TW201007250A - Enhanced wavelength-converting structure - Google Patents

Enhanced wavelength-converting structure Download PDF

Info

Publication number
TW201007250A
TW201007250A TW97130882A TW97130882A TW201007250A TW 201007250 A TW201007250 A TW 201007250A TW 97130882 A TW97130882 A TW 97130882A TW 97130882 A TW97130882 A TW 97130882A TW 201007250 A TW201007250 A TW 201007250A
Authority
TW
Taiwan
Prior art keywords
light
wavelength conversion
wavelength
enhanced
substrate
Prior art date
Application number
TW97130882A
Other languages
Chinese (zh)
Inventor
Yu-Ping Lin
Chih-Yuan Chen
Pei-Ju Lai
Ding-He Chen
Original Assignee
Kismart Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kismart Corp filed Critical Kismart Corp
Priority to TW97130882A priority Critical patent/TW201007250A/en
Publication of TW201007250A publication Critical patent/TW201007250A/en

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

An enhanced wavelength-converting structure is disclosed. The enhanced wavelength-converting structure includes a substrate, a wavelength-selective reflecting layer, and a wavelength-converting layer arranged between the substrate and the wavelength-selective reflecting layer. The wavelength-converting layer converts a part of the first light into the second light. A part of the second light radiating backward to the light source is further reflected toward the substrate by the wavelength-selective reflecting layer to form the enhanced second light by combining with another part of the second light radiating toward the substrate.

Description

201007250 九、發明說明: 【發明所屬之技術領域】 且特別是有關 本發明是有關於一種波長轉換結構 於—種多層複合之波長轉換結構。 【先前技術】 光線經過波長轉換結構之後,可由原本的第一波長 ❹轉換為第二波長,藉以改變第一光(入射光)的光線色彩, 並提供多樣化的第二光(出射光)波長。習知技術中的波長 轉換結構包含有一基材與一波長轉換材料,其中波長轉 換材料可藉由黏著劑與基材結合。 波長轉換結構可用在發光裝置上,以改變發光裝置 :發出之光線的波長,舉例而言,發光二極體模組中、的 光粉可視為一種波長轉換結構,用以將發光二極體晶 片所發出之第一光轉換為不同波長的第二光。但是,營 Ο 光份僅能用以將第-光轉換為第二光,而無法有效地控 :轉換叙第二光的方向。因此’經螢聽轉換後之一 部分的第二光會向發光面發出,但仍有—部分的第二光 會射向光源方向’而無法被有效地利用。 因此,如何有效地利用波長轉換結構, 光的利用率,便成為相當重要課題。 徒"第一 【發明内容】 一種強化型波長轉換 因此本發明的目的就是在提供 201007250 結構,用以提高第-光轉換為第二光的整體出光量。 本發明提供了-種強化型波長轉換結構,包含一基 二:二長選擇反射層’以及設置於基材與波長選擇: =之間的波長轉換層。其中第一光穿透波長選擇反射 :…部分之第一光被波長轉換層轉換為第二光,波 ^ 射層再將第二光中朝向波長選擇反射層之部分 反射向基材方向。 ❹ &長轉換層之材料包含磷粉、感光材質、螢光色轉 2媒介1機錯合物材質、發光顏料、量子點為底材質、 量子線為底材f、量子拼為底材質或上述材質之組合。 基材之材料包含玻璃、石英、聚f基丙烯酸甲醋、聚苯 乙烯、曱苯乙烯,或聚碳酸醋。波長轉換層可形成在基 材上,波長選擇反射層可形成在波長轉換層上。 強化型波長轉換結構較佳地為設置在一光源上,光 源所發出之第一光可經由波長轉換層轉換為第二光朝 參 光源方向射回之一部分的第二光再經由波長選擇反射層 反射向基材方向,使第二光集中向基材方向射出。光源 包含一發光二極體晶片、一冷陰極螢光燈(c〇id cath()de fluorescent lamp),與一紫外光燈。 其中第一光之波長可為400nm至50〇nm,第二光之 波長可為550nm至65〇ηπ^選擇性波長轉換層之材料包 含膽固醇液晶與對稱性添加劑。其中對稱性添加劑與膽 固醇液晶的重量百分比為4.4〜5%。第一光可為可見光或 不可見光。波長轉換層之材料包含螢光粉與粘著劑。 6 201007250 光源所發出之第—光可穿過波長選擇反射層再經由 波長轉換層轉換為第二光,而波長選擇反射層可將一部 为射向往光源發散的第二光反射朝向基材射出,經反射 的第二光可與原先即往基材方向射出的第二光會合,以 提高第二光的整體出光量,並增強第一光與第二光之混 合光的整體亮度。201007250 IX. INSTRUCTIONS: [Technical field to which the invention pertains] and particularly related to the present invention relates to a wavelength conversion structure in which a multi-layer composite wavelength conversion structure. [Prior Art] After the light passes through the wavelength conversion structure, the original first wavelength ❹ can be converted into the second wavelength, thereby changing the color of the first light (incident light) and providing a variety of second (exit light) wavelengths. . The wavelength conversion structure of the prior art comprises a substrate and a wavelength converting material, wherein the wavelength converting material can be bonded to the substrate by an adhesive. The wavelength conversion structure can be used on the illuminating device to change the illuminating device: the wavelength of the emitted light. For example, the light powder in the illuminating diode module can be regarded as a wavelength converting structure for illuminating the diode chip. The emitted first light is converted into a second light of a different wavelength. However, the luminaire can only be used to convert the first light into the second light, but cannot effectively control: the direction of the second light is converted. Therefore, the second light of one part after the flicker-and-convert is emitted to the light-emitting surface, but still some of the second light is directed toward the light source direction' and cannot be effectively utilized. Therefore, how to effectively utilize the wavelength conversion structure and the utilization of light has become a very important issue. BACKGROUND OF THE INVENTION A reinforced wavelength conversion is therefore an object of the present invention to provide a 201007250 structure for improving the overall amount of light emitted from the first light to the second light. The present invention provides a reinforced wavelength conversion structure comprising a base two: a two long selective reflection layer 'and a wavelength conversion layer disposed between the substrate and the wavelength selection: =. The first light penetrates the wavelength selective reflection: ... the first light is converted into the second light by the wavelength conversion layer, and the wave layer reflects the portion of the second light toward the wavelength selective reflection layer toward the substrate. ❹ & Long conversion layer material contains phosphor powder, photosensitive material, fluorescent color 2 medium 1 machine complex material, luminescent pigment, quantum dot as bottom material, quantum wire as substrate f, quantum as bottom material or A combination of the above materials. The material of the substrate comprises glass, quartz, polyf-based acrylic vinegar, polystyrene, anthraquinone styrene, or polycarbonate. A wavelength converting layer may be formed on the substrate, and a wavelength selective reflecting layer may be formed on the wavelength converting layer. The enhanced wavelength conversion structure is preferably disposed on a light source, and the first light emitted by the light source can be converted into a second light that is reflected back toward the reference light source by the wavelength conversion layer, and then the wavelength selective reflection layer is returned. Reflecting in the direction of the substrate causes the second light to be concentrated toward the substrate. The light source comprises a light emitting diode chip, a cold cathode fluorescent lamp (c〇id cath() de fluorescent lamp), and an ultraviolet light lamp. The first light may have a wavelength of 400 nm to 50 Å, and the second light may have a wavelength of 550 nm to 65 〇 π. The material of the selective wavelength conversion layer comprises a cholesteric liquid crystal and a symmetry additive. The weight percentage of the symmetrical additive to the cholesteric liquid crystal is 4.4 to 5%. The first light can be visible or invisible. The material of the wavelength conversion layer contains a phosphor and an adhesive. 6 201007250 The first light emitted by the light source can pass through the wavelength selective reflection layer and then converted into the second light through the wavelength conversion layer, and the wavelength selective reflection layer can emit a second light reflected toward the light source toward the substrate. The reflected second light can be combined with the second light that is originally emitted toward the substrate to increase the overall light output of the second light and enhance the overall brightness of the mixed light of the first light and the second light.

【實施方式】 以下將以圖式及詳細說明清楚說明本發明之精神, 任何所屬技術領域中具有通常知識者在瞭解本發明之較 佳實施例後’當可由本發明所教示之技術,加以改變及 仏飾,其並不脫離本發明之精神與範圍。 — >…、第1圖,其係繪示本發明之強化型波長換結構 —較㈣施例的示意圖。強化型波長轉換結構刚為一 享平面之多層複合結構,其包含有—波長選擇反射 u〇、一波長轉換層120,與一基材130,其中波長選 波長轉換層120、基材130為依序排列, 及長轉換層120為設置在油具搜裡e β 直在波長選擇反射層110與基材130 <間。 強化型波長轉換結構100可 M \ uA 又置在先源上,光源所 出之第一光的射出方向择ώ 入^ ^ 石0係由波長選擇反射層110射 八’向基材130方向射出。浊4 —邻八^ 出,皮長轉換層120可用以激發 4 /刀的第一光,並將此部分的 龙中楚丄t & 丨刀的第—光轉換為第二光, 一中第一光與第二光之波長不同。 J 夜長轉換層120所欲 201007250 於光源所發出之第一光的波長, 的反射波長範圍則為對應於第二 波長轉換層120激發出的第二光為非指向 性的發散,因此,一部分的第_ 第一先會沿著預定的方向往 材 射出,而-部分的第二光則會朝著光源,即波 長選擇反射層110的方向發散。朝著波長選擇反射層110BRIEF DESCRIPTION OF THE DRAWINGS The spirit of the present invention will be clearly described in the following drawings and detailed description, and those of ordinary skill in the art will be able to change the teachings of the present invention. And the present invention does not depart from the spirit and scope of the present invention. - >, Fig. 1, which is a schematic diagram showing the enhanced wavelength-switching structure of the present invention - compared to the (four) embodiment. The enhanced wavelength conversion structure is just a planar multi-layer composite structure comprising a wavelength selective reflection u〇, a wavelength conversion layer 120, and a substrate 130, wherein the wavelength selective wavelength conversion layer 120 and the substrate 130 are The ordering, and the long conversion layer 120 is disposed between the wavelength selective reflective layer 110 and the substrate 130 < The enhanced wavelength conversion structure 100 can be placed on the source again, and the direction of the first light emitted by the light source is selected to be injected into the substrate 130 by the wavelength selective reflection layer 110. . Turbidity 4 - adjacent to eight out, the skin length conversion layer 120 can be used to excite the first light of the 4 / knife, and convert the first light of this part of the dragon to the t-sample to the second light, one The wavelengths of the first light and the second light are different. The wavelength of the first light emitted by the night-length conversion layer 120 is 201007250, and the reflection wavelength range of the second light emitted by the second wavelength conversion layer 120 is non-directional divergence, therefore, part of The first _ first will be directed toward the material in a predetermined direction, and the second portion of the second light will diverge toward the light source, that is, the direction of the wavelength selective reflection layer 110. Selecting the reflective layer 110 toward the wavelength

發散的此部分第二光,可再—次地被波長選擇反射層“ο 反射而往基材130射出。 如此一來’經由波長選擇反射層m反射後的此部 刀的第一光可與原先即向基材13〇射出的另一部分第二 光會。,而有效地増強向基材13〇射出之第二光的強度。 換。之帛化型波長轉換結構i 〇〇可使光源發出的第一 光與由波長轉換層120激發的第二光統一向基材13〇的 方向射出,以加強其發光效率。 ❹ 轉換的波長範圍為對應 而波長選擇反射層110 光的波長。 乂…、第2圖,其係續·示對應於本發明之強化型波長 轉換結構的波長示意圖。波長選擇反射層11〇的反射波 長為對應經波長轉換層12〇轉換後之第二光的波長。本 實施例中,光源所發出之第一光的波長為4〇〇nm至 500nm,波長轉換層12〇之材料包含有YAg螢光粉,用 以激發第一光,使一部分的第一光轉換為波長為55〇nm 至650nm的第二光。而波長選擇反射層11〇僅能反射波 長在550nm至650nm的光線,如本實施例中的第二光, 而無法反射波長大於或是小於此範圍的光線。 201007250 波長轉換層120之材料可包含有螢光粉、感光材質, 螢光色轉換媒介(Hu ore scent color-conversion-media),有 機錯合物材質(organic complex),發光顏料,量子點 (quantum-dots-based) 為 底材質 , 量子線 (quantum-wire-based) 為底材質,或量子解 (quantum-well-based)為底材質或上述材質之組合, 基材130為透明基板,基材130之材料舉例而言可 包含玻璃、石英、聚甲基丙烯酸甲醋(polymethyl methacrylate,PMMA)、聚苯乙稀(polystyrene,PS)、甲 苯乙稀(methyl styrene ,MS)、 或聚碳酸酯 (polycarbonate,PC)。 波長選擇反射層110的製備方法始於配製平坦劑 BYK 361N lwt。/。溶液(BYK361N,BYK Corp.,Leveling agent),包含將1克的BYK 361N添加入99克的試藥級 環戊酮(cyclopentanone)溶劑中,攪拌至完全融化。接著, 科重膽固醇液晶 10 克(Cholesteric liquid crystal, LC 242, BASF)及對稱性添加劑 0.48 克(Chiral dopant,LC 756, BASF)加入50毫升取樣瓶中,並加入環戊酮溶劑28.68 克,利用磁石攪拌器攪拌至溶解。 在膽固醇液晶與對稱性添加劑材料完全溶解後,加 入先前製備的平坦劑BYK 361N lwt°/〇溶液0.52克,與 光起始劑 I-907(Irgacure-907, Ciba-Geigy ; photopolymerization initiator) 0.52 克至取樣瓶中,再利 用磁石攪拌器攪拌10分鐘。將攪拌好的溶液,利用繞線 201007250 料佈於聚㈣膜歸上,㈣後於室溫條件(25。〇下讓 /合劑自然乾煉5分鐘’將乾燥後的薄膜放入85。。的烘箱 内丄烤5分鐘。將烘烤乾的薄膜以w燈⑽疆)方式 ,面約2〇分鐘,使其硬化。最後,將完成的薄模從聚 I專膜上取下,即可得到波長選擇反射層110。The divergent portion of the second light can be again and again repeatedly emitted by the wavelength selective reflection layer "o to the substrate 130. Thus, the first light of the blade reflected by the wavelength selective reflection layer m can be Another portion of the second light that is originally ejected toward the substrate 13 is effective to reluctantly eject the intensity of the second light that is emitted toward the substrate 13. The deuterated wavelength conversion structure i 〇〇 can cause the light source to emit The first light and the second light excited by the wavelength conversion layer 120 are uniformly emitted toward the substrate 13 , to enhance the luminous efficiency thereof. 转换 The wavelength range of the conversion is the wavelength of the light of the wavelength selective reflection layer 110. Fig. 2 is a schematic diagram showing the wavelength of the enhanced wavelength conversion structure corresponding to the present invention. The wavelength of the wavelength selective reflection layer 11A is the wavelength corresponding to the second light converted by the wavelength conversion layer 12A. In this embodiment, the first light emitted by the light source has a wavelength of 4 〇〇 nm to 500 nm, and the material of the wavelength conversion layer 12 包含 contains YAg phosphor powder for exciting the first light to convert a part of the first light. For wavelengths from 55〇nm to 65 The second light of 0 nm, while the wavelength selective reflection layer 11 〇 can only reflect light having a wavelength of 550 nm to 650 nm, such as the second light in this embodiment, and cannot reflect light having a wavelength greater than or less than this range. The material of the layer 120 may include a phosphor powder, a photosensitive material, a Huore scent color-conversion-media, an organic complex, a luminescent pigment, and a quantum dot (quantum-dots- Based on a base material, a quantum-wire-based base material, or a quantum-well-based base material or a combination of the above materials, the base material 130 is a transparent substrate, and the material of the base material 130 For example, it may comprise glass, quartz, polymethyl methacrylate (PMMA), polystyrene (PS), methyl styrene (MS), or polycarbonate (polycarbonate, PC). The preparation method of the wavelength selective reflection layer 110 starts from formulating a flat agent BYK 361N lwt. / solution (BYK361N, BYK Corp., Leveling agent), which comprises adding 1 gram of BYK 361N to a test level of 99 grams. In a cyclopentanone solvent, stir until completely melted. Then, Cholesteric liquid crystal (LC 242, BASF) and symmetry additive 0.48 g (Chiral dopant, LC 756, BASF) were added to 50 ml of the sample. In the bottle, 28.68 g of cyclopentanone solvent was added, and the mixture was stirred until dissolved by a magnet stirrer. After the cholesteryl liquid crystal and the symmetry additive material were completely dissolved, 0.52 g of the previously prepared flat agent BYK 361N lwt ° / 〇 solution was added, and the photoinitiator I-907 (Irgacure-907, Ciba-Geigy; photopolymerization initiator) 0.52 g was added. Into the sampling bottle, stir with a magnet stirrer for 10 minutes. The stirred solution is placed on the poly(tetra) film by means of a wound 201007250, and (4) after the room temperature condition (25. The natural drying of the mixture is allowed to dry for 5 minutes). The dried film is placed in 85. Bake in the oven for 5 minutes, and bake the dried film in the form of a w lamp (10), which is hardened for about 2 minutes. Finally, the completed thin mode is removed from the polyimide film to obtain the wavelength selective reflection layer 110.

而波長轉換層12〇的製備方法始於取8克螢光粉 (Y jG-0G9G2)與2克黏著劑溶液,黏著劑溶液為25« 黏著劑稀釋液(黏著劑,KER.25GG,ShinEtsu,AB劑比 例I .卜u τ苯稀釋至25wt%)n,將榮光粉及黎著 劑溶液兩項藥品加入3〇毫升取樣瓶中並加入磁石,並以 磁石攪拌器攪拌1小時。 待螢光粉與黏著劑稀釋液混合均勻後,取一聚醯亞 胺薄膜,將攪拌完成之漿料以50微米之刮刀塗佈,塗佈 後置入170。(:的烘箱烘烤3小時,即可完成波長轉換層 120的製作。最後,將完成之波長選擇反射層11〇與波長 轉換層120與基材丨30貼合,即可完成本實施例中之強 化型波長轉換結構100。 在其他實施例中,波長轉換層12〇可直接形成在基 材13〇上,而波長選擇反射層11〇可直接形成在波長轉 換層120上。波長轉換層12〇可透過浸塗法(dip coating)、刮刀式塗佈法(comma c〇ating)、喷塗法(spraying coating)、旋轉式塗法(spin c〇ating)、擠壓塗佈法(sl〇t coating)、簾幕式塗佈法(curtajn c〇ating)、凹板塗模法 (gravure coating)、或捲對捲(r〇il-to_roll)塗佈法等方法, ❹ 魯 201007250 形成在基材uo上’並可視需要地,進行一或多次塗覆 操作至所需之塗層厚度。 參照第1圖與第2圖,強化型波長轉換結構1卯可 應用在白光發光二極體模組上,並以基材13〇作為白光 發光二極體的發光面。作為光源的發光二極體晶片电所 發出之第-光可為藍光,-部分的藍光可穿透波長選擇 反射層110、波長轉換層120,與基材130,而另一部分 的藍光可被具有YAG螢光粉的波長轉換層12〇激發而二 換為黃光。 一部分的黃光會向光源方向發散,但此部分的黃光 會被波長選擇反㈣11G反射,而往基材⑽的方向射 出。藉由波長選擇反射層110,可使波長轉換層12〇所激 發之黃光集中向基材13〇,即發光面方向射出,再盥籃光 混合以放出白光。強化型波長轉換結構ι〇〇可有效地集 中第-光與第二光的發散方向,制是透過波長選擇反 射層110將黃光反射回向基材130放出,如此一來,可 有效地強化波長轉換層12G的轉換效果,進而提升白光 發光二極體模組的發光效率。此外,第—光與第二光可 在波㈣換層120被擴散,以均勻地向發光面發散,進 而提南白光發光二極體模組的發光均勻度。 同時參照第3A圖與第3B圖,第3:圖係繪示波長 選擇反射層之波長-穿透率圖’第3B圖則是繪示波長選 擇反射層之波長-反射率圖。本實施例中之波長轉換層係 用以轉換波…00nm i 5〇〇nm的第一光為波長為 201007250 550nm至650nm的第二光,而波長選擇反射層則是反射 波長在550nm至650nm間的光、線。 波長選擇反射層對於波長在4〇〇nm至5〇〇nm間的光 線具有極高的穿透率’而對於波長在55〇nrn 至650η間的 光線則具有較低的穿透率,波長選擇反射層對前者的穿 透率可達95-100% ’但對於後者的穿透率則僅有 55-65%。但是相對地,波長選擇反射層對於波長在55〇nm φ 至650nm間的光線的反射率可達到30_40%。換言之,第 一光可輕易地穿過波長選擇反射層而被波長轉換層激發 為第二光,但是向光源發散的第二.光不易再次穿透過波 長選擇反射層,而是會被波長選擇反射層反射向基材方 向’以提高第二光向基材發出之強度。 本實施例中之波長選擇反射層的材料包含膽固醇液 晶與對稱性添加劑,其中對稱性添加劑與膽固酵液晶的 重量百分比為4.4〜5%。 藝 參照第4圖,其係繪示應用強化型波長轉換結構之 白光發光二極體模組與傳統之白光發光二極體模組的波 長売度圖。折線310為傳統的白光發光二極體模組不同 波長的亮度,而折線320為應用本強化型波長轉換結構 的白光發光一極體模組不同波長的亮度,折線3 1 〇與折 線320更可用以表示兩種白光發光二極體模組在波長為 550nm至650nm的黃光的不同亮度值。 具有強化型波長轉換結構之白光發光二極體模組所 發出的黃光亮度(折線320),可高出未應用具有波長選擇 12 201007250 反射層之強化型波長轉換結構的傳統白光發光二極體模 組的黃光亮度(折線3 10)約20%。應用強化型波長轉換結 構之白光發光二極體模組可透過強化黃光的出光量,有 效提高混合白光的發光強度與整體出光量。 參照第5圖,其係繪示本發明之強化型波長轉換結 構另一較佳實施例之示意圖。本實施例中,基材13〇、波 長轉換層120、波長選擇反射層110為各自獨立設置,其 φ 中波長選擇反射層110為排列接近光源180,接著,波長 轉換層120與基材130為依序排列,基材13〇則可作為 出光面。光源180可為一發光二極體晶片、一冷陰極螢 光燈(cold cathode fluorescent lamp),或一紫外光燈。 由上述本發明較佳實施例可知’應用本發明具有下 列優點。光源所發出之第一光可穿過波長選擇反射層再 經由波長轉換層轉換為第二光,而波長選擇反射層可將 —部分往光源發散的第二光反射向基材的方向,經反射 ❹ 的第一光可與原先即往基材方向發散的第二光會合,以 提高第二光的整體出光量,並增強第一光與第二光之混 合光的整體亮度。 雖然本發明已以一較佳實施例揭露如上,然其並非 用以限定本發明,任何熟習此技藝者,在不脫離本發明 之精神和範圍内,當可作各種之更動與潤飾,因此本發 明之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 13 201007250 為讓本發明之上述和其他目的 例能更明顯易《,所_式之料說明:下優點與實施 例二r示本發™波長換結構-較佳實施 «=:%示對應於本發明之5—㈣換結構的 第3a圖緣示波長選擇反射層之波長-穿透率圖β 第3β圖繪示波長選擇反射層之波長_反射率圖。 第4圖繪示應用強化型波長轉換結構之白光發光二 極體模’’且與傳統之白光發光二極體模組的波長-亮度圖。 第5圖繪示本發明之強化型波長轉換結構另一較佳 實施例之示意圖。 【主要元件符號說明】 φ 100 ·強化型波長轉換結構110:波長選擇反射層 120 :波長轉換層 130 :基材 18 0 :先调 兄货、 310 :折線 320 :折線 14The preparation method of the wavelength conversion layer 12〇 starts with taking 8 g of phosphor powder (Y jG-0G9G2) and 2 g of the adhesive solution, and the adhesive solution is 25 « adhesive diluent (adhesive, KER.25GG, ShinEtsu, AB agent ratio I. Bu τ benzene diluted to 25 wt%) n, two drugs of glory powder and Li agent solution were added to a 3 〇 ml sampling bottle and magnetized, and stirred with a magnetic stirrer for 1 hour. After the phosphor powder and the adhesive diluent are uniformly mixed, a polyimide film is taken, and the stirred slurry is coated with a 50 μm doctor blade, and after coating, it is placed at 170. The baking of the wavelength conversion layer 120 can be completed by oven baking for 3 hours. Finally, the wavelength selective reflection layer 11A and the wavelength conversion layer 120 are bonded to the substrate 30 to complete the bonding in the embodiment. The enhanced wavelength conversion structure 100. In other embodiments, the wavelength conversion layer 12 can be formed directly on the substrate 13A, and the wavelength selective reflection layer 11 can be directly formed on the wavelength conversion layer 120. The wavelength conversion layer 12 〇 can be applied by dip coating, comma c〇ating, spraying coating, spin c〇ating, extrusion coating (sl〇 t coating), curtain coating method, curvure coating, or roll-to-roll coating method, 鲁Lu 201007250 The material is uo" and, as needed, one or more coating operations are performed to the desired coating thickness. Referring to Figures 1 and 2, the enhanced wavelength conversion structure 1 卯 can be applied to a white light emitting diode mold. In the group, the substrate 13 is used as the light-emitting surface of the white light-emitting diode. The first light emitted by the light-emitting diode wafer can be blue light, the portion of the blue light can penetrate the wavelength selective reflective layer 110, the wavelength conversion layer 120, and the substrate 130, and the other portion of the blue light can be YAG The wavelength conversion layer 12 of the phosphor powder is excited and replaced by yellow light. A part of the yellow light will diverge toward the light source, but the yellow light of this part will be reflected by the wavelength selective (4) 11G, and will be emitted toward the substrate (10). The reflective layer 110 allows the yellow light excited by the wavelength conversion layer 12 to be concentrated toward the substrate 13 , that is, in the direction of the light emitting surface, and then mixed with the basket light to emit white light. The enhanced wavelength conversion structure ι can be effectively concentrated. The diverging direction of the first light and the second light is reflected by the wavelength selective reflecting layer 110 to reflect back the yellow light to the substrate 130, thereby effectively enhancing the conversion effect of the wavelength conversion layer 12G, thereby improving white light emission. The luminous efficiency of the diode module. In addition, the first light and the second light may be diffused in the wave (four) layer 120 to uniformly diverge toward the light emitting surface, thereby further illuminating the white light emitting diode module. Uniformity. Referring to Figures 3A and 3B simultaneously, Figure 3 is a diagram showing the wavelength-transmission diagram of the wavelength selective reflection layer. Figure 3B is a wavelength-reflectance diagram showing the wavelength selective reflection layer. The wavelength conversion layer in this embodiment is used to convert the first light of 00 nm i 5 〇〇 nm into a second light having a wavelength of 201007250 550 nm to 650 nm, and the wavelength selective reflection layer is a reflection wavelength between 550 nm and 650 nm. Light, line. The wavelength selective reflection layer has a very high transmittance for light having a wavelength between 4 〇〇 nm and 5 〇〇 nm' and a lower penetration for light having a wavelength between 55 〇 nrn and 650 η. The transmittance, the wavelength selective reflection layer can penetrate 95-100% of the former', but the penetration rate of the latter is only 55-65%. However, in contrast, the wavelength selective reflection layer can have a reflectance of 30-40% for light having a wavelength between 55 〇 nm φ and 650 nm. In other words, the first light can easily pass through the wavelength selective reflection layer and be excited by the wavelength conversion layer to the second light, but the second light diverging toward the light source does not easily penetrate the wavelength selective reflection layer again, but is wavelength-selectively reflected. The layer reflects in the direction of the substrate to increase the intensity of the second light emitted toward the substrate. The material of the wavelength selective reflection layer in this embodiment comprises a cholesterol liquid crystal and a symmetry additive, wherein the weight percentage of the symmetry additive to the cholesterol liquid crystal is 4.4 to 5%. Art Referring to Fig. 4, it is a diagram showing the wavelength illuminance of a white light emitting diode module and a conventional white light emitting diode module using a reinforced wavelength conversion structure. The fold line 310 is the brightness of different wavelengths of the conventional white light emitting diode module, and the fold line 320 is the brightness of different wavelengths of the white light emitting one body module applying the enhanced wavelength conversion structure, and the fold line 3 1 〇 and the fold line 320 are more usable. To indicate different brightness values of the two white light emitting diode modules in yellow light with a wavelength of 550 nm to 650 nm. The yellow light luminance (fold line 320) emitted by the white light emitting diode module having the enhanced wavelength conversion structure can be higher than the conventional white light emitting diode module without the enhanced wavelength conversion structure having the wavelength selective 12 201007250 reflective layer. The yellow brightness of the group (line 3 10) is about 20%. The white light emitting diode module using the enhanced wavelength conversion structure can enhance the luminous intensity of the mixed white light and the overall light output by enhancing the amount of light emitted by the yellow light. Referring to Fig. 5, there is shown a schematic view of another preferred embodiment of the enhanced wavelength conversion structure of the present invention. In this embodiment, the substrate 13A, the wavelength conversion layer 120, and the wavelength selective reflection layer 110 are independently disposed, and the φ medium wavelength selective reflection layer 110 is arranged close to the light source 180. Then, the wavelength conversion layer 120 and the substrate 130 are Arranged in sequence, the substrate 13 can be used as a light-emitting surface. The light source 180 can be a light emitting diode chip, a cold cathode fluorescent lamp, or an ultraviolet light. It will be apparent from the above-described preferred embodiments of the present invention that the application of the present invention has the following advantages. The first light emitted by the light source can pass through the wavelength selective reflection layer and then be converted into the second light via the wavelength conversion layer, and the wavelength selective reflection layer can reflect the second light that is partially diverged toward the light source toward the substrate, and is reflected. The first light of ❹ can be merged with the second light that originally diverges in the direction of the substrate to increase the overall light output of the second light and enhance the overall brightness of the mixed light of the first light and the second light. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention, and it is obvious to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims. [Simple description of the drawings] 13 201007250 In order to make the above and other objects of the present invention more obvious, the description of the material is as follows: the following advantages and the second embodiment show that the present invention has a wavelength-changing structure - a preferred implementation « =:% shows the wavelength-transmission diagram of the wavelength selective reflection layer in the 3a-th diagram corresponding to the 5-(four)-replacement structure of the present invention. The 3rd-th graph shows the wavelength-reflectance diagram of the wavelength-selective reflection layer. Fig. 4 is a view showing a wavelength-luminance map of a white light-emitting diode mode ’ applied to a conventional white light-emitting diode module using a reinforced wavelength conversion structure. Fig. 5 is a view showing another preferred embodiment of the enhanced wavelength conversion structure of the present invention. [Description of main component symbols] φ 100 · Enhanced wavelength conversion structure 110: Wavelength selective reflection layer 120: Wavelength conversion layer 130: Substrate 18 0: First adjustment Brother, 310: Polyline 320: Polyline 14

Claims (1)

201007250 十、申請專利範圍: 1 ·—種強化型波長轉換結構,包含: 一基材; 一波長選擇反射層;以及 一波長轉換層,設置於該基材與該波長選擇反射層 之間,其中一第一光穿透該波長選擇反射層後,一部分 e 之該第—光被該波長轉換層轉換為一第二光,該波長選 擇反射層再將第二光中朝向波長選擇反射層之部分反射 向該基材方向射出。 2·如申請專利範圍第1項所述之強化型波長轉換結 構,其中該波長轉換層之材料包含磷粉、感光材質、螢 光色轉換媒介、有機錯合物材質、發光顏料、量子點為 底材質量子線為底材質、量子讲為底材質或上述材質 Φ 之組合。 3. 如申請專利範圍第i項所述之強化型波長轉換結 構’其中該基材之材料包含玻璃、石英、聚甲基丙烯酸 甲醋、聚苯乙烯、甲苯乙烯,或聚碳酸酯。 4. 如申請專利範圍第1項所述之強化型波長轉換結 構’其中該波長轉換層係形成在該基材上。 15 201007250 5. 如申請專利範圍第1項所述之強化型波長轉換結 構’其中該波長選擇反射層係形成在該波長轉換層上。 6. 如申請專利範圍第丨項所述之強化型波長轉換結 構,其中該強化型波長轉換結構係設置在一光源上,該 光源所發出之該第一光經由該波長轉換層轉換為該第二 光’該第二光中朝該光源方向射回之一部分再經由該波 0 長選擇反射層反射向該基材方向,使該第二光集中向該 基材方向射出。 7. 如申請專利範圍第6項所述之強化型波長轉換結 構,其中該光源包含一發光二極體晶片、一冷陰極螢光 燈(cold cathode fluorescent lamp),與一紫外光燈。 8·如申請專利範圍帛1顿述之強化型波長轉換結 藝構,其中該第一光之波長為400nm至500nm,該第二光 之波長為550nm至650nm。 9·如申μ專利fc圍帛8項所述之強化型;皮長轉換結 構,其中該選擇性波長轉換層之材料包含一膽固醇液晶 與一對稱性添加劑。 10·如U利範圍第9項戶斤述之強化型;皮長轉換結 構’其中該對稱性添加劑與該膽固醇液晶的重量百分比 16 201007250 為4 · 4〜5 % 〇 11·如申請專利範圍第1項所述之強化型波長轉換結 構’其中該第一光為一可見光。 12_如申請專利範圍第1項所述之強化型波長轉換結 構’其中該第一光為一不可見光。 13. 如申請專利範圍第12項所述之強化型波長轉換 結構’其中該第一光為—紫外光。 14. 如申凊專利範圍第1項所述之強化型波長轉換結 構其中該波長轉換層之持料包含〆榮光粉與一黏著劑。 17201007250 X. Patent application scope: 1 · A type of enhanced wavelength conversion structure, comprising: a substrate; a wavelength selective reflection layer; and a wavelength conversion layer disposed between the substrate and the wavelength selective reflection layer, wherein After a first light penetrates the wavelength selective reflection layer, the first light of a portion e is converted into a second light by the wavelength conversion layer, and the wavelength selective reflection layer further directs the second light toward the wavelength selective reflection layer. The reflection is emitted in the direction of the substrate. 2. The reinforced wavelength conversion structure according to claim 1, wherein the material of the wavelength conversion layer comprises a phosphor powder, a photosensitive material, a fluorescent color conversion medium, an organic complex material, a luminescent pigment, and a quantum dot. The bottom material quantum wire is a combination of a bottom material, a quantum material, or a material Φ. 3. The reinforced wavelength conversion structure as described in claim i wherein the material of the substrate comprises glass, quartz, polymethyl methacrylate, polystyrene, styrene, or polycarbonate. 4. The enhanced wavelength conversion structure according to claim 1, wherein the wavelength conversion layer is formed on the substrate. 15 201007250 5. The enhanced wavelength conversion structure according to claim 1, wherein the wavelength selective reflection layer is formed on the wavelength conversion layer. 6. The reinforced wavelength conversion structure according to claim 2, wherein the enhanced wavelength conversion structure is disposed on a light source, and the first light emitted by the light source is converted into the first light via the wavelength conversion layer. The second light is reflected in the direction of the light source and reflected in the direction of the substrate via the wave length selective reflection layer, and the second light is concentrated toward the substrate. 7. The enhanced wavelength conversion structure of claim 6, wherein the light source comprises a light emitting diode chip, a cold cathode fluorescent lamp, and an ultraviolet light. 8. The enhanced wavelength conversion structure as described in the patent application, wherein the wavelength of the first light is from 400 nm to 500 nm, and the wavelength of the second light is from 550 nm to 650 nm. 9. The reinforced type of the invention as claimed in claim 8, wherein the material of the selective wavelength conversion layer comprises a cholesteric liquid crystal and a symmetry additive. 10· For example, the U-Liu range is the ninth item of the enhanced type; the skin length conversion structure 'where the symmetry additive and the PCT liquid crystal weight percentage 16 201007250 is 4 · 4~5 % 〇 11 · as claimed The enhanced wavelength conversion structure of claim 1 wherein the first light is a visible light. 12) The enhanced wavelength conversion structure of claim 1, wherein the first light is an invisible light. 13. The enhanced wavelength conversion structure of claim 12, wherein the first light is ultraviolet light. 14. The enhanced wavelength conversion structure of claim 1, wherein the wavelength conversion layer is supported by a glazing powder and an adhesive. 17
TW97130882A 2008-08-13 2008-08-13 Enhanced wavelength-converting structure TW201007250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97130882A TW201007250A (en) 2008-08-13 2008-08-13 Enhanced wavelength-converting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97130882A TW201007250A (en) 2008-08-13 2008-08-13 Enhanced wavelength-converting structure

Publications (1)

Publication Number Publication Date
TW201007250A true TW201007250A (en) 2010-02-16

Family

ID=44826979

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97130882A TW201007250A (en) 2008-08-13 2008-08-13 Enhanced wavelength-converting structure

Country Status (1)

Country Link
TW (1) TW201007250A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9201189B2 (en) 2011-03-22 2015-12-01 Lg Innotek Co., Ltd. Display device
CN105717700A (en) * 2014-12-22 2016-06-29 财团法人工业技术研究院 Gain type wavelength conversion structure, light emitting film and backlight element
TWI629807B (en) * 2016-10-18 2018-07-11 隆達電子股份有限公司 Light-enhancement device, and light emitting module and light emitting element having the same
US12006461B2 (en) 2021-12-30 2024-06-11 Industrial Technology Research Institute Light color conversion material and light color conversion ink

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9201189B2 (en) 2011-03-22 2015-12-01 Lg Innotek Co., Ltd. Display device
TWI514044B (en) * 2011-03-22 2015-12-21 Lg伊諾特股份有限公司 Display device
US9322972B2 (en) 2011-03-22 2016-04-26 Lg Innotek Co., Ltd. Display device
US9551822B2 (en) 2011-03-22 2017-01-24 Lg Innotek Co., Ltd. Display device
US10107949B2 (en) 2011-03-22 2018-10-23 Lg Innotek Co., Ltd. Display device
CN105717700A (en) * 2014-12-22 2016-06-29 财团法人工业技术研究院 Gain type wavelength conversion structure, light emitting film and backlight element
TWI560509B (en) * 2014-12-22 2016-12-01 Ind Tech Res Inst Enhanced wavelength converting structure, luminescent film and display backlighting unit
US10501688B2 (en) 2014-12-22 2019-12-10 Industrial Technology Research Institute Enhanced wavelength converting structure
TWI629807B (en) * 2016-10-18 2018-07-11 隆達電子股份有限公司 Light-enhancement device, and light emitting module and light emitting element having the same
US10386629B2 (en) 2016-10-18 2019-08-20 Lextar Electronics Corporation Light-enhancement device, and appliance having the same
US12006461B2 (en) 2021-12-30 2024-06-11 Industrial Technology Research Institute Light color conversion material and light color conversion ink

Similar Documents

Publication Publication Date Title
US8081289B2 (en) Enhanced wavelength-converting structure
CN105717700B (en) Gain type wavelength conversion structure, light emitting film and backlight element
CN105891936B (en) Light-guide device and preparation method thereof and backlight module
US7417368B2 (en) Color electroluminescent displays with thick film dielectric layer between electrodes
TWI417487B (en) Color-stable phosphor converted led
TW200836382A (en) White light emitting device and white light source module using the same
CN106054449A (en) LCD display device, quantum dot based backlight module and manufacturing method thereof
US20060145172A1 (en) Light emitting diode with a quasi-omnidirectional reflector
CN107424524A (en) A kind of miniature LED display panel
JPH07176794A (en) Planar light source
CN107544178A (en) Light conversion element and the display device for including it
CN109564963A (en) Micro- LED and display device including it
Huang et al. Planar lighting system using array of blue LEDs to excite yellow remote phosphor film
TW200946646A (en) Semiconductor light emitting device, backlighting device, color image display device and phosphor used for those devices
TW201227092A (en) Mixing light module
CN207799291U (en) A kind of high colour gamut illuminating module
CN106773289A (en) A kind of quantum dot light emitting device and backlight module and liquid crystal display device
TW201007250A (en) Enhanced wavelength-converting structure
CN102800794A (en) Optical wavelength conversion device and application thereof in white light emitting device
CN108766273A (en) Miniature light-emitting diode display panel and display device
CN106505137A (en) Excellent quantum dot reinforcing membrane of a kind of optical effect and preparation method thereof
CN203275836U (en) Display device
TW200838974A (en) Luminous device of fluorescent powder composition
JPH1012925A (en) Light-emitting diode with phosphor
JP2002358812A (en) Light source using galium nitride compound semiconductor