TW201008010A - Membrane electrode assembly and biofuel cell using the same - Google Patents

Membrane electrode assembly and biofuel cell using the same Download PDF

Info

Publication number
TW201008010A
TW201008010A TW097130297A TW97130297A TW201008010A TW 201008010 A TW201008010 A TW 201008010A TW 097130297 A TW097130297 A TW 097130297A TW 97130297 A TW97130297 A TW 97130297A TW 201008010 A TW201008010 A TW 201008010A
Authority
TW
Taiwan
Prior art keywords
long
electrode
line
carbon
carbon nanotube
Prior art date
Application number
TW097130297A
Other languages
Chinese (zh)
Other versions
TWI382580B (en
Inventor
Li-Na Zhang
Kai-Li Jiang
Lei Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW097130297A priority Critical patent/TWI382580B/en
Publication of TW201008010A publication Critical patent/TW201008010A/en
Application granted granted Critical
Publication of TWI382580B publication Critical patent/TWI382580B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

The present invention relates to a membrane electrode assembly. The membrane electrode assembly includes a proton exchange membrane having two opposite surfaces, an anode electrode and a cathode electrode. The anode electrode and the cathode electrode are respectively disposed on the two surfaces of the proton exchange membrane. The anode electrode includes at least one carbon nanotube composite yarn. The carbon nanotube yarn composite includes a carbon nanotube yarn and enzymatic catalyst distributed therein.

Description

201008010 九、發明說明: 【發明所屬之技術領域】 * 本發明涉及一種膜電極及採用該膜電極的生物燃料電 • 池,尤其涉及一種基於奈米碳管的膜電極及採用該膜電極 的生物燃料電池。 【先前技術】 燃料電池係一種將燃料及氧化劑氣體轉化為電能的電 化學發電裝置,被廣泛應用於軍事國防及民用的電力、汽 ® 車、通信等領域(請參見,Recent advances in fuel cell technology and its application, Journal of Power Sources, V100, P60-66 ( 2001)) ° 生物燃料電池係以酶為催化劑,將有機物中的化學能 直接轉化為電能的裝置。通常,先前的生物燃料電池包括: 一膜電極(Membrane Electrode Assembly,簡稱 MEA) ’ 該膜電極包括一質子交換膜(Proton Exchange Membrane ) 及分別設置在質子交換膜兩個相對的表面的陰極電極及陽 極電極;一裝有生物燃料的陽極容室,且陽極電極浸泡於 該生物燃料中;一導流板(Flow Field Plate,簡稱FFP) 設置於陰極電極遠離質子交換膜的表面;一集流板 (Current Collector Plate,簡稱CCP)設置於導流板遠離 質子交換膜的表面;以及相關的輔助部件’如:鼓風機、 閥門、管路等。 其中,陽極電極包括一碳纖維紙以及分佈於該碳纖維 紙表面的酶催化劑。陰極電極包括一氣體擴散層及一設置 201008010 於該氣體擴散層表面的催化劑層,且催化劑層位於質子交 換膜及氣體擴散層之間。該催化劑層包含有催化劑材料(一 般為貴金屬顆粒:銷、金或釕等)及其載體(一般為 碳顆粒,如:石!、炭黑、碳纖維或奈米碳管)。所述氣體 擴散層主要由奴纖維紙構成。質子交換膜材料選自全氟磺 酸、聚苯乙烯械、聚三氟笨乙烯賴、祕樹脂績酸或 碳氫化合物。 然而,先前技術中的生物燃料電池的膜電極存在以下 不足·第纟於陽極電極包括―碳纖維紙以及分佈於該 碳纖維紙表面的的酶催化劑’ 一方面,該碳纖維紙中含有 大量雜亂分佈的碳纖維,導致碳纖維紙中孔隙結構分佈不 均勻’而且比表面積小’從而影響酶催化劑分佈的均勻性, 2酶催化劑與生物燃料的接觸面積小,限制催化劑的利 子的值:一:面,碳纖維紙電阻率大,制約反應生成的電 =的傳輸,從而直接影響膜電極的反應活性。第二 =層電氣體擴散層及一形成於氣體擴散層表面的 較大的厘厗 3陰極電極結構使得製備的臈電極具有 厚度’且可增切電極巾氣體 = 的接觸電阻,不利於反應所 : 響臈電極的反應活性;另—方㊉=料&而直接影 化層中的催化劑分散佈均勻,與反應:二催 限制催化劑的利用率。 賴的接觸面積小, 有繁於此,提供一 催化劑的利用率的臈電 種具有較高的反應 極以及採用該膜電 活性,且可提高 極的生物燃料電 201008010 池實為必要。 【發明内容】 • —種膜電極’其包括:—質子交換膜,-陽極電極及 一陰極電極,所述陽極電極與陰極電極分別設置於該質子 交換膜兩個相對的表面,其中,所述陽極電極包括至少一 奈米碳^長線複合結構,且該奈求碳管長線複合結構包括 奈米碳管長線及酶催化劑分佈於該奈米碳管長線中。 種生物燃料電池,其包括:一 質子交換膜 ❹ ❹ ——, 丨劳極 電極與-陰極電極’所述陽極電極與陰極電極分別設置在 該質子交換臈兩個相對的表面;一裝有生物燃料的陽極容 室’且陽極電極浸泡於該生物燃料中;一導流板設置於陰 離質子交換膜的表面;以及一個供氣和抽氣裝置 ό亥“板相連通,其中,所述陽極電極包括至少一太米 碳管長線複合結構,且該奈米碳管長線複合結構包括二米、 碳管長線及酶催化劑分佈於該奈米碳管長線中。 相較於先前技術,所述膜電極具有以一 所述陽極電極採用奈米碳管長線複合結構,故,,可避免先 則技術中擴散層與催化劑層之間的接觸電阻,有利於 所必需的電子及反應生成的電子的傳導。第二,夺米碳总 ==極大的比表面積’⑨,採用該奈来碳管長線可: ==擔載催化劑’使酶催化劑與生物燃料具有較大 的接觸面積’可提高酶催化劑的 碳管本身的電阻率要低於㈣· w 弟-由於奈未 来石m 的電阻率,故,採用該奈 。厂“長線複合結構的陽極電極的電阻率低,可有效的傳 8 201008010 導反應所必需的電子及反應生成的電子,有助於改善膜電 極的反應活性。 【實施方式】 以下將結合附圖對本技術方案作進一步的詳細說明。 凊參閱圖1 ’本技術方案實施例提供一種膜電極2〇〇, 其包括.質子父換膜202 ’ 一 1¼極電極204以及一陰極 .電極206。所述陽極電極204與陰極電極206分別設置在 該質子交換膜202的兩個相對的表面。所述陽極電極2〇4 ❹與陰極電極206中的至少一個電極包括一奈米碳管長線複 合結構。其中,所述陽極電極2〇4為一奈米碳管長線與酶 催化劑的複合結構。所述陰極電極2〇6為一奈米碳管長線 與貴金屬催化劑的複合結構。 所述奈米碳管長線包括複數個首尾相連且擇優取向排 列的奈米碳管。具體地,該奈米碳管長線中奈求碳管沿該 奈来碳管長線軸向/長度方向平行排列或呈螺旋狀排列。該 ❹奈米碳管長線中奈米碳管長度基本相同,且相鄰的奈米碳 官之間通過凡德瓦而力緊密結合。所述奈米碳管包括單壁 奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或多 =米:==碳管_為〇.5奈米〜1〇奈米,雙壁 :二太f to太Ϊ奈米〜15奈米’多壁奈米碳管的直 本實施例中,優選地,夺;:二的長度大於1〇0微米。 卡反&的長度為2⑻〜900微米。 太二=首長線可通過拉伸-奈米碳管陣列獲得-'丁、未故4膜後’經機械外力收縮處理(有機溶劑揮發的 201008010 ,面張力作用);扭轉紡紗處理或捲曲而獲得。所述奈米碳 S長線的直#為i微米〜i毫米,其長度不限,可根據實朽 .需求製得。通過將上述奈米碳管長線於葡萄糖氧化酶水ς 液中浸泡,可得到奈米碳管長線與酶催化劑的複合結構。 製備奈米碳管長線與酶催化劑的複合結構前,需對奈米碳 管^線經過功能化處理,以在奈米碳管長線中的奈:碳管 的官壁上或端帽處引入親水性的羧基(_C00H)或羥基 (-OH),提高奈米碳管對酶催化劑的吸附性。故,該太二 管j與酶催化劑的複合結構中,酶催化劑均勾分佈= 米石厌官長線的奈米碳管表面。在將拉取的奈米碳管薄膜 備成奈米碳管長線前,先將貴金屬催化劑通過物理或化學 方法沈積到奈米碳管薄膜表面,再經機械外力收縮處理(: 機溶劑揮發的表面張力作用);扭轉紡紗處理或捲曲可 奈米碳管長線與貴金屬催化劑的複合結構。請參閱圖2, 銘催化劑均勾分佈於奈米碳管薄膜的奈米碳管表面。故, ❹該奈米碳管長線與貴金屬催化劑的複合結構中,貴 化劑均勻分佈於奈米碳管長線的奈米碳管表面。 =述_化劑可為任何能夠對生物燃料進行催化的酶 催化劑,如··含㈣基FAD的氧化酶或含有輔基嶋 的脫風^該酶催化劑均勻吸附於奈求碳管長線中的 碳管表面,並通過縣或經基與該奈米碳管結合。可:理 解’對不同的生物燃料,所選用的酶催化劑不 例t,生物燃料為葡萄糖溶液,酶催化劑為葡㈣氧 所述貴金屬催化劑為貴金屬顆粒,如:始、金、Μ 201008010 的一種或其任意組合的混合物。該金屬顆粒的直徑尺寸為 1〜10奈米。所述貴金屬催化劑的擔載量低於0 5mg/cm2, 且均勻分佈於奈米碳管長線的奈米碳管表面。本實施例 中’貴金屬催化劑為鉑。 所述奈米碳管長線複合結構通過自身的黏性、黏結劑 或熱壓的方法固定於質子交換膜2G2的表面。當所述陽極 電極204或陰極電極纖包括複數個奈米碳管長線複合結201008010 IX. Description of the Invention: [Technical Field] The present invention relates to a membrane electrode and a biofuel cell using the membrane electrode, and more particularly to a membrane electrode based on a carbon nanotube and a living organism using the membrane electrode The fuel cell. [Prior Art] A fuel cell is an electrochemical power generation device that converts fuel and oxidant gas into electrical energy, and is widely used in military defense and civil power, automobile, and communication fields (see, Recent advances in fuel cell technology). And its application, Journal of Power Sources, V100, P60-66 (2001)) ° Biofuel cells are devices that use enzymes as catalysts to convert chemical energy in organic matter directly into electrical energy. In general, the prior biofuel cell includes: a Membrane Electrode Assembly (MEA). The membrane electrode includes a proton exchange membrane (Proton Exchange Membrane) and cathode electrodes respectively disposed on opposite surfaces of the proton exchange membrane and An anode electrode; an anode chamber containing biofuel, and the anode electrode is immersed in the biofuel; a flow field plate (FFP) is disposed on the surface of the cathode electrode away from the proton exchange membrane; a current collector (Current Collector Plate, CCP for short) is placed on the surface of the deflector away from the proton exchange membrane; and related auxiliary components such as blowers, valves, piping, etc. Wherein the anode electrode comprises a carbon fiber paper and an enzyme catalyst distributed on the surface of the carbon fiber paper. The cathode electrode includes a gas diffusion layer and a catalyst layer disposed on the surface of the gas diffusion layer of 201008010, and the catalyst layer is located between the proton exchange membrane and the gas diffusion layer. The catalyst layer comprises a catalyst material (generally noble metal particles: pin, gold or ruthenium, etc.) and a support thereof (generally carbon particles such as stone!, carbon black, carbon fiber or carbon nanotubes). The gas diffusion layer is mainly composed of slave fiber paper. The proton exchange membrane material is selected from the group consisting of perfluorosulfonic acid, polystyrene, polytrifluoroethylene, sulphuric acid or hydrocarbon. However, the membrane electrode of the biofuel cell of the prior art has the following disadvantages: the anode electrode includes a carbon fiber paper and an enzyme catalyst distributed on the surface of the carbon fiber paper. On the one hand, the carbon fiber paper contains a large amount of disorderly distributed carbon fiber. , resulting in uneven distribution of pore structure in carbon fiber paper 'and small specific surface area' and thus affecting the uniformity of the distribution of the enzyme catalyst. 2 The contact area between the enzyme catalyst and the biofuel is small, and the value of the catalyst is limited: one: surface, carbon fiber paper resistance The rate is large, which restricts the transmission of electricity generated by the reaction, thereby directly affecting the reactivity of the membrane electrode. The second = layer electric gas diffusion layer and a larger centistoke 3 cathode electrode structure formed on the surface of the gas diffusion layer make the prepared tantalum electrode have a thickness 'and can increase the contact resistance of the electrode towel gas =, which is disadvantageous to the reaction : The reactivity of the ringing electrode; the other - 10 = material & and the catalyst dispersion in the direct shadowing layer is uniform, and the reaction: the second catalyst limits the utilization of the catalyst. The contact area of Lai is small, and there is a problem that the utilization of a catalyst has a high reaction pole and the bioelectricity of the membrane is increased, and the biofuel power 201008010 is necessary. SUMMARY OF THE INVENTION A membrane electrode includes: a proton exchange membrane, an anode electrode and a cathode electrode, wherein the anode electrode and the cathode electrode are respectively disposed on two opposite surfaces of the proton exchange membrane, wherein The anode electrode comprises at least one nano carbon carbon long-line composite structure, and the carbon nanotube long-line composite structure comprises a nano carbon tube long line and an enzyme catalyst distributed in the long carbon nanotube line. a biofuel cell comprising: a proton exchange membrane —— ,, a 极 electrode and a cathode electrode, wherein the anode electrode and the cathode electrode are respectively disposed on two opposite surfaces of the proton exchange enthalpy; An anode chamber of the fuel and the anode electrode is immersed in the biofuel; a baffle is disposed on the surface of the proton exchange membrane; and a supply and aspirator are connected to the plate, wherein the anode The electrode comprises at least one long carbon composite structure of carbon nanotubes, and the nano carbon nanotube long-line composite structure comprises two meters, a long carbon nanotube line and an enzyme catalyst distributed in the long line of the carbon nanotube. Compared to the prior art, the membrane The electrode has a long-line composite structure of a carbon nanotube with one of the anode electrodes, so that the contact resistance between the diffusion layer and the catalyst layer in the prior art can be avoided, which facilitates the conduction of electrons and electrons generated by the reaction. Second, the total carbon content of the rice is == extremely large specific surface area '9, the long line of the carbon nanotube can be used: ==supporting the catalyst' to make the enzyme catalyst and biofuel have larger The contact area can increase the resistivity of the carbon tube itself of the enzyme catalyst to be lower than (4)·w 弟 - because of the resistivity of the future stone m, the plant has a low resistivity of the anode electrode of the long-line composite structure. It can effectively transmit the electrons necessary for the reaction of 201008010 and the electrons generated by the reaction, which helps to improve the reactivity of the membrane electrode. [Embodiment] Hereinafter, the technical solution will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1 ', the embodiment of the present invention provides a membrane electrode 2 〇〇 comprising a proton parent exchange membrane 202 ′ an 11⁄4 pole electrode 204 and a cathode electrode 206. The anode electrode 204 and the cathode electrode 206 are respectively disposed on opposite surfaces of the proton exchange membrane 202. At least one of the anode electrode 2〇4 ❹ and the cathode electrode 206 includes a carbon nanotube long-line composite structure. Wherein, the anode electrode 2〇4 is a composite structure of a long carbon nanotube tube and an enzyme catalyst. The cathode electrode 2〇6 is a composite structure of a carbon nanotube long line and a noble metal catalyst. The long carbon nanotube line includes a plurality of carbon nanotubes arranged end to end and in a preferred orientation. Specifically, the carbon nanotubes in the long line of the carbon nanotubes are arranged in parallel or spirally along the axial/longitudinal direction of the long line of the carbon nanotubes. The length of the carbon nanotubes in the long line of the carbon nanotubes is basically the same, and the adjacent nanocarbons are tightly coupled by van der Waals. The carbon nanotube comprises one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube: ===carbon tube_for 〇.5 nanometer~1〇奈In the embodiment of the rice, double wall: two too f to tortoise nanometer ~ 15 nanometer 'multi-walled carbon nanotubes, preferably, the length of the two: greater than 1 〇 0 micron. The card anti & length is 2 (8) ~ 900 microns. Tai 2 = the first long line can be obtained by stretching-nano carbon nanotube array - 'Ding, after 4 film after the 'mechanical external force shrinkage treatment (201008010 of organic solvent volatilization, surface tension effect); twist spinning treatment or curling obtain. The straight line of the nano carbon S long line is i micrometers to i millimeters, and the length thereof is not limited, and can be obtained according to the requirements of actual decay. By immersing the above long carbon nanotubes in the glucose oxidase aqueous solution, a composite structure of the long carbon nanotubes and the enzyme catalyst can be obtained. Before preparing the composite structure of the long carbon nanotube and the enzyme catalyst, the nano carbon tube wire should be functionalized to introduce hydrophilicity on the wall or end cap of the naphthalene tube in the long line of the carbon nanotube The carboxyl group (_C00H) or hydroxyl group (-OH) enhances the adsorption of the carbon nanotube to the enzyme catalyst. Therefore, in the composite structure of the Taiji tube j and the enzyme catalyst, the enzyme catalysts are hook-distributed = the surface of the carbon nanotubes of the long line of the rice stone. Before the drawn carbon nanotube film is prepared into a long carbon nanotube wire, the precious metal catalyst is physically or chemically deposited on the surface of the carbon nanotube film, and then mechanically externally contracted (: solvent volatilized surface) Tension effect); a twisted spinning process or a composite structure of a coiled carbon nanotube long line and a noble metal catalyst. Referring to Figure 2, the catalysts are all distributed on the surface of the carbon nanotubes of the carbon nanotube film. Therefore, in the composite structure of the long carbon nanotube and the noble metal catalyst, the noble agent is uniformly distributed on the surface of the carbon nanotube long-line carbon nanotube. The enzyme can be any enzyme catalyst capable of catalyzing biofuels, such as an oxidase containing (tetra)-based FAD or a desulfurization containing a pro-base. The enzyme catalyst is uniformly adsorbed in the long line of the carbon nanotube. The surface of the carbon tube is combined with the carbon nanotube through a county or a base. Can understand: 'For different biofuels, the selected enzyme catalyst is not t, the biofuel is glucose solution, and the enzyme catalyst is chlorine (tetra) oxygen. The noble metal catalyst is a noble metal particle, such as: one of the first, gold, and Μ 201008010 or a mixture of any combination thereof. The metal particles have a diameter of from 1 to 10 nm. The precious metal catalyst has a loading amount of less than 0 5 mg/cm 2 and is uniformly distributed on the surface of the carbon nanotube long-line carbon nanotube. In the present embodiment, the noble metal catalyst is platinum. The carbon nanotube long-line composite structure is fixed to the surface of the proton exchange membrane 2G2 by its own viscous, binder or hot pressing method. When the anode electrode 204 or the cathode electrode fiber comprises a plurality of carbon nanotube long-line composite junctions

構¥,複數個奈米碳管長線複合結構可平行排列或交又設 置於質子交換膜202的表面’且奈米碳管長線複合結構之 間可無間隙設置或間隔設置。當複數個奈米碳管長線複合 結構交又且間隔設置時,所述奈米碳管長線複合結構之間 形成複數個均句且規則分佈的微孔,且該微孔 微米。 、 可以理解,當所述陽極電極綱包括至少—奈米碳管 長線與酶催化劑的複合結構時,所述陰極電極遍結構不 ❹限,可包括一擴散層及一催化劑層設置於該擴散層上,且 該催化劑層設置於質子交換膜與擴散層之間。所述擴散層 可為-碳纖維紙或奈米碳管層。該催化劑層包含有貴金^ $化劑材料及其載體(―般為碳顆粒,如:石墨、炭黑、 T纖維或奈米碳管)。當所述陰極電極施包括至少一奈米 7長線與貴金屬催化劑的複合結構時,所述陽極電極 4結構不限,可包括—擴散層及—催化劑層設置於該擴 ^上’且該催化縣設置於f子交換膜與擴散層之間。 所逑擴散層可為-碳纖維紙或奈米碳管層。所述催化劑層 11 201008010 山-有酶催化劑材料及其载體(—般為碳顆粒,如:石墨、 .炭黑、碳纖维或奈米碳管)。本實施财,優選地,所述陽 極204與陰極電極編均包括複數個奈米碳管長線複 泛結構。即,所述陽極電極2〇4包括複數個奈米碳管長線 二酶催化劑的複合結構。所述陰極電極施包括複數個奈 t =長線與責金屬催化劑的複合結構。且,複數個奈米 石反官長線複合結構平行無間隙設置於質子交換膜202的表 面。 *所述質子交換膜202的材料為全氣石黃酸、聚苯乙稀續 酼、聚二敦苯乙稀績酸、祕樹脂續酸或碳氫化合物。本 實施例中’ f子交換膜2〇2材料為全氣續酸。 :述膜電極測具有以下優點:第―,所述陽極電極 綱與陰極電極施均採用奈米碳管長線複合結構,故, ❹ 可避免切技術中擴散層與催化劑層之間的接觸電阻 利於=應所必需的電子及反應生成的電子的傳導。第二, =碳管長線具有極大的比表面積,故,採用該奈米” 、、-可有效且均勻的擔載催化劑,使催化劑與生物燃料或 ,化劑氣體具有較大的接觸面積,可提高催化 父第三’由於奈米碳管本身的電阻率要低於碳纖維二 且率,故,抹用該奈米碳管長線複合結構的電極的電 低’可有效的傳導反應所必需的電子及反應生成的, 善膜電極的反應活性。第四,所述陽極電極204 與陰極電極206均採用奈米碳管長線複合結構,該太 管長線同時具有收集電流及擔載催化劑以及擴散 12 201008010 或氧化劑氣體的作用,結構簡單,使用方便。 請參閱圖3,本技術方案實施例還進一步提供一採用 '上述膜電極200的生物燃料電池20,其包括:一膜電極 • 200, 一個陽極容室214, 一個導流板208, 一個集流板210 以及一供氣和抽氣裝置212。 所述膜電極200的結構如前所述。且,所述陽極電極 204包括複數個奈米碳管長線與酶催化劑的複合結構平行 無間隙設置於質子交換膜202的表面。所述陰極電極206 ®包括複數個奈米碳管長線與貴金屬催化劑的複合結構平行 無間隙設置於質子交換膜202的表面。 所述陽極容室214,設置於膜電極200的陽極電極204 一侧,用來裝載生物燃料216。本實施例中,生物燃料216 為葡萄糖溶液。所述膜電極200將生物燃料216與氧化劑 氣體隔開,且陽極電極204浸泡於該生物燃料216中,使 得酶催化劑可與生物燃料216接觸。 Θ 所述導流板208分別設置於陰極電極206遠離質子交 換膜202的表面,且在導流板208靠近陰極電極206的表 面具有一條或多條導流槽218,用於傳導氧化劑氣體以及 反應產物水。該導流板208採用金屬或導電碳材料製作。 所述集流板210採用導電材料製作,設置於導流板208 的遠離質子交換膜202的表面,用於收集及傳導反應所需 要的電子。可以理解,本實施例中,由於奈米碳管長線結 構具有良好的導電性,可用來收集電流,故,該集流板210 為一可選擇結構。 13 201008010 所述供乳和抽氣裝置212包括鼓風機、管路、闕門等 (圖中未標示)。鼓風機通過管路與導流板肅相連,用來 向陰極電極206提供氧化劑氣體。本實施例中,氧化劑氣 體為純氧氣或含氧的空氣。 上述生物燃料電、池2〇工作肖’在陽極電極綱一端, 生物燃料216 (以葡萄糖為例)在酶催化劑的催化作用下 發生如下反應:葡萄糖—葡萄糖酸+2H++2e。反應生成的The plurality of carbon nanotube long-line composite structures may be arranged in parallel or placed on the surface of the proton exchange membrane 202 and the gaps between the nano-carbon nanotube long-line composite structures may be set without gaps or at intervals. When a plurality of carbon nanotube long-line composite structures are disposed at intervals and spaced apart, a plurality of uniform and regularly distributed micropores are formed between the nano-carbon nanotube long-line composite structures, and the micropores are micrometers. It can be understood that when the anode electrode includes a composite structure of at least a long carbon nanotube and an enzyme catalyst, the cathode electrode has a uniform structure, and may include a diffusion layer and a catalyst layer disposed on the diffusion layer. And the catalyst layer is disposed between the proton exchange membrane and the diffusion layer. The diffusion layer may be a carbon fiber paper or a carbon nanotube layer. The catalyst layer comprises a precious gold catalyst material and a carrier thereof ("typically carbon particles such as graphite, carbon black, T fibers or carbon nanotubes"). When the cathode electrode is provided with a composite structure of at least one nanometer 7 long line and a noble metal catalyst, the anode electrode 4 is not limited in structure, and may include a diffusion layer and a catalyst layer disposed on the expansion and the catalytic county It is disposed between the f-sub-exchange membrane and the diffusion layer. The diffusion layer may be a carbon fiber paper or a carbon nanotube layer. The catalyst layer 11 201008010 is an enzyme catalyst material and its carrier (generally carbon particles such as graphite, carbon black, carbon fiber or carbon nanotubes). In this implementation, preferably, the anode 204 and the cathode electrode assembly each include a plurality of carbon nanotube long-line complex structures. That is, the anode electrode 2〇4 includes a composite structure of a plurality of carbon nanotube long-line two-enzyme catalysts. The cathode electrode includes a plurality of composite structures of a neat t = long line and a metal catalyst. Further, a plurality of nano-stone anti-official long-line composite structures are disposed in parallel with no gaps on the surface of the proton exchange membrane 202. * The material of the proton exchange membrane 202 is total gas naphthalic acid, polystyrene sulfonium, polydiphenyl phthalate acid, mysteric acid or hydrocarbon. In the present embodiment, the material of the 'f sub-exchange membrane 2〇2 is a total gas. The film electrode measurement has the following advantages: first, the anode electrode and the cathode electrode are both made of a long carbon nanotube composite structure, so that the contact resistance between the diffusion layer and the catalyst layer in the cutting technique can be avoided. = the necessary electrons and the conduction of electrons generated by the reaction. Secondly, the long line of the carbon tube has a very large specific surface area. Therefore, the catalyst can be effectively and uniformly supported by the nanometer, and the catalyst has a large contact area with the biofuel or the chemical gas. Improve the catalytic father's third 'Because the resistivity of the carbon nanotube itself is lower than the carbon fiber ratio, the electric low of the electrode of the long-line composite structure of the carbon nanotube can be used to effectively conduct the electrons necessary for the reaction. And the reactivity of the good film electrode formed by the reaction. Fourth, the anode electrode 204 and the cathode electrode 206 are both made of a long carbon nanotube composite structure, and the long line of the tube has both a current collection and a supported catalyst and diffusion 12 201008010 Or the function of the oxidant gas, the structure is simple and convenient to use. Referring to FIG. 3, the embodiment of the technical solution further provides a biofuel cell 20 using the above-mentioned membrane electrode 200, which comprises: a membrane electrode 200, an anode capacity. a chamber 214, a baffle 208, a current collecting plate 210, and a gas supply and extraction device 212. The structure of the membrane electrode 200 is as described above. 204 includes a composite structure of a plurality of carbon nanotube long lines and an enzyme catalyst disposed in parallel with the gap on the surface of the proton exchange membrane 202. The cathode electrode 206 includes a plurality of carbon nanotube long lines and a noble metal catalyst composite structure without parallel It is disposed on the surface of the proton exchange membrane 202. The anode chamber 214 is disposed on the anode electrode 204 side of the membrane electrode 200 for loading the biofuel 216. In the present embodiment, the biofuel 216 is a glucose solution. The electrode 200 separates the biofuel 216 from the oxidant gas, and the anode electrode 204 is immersed in the biofuel 216 such that the enzyme catalyst can be in contact with the biofuel 216. The baffles 208 are respectively disposed on the cathode electrode 206 away from the proton exchange The surface of the membrane 202, and the surface of the baffle 208 adjacent the cathode electrode 206, has one or more flow channels 218 for conducting oxidant gas and reaction product water. The baffle 208 is fabricated from a metal or conductive carbon material. The current collecting plate 210 is made of a conductive material and is disposed on the surface of the deflector 208 remote from the proton exchange membrane 202 for collection and transmission. The electrons required for the reaction. It can be understood that, in the present embodiment, since the long carbon nanotube structure has good conductivity and can be used for collecting current, the current collecting plate 210 is an optional structure. 13 201008010 The milk and air extracting device 212 includes a blower, a pipe, a door, etc. (not shown). The blower is connected to the baffle through a pipeline for supplying the oxidant gas to the cathode electrode 206. In this embodiment, the oxidant gas is Pure oxygen or oxygen-containing air. The above biofuels, the battery, and the biofuel 216 (in the case of glucose), under the catalysis of the enzyme catalyst, react as follows: glucose-gluconic acid+ 2H++2e. Reaction generated

質子穿過質子交制2G2到達陰極電極施,反應生成的 電子則進入外電路。 在陰極電極206 -端,利用其供氣和抽氣裝置212通 過導^板208向陰極電極施通入氧化劑氣體(以氧氣為 例)。氧氣擴散到陰極電極2〇6的同時,電子則通過外電路 到達陰極電極2〇6。在貴金屬催化劑作用下,氧氣與質子 以及電子發生如下反應:1/2〇2+2H++2e—H2〇。在此過程 中,在陽極電極204與陰極電極2〇6之間會形成一定的電 ❹勢差,當外電路接入一負載22〇時,將會形成電流。而反 應生成的水則通過導流板208排出生物燃料電池2〇〇 曰綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 =人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本技術方案實施例的膜電極的結構示意圖。 14 201008010 圖2為本技術方案實施例提供的表面蒸鍵有舶層的奈 米碳管薄膜的局部掃描電鏡照片。 圖3為本技術方案實施例的生物燃料電池的結構示意 圖。 【主要元件符號說明】 生物燃料電池 20 膜電極 200 質子交換膜 202 ©陽極電極 204 陰極電極 206 導流板 208 集流板 210 供氣和抽氣裝置 212 陽極容室 214 生物燃料 216 導流槽 218 負載 220 15The protons pass through the proton exchange 2G2 to reach the cathode electrode, and the electrons generated by the reaction enter the external circuit. At the cathode electrode 206-end, the oxidant gas (for example, oxygen) is supplied to the cathode electrode through the guide plate 208 by means of its gas supply and suction means 212. While oxygen diffuses to the cathode electrode 2〇6, electrons pass through the external circuit to the cathode electrode 2〇6. Under the action of the noble metal catalyst, oxygen reacts with protons and electrons as follows: 1/2〇2+2H++2e-H2〇. During this process, a certain potential difference is formed between the anode electrode 204 and the cathode electrode 2〇6, and when an external circuit is connected to a load 22, a current is formed. The water generated by the reaction is discharged from the biofuel cell through the deflector 208. The present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons in accordance with the spirit of the present invention are intended to be within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a membrane electrode according to an embodiment of the present technical solution. 14 201008010 FIG. 2 is a partial scanning electron micrograph of a surface-vaporized carbon nanotube film provided by an embodiment of the present invention. Fig. 3 is a schematic structural view of a biofuel cell according to an embodiment of the present technical solution. [Main component symbol description] Biofuel cell 20 Membrane electrode 200 Proton exchange membrane 202 © Anode electrode 204 Cathode electrode 206 Deflector 208 Current collector 210 Supply and extraction device 212 Anode chamber 214 Biofuel 216 Guide groove 218 Load 220 15

Claims (1)

201008010 十、申請專利範圍 1.-種膜電極,其包括:一質子交換膜,一陽極電極及一 陰極電極,所述陽極電極與陰極電極分別設置於該 交換臈兩個相對的表面,其改良在於,所述陽極電 括至少-奈米碳管長線複合結構,該奈米碳管長線複人 結構包括奈米碳管長線及酶催化劑分佈於該奈米碳 線中。201008010 X. Patent application scope 1. A seed electrode comprising: a proton exchange membrane, an anode electrode and a cathode electrode, wherein the anode electrode and the cathode electrode are respectively disposed on two opposite surfaces of the exchange crucible, and the improvement thereof The anode comprises a long-line composite structure of at least a carbon nanotube, and the long-line complex structure of the carbon nanotube comprises a long carbon nanotube line and an enzyme catalyst distributed in the nano carbon line. 2.如申請專利範圍第Μ所述的膜電極,其中,所述陽極 電極包括複數個奈米碳管長線複合結構平行排列或交又 設置於該質子交換臈的表面。 3·=請專利範圍第1項所述的膜電極,其中,所述奈米 碳官長線複合結構的直徑為1微米〜J毫米。 4.如申請專利範圍第μ所述的膜電極,其中,所述奈米 碳管長線複合結構包括複數個首尾相連的奈米碳管二優 取向排列。 ❹5.^申請專利範圍第4項所述的膜電極,其中,所述奈米 碳&amp;沿奈米碳管長線複合結構的軸向平行排列。 = =請專利範圍第4項所述的膜電極,其中,所述奈米 炭&amp;沿奈米碳管長線複合結構的軸向螺旋排列。 7· ^申請專利範圍第4項所述的膜電極,其中,所述奈米 炭笞長線複合結構中相鄰的奈米碳管之間通過凡德瓦而 力緊密結合。 8·^申請專利範圍第4項所述的膜電極,其中,所述奈米 碳管的長度為200〜900微米,直徑小於5〇奈米。 16 201008010 9.如申請專利範圍第4項所述的膜電 面包括複數個羧基或經基 酶 :該 瘦基或錄㈣吸㈣奈米碳 ㈣化n亥 1〇·如申請專利範園第i項所 。 化劑包括氧化酶或脫氫酶。的膜電極,其中,所述酶催 電極,其™極 ❹ 長線複合結構包且該奈米碳管 碳管長線中。 長線及催化劑分佈於該奈米 12.如申請專利範圍第 化劑為貴金屬顆粒 管長線中。 11項所述的膜電極 ,該貴金屬顆粒均勾 ,其中,所述催 分佈於該奈米碳 132請專利範㈣12項所述賴電極,其中,所述貴 的一種或其任意組合的混合物。 a 項所述的膜電極,其中,所述陰極2. The membrane electrode according to claim </RTI> wherein the anode electrode comprises a plurality of nanotube long-length composite structures arranged in parallel or disposed on a surface of the proton exchange crucible. The membrane electrode according to claim 1, wherein the nanometer carbon long-length composite structure has a diameter of 1 μm to J mm. 4. The membrane electrode of claim 19, wherein the nanotube long-line composite structure comprises a plurality of end-to-end aligned carbon nanotubes. The membrane electrode according to claim 4, wherein the nanocarbon &amp; is arranged in parallel along the axial direction of the nanowire long-line composite structure. The membrane electrode of claim 4, wherein the nanocarbon &amp; is arranged along the axial spiral of the nanowire long-line composite structure. The membrane electrode according to the fourth aspect of the invention, wherein the adjacent carbon nanotubes in the long-term composite structure of the nano-carbon anthrax are tightly bonded by van der Waals. The membrane electrode according to claim 4, wherein the carbon nanotube has a length of 200 to 900 μm and a diameter of less than 5 nm. 16 201008010 9. The membrane electrical surface as described in claim 4 includes a plurality of carboxyl groups or via enzymes: the lean group or the recorded (four) aspirate (four) nanocarbon (four) chemical n Hai 1〇 · as applied for a patent garden i item. The agent includes an oxidase or a dehydrogenase. The membrane electrode, wherein the enzymatic electrode, the TM pole ❹ long-line composite structure and the carbon nanotube carbon tube are in the long line. The long line and the catalyst are distributed in the nanometer. 12. If the chemical conversion agent is in the long line of the precious metal particle tube. Item 11 of the membrane electrode, wherein the noble metal particles are hooked, wherein the catalyst is distributed to the nanocarbon 132, wherein the noble electrode or the mixture of any combination thereof. The membrane electrode of item a, wherein the cathode 2極包括-擴散層以及形成於該擴散層表面的催化劑 I且該催化劑層設置於質子純膜與擴散層之間。 範圍第14項所述的膜電極,其中,所述擴 散層匕括不、米碳管層或碳纖維紙。 6.-種生物燃料電池,其包括:―質子㈣膜;—陽極電 極與-陰極電極’所述陽極電極與陰極電極分別設置在 2質子交換膜兩個相對的表面;—裝有生物燃料的容 至,且陽極電極浸泡於該生物燃料中;-導流板設置於 陰極電極遠離質子交換膜的表面;以及—個供氣和抽氣 17 201008010 衣置與該導流板相連通,其改良在於,所述陽極電極包 - 括至少一奈米碳管長線複合結構,且該奈米碳管長線複 合結構包括奈米碳管長線及酶催化劑分佈於該奈米碳管 長線中。 7·如申印專利範圍第16項所述的生物燃料電池,其中, 所f奈米碳管長線複合結構包括複數個首尾相連的奈米 碳管擇優取向排列,所述酶催化劑分佈於該奈米碳管表 面。 8.如申請專利範圍第16項所述的生物燃料電池,其中, 2述陰極電極包括至少一奈米碳管長線複合結構,且該 奈米碳管長線複合結構包括奈米碳管長線及催化劑分佈 於該奈米碳管長線中。 19·如申請專利範圍第18項所述的生物燃料電池,其中, 所述催化劑為責金屬顆粒,其材料為鉑、金或釕中的一 種或其任忍組合的混合物,該貴金屬顆粒均勻分佈於該 蟾 奈米碳管長線中。 2〇.如申請專利範圍第16項所述的生物燃料電池,其中, 該生物燃料電池進一步包括一集流板設置於導流板的遠 離質子交換膜的表面。 18The 2-pole includes a diffusion layer and a catalyst I formed on the surface of the diffusion layer, and the catalyst layer is disposed between the proton-purified film and the diffusion layer. The membrane electrode according to item 14, wherein the diffusion layer comprises a carbon nanotube layer or a carbon fiber paper. 6. A biofuel cell comprising: a proton (four) membrane; an anode electrode and a cathode electrode, wherein the anode electrode and the cathode electrode are respectively disposed on two opposite surfaces of the proton exchange membrane; The anode electrode is immersed in the biofuel; the baffle is disposed on the surface of the cathode electrode away from the proton exchange membrane; and a gas supply and pumping 17 201008010 is connected to the deflector, and the improvement is improved. The anode electrode package includes at least one nano carbon tube long-line composite structure, and the nano carbon tube long-line composite structure includes a long carbon nanotube line and an enzyme catalyst distributed in the long carbon nanotube line. 7. The biofuel cell according to claim 16, wherein the carbon nanotube long-line composite structure comprises a plurality of end-to-end aligned carbon nanotubes, wherein the enzyme catalyst is distributed in the nai. Carbon tube surface. 8. The biofuel cell according to claim 16, wherein the cathode electrode comprises at least one carbon nanotube long-line composite structure, and the nano-carbon tube long-line composite structure comprises a carbon nanotube long-line and a catalyst. Distributed in the long line of the carbon nanotubes. The biofuel cell according to claim 18, wherein the catalyst is a metal particle, and the material thereof is a mixture of platinum, gold or rhodium, or a mixture thereof, and the noble metal particles are uniformly distributed. In the long line of the carbon nanotubes. The biofuel cell according to claim 16, wherein the biofuel cell further comprises a current collecting plate disposed on a surface of the deflector away from the proton exchange membrane. 18
TW097130297A 2008-08-08 2008-08-08 Membrane electrode assembly and biofuel cell using the same TWI382580B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097130297A TWI382580B (en) 2008-08-08 2008-08-08 Membrane electrode assembly and biofuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097130297A TWI382580B (en) 2008-08-08 2008-08-08 Membrane electrode assembly and biofuel cell using the same

Publications (2)

Publication Number Publication Date
TW201008010A true TW201008010A (en) 2010-02-16
TWI382580B TWI382580B (en) 2013-01-11

Family

ID=44827288

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097130297A TWI382580B (en) 2008-08-08 2008-08-08 Membrane electrode assembly and biofuel cell using the same

Country Status (1)

Country Link
TW (1) TWI382580B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI425696B (en) * 2010-05-07 2014-02-01 Chun-Chieh Chang High durability lithium-ion cells
US8906561B2 (en) 2011-08-30 2014-12-09 Tsinghua University Bio-fuel cell
US9105935B2 (en) 2011-08-05 2015-08-11 Tsinghua University Method for making fuel cell membrane electrode assembly
US9196908B2 (en) 2011-08-30 2015-11-24 Tsinghua University Fuel cell
US9196917B2 (en) 2011-08-05 2015-11-24 Tsinghua University Fuel cell membrane electrode assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW515129B (en) * 2000-09-29 2002-12-21 Sony Corp Method for manufacturing gas diffusion electrode and method for manufacturing electrochemical device
KR20080080105A (en) * 2005-11-02 2008-09-02 세인트 루이스 유니버시티 Direct electron transfer using enzymes in bioanodes, biocathodes, and biofuel cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI425696B (en) * 2010-05-07 2014-02-01 Chun-Chieh Chang High durability lithium-ion cells
US9105935B2 (en) 2011-08-05 2015-08-11 Tsinghua University Method for making fuel cell membrane electrode assembly
US9196917B2 (en) 2011-08-05 2015-11-24 Tsinghua University Fuel cell membrane electrode assembly
US8906561B2 (en) 2011-08-30 2014-12-09 Tsinghua University Bio-fuel cell
US9196908B2 (en) 2011-08-30 2015-11-24 Tsinghua University Fuel cell

Also Published As

Publication number Publication date
TWI382580B (en) 2013-01-11

Similar Documents

Publication Publication Date Title
CN101465434B (en) Fuel battery membrane electrode and preparation method thereof
CN101425584B (en) Fuel cell membrane electrode and preparation thereof
CN101425583B (en) Fuel cell membrane electrode and preparation thereof
CN101635362B (en) Membrane electrode and fuel cell adopting same
CN101752568B (en) Membrane electrode and biological fuel cell thereof
US9077042B2 (en) Membrane electrode assembly and biofuel cell using the same
TW201008010A (en) Membrane electrode assembly and biofuel cell using the same
CN105280931B (en) Fuel cell membrane electrode
TWI378595B (en) Membrane electrode assembly and biofuel cell using the same
Wang et al. Effects of the carbon black properties in gas diffusion layer on the performance of proton exchange membrane fuel cells
CN101635361B (en) Membrane electrode and biofuel cell adopting same
TW200924268A (en) Membrane electrode assembly of fuel cell and method of making the same
JP2005004967A (en) Electrode for fuel cell, its manufacturing method, and solid polymer type fuel cell equipped with it
TWI387151B (en) Membrane electrode assembly and fuel cell using the same
Xue et al. Titanium carbide/carbon nanofibers film as flexible gas diffusion layers for passive direct methanol fuel cells
TWI382581B (en) Membrane electrode assembly and fuel cell using the same
JP2008235156A (en) Electrode catalyst layer for fuel cell, and fuel cell using it
JP2009064591A (en) Electrode for fuel cell, manufacturing method thereof, and membrane electrode assembly using the electrode
TW201707265A (en) A fuel cell system
TWI353398B (en) Nano carbon fibers and fuel cell utilizing the sam
TWI460916B (en) Membrane electrode assembly of fuel cell and method of making the same
JP2005166344A (en) Catalyst composition for fuel cell electrode, and catalyst for fuel cell electrode
Zhao et al. Carbon nanotube-based double-layer microporous cathode for micro-direct methanol fuel cell
TWI455396B (en) Membrane electrode assembly of fuel cell and method of making the same
JP2004119223A (en) Gas diffusion electrode and fuel cell using the same