 1.53 0.30 Example 24 78 〇190 2.1 1.55 0.28 Example 25 76 〇190 1.9 1.56 0.28 Example 26 96 〇180 1.9 1.56 0.56 Example 27 93 〇180 1.8 1.55 0.54 Example 28 60 〇210 2.1 1.54 0.18 Example 29 65 〇230 1.9 1.53 0.55 Example 30 68 〇 230 2.0 1.55 0.55 Example 31 78 〇 180 1.8 1.56 0.20 Example 32 76 〇 180 2.1 1.55 0.16 Example 33 82 〇 180 1.9 1.56 0.50 Example 34 85 〇190 2.0 1.55 0.53 Example 35 75 〇220 9.8 1.54 0.30 Example 36 73 〇220 8.5 1.53 0.30 -54- 201009503 Table 6 Etching rate (nm/min) Buried hardening temperature (V) Sublimation halo (mg) Refraction coefficient [η値] ( I93nm) Decay coefficient [k値] (193nm) Comparative Example 1 70 〇200 8.2 1.46 0.28 Comparative Example 2 70 〇200 8.8 1.45 0.23⁄4 Comparative Example 3 69 〇200 12.5 1.46 0.28 Comparative Example 4 73 X 200 6.2 1.46 0.28 Comparative Example 5 78 〇180 2.1 1.50 0.23 Comparative Example 6 80 〇180 6.2 1.49 0.24 Comparative Example 7 74 XX 1.9 1.46 0.27 Comparative Example 8 72 XX 6.6 1.45 0.28 Comparative Example 9 72 X 190 1.8 1.41 0.42 Comparative Example 10 80 X 190 6.3 1.40 0.43

從表5、6可明顯得知,由實施例1~ 36之下層膜形成 組成物所形成的下層膜與由比較例1~1〇之下層膜形成組 成物所形成的下層膜相比,可確認爲耐蝕刻性及埋入性優 異,而且昇華物量少。又,由實施例1~36之下層膜形成組 成物所形成的下層膜,由於使η値及k値設定成在ArF曝 光光阻步驟中作爲抗反射膜具有充分機能的最適當範圍 内,所以確認充分具有作爲抗反射膜的機能。 另一方面,由比較例1~10之下層膜形成組成物所形成 的下層膜,係耐蝕刻性、埋入性、昇華物量、及作爲抗反 射膜的機能均爲不良好的下層膜。 具體而言,比較例1〜3之下層膜形成組成物由於含有 重量平均分子量小的(A)聚合物,所以即使埋入性優異,但 昇華物量增多了。另一方面,比較例4的下層膜形成組成 -55- 201009503 .物由於含有重量平均分子量大的(A)聚合物,所以即使昇華 物量減少了,但是得不到良好的埋入性。再者,比較例7、 8的下層膜形成組成物由於在含有之(A)聚合物的構造中具 有適當的交聯基,所以可在250 °C以下的低溫中形成膜硬 化。又,比較例5~10之下層膜形成組成物係k値不是在最 適當範圍内。再者,比較例7~10之下層膜形成組成物由於 含有之(A)聚合物不具有構造單元(2),所以確認埋入性爲不 良。 ❹ 產業上的利用可能性 本發明的下層膜形成組成物係在半導體裝置的製造製 程中,具體而言係在使作爲被加工膜之複數種物質堆積於 矽晶圓上,且在該被加工膜分別形成所望圖案之步驟中, 適合作爲形成所使用之下層膜用的組成物。 【圖式簡單説明】 圖1係表示使用本發明下層膜形成組成物的雙重鑲嵌 π構造形成方法之一步驟的模式圖。 Ο 圖2係表示使用本發明下層膜形成組成物的雙重鑲嵌 構造形成方法之一步驟的模式圖。 圖3係表示使用本發明下層膜形成組成物的雙重鑲嵌 構造形成方法之一步驟的模式圖。 圖4係表示使用本發明下層膜形成組成物的雙重鑲嵌 構造形成方法之一步驟的模式圖。 圖5係表示使用本發明下層膜形成組成物的雙重鑲嵌 構造形成方法之一步驟的模式圖。 -56- 201009503 圖6係表示使用本發明下層膜形成組成物的雙重鑲嵌 構造形成方法之一步驟的模式圖。 圖7係表示使用本發明下層膜形成組成物的雙重鑲嵌 構造形成方法之一步驟的模式圖。 圖8係表示使用本發明下層膜形成組成物的雙重鑲嵌 構造形成方法之一步驟的模式圖。 圖9係表示使用本發明下層膜形成組成物的雙重鑲嵌 構造形成方法之一步驟的模式圖。 圖1 〇係表示使用本發明下層膜形成組成物所得之雙重 鑲嵌構造的模式圖。 【主要元件符號說明】 1 :基板 2:第一低介電絶緣膜 3,11,13 :下層膜 4 :第一凹部 0 5,15:障蔽金屬層 6 :第一配線 7:第三低介電絶緣膜 8,1 0 :蝕刻停止層 9:第二低介電絶緣膜 12 :第三凹部 14 :第二凹部 16 :第三配線 20,21,22:光阻膜 -57- 201009503 25 : 27 : 29 : 3 1: 第一配線層 第三配線層 第二配線層 第二配線 100 :障蔽金屬層。As is apparent from Tables 5 and 6, the underlayer film formed by the film formation compositions of Examples 1 to 36 can be compared with the underlayer film formed by the film formation composition of Comparative Example 1 to 1〇. It was confirmed that the etching resistance and the embedding property were excellent, and the amount of sublimation was small. Further, since the underlayer film formed of the underlayer film forming compositions of Examples 1 to 36 is set to have an optimum function as an antireflection film in the ArF exposure resist step, η値 and k値 are set to be in an optimum range of sufficient function as an antireflection film in the ArF exposure resist step. It was confirmed that it has sufficient function as an antireflection film. On the other hand, the underlayer film formed of the underlayer film forming compositions of Comparative Examples 1 to 10 was an underlayer film which was inferior in etching resistance, embedding property, sublimation amount, and function as an antireflection film. Specifically, since the layer-forming composition of Comparative Examples 1 to 3 contains the (A) polymer having a small weight average molecular weight, the amount of the sublimate is increased even if the embedding property is excellent. On the other hand, the underlayer film of Comparative Example 4 was formed to have a composition of -55 to 201009503. Since the (A) polymer having a large weight average molecular weight was contained, even if the amount of the sublimate was decreased, good embedding property was not obtained. Further, since the underlayer film-forming compositions of Comparative Examples 7 and 8 have an appropriate crosslinking group in the structure containing the (A) polymer, film hardening can be formed at a low temperature of 250 °C or lower. Further, the film formation composition k 之下 under the comparative examples 5 to 10 was not in the most appropriate range. Further, in the lower film forming compositions of Comparative Examples 7 to 10, since the (A) polymer contained did not have the structural unit (2), it was confirmed that the embedding property was poor. INDUSTRIAL APPLICABILITY The underlayer film forming composition of the present invention is in a manufacturing process of a semiconductor device, and specifically, a plurality of substances as a film to be processed are deposited on a germanium wafer, and processed therein. In the step of forming the desired pattern by the film, it is suitable as a composition for forming the underlying film to be used. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing a step of a method of forming a dual damascene π structure for forming a composition using the underlayer film of the present invention. Fig. 2 is a schematic view showing a step of a method of forming a dual damascene structure using the underlayer film forming composition of the present invention. Fig. 3 is a schematic view showing a step of a method of forming a dual damascene structure using the underlayer film forming composition of the present invention. Fig. 4 is a schematic view showing a step of a method of forming a dual damascene structure using the underlayer film forming composition of the present invention. Fig. 5 is a schematic view showing a step of a method of forming a dual damascene structure using the underlayer film forming composition of the present invention. -56- 201009503 Fig. 6 is a schematic view showing a step of a method of forming a dual damascene structure using the underlayer film forming composition of the present invention. Fig. 7 is a schematic view showing a step of a method of forming a dual damascene structure using the underlayer film forming composition of the present invention. Fig. 8 is a schematic view showing a step of a method of forming a dual damascene structure using the underlayer film forming composition of the present invention. Fig. 9 is a schematic view showing a step of a method of forming a dual damascene structure using the underlayer film forming composition of the present invention. Fig. 1 is a schematic view showing a double damascene structure obtained by forming a composition using the underlayer film of the present invention. [Description of main component symbols] 1 : Substrate 2: First low dielectric insulating film 3, 11, 13: Lower film 4: First recess 0 5, 15: Barrier metal layer 6: First wiring 7: Third low dielectric Electrical insulating film 8, 10: etching stop layer 9: second low dielectric insulating film 12: third recess 14: second recess 16: third wiring 20, 21, 22: photoresist film - 57 - 201009503 25 : 27 : 29 : 3 1: First wiring layer Third wiring layer Second wiring layer Second wiring 100 : a barrier metal layer.

Claims (1)

201009503 / 七、申請專利範圍: 1 · 一種下層膜形成組成物,其係含有: (A) 具有下述通式(1)所示構造單元、下述通式(2)所示構13 單元、下述通式(3)所示構造單元、及下述通式(4)所示構 造單元的聚合物, (B) 具有丁基醚基之交聯劑,與 (C) 溶劑, R2 R3201009503 / VII. Patent application scope: 1 . An underlayer film forming composition comprising: (A) a structural unit represented by the following general formula (1) and a structural unit 13 represented by the following general formula (2), a structural unit represented by the following formula (3) and a polymer of a structural unit represented by the following formula (4), (B) a crosslinking agent having a butyl ether group, and (C) a solvent, R2 R3 (但是,前述通式(1)中,R1表示氫原子、碳數1~6的亦可 取代之烷基、羥基、碳數卜6的烷氧基、羧基、碳數1~6 的烷氧基羰基、碳數1~6的烷氧基羰氧基、羥甲基、或碳 數卜6的烷氧基羥甲基,R2及R3係各自表示氫原子、或 ® 碳數卜6的亦可取代之烷基) R4 —(-ch2—— .C=0 〇/ (2) \s I OH (但是,前述通式(2)中,R4表示氫原子或甲基,R5表示碳 數1~4的伸烷基) -59- 201009503(However, in the above formula (1), R1 represents a hydrogen atom, an alkyl group which may be substituted with 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having a carbon number of 6, a carboxyl group, and an alkoxy group having 1 to 6 carbon atoms. a carbonyl group, an alkoxycarbonyloxy group having 1 to 6 carbon atoms, a hydroxymethyl group, or an alkoxymethylol group having a carbon number of 6, wherein R 2 and R 3 each represent a hydrogen atom or a carbon number of 6 Substitutable alkyl) R4 —(-ch2—— .C=0 〇/ (2) \s I OH (However, in the above formula (2), R4 represents a hydrogen atom or a methyl group, and R5 represents a carbon number of 1 ~4 alkylene group) -59- 201009503 (但是,前述通式(3)中,R6表示氫原子、碳數1~6的亦可 取代之烷基、羥基、碳數1~6的烷氧基、羧基、碳數1~6 0 的烷氧基羰基、碳數1~6的烷氧基羰氧基、羥甲基、或碳 數1~6的烷氧基羥甲基,R7表示氫原子或碳數卜6的亦 可取代之烷基,η表示1~3的整數> R10—〇-C-C-- Ο R8 (但是’前述通式(4)中,R8、R9及R1Q係各自獨立地表示 氫原子、碳數1~6的亦可取代之烷基)。 ◎ 2.如申請專利範圍第1項之下層膜形成組成物,其中前述 (A)聚合物的聚苯乙烯換算之重量平均分子量(Mw)爲 500-10000。 3·如申請專利範圍第1或2項之下層膜形成組成物,其中 前述(B)交聯劑係下述通式(5)或(6)所表示之化合物,(However, in the above formula (3), R6 represents a hydrogen atom, an alkyl group which may be substituted with 1 to 6 carbon atoms, a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, a carboxyl group, and a carbon number of 1 to 60; Alkoxycarbonyl group, alkoxycarbonyloxy group having 1 to 6 carbon atoms, hydroxymethyl group, or alkoxymethylol group having 1 to 6 carbon atoms, and R7 represents a hydrogen atom or a carbon number of 6 Alkyl group, η represents an integer of 1 to 3 > R10 - 〇-CC-- Ο R8 (However, in the above formula (4), R8, R9 and R1Q each independently represent a hydrogen atom and have a carbon number of 1 to 6 2. The film forming composition under the first aspect of the patent application, wherein the (A) polymer has a polystyrene-equivalent weight average molecular weight (Mw) of 500 to 10,000. 3. The film forming composition under the first or second aspect of the patent application, wherein the (B) crosslinking agent is a compound represented by the following formula (5) or (6), Ο 60- 201009503 (但是,前述通式(5)中,R11係各自獨立地表示氫原子、甲 基、正丁基、或異丁基;但是,4個的R11之中的2個以 上爲正丁基或異丁基 OR12 OR12Ο 60-201009503 (However, in the above formula (5), R11 each independently represents a hydrogen atom, a methyl group, an n-butyl group or an isobutyl group; however, two or more of the four R11 groups are positive. Butyl or isobutyl OR12 OR12 (6)(6) (但是,前述通式(6)中,R12係各自獨立地表示氫原子、甲 基、正丁基、或異丁基;但是’ 6個的R12之中的2個以 上爲正丁基或異丁基)。 4. 如申請專利範圍第1至3項中任一項之下層膜形成組成 物,其中 前述(A)聚合物中所含有的以前述通式(1)所示構造單元的 比例,係相對於前述(A)聚合物的全構造單元100莫耳% Q 爲5~80莫耳% ; 前述(A)聚合物中所含有的以前述通式(2)所示構造單元的 比例,係相對於前述(A)聚合物的全構造單元1 00莫耳% 爲5~80莫耳% ; 前述(A)聚合物中所含有的以前述通式(3)所示構造單元的 比例’係相對於前述(A)聚合物的全構造單元100莫耳% 爲0.1 ~ 5 0莫耳%。 5. 如申請專利範圍第1至4項中任一項之下層膜形成組成 物’其中更含有(D)酸發生劑。 -61-(However, in the above formula (6), R12 each independently represents a hydrogen atom, a methyl group, a n-butyl group or an isobutyl group; but two or more of the six R12 groups are n-butyl or different Butyl). 4. The film-forming composition of any one of the above-mentioned items (1), wherein the ratio of the structural unit represented by the above formula (1) contained in the polymer (A) is relative to The total structural unit 100 of the above (A) polymer has a molar % Q of 5 to 80 mol%; the ratio of the structural unit represented by the above formula (2) contained in the above (A) polymer is relative to The total structural unit of the above (A) polymer has a molar percentage of 5 to 80 mol%; the ratio of the structural unit represented by the above formula (3) contained in the above (A) polymer is relative to The total structural unit 100 of the above (A) polymer has a molar percentage of 0.1 to 50% by mole. 5. The film forming composition under any one of claims 1 to 4, which further contains (D) an acid generator. -61-
TW098124182A 2008-07-18 2009-07-17 Resist underlayer film composition TWI453544B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187029A JP5040839B2 (en) 2008-07-18 2008-07-18 Resist underlayer film forming composition

Publications (2)

Publication Number Publication Date
TW201009503A true TW201009503A (en) 2010-03-01
TWI453544B TWI453544B (en) 2014-09-21

Family

ID=41732118

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098124182A TWI453544B (en) 2008-07-18 2009-07-17 Resist underlayer film composition

Country Status (3)

Country Link
JP (1) JP5040839B2 (en)
KR (1) KR101668113B1 (en)
TW (1) TWI453544B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170493B2 (en) 2011-02-28 2015-10-27 Jsr Corporation Resist underlayer film-forming composition, pattern-forming method and resist underlayer film
US9529257B2 (en) 2012-10-24 2016-12-27 Cheil Industries, Inc. Hard mask composition and method for forming pattern using same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101531610B1 (en) 2011-12-30 2015-06-24 제일모직주식회사 Composition for hardmask, method of forming patterns using the same, and semiconductor integrated circuit device including the patterns
JP6014110B2 (en) 2013-12-23 2016-10-25 ダウ グローバル テクノロジーズ エルエルシー Gap filling method
WO2017170696A1 (en) * 2016-03-30 2017-10-05 日産化学工業株式会社 Resist underlayer film forming composition which contains compound having glycoluril skeleton as additive
DE102019134535B4 (en) * 2019-08-05 2023-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. MATERIALS FOR LOWER ANTI-REFLECTIVE PLATING

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461717B1 (en) * 2000-04-24 2002-10-08 Shipley Company, L.L.C. Aperture fill
JP4729803B2 (en) * 2001-03-29 2011-07-20 Jsr株式会社 Underlayer film forming composition for multilayer resist process
JP4292910B2 (en) * 2002-07-31 2009-07-08 Jsr株式会社 Acenaphthylene derivative, polymer and antireflection film-forming composition
JP2005015532A (en) * 2003-06-23 2005-01-20 Jsr Corp Polymer and antireflection film forming composition
JP4284358B2 (en) * 2004-04-30 2009-06-24 丸善石油化学株式会社 Copolymer for semiconductor lithography, method for producing the same, and composition
JP4895049B2 (en) * 2005-06-10 2012-03-14 日産化学工業株式会社 Lithographic coating-type underlayer film forming composition containing naphthalene resin derivative
WO2007046453A1 (en) * 2005-10-20 2007-04-26 Jsr Corporation Polymers of vinylnaphthalene derivatives, compositions for forming antireflection coatings, and antireflection coatings
JP5014822B2 (en) * 2006-02-13 2012-08-29 Hoya株式会社 Resist underlayer film forming composition for mask blank, mask blank and mask

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170493B2 (en) 2011-02-28 2015-10-27 Jsr Corporation Resist underlayer film-forming composition, pattern-forming method and resist underlayer film
TWI632431B (en) * 2011-02-28 2018-08-11 Jsr股份有限公司 Photoresist underlayer film forming composition, pattern forming method and photoresist underlayer film
US9529257B2 (en) 2012-10-24 2016-12-27 Cheil Industries, Inc. Hard mask composition and method for forming pattern using same
TWI580702B (en) * 2012-10-24 2017-05-01 第一毛織股份有限公司 Hardmask composition and method of forming patterns using the hardmask composition

Also Published As

Publication number Publication date
KR20100009506A (en) 2010-01-27
JP5040839B2 (en) 2012-10-03
JP2010026221A (en) 2010-02-04
TWI453544B (en) 2014-09-21
KR101668113B1 (en) 2016-10-20

Similar Documents

Publication Publication Date Title
TWI494700B (en) Composition for forming resist underlayer
JP5821694B2 (en) Resist underlayer film forming composition and pattern forming method
JP4910168B2 (en) Resist underlayer film forming composition and pattern forming method
CN103635858B (en) The composition of formation resist lower membrane comprising the carbazole resin containing alicyclic skeleton
TWI399612B (en) Underlayer coating forming composition for lithography containing polysilane compound
JP4748055B2 (en) Resist underlayer film forming composition and pattern forming method
JP5077026B2 (en) Composition for forming resist underlayer film and method of forming dual damascene structure using the same
TW201018713A (en) An antireflective coating composition comprising fused aromatic rings
JP6641879B2 (en) Composition for forming resist underlayer film, method for producing resist underlayer film and patterned substrate
WO2008062888A1 (en) Composition for resist lower layer film formation and method for pattern formation
TW201011078A (en) An antireflective coating composition
TW201018712A (en) An antireflective coating composition comprising fused aromatic rings
CN102695986B (en) Polymer containing an aromatic ring for a resist underlayer, and resist underlayer compound including the polymer
TWI361956B (en) Anti-reflective coating-forming composition containing sulfur atom for lithography
TWI453544B (en) Resist underlayer film composition
JP4892670B2 (en) Composition for forming a resist underlayer film
JP5177132B2 (en) Composition for resist underlayer film and method for forming dual damascene structure
JP4729803B2 (en) Underlayer film forming composition for multilayer resist process
TWI443121B (en) Aromatic ring-containing compound for resist underlayer, resist underlayer composition including same, and method of patterning device using same
JP5229025B2 (en) Pattern forming method and planarizing film forming composition
JP5012798B2 (en) Composition for forming underlayer film and method of forming dual damascene structure
TWI842901B (en) Resist underlayer film forming composition, resist underlayer film and method for manufacturing semiconductor device