201005934 . 九、發明說明: . 【發明所屬之技術領域】 本發明涉及一種發光二極體光源裝置。 【先前技術】 目前’發光二極體(Light Emitting Diode, LED)作為一 種固態照明裝置,因其具光質佳(也即光源輸出之光譜)及發 光效率高等特性而逐漸取代冷陰極螢光燈(Cold Cathode Fluorescent Lamp,CCFL)作為照明裝置之發光元件,具體可 ❺參見 Michael S· Shur 等人於文獻 Proceedings of the IEEE, Vol. 93,No. 10 (2005 年 10 月)中發表之 “ s〇lid_State Lighting: Toward Superior Illumination” 一文。發光二極體 作為照明光源時,通常需要較高之演色性(即CRI大於90)。 一種具有較高演色性之發光二極體,其包括一個藍光發光 二極體晶片、一個紅光發光二極體晶片,以及一個覆蓋該 藍光發光二極體晶片與紅光發光二極體晶片之封裝體,該 封裝體中含有黃色螢光粉。 s亥藍光發光一極體晶片與紅光發光二極體晶片採用不 同之發光二極體晶片,即該藍光發光二極體晶片為GaN系 發光二極體晶片,而紅光發光二極體晶片為AlGalnP系發 光二極體晶片,所以’當該藍光發光二極體晶片與紅光發 光二極體晶片之溫度上升時,其光衰減程度不同,即紅光 發光二極體晶片之光衣減程度較大’造成該發光二極體發 出之光之色溫偏藍(Blue-shift) ’進而導致該發光二極體所 發出之白光之色溫穩定性較差。 201005934 因此,有必要提供一種出射光之色溫穩 光二極體光源裝置。 权奸之毛 【發明内容】 以下將以實施例說明出射光 二極體光源褒置。出射先之色-穩-性較好之發光 種發光二極體光源裝置,包括一個基板 個第 9 發一個第二發光單元及一個第三;;單元: ❹”發光單元及該第三發光單元並列設置 於編反上。該第一發光單元包括第一發光二極 ,:該第一發光二極體晶粒之第一封裝體,該第一:裝體 曰光粉。該第二發光單7"包括第二發光二極體 ; = 發光二極體晶粒之第二封裝體。該第三 "a ^第—發光—極體晶粒及覆蓋該第三發光二極 體j之第三封裝體。該第一發光二極體晶粒、第二發光 體=晶粒及第三發光二極體晶粒為同系化合物發光二極 出之光混合後形❹色光。 ”體射 -種發光二極體光源裝置,包括一個基板,一個第— 單元及一個第二發光單元。該第-發光單元及該第二 Μτο並列設置於該基板上。該第—發光單元包括第— 光—極體晶粒及覆蓋該第一發光二極體晶粒之第一封裝 I該第-封I體中含有紅色螢光粉。該第二發光單元包 —第一發光二極體晶減覆蓋該第二發光二極體晶粒之第 -封裝體’該第二封裝體中設置有至少兩種各自不同之螢 201005934 .光粉。該第一發光二極體晶粒、該第二發光二極體晶粒為 •同系化合物發光二極體晶粒’經由該第一封裂體與該第二 封裝體射出之光混合後形成多色光。 相對於先前技術’該發光二極體光源裝置中至少包括 同為同系化合物發光二極體晶粒之第一發光二極體晶粒及 第二發光二極體晶粒,所以該第一發光二極體晶粒與第二 發光二極體晶粒之光衰減程度基本相同,使得該發光二極 ❹體光源裝置發出之多色光之色溫受溫度之影響較小,即該 發光二極體光源裝置發出之多色光之色溫穩定性較好。 【實施方式】 下面結合附圖對本發明作進一步之詳細說明。 請參見圖1,本發明第一實施例提供之發光二極體光源 裝置1〇,其包括一個基板11,一個第一發光單元12,一個 第二發光單元13及一個第三發光單元14。 第一發光單元12,第二發光單元13及第三發光單元 ❹14|並列设置於基板u上。基板u可與外部電源相連以給 。亥第一發光單元12,第二發光單元13及第三發光單元14 提供電能。第一發光單元12,第二發光單元13及第三發光 單元14發光時所產生之熱量可經由基板1]L傳導出去。基 板11所用材料為銅、轉金屬,氮化紹、三氧化二紹、氧 化鈹等陶究材料,以及石夕等。基板U也可為陶竞銘基板 (Ceramic Aluminum Substrate)。 ^第一發光單兀12包括第一發光二極體晶粒121及覆蓋 第-發光二極體晶粒121之第一封裝體122。第二發光單元 201005934 .13包括第二發光二極體晶粒131及覆蓋該第二發光二極體 晶粒131之第二封裝體132。該第三發光單元14包括第三 發光二極體晶粒141及覆蓋該第三發光二極體晶粒141之 第三封裝體142。第一發光二極體晶粒121,第二發光二極 體晶粒131及第三發光二極體晶粒141分別設置於基板11 上且均與基板11電連接。 第一發光二極體晶粒121,第二發光二極體晶粒131 及第三發光二極體晶粒141為同系化合物發光二極體晶 ®粒。於此,該同系化合物發光二極體晶粒可為GaN系化合 物,其中GaN系化合物係包含GaN、InGaN、AlGaN、AlInGaN 等化合物之發光二極體晶粒,所以其光衰減程度基本相 同,使得發光二極體光源裝置10發出之多色光之色溫受溫 度之影響較小,即該發光二極體光源裝置10發出之多色光 之色溫穩定性較好。並且於同為GaN系化合物之第一發光 二極體晶粒121,第二發光二極體晶粒131及第三發光二極 _體晶粒141溫度上升之情況下,其發光效率變動幅度比 AlGalnP系化合物發光二極體晶粒之小,從而使發光二極體 光源裝置10可保持於較為穩定之狀態。 於本實施例中,第一發光二極體晶粒121與第二發光 二極體晶粒131均為綠光發光二極體晶粒,其可發出波長 範圍為505〜540奈米之綠光,該綠光發光二極體晶粒為GaN 系發光二極體晶粒。第三發光二極體晶粒141為藍光發光 二極體晶粒,其可發出波長範圍為445〜475奈米之藍光。 該藍光發光二極體晶粒為GaN系發光二極體晶粒。第一發 201005934 光一極體晶粒121、第二發光二極體晶粒131及第三發光二 極體晶粒141分別與第—電源1〇1,第二電源1〇2及^三; 源103形成電連接。由第一電源101,第二電源102及第三 電源朋分別對第-發光二極體晶粒12 體 晶…第三發光二極體晶粒141之電壓及電、= 立控制。 丁领 第一封裝體122包括第一透明基材122◎及 ❹ 第一透明基材㈣中之第一勞光粉而。第_透== mo之材料可選用梦膠、樹脂等透光材料。於本實施例中, 第-透明基材122〇所用材料為折射率大於^之石夕膠 一螢光粉1222為红耷播止认 r ^ 為心645夺米之红f =其焚光激發可發出波長範圍 ,、卡之先。該紅色螢光粉可為氮化物、矽酸 鹽、氧化物或硫化物等。 第二透明基 第三透明基 第二封褒體132包括第二透明基材· 材測一之材料可選用石夕膠、樹脂等透光材料 ❹ 第—封裝體142包括第三透明基材1420 材1420一之材料可選用石夕膠、樹脂等透光材料 第螢光粉1222於第一發光二極體晶粒121發出之綠 二ft下發出紅光,第一發光二極體晶粒121發出之綠 體曰Hi T由第—透明基材12 2 〇射出。第二發光二極 .N 出之,、彔先直接經由第二封裝體132射出。第 二發光二極體晶粒 —^ 142ΜΨ错 發出之藍先直接經由第三封裝體 別”第一蘇:電源1〇1,第二電源1〇2及第三電源103分 子“-發光二極體晶粒121,第二發光二極體晶粒ΐ3ι 11 201005934 .及第三發光二極體晶粒141之電流進行控制,進而分別對 二由第封裝體1出射之紅光及綠光、經由第二封裝體 132出射之綠光,以及經由第三封裝體142出射之藍光之色 溫進行調節,使得發光二極體光源裝置1〇能夠射出不同顏 色之光或不同色溫值之光,以獲得實際所需之色光及色溫\ 請參見圖2,本發明第二實施例提供之發光二極體光π源 裝置20,其與上述第一實施例所提供之發光二極體光源裝 ❹置10基本相同’不同之處在於: 、 第一發光二極體晶粒221 ’第二發光二極體晶粒231 及第三發光二極體晶粒241均為藍光發光二極體晶粒,其 可發出波長範圍為445〜475奈米之藍光。 々第二封裝體232包括第二透明基材232〇及均勻分佈於 第二透明基材2320令之第二螢光粉2322。第二螢光粉2322 為綠色螢光粉,其受光激發可發出波長範圍為5〇5〜54〇奈 米之綠光。綠色螢光粉可為氮化物、矽酸鹽或氧化物等。 摹第=螢光粉2322也可為黃色螢光粉,其受光激發可發出波 長範圍為550〜590奈米之黃光。黃色螢光粉可為氮化物、 石夕酸鹽或氧化物等。可理解的是,第二封裝體说中可同 時設置綠色螢光粉與黃色螢光粉。 第一螢光粉1222於第一發光二極體晶粒221發出之藍 光之激發下發出紅光,第一發光二極體晶粒221發出之藍 光中部分直接經由第一透明基材122〇射出。第二螢光粉 2322於第二發光二極體晶粒231發出之藍光之激發下發出 綠光或/及黃光,第二發光二極體晶粒231發出之藍光中部 12 201005934 •分直接經由第二透明基材2320射出。第三 ㈣藍光直接經由第三封裝體242:先, =:原:1”三電源1〇3分別對第, 2曰體晶粒231及第三發光二極體晶粒 ,進打控制’進而分別對經由第一封裝請 =及藍光,經由第二封裝體232出射之藍光、綠光或/ 只光,以及經由第三封裝體242出射之藍光之色 ❹,節,使得發光二極體光源裝置2Q能夠射出不同顏色之先: 或不同色溫值之光,以獲得實際所需之色光及色溫。 μ m3,本發明第三實施例提供之發光二極體光源 ",/、、上述第二實施例所提供之發光二極體光源裝 置20基本相同’不同之處在於: 第一發光二極體晶粒321,第二發光二極體晶粒33ι 及第二發光二極體晶粒341均為紫外光發光二極體晶粒。 該紫外光發光二極體晶粒為GaN系發光二極體晶粒。 ❿帛三封裝體342包括第三透明基材342〇及均勻分佈於 第三透明基材3420中之第三螢光粉迎。第三透明基材 3420之材料可選时膠、樹脂等透光材料。第三螢光粉地 為藍色螢光粉’其受光激發可發出波長範圍為445〜475奈 米之藍光。該藍光螢光粉可為氮化物、料鹽或氧化物等· 第一螢光粉1222於第一發光二極體晶粒321發出之紫 外光之激發下發出紅光。第二螢光粉2322於第二發光二極 體晶粒331發出之紫外光之激發下發出綠光或/及黃光。第 —螢光籾3422於第二發光二極體晶粒341發出之紫外光之 13 201005934 -激發下發出藍光。第一電源ιοί,第二電源102及第三電源 103分別對該第一發光二極體晶粒321,第二發光二極體晶 粒331及第三發光二極體晶粒341之電流進行控制,進而 分別對經由第一封裝體122出射之紅光,經由第二封裝體 232出射之綠光或/及黃光,以及經由第三封裝體342出射 之藍光之色溫進行調節,使得發光二極體光源裝置30能夠 射出不同顏色之光或不同色溫值之光,以獲得實際所需之 色光及色溫。 翁 請參見圖4,本發明第四實施例提供之發光二極體光源 裝置40,其與上述第二實施例所提供之發光二極體光源裝 置20基本相同,不同之處在於: 發光二極體光源裝置40包括基板41,該基板41具有 並列設置之第一容置槽410,第二容置槽412及第三容置槽 414。第一容置槽410,第二容置槽412及第三容置槽414 均為錐形,且其開口分別沿遠離其底部之方向逐漸變大。 φ第一發光二極體晶粒421,第二發光二極體晶粒431及第三 發光二極體晶粒441分別設置於第一容置槽410,第二容置 槽412及第三容置槽414之底部。第一封裝體422,第二封 裝體432,及第三封裝體442分別設置於第一容置槽410, 第二容置槽412及第三容置槽414中。 第一發光二極體晶粒421與第二發光二極體晶粒431 為紫外光發光二極體晶粒,第三發光二極體晶粒441為藍 光發光二極體晶粒。由於紅色螢光粉於紫外光發光二極體 晶粒發出之紫外光激發下之轉換效率較差,所以第一發光 14 201005934 • 二極體晶粒421、第二發光二極體晶粒431與第三發光二極 體晶粒441可選擇不同之尺寸大小以克服轉換效率不平衡 之問題。於本實施例中,第一發光二極體晶粒421與第二 發光二極體晶粒431之尺寸大小為lmmx 1mm,第三發光二 極體晶粒441之大小為0.6mmx0.6mm,以平衡發光二極體 光源裝置40中不同螢光粉之轉換效率。 發光二極體光源裝置40進一步包括一個具有中空環狀 結構之反光部49。反光部49設置於基板41上以環繞第一 ®容置槽410、第二容置槽412及第三容置槽414。反光部49 之内表面491為反射面用以反射經由第一封裝體422,第二 封裝體432,及第三封裝體442射出之光線,達到混光均勻 之效果。於本實施例中,該内表面491 一階梯面。反光部 49所用材料包括聚對苯二醯對苯二胺(PPA),低吸濕性尼龍 (PA9T),液晶聚合物(LCP)等。 請參見圖5,本發明第五實施例提供之發光二極體光源 φ裝置50,其與上述第四實施例所提供之發光二極體光源裝 置40基本相同,不同之處在於: 反光部59之内表面591為一連續之雙斜率面。内表面 591包括鄰近第一容置槽410及第三容置槽414之第一表面 5911及遠離第一容置槽410及第三容置槽414之第二表面 5912。第一表面5911具有第一斜率,第二表面5912具有 不同於第一斜率之第二斜率。反光部59與基板51為一體 成型結構。 請參見圖6,本發明第六實施例提供之發光二極體光源 15 201005934 - 裝置60,其與上述第四實施例所提供之發光二極體光源裝 . 置40基本相同,不同之處在於: 發光二極體光源裝置60進一步包括一散射層68。散射 層68設置於反光部69中,並位於第一容置槽410、第二容 置槽412及第三容置槽414上。散射層68包括第四透明基 材681及均勻分佈於第四透明基材681中之散射粒子682。 第四透明基材681所用材料可選用矽膠、樹脂等透光材料, 其折射率小於或等於封裝體422,432,及442中透明基材 ❹之折射率。散射粒子682所用材料可為二氧化鈦(Ti02)、塑 膠、PMMA、熔融石英(Fused Silica)、三氧化二鋁(A1203)、 氧化鎂(MgO)、矽鋁氧氮聚合物(Sialon)或其他透明氮氧化 物。散射粒子682之折射率範圍為1.1〜2.4。散射粒子682 用於散射經由第一封裝體422射出之紅光、經由第二封裝 體432射出之綠光或/及黃光,以及經由第三封裝體442射 出之藍光,從而進一步提高發光二極體光源裝置60之出光 @均勻性。 請參見圖7,本發明第七實施例提供之發光二極體光源 裝置70,其包括一個基板71,一個第一發光單元72及一 個第二發光單元73。 基板71具有並列設置之第一容置槽710與第二容置槽 712。第一容置槽710與第二容置槽712均為錐形。 第一發光單元72包括第一發光二極體晶粒721及覆蓋 第一發光二極體晶粒721之第一封裝體722。第二發光單元 73包括第二發光二極體晶粒731及覆蓋第二發光二極體晶 16 201005934 • 粒731之第二封裝體732。第一發光二極體晶粒721與第二 .發光二極體晶粒731分別設置於第一容置槽710與第二容 置槽712之底部且與基板71電連接。第一封裝體722與第 二封裝體732分別設置於第一容置槽710與第二容置槽712 中〇 第一發光二極體晶粒721與第二發光二極體晶粒731 為同系化合物發光二極體晶粒。於此,該同系化合物發光 二極體晶粒可為GaN系發光二極體晶粒。於本實施例中, ®第一發光二極體晶粒721與第二發光二極體晶粒731為紫 外光發光二極體晶粒。第一發光二極體晶粒721、第二發光 二極體晶粒731分別與第一電源101、第二電源102形成電 連接。由第一電源101、第二電源102分別對第一發光二極 體晶粒721、第二發光二極體晶粒731之電壓及電流進行獨 立控制。 第一封裝體722包括第一透明基材7220及均勻分佈於 參第一透明基材7220中之第一螢光粉7222。第一透明基材 7220之材料可選用矽膠、樹脂等透光材料。第一螢光粉7222 為紅色螢光粉,其受光激發可發出波長範圍為610〜645奈 米之紅光。 第二封裝體732包括第二透明基材7320,第二螢光粉 7322及第三螢光粉7324。第二螢光粉7322與第三螢光粉 7324均勻分佈於第二透明基材7320。第二螢光粉7322為 綠色螢光粉,其受光激發可發出波長範圍為505〜540奈米 之綠光。第三螢光粉7324為藍色螢光粉,其受光激發可發 17 201005934 • 出波長範圍為445〜475奈米之藍光。 ' 弟一螢光粉7222於第一發光二極體晶粒721發出之紫 外光之激發下發出紅光。第二螢光粉7322及第三營光粉 7324於第二發光二極體晶粒731發出之紫外光之激發下^ 出綠光和藍光。第一電源101、第二電源1〇2分別對該第一 發光二極體晶粒721、第二發光二極體晶粒731之電流進行 控制’進而分別對經由第一封裝體722出射之紅光、經: 第二封裝體732出射之綠光和藍光之色溫進行調節,使得 發光二極體光源裝置70能夠射出不同顏色之光或不同色溫 值之光,以獲得實際所需之色光及色溫。 當然,第一發光二極體晶粒721與第二發光二極體晶 粒731也可為藍光發光二極體晶粒,其可發出波長範圍為 445〜475奈米之藍光。 綜上所述’本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施方 ❹式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化皆 應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明第一實施例提供之發光二極體光源裝置 之剖面示意圖。 圖2係本發明第二實施例提供之發光二極體光源裝置 之剖面示意圖。 圖3係本發明第三實施例提供之發光二極體光源裝置 18 201005934 - 之剖面示意圖。 , 圖4係本發明第四實施例提供之發光二極體光源裝置 之剖面示意圖。 圖5係本發明第五實施例提供之發光二極體光源裝置 之剖面示意圖。 圖6係本發明第六實施例提供之發光二極體光源裝置 之剖面示意圖。 圖7係本發明第七實施例提供之發光二極體光源裝置 ®之剖面示意圖。 【主要元件符號說明】 發光二極體光源裝置 10、20、30、40、50、60、70 基板 11 、 41 、 51 、 71 第一發光單元 12、72 第二發光單元 13、73 第三發光單元 14 ❾第一發光二極體晶粒 121 、 221 、 321 、 421 、 721 第二發光二極體晶粒 131 、 231 、 331 、 431 、 731 第三發光二極體晶粒 141 、 241 、 341 、 441 第一封裝體 122、422、722 第二封裝體 132、232、432、732 第三封裝體 142、242、342、442 第一電源 101 第二電源 102 第三電源 103 19 201005934201005934 . IX. Description of the invention: 1. Field of the Invention The present invention relates to a light-emitting diode light source device. [Prior Art] At present, 'Light Emitting Diode (LED) as a solid-state lighting device gradually replaces the cold cathode fluorescent lamp because of its good light quality (that is, the spectrum of the light source output) and high luminous efficiency. (Cold Cathode Fluorescent Lamp, CCFL) as a illuminating element for a lighting device, see, for example, Michael S. Shur et al., Proceedings of the IEEE, Vol. 93, No. 10 (October 2005). 〇lid_State Lighting: Toward Superior Illumination" article. Light-emitting diodes generally require higher color rendering (ie, CRI greater than 90) when used as an illumination source. A light-emitting diode having higher color rendering, comprising a blue light-emitting diode chip, a red light-emitting diode chip, and a blue light-emitting diode chip and a red light-emitting diode chip A package containing yellow phosphor powder. The s-blue light-emitting diode chip and the red light-emitting diode chip use different light-emitting diode chips, that is, the blue light-emitting diode chip is a GaN-based light-emitting diode chip, and the red light-emitting diode chip It is an AlGalnP-based light-emitting diode chip, so when the temperature of the blue light-emitting diode chip and the red light-emitting diode chip rises, the degree of light attenuation is different, that is, the light-emitting diode of the red light-emitting diode chip is reduced. A greater degree 'causes the color temperature of the light emitted by the light-emitting diode to be blue-shift', which in turn causes the color temperature of the white light emitted by the light-emitting diode to be less stable. 201005934 Therefore, it is necessary to provide a color temperature stable light diode light source device that emits light. The hair of the traitor is exemplified. Hereinafter, the light-emitting diode light source device will be described by way of an embodiment. a light-emitting diode light source device having a light-stable color-stable light-emitting device, comprising: a substrate, a ninth, a second light-emitting unit, and a third;; unit: ❹" illuminating unit and the third illuminating unit The first light-emitting unit includes a first light-emitting diode, a first package body of the first light-emitting diode die, and the first: the body-mounted phosphor powder. 7" includes a second light emitting diode; = a second package of light emitting diode grains. The third "a^th light emitting body film and covering the third light emitting diode j The three-package body, the first light-emitting diode crystal grain, the second light-emitting body=grain, and the third light-emitting diode crystal grain are light-mixed light-emitting light of the homologous compound light-emitting diode. The light emitting diode device comprises a substrate, a first unit and a second light unit. The first light-emitting unit and the second Μτ are arranged side by side on the substrate. The first light-emitting unit includes a first photo-polar body die and a first package I covering the first light-emitting diode die. The first-package I body contains red phosphor powder. The second light emitting unit package—the first light emitting diode crystal reduces the first package body covering the second light emitting diode die. The second package body is provided with at least two different kinds of firefly 201005934. . The first light-emitting diode crystal grain and the second light-emitting diode crystal grain are formed by mixing the light emitted from the first cracked body and the second package body by the second light-emitting diode crystal grain Shade. Compared with the prior art, the light-emitting diode light source device includes at least a first light-emitting diode crystal grain and a second light-emitting diode crystal grain which are the same-system compound light-emitting diode crystal grains, so the first light-emitting diode The light attenuation of the polar body grains and the second light-emitting diode crystal grains is substantially the same, so that the color temperature of the multi-color light emitted by the light-emitting diode-based light source device is less affected by the temperature, that is, the light-emitting diode light source device The color temperature of the multi-colored light emitted is better. [Embodiment] The present invention will be further described in detail below with reference to the accompanying drawings. Referring to FIG. 1, a light-emitting diode light source device 1A according to a first embodiment of the present invention includes a substrate 11, a first light-emitting unit 12, a second light-emitting unit 13, and a third light-emitting unit 14. The first light emitting unit 12, the second light emitting unit 13, and the third light emitting unit ❹14| are arranged side by side on the substrate u. The substrate u can be connected to an external power source for giving. The first light emitting unit 12, the second light emitting unit 13, and the third light emitting unit 14 provide electrical energy. The heat generated when the first light-emitting unit 12, the second light-emitting unit 13, and the third light-emitting unit 14 emit light can be conducted out through the substrate 1]L. The material used for the substrate 11 is copper, metal, niobium, antimony trioxide, antimony oxide, and the like, as well as Shi Xi et al. The substrate U can also be a Ceramic Aluminum Substrate. The first light-emitting unit 12 includes a first light-emitting diode die 121 and a first package body 122 covering the first-light-emitting diode die 121. The second light emitting unit 201005934 .13 includes a second light emitting diode die 131 and a second package 132 covering the second light emitting diode die 131. The third light emitting unit 14 includes a third light emitting diode die 141 and a third package 142 covering the third light emitting diode die 141. The first LED die 121, the second LED die 131 and the third LED die 141 are respectively disposed on the substrate 11 and are electrically connected to the substrate 11. The first light-emitting diode crystal grains 121, the second light-emitting diode crystal grains 131, and the third light-emitting diode crystal grains 141 are homologous compound light-emitting diode crystal particles. Here, the homologous compound light-emitting diode crystal grains may be GaN-based compounds, wherein the GaN-based compound contains light-emitting diode crystal grains of a compound such as GaN, InGaN, AlGaN, or AlInGaN, so that the degree of light attenuation is substantially the same, The color temperature of the multi-color light emitted by the light-emitting diode light source device 10 is less affected by the temperature, that is, the color temperature stability of the multi-color light emitted by the light-emitting diode light source device 10 is better. And in the case where the first light-emitting diode crystal grain 121 of the GaN-based compound, the second light-emitting diode crystal grain 131, and the third light-emitting diode body grain 141 have a temperature rise, the luminous efficiency variation ratio is larger than The AlGalnP-based compound has a small crystal size of the light-emitting diode, so that the light-emitting diode light source device 10 can be maintained in a relatively stable state. In this embodiment, the first LED dipole die 121 and the second LED dipole die 131 are both green light emitting diode crystal grains, and emit green light having a wavelength range of 505 to 540 nm. The green light-emitting diode crystal grains are GaN-based light-emitting diode crystal grains. The third light-emitting diode die 141 is a blue light-emitting diode die which emits blue light having a wavelength in the range of 445 to 475 nm. The blue light emitting diode crystal grains are GaN light emitting diode crystal grains. The first hair 201002934 light first body die 121, the second light emitting diode die 131 and the third light emitting diode die 141 and the first power source 1〇1, the second power source 1〇2 and ^3; 103 forms an electrical connection. The first power source 101, the second power source 102, and the third power source respectively control the voltage and electric power of the first light-emitting diode die 12 and the third light-emitting diode die 141. The first package body 122 includes a first transparent substrate 122 ◎ and a first one of the first transparent substrate (four). The material of the first _ through == mo can be selected from light-transmitting materials such as dream glue and resin. In the present embodiment, the material used for the first transparent substrate 122 is a refractive index greater than ^, and the phosphor powder 1222 is red 耷 止 认 ^ ^ 为 为 645 645 645 645 645 645 645 645 645 645 645 Can emit the wavelength range, the card first. The red phosphor may be a nitride, a citrate, an oxide or a sulfide. The second transparent base third transparent base second sealing body 132 comprises a second transparent substrate. The material for measuring the material is selected from the group consisting of a transparent material such as a stone adhesive or a resin. The first package 142 includes a third transparent substrate 1420. The material of the material 1420 can be selected from a light-transmitting material of the diaphytial gel or a resin, and the second phosphor crystal 1222 emits red light under the green ft emitted by the first light-emitting diode die 121, and the first light-emitting diode die 121 The emitted green body 曰Hi T is ejected from the first transparent substrate 12 2 . The second light-emitting diode .N is emitted directly from the second package 132. The second light-emitting diode die—^ 142 ΜΨ 发出 发出 发出 先 先 先 先 先 先 先 先 先 ” ” ” ” ” ” ” ” 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一The body die 121, the second light-emitting diode die ΐ3ι 11 201005934 , and the current of the third light-emitting diode die 141 are controlled, and respectively, the red light and the green light emitted by the first package 1 are respectively The green light emitted by the second package body 132 and the color temperature of the blue light emitted through the third package body 142 are adjusted, so that the light-emitting diode light source device 1 can emit light of different colors or light of different color temperature values to obtain actual The required color light and color temperature are as shown in FIG. 2. The light-emitting diode photo-source device 20 according to the second embodiment of the present invention is basically the same as the light-emitting diode light source device 10 provided in the first embodiment. The same 'different' is: the first light-emitting diode die 221 'the second light-emitting diode die 231 and the third light-emitting diode die 241 are blue light-emitting diode crystal grains, which can be emitted Blue light with a wavelength range of 445 to 475 nm. The second package 232 includes a second transparent substrate 232 and a second phosphor 2322 uniformly distributed on the second transparent substrate 2320. The second phosphor 2322 is a green phosphor which is excited by light to emit green light having a wavelength range of 5 〇 5 to 54 〇. The green phosphor may be a nitride, a citrate or an oxide.摹P. = Fluorescent Powder 2322 can also be a yellow fluorescing powder which is excited by light to emit yellow light having a wavelength ranging from 550 to 590 nm. The yellow phosphor powder may be a nitride, a sulphate or an oxide. It can be understood that the green phosphor powder and the yellow phosphor powder can be simultaneously disposed in the second package. The first phosphor powder 1222 emits red light under the excitation of the blue light emitted by the first LED dipole 221, and the portion of the blue light emitted by the first LED dipole 221 is directly emitted through the first transparent substrate 122. . The second phosphor powder 2322 emits green light or/and yellow light under the excitation of the blue light emitted by the second light emitting diode die 231, and the second light emitting diode die 231 emits the blue light in the middle portion 12 201005934 The second transparent substrate 2320 is emitted. The third (four) blue light directly passes through the third package body 242: first, =: original: 1" three power sources 1 〇 3 respectively for the second, the second body 231 and the third light-emitting diode die, and then control The blue light, the green light or the light emitted through the second package 232 via the first package and the blue light, and the color ray of the blue light emitted through the third package 242 respectively, respectively, enable the light emitting diode light source The device 2Q can emit light of different colors: or light of different color temperature values to obtain the actual desired color light and color temperature. μ m3, the light emitting diode light source provided by the third embodiment of the present invention ", /, The LED light source device 20 provided by the second embodiment is substantially the same 'differently: the first LED dipole die 321, the second LED dipole die 33 and the second LED dipole die 341 The ultraviolet light emitting diode crystal grains are GaN light emitting diode crystal grains. The third semiconductor package 342 includes a third transparent substrate 342〇 and is evenly distributed in the third layer. The third fluorescent powder in the transparent substrate 3420 welcomes. The third transparent substrate 3420 The material may be a light-transmitting material such as glue or resin. The third phosphor powder is a blue phosphor powder, which is excited by light to emit blue light having a wavelength range of 445 to 475 nm. The blue phosphor powder may be a nitride. The first phosphor powder 1222 emits red light under the excitation of the ultraviolet light emitted from the first light-emitting diode die 321 . The second phosphor powder 2322 is in the second light-emitting diode crystal grain. The green light or/and the yellow light is emitted by the excitation of the ultraviolet light emitted by the 331. The first fluorescent light 籾3422 emits blue light under the excitation of the ultraviolet light emitted by the second light emitting diode crystal 341. 201005934 - The first power source ιοί The second power source 102 and the third power source 103 respectively control the currents of the first LED die 321 , the second LED dipole 331 and the third LED dipole 341, and respectively The red light emitted through the first package body 122 is adjusted by the green light or/and the yellow light emitted from the second package 232 and the color temperature of the blue light emitted through the third package 342, so that the light emitting diode device 30 is Able to emit light of different colors or light of different color temperature values, The illuminating diode light source device 40 according to the fourth embodiment of the present invention is substantially the same as the illuminating diode light source device 20 provided in the second embodiment. The difference is that the illuminating diode device 40 includes a substrate 41 having a first accommodating groove 410, a second accommodating groove 412 and a third accommodating groove 414. 410, the second accommodating groove 412 and the third accommodating groove 414 are both tapered, and the openings thereof are gradually enlarged in a direction away from the bottom thereof. φ first light-emitting diode die 421, second light-emitting diode The body 431 and the third illuminating diode 441 are respectively disposed at the bottom of the first accommodating groove 410, the second accommodating groove 412 and the third accommodating groove 414. The first package 422, the second package 432, and the third package 442 are respectively disposed in the first accommodating groove 410, the second accommodating groove 412, and the third accommodating groove 414. The first light-emitting diode die 421 and the second light-emitting diode die 431 are ultraviolet light-emitting diode crystal grains, and the third light-emitting diode crystal grain 441 is a blue light-emitting diode crystal grain. Since the red fluorescing powder has poor conversion efficiency under ultraviolet light excitation by the ultraviolet light emitting diode crystal, the first light emitting 14 201005934 • the diode 421, the second light emitting diode 431 and the first The three light emitting diode dies 441 can be selected in different sizes to overcome the problem of conversion efficiency imbalance. In this embodiment, the size of the first LED dipole 421 and the second LED dipole 431 is 1 mm x 1 mm, and the size of the third LED dipole 441 is 0.6 mm x 0.6 mm. The conversion efficiency of different phosphors in the light-emitting diode light source device 40 is balanced. The light-emitting diode light source device 40 further includes a light reflecting portion 49 having a hollow annular structure. The light reflecting portion 49 is disposed on the substrate 41 to surround the first accommodating groove 410, the second accommodating groove 412, and the third accommodating groove 414. The inner surface 491 of the reflecting portion 49 is a reflecting surface for reflecting the light emitted through the first package 422, the second package 432, and the third package 442 to achieve uniform light mixing. In this embodiment, the inner surface 491 has a stepped surface. The material used for the reflecting portion 49 includes polyparaphenylene terephthalamide (PPA), low hygroscopic nylon (PA9T), liquid crystal polymer (LCP) and the like. Referring to FIG. 5, a light-emitting diode light source φ device 50 according to a fifth embodiment of the present invention is substantially the same as the light-emitting diode light source device 40 provided in the fourth embodiment, except that the light reflecting portion 59 is provided. The inner surface 591 is a continuous double sloped surface. The inner surface 591 includes a first surface 5911 adjacent to the first accommodating groove 410 and the third accommodating groove 414 and a second surface 5912 away from the first accommodating groove 410 and the third accommodating groove 414. The first surface 5911 has a first slope and the second surface 5912 has a second slope that is different from the first slope. The light reflecting portion 59 and the substrate 51 are integrally formed. Referring to FIG. 6, a sixth embodiment of the present invention provides a light-emitting diode light source 15 201005934 - a device 60 which is substantially the same as the light-emitting diode light source device 40 provided in the fourth embodiment, except that The light emitting diode light source device 60 further includes a scattering layer 68. The scattering layer 68 is disposed in the reflective portion 69 and is located on the first accommodating groove 410, the second accommodating groove 412, and the third accommodating groove 414. The scattering layer 68 includes a fourth transparent substrate 681 and scattering particles 682 uniformly distributed in the fourth transparent substrate 681. The material of the fourth transparent substrate 681 may be selected from a light-transmitting material such as silicone or resin, and the refractive index thereof is less than or equal to the refractive index of the transparent substrate 封装 in the packages 422, 432, and 442. The scattering particles 682 may be made of titanium dioxide (Ti02), plastic, PMMA, fused silica (Fused Silica), aluminum oxide (A1203), magnesium oxide (MgO), yttrium aluminum oxynitride (Sialon) or other transparent nitrogen. Oxide. The scattering particles 682 have a refractive index ranging from 1.1 to 2.4. The scattering particles 682 are used to scatter the red light emitted through the first package 422, the green light or/and the yellow light emitted through the second package 432, and the blue light emitted through the third package 442, thereby further improving the light emitting diode. The light source device 60 emits light @ uniformity. Referring to FIG. 7, a light-emitting diode light source device 70 according to a seventh embodiment of the present invention includes a substrate 71, a first light-emitting unit 72 and a second light-emitting unit 73. The substrate 71 has a first accommodating groove 710 and a second accommodating groove 712 which are juxtaposed. The first accommodating groove 710 and the second accommodating groove 712 are both tapered. The first light emitting unit 72 includes a first light emitting diode die 721 and a first package body 722 covering the first light emitting diode die 721. The second light emitting unit 73 includes a second light emitting diode die 731 and a second package 732 covering the second light emitting diode crystal 16 201005934 • the particle 731. The first LED 721 and the second LED 731 are respectively disposed at the bottom of the first accommodating groove 710 and the second accommodating groove 712 and electrically connected to the substrate 71. The first package body 722 and the second package body 732 are respectively disposed in the first accommodating groove 710 and the second accommodating groove 712, and the first illuminating diode die 721 and the second illuminating diode die 731 are in the same system. The compound emits a diode grain. Here, the homologous compound light-emitting diode crystal grains may be GaN-based light-emitting diode crystal grains. In this embodiment, the first light-emitting diode die 721 and the second light-emitting diode die 731 are ultraviolet light-emitting diode crystal grains. The first light emitting diode die 721 and the second light emitting diode die 731 are electrically connected to the first power source 101 and the second power source 102, respectively. The voltages and currents of the first light-emitting diode die 721 and the second light-emitting diode die 731 are independently controlled by the first power source 101 and the second power source 102, respectively. The first package 722 includes a first transparent substrate 7220 and a first phosphor powder 7222 uniformly distributed in the first transparent substrate 7220. The material of the first transparent substrate 7220 may be a light-transmitting material such as silicone or resin. The first phosphor powder 7222 is a red phosphor which is excited by light to emit red light having a wavelength ranging from 610 to 645 nm. The second package 732 includes a second transparent substrate 7320, a second phosphor 7322 and a third phosphor 7324. The second phosphor powder 7322 and the third phosphor powder 7324 are uniformly distributed on the second transparent substrate 7320. The second phosphor 7322 is a green phosphor which is excited by light to emit green light having a wavelength ranging from 505 to 540 nm. The third phosphor 7324 is a blue phosphor which can be excited by light. 17 201005934 • Blue light with a wavelength range of 445 to 475 nm. The phosphor-emitting powder 7222 emits red light under the excitation of ultraviolet light emitted from the first light-emitting diode crystal 721. The second phosphor powder 7322 and the third camp powder 7324 emit green light and blue light under the excitation of the ultraviolet light emitted from the second light emitting diode die 731. The first power source 101 and the second power source 1〇2 respectively control the currents of the first LED die 721 and the second LED die 731 and further respectively emit red through the first package 722. The light, the color temperature of the green light and the blue light emitted by the second package 732 are adjusted, so that the light-emitting diode light source device 70 can emit light of different colors or light of different color temperature values to obtain the actual desired color light and color temperature. . Of course, the first light-emitting diode crystal 721 and the second light-emitting diode crystal 731 may also be blue light-emitting diode crystal grains, which emit blue light having a wavelength ranging from 445 to 475 nm. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a light-emitting diode light source device according to a first embodiment of the present invention. Fig. 2 is a cross-sectional view showing a light-emitting diode light source device according to a second embodiment of the present invention. 3 is a cross-sectional view of a light emitting diode light source device 18 201005934 - according to a third embodiment of the present invention. 4 is a cross-sectional view showing a light emitting diode light source device according to a fourth embodiment of the present invention. Fig. 5 is a cross-sectional view showing a light-emitting diode light source device according to a fifth embodiment of the present invention. Figure 6 is a cross-sectional view showing a light-emitting diode light source device according to a sixth embodiment of the present invention. FIG. 7 is a schematic cross-sectional view of a light-emitting diode light source device according to a seventh embodiment of the present invention. [Description of main component symbols] Light-emitting diode light source device 10, 20, 30, 40, 50, 60, 70 Substrate 11, 41, 51, 71 First light-emitting unit 12, 72 Second light-emitting unit 13, 73 Third light-emitting Unit 14 ❾ first LED dies 121 , 221 , 321 , 421 , 721 second LED dies 131 , 231 , 331 , 431 , 731 third LED 141 , 241 , 341 441 first package body 122, 422, 722 second package body 132, 232, 432, 732 third package body 142, 242, 342, 442 first power source 101 second power source 102 third power source 103 19 201005934
第一透明基材 第二透明基材 第三透明基材 第一螢光粉 第二螢光粉 第三螢光粉 第一容置槽 第二容置槽 第三容置槽 反光部 内表面 第一表面 第二表面 散射層 第四透明基材 散射粒子 1220 ' 7220 1320 ' 2320 1420、3420 1222、7222 2322 ' 7322 3422、7324 410 、 710 412、712 414 49 ' 59 、 69 491 、 591 5911 5912 68 681 682 7320 20First transparent substrate second transparent substrate third transparent substrate first phosphor powder second phosphor powder third phosphor powder first accommodating groove second accommodating groove third accommodating groove reflective portion inner surface first Surface second surface scattering layer fourth transparent substrate scattering particles 1220 '7220 1320 ' 2320 1420, 3420 1222, 7222 2322 ' 7322 3422, 7324 410 , 710 412 , 712 414 49 ' 59 , 69 491 , 591 5911 5912 68 681 682 7320 20