TWI378595B - Membrane electrode assembly and biofuel cell using the same - Google Patents

Membrane electrode assembly and biofuel cell using the same Download PDF

Info

Publication number
TWI378595B
TWI378595B TW098101612A TW98101612A TWI378595B TW I378595 B TWI378595 B TW I378595B TW 098101612 A TW098101612 A TW 098101612A TW 98101612 A TW98101612 A TW 98101612A TW I378595 B TWI378595 B TW I378595B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
electrode
biofuel
catalyst
membrane
Prior art date
Application number
TW098101612A
Other languages
Chinese (zh)
Other versions
TW201029254A (en
Inventor
Li-Na Zhang
Kai-Li Jiang
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW098101612A priority Critical patent/TWI378595B/en
Publication of TW201029254A publication Critical patent/TW201029254A/en
Application granted granted Critical
Publication of TWI378595B publication Critical patent/TWI378595B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

1378595 101年.06月14日接正_頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種膜電極及採用該膜電極的生物燃料電池 ,尤其涉及一種基於奈米碳管的膜電極及採用該膜電極 的生物燃料電池。 【先前技術】 [0002] 燃料電池係一種將燃料及氧化劑氣體轉化為電能的電化 學發電裝置,被廣泛應用於軍事國防及民用的電力、汽 | 車、通信等領域。生物燃料電池係以酶或微生物為催化 劑’將有機物中的化學能直接轉化為電能的裝置。 [0003] 請參見圖1,為2003年10月23日公開的第CN1993855A號 大陸專利申請(申請人:索尼株式會社;發明人:酒井 秀樹等)揭示的一種燃料電池。該燃料電池包含燃料電 極(負極)1,該燃料電極1通過酶催化劑分解作為燃料 的多糖以獲得電子和產生質子(H+);電解層3,用來僅 傳導質子;和空氣電極(正極)5,該空氣電極5通過電 • 解層3與燃料電極1隔離。該空氣電極5使經電解層3傳輸 的質子、從燃料電極1外部電.路供給的電子和空氣中的氧 氣反應形成水》燃料電極1包括電極11及固定於該電極11 上的酶。電極11通常為玻璃碳電極。所述電解層3由這樣 的材料構成,其為用於傳輸於燃料電極1產生的質子H+到 空氣電極5的質子傳導膜,該質子傳導膜並沒有電子傳導 性能且可傳輪質子H+。所述空氣電極5包括催化劑層和由 多孔碳物質構成的擴散層,且催化劑層位於擴散層與電 解質層3之間。該催化劑層由負載有催化劑的碳粉或沒有 酬⑹爹單編號删1 第3頁/共35頁 1013222524-0 1378595 _ 101年06月14日核正替换頁 負載於碳上的催化劑顆粒構成。 [0004] 所述燃料電池工作時,燃料電極1 一端酶催化劑分解生物 燃料以獲得電子和產生質子。所述質子通過電解層3擴散 至空氣電極5—端。所述電極11用來收集和傳導反應生成 的電子,並將電子通過外電路傳導至空氣電極5。空氣電 極5 —端通入氧化劑氣體,則該氧化劑氣體與所述電子、 質子反應生成水。 [0005] 然而,上述的燃料電池具有以下不足:第一,電極11通 常為玻璃碳電極。玻璃碳電極係將有機物高溫炭化製得 · 的碳電極,其比表面積小,電阻率大,制約電極11傳導 反應所生成的電子的功能。這些缺點直接影響燃料電池 的反應活性。第二,玻璃碳電極柔韌性差,不易加工。 【發明内容】 [0006] 有鑒於此,確有必要提供一種具有較高的反應活性,且 可提高催化劑的利用率的膜電極及採用該膜電極的生物 燃料電池。 [0007] —種膜電極,其包括;一質子交換膜,一陽極電極及一 陰極電極,所述陽極電極與陰極電極分別設置於該質子 交換膜兩個相對的表面,其中,所述陽極電極包括一擴 散層與生物燃料催化劑,所述擴散層包括至少一奈米碳 管膜,所述奈米碳管膜包括複數個奈米碳管首尾相連且 沿同一方向擇優取向排列。 [0008] 一種生物燃料電池,其包括:一質子交換膜;一陽極電 極與一陰極電極,所述陽極電極與陰極電極分別設置於 _161夢單编號A0101 第4頁/共35頁 1013222524-0 1378595 101年06月14日接正替換頁1 該質子交換膜兩個相對的表面;一裝有生物燃料的容室 ,且陽極電極浸泡於該生物燃料中;一導流板設置於陰 極電極遠離質子交換膜的表面;及一個供氣和抽氣裝置 與該導流板相連通,其中,所述陽極電極包括一擴散層 與生物燃料催化劑,所述擴散層包括至少一奈米碳管膜 ,所述奈米碳管膜包括複數個奈米碳管首尾相連且沿同 一方向擇優取向排列。 [0009] 相較於先前技術,所述膜電極及採用該膜電極的生物燃 料電池具有以下優點:第一,所述陽極電極包括奈米碳 管,奈米故官具有較大的比表面積和較低的電阻率,故 ,該陽極電極可有效的收集和傳導反應所必需的電子和 反應生成的電子,有助於改善燃料電池膜電極的反應活 性。第二,奈米碳管具有較好的柔韌性,易於加工。 【實施方式】 [0010] 以下將结合附圖對本發明提供的膜電極及生物燃料電池 作進一步的詳細說明。 [0011] 請參閱圖2,本發明第一實施例提供一種燃料電池膜電極 300 ’其包括:一質子交換膜302 ’ 一陽極電極304及·一、 陰極電極306。所述陽極電極304與陰極電極306分別設 置於該質子交換膜302的兩個相對的表面》其中,所述陽 極電極304包括〆擴散層304a及分散於該擴散層304a中 的生物燃料催化劑3()4b ° [0012] 所述擴散層3〇4a包括一奈来碳管結構或奈米碳管複合結 構。所述奈米碳管結構包括複數個均勻分佈的奈米碳管 。該奈米碳管結構中的奈求碳管有序排列或無序排列。 1013222524-0 09810161严編號删1 第5頁/共35頁 1378595 101年06月14日核正替换頁 該奈米碳管結構中的奈米碳管包括單壁奈米碳管、雙壁 奈米碳管及多壁奈米碳管中的一種或多種。所述單壁奈 米碳管的直徑為0. 5奈米〜10奈米,雙壁奈米碳管的直徑 為1.0奈米〜15奈米,多壁奈米碳管的直徑為1.5奈米〜50 奈米。所述奈米碳管的長度大於50微米。本實施例中, 該奈米碳管的長度優選為200~900微米。當奈米碳管結構 包括無序排列的奈米碳管時,奈米碳管相互纏繞或者各 向同性排列;當奈米碳管結構包括有序排列的奈米碳管 時,奈米碳管沿一個方向或者複數個方向擇優取向排列 〇 [0013] 具體地,所述奈米碳管結構包括至少一層奈米碳管膜、 至少一奈米碳管線狀結構或其組合。當奈米碳管結構僅 包括一個奈米碳管線狀結構時,該奈米碳管線狀結構多 次折疊或纏繞成一層狀奈米碳管結構。當奈米碳管結構 包括複數個奈米碳管線狀結構時,複數個奈米碳管線狀 結構可相互平行設置,交又設置或編織設置成一層狀奈 米碳管結構。當奈米碳管結構同時包括奈米碳管膜和奈 米碳管線狀結構時,所述奈米碳管線狀結構設置於奈米 碳管膜的至少一表面。所述奈米碳管膜包括複數個均勻 分佈的奈米碳管,具體地,該複數個均勻分佈的奈米碳 管有序排列或無序排列,奈米碳管之間通過凡德瓦爾力 連接。該奈米碳管膜包括奈米碳管絮化膜、奈米碳管碾 壓膜及奈米碳管拉膜中的一種或幾種。 [0014] 所述奈米碳管拉膜的厚度為0.01~100微米。所述奈米碳 管拉膜通過拉取一奈米碳管陣列直接獲得。可以理解, • 09810161 产單編號 A0101 第6頁/共35頁 1013222524-0 1378595 101年06月14日梭正替換頁 通過將複數個奈米碳管拉膜平行且無間隙鋪設或/和重疊 鋪設,可製備不同面積與厚度的奈米碳管結構。每一奈 米碳管拉膜包括複數個擇優取向排列的奈米碳管。所述 奈米碳管通過凡德瓦爾力首尾相連。請參閱圖3及圖4, 具體地,每一奈米碳管拉膜包括複數個連續且定向排列 的奈米碳管片段143。該複數個奈米碳管片段143通過凡 德瓦爾力首尾相連。每一奈米碳管片段143包括複數個相 互平行的奈米碳管145,該複數個相互平行的奈米碳管 145通過凡德瓦爾力緊密結合。該奈米碳管片段143具有 任意的寬度、厚度、均勻性及形狀。該奈米碳管拉膜中 的奈米碳管145沿同一方向擇優取向排列。可以理解,由 複數個奈米碳管拉膜組成的奈米碳管結構中,相鄰兩個 奈米碳管拉膜中的奈米碳管的排列方向有一夾角α,且0 ,從而使相鄰兩層奈米碳管拉膜中的奈米碳 管相互交叉組成一網狀結構,該網狀結構包括複數個微 孔,該複數個微孔均勻且規則分佈於奈米碳管結構中, • 其中微孔直徑為1奈米〜0. 5微米。該微孔結構可用於擴散 氣體。所述奈米碳管拉膜結構及其製備方法請參見范守 善等人於20 0 7年2月9日申請的,於20 08年8月13公開的 第CN1 01 23971 2A號中國大陸公開專利申請“奈米碳管薄 膜結構及其製備方法”,申請人:清華大學,鴻富錦精 密工業(深圳)有限公司。 [0015] 所述奈米碳管線狀結構包括至少一非扭轉的奈米碳管線 、至少一扭轉的奈米碳管線或其組合。所述奈米碳管線 狀結構包括多根非扭轉的奈米碳管線或扭轉的奈米碳管 09810161#單編號 A〇101 第7頁/共35頁 1013222524-0 丄现595 101年.06月14日梭正替換頁 線時,該非杻轉的奈米碳管線或杻轉的奈米碳管線可相 互平行呈一束狀結構,或相互扭轉呈一絞線結構。 [0016] 凊參閱圖5,該非扭轉的奈米碳管線包括複數個沿該非扭 轉的奈米碳管線長度方向排列的奈米碳管《具體地,該 非杻轉的奈米碳管線包括複數個奈米碳管片段,該複數 個奈米碳管片段通過凡德瓦爾力首尾相連,每一奈米碳 官片段包括複數個相互平行並通過凡德瓦爾力緊密結合 的奈米碳管。該奈米碳管片段具有任意的長度、厚度、 均勻性及形狀。該非扭轉的奈米碳管線長度不限,直徑 為0.5奈米〜1〇〇微米。非扭轉的奈米碳管線為將奈米碳管 < 拉膜通過有機溶劑處理得到。具體地,將有機溶劑浸潤 所述奈米碳管拉膜的整個表面,於揮發性有機溶劑揮發 時產生的表面張力的作用下,奈米碳管拉膜中的相互平 行的複數個奈米碳管通過凡德瓦爾力緊密結合,從而使 奈米碳管拉膜收縮為一非扭轉的奈米碳管線。該有機溶 劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氣乙烷 或氯仿,本實施例中採用乙醇。通過有機溶劑處理的非 扭轉奈米碳管線與未經有機溶劑處理的奈米碳管膜相比 ’比表面積減小,黏性降低。 r [0017] 所述奈米碳管線狀結構及其製備方法請參見范守善等人 於2002年9月16日申請的,於2008年8月20日公告的第 000041 1979(:號令國大陸公告專利“一種奈米碳管繩及 其製造方法”,申請人:清華大學’鴻富錦精密工業( 深圳)有限公司,及於2005年12月16日申請的,於2〇〇7 年6月20日公開的第CN1982209A號中國大陸公開專利申 09810161 产單編號 A0101 第8頁/共35頁 1013222524-0 1378595 101年.06月14日梭正替換頁 請“奈米碳管絲及其製作方法”,申請人:清華大學, 鴻富錦精密工業(深圳)有限公司。 • [0018] 所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管 拉膜兩端沿相反方向扭轉獲得。請參閱圖6,該扭轉的奈 米碳管線包括複數個繞該扭轉的奈米碳管線軸向螺旋排 列的奈米碳管。具體地,該扭轉的奈米碳管線包括複數 個奈米碳管片段,該複數個奈米碳管片段通過凡德瓦爾 力首尾相連,每一奈米碳管片段包括複數個相互平行並 • 通過凡德瓦爾力緊密結合的奈米碳管。該奈米碳管片段 具有任意的長度、厚度、均勻性及形狀。該扭轉的奈米 碳管線長度不限,直徑為0. 5奈米〜100微米。進一步地, 可採用一揮發性有機溶劑處理該扭轉的奈米碳管線。於 揮發性有機溶劑揮發時產生的表面張力的作用下,處理 後的扭轉的奈米碳管線中相鄰的奈米碳管通過凡德瓦爾 力緊密结合,使扭轉的奈米碳管線的比表面積減小,密 度及強度增大。 # [0019] 3 所述奈米碳管碾壓膜包括均勻分佈的奈米碳管,奈米碳 管各向同性,沿同一方向或不同方向擇優取向排列。請 參閱圖7,本實施例中,奈米碳管碾壓膜中的奈米碳管沿 不同方向擇優取向排列。優選地,所述奈米碳管碾壓膜 中的奈米碳管平行於奈米碳管碾壓膜的表面。所述奈米 碳管碾壓膜中的奈米碳管相互交疊,並通過凡德瓦爾力 相互吸引,緊密結合,使得該奈米碳管碾壓膜具有很好 的柔韌性,可彎曲折疊成任意形狀而不破裂。且由於奈 米碳管碾壓膜中的奈米碳管之間通過凡德瓦爾力相互吸 09810161#單編號 A〇101 第9頁/共35頁 1013222524-0 1378595 101年06月14日核正替换頁 引,緊密結合,使奈米碳管碾壓膜為一自支撐的結構, 可無需基底支撐,自支撐存在。所述奈米碳管碾壓膜可 通過碾壓一奈米碳管陣列獲得。所述奈米碳管碾壓膜中 的奈米碳管與形成奈米碳管陣列的基底的表面形成一夾 角α,其中,α大於等於0度且小於等於15度(OS a S 15 °),該夾角α與施加於奈米碳管陣列上的壓力有關,壓 力越大,該夾角越小。所述奈米碳管碾壓膜的長度和寬 度不限。所述碾壓膜包括複數個微孔結構,該微孔結構 均勻且規則分佈於奈米碳管碾壓膜中,其中微孔直徑為1 奈米~0. 5微米。該微孔結構可用於擴散氣體。所述奈米 碳管碾壓膜及其製備方法請參見范守善等人於20 07年6月 1日申請的第200710074027. 5號中國大陸專利申請“奈 米碳管薄膜的製備方法”,申請人:清華大學,鴻富錦 精密工業(深圳)有限公司。 [0020] 所述奈米碳管絮化膜的長度、寬度和厚度不限,可根據 實際需要選擇。本發明提供的奈米碳管絮化膜的長度為 卜10厘米,寬度為卜10厘米,厚度為1微米〜2毫米。請 參閱圖8,所述奈米碳管絮化膜包括相互纏繞的奈米碳管 ,奈米碳管長度大於10微米。所述奈米碳管之間通過凡 德瓦爾力相互吸引、纏繞,形成網絡狀結構。所述奈米 碳管絮化膜各向同性,其中的奈米碳管為均勻分佈,無 規則排列,形成大量的微孔結構,微孔孔徑為1奈米〜0. 5 微米。該微孔結構可用於擴散氣體《所述奈米碳管絮化 膜及其製備方法請參見范守善等人於20 07年4月13曰申請 的第20071 0074699. 6號中國大陸專利申請“奈米碳管薄 09810161 产單编號 Α0101 第10頁/共35頁 1013222524-0 1378595 101年06月14日按正替換頁 膜的製備方法”,申請人:清華大學,鴻富錦精密工業 (深圳)有限公司。 * [0021] 所述生物燃料催化劑304b指任何能夠對生物燃料進行催 化分解的催化劑,其可為酶催化劑、微生物或其組合。 所述酶催化劑可為含有輔基FAD的氧化酶或含有輔基 NAD(P) +的脫氫酶等。該酶催化劑均勻吸附於奈米碳管結 構中的奈米碳管表面,並通過羧基或羥基與該奈米碳管 結合。可以理解,對不同的生物燃料,所選用的酶催化 | 劑不同。本實施例中,生物燃料為葡萄糖溶液,酶催化 劑為葡萄糖氧化酶。所述葡萄糖氧化酶均勻分散於奈米 碳管結構中的奈米碳管表面,並與該奈米碳管結構形成 一複合結構。進一步,所述生物燃料催化劑304b中還可 包括複數個電子介體,該電子介體用於收集反應產生的 電子,並將電子傳輸給奈米碳管結構。 [0022] 本實施例中,所述陽極電極304通過以下方法製備: [0023] 首先,對上述奈米碳管結構進行功能化處理。 [0024] 對奈米碳管結構進行功能化處理的方法為將奈米碳管結 構於強酸溶液中浸泡。本實施例中,取濃硫酸和濃硝酸 按一定的比例,如:1 : 3,混合於試管中,將製備好的奈 米碳管結構裁剪合適的長度,放入混合液中超聲處理2小 時左右;取出奈米碳管結構再放入雙氧水中超聲處理1小 時左右;取出後將奈米碳管結構浸泡於超純水中繼續超 聲處理,直至奈米碳管結構回復中性為止。 [0025] 其次,提供一含有酶催化劑的溶液,並將功能化處理後 1013222524-0 第11頁/共35頁 1378595 101年06月14日按正替換頁 的奈米碳管結構浸泡於該催化劑的溶液中。 [0026] 本實施例中,於冰水混合物環境下,配製10mg/ml的EDC 鹽酸鹽和12m g/ml的葡萄糖氧化酶(GOD)水溶液。然後 將功能化處理後的奈米碳管結構於該葡萄糖氧化酶水溶 液中於4°C溫度條件下浸泡約1〜5日。可以理解,其他酶 催化劑均可採用類似的方法,通過選用合適的溶劑配製 成一酶催化劑溶液。 [0027] 最後,將含有催化劑的溶液浸泡後的奈米碳管結構取出 烘乾得到一奈米碳管與酶催化劑的複合結構作為陽極電 · 極304。 [0028] 所述陰極電極306結構不限,可包括一擴散層及一催化劑 層設置於該擴散層上,且該催化劑層設置於質子交換膜 與擴散層之間。所述擴散層可為一碳纖維紙或奈米碳管 結構。該催化劑層包含有催化劑材料(如貴金屬或酶催 化劑)及其載體(一般為碳顆粒,如:石墨、炭黑、碳1378595 101年.06月14日正正_Page VI, invention description: [Technical Field of the Invention] [0001] The present invention relates to a membrane electrode and a biofuel cell using the same, and more particularly to a nanocarbon based A membrane electrode of a tube and a biofuel cell using the membrane electrode. [Prior Art] [0002] A fuel cell is an electrochemical power generation device that converts fuel and oxidant gas into electric energy, and is widely used in the fields of military defense, civil power, automobile, transportation, and the like. A biofuel cell is a device that directly converts chemical energy in an organic substance into electrical energy using an enzyme or a microorganism as a catalyst. [0003] Referring to Fig. 1, a fuel cell disclosed in Chinese Patent Application No. CN1993855A (Applicant: Sony Corporation; inventor: Sakai Hideki, etc.) disclosed on October 23, 2003. The fuel cell includes a fuel electrode (negative electrode) 1 which decomposes a polysaccharide as a fuel by an enzyme catalyst to obtain electrons and generates protons (H+); an electrolytic layer 3 for conducting only protons; and an air electrode (positive electrode) 5 The air electrode 5 is isolated from the fuel electrode 1 by the electrolyte layer 3. The air electrode 5 causes protons transported through the electrolytic layer 3, electrons supplied from the external path of the fuel electrode 1 to react with oxygen in the air to form water. The fuel electrode 1 includes an electrode 11 and an enzyme fixed to the electrode 11. The electrode 11 is typically a glassy carbon electrode. The electrolytic layer 3 is composed of a material which is a proton conductive membrane for transporting protons H+ generated at the fuel electrode 1 to the air electrode 5, which has no electron conduction property and can transmit a proton H+. The air electrode 5 includes a catalyst layer and a diffusion layer composed of a porous carbon material, and the catalyst layer is located between the diffusion layer and the electrolyte layer 3. The catalyst layer is composed of catalyst-supported carbon powder or no catalyst (6), which is composed of catalyst particles supported on carbon. [0004] When the fuel cell is in operation, the enzyme electrode at one end of the fuel electrode 1 decomposes the biofuel to obtain electrons and generate protons. The protons are diffused through the electrolytic layer 3 to the end of the air electrode 5. The electrode 11 is used to collect and conduct electrons generated by the reaction, and conduct the electrons to the air electrode 5 through an external circuit. When the oxidant gas is introduced into the fifth end of the air electrode, the oxidant gas reacts with the electrons and protons to form water. [0005] However, the above fuel cell has the following disadvantages: First, the electrode 11 is usually a glassy carbon electrode. The glassy carbon electrode is a carbon electrode obtained by carbonizing an organic substance at a high temperature, and has a small specific surface area and a large electrical resistivity, and restricts the function of electrons generated by the conduction reaction of the electrode 11. These shortcomings directly affect the reactivity of the fuel cell. Second, the glassy carbon electrode is poor in flexibility and difficult to process. SUMMARY OF THE INVENTION [0006] In view of the above, it is indeed necessary to provide a membrane electrode having a high reactivity and improving the utilization of a catalyst, and a biofuel cell using the membrane electrode. a membrane electrode comprising: a proton exchange membrane, an anode electrode and a cathode electrode, wherein the anode electrode and the cathode electrode are respectively disposed on two opposite surfaces of the proton exchange membrane, wherein the anode electrode The invention comprises a diffusion layer and a biofuel catalyst, the diffusion layer comprising at least one carbon nanotube film, the carbon nanotube film comprising a plurality of carbon nanotubes connected end to end and arranged in a preferred orientation in the same direction. [0008] A biofuel cell comprising: a proton exchange membrane; an anode electrode and a cathode electrode, wherein the anode electrode and the cathode electrode are respectively disposed at _161 Dream Sheet No. A0101 Page 4 / Total 35 Page 1013222524- 0 1378595 On June 14, 101, the replacement page 1 has two opposite surfaces of the proton exchange membrane; a chamber containing biofuel, and the anode electrode is immersed in the biofuel; a baffle is disposed on the cathode electrode a surface away from the surface of the proton exchange membrane; and a gas supply and extraction device in communication with the baffle, wherein the anode electrode comprises a diffusion layer and a biofuel catalyst, and the diffusion layer comprises at least one carbon nanotube film The carbon nanotube film comprises a plurality of carbon nanotubes connected end to end and arranged in a preferred orientation in the same direction. [0009] Compared with the prior art, the membrane electrode and the biofuel cell using the same have the following advantages: First, the anode electrode includes a carbon nanotube, and the nanometer has a large specific surface area and The lower resistivity, therefore, the anode electrode can effectively collect and conduct electrons necessary for the reaction and electrons generated by the reaction, and contribute to improving the reactivity of the fuel cell membrane electrode. Second, the carbon nanotubes have good flexibility and are easy to process. [Embodiment] The membrane electrode and the biofuel cell provided by the present invention will be further described in detail below with reference to the accompanying drawings. Referring to FIG. 2, a first embodiment of the present invention provides a fuel cell membrane electrode 300' which includes a proton exchange membrane 302', an anode electrode 304, and a cathode electrode 306. The anode electrode 304 and the cathode electrode 306 are respectively disposed on two opposite surfaces of the proton exchange membrane 302, wherein the anode electrode 304 includes a ruthenium diffusion layer 304a and a biofuel catalyst 3 dispersed in the diffusion layer 304a ( 4b ° [0012] The diffusion layer 3〇4a includes a carbon nanotube structure or a carbon nanotube composite structure. The carbon nanotube structure includes a plurality of uniformly distributed carbon nanotubes. The carbon nanotubes in the carbon nanotube structure are ordered or disorderly arranged. 1013222524-0 09810161 Yan No. 1 Page 5 of 35 Page 1378595 June 14, 2004 Nuclear Replacement Page The carbon nanotubes in the carbon nanotube structure include single-walled carbon nanotubes and double-walled nanotubes. One or more of carbon tubes and multi-walled carbon tubes. The diameter of the single-walled carbon nanotube is 0.5 nm to 10 nm, the diameter of the double-walled carbon nanotube is 1.0 nm to 15 nm, and the diameter of the multi-walled carbon nanotube is 1.5 nm. ~50 nm. The carbon nanotubes have a length greater than 50 microns. In this embodiment, the length of the carbon nanotubes is preferably 200 to 900 μm. When the carbon nanotube structure includes a disordered arrangement of carbon nanotubes, the carbon nanotubes are entangled or isotropically arranged; when the carbon nanotube structure includes an ordered arrangement of carbon nanotubes, the carbon nanotubes Preferably, the carbon nanotube structure comprises at least one layer of carbon nanotube film, at least one nanocarbon line structure or a combination thereof. When the carbon nanotube structure includes only one nanocarbon line-like structure, the nanocarbon line-like structure is folded or entangled into a layered carbon nanotube structure. When the carbon nanotube structure comprises a plurality of nanocarbon pipeline-like structures, a plurality of nanocarbon pipeline-like structures may be arranged in parallel with each other, and disposed or woven into a layered carbon nanotube structure. When the carbon nanotube structure includes both a carbon nanotube film and a nanocarbon line-like structure, the nanocarbon line-like structure is disposed on at least one surface of the carbon nanotube film. The carbon nanotube film comprises a plurality of uniformly distributed carbon nanotubes. Specifically, the plurality of uniformly distributed carbon nanotubes are ordered or disorderly arranged, and the vanadium force is passed between the carbon nanotubes. connection. The carbon nanotube film includes one or more of a carbon nanotube film, a carbon nanotube film, and a carbon nanotube film. [0014] The carbon nanotube film has a thickness of 0.01 to 100 micrometers. The carbon nanotube film is directly obtained by drawing an array of carbon nanotubes. Understandably, • 09810161 Order No. A0101 Page 6 / Total 35 Page 1013222524-0 1378595 On June 14th, 2011, the shuttle is replaced by laying multiple carbon nanotubes in parallel and without gaps laying or / and overlapping laying The carbon nanotube structure of different areas and thicknesses can be prepared. Each carbon nanotube film comprises a plurality of carbon nanotubes arranged in a preferred orientation. The carbon nanotubes are connected end to end by Van der Waals force. Referring to Figures 3 and 4, in particular, each carbon nanotube film comprises a plurality of continuous and aligned carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by Van der Valli. Each of the carbon nanotube segments 143 includes a plurality of mutually parallel carbon nanotubes 145 which are tightly coupled by van der Waals forces. The carbon nanotube segment 143 has any width, thickness, uniformity, and shape. The carbon nanotubes 145 in the carbon nanotube film are arranged in a preferred orientation in the same direction. It can be understood that in the carbon nanotube structure composed of a plurality of carbon nanotube film, the arrangement of the carbon nanotubes in the adjacent two carbon nanotube films has an angle α and 0, thereby making the phase The carbon nanotubes in the adjacent two-layer carbon nanotube film are mutually intersected to form a network structure, the network structure includes a plurality of micropores, and the plurality of micropores are uniformly and regularly distributed in the carbon nanotube structure. 5微米。 The micropore diameter is from 1 nm to 0. 5 microns. This microporous structure can be used to diffuse gases. For the structure of the carbon nanotube film and the preparation method thereof, please refer to CN1 01 23971 2A, published on February 9, 2008, by Fan Shoushan et al. “Nano Carbon Tube Film Structure and Preparation Method”, Applicant: Tsinghua University, Hongfujin Precision Industry (Shenzhen) Co., Ltd. [0015] The nanocarbon line-like structure comprises at least one non-twisted nanocarbon line, at least one twisted nanocarbon line, or a combination thereof. The nanocarbon pipeline-like structure comprises a plurality of non-twisted nano carbon pipelines or twisted carbon nanotubes 09810161#单号A〇101 Page 7 / Total 35 pages 1013222524-0 丄 595 101. When the shuttle is replacing the page line on the 14th, the non-twisted nano carbon pipeline or the twisted nano carbon pipeline may be parallel to each other in a bundle structure, or twisted to each other in a twisted line structure. [0016] Referring to FIG. 5, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes arranged along the length direction of the non-twisted nanocarbon pipeline. Specifically, the non-twisted nanocarbon pipeline includes a plurality of nanocarbons. The carbon nanotube segment, the plurality of carbon nanotube segments are connected end to end by Van der Waals force, and each nano carbon segment comprises a plurality of carbon nanotubes which are parallel to each other and closely coupled by van der Waals force. The carbon nanotube segments have any length, thickness, uniformity, and shape. The non-twisted nanocarbon line is not limited in length and has a diameter of 0.5 nm to 1 μm. The non-twisted nano carbon line is obtained by treating the carbon nanotubes with a film by an organic solvent. Specifically, the organic solvent is used to impregnate the entire surface of the carbon nanotube film, and under the action of the surface tension generated by the volatilization of the volatile organic solvent, the plurality of nanocarbons parallel to each other in the carbon nanotube film are drawn. The tube is tightly bonded by van der Waals force, thereby shrinking the carbon nanotube film into a non-twisted nano carbon line. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, di-ethane or chloroform, and ethanol is used in this embodiment. The non-twisted nanocarbon line treated with the organic solvent has a smaller specific surface area and a lower viscosity than the carbon nanotube film which has not been treated with the organic solvent. r [0017] The nanocarbon line-like structure and its preparation method can be found in Fan Shoushan et al., which was filed on September 16, 2002, and announced on August 20, 2008, No. 000041 1979 (: No. “A nano carbon tube rope and its manufacturing method”, applicant: Tsinghua University 'Hongfujin Precision Industry (Shenzhen) Co., Ltd., and applied on December 16, 2005, June 20, 2007 Japanese Open No. CN1982209A China Mainland Public Patent Application No.09810161 Production Order No. A0101 Page 8/Total 35 Page 1013222524-0 1378595 101. On June 14th, the shuttle replacement page please "Nano Carbon Wire and Its Manufacturing Method" Applicant: Tsinghua University, Hongfujin Precision Industry (Shenzhen) Co., Ltd. • [0018] The twisted nanocarbon pipeline uses a mechanical force to twist the ends of the carbon nanotube film in opposite directions Referring to Figure 6, the twisted nanocarbon pipeline includes a plurality of carbon nanotubes arranged axially helically around the twisted nanocarbon pipeline. Specifically, the twisted nanocarbon pipeline includes a plurality of nanometers. Carbon tube segment, the plurality of carbon nanotubes The segments are connected end to end by Van der Valli. Each nano carbon tube segment consists of a plurality of carbon nanotubes that are parallel to each other and are tightly coupled by van der Waals force. The carbon nanotube segments have any length, thickness and uniformity. The twisted nano carbon line is not limited in length, and has a diameter of 0.5 nm to 100 μm. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated during volatilization, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by van der Waals force, so that the specific surface area of the twisted nanocarbon pipeline is reduced, and the density is The strength is increased. # [0019] 3 The carbon nanotube rolled film comprises uniformly distributed carbon nanotubes, and the carbon nanotubes are isotropic and arranged in the same direction or in different directions. See FIG. In this embodiment, the carbon nanotubes in the carbon nanotube rolled film are arranged in a preferred orientation in different directions. Preferably, the carbon nanotubes in the carbon nanotube rolled film are parallel to the carbon nanotubes. The surface of the film. The carbon nanotubes in the carbon nanotube rolled film overlap each other and are attracted to each other by the van der Waals force, and the carbon nanotubes have good flexibility and bendable folding. It is arbitrarily shaped without breaking, and because the carbon nanotubes in the carbon nanotube rolled film are mutually sucked by van der Waals force 09810161#单号A〇101 Page 9 / Total 35 Page 1013222524-0 1378595 101 On June 14th, the nuclear replacement page was introduced, and the carbon nanotube film was a self-supporting structure, which could be self-supported without substrate support. The carbon nanotube film can be passed through the mill. Pressed on a carbon nanotube array to obtain. The carbon nanotubes in the carbon nanotube rolled film form an angle α with the surface of the substrate forming the carbon nanotube array, wherein α is greater than or equal to 0 degrees and less than or equal to 15 degrees (OS a S 15 °) The angle α is related to the pressure applied to the array of carbon nanotubes, and the larger the pressure, the smaller the angle. The length and width of the carbon nanotube rolled film are not limited. 5微米。 The micro-porous membrane is a microporous membrane having a diameter of from 1 nm to 0.5 μm. The microporous structure can be used to diffuse gases. The carbon nanotube film and the preparation method thereof can be found in the application of the method of "the preparation method of the carbon nanotube film" of the Chinese patent application No. 200710074027, filed on Jun. 1, 2007. : Tsinghua University, Hongfujin Precision Industry (Shenzhen) Co., Ltd. [0020] The length, width and thickness of the carbon nanotube film are not limited and can be selected according to actual needs. The carbon nanotube film of the present invention has a length of 10 cm, a width of 10 cm, and a thickness of 1 μm to 2 mm. Referring to Figure 8, the carbon nanotube flocculation membrane comprises intertwined carbon nanotubes having a length greater than 10 microns. The carbon nanotubes are attracted and entangled by van der Waals forces to form a network structure. 5微米。 The carbon nanotubes are isotropic, the carbon nanotubes are evenly distributed, irregularly arranged, forming a large number of microporous structures, microporous pore size of 1 nm ~ 0. 5 microns. The microporous structure can be used for diffusing gas. The nanocarbon tube flocculation membrane and its preparation method can be found in the Chinese patent application "Nei" filed by Fan Shoushan et al., April 13, 2007. Carbon tube thin 09810161 Production order number Α0101 Page 10/Total 35 page 1013222524-0 1378595 On June 14, 2011, according to the method of preparation of positive replacement film," Applicant: Tsinghua University, Hongfujin Precision Industry (Shenzhen) Limited. * [0021] The biofuel catalyst 304b refers to any catalyst capable of catalytically decomposing a biofuel, which may be an enzyme catalyst, a microorganism, or a combination thereof. The enzyme catalyst may be an oxidase containing a prosthetic FAD or a dehydrogenase containing a prosthetic group NAD(P) + or the like. The enzyme catalyst is uniformly adsorbed on the surface of the carbon nanotube in the carbon nanotube structure and bonded to the carbon nanotube through a carboxyl group or a hydroxyl group. It can be understood that the enzymes used for the different biofuels are different. In this embodiment, the biofuel is a glucose solution and the enzyme catalyst is glucose oxidase. The glucose oxidase is uniformly dispersed on the surface of the carbon nanotube in the carbon nanotube structure and forms a composite structure with the carbon nanotube structure. Further, the biofuel catalyst 304b may further include a plurality of electron mediators for collecting electrons generated by the reaction and transferring the electrons to the carbon nanotube structure. [0022] In the present embodiment, the anode electrode 304 is prepared by the following method: [0023] First, the above-described carbon nanotube structure is functionalized. [0024] The method of functionalizing the carbon nanotube structure is to soak the carbon nanotube structure in a strong acid solution. In this embodiment, concentrated sulfuric acid and concentrated nitric acid are mixed in a test tube at a certain ratio, such as 1:3, and the prepared carbon nanotube structure is cut to a suitable length, and ultrasonically treated for 2 hours in the mixed solution. Left and right; take out the carbon nanotube structure and then ultrasonically treat it in hydrogen peroxide for about 1 hour; after taking out, soak the carbon nanotube structure in ultrapure water and continue sonication until the structure of the carbon nanotubes returns to neutral. [0025] Next, a solution containing an enzyme catalyst is provided, and the carbon nanotube structure of the positive replacement page is immersed in the catalyst after functionalization treatment 1013222524-0 page 11/35 pages 1378595. In the solution. In this example, 10 mg/ml of EDC hydrochloride and 12 mg/ml of an aqueous solution of glucose oxidase (GOD) were prepared in an ice-water mixture environment. Then, the functionalized carbon nanotube structure is immersed in the glucose oxidase aqueous solution at a temperature of 4 ° C for about 1 to 5 days. It is understood that other enzyme catalysts can be prepared in a similar manner by selecting a suitable solvent to prepare an enzyme catalyst solution. [0027] Finally, the carbon nanotube structure after the solution containing the catalyst is taken out and dried to obtain a composite structure of a carbon nanotube and an enzyme catalyst as the anode electrode 304. [0028] The cathode electrode 306 is not limited in structure, and may include a diffusion layer and a catalyst layer disposed on the diffusion layer, and the catalyst layer is disposed between the proton exchange membrane and the diffusion layer. The diffusion layer may be a carbon fiber paper or a carbon nanotube structure. The catalyst layer comprises a catalyst material (such as a precious metal or an enzyme catalyst) and a carrier thereof (generally carbon particles such as graphite, carbon black, carbon)

纖維或奈米碳管)。 IFiber or carbon nanotubes). I

[0029] 所述陰極電極306也可包括至少一個奈米碳管複合結構, 且該奈米碳管複合結構包括奈米碳管結構及分佈於該奈 % 米碳管結構中的貴金屬催化劑或酶催化劑。所述貴金屬 , 包括始、金及釕中的一種或其任意組合的混合物。該貴 金屬顆粒的直徑尺寸為卜10奈米。所述貴金屬催化劑的 擔載量低於0.5mg/cra2,且均勻分佈於奈米碳管結構中的 奈米碳管表面。 [0030] 本實施例中,所述陽極電極304為一奈米碳管結構與酶催 0981016#單编號 A0101 第12頁/共35頁 1013222524-0 1378595 1101 年 Q6月 I4£g^: 化劑的複合結構。所述陰極電極3〇6為一個奈米碳管結構 與貴金屬催化劑的複合結構,該貴金屬催化劑為鉑顆粒 。所述陽極電極304與陰極電極3〇6十的奈米碳管結構均 包括複數個重疊設置的拉膜。請參閱圖9,鉑顆粒均勻分 佈於奈米碳管拉膜中的奈米碳管表面。所述奈米碳管複 合結構通過自身的黏性、黏結劑或熱壓的方法固定於質 子交換膜302的表面。 []所述質子父換膜302的材料為全氣績酸、聚苯乙稀績酸、 φ 裟二氟笨乙烯項酸、酚醛樹脂磺酸或碳氫化合物。本實 施例中’質子交換膜302材料為全氟磺酸。 [0032]本實施例提供燃料電池膜電極3〇〇具有以下優點:第一, 所述陽極電極採用奈米碳管複合結構,奈米碳管結構中 的奈米碳管具有較大的比表面積,故,採用該奈米碳管 結構可有效且均勻的擔載催化劑,使催化劑與生物燃料 具有較大的接觸面積,提高催化劑的利用率。第二,由 於奈米碳管具有較大的比表面積和較低的電阻率,故, • 採用該奈米碳管複合結構的電極可有效的收集和傳導反 應所必需的電子和反應生成的電子,有助於改善燃料電 池膜電極的反應活性。第三,所述陽極電極採用奈米碳 管複合结構,由於奈米碳管密度小,故,該膜電極3〇〇品 質較小,使用更方便。 [0033] 請參閱圖10,本發明第二實施例提供一種燃料電池膜電 極400 ’其包括:一質子交換膜402,一陽極電極4〇4及 一陰極電極406。所述陽極電極404與陰極電極406分別 設置於該質子交換膜402的兩個相對的表面。所述膜電極 單编號Α0101 第13頁/共35頁 09810161: 1013222524-0 1378595 101年06月14日梭正替換頁 [0034] [0035] [0036] [0037] 400與本發明第〆實施例提供的膜電極300結構基本相同 ’其區別在於,所述陽極電極404包括一擴散層404a及設 置於該擴散層304a表面的生物燃料催化劑層404b。所述 生物燃料催化劑層404b設置於所述擴散層404a的至少一 表面。本實施例中,所述生物燃料催化劑層404b設置於 所述擴散層404a與質子交換膜402之間。 所述擴散層404a結構與本發明第一實施例提供的擴散層 3 0 4 a結構相同。 所述生物燃料催化劑層404b包括催化劑及碳顆粒載體。 所述催化劑與本發明第一實施例提供的生物燃料催化劑 304b相同《所述碳顆粒為石墨顆粒、炭黑顆粒、碳纖維 及奈米碳管中的一種或幾種的混合物,優選為奈米碳管 °本實施例中,所述催化劑為酶催化劑,且酶催化劑分 散於碳顆粒中,形成催化劑層4〇4b。 所述陰極電極406與本發明第一實施例提供的膜電極3〇〇 的陰極電極306的結構相同。本實施例中,所述陰極電極 406為一個奈米碳管結構與貴金屬催化劑的複合結構,該 責金屬催化劑為鉑顆粒。 本實施例提供的燃料電池膜電極4〇〇中的擴散層4〇 4a為一 奈米碳管結構’具有以下優點:第一’由於奈米碳管具 有較大的比表面積和較低的電阻率,故’採用該奈米碳 營結構的電極可有效的收集和傳導反應所必需的電子和 反應生成的電子’有助於改善燃料電池膜電極的反應活 性。第二,由於奈米碳管結構包括複數個均勻分佈的微 〇98ι〇ΐ6#單編號 A0101 第14頁/共35頁 1013222524-0 1378595 101年06月14日後正替換頁 孔’故,該擴散層可均勻的擴散生物燃料,使生物燃料 與催化劑充分反應。 [0038] 請參閱圖11,本發明第三實施例提供一種燃料電池膜電 極500 ’其包括:一質子交換膜5〇2,一陽極電極5〇4及 一陰極電極506。所述陽極電極504與陰極電極506分別 設置於該質子交換膜502的兩個相對的表面《所述陽極電 極504包括一擴散層504a及設置於該擴散層504a表面的 生物燃料催化劑層504b。所述生物燃料催化劑層504b設 置於所述擴散層5〇4a的至少一表面。本實施例中,所述 生物燃料催化劑層504b設置於所述擴散層504a與質子交 換膜502之間。所述膜電極500與本發明第二實施例提供 的膜電極4〇〇結構基本相同,其區別在於,所述擴散層 504a包括一奈米碳管複合結構。 [0039]所述奈米碳管複合結構包括一奈米碳管結構及分散於奈 米碳管結構中的填充材料。所述填充材料均勻分散於奈 米碳管結構中。所述填充材料包括金屬、陶究、玻璃及 纖維中的一種或多種。可以理解,當奈米碳管結構中分 散有金屬時,可增強該奈米碳管結構的導電性。當奈米 碳管結構中分散有填充材料時,需確保奈米碳管結構的 微孔不被堵塞,以便擴散燃料或氧化劑。可選擇地,所 it I#碳管複合結構包括一碳纖維布或碳纖維毯及分散 於該碳纖維布或碳纖維毯中的奈米碳管。將該碳纖維布 或碳纖維毯中添加奈米碳管,可提高其導電性與柔韌性 ’並增加碳纖維布或碳纖維毯中小尺寸孔隙的數量,從 而提高碳纖維布或碳纖維毯的擴散均勻性。所述碳纖維 1013222524-0 09810161# 料號删1 1378595 101年06月14日梭正替换頁 布或碳纖維毯中奈米碳管的添加量不限。優選地,所述 碳纖維布或碳纖維毯中奈米碳管的添加量為卜15% β [_]⑼述陰極電極5G6的結構與與本發明第―實施例提供的膜 電極300的陰極電極306的結構相同。本實施例中,所述 陰極電極506為一個奈米碳管結構與貴金屬催化劑的複合 結構,該貴金屬催化劑為鉑顆粒。 [0041]本發明第四實施例提供一生物燃料電池’其包括:一質 子交換膜,一陽極電極與一陰極電極,所述陽極電極與 陰極電極分別設置於該質子交換膜相對的兩個表面;一 · 裝有生物燃料的容室,且所述陽極電極浸泡於該生物燃 料中,-導流板sit置於陰極電極遠離質子交換膜的表面 ’及-個供氣裝置和-個抽氣裝置分別與該導流板相連 通其中,所述陽極電極包括一擴散層與生物燃料催化 劑,所述擴散層包括一奈米碳管結構。 闺請參關12,具體地,本實施例提供__剌上述燃料電 池膜電極300的生物燃料電池3〇,其包括:一燃料電池膜 電極300個私極容室314 ’ 一個導流板,一個集 流板310及一供氣和抽氣裝置312。所述膜電極300包括 質子交換膜302,一陽極電極3〇4及一陰極電極3〇6。 所述陽極電極3〇4與陰極電極306分別設置於該質子交換 膜302的兩個相對的表面。所述陽極電極304為一奈米碳 管結構與酶催化劑的複合結構。所述陰極電極306為一個 奈米碳管結構與貴金屬催化劑的複合結構,該貴金屬催 化劑為鉑顆粒。該奈米碳管結構包括複數個重疊設置的 拉膜。可以理解,所述膜電極還可為本發明第二實施例 09810161#單编號 A〇101 K 16 f / 共 35 頁 1013222524-0 1378595 1101年.06月14日修正替換 提供的膜電極400或第三實施例提供的膜電極500。 [0043] 所述陽極容室314,設置於燃料電池膜電極300的陽極電 極304—側,用來裝載生物燃料316。本實施例中,生物 燃料316為葡萄糖溶液。所述燃料電池膜電極3〇〇將生物 燃料316與氧化劑氣體隔開,且陽極電極3〇4浸泡於該生 物燃料316中’使得酶催化劑可與生物燃料316接觸。 [0044] 所述導流板308設置於陰極電極306遠離質子交換膜302 的表面,且於導流板308靠近陰極電極306的表面具有一 • 條或多條導流槽318,用於傳導氧化劑氣體及反應產物水 。該導流板308採用金屬或導電破材料製作。 [0045] 所述集流板310採用導電材料製作,設置於導流板3〇8的 遠離質子交換膜302的表面,用於收集和傳導反應所需要 的電子。可以理解,本實施例中,由於奈米碳管結構具 有良好的導電性,可用來收集電流,故,該集流板31()為 一可選擇結構。 • [0046] 所述供氣和抽氣裝置312包括鼓風機、管路、閥門等(圖 中未標示)。鼓風機通過管路與導流板3〇8相連,用來向 陰極電。極306提供氧化劑氣體。本實施例中,氧化劑氣體 為純氧氣或含氧的空氣。 [0047] 上述生物燃料電池3〇工作時,陽極電極3〇4一端,生物燃 料316 (以葡萄糖為例)於酶催化劑的催化作用下發生如 下反應:葡萄糖—葡萄糖酸+ 211 + + 26。反應生成的質子穿 過質子交換膜302到達陰極電極3〇6,反應生成的電子則 進入外電路。 09810161^^^ A0101 第17頁/共35頁 1013222524-0 1378595 101年06月14日按正替换頁 [0048] 陰極電極306—端,利用其供氣和抽氣裝置31 2通過導流 板308向陰極電極306通入氧化劑氣體,如氧氣。氧氣擴 散到陰極電極306的同時,電子則通過外電路到達陰極電 - 極306。於貴金屬催化劑作用下,氧氣與質子及電子發生 如下反應:1/20 +2H + + 2e—H 0。於此過程中,於陽極 L· L· 電極304與陰極電極306之間會形成一定的電勢差,當外 電路接入一負載320時,將會形成電流。而反應生成的水 則通過導流板3 0 8排出生物燃料電池3 0。 [0049] 综上所述,本發明確已符合發明專利之要件,遂依法提 φ 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0050] 圖1為先前技術的燃料電池的結構示意圖。 [0051] 圖2為本發明第一實施例的膜電極的結構示意圖。 [0052] 圖3為本發明第一實施例提供的作為膜電極的擴散層的奈 米碳管拉膜的掃描電鏡照片。 [0053] 圖4為圖3中的奈米碳管拉膜中的奈米碳管片段的結構示 意圖。 [0054] 圖5為本發明第一實施例提供的作為膜電極的擴散層的非 扭轉的奈米碳管線的掃描電鏡照片。 [0055] 圖6為本發明第一實施例提供的作為膜電極的擴散層的扭 1013222524-0 轉的奈米碳管線的掃描電鏡照片。 09810161^單编號A〇101 第18頁/共35頁 '1378595 101年.06月14日修正替換頁 [0056] 圖7為本發明第一實施例提供的作為膜電極的擴散層的奈 米碳管碾壓膜的掃描電鏡照片。 [0057] 圖8為本發明第一實施例提供的作為膜電極的擴散層的奈 米碳管絮化膜的掃描電鏡照片。 [0058] 圖9為本發明第一實施例提供的表面沈積有鉑層的奈米碳 管拉膜的局部掃描電鏡照片。 [0059] 圖10為本發明第二實施例的膜電極的結構示意圖。 [0060] 圖11為本發明第三實施例的膜電極的結構示意圖。 [0061] 圖12為本發明第四實施例的生物燃料電池的結構示意圖 〇 【主要元件符號說明】 [0062] 燃料電極:1 [0063] 電解層:3 [0064] 空氣電極:5 [0065] 電極:1 1 [0066] 奈米碳管片段:143 [0067] 奈米碳管:145 [0068] 生物燃料電池:30 [0069] 膜電極:300,400,500 [0070] 質子交換膜:302,402,502 [0071] 陽極電極:304,404,504 09810161^^ A〇101 第19頁/共35頁 1013222524-0 1378595 _ 101年06月14日核正替換頁 [0072] 擴散層:304a, 404a, 504a [0073] 生物燃料催化劑:304b [0074] 生物燃料催化劑層:404b,504b [0075] 陰極電極:306,406, 506 [0076] 導流板:308 [0077] 集流板:310 [0078] 供氣和抽氣裝置:312 [0079] 陽極容室:314 [0080] 生物燃料:316 [0081] 導流槽:318 [0082] 負載:320[0029] The cathode electrode 306 may also include at least one carbon nanotube composite structure, and the carbon nanotube composite structure includes a carbon nanotube structure and a noble metal catalyst or enzyme distributed in the carbon nanotube structure. catalyst. The noble metal comprises a mixture of one of the first, the gold and the rhenium or any combination thereof. The noble metal particles have a diameter of 10 nm. The noble metal catalyst has a loading of less than 0.5 mg/cra2 and is uniformly distributed on the surface of the carbon nanotube in the carbon nanotube structure. [0030] In this embodiment, the anode electrode 304 is a carbon nanotube structure and enzymatic 0981016# single number A0101 page 12 / total 35 pages 1013222524-0 1378595 1101 Q6 month I4 £ g ^: Composite structure of the agent. The cathode electrode 3〇6 is a composite structure of a carbon nanotube structure and a noble metal catalyst, and the noble metal catalyst is platinum particles. The carbon nanotube structures of the anode electrode 304 and the cathode electrode 3〇6 include a plurality of laminated films arranged in an overlapping manner. Referring to Figure 9, the platinum particles are evenly distributed on the surface of the carbon nanotubes in the carbon nanotube film. The carbon nanotube composite structure is fixed to the surface of the proton exchange membrane 302 by its own viscous, binder or hot pressing method. [] The material of the proton parent membrane 302 is a full gas acid, polystyrene acid, φ 裟 difluoro phenyl hydroxy acid, phenolic resin sulfonic acid or hydrocarbon. In the present embodiment, the material of the proton exchange membrane 302 is perfluorosulfonic acid. [0032] The present embodiment provides the fuel cell membrane electrode 3〇〇 having the following advantages: First, the anode electrode adopts a carbon nanotube composite structure, and the carbon nanotube in the carbon nanotube structure has a large specific surface area. Therefore, the carbon nanotube structure can effectively and uniformly support the catalyst, so that the catalyst has a large contact area with the biofuel, and the utilization rate of the catalyst is improved. Second, since the carbon nanotube has a large specific surface area and a low electrical resistivity, the electrode using the carbon nanotube composite structure can efficiently collect and conduct electrons necessary for the reaction and electrons generated by the reaction. It helps to improve the reactivity of the fuel cell membrane electrode. Thirdly, the anode electrode adopts a carbon nanotube composite structure. Since the density of the carbon nanotube is small, the membrane electrode 3 has a small quality and is more convenient to use. Referring to FIG. 10, a second embodiment of the present invention provides a fuel cell membrane electrode 400' comprising: a proton exchange membrane 402, an anode electrode 4〇4 and a cathode electrode 406. The anode electrode 404 and the cathode electrode 406 are respectively disposed on opposite surfaces of the proton exchange membrane 402. The membrane electrode single number Α0101 page 13/35 pages 09810161: 1013222524-0 1378595 June 14th, 2011 shuttle replacement page [0034] [0036] [0037] 400 and the third implementation of the present invention The membrane electrode 300 provided by the example is substantially identical in structure, the difference being that the anode electrode 404 includes a diffusion layer 404a and a biofuel catalyst layer 404b disposed on the surface of the diffusion layer 304a. The biofuel catalyst layer 404b is disposed on at least one surface of the diffusion layer 404a. In the present embodiment, the biofuel catalyst layer 404b is disposed between the diffusion layer 404a and the proton exchange membrane 402. The structure of the diffusion layer 404a is the same as that of the diffusion layer 3 0 4 a provided by the first embodiment of the present invention. The biofuel catalyst layer 404b includes a catalyst and a carbon particulate carrier. The catalyst is the same as the biofuel catalyst 304b provided by the first embodiment of the present invention. The carbon particles are a mixture of one or more of graphite particles, carbon black particles, carbon fibers and carbon nanotubes, preferably nano carbon. In the present embodiment, the catalyst is an enzyme catalyst, and the enzyme catalyst is dispersed in the carbon particles to form a catalyst layer 4〇4b. The cathode electrode 406 has the same structure as the cathode electrode 306 of the membrane electrode 3A provided by the first embodiment of the present invention. In this embodiment, the cathode electrode 406 is a composite structure of a carbon nanotube structure and a noble metal catalyst, and the metal catalyst is platinum particles. The diffusion layer 4〇4a in the fuel cell membrane electrode 4 of the present embodiment is a carbon nanotube structure having the following advantages: First, because the carbon nanotube has a large specific surface area and a low electrical resistance. The rate, so the use of the electrode of the nanocarbon camp structure can effectively collect and conduct the electrons necessary for the reaction and the electrons generated by the reaction' helps to improve the reactivity of the fuel cell membrane electrode. Second, since the carbon nanotube structure includes a plurality of uniformly distributed micro-small 98 〇ΐ 6# single number A0101 page 14 / total 35 pages 1013222524-0 1378595 after the 14th of June, the page hole is replaced, so the diffusion The layer diffuses the biofuel evenly, allowing the biofuel to react fully with the catalyst. Referring to FIG. 11, a third embodiment of the present invention provides a fuel cell membrane electrode 500' comprising: a proton exchange membrane 5〇2, an anode electrode 5〇4 and a cathode electrode 506. The anode electrode 504 and the cathode electrode 506 are respectively disposed on two opposite surfaces of the proton exchange membrane 502. The anode electrode 504 includes a diffusion layer 504a and a biofuel catalyst layer 504b disposed on the surface of the diffusion layer 504a. The biofuel catalyst layer 504b is disposed on at least one surface of the diffusion layer 5?4a. In the present embodiment, the biofuel catalyst layer 504b is disposed between the diffusion layer 504a and the proton exchange membrane 502. The membrane electrode 500 is substantially identical in structure to the membrane electrode 4〇〇 provided by the second embodiment of the present invention, except that the diffusion layer 504a includes a carbon nanotube composite structure. [0039] The carbon nanotube composite structure includes a carbon nanotube structure and a filler material dispersed in the carbon nanotube structure. The filler material is uniformly dispersed in the carbon nanotube structure. The filler material includes one or more of metal, ceramics, glass, and fibers. It can be understood that when the metal is dispersed in the carbon nanotube structure, the conductivity of the carbon nanotube structure can be enhanced. When the filler material is dispersed in the carbon nanotube structure, it is necessary to ensure that the pores of the carbon nanotube structure are not blocked to diffuse the fuel or the oxidant. Alternatively, the I I carbon nanotube composite structure comprises a carbon fiber cloth or a carbon fiber blanket and a carbon nanotube dispersed in the carbon fiber cloth or the carbon fiber blanket. Adding carbon nanotubes to the carbon fiber cloth or carbon fiber blanket can improve the conductivity and flexibility of the carbon fiber cloth or the carbon fiber blanket, thereby increasing the diffusion uniformity of the carbon fiber cloth or the carbon fiber blanket. The carbon fiber 1013222524-0 09810161# Item No. 1 1378595 The replacement of the shuttle on the cloth on June 14, 2011 is not limited to the amount of carbon nanotubes in the cloth or carbon fiber blanket. Preferably, the amount of the carbon nanotubes in the carbon fiber cloth or the carbon fiber blanket is 15% β [_] (9) The structure of the cathode electrode 5G6 and the cathode electrode 306 of the membrane electrode 300 provided in the first embodiment of the present invention. The structure is the same. In this embodiment, the cathode electrode 506 is a composite structure of a carbon nanotube structure and a noble metal catalyst, and the noble metal catalyst is platinum particles. [0041] A fourth embodiment of the present invention provides a biofuel cell comprising: a proton exchange membrane, an anode electrode and a cathode electrode, wherein the anode electrode and the cathode electrode are respectively disposed on opposite surfaces of the proton exchange membrane a chamber containing biofuel, and the anode electrode is immersed in the biofuel, - the baffle sit is placed on the surface of the cathode electrode away from the proton exchange membrane 'and a gas supply device and a pumping The device is in communication with the baffle, wherein the anode electrode comprises a diffusion layer and a biofuel catalyst, and the diffusion layer comprises a carbon nanotube structure. For example, the present embodiment provides a biofuel cell 3〇 of the fuel cell membrane electrode 300, which includes: a fuel cell membrane electrode 300 private pole chambers 314', a baffle, A current collecting plate 310 and a gas supply and suction device 312. The membrane electrode 300 includes a proton exchange membrane 302, an anode electrode 3〇4 and a cathode electrode 3〇6. The anode electrode 3〇4 and the cathode electrode 306 are respectively disposed on opposite surfaces of the proton exchange membrane 302. The anode electrode 304 is a composite structure of a carbon nanotube structure and an enzyme catalyst. The cathode electrode 306 is a composite structure of a carbon nanotube structure and a noble metal catalyst, and the noble metal catalyst is platinum particles. The carbon nanotube structure includes a plurality of laminated films disposed in an overlapping manner. It can be understood that the membrane electrode can also be the second embodiment of the invention 09810161# single number A 〇 101 K 16 f / total 35 pages 1013222524-0 1378595 1101. June 14 correction replacement provided membrane electrode 400 or The membrane electrode 500 provided by the third embodiment. [0043] The anode chamber 314 is disposed on the anode electrode 304 side of the fuel cell membrane electrode 300 for loading the biofuel 316. In this embodiment, the biofuel 316 is a glucose solution. The fuel cell membrane electrode 3 隔开 separates the biofuel 316 from the oxidant gas, and the anode electrode 3〇4 is immersed in the biofuel 316' such that the enzyme catalyst can be in contact with the biofuel 316. The baffle 308 is disposed on the surface of the cathode electrode 306 away from the proton exchange membrane 302, and has a strip or a plurality of diversion channels 318 on the surface of the baffle 308 near the cathode electrode 306 for conducting the oxidant. Gas and reaction product water. The baffle 308 is made of metal or a conductive material. The current collecting plate 310 is made of a conductive material and is disposed on a surface of the deflector 3〇8 remote from the proton exchange membrane 302 for collecting and conducting electrons required for the reaction. It can be understood that in the present embodiment, since the carbon nanotube structure has good conductivity and can be used for collecting current, the current collecting plate 31() is an optional structure. [0046] The gas supply and extraction device 312 includes a blower, a line, a valve, etc. (not shown). The blower is connected to the baffle 3〇8 through a line for supplying electricity to the cathode. The pole 306 provides an oxidant gas. In this embodiment, the oxidant gas is pure oxygen or oxygen-containing air. [0047] When the above biofuel cell 3 is operated, one end of the anode electrode 3〇4 and the biofuel 316 (for example, glucose) are reacted under the catalysis of an enzyme catalyst: glucose-gluconic acid + 211 + + 26. Protons generated by the reaction pass through the proton exchange membrane 302 to reach the cathode electrode 3〇6, and the electrons generated by the reaction enter the external circuit. 09810161^^^ A0101 Page 17/35 pages 1013222524-0 1378595 On June 14, 101, according to the replacement page [0048] The cathode electrode 306-end, with its gas supply and extraction device 31 2 through the deflector 308 An oxidant gas such as oxygen is supplied to the cathode electrode 306. While oxygen diffuses to the cathode electrode 306, electrons pass through the external circuit to the cathode electrode 306. Under the action of the noble metal catalyst, oxygen reacts with protons and electrons as follows: 1/20 + 2H + + 2e - H 0 . During this process, a certain potential difference is formed between the anode L·L· electrode 304 and the cathode electrode 306, and when an external circuit is connected to a load 320, a current is formed. The water produced by the reaction exits the biofuel cell 30 through the baffle 308. [0049] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art to the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0050] FIG. 1 is a schematic structural view of a prior art fuel cell. 2 is a schematic structural view of a membrane electrode according to a first embodiment of the present invention. 3 is a scanning electron micrograph of a carbon nanotube film as a diffusion layer of a membrane electrode according to a first embodiment of the present invention. 4 is a schematic view showing the structure of a carbon nanotube segment in the carbon nanotube film of FIG. 3. 5 is a scanning electron micrograph of a non-twisted nanocarbon line as a diffusion layer of a membrane electrode according to a first embodiment of the present invention. 6 is a scanning electron micrograph of a nanocarbon line of a twisted 1013222524-0 rotation of a diffusion layer as a membrane electrode according to a first embodiment of the present invention. 09810161^单单A〇101 Page 18/35 pages '1378595 101. June 14 revision replacement page [0056] FIG. 7 is a nanometer as a diffusion layer of a membrane electrode according to a first embodiment of the present invention. Scanning electron micrograph of a carbon tube rolled film. 8 is a scanning electron micrograph of a carbon nanotube flocculation film as a diffusion layer of a membrane electrode according to a first embodiment of the present invention. 9 is a partial scanning electron micrograph of a carbon nanotube film deposited with a platinum layer on the surface according to a first embodiment of the present invention. 10 is a schematic structural view of a membrane electrode according to a second embodiment of the present invention. 11 is a schematic structural view of a membrane electrode according to a third embodiment of the present invention. 12 is a schematic structural view of a biofuel cell according to a fourth embodiment of the present invention. [Main component symbol description] [0062] Fuel electrode: 1 [0063] Electrolytic layer: 3 [0064] Air electrode: 5 [0065] Electrode: 1 1 [0066] Carbon nanotube fragment: 143 [0067] Carbon nanotube: 145 [0068] Biofuel cell: 30 [0069] Membrane electrode: 300, 400, 500 [0070] Proton exchange membrane: 302 , 402, 502 [0071] Anode electrode: 304, 404, 504 09810161 ^ ^ A 〇 101 page 19 / a total of 35 pages 1013222524-0 1378595 _ June 14, 2004 nuclear replacement page [0072] diffusion layer: 304a , 404a, 504a [0073] Biofuel Catalyst: 304b [0074] Biofuel Catalyst Layer: 404b, 504b [0075] Cathode Electrode: 306, 406, 506 [0076] Deflector: 308 [0077] Current Collector: 310 [0078] Gas supply and extraction device: 312 [0079] Anode chamber: 314 [0080] Biofuel: 316 [0081] Diversion channel: 318 [0082] Load: 320

09810161#單编號 A〇101 第20頁/共35頁 1013222524-009810161#单号 A〇101 Page 20 of 35 1013222524-0

Claims (1)

1378595 101年06月14日修正替換頁 七、申請專利範圍: 1 . 一種膜電極,其包括:一質子交換膜,一陽極電極及一陰 極電極,所述陽極電極與陰極電極分別設置於該質子交換 膜相對的兩個表面,其改良在於,所述陽極電極包括一擴 散層與生物燃料催化劑,所述擴散層包括至少一奈米碳管 膜,所述奈米碳管膜包括複數個奈米碳管首尾相連且沿同 一方向擇優取向排列。 2.如申請專利範圍第1項所述的膜電極,其中,所述複數個 奈米碳管通過凡得瓦力首尾相連。 3 .如申請專利範圍第1項所述的膜電極,其中,至少兩個所 述奈米碳管膜重疊設置。 4. 如申請專利範圍第3項所述的膜電極,其中,所述相鄰兩 個奈米碳管膜之間通過凡德瓦爾力緊密連接。 5. 如申請專利範圍第3項所述的膜電極,其中,所述相鄰兩 個奈米碳管膜中的奈米碳管的排列方向形成一夾角α,0° S a $90〇。 6 .如申請專利範圍第3項所述的膜電極,其中,所述相鄰兩 個奈米碳管膜中的奈米碳管相互交叉組成一網絡結構。 7 .如申請專利範圍第6項所述的膜電極,其中,所述網絡結 構包括複數個微孔。 8 .如申請專利範圍第7項所述的膜電極,其中,所述複數個 微孔均勻且規則分佈於所述奈米碳管膜中。 9 .如申請專利範圍第7項所述的膜電極,其中,所述微孔的 直徑為1奈米〜0. 5微米。 10 .如申請專利範圍第1項所述的膜電極,其中,所述奈米碳 09810161^^^ Α〇101 第21頁/共35頁 1013222524-0 1378595 _ 101年06月14日修正替換百 管膜的厚度為0. 0 W00微米。 11 .如申請專利範圍第1項所述的膜電極,其中,所述生物燃 料催化劑均勻分散於奈米碳管表面,並與所述奈米碳管形 成一複合結構。 12. 如申請專利範圍第1項所述的膜電極,其中,所述生物燃 料催化劑設置於質子交換膜與擴散層之間。 13. 如申請專利範圍第1項所述的膜電極,其中,所述生物燃 料催化劑包括酶催化劑、微生物或其組合。 14. 如申請專利範圍第1項所述的膜電極,其中,所述陰極電 極包括一奈米碳管複合結構,該奈米碳管複合結構包括一 € 奈米碳管結構及分散於該奈米碳管結構中的催化劑。 15. 如申請專利範圍第1項所述的膜電極,其中,所述陰極電 極包括一擴散層及形成於該擴散層表面的催化劑層,該擴 散層包括一奈米碳管結構。 16 . —種生物燃料電池,其包括: 一質子交換膜; 一陽極電極與一陰極電極,所述陽極電極與陰極電極分別 g 設置在該質子交換膜相對的兩個表面; 一裝有生物燃料的容室,且所述陽極電極浸泡於該生物燃 料中; 一導流板設置於陰極電極遠離質子交換膜的表面;及 一個供氣裝置和一個抽氣裝置分別與該導流板相連通, 其改良在於,所述陽極電極包括一擴散層與生物燃料催化 劑,所述擴散層包括至少一奈米碳管膜,所述奈米碳管膜 包括複數個奈米碳管首尾相連且沿同一方向擇優取向排列 〇 09810161^^^^* A〇101 第22頁/共35頁 1013222524-0 丄378595 π . 18 . 19 . 20 . 21 . 22 . 23 .1378595 Modified on June 14, 101. Replacement page 7. Patent application scope: 1. A membrane electrode comprising: a proton exchange membrane, an anode electrode and a cathode electrode, wherein the anode electrode and the cathode electrode are respectively disposed on the proton The opposite surfaces of the exchange membrane are modified in that the anode electrode comprises a diffusion layer and a biofuel catalyst, the diffusion layer comprises at least one carbon nanotube membrane, and the carbon nanotube membrane comprises a plurality of nanometer membranes The carbon tubes are connected end to end and arranged in the same direction. 2. The membrane electrode of claim 1, wherein the plurality of carbon nanotubes are connected end to end by van der Waals force. 3. The membrane electrode according to claim 1, wherein at least two of the carbon nanotube membranes are arranged in an overlapping manner. 4. The membrane electrode of claim 3, wherein the adjacent two carbon nanotube membranes are tightly connected by a van der Waals force. 5. The membrane electrode according to claim 3, wherein the arrangement of the carbon nanotubes in the adjacent two carbon nanotube membranes forms an angle α, 0° S a $90〇. 6. The membrane electrode of claim 3, wherein the carbon nanotubes in the adjacent two carbon nanotube membranes cross each other to form a network structure. The membrane electrode of claim 6, wherein the network structure comprises a plurality of micropores. 8. The membrane electrode of claim 7, wherein the plurality of micropores are uniformly and regularly distributed in the carbon nanotube membrane. 5微米。 The diameter of the micropores is from 1 nm to 0. 5 microns. 10. The membrane electrode according to claim 1, wherein the nanocarbon 09810161^^^ Α〇101 page 21/35 pages 1013222524-0 1378595 _ 101 June 2011 revised replacement hundred 0 W00微米。 The thickness of the film is 0. 0 W00 microns. The membrane electrode according to claim 1, wherein the biofuel catalyst is uniformly dispersed on the surface of the carbon nanotube and forms a composite structure with the carbon nanotube. 12. The membrane electrode of claim 1, wherein the biofuel catalyst is disposed between the proton exchange membrane and the diffusion layer. 13. The membrane electrode of claim 1, wherein the biofuel catalyst comprises an enzyme catalyst, a microorganism, or a combination thereof. 14. The membrane electrode according to claim 1, wherein the cathode electrode comprises a carbon nanotube composite structure comprising a carbon nanotube structure and dispersed in the nanotube. A catalyst in a carbon nanotube structure. 15. The membrane electrode of claim 1, wherein the cathode electrode comprises a diffusion layer and a catalyst layer formed on a surface of the diffusion layer, the diffusion layer comprising a carbon nanotube structure. 16 . A biofuel cell comprising: a proton exchange membrane; an anode electrode and a cathode electrode, wherein the anode electrode and the cathode electrode are respectively disposed on opposite surfaces of the proton exchange membrane; a chamber, wherein the anode electrode is immersed in the biofuel; a baffle is disposed on the surface of the cathode electrode away from the proton exchange membrane; and a gas supply device and an air extracting device are respectively connected to the deflector The improvement is that the anode electrode comprises a diffusion layer and a biofuel catalyst, the diffusion layer comprises at least one carbon nanotube film, and the carbon nanotube film comprises a plurality of carbon nanotubes connected end to end and in the same direction Optimum orientation arrangement 〇09810161^^^^* A〇101 Page 22/35 pages 1013222524-0 丄378595 π . 18 . 19 . 20 . 21 . 22 . 101年.06月14曰 如申請專利範圍第16項所述的生物燃料電池,其中,所述 複數個奈米碳管通過凡得瓦力首尾相連。 如申請專利範圍第16項所述的生物燃料電池,其中,矣少 兩個所述奈米碳管膜重疊設置。 如申請專利範圍第16項所述的生物燃料電池,其中,所述 相鄰兩個奈米碳管膜之間通過凡德瓦爾力緊密連接。 如申請專利範圍第1 6項所述的生物燃料電池,其中,相鄰 兩個奈米碳管膜中的奈米碳管相互交叉組成一網絡結構。 如申請專利範圍第20項所述的生物燃料電池,其中,所述 網絡結構包括複數個微孔。 如申請專利範圍第21項所述的生物燃料電池,其中,所述 複數個微孔均勻且規則分佈於所述奈米碳管膜中。 如申請專利範圍第21項所述的生物燃料電池,其中,所述 微孔直樫為1奈米〜0.5微米。 24 .如申請專利範圍第η項所述的生物燃料電池,其中,所述The biofuel cell of claim 16, wherein the plurality of carbon nanotubes are connected end to end by van der Waals force. The biofuel cell according to claim 16, wherein the two carbon nanotube films are overlapped. The biofuel cell according to claim 16, wherein the adjacent two carbon nanotube films are closely connected by a van der Waals force. The biofuel cell according to claim 16, wherein the carbon nanotubes in the adjacent two carbon nanotube membranes cross each other to form a network structure. The biofuel cell of claim 20, wherein the network structure comprises a plurality of micropores. The biofuel cell according to claim 21, wherein the plurality of micropores are uniformly and regularly distributed in the carbon nanotube film. The biofuel cell according to claim 21, wherein the microporous helium is from 1 nm to 0.5 μm. 24. The biofuel cell of claim n, wherein said 生物燃料催化劑均勻分散於奈米碳管表面,並與所述奈米 碳管形成一複合結構。 25.如申請專利範圍第16項所述的生物燃料電池,其中,所述 生物燃枓催化劑設置於質子交換膜與擴散層之間。 26 .如申請專利範圍第16項所述的生物燃料電池,其中,所述 生物燃料催化劑包括酶催化劑、微生物或其組合。 1013222524-0 09810161#單編號第23頁/共35頁The biofuel catalyst is uniformly dispersed on the surface of the carbon nanotube and forms a composite structure with the carbon nanotube. The biofuel cell according to claim 16, wherein the bio-fired catalyst is disposed between the proton exchange membrane and the diffusion layer. The biofuel cell of claim 16, wherein the biofuel catalyst comprises an enzyme catalyst, a microorganism, or a combination thereof. 1013222524-0 09810161#单号第23页/total 35 pages
TW098101612A 2009-01-16 2009-01-16 Membrane electrode assembly and biofuel cell using the same TWI378595B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098101612A TWI378595B (en) 2009-01-16 2009-01-16 Membrane electrode assembly and biofuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098101612A TWI378595B (en) 2009-01-16 2009-01-16 Membrane electrode assembly and biofuel cell using the same

Publications (2)

Publication Number Publication Date
TW201029254A TW201029254A (en) 2010-08-01
TWI378595B true TWI378595B (en) 2012-12-01

Family

ID=44853965

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098101612A TWI378595B (en) 2009-01-16 2009-01-16 Membrane electrode assembly and biofuel cell using the same

Country Status (1)

Country Link
TW (1) TWI378595B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916198B (en) 2011-08-05 2015-03-11 清华大学 Fuel cell membrane electrode
CN102916199B (en) 2011-08-05 2014-12-10 清华大学 Preparation method of fuel cell membrane electrode
CN102956898B (en) 2011-08-30 2015-11-25 清华大学 Fuel cell
CN102956911B (en) 2011-08-30 2016-03-30 清华大学 Biological fuel cell

Also Published As

Publication number Publication date
TW201029254A (en) 2010-08-01

Similar Documents

Publication Publication Date Title
CN101465434B (en) Fuel battery membrane electrode and preparation method thereof
CN101752567B (en) Membrane electrode and fuel cell thereof
CN101635362B (en) Membrane electrode and fuel cell adopting same
CN101752568B (en) Membrane electrode and biological fuel cell thereof
CN101425584A (en) Fuel cell membrane electrode and preparation thereof
TWI378595B (en) Membrane electrode assembly and biofuel cell using the same
TWI382580B (en) Membrane electrode assembly and biofuel cell using the same
US9929421B2 (en) Membrane electrode assembly of fuel cell
TWI387151B (en) Membrane electrode assembly and fuel cell using the same
JP2006216385A (en) Electrode catalyst layer for fuel cell and fuel cell using it
CN101635361B (en) Membrane electrode and biofuel cell adopting same
JP2005004967A (en) Electrode for fuel cell, its manufacturing method, and solid polymer type fuel cell equipped with it
CN111247676B (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP2007005004A (en) Gas diffusion electrode for fuel cell, manufacturing method of the same, and fuel cell
TWI590514B (en) A fuel cell system
TWI382581B (en) Membrane electrode assembly and fuel cell using the same
TW201401632A (en) Membrane electrode assembly and biofuel cell using the same
TWI590516B (en) Fuel cell module
JP2008235156A (en) Electrode catalyst layer for fuel cell, and fuel cell using it
TW201401635A (en) Membrane electrode assembly and biofuel cell using the same
JP2006216384A (en) Gas diffusion electrode for fuel cell and fuel cell using it
TWI590513B (en) Method of making a fuel cell
JP2005166344A (en) Catalyst composition for fuel cell electrode, and catalyst for fuel cell electrode
TWI353398B (en) Nano carbon fibers and fuel cell utilizing the sam
TWI460916B (en) Membrane electrode assembly of fuel cell and method of making the same