TW201003655A - Multi-stage programmable phase-change memory cell method and phase-change memory - Google Patents
Multi-stage programmable phase-change memory cell method and phase-change memory Download PDFInfo
- Publication number
- TW201003655A TW201003655A TW97124699A TW97124699A TW201003655A TW 201003655 A TW201003655 A TW 201003655A TW 97124699 A TW97124699 A TW 97124699A TW 97124699 A TW97124699 A TW 97124699A TW 201003655 A TW201003655 A TW 201003655A
- Authority
- TW
- Taiwan
- Prior art keywords
- phase change
- change memory
- material layer
- memory cell
- electrode
- Prior art date
Links
Landscapes
- Semiconductor Memories (AREA)
Abstract
Description
201003655 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種程式化一記憶胞的方法及一種記 憶體’特別疋指一種多階(multj_level )程式化一相變化記 憶胞的方法及一種相變化記憶體(phase_change rand〇m access memory,PRAM)。 【先前技術】201003655 IX. Description of the Invention: [Technical Field] The present invention relates to a method of staging a memory cell and a memory method, particularly a method for multi-step (multj_level) stylized one-phase change memory cells and A phase change ram memory (PRAM). [Prior Art]
相變化記憶體是一種非揮發性記憶體(n〇n_v〇latile memory),其所儲存的資料不會因電源移除而消失。由於相 變化記憶體的切換速度相當快,且可相容於互補式金屬氧 化物半導體(CMOS)製程,被看好有機會取代快閃記憶體 (flash memory )成為非揮發性記憶體的主流。 相變化記憶體使用可藉由加熱而在結晶相(crystaUine phase )和非晶相(am〇rph〇us phase )之間切換的相變化材 料(例如硫屬合金(chalcogenide all〇y))來儲存資料。相 變化材料在結晶相τ具有低電阻係數(resistivky)和高反 射率(reflectance),而在非晶相下具有高電阻係數和低反 射率。相變化§己憶體利用電信號來加熱相變化材料,並利 用相變化材料在結晶相與非晶相之間的電阻係數差異來辨 別所儲存的資料。可重寫光學媒體(例如cd_rw和dvD_ RW)也使用相變化材料來儲存資料’但利用雷射光來加熱 相變化材料,並利用相變化材料在結晶相與非晶相之間的 反射率差異來辨別所儲存的資料。 在相變化記憶體中 藉由將相變化材料先加熱到超過 5 201003655 其結晶溫度,但低於其熔融溫度,再冷卻下來,可使其從 非晶相轉變成結晶相,一般稱此過程為設定(set ),而藉由 將相變化材料先加熱到超過其熔融溫度,再冷卻下來,可 使其從結晶相轉變成非晶相,一般稱此過程為重設(reset ) 〇 當相變化記憶體採用二元(binary )儲存時,是使相變 化記憶胞的記錄區中的相變化材料在二種不同狀悲(例如 :完全結晶及完全非晶)間轉換,因此每一相變化記憶胞 ^ : 能儲存一位元的資料。當相變化記憶體採用多階儲存時, 是使相變化記憶胞的記錄區中的相變化材料在更多種不同 狀態(例如:完全結晶、完全非晶及介於這二者之間的部 分結晶)間轉換,以提高每一相變化記憶胞的資料儲存量 。例如:若相變化記憶胞的記錄區中的相變化材料在四種 不同狀態間轉換的話,則每一相變化記憶胞能儲存二位元 的資料。The phase change memory is a non-volatile memory (n〇n_v〇latile memory) whose stored data does not disappear due to power removal. Since phase-change memory is switching at a relatively fast speed and is compatible with complementary metal oxide semiconductor (CMOS) processes, it is expected to replace flash memory as the mainstream of non-volatile memory. The phase change memory is stored using a phase change material (for example, chalcogenide all〇y) that can be switched between a crystal phase (crystaUine phase) and an amorphous phase (am〇rph〇us phase) by heating. data. The phase change material has a low resistivity (resistivky) and a high reflectance in the crystalline phase τ, and a high resistivity and a low reflectance in the amorphous phase. Phase change § Resonance uses electrical signals to heat the phase change material and uses the difference in resistivity between the crystalline phase and the amorphous phase of the phase change material to discern the stored data. Rewritable optical media (such as cd_rw and dvD_RW) also use phase change materials to store data's but use laser light to heat the phase change material and utilize the difference in reflectance between the crystalline phase and the amorphous phase of the phase change material. Identify the stored data. In the phase change memory, the phase change material is first heated to a temperature exceeding 5 201003655, but below its melting temperature, and then cooled down to convert it from an amorphous phase to a crystalline phase. Set (set), and by heating the phase change material above its melting temperature and then cooling it, it can be converted from crystalline phase to amorphous phase. Generally, this process is called reset. When the binary storage is used, the phase change material in the recording area of the phase change memory cell is converted between two different shapes (for example, completely crystalline and completely amorphous), so that each phase changes the memory cell. ^ : Can store one dollar of information. When the phase change memory adopts multi-stage storage, the phase change material in the recording area of the phase change memory cell is in a plurality of different states (for example, completely crystalline, completely amorphous, and a portion between the two). Conversion between crystallizations to increase the amount of data stored in each phase of the memory cells. For example, if the phase change material in the recording area of the phase change memory cell is switched between four different states, then each phase change memory cell can store the data of the two bits.
參閱圖 1,2006 年 1 月 IEEE TRANSACTIONS ON £ ·.See Figure 1, January 2006 IEEE TRANSACTIONS ON £ ·.
U ELECTRON DEVICES 第 53 卷第 1 期第 56 頁’’HSPICEU ELECTRON DEVICES Volume 53, Number 1, page 56 ’’HSPICE
Macromodel of PCRAM for Binary and Multilevel Storage”論 文揭露了一種多階程式化一相變化記憶胞的方法,適用於 採用多階儲存的相變化記憶體。首先,施加一重設電流脈 衝11到相變化記憶胞的相變化材料,以使記錄區中的相變 化材料實質上完全非晶(即結晶程度接近〇% )。接著,施 加一設定電流脈衝12到相變化記憶胞的相變化材料,以使 記錄區中的相變化材料具有期望的結晶程度(例如:100% 6 201003655 、65%或40%)’其中,設定電流脈衝的寬度與期望的結晶 程度對應。然而,這種方法所需的重設電流脈衝的振幅很 大,超過奈米級MOS或類似元件所能提供的最大電流,因 此不利於貫現。另外,每次程式化都要將相變化記憶胞的 相變化材料加熱到超過其熔融溫度,且形成很大的熔融區 域,這樣很容易損壞相變化記憶胞而降低其重覆次數,且 可能使附近相變化記憶胞的相變化材料非預期地達到其結 晶溫度而局部結晶,造成熱串號(thermal cross_talk)問題 〇 【發明内容】 口此本發明之目的即在提供一種多階程式化一相變 化記憶胞的方法,容易實現,且可以提高重覆次數及減輕 熱串號問題。 於疋本發明多階程式化一相變化記憶胞的方法適用 於一相變化記憶胞,該相變化記憶胞包括依序電連接的一 第電極、—相變化材料層及一第二電極,該方法包含以 下步驟: 經由該第一電極及該第二電極施加一設定電流脈衝到 該相變化材料層’以使該相變化材料層實質上完全結晶; 及 根據一寫入資料,經由該第一電極及該第二電極施加 至少一重设電壓脈衝到該相變化材料層,以在該相變化材 料層中產生—大小與該寫入資料對應的非晶區域,其中, °亥重δ又電壓脈衝的振幅、寬度及數量中的至少一者是可調 201003655 的,且與該寫入資料對應。 而本發明之另一目的即在提供一種相變化記憶體,容 易實現,且可以提高重覆次數及減輕熱串號問題。The Macromodel of PCRAM for Binary and Multilevel Storage paper exposes a multi-step programmed one-phase change memory cell for phase change memory using multi-level storage. First, a reset current pulse 11 is applied to the phase change memory cell. The phase change material is such that the phase change material in the recording zone is substantially completely amorphous (ie, the degree of crystallization is close to 〇%). Next, a phase change material is set which applies a current pulse 12 to the phase change memory cell to make the recording area The phase change material in the phase has a desired degree of crystallization (for example: 100% 6 201003655, 65% or 40%) 'where the width of the current pulse is set to correspond to the desired degree of crystallization. However, the reset current required for this method The amplitude of the pulse is large, exceeding the maximum current that can be provided by a nanoscale MOS or similar component, so it is not conducive to the implementation. In addition, each phase of the phase changes the phase change material of the phase change memory cell beyond its melting temperature. And forming a large melting area, which easily damages the phase change memory cell and reduces the number of repetitions, and may cause changes in nearby phases. The phase change material of the memory cell unexpectedly reaches its crystallization temperature and is partially crystallized, causing a thermal cross_talk problem. [Inventive content] The purpose of the present invention is to provide a multi-stage stylized one-phase change memory cell. The method is easy to implement, and can improve the number of repetitions and reduce the hot serial number problem. The method of multi-stage stylized one-phase change memory cells of the present invention is applicable to one-phase change memory cells, and the phase change memory cells include sequential Electrically connecting an electrode, a phase change material layer and a second electrode, the method comprising the steps of: applying a set current pulse to the phase change material layer via the first electrode and the second electrode to make the phase The layer of varying material is substantially completely crystallized; and according to a written data, at least one reset voltage pulse is applied to the phase change material layer via the first electrode and the second electrode to generate a size-size in the phase change material layer The amorphous region corresponding to the written data, wherein at least one of the amplitude, the width and the number of the voltage pulse δ and the voltage pulse is adjustable 201003655 And it corresponds to the written data. Yet another object of the present invention i.e., phase-change memory, easy to implement, and can increase and reduce the number of repeated thermal problems to provide a serial number.
於是,本發明相變化記憶體包含複數相變化記憶胞及 一寫入電路。每一相變化記憶胞包括依序電連接的一第— 電極、一相變化材料層及一第二電極。該寫入電路經由該 等相變化記憶胞中被選定的一者的第一電極及第二電極, 施加一設定電流脈衝到該被選定的相變化記憶胞的相變化 材料層,以使該被選定的相變化記憶胞的相變化材料層實 夤上元全結晶’及根據一寫入資料’施加至少一重設電髮 脈衝到該被選定的相變化記憶胞的相變化材料層,以在兮 被選定的相變化記憶胞的相變化材料層中產生一大小與哕 寫入資料對應的非晶區域,其中,該重設電壓脈衝的振幢 、寬度及數量中的至少一者是可調的’且與該寫入資料 應。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效’在 乂下配σ翏考圖式之—個較佳實施例的詳細說明中 清楚地呈現。 、」 參閱圖2邀m , , v 含複數相變化變化記㈣之較佳實施例包 也2、一寫入電路3及一讀取電路4。 ~相變彳μ 觸21、一第〜+記憶胞2包括依序電連接的一第一電極接 24與一第二,電極22、一相變化材料層23、-第二電極 極接觸25,以及一圍繞上述構件21〜25的介 8 201003655 電。卩26。如圖3(a)所示,當相變化記憶胞2採用垂直結構 和·第书極接觸21、第一電極22、相變化材料層23、第 一電極24及第二電極接觸25沿垂直方向排列。如圖所 不,當相變化記憶胞2採用線型結構時,第一電極22、相 變化材料| 23及第二電極24沿水平方向排列。相變化記 憶胞2也可以採用其它結構,不以垂直結構及線型結構為 限。Thus, the phase change memory of the present invention comprises a plurality of phase change memory cells and a write circuit. Each phase change memory cell includes a first electrode, a phase change material layer and a second electrode electrically connected in sequence. The write circuit applies a set current pulse to the phase change material layer of the selected phase change memory cell via the first electrode and the second electrode of the selected one of the phase change memory cells, so that the The phase change material layer of the selected phase change memory cell is substantially full crystallized and the at least one resetting electric pulse is applied to the phase change material layer of the selected phase change memory cell according to a written data to An amorphous region corresponding to the 哕 write data is generated in the phase change material layer of the selected phase change memory cell, wherein at least one of the vibration, width and number of the reset voltage pulse is adjustable 'And should be written with this information. [Embodiment] The foregoing and other technical contents, features and effects of the present invention are clearly shown in the detailed description of the preferred embodiment of the present invention. Referring to Fig. 2, m, v, a complex phase change (4), a preferred embodiment package 2, a write circuit 3, and a read circuit 4. The phase change 彳μ touch 21, the first ++ memory cell 2 includes a first electrode connection 24 and a second electrode sequentially connected in sequence, the electrode 22, a phase change material layer 23, and a second electrode pole contact 25, And a dielectric 8 201003655 around the above components 21~25.卩 26. As shown in FIG. 3(a), when the phase change memory cell 2 adopts a vertical structure and a book electrode contact 21, the first electrode 22, the phase change material layer 23, the first electrode 24, and the second electrode contact 25 are vertically arrangement. As shown in the figure, when the phase change memory cell 2 adopts a linear structure, the first electrode 22, the phase change material | 23 and the second electrode 24 are arranged in the horizontal direction. The phase change memory cell 2 can also adopt other structures, and is not limited to the vertical structure and the linear structure.
多閱圖4及圖5,寫入電路3多階程式化相變化記憶體 胞2中被選定的一者之方法包含以下步驟: 步驟51疋經由第—電極接觸21與第二電極接觸μ施 加:設定電流脈衝到相變化材料層23,以使相變化材料層 23貫質上几全結晶(即相變化材料層23中實質上沒有形成 一非晶區域2 3 1 )。 在步驟51中,設定電流脈衝使相變化材料層23的最 高溫度Tmax實質上介於其結晶溫度Tc與其熔融溫度、之 間(即Tc<Tmax<Tm)’以使相變化材料層23從非晶相轉變 成結晶相。 步驟52是根據一寫入資料’經由第—電極接觸η盥 第二電極接觸25施加至少—重設電壓脈衝到相變化材料層 23 ,以在相變化材料層23中形成 θ 〇 又舄入賁料對應的非 晶區域231,其中,重設電壓脈衝的振巾昌Vreset、寬度及數 量中的至少一者是可調的,且與寫入資料對應。 寬度、數量或其等的 1 ’只改變振幅,或者 藉由改變重設電壓脈衝的振幅 任意組合,例如:寬度固定,數量為 9 201003655 :如:振幅固定,數量為丨,只改變寬度,或者例如:數旦 :1,改變振幅及寬度二者,或者例如:振幅固定,寬产: 定,只改變數量,可以在實質上完全結 : 23中形成不同大小的非晶區域23 化材枓層 圖5(a)〜(d)所示(圖 中〜出相變化記憶胞2採用垂直結構的情況),並中 若非晶區域231足以包覆第—電極22與相變化材料声幻 的接觸面的話,則稱相變化材料層23實質上完全非晶。曰 在步驟52中,重設電壓脈衝使相變化材H 焉溫度Tmax實質上超過其炫融溫度Tm (即丁_〜,以使 相變化材料層23從結晶相轉變成非晶相。較佳地, 壓脈衝使相變化材料層23的最高溫度^實質上低於㈣ 部26的熔融溫度,以避免介電部%熔融。較佳地 變化材料層23與第—電極22之接觸面積實質上小於相變 化材料層23與第二電極24之接觸面積的情況下,重設電 壓脈衝使第-電極接觸21㈣壓減去第二電極接觸h的 電屋所得到的電壓差與相變化材料層23㈣貝克係數( Seebeck coefficient)(即熱電係數)異號。 參閱圖6、圖7與表卜當相變化記憶胞2分別採用垂 直結構(以v表示)與線型結構(以L表示)、相變化材料 層23分別由Ge為而4 (以咖表示)與^说 以聊表示)製成、相變化記憶胞2的特徵尺寸㈤獄 心)(以?表旬為65_ ’以及脈衝寬度為—,根 據核擬結果,重設電壓脈衝的振幅v_與在結晶相下的相 變化材料層23的最高溫度。之間的關係如圖6⑷所示, 10 201003655 又定电壓脈衝的振幅Vse{與在非晶相下的相變化材料層23 的最高I# ^皿又max之間的關係如圖6(b)所示,重設電流脈衝 的振幅Ireset與在結晶相下的相變化材料層23的最高溫度 Tmax之間的關係如圖7(幻所示,設定電流脈衝的振幅與 在非晶相下的相變化材料層23的最高溫度之間的^係 如圖7(b)所ητ ’以及相變化記憶胞2所需的重設電壓脈衝的 取小振幅(使在結晶相下的相變化材料層23的最高溫度 ΓΛ 實質上達到其熔融溫度丁")、設定電壓脈衝的最小振幅4 and 5, the method of writing the circuit 3 to select one of the plurality of stages of the phase change memory cells 2 includes the following steps: Step 51: applying the first electrode contact 21 and the second electrode contact μ : A current pulse is set to the phase change material layer 23 such that the phase change material layer 23 is substantially fully crystalline (ie, substantially no amorphous region 2 3 1 is formed in the phase change material layer 23). In step 51, the current pulse is set such that the highest temperature Tmax of the phase change material layer 23 is substantially between its crystallization temperature Tc and its melting temperature (ie, Tc < Tmax < Tm)' to cause the phase change material layer 23 to be non- The crystal phase is converted into a crystalline phase. Step 52 is to apply at least a reset voltage pulse to the phase change material layer 23 via the first electrode contact n盥 second electrode contact 25 to form a θ 〇 and a 贲 in the phase change material layer 23. The amorphous region 231 corresponding to the material, wherein at least one of the vibrating, Vreset, width and number of the reset voltage pulse is adjustable and corresponds to the written data. The width, the number, or the like of 1 'only changes the amplitude, or by changing the amplitude of the reset voltage pulse, for example: the width is fixed, the number is 9 201003655: such as: the amplitude is fixed, the quantity is 丨, only the width is changed, or For example: a few deniers: 1, change both amplitude and width, or for example: fixed amplitude, wide yield: fixed, only change the number, can be formed in substantially complete: 23 different sizes of amorphous regions 23 chemical layer 5(a) to (d) (in the case where the phase change memory cell 2 adopts a vertical structure), and if the amorphous region 231 is sufficient to cover the acoustical contact surface of the first electrode 22 and the phase change material If so, the phase change material layer 23 is said to be substantially completely amorphous.步骤 In step 52, the voltage pulse is reset so that the phase change material H 焉 temperature Tmax substantially exceeds its smelting temperature Tm (ie, 丁_〜, so that the phase change material layer 23 is converted from the crystalline phase to the amorphous phase. The pressure pulse causes the highest temperature of the phase change material layer 23 to be substantially lower than the melting temperature of the (four) portion 26 to avoid % melting of the dielectric portion. Preferably, the contact area of the material layer 23 with the first electrode 22 is substantially When the contact area between the phase change material layer 23 and the second electrode 24 is smaller than that, the reset voltage pulse causes the first electrode contact 21 (four) to subtract the voltage difference obtained by the second electrode contact h from the electric house and the phase change material layer 23 (4) Seebeck coefficient (ie thermoelectric coefficient) is different. Refer to Figure 6, Figure 7 and Table. When phase change memory cell 2 adopts vertical structure (indicated by v) and linear structure (in L), phase change material The layer 23 is made of Ge for 4 and (indicated by coffee) and ^ is said to be written, and the characteristic size of the phase change memory cell 2 (five) is (the prison heart is 65_' and the pulse width is -, according to Verify the result and reset the amplitude of the voltage pulse v The relationship between _ and the highest temperature of the phase change material layer 23 under the crystal phase is as shown in Fig. 6 (4), 10 201003655 and the amplitude Vse of the voltage pulse is set to be the highest with the phase change material layer 23 under the amorphous phase. The relationship between the I and Y max is shown in Fig. 6(b). The relationship between the amplitude Ireset of the reset current pulse and the maximum temperature Tmax of the phase change material layer 23 under the crystal phase is as shown in Fig. 7. As shown, the amplitude between the amplitude of the current pulse and the highest temperature of the phase change material layer 23 in the amorphous phase is set as shown in Figure 7(b), and the reset voltage pulse required for the phase change memory cell 2 is shown. Take a small amplitude (so that the highest temperature of the phase change material layer 23 under the crystalline phase 实质上 substantially reaches its melting temperature) and set the minimum amplitude of the voltage pulse
(使在非晶相下的相變化材料層23的最高溫度La實質上 達到其結晶溫度丁。)、重設電流脈衝的最小振幅(使在結晶 相下的相變化材料層23的最高溫度Tmax實質上達到其 溫度Tm)與設定電流脈衝的最小振幅(使在非晶相下的相 變化材料層23的最高溫度丁_實質上達到其結晶溫度W 如表1所示。由這些數據可知,利用電流脈衝來進行設定 而利用電壓脈衝來進行重設,可以降低脈衝振幅。 又 表1 相變化記憶 胞的類型 ^ 重設電壓脈 衝的最小振 幅 設定電壓脈 衝的最小振 幅 重設電流 脈衝的最 設定電流 脈衝的最 小振幅 — — SST-V 0.17V 3V ---- 3 5μΑ GST-V ------ 0.27V 45V —·— 3μΑ SST-L 0.49V 7V 16μΑ Z-' C* 丁 T 0.60V ---— 93V GS 1-L 1297ι.δ 餐閱圖 —--- * x 8,當相變化記憶胞2採用垂直結構 ΙμΑ —------- (以V表示 11 201003655(The maximum temperature La of the phase change material layer 23 in the amorphous phase is substantially reached to its crystallization temperature.), and the minimum amplitude of the current pulse is reset (the maximum temperature Tmax of the phase change material layer 23 under the crystal phase is made) Substantially reaching its temperature Tm) and setting the minimum amplitude of the current pulse (so that the highest temperature of the phase change material layer 23 in the amorphous phase is substantially reached to its crystallization temperature W as shown in Table 1. As can be seen from these data, By setting the current pulse and resetting with the voltage pulse, the pulse amplitude can be reduced. Table 1 Types of phase change memory cells ^ Reset the minimum amplitude of the voltage pulse Set the minimum amplitude of the voltage pulse Reset the current pulse setting Minimum amplitude of current pulse – SST-V 0.17V 3V ---- 3 5μΑ GST-V ------ 0.27V 45V —·— 3μΑ SST-L 0.49V 7V 16μΑ Z-' C* 丁T 0.60 V ---— 93V GS 1-L 1297ι.δ Meal drawing —--- * x 8, when the phase change memory cell 2 adopts the vertical structure ΙμΑ --------- (in V, 11 201003655
)、相變化材料層23由Se2Sb7〇Te28(以SST表示)製成、 相變化記憶胞2的特徵尺寸(以F表示)分別為35疆、 65_與150nm,以及脈衝寬度為*時,根據模擬結果, 纽電Μ脈衝的振幅與在結晶相下的相變化材料層U 的取局溫度Tmax之間的關係如圖8⑷所示,設定電流脈衝 的振巾田iset與在非晶相下的相變化材料層23的最高溫度 之間的關係如圖8(b)所示,以及相變化記憶胞2所需= 重。又包壓脈衝與設定電流脈衝的最小振幅如表2所示。由 '言-數據可知,即使特徵尺寸改變,仍可利用電流脈衝來 進行設定而利用電壓脈衝來進行重設。 表2 — -- 相變化記憶胞的特 重設電壓脈衝的最 設定電流脈衝的最 徵尺寸 ------ 小振幅 小振幅 — 35nm 0.13V —— 52mA _ 65nm 0.17V ----—一 3 5mA 15 Onm 0.21V " ------ 27uA 另外,椒诚时加„ ............ ―― ~—— 極 極 克係數同號,二者 22之接觸面積實質上小於相變化材料層23與第二電極24 之接觸面積的情況下’無論相變化記憶胞2採用何種結構 i當相變化材料層23的席貝克係數實質上大於〇時,^重 °又電壓脈衝使第一電極接觸21的電壓實質上大於第二電 接觸25的電壓(即第一電極接觸21的電壓減去第二電炫 接觸25的電壓所得到的電壓差與相變化材料層23的席貝 大於0),因為席貝克及貝爾 12 201003655 ===電=影響’相變化材料…的熱 幅降低,甚至益法^ ^ 的方向移動,導致操作效率大 21的電壓實質上小於笛_ + ^ 打使弟电極接觸 雜0 ;弟一电極接觸25的電壓(即第一雷 接觸21的電壓減去第二 电極 Μ: μM " 的電壓所得到的電壓 差”相欠化材枓層23的席貝克係 G,後者實質上大於Q 上小於 欠化材料層23中的教能隹士 置會往第-電極2m“ ㈣熟此集中位 P 。勺方向移動,導致操作效率提高,其 可以降低相變化記恃胎 甚至 胞2所f的重設電壓脈衝的最 ,而當相變化材料層23的奋 振幅 舌”厂 層3的席貝克係數實質上小於0時… 重仅電壓脈衝使第一電極接 右 極接觸25帽(即第—電極接電二 極接觸25的電壓所得到的的電壓減去第二電 貝克係數異號,前者實質上大於〇,❹實質席 相變化材料層23中的埶能| ψ 、、 ; 〇)’ 丫旳熟此集中位置會往 ^ 向移動,若重設電虔脈衝使第一 的方 小於第二電極接觸25的電遷(即第 私“貝上 減去第二電極接觸25的電 ” 的電壓 & _ 电&所侍到的電壓差與相變化枯 層23的席貝克係數同號 t化材枓 ^ 者白疋貫質上小於0),相變 材枓層23中的熱能集中位 文化 B在第二電極24的方向鉍心 。因此,在相變化材料層 動 ,,,r 與第—電極22之接觸面積 賀上小於相變化材料層23蛊 價汽 „ 、罘—电極24之接觸面稽的拉 況下,重設電壓脈衝使第—電 積的障 極接觸25的電壓所得到的 弟—电 &差與相變化材料層23的席 13 201003655 貝克係數異號,以提高操作效率。 值得注意的是,在相變化材料層23與第―恭 接觸面積實質上小於相變化材料層23與第二電:^广之 觸面積的情況下,無論相變化記憶胞2採用何種結:之接 重认電壓脈衝使第-電極接觸21的電壓減去第 曰The phase change material layer 23 is made of Se2Sb7〇Te28 (represented by SST), and the characteristic size (indicated by F) of the phase change memory cell 2 is 35, 65, and 150 nm, respectively, and the pulse width is *, according to As a result of the simulation, the relationship between the amplitude of the neon pulse and the temperature Tmax of the phase change material layer U under the crystal phase is as shown in Fig. 8 (4), and the vibrating field iset of the current pulse is set to be in the amorphous phase. The relationship between the highest temperatures of the phase change material layers 23 is as shown in Fig. 8(b), and the phase change memory cells 2 are required to be heavy. The minimum amplitude of the envelope pulse and the set current pulse is shown in Table 2. It can be seen from the 'word-data that even if the feature size is changed, the current pulse can be used to set and the voltage pulse is used for resetting. Table 2 — -- The most set size of the most set current pulse of the special reset voltage pulse of the phase change memory cell —— small amplitude small amplitude — 35nm 0.13V —— 52mA _ 65nm 0.17V ----— A 3 5mA 15 Onm 0.21V " ------ 27uA In addition, the pepper is added „ ............ —————— The extreme gram coefficient is the same as the number 22 When the contact area is substantially smaller than the contact area of the phase change material layer 23 and the second electrode 24, 'when the phase change memory cell 2 adopts the structure i, when the Sibeck coefficient of the phase change material layer 23 is substantially larger than 〇, ^ The voltage pulse causes the voltage of the first electrode contact 21 to be substantially greater than the voltage of the second electrical contact 25 (ie, the voltage difference between the voltage of the first electrode contact 21 minus the voltage of the second electro-optic contact 25 and the phase change). The material layer 23 has a scalar greater than 0), because Xibeck and Bell 12 201003655 ===Electric = affects the 'phase change material', the heat amplitude decreases, and even the direction of the ^^^^ moves, resulting in a voltage efficiency of 21 On the smaller than the flute _ + ^, the younger electrode is in contact with the miscellaneous 0; the younger one is in contact with the voltage of 25 (ie the first thunder) The voltage difference between the voltage of the contact 21 minus the voltage of the second electrode Μ: μM " is 席 席 席 席 的 23 23 , , , , , , , , , , , , , , , , , , , Teach the gentleman to set the second electrode to the second electrode. (4) Cook the concentrated position P. The direction of the spoon moves, resulting in improved operational efficiency, which can reduce the phase change of the abortion and even the reset voltage pulse of the cell 2 When the Sibeck coefficient of the layer 3 of the phase change material layer 23 is substantially less than 0... the voltage pulse only causes the first electrode to be connected to the right pole to contact the 25 cap (ie, the first electrode is connected to the second pole contact 25). The voltage obtained by the voltage is subtracted from the second electric Becker coefficient. The former is substantially larger than 〇, and the 席 energy in the substantive phase change material layer 23 is |, 、, ;) 丫旳^ to move, if the power pulse is reset, the first square is smaller than the voltage of the second electrode contact 25 (ie, the voltage of the second "electrode minus the second electrode contact 25" & _ electric & The difference between the voltage difference and the Sibeck coefficient of the phase change layer 23 is the same.枓^ The white matter is less than 0), and the thermal energy concentration in the phase change layer 23 is in the direction of the second electrode 24. Therefore, in the phase change material layer, r, and When the contact area of the electrode 22 is smaller than the contact surface of the phase change material layer 23, the contact surface of the „-electrode 24, the voltage pulse is reset to obtain the voltage of the first electrode stack. The brother-electricity & difference and phase change material layer 23 of the seat 13 201003655 Beck coefficient is different to improve the operating efficiency. It is worth noting that, in the case where the phase change material layer 23 and the first-contact area are substantially smaller than the phase-change material layer 23 and the second electric contact area, regardless of the phase change memory cell 2, what kind of junction is used: The re-accepting voltage pulse subtracts the voltage of the first electrode contact 21 from the third
25的電壓所得到的電壓差與相變化材料層23的席貝:妾觸 異號時’在相變化材料層23中會形成呈圓頂形;曰二數 叫(如® 5⑷〜⑷所示),而當重設電壓脈衝使第;^ 觸的電壓減去第二電極接觸25的電壓所得到的電 與相變化材料層23的席貝克係數同號時 ”中會形成呈u形的非晶區域231。 曼化材枓層 '土由於相變化記憶胞2所需的設定電流脈衝的最小振帽 退J於所而的重设電流脈衝的最小振幅’ II由使設定雨泣 脈衝的振幅Iset介於所需的設定電流脈衝的最小振幅與:; :重設電流脈衝的最小振幅之間,可以使相變化記憶層2: k非阳相轉變成結晶相,但不會使相變化記憶層從結晶 相轉變成非晶#,因此可以直接覆寫。再者,由於相變^ 記憶胞2所需的重設電壓脈衝的最小振幅很小,即使將重 :电£脈衝的振幅選取為大於所需的重設電壓脈衝的 取小振b ’仍可以小於奈米級M〇s或類似元件所能提供的 取大電壓’因此容易實現。另外’相變化記憶胞2的相變 化材料層23不會在每次程式化時都形成很大㈣融區域, 這樣較不容易損壞相變化記憶胞2,可以提高其重覆次數, 且較不會使附近的相變化記憶胞2的相變化材料層23非預 14 201003655 期地達到其結晶溫度而局部結晶,可以減輕熱串號問題。 麥閱圖2與圖3 ’讀取電路4讀取相變化記憶體胞2令 被選定的一者所儲存的資料之方式是:經由第—電極接觸 21及第二電極接觸25,施加一讀取電壓脈衝到相變化材科 層23 ’並债測流過相變化材料層23的電流,其中,讀取電 壓脈衝使相變化材料層23的最高溫度丁實質上低於其結 晶溫度Tc (即Tmax<Tc)。 當相變化記憶胞2採用垂直結構(以v表示)、相變化 材料層23由Ge22Sb24Te54 (以GST表示)製成、相變化記 憶胞2的特徵尺寸(以F表示)丨15〇nm,以及非晶區域 的半彳工(以r表示)分別為25nm、50nm、70ηηι與 斷m時,根據模擬結果,若讀取電路4施加電屢脈衝到相 變化材料層23並偵測流過相變化材料層23的電流以讀取 資料的話,由於㈣到的電流會有很大的差異,可以用來 辨別不同大小的非晶區域231 (如圖9所示),而^讀取電 路4施加電流脈衝到相變化材料層23幻貞測相變化材料异 23的跨壓以讀取資料的話,在非晶區域231不足以包覆^ 一電極22與相變化材料層23的 層 的接觸面之情況下(例如: 非晶區域23 1呈圓頂形,但不夠大, 次者非晶區域231呈u 形)’由於相變化材料層23中會右、、s+ 、 索有/属电流路徑,使得偵測 到的5壓沒有差異,無法用來辨 _ , 』不问大小的非晶區域23 1 。因此,利用電壓脈衝來讀取 貝才十可以避免訊號無法辨 別0 較佳地,在相變化材料層23 ,、第一電極22之接觸面 15 201003655 積實質上小於相變化材料層23與第二電極24之接觸面積 障況下#取包應脈衝使第—電極接觸2 ^的電壓減去第 二電極接觸25的電塵所得到的電壓差與相變化材料層23 的席貝克係數同號,如此—來,相變化材料層23中㈣能 集中位置會往第二電極24的方向移動,導致散熱效果較好 〇 代 』稽田无利用叹疋-电风胍衝以使相The voltage difference obtained by the voltage of 25 and the sill of the phase change material layer 23: when the singular sign is formed, 'the dome shape is formed in the phase change material layer 23; the second number is called (as shown by ® 5(4) to (4)) When the reset voltage pulse is such that the voltage obtained by subtracting the voltage of the second electrode contact 25 from the voltage of the second electrode contact 25 is the same as the Sibeck coefficient of the phase change material layer 23, a U-shaped non-form is formed. Crystal region 231. The minimum amplitude of the reset current pulse of the set current pulse required by the phase change memory cell 2 is the minimum amplitude of the reset current pulse. Iset is between the minimum amplitude of the desired set current pulse and :; : resets the minimum amplitude of the current pulse, which can cause the phase change memory layer 2: k non-positive phase to transform into a crystalline phase, but does not cause phase change memory The layer changes from crystalline phase to amorphous #, so it can be overwritten directly. Furthermore, since the minimum amplitude of the reset voltage pulse required for phase change ^ memory cell 2 is small, even if the amplitude of the weight: electric pulse is selected as The small vibration b' larger than the required reset voltage pulse can still be smaller than The large voltage that can be provided by the meter M〇s or similar components is therefore easy to implement. In addition, the phase change material layer 23 of the phase change memory cell 2 does not form a large (four) melting region every time the program is formed, so that It is less likely to damage the phase change memory cell 2, and the number of repetitions can be increased, and the phase change material layer 23 of the nearby phase change memory cell 2 is less likely to reach its crystallization temperature and partially crystallize. Reducing the hot serial number problem. Fig. 2 and Fig. 3 'Reading circuit 4 reads the phase change memory cell 2 so that the data stored by the selected one is: via the first electrode contact 21 and the second electrode Contact 25, applying a read voltage pulse to the phase change material layer 23' and measuring the current flowing through the phase change material layer 23, wherein the read voltage pulse causes the highest temperature of the phase change material layer 23 to be substantially lower than Its crystallization temperature Tc (ie, Tmax < Tc). When the phase change memory cell 2 adopts a vertical structure (indicated by v) and the phase change material layer 23 is made of Ge22Sb24Te54 (indicated by GST), the characteristic size of the phase change memory cell 2 ( Expressed as F)丨15 Nm, and the half-duplex (denoted by r) of the amorphous region are 25 nm, 50 nm, 70 ηηι, and m, respectively. According to the simulation result, if the read circuit 4 applies an electric pulse to the phase change material layer 23 and detects the flow. If the current of the phase change material layer 23 is read to read the data, since the current to (4) is greatly different, it can be used to distinguish the amorphous regions 231 of different sizes (as shown in FIG. 9), and the read circuit 4 applying a current pulse to the phase change material layer 23, the phase change of the material phase change material material 23 to read the data, in the amorphous region 231 is insufficient to cover the contact of the electrode 22 with the layer of the phase change material layer 23. In the case of a face (for example, the amorphous region 23 1 is dome-shaped, but not large enough, the second amorphous region 231 is u-shaped) 'because the phase change material layer 23 will be right, s+, cable/current current The path is such that there is no difference in the detected 5 voltages, and it cannot be used to distinguish the amorphous area 23 1 of the size. Therefore, the voltage pulse can be used to read the code 10 to avoid the signal being indistinguishable. Preferably, in the phase change material layer 23, the contact surface 15 of the first electrode 22 is substantially smaller than the phase change material layer 23 and the second layer. Under the contact area of the electrode 24, the voltage difference obtained by subtracting the voltage of the first electrode contact 25 from the voltage of the first electrode contact 25 is the same as the Schebis coefficient of the phase change material layer 23, In this way, (4) in the phase change material layer 23 can move to the direction of the second electrode 24, resulting in better heat dissipation effect. "Ji Tian does not use the sigh - the electric wind rushes to make the phase
k化材料層23實質上完令处a s 、70王、、口日日,再利用重設電壓脈衝以在 相變化材料層23中形成期望大小的非晶區域231,容易實 現,且可以提高重覆次數及減輕熱串號問題,因此確實可 以達到本發明之目的。 ' 处 '惟以上所述者’僅為本發明之較佳實施例而已,當不 月b以此限定本發明實施之筋囹,如丄 ⑱圍即A凡依本發明巾請專利 耗圍及發明說明内容所作簡 H , 間早的寺效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 化丄?方:模擬圖’說明習知的-種多階程式"變 施例; 圖2是-方塊圖,說明本發明相變化記憶體之較佳實 變化記憶胞, 私·式化相變化 /圖3是一剖面圖,說明較佳實施例的相 (a)採用垂直結構,或(b)採用線型結構; 圖4是一流程圖,說明較佳實施例多階 記憶胞的方法; 16 201003655 圖5疋一剖面圖’說明相變化記憶胞在相變化材料層 中形成不同大小的非晶區域; 圖6是一模擬圖,說明在相變化記憶胞的類型不同時 ’(a)重設電壓脈衝的振幅與在結晶相下的相變化材料層的 最高溫度之間的關係、’及⑻設定電壓脈衝的振幅舆在非晶 相下的相變化材料層的最高溫度之間的關係; f 1 圖7是一模擬圖,說明在相變化記憶胞的類型不同時 :(:)重設電流脈衝的振幅與在結晶相下的相變化材料層的 取同溫度之間的關係,及(b)設定電流脈衝的振幅與在非曰 相下的相變化材料層的最高溫度之間的關係; 曰曰 圖8是一模擬圖,說明在相變化記憶胞的特徵尺 同時,⑷重設電壓脈衝的振幅與在結晶相下的相 =高溫度之間的關係,及(b)設定電流脈衝 : 非晶相下的相變化材料声的 /、在 匕柯枓層的取向溫度之間的關係;及 圖9是-模擬圖,說 電流差異。 非日日區域所導致的 17 201003655 【主要元件符號說明】 2 ...... •…相變化記憶胞 25........ •第二電極接觸 21 ··.·· …·第一電極接觸 26........ •介電部 22•…· •…第一電極 3 ......... •寫入電路 23 •…- ……相變化材料層 4 ......... •讀取電路 231 ··· 非日日£域 51 、 52· .步驟 24••… —第一電極The k-type material layer 23 substantially completes the as, 70, and the day, and then uses the reset voltage pulse to form the amorphous region 231 of a desired size in the phase change material layer 23, which is easy to realize and can be improved. The number of times of overwriting and the problem of reducing the heat number are indeed achieved, and it is indeed possible to achieve the object of the present invention. 'The only part of the above' is only a preferred embodiment of the present invention, and when the month b is used to limit the implementation of the present invention, such as the 丄18 circumference, that is, the A The description of the content of the invention, the early changes and modifications of the temple effect, are still within the scope of the invention patent. [Simple diagram of the diagram] 模拟 丄 : 模拟 模拟 : : : : : : : : : 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 模拟 ; ; ; ; ; ; ; , private phase change / FIG. 3 is a cross-sectional view showing phase (a) of the preferred embodiment adopting a vertical structure, or (b) adopting a linear structure; FIG. 4 is a flow chart illustrating a preferred embodiment Method of order memory cell; 16 201003655 Fig. 5A cross-sectional view ' illustrates phase change memory cells forming amorphous regions of different sizes in phase change material layers; Fig. 6 is a simulation diagram illustrating different types of phase change memory cells When '(a) resets the relationship between the amplitude of the voltage pulse and the highest temperature of the phase change material layer under the crystal phase, 'and (8) sets the amplitude of the voltage pulse 舆 the highest in the phase change material layer under the amorphous phase Relationship between temperatures; f 1 Figure 7 is a simulation diagram showing when the types of phase change memory cells are different: (:) resetting the amplitude of the current pulse and the phase temperature of the phase change material layer under the crystal phase Relationship between, and (b) setting the amplitude of the current pulse Relationship with the highest temperature of the phase change material layer in the non-曰 phase; Figure 8 is a simulation diagram illustrating the amplitude of the reset voltage pulse and the crystal phase in the phase of the phase change memory cell The relationship between the lower phase = high temperature, and (b) the setting of the current pulse: the phase change of the material under the amorphous phase / the relationship between the orientation temperature of the ruthenium layer; and Figure 9 is - simulation Figure, said the current difference. 17 201003655 caused by non-Day-day area [Explanation of main component symbols] 2 ...... • Phase change memory cell 25........ • Second electrode contact 21 ······· First electrode contact 26........ • Dielectric portion 22•...·•...first electrode 3 .......... write circuit 23 •...-...phase change material layer 4 ......... • Read circuit 231 ··· Non-day day domain 51, 52·. Step 24••... —First electrode
1818
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97124699A TW201003655A (en) | 2008-07-01 | 2008-07-01 | Multi-stage programmable phase-change memory cell method and phase-change memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97124699A TW201003655A (en) | 2008-07-01 | 2008-07-01 | Multi-stage programmable phase-change memory cell method and phase-change memory |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201003655A true TW201003655A (en) | 2010-01-16 |
TWI379300B TWI379300B (en) | 2012-12-11 |
Family
ID=44825662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97124699A TW201003655A (en) | 2008-07-01 | 2008-07-01 | Multi-stage programmable phase-change memory cell method and phase-change memory |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW201003655A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9324428B1 (en) * | 2015-01-25 | 2016-04-26 | Macronix International Co., Ltd. | Memory device and operation method thereof |
-
2008
- 2008-07-01 TW TW97124699A patent/TW201003655A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TWI379300B (en) | 2012-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI254443B (en) | Multilevel phase-change memory, manufacture method and status transferring method thereof | |
Sarwat | Materials science and engineering of phase change random access memory | |
CN105118916B (en) | Resistive memory architectures and device | |
TW587347B (en) | Multiple data state memory cell | |
TWI331800B (en) | Single-mask phase change memory element | |
CN101577141B (en) | Memory devices and methods for operating such devices | |
TWI325174B (en) | I-shaped phase change memory cell | |
CN101488558B (en) | M-Sb-Se phase changing thin-film material used for phase changing memory | |
TWI261356B (en) | Phase-change multi-level cell and operating method thereof | |
US20150221863A1 (en) | Phase-Change Storage Unit Containing TiSiN Material Layer and Method for Preparing the Same | |
TW201027533A (en) | Method for setting pcram devices | |
US20100284213A1 (en) | Method of cross-point memory programming and related devices | |
TW201106361A (en) | Three-dimensional array of re-programmable non-volatile memory elements having vertical bit lines and a double-global-bit-line architecture | |
Loke et al. | Ultrafast nanoscale phase-change memory enabled by single-pulse conditioning | |
JP7563860B2 (en) | Resistive memory device, memory cell, method for operating said memory device, control unit and computer program product - Patents.com | |
WO2017084237A1 (en) | Three-dimensional memory and preparation method therefor | |
CN102227015B (en) | Phase transition storage material and preparation method thereof | |
CN110544742B (en) | Ferroelectric phase change hybrid storage unit, memory and operation method | |
Ren et al. | Pseudobinary Al2Te3-Sb2Te3 material for high speed phase change memory application | |
US20130306929A1 (en) | Multilayer-Stacked Phase Change Memory Cell | |
CN101488557B (en) | Si-Sb-Se phase changing thin-film material used for phase changing memory | |
CN102064276B (en) | Asymmetric phase-change memory unit and element | |
US9053785B2 (en) | Phase-change memory cell | |
CN103714852B (en) | A kind of precise control micro-nano scale phase change material amorphous rate continually varying method | |
CN106448728B (en) | Memory and system and recording method with adjustable unit position shape |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |