TW201005742A - Memory and reading method thereof - Google Patents

Memory and reading method thereof Download PDF

Info

Publication number
TW201005742A
TW201005742A TW097134246A TW97134246A TW201005742A TW 201005742 A TW201005742 A TW 201005742A TW 097134246 A TW097134246 A TW 097134246A TW 97134246 A TW97134246 A TW 97134246A TW 201005742 A TW201005742 A TW 201005742A
Authority
TW
Taiwan
Prior art keywords
voltage
memory
transistor
unit
memory unit
Prior art date
Application number
TW097134246A
Other languages
Chinese (zh)
Other versions
TWI375225B (en
Inventor
Chun-Hsiung Hung
Hsin-Yi Ho
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Publication of TW201005742A publication Critical patent/TW201005742A/en
Application granted granted Critical
Publication of TWI375225B publication Critical patent/TWI375225B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5671Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge trapping in an insulator
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0466Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS]
    • G11C16/0475Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells with charge storage in an insulating layer, e.g. metal-nitride-oxide-silicon [MNOS], silicon-oxide-nitride-oxide-silicon [SONOS] comprising two or more independent storage sites which store independent data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/56Indexing scheme relating to G11C11/56 and sub-groups for features not covered by these groups
    • G11C2211/561Multilevel memory cell aspects
    • G11C2211/5612Multilevel memory cell with more than one floating gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)

Abstract

A method for reading a memory including a memory cell having a first half cell and a second half cell includes the following steps. A first voltage is applied to the memory cell to determine whether a threshold voltage of the first half cell is higher than a predetermined value or not. If the threshold voltage is higher than the predetermined value, a second voltage higher than the first voltage is applied to the memory cell to read the data stored in the second half cell, otherwise a third voltage lower than the first voltage is applied to the memory cell to read the data stored in the second half cell.

Description

201005742 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種記憶體讀取方法及記憶體,且特 別是有關於一種可以擴大讀取區間及降低讀取擾亂之記 憶體讀取方法及記憶體。 【先前技術】 記憶體係應用於現今之多種資料儲存之用途。記憶體 修包括多種型式,例如為多位階單元(Multi-Level Cell,MLC) 記憶體等。請參照第1A圖,其繪示傳統多位階單元之示 意圖。多位階單元100包括左半單元110及右半單元120。 依據臨界電壓分佈之不同,多位階單元100之每一個半單 元可以具有多個位元。 茲以每一個半單元具有2個位元為例做說明,請參照 第1Β圖,其繪示多位階單元100之臨界電壓分佈之分佈 圖。其中,左半單元110及右半單元120之臨界電壓分佈 ®通常係依序被定義為(11,10,01,00),然並不限於此。 於第1Β圖中之每一個臨界電壓分佈都必須要盡可能地集 中,以保留足夠的讀取區間(read window)。 然而,因為第二位元效應(second-biteffect),右半單 元120之臨界電壓會被左半單元110之臨界電壓所影響, 使得讀取區間變小而導致右半單元120於被讀取時產生錯 誤。此外,若用以讀取之位元線電壓或字元線電壓過高, 則可能對左半單元110之低臨界電壓產生影響,導致左半 201005742 ^ 被讀取時產生讀取擾亂(read disturbance)的現 麥〇 【發明内容】 判斷 以讀取目標半單元所儲;子=低,據以利用不同的電壓 «及降低讀取擾亂的優點身料’具有可以擴大讀取區間 根據本發明之第一方面,提出一種記憶體讀取方法, 1 己憶體包括至記憶單元,此記憶單it包括-第-半單 1第—半單% °記憶體讀取方法包括下列步驟。施加 一第-電麼於記憶單元以判斷第一半單元之臨界電壓是 ^於-特定值。若第—半單元之臨界電壓高於特定值, $加-第二電麼於記憶單元以讀取第二半單元所儲存之 參^:第:電壓高於第一電壓,否則施加一第三電壓於記 ‘、、2以Λ取第二半單元所儲存之資料,第三電壓 一電壓。 一 ^根,本發明之第二方面,提出—種記憶體,包括至少 一記憶單元以及-錢電路。此記憶單元包括—第一半單 ,及-第二半單元。偏壓電路用以施加電壓於記憶單元。 j中’偏壓電路施加-第-電壓於記憶單元以判斷第一半 :二之臨界電壓是否高於一特定值。若第一半單元之臨界 電麼高於特定值,偏Μ電路施加-第二電壓於記憶單元以 6 201005742 讀取第二半單元所儲存之資料,第二電壓高於第一電壓, 否則偏壓電路施加一第三電壓於記憶單元以讀取第二半 單元所儲存之資料,第三電壓低於該第一電壓。 為讓本發明之上述内容能更明顯易懂,下文特舉一較 佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 本發明係提供一種記憶體讀取方法及記憶體,藉由判 β斷相鄰半單元之臨界電壓之高低,據以利用不同的電壓以 讀取目標半單元所儲存之資料,故可以擴大(enlarge)讀取 區間(read window)及降低讀取擾亂(read disturbance)。 於本發明下述之實施例中,茲舉記憶體為一多位階單 元記憶體,及記憶單元為多位階單元為例做說明,然並不 限於此。 請參照第2圖,其繪示依照本發明較佳實施例之記憶 體讀取方法之流程圖。本實施例所揭露之記憶體讀取方 ®法,實質上係應用於一多位階單元(MLC)記憶體,此多位 階單元記憶體包括多個記憶單元區塊,每一個記憶單元區 塊包括多個多位階單元,每一個多位階單元包括一左半單 元及一右半單元。此多位階單元記憶體例如為一電荷補捉 記憶體(charge trapped memory)。 茲以一多位階單元之右半單元為所欲讀取之目標單 元,左半單元為相鄰單元為例做說明。首先,於步驟S200 中,施加一第一電壓於多位階單元之汲極端之位元線,以 7 判斷相鄰的左半單元之臨界電壓是否高於一特定值。其 中,特疋值實質上係為4伏特。其中,第一電屢為不會造 成讀取擾亂之多㈣單元的祕端電壓的上限,例如為16 伏特,但不限於此,可能隨著製程演進而有所改變。步驟 fOO實質上係用以判斷相鄰的左半單元之臨界電壓屬於 高臨界電壓或低臨界電!。 若左半單元之臨界電壓高於特定值,亦即左半單元之 臨界電壓屬於高臨界電壓,則於步驟S21〇中,施加一第 壓於多位階單元之汲極端之位元線,以讀取目標的右 半早7〇所儲存之資料,其中第二電壓高於第一電壓。第二 f壓係為-高位元線電壓,例如為18伏特。對於多位階 單元而^,若汲極端之偏壓為高電壓準位,則多位階單元 之左半單元及右半單元之臨界電壓比較不會受影響。故於 步驟S210中,利用高位元線電壓以讀取右半單元所儲存 之資料,可以降低第二位元效應對於右半單元之臨界電壓 談的影響,使得讀取區間擴大。此外,因為左半單元之臨界 電㈣於高臨界電壓而不會受位元線之電壓影響,可 讀取擾亂的現象。 _ 若左半單元之臨界電壓低於特定值,亦即左半單元之 L界電㈣於低臨界㈣,則於步驟S22Q中,施加 三電壓於多位階單元之汲極端之位元線,以讀取右半單元 存之資料,其中第三低於第,。第三電虔係 為一低位元線,例如為M伏特。因為左半 臨 界電虔屬於低臨界電壓,若利用高位元線電壓以讀取右半 201005742 單元所儲存之資料’則高位元線電壓會影響到左半單元之 低臨界電壓而趨向高臨界電壓,導致左半單元於被讀取時 產生讀取擾亂的現象。故利用低位元線電壓以讀取右半單 元所儲存之資料,可以避免影響到左半單元之低臨界電 壓’降低讀取擾亂的現象。 此外,上述之記憶體讀取方法中,係以第一電壓、第 二電壓及第三電壓被施加於多位階單元之汲極端為例做 說明,然並不限於此。第一電壓、第二電壓及第三電壓亦 罾可被施加於多位階單元所對應之字元線,亦可達到同樣的 效果。 一此外,本發明亦提供一種記憶體。請參照第3圖,其 繪示依照本發明較佳實施例之記憶體之部份電路圖。記憶 體300例如為一電荷補捉記憶體,其包括多個多位階單元 及一偏壓電路320。於第3圖中,係僅以多位階單元31〇 為例做說明,然並不限於此。多位階單元31〇包括一第一 半單元312及-第二半單元314。偏麗電路32〇用以施加 電壓於多位階單元31〇β偏壓電路32〇施加一第一電壓於 多位階單元3Η)以判斷第一半單元312之臨界電壓是否高 於一特 +定值^其中,此特定值實質上例如為4伏特。 若第半單元312之臨界電壓高於特定值,偏壓電路 320施加-第二電壓於多位階單a 3ι〇以讀取第二半單元 所儲存之負料,第二電壓高於第一電麼,否則偏虔電 路320施加第二電壓於多位階單元31〇以讀取第二半單 το 314所儲存之資料,第三電屢低於第一電麼。其中,第 201005742 一電壓、第二電壓及第三電壓例如被施加於多位階單元 310之汲極端,且第一電壓實質上例如為1.6伏特。然並 不限於此,第一電壓、第二電壓及第三電壓亦可被施加於 多位階單元310所對應之字元線WL。 此外,偏壓電路320包括一第一偏壓產生器330及一 第二偏壓產生器340、一第一電晶體Ml、一第二電晶體 M2、一第三電晶體M3以及一第四電晶體M4。第一電晶 體Ml之第一端耦接至一電源VDD,第一電晶體Ml之第 _二端耦接至多位階單元310之第一端,第一電晶體Ml之 控制端耦接至第一偏壓產生器330。第二電晶體M2之第 一端耦接至多位階單元310之第一端,第二電晶體M2之 第二端耦接至一地電壓GND,第二電晶體M2之控制端接 收一第一控制訊號Ctrll。 第三電晶體M3之第一端耦接至電源VDD,第三電 晶體M3之第二端耦接至多位階單元310之第二端,第三 電晶體M3之控制端耦接至第二偏壓產生器340。第四電 ❹晶體M4之第一端耦接至多位階單元310之第二端,第四 電晶體M4之第二端耦接至地電壓GND,第四電晶體M4 之控制端接收一第二控制訊號Ctrl2。 第一偏壓產生器330以第一電壓加上第一電晶體Ml 之臨界電壓導通第一電晶體Ml,第一控制訊號Ctrll截止 第二電晶體M2,第二偏壓產生器340截止第三電晶體 M3,第二控制訊號Ctrl2導通第四電晶體M4。如此一來, 多位階單元310之第一端之電壓被第一電晶體Ml箝位在 201005742 第一電壓,多位階單元310之第二端耦接至地電壓GND, 使得偏壓電路320得以判斷第一半單元312之臨界電壓是 否高於特定值。 若第一半單元312之臨界電壓高於特定值,則第一偏 壓產生器330截止第一電晶體Μ卜第一控制訊號Ctrll導 通第二電晶體M2,第二偏壓產生器340以高於第一電壓 之第二電壓加上第三電晶體M3之臨界電壓導通第三電晶 體M3,第二控制訊號Ctrl2截止第四電晶體M4。如此一 參來,多位階單元310之第二端之電壓被第三電晶體M3箝 位在第二電壓,多位階單元310之第一端耦接至地電壓 GND,使得偏壓電路320得以讀取第二半單元314所儲存 之資料。 若第一半單元312之臨界電壓低於特定值,則第一偏 壓產生器330戴止第一電晶體Ml,第一控制訊號Ctrll導 通第二電晶體M2,第二偏壓產生器340以低於第一電壓 之第三電壓加上第三電晶體M3之臨界電壓導通第三電晶 ®體M3,第二控制訊號Ctrl2截止第四電晶體M4。如此一 來,多位階單元310之第二端之電壓被第三電晶體M3箝 位在第三電壓,多位階單元310之第一端耦接至地電壓 GND,使得偏壓電路320得以用來讀取第二半單元314所 儲存之資料。 上述之記憶體300之操作原理係已詳述於本發明實 施例所揭露之記憶體讀取方法中,故於此不再重述。 本發明上述實施例所揭露之記憶體讀取方法及記憶 11 201005742 體,係藉由判斷所要讀取之目標單元其相鄰半單元之臨界 電壓為高臨界電壓或低臨界電壓。若相鄰半單元之臨界電 壓為高臨界電壓,則以高位元線電壓或高字元線電壓讀取 目標半單元所儲存之資料,而得以擴大讀取區間並降低第 二位元效應。若相鄰半單元之臨界電壓為低臨界電壓,則 以低位元線電壓或低字元線電壓讀取目標半單元所儲存 之資料,而得以降低讀取擾亂。 綜上所述,雖然本發明已以一較佳實施例揭露如上, ®然其並非用以限定本發明。本發明所屬技術領域中具有通 常知識者,在不脫離本發明之精神和範圍内,當可作各種 之更動與潤飾。因此,本發明之保護範圍當視後附之申請 專利範圍所界定者為準。 參 12 201005742 【圖式簡單說明】 第1A圖繪示傳統多位階單元之示意圖。 第1Β ϋ繪τρ多位階單元之臨界電壓分佈之分佈圖。 第2圖繪不依照本發明較佳實施例之記憶體讀取方 法之流程圖。 第3圖繪示依照本發明較佳實施例之記憶體之部份 電路圖。 ®【主要元件符號說明】 100 、310 :多位階單元 110 左半單元 120 右半單元 300 記憶體 312 第一半單元 314 第二半單元 320 偏壓電路 330 第一偏壓產生器 340 第二偏壓產生器 13201005742 IX. Description of the Invention: [Technical Field] The present invention relates to a memory reading method and a memory, and more particularly to a memory reading method capable of expanding a reading interval and reducing reading disturbance And memory. [Prior Art] Memory systems are used in a variety of data storage applications today. Memory repairs include a variety of types, such as Multi-Level Cell (MLC) memory. Please refer to FIG. 1A, which illustrates the schematic of a conventional multi-level cell. The multi-level unit 100 includes a left half unit 110 and a right half unit 120. Each half unit of the multi-level unit 100 may have a plurality of bits depending on the critical voltage distribution. For example, each half unit has 2 bits as an example. Please refer to the first figure, which shows the distribution of the threshold voltage distribution of the multi-level unit 100. The threshold voltage distributions of the left half unit 110 and the right half unit 120 are generally defined as (11, 10, 01, 00) in sequence, but are not limited thereto. Each of the threshold voltage distributions in Figure 1 must be concentrated as much as possible to preserve enough read window. However, because of the second-bit effect, the threshold voltage of the right half cell 120 is affected by the threshold voltage of the left half cell 110, causing the read interval to become smaller and causing the right half cell 120 to be read. An error has occurred. In addition, if the bit line voltage or the word line voltage used for reading is too high, the low threshold voltage of the left half unit 110 may be affected, resulting in read disturbance when the left half 201005742 ^ is read (read disturbance) The current wheat 〇 【 发明 发明 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 In a first aspect, a memory reading method is proposed, wherein the memory unit includes a memory cell, and the memory sheet includes a first-semi-single 1st-semi-single-% memory reading method including the following steps. A first-electrode is applied to the memory cell to determine that the threshold voltage of the first half-cell is ^--specific value. If the threshold voltage of the first half unit is higher than a specific value, $plus-second power is stored in the memory unit to read the parameter stored in the second half unit: the first voltage is higher than the first voltage, otherwise a third is applied. The voltage is recorded in ', 2 to capture the data stored in the second half of the unit, and the third voltage is a voltage. In a second aspect of the invention, a memory is provided, comprising at least one memory unit and a money circuit. The memory unit includes a first half single and a second half unit. A bias circuit is used to apply a voltage to the memory unit. The 'biasing circuit' applies a -first voltage to the memory cell to determine whether the first half: the threshold voltage of the second is higher than a specific value. If the critical voltage of the first half unit is higher than a specific value, the bias circuit applies a second voltage to the memory unit to read the data stored in the second half unit at 6 201005742, and the second voltage is higher than the first voltage, otherwise The voltage circuit applies a third voltage to the memory unit to read the data stored in the second half unit, and the third voltage is lower than the first voltage. In order to make the above description of the present invention more comprehensible, a preferred embodiment will be described below in detail with reference to the accompanying drawings. The present invention provides a memory reading method and memory. Body, by judging the level of the threshold voltage of the adjacent half unit, according to the use of different voltages to read the data stored in the target half unit, so you can enlarge the read window and reduce the read Read disturbance. In the following embodiments of the present invention, the memory is a multi-level cell memory, and the memory cell is a multi-level cell as an example, but is not limited thereto. Referring to FIG. 2, a flow chart of a memory reading method in accordance with a preferred embodiment of the present invention is shown. The memory reading method of the present embodiment is substantially applied to a multi-level cell (MLC) memory. The multi-level cell memory includes a plurality of memory cell blocks, and each memory cell block includes A plurality of multi-level cells, each multi-level cell comprising a left half unit and a right half unit. The multi-level cell memory is, for example, a charge trapped memory. The right half of a multi-level cell is the target cell to be read, and the left half is an adjacent cell. First, in step S200, a first voltage is applied to the bit line of the 汲 extreme of the multi-level cell, and 7 is used to determine whether the threshold voltage of the adjacent left half cell is higher than a specific value. Among them, the characteristic value is substantially 4 volts. Among them, the first power is not the upper limit of the secret voltage of the unit (4) which does not cause the disturbance to be disturbed, for example, 16 volts, but is not limited thereto, and may change as the process evolves. Step fOO is essentially used to determine that the threshold voltage of the adjacent left half unit belongs to a high threshold voltage or a low critical power! . If the threshold voltage of the left half unit is higher than a specific value, that is, the threshold voltage of the left half unit belongs to a high threshold voltage, then in step S21, a bit line that is pressed to the 汲 extreme of the multi-level unit is applied to read The data stored in the right half of the target is 7 早, wherein the second voltage is higher than the first voltage. The second f voltage is a high bit line voltage, for example 18 volts. For a multi-level cell, if the bias voltage of the 汲 terminal is a high voltage level, the threshold voltages of the left half cell and the right half cell of the multi-level cell are not affected. Therefore, in step S210, by using the high bit line voltage to read the data stored in the right half cell, the influence of the second bit effect on the threshold voltage of the right half cell can be reduced, so that the read interval is expanded. In addition, because the criticality of the left half cell (4) is at a high threshold voltage and is not affected by the voltage of the bit line, the disturbing phenomenon can be read. _ If the threshold voltage of the left half unit is lower than a specific value, that is, the L boundary of the left half unit (4) is at the low threshold (4), then in step S22Q, three voltages are applied to the bit line of the 汲 extreme of the multi-level unit to Read the data stored in the right half of the cell, where the third is lower than the first. The third electrical system is a low bit line, for example, M volts. Because the left semi-critical 虔 is a low threshold voltage, if the high bit line voltage is used to read the data stored in the right half of the 201005742 unit, the high bit line voltage will affect the low threshold voltage of the left half cell and tend to a high threshold voltage. This causes the left half unit to produce read disturb when it is read. Therefore, by using the low bit line voltage to read the data stored in the right half unit, it is possible to avoid the phenomenon that the low critical voltage of the left half unit is reduced to reduce the reading disturbance. Further, in the above-described memory reading method, the first voltage, the second voltage, and the third voltage are applied to the 汲 extremes of the multi-level unit as an example, but are not limited thereto. The first voltage, the second voltage, and the third voltage can also be applied to the word lines corresponding to the multi-level cells, and the same effect can be achieved. In addition, the present invention also provides a memory. Please refer to FIG. 3, which is a partial circuit diagram of a memory according to a preferred embodiment of the present invention. The memory 300 is, for example, a charge trapping memory comprising a plurality of multi-level cells and a bias circuit 320. In the third figure, the description is made only by taking the multi-level unit 31〇 as an example, but it is not limited thereto. The multi-level unit 31A includes a first half unit 312 and a second half unit 314. The bias circuit 32 is configured to apply a voltage to the multi-level unit 31 〇β bias circuit 32 〇 to apply a first voltage to the multi-level unit 3 Η) to determine whether the threshold voltage of the first half unit 312 is higher than a special value The value ^ where this particular value is substantially, for example, 4 volts. If the threshold voltage of the first half unit 312 is higher than a specific value, the bias circuit 320 applies a second voltage to the multi-level single a 3 〇 读取 to read the negative material stored in the second half unit, and the second voltage is higher than the first Otherwise, the bias circuit 320 applies a second voltage to the multi-level unit 31 〇 to read the data stored in the second half το 314, which is lower than the first power. Wherein, a voltage, a second voltage, and a third voltage are applied to the 汲 terminal of the multi-level unit 310, for example, and the first voltage is substantially 1.6 volts, for example. However, the first voltage, the second voltage, and the third voltage may be applied to the word line WL corresponding to the multi-level unit 310. In addition, the bias circuit 320 includes a first bias generator 330 and a second bias generator 340, a first transistor M1, a second transistor M2, a third transistor M3, and a fourth Transistor M4. The first end of the first transistor M1 is coupled to a power supply VDD, and the second end of the first transistor M1 is coupled to the first end of the multi-level unit 310, and the control end of the first transistor M1 is coupled to the first end. Bias generator 330. The first end of the second transistor M2 is coupled to the first end of the multi-level cell 310, the second end of the second transistor M2 is coupled to a ground voltage GND, and the control end of the second transistor M2 receives a first control. Signal Ctrll. The first end of the third transistor M3 is coupled to the power supply VDD, the second end of the third transistor M3 is coupled to the second end of the multi-level unit 310, and the control end of the third transistor M3 is coupled to the second bias Generator 340. The first end of the fourth electric crystal M4 is coupled to the second end of the multi-level unit 310, the second end of the fourth transistor M4 is coupled to the ground voltage GND, and the control end of the fourth transistor M4 receives a second control. Signal Ctrl2. The first bias generator 330 turns on the first transistor M1 with the first voltage plus the threshold voltage of the first transistor M1, the first control signal Ctrl1 turns off the second transistor M2, and the second bias generator 340 turns off the third The transistor M3, the second control signal Ctrl2 turns on the fourth transistor M4. As a result, the voltage of the first end of the multi-level cell 310 is clamped by the first transistor M1 at the first voltage of 201005742, and the second end of the multi-level cell 310 is coupled to the ground voltage GND, so that the bias circuit 320 can be It is determined whether the threshold voltage of the first half unit 312 is higher than a specific value. If the threshold voltage of the first half unit 312 is higher than a specific value, the first bias generator 330 turns off the first transistor, the first control signal Ctrl1 turns on the second transistor M2, and the second bias generator 340 turns high. The second voltage of the third voltage plus the threshold voltage of the third transistor M3 turns on the third transistor M3, and the second control signal Ctrl2 turns off the fourth transistor M4. As a result, the voltage of the second terminal of the multi-level cell 310 is clamped to the second voltage by the third transistor M3, and the first end of the multi-level cell 310 is coupled to the ground voltage GND, so that the bias circuit 320 can be The data stored in the second half unit 314 is read. If the threshold voltage of the first half unit 312 is lower than a specific value, the first bias generator 330 wears the first transistor M1, the first control signal Ctrl1 turns on the second transistor M2, and the second bias generator 340 The third voltage lower than the first voltage plus the threshold voltage of the third transistor M3 turns on the third transistor Q3, and the second control signal Ctrl2 turns off the fourth transistor M4. As a result, the voltage of the second terminal of the multi-level cell 310 is clamped to the third voltage by the third transistor M3, and the first terminal of the multi-level cell 310 is coupled to the ground voltage GND, so that the bias circuit 320 can be used. To read the data stored in the second half unit 314. The operation principle of the above-described memory 300 has been described in detail in the memory reading method disclosed in the embodiment of the present invention, and thus will not be repeated herein. The memory reading method and the memory disclosed in the above embodiments of the present invention determine whether the threshold voltage of the adjacent half unit of the target unit to be read is a high threshold voltage or a low threshold voltage. If the threshold voltage of the adjacent half cell is a high threshold voltage, the data stored in the target half cell is read with a high bit line voltage or a high word line voltage, thereby expanding the read interval and lowering the second bit effect. If the threshold voltage of the adjacent half cell is a low threshold voltage, the data stored in the target half cell is read at a low bit line voltage or a low word line voltage, thereby reducing read disturb. In conclusion, the present invention has been disclosed above in a preferred embodiment, and is not intended to limit the invention. It will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. Reference 12 201005742 [Simple description of the diagram] Figure 1A shows a schematic diagram of a conventional multi-level unit. The first is a distribution map of the threshold voltage distribution of the τρ multi-level cell. Figure 2 is a flow chart showing a memory reading method not according to a preferred embodiment of the present invention. Figure 3 is a partial circuit diagram of a memory in accordance with a preferred embodiment of the present invention. ® [Main component symbol description] 100, 310: multi-level cell 110 left half cell 120 right half cell 300 memory 312 half-cell 314 second half cell 320 bias circuit 330 first bias generator 340 second Bias generator 13

Claims (1)

201005742 十、申請專利範圍: 1 ’種5己憶體璜取方法,該記憶體包括至少一記憶 單疋,該記憶單元包括一第一半單元及一第二半單元,該 記憶體讀取方法包括: χ 施加一第一電壓於該記憶單元以判斷該第一半單元 之臨界電壓是否高於一特定值;以及 若該第一半單元之臨界電壓高於該特定值,施加一第201005742 X. Patent application scope: 1 'A kind of 5 recall method, the memory includes at least one memory unit, the memory unit includes a first half unit and a second half unit, and the memory reading method The method includes: 施加 applying a first voltage to the memory unit to determine whether a threshold voltage of the first half unit is higher than a specific value; and if a threshold voltage of the first half unit is higher than the specific value, applying a first 二電壓於該記憶單元以讀取該第二半單元所儲存之資 料該第一電壓尚於該第一電壓,否則施加一第三電壓於 該記憶單元以讀取該第二半單元所儲存之資料,該第三電 壓低於該第一電壓。 2.如申請專利範圍第1項所述之記憶體讀取方法, 其中該記憶體為一電荷補捉記愧體。 3·如申請專利範圍第丨項所述之記憶體讀取方法, 其中該第一電壓、該第二電壓及該第三電壓係被施加於該 記憶單元之汲極端。 4. 如申請專利範圍第1項所述之記憶體讀取方法, 其中該第-電壓實質上係為1.6伏特。 5. 如申請專利範圍第1項所述之記憶體讀取方法, 其中該特定值實質上係為4伏特。 /,如申請專利範圍第1項所述之記憶體讀取方法, 、中„亥第一電壓為不會造成讀取擾亂之記憶單元的汲極 端電壓的上限。 如申請專利範圍第1項所述之記憶體讀取方法, 201005742 其中該第一電壓、該第二電壓及該第三電壓係被施加於該 記憶單元所對應之字元線。 8. —種記憶體,包括: 至少一 έ己憶草元,包括一第一半單元及一第二半單 元;以及 一偏壓電路,用以施加電壓於該記憶單元; 其中,该編壓電路施加一第一電壓於該記憶單元以判The second voltage is applied to the memory unit to read the data stored in the second half unit, the first voltage is still at the first voltage, and a third voltage is applied to the memory unit to read the second half unit. Data, the third voltage is lower than the first voltage. 2. The memory reading method according to claim 1, wherein the memory is a charge trapping body. 3. The memory reading method of claim 2, wherein the first voltage, the second voltage, and the third voltage are applied to a drain terminal of the memory unit. 4. The memory reading method of claim 1, wherein the first voltage is substantially 1.6 volts. 5. The memory reading method of claim 1, wherein the specific value is substantially 4 volts. /, as in the memory reading method described in claim 1, wherein the first voltage is the upper limit of the 汲 extreme voltage of the memory unit that does not cause read disturb. The method for reading a memory, 201005742, wherein the first voltage, the second voltage, and the third voltage are applied to a word line corresponding to the memory unit. 8. A memory, comprising: at least one The memory unit includes a first half unit and a second half unit; and a bias circuit for applying a voltage to the memory unit; wherein the voltage applying circuit applies a first voltage to the memory unit Judge 斷該第一半單元之臨界電壓是否高於一特定值,若該第一 半單元之臨界電壓高於該特定值,該偏壓電路施加一第二 電壓於該記憶單元以讀取該第二半單元所儲存之資料,該 第二電壓高於該第-電壓’否則該偏壓電路施加一第三電 MUi ft單元以讀取該第二半單元所儲存之 三電壓低於該第一電壓。 /第 9.如申請專利範圍第8 荷補捉記憶體。 項所述之記憶體,係為一電 ❹ 二專利範圍第8項所述之記憶體’其中該第 之汲極端。 職°玄第二電壓係被施加於該記憶單元 11.如申請專利範圍第8 一電壓實質上係為丨.6伏特。 項所述之記憶體,其中該第 12. 如申請專利範圍第 定值實質上係為4伏特。 13. 如申請專利範圍第 壓電路包括: 8項所述之記憶體,其中該特 8項所述之記憶體,其中該偏 15 201005742 一第一偏壓產生器及一第二偏壓產生器; 一第一電晶體,該第一電晶體之第一端耦接至一電 源,該第一電晶體之第二端耦接至該記憶單元之第一端, 該第一電晶體之控制端耦接至該第一偏壓產生器; 第一電晶體,§亥第二電晶體之第一端耦接至該記憶 單元之第一端,該第二電晶體之第二端耦接至一地電壓, 該第二電晶體之控制端接收一第一控制訊號; 一第二電晶體,該第三電晶體之第一端耦接至該電 源,該第三電晶體之第二端耦接至該記憶單元之第二端, 該第三電晶體之控制端耦接至該第二偏壓產生器;以及 。一第四電晶體,該第四電晶體之第—端㈣至該記憶 單兀之第二端,該第四電晶體之第二端福接至該地電麼, 該第四電晶體之控制端接收一第二控制訊號。 14. 如申請專利範圍第13項所述之記憶體其中該 第偏壓產生器導通該第一電晶體,該第—控制訊號截止 ,第二電晶體’該第二偏壓產生器截止該第三電晶體,該 第一控制域導通該第”晶體,使得該偏壓電路施加該 第電壓於该兄憶單元之第一端以判斷該第一半單元之 臨界電壓是否高於該特定值。 15. 如申請專利範圍帛14項所述之記憶體,其中若 ?界電麼高於該特定值,該第-偏壓產生 體,兮第_曰曰體’該第一控制訊號導通該第二電晶 體“第一偏壓產生器導通該第三 號截止該第四電晶體姐4徑制訊 骽使仵该偏壓電路施加該第二電壓於 16 201005742 該記憶單元以讀取該第二半單元所儲存之資料,該第二 壓高於該第一電壓。 — 16.如申請專利範圍帛14項所述之記憶體,其争若 該第-半單元之臨界電魔低於該特定值,該第一偏屢產生 器截止該第-電晶體,該第一控制訊號導通該第 s 體,該第二偏麼產生器導通該第三電晶體,該第二控: 號截止該第四電晶體,使得該偏㈣路施加該第 ^ ❹麼低於該第-電堡。牛早謂儲存之資料’該第三電 2如中料利_第8韻狀記㈣ 一電壓、該第-雷厭松 丹甲該第 所對應之字=該第三電壓係被施加於該記憶單元Breaking whether the threshold voltage of the first half unit is higher than a specific value. If the threshold voltage of the first half unit is higher than the specific value, the bias circuit applies a second voltage to the memory unit to read the first The data stored in the second half of the unit, the second voltage is higher than the first voltage. Otherwise, the bias circuit applies a third electrical MUi ft unit to read the third voltage stored in the second half unit is lower than the first A voltage. / No. 9. If the patent application scope is 8th, the memory is captured. The memory described in the item is the memory described in item 8 of the second patent, wherein the first is extreme. The second voltage system is applied to the memory unit. 11. The voltage of the eighth voltage is substantially 丨6 volts as claimed in the patent application. The memory described in the item, wherein the 12.th patent application range is substantially 4 volts. 13. The method of claim 1, wherein the first aspect of the present invention comprises: the memory of claim 8, wherein the memory of the special item, wherein the bias 15 201005742 a first bias generator and a second bias voltage are generated a first transistor, the first end of the first transistor is coupled to a power source, and the second end of the first transistor is coupled to the first end of the memory unit, and the first transistor is controlled The first end of the second transistor is coupled to the first end of the memory unit, and the second end of the second transistor is coupled to the first transistor a ground voltage, the control end of the second transistor receives a first control signal; a second transistor, the first end of the third transistor is coupled to the power source, and the second end of the third transistor is coupled Connected to the second end of the memory unit, the control end of the third transistor is coupled to the second bias generator; a fourth transistor, the fourth end of the fourth transistor to the second end of the memory unit, the second end of the fourth transistor is connected to the ground, and the fourth transistor is controlled The terminal receives a second control signal. 14. The memory of claim 13, wherein the first bias generator turns on the first transistor, the first control signal is turned off, and the second transistor 'the second bias generator turns off the first a third transistor, the first control domain turns on the first crystal, such that the bias circuit applies the first voltage to the first end of the brother cell to determine whether the threshold voltage of the first cell is higher than the specific value 15. The memory of claim 14, wherein if the boundary voltage is higher than the specific value, the first bias generating body, the first control signal, turns on the first control signal a second transistor "the first bias generator turns on the third number to cut off the fourth transistor, and the bias circuit applies the second voltage to the 16 201005742 memory unit to read the The data stored in the second half of the unit, the second voltage being higher than the first voltage. - 16. The memory of claim 14, wherein if the critical electric magic of the first half unit is lower than the specific value, the first partial generator cuts off the first transistor, the first a control signal turns on the sth body, the second bias generator turns on the third transistor, and the second control: turns off the fourth transistor, so that the bias (four) way applies the first 低于The first - electric castle. The cow has long been said to store the data 'The third electricity 2 as the middle material profit _ the eighth rhyme record (four) a voltage, the first - Lei Aisong Dan A the corresponding word = the third voltage is applied to the Memory unit 1717
TW097134246A 2008-07-31 2008-09-05 Memory and reading method thereof TWI375225B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/183,285 US8031523B2 (en) 2008-07-31 2008-07-31 Memory and reading method thereof

Publications (2)

Publication Number Publication Date
TW201005742A true TW201005742A (en) 2010-02-01
TWI375225B TWI375225B (en) 2012-10-21

Family

ID=41608207

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097134246A TWI375225B (en) 2008-07-31 2008-09-05 Memory and reading method thereof

Country Status (3)

Country Link
US (1) US8031523B2 (en)
CN (1) CN101640073B (en)
TW (1) TWI375225B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4011289A1 (en) * 2007-09-25 2022-06-15 Otsuka Pharmaceutical Co., Ltd. In-body device with virtual dipole signal amplification
CN104299641B (en) * 2013-07-16 2017-05-03 旺宏电子股份有限公司 Operation method of multi-level memory

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6799256B2 (en) * 2002-04-12 2004-09-28 Advanced Micro Devices, Inc. System and method for multi-bit flash reads using dual dynamic references
US7123532B2 (en) * 2003-09-16 2006-10-17 Saifun Semiconductors Ltd. Operating array cells with matched reference cells
US7038948B2 (en) * 2004-09-22 2006-05-02 Spansion Llc Read approach for multi-level virtual ground memory
US8264028B2 (en) * 2005-01-03 2012-09-11 Macronix International Co., Ltd. Non-volatile memory cells, memory arrays including the same and methods of operating cells and arrays
US7209385B1 (en) * 2006-01-06 2007-04-24 Macronix International Co., Ltd. Array structure for assisted-charge memory devices
US7339846B2 (en) * 2006-07-14 2008-03-04 Macronix International Co., Ltd. Method and apparatus for reading data from nonvolatile memory
CN101178932B (en) * 2006-11-06 2012-01-25 旺宏电子股份有限公司 Method for reading double places memory cell
US7796436B2 (en) * 2008-07-03 2010-09-14 Macronix International Co., Ltd. Reading method for MLC memory and reading circuit using the same

Also Published As

Publication number Publication date
US8031523B2 (en) 2011-10-04
US20100027331A1 (en) 2010-02-04
CN101640073A (en) 2010-02-03
TWI375225B (en) 2012-10-21
CN101640073B (en) 2012-09-05

Similar Documents

Publication Publication Date Title
KR100736103B1 (en) Nonvolatile memory, apparatus and method for deciding data validity for the same
US10324641B2 (en) SRAM-based authentication circuit
JP6884232B2 (en) Memory cell time-based access
US9324436B2 (en) Method and apparatus for controlling operation of flash memory
WO2015053919A4 (en) Bit line and compare voltage modulation for sensing nonvolatile storage elements
JP2008071440A (en) Ferroelectric memory device and its control method
ATE557399T1 (en) READ AND ERASE VERIFICATION METHODS AND CIRCUITS SUITABLE FOR NON-VOLATILE LOW VOLTAGE MEMORY
EP2840610B1 (en) Data processing method, flash memory and terminal
US20210373793A1 (en) Data self-destruction method and system based on non-volatile memory
US20050141260A1 (en) Semiconductor memory device
KR970063265A (en) Semiconductor memory
JP2010079941A (en) Semiconductor nonvolatile storage device
US6331949B1 (en) Circuit for storing and latching defective address data for a nonvolatile semiconductor memory device having redundant function
JP2007157234A (en) Memory system
JPH05298894A (en) Controller for writing and reading data in nonvolatile memory
TW201005742A (en) Memory and reading method thereof
JP7236788B2 (en) Counter-based reads in memory devices
KR100610490B1 (en) Eeprom cell and eeprom block
KR20050076156A (en) Data recovery device and method thereof
CN116340196A (en) Flexible information compression at a memory system
US8446768B2 (en) Control device for nonvolatile memory and method of operating control device
KR20030001611A (en) Flash memory device and method of programing using the same
TW449751B (en) Non-volatile semiconductor memory device
CN110556145A (en) Programming method and device of storage unit, electronic equipment and storage medium
CN106297885B (en) Pulse generator, memory system, memory device and internal power control method thereof