TW201001744A - Electro-optical device and manufacturing method thereof - Google Patents

Electro-optical device and manufacturing method thereof Download PDF

Info

Publication number
TW201001744A
TW201001744A TW97123759A TW97123759A TW201001744A TW 201001744 A TW201001744 A TW 201001744A TW 97123759 A TW97123759 A TW 97123759A TW 97123759 A TW97123759 A TW 97123759A TW 201001744 A TW201001744 A TW 201001744A
Authority
TW
Taiwan
Prior art keywords
substrate
conductive layer
manufacturing
layer
patterned
Prior art date
Application number
TW97123759A
Other languages
Chinese (zh)
Other versions
TWI369791B (en
Inventor
Jennh-Wa Fu
Ken-Chuan Lu
Kwang-Ru Wang
Yu-Chuan Liu
Original Assignee
Tekcore Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tekcore Co Ltd filed Critical Tekcore Co Ltd
Priority to TW097123759A priority Critical patent/TWI369791B/en
Publication of TW201001744A publication Critical patent/TW201001744A/en
Application granted granted Critical
Publication of TWI369791B publication Critical patent/TWI369791B/en

Links

Abstract

A manufacturing method of an electro-optical device includes the steps of forming an electro-optical component on a patterned sacrificial substrate such that the electro-optical component has a patterned side; forming a supporting substrate over the electro-optical component to support the electro-optical component; and peeling off the patterned sacrificial substrate. In addition, an electro-optical device is also disclosed.

Description

201001744 九、發明說明: 【發明所屬之技術領威】 本發明係關於一種光電裝置及其製造方法,特別關於一種半 導體光電裝置及其製造方法。 【先前技術】 目前,常見的光電裝置如發光二極體(light-emitting diode, LED)是由半導體材料製作而成的發光元件,其具有體積小、發 熱I低、耗電量低、沒有輪射、不含水銀、壽命長、反應速度快 以及可靠度高等優點。因此,發光二極體可廣泛應用於資訊、通 讯、消費性電子、汽車、照明以及交通號諸等。 請參照圖1所示,以藍光發光二極體1為例說明,其係包含 一基板11、一 N型半導體層13卜一發光層132、一 p型半導體 層133以及一透明導電層14。發光層132係位於n型半導體層131 與P型半導體層133之間,透明導電層14係位於P型半導體層 133上方。 般而σ ’發光一極體1之電壓以及電流的關係呈指數關係。 當於-Ρ型電極15以及—Ν型電極16間施加―電壓,且該電廢 大於導通電壓(threshold VQitage)時,發光二極體丨之電流迅速 增加’同時開始發光。 ) 為使彳于N型半導體層131、發光層132以及P型半導體層133 具有較佳的^結構,基板η係為—藍寶;5 (sapphirc)基板。 201001744 由於藍寶石基板料電,因此,f知藍光發光二極體的p型電極 I5及N型電極設置於相同侧,而造成部分空間的浪費。 然而’發光二極體1仍存在發光效率不佳的問題,因此,如 何提供-種提高發纽率的光妓置及絲造方法,實屬當 要課題之一。 【發明内容】 有鐘於上述課題,本發明之目的為提供-種能夠提高發光效 率的光電元件及其製造方法。 為達上述目的,本發明提供—種光電裝置之製造方法,其係 ^含下列步驟:形成-光電元件於1案化犧牲絲上,使得光 电兀件具有―圖案仙彳;形成—承載基板於光電元件上方來承载 該光電元件;以及剝離圖案化犧牲基板。 為達上述目的,本發明提供—種光電裝置,其係包含-承載 基板以及-光電元件。光電元件具有—第—伽及^二侧。发 中’第—侧具有一轉印圖案,承載基板位於第二侧。 承上所述,因依據本發明之光電褒置及其製造方法,其係將 先電元件戦於圖案化·聽上使光電元件具有1案化側, 圖案化犧牲基板上關时神到光電元件賴案㈣丨。然後圖 案化_基板_之後會使得光電元件的_化側露出,圖案化 侧上的圖案可用來提高出光效率。 201001744 【實施方式】 以下將參照__,綱依據本發賴數實施例之光 置及其製造方法。 x 弟一實施例 、 …々貝他椚I无電裒置的製赛 方法係包括步驟S11至步驟J主Π 士^· 〆鄉Μ5以下’凊同時參照圖3Α至圖3Β< 凊茶照圖3Α所示,步嫌】总但似 鄉S11係提供一圓案化犧牲基板21, 於本實施例t,如残it藍紐光二極體 石(sapphire)基板。 基板21係可為一藍寳 ,請參照圖犯所示,步驟S12係形成一光電元件㈣圖案化 犧牲基板21上,使得光電元件22具有—_化側221,圖案化侧 221會有一轉印圖案。另外,光電元件22主要以薄膜沉積來遙晶 成長,、可使職化鎵(GaN)材料來製作藍光發光二極體。 一光電元件22包含-第一半導體層拉、一發光層您及—第 -2導體層224’第-半導體層222形成於圖案化犧牲基板以上, 接者於第-半導體層222上形成發光層奶,而後於發光層奶 上^成第—半導體層224。第—半導體層a2及第二半導體層辦 係可刀,別為-N型半導體及—?型半導體層,當然其亦可互換, ;並不加以限制。$外,光電元件η亦可採更多半導體層或更 多發光層等更複雜的結構。 月二’、、、圖3C所不,步驟Sl3係形成一承載基板23於光電元 中方來承载光電讀22。承載基板a是以電鍍或是黏合等方式 201001744 與光電tg件22結合。承載基板23可以是導電材質,其可直接作 為光電元件22的電極。 請參照圖3D所示,步驟S14係翻轉光電裝置2 ’然後利用雷 射剝離圖案化犧牲基板21,圖案化侧221因而露出。於本實施例 中圖案化侧221上的轉印圖案係可為一光栅(逆此呢)圖案、一 球面鏡(ball lens)圖案或一菲涅耳(ftesnel)圖案。其中,光柵 圖案係可依據光電元件22之波長特性所設計。另外,此步驟亦可 改為先利用雷射剝離圖案化犧牲基板21,然後再翻轉光電裝置2。 明參K?、圖3E所示,步驟S15係形成一電極24於光電元件22 的圖案化侧221。如此便可完成垂直式結構之光電裝置2。 承上所述,圖案化侧221上的轉印圖案能降低光線在光電元 件22内部的反射現象,進而提高光電裝置2的外部發光效率。另 外,圖案化侧221上的轉印圖案可設計為讓通過的光線^具有一 才曰向性(如圖3E所示)。然而,於本實施例中,並非限定通過圖 案化側221的光線特性為此,熟知此一技藝者,當可依據其需求 設計轉印圖案,使得通過圖案化侧221的光線具有一全方位(咖i direction)性。 再者’圖案化犧牲基板21 _L的隨之實施態樣,其係可例如 圖4A〜圖4C所示,其中圖案化犧牲基板21上的圖案係可包含一 弧形圖案(圖4A)、-溝槽圖案(圖4B)或一凹槽圖案(圖4c), 圖案化犧牲基板21上的圖案的線寬d係可為—微米(响_ 8 201001744 mete〇等級或一奈米(麵〇mete〇等級,例如圖案的線寬_ 於5微米Um)。接著,利用前述方法便可製造出分別如圖仍〜 圖4F所示的對應結構的光電裝置。 第二實施例 請參照圖5所示,依據本發㈣二實_之光電裝置的製造 方法触括步驟S21至步驟S29。以下,請同時參照圖6A至圖Η。 請參照圖6A所示,步驟S21係提供,板祀,基板3ιι係 一個平板並不具有圖案。 請參照圖6B所示,步驟S22係形成一圖案化犧牲基板3ι, 棘驟中是先沉積—緩觸3]2賴顯案倾_ 312。於本實 施:种’緩衝層312係形成於基板311以上,例如但不限於藉由 轉印製或_製程來戦_化_衝層312。經_化後的緩衝 層312仍全面覆蓋基板311,因而可協助後續光電元件形成。 “明參肤圖6C所示,步驟S23係形成一光電元件32於圖案化 犧牲基板31上’使得光電元件32具有一圖案化側切。 、光兒凡件32包含一第一半導體層322、一發光層323及一第 半‘體層324’第—半導體層322形成於圖案化犧牲基板31上, 接者於第—半導體層322上形成發光層323,而後於發光層323 上形成第二半導體層324。第一半導體層322及第二半導體層324 係可分別為一Ν型半導體及一ρ型半導體層,當然其亦可互換, 201001744 於此並不加以限制。 凊繼績芬照圖6D〜圖6F所示,步驟s24〜你係形成一反射 觸膜33於光電元件32上。首先,步驟s24是先沉積一第 ^層331於光電元件&上,然後步驟ms再沉積—介電層幻〇 一 电曰川上,接者,步驟S20圖案化介電層33〇以形成 :圖案介電層332。其中,第—導電層331與第二半導體層似 ^可為歐姆接觸(()hmic c她⑴,使得第一導電層现與第二半 導體層324的介面具有較小的電阻值,以減少光電元件32的電流 損耗。 於本實施例中,第—導電層別是以沉積形成,故其具有較 2的表面特性來反射光線。第—導電層331之材質係可以是翻、 金、銀、把、錄、絡、鈦、錄、義、馳、臟、織/ 組合所構成的群組,或是其他適合的金屬或金狀合物。 々導甩層331除了具有反射功效之外,亦可提供良好的導熱路 另卜目案"弘層332之材質可以是氧切、氮化石夕等介電 材料。 、曾請參照圖6G所示,步驟防係結合一第二導電層%於第一 =電層如以及圖案介電層知上。於本實施例中,第二導電層 4的厚度係大於第-導電層別的厚度至少十倍以上,其厚度約 為】〇〇微米以上。因此,第-導兩尽 H、, 弟一 v电層34可以直接作為一承載基板 7 1讀32。另外,結合第二導電層34的方式可採電錢或是 10 201001744 黏合等。 請參照圖6H所示,步驟⑽係翻轉光電裝置3,並藉由雷射 剝離圖案化犧牲基板31,圖案化侧321因而露出。 請參照圖61所示,步驟办 少弥S29係形成一電極%於光電元件32 的圖案化側321。其中,電極35與圖案介電層说相對設置,如 此利用圖案,丨%層332可達到較佳的電流阻擒Μ腦^滅),因 而使光電元件的電流分布較為均勻。 值得—提的是,上述步驟並不僅限於此順序,其可依據製程 之焦要而進行步驟之調換。 、’、、、而於上述步驟S22中,並非限定圖案化犧牲基板31的形 成式沾知此技蟄者,當可直接圖案化基板祀以形成如圖 ^所示之圖案化犧牲基板31。更甚者,使用者當可於直接圖案化 基板祀後,形成一緩衝層祀於基板犯上,並圖案化緩衝層 12以形成如圖7B所示之_化犧牲基板%。而職化犧牲基板 1上的圖案之實施態樣,其係可例如圖4A〜圖牝所示。 —再者’光電元件32於圖案化犧牲基板%製作好之後,光電 ^件32的—外表面側可進行粗化處理來提高光電裝置3的發光效 &。舉例來說’光電元件32以氮化錁製作,其晶格排列的方式為 章施性(G”〇Iar)草月向圖案化犧牲基板,氮極性(N_polar) ^外’對於第二半導體層324係可利用細來自然形成粗造的表 面。另外’第二半導黯324亦可採表面處理來達到表面粗化的 201001744201001744 IX. Description of the Invention: [Technical Leadership of the Invention] The present invention relates to an optoelectronic device and a method of manufacturing the same, and more particularly to a semiconductor optoelectronic device and a method of fabricating the same. [Prior Art] At present, a common optoelectronic device such as a light-emitting diode (LED) is a light-emitting element made of a semiconductor material, which has a small volume, low heat generation I, low power consumption, and no wheel Shot, no mercury, long life, fast response and high reliability. Therefore, light-emitting diodes can be widely used in information, communication, consumer electronics, automobiles, lighting, and traffic numbers. Referring to FIG. 1 , the blue light emitting diode 1 is taken as an example, and includes a substrate 11 , an N-type semiconductor layer 13 , a light emitting layer 132 , a p-type semiconductor layer 133 , and a transparent conductive layer 14 . The light-emitting layer 132 is located between the n-type semiconductor layer 131 and the p-type semiconductor layer 133, and the transparent conductive layer 14 is located above the p-type semiconductor layer 133. The relationship between the voltage and the current of the σ' illuminator 1 is exponential. When a voltage is applied between the - - type electrode 15 and the --type electrode 16, and the electrical waste is greater than the on-voltage (threshold VQitage), the current of the light-emitting diode 迅速 rapidly increases while the light emission starts. In order to have a better structure for the N-type semiconductor layer 131, the light-emitting layer 132, and the P-type semiconductor layer 133, the substrate η is a sapphire substrate. 201001744 Since the sapphire substrate is electrically charged, the p-type electrode I5 and the N-type electrode of the blue light-emitting diode are disposed on the same side, which causes waste of part of the space. However, the light-emitting diode 1 still has a problem of poor luminous efficiency. Therefore, it is one of the subjects to provide a method for improving the incidence of hair growth and the method of silk production. SUMMARY OF THE INVENTION The object of the present invention is to provide a photovoltaic element capable of improving luminous efficiency and a method for producing the same. In order to achieve the above object, the present invention provides a method for fabricating an optoelectronic device, comprising the steps of: forming a photo-electric component on a sacrificial filament such that the photo-electric component has a "pattern fairy"; forming a carrier substrate The photovoltaic element is carried over the photovoltaic element; and the patterned sacrificial substrate is stripped. To achieve the above object, the present invention provides an optoelectronic device comprising a carrier substrate and a photovoltaic element. The photovoltaic element has two sides - a - gamma and ^. The first side of the hair has a transfer pattern, and the carrier substrate is located on the second side. According to the above, the photoelectric device and the manufacturing method thereof according to the present invention are characterized in that the first electrical component is patterned and sounded so that the photovoltaic component has a side of the case, and the patterned sacrificial substrate is turned on. The component is based on (4) 丨. Then patterning the substrate _ will cause the _-side of the photovoltaic element to be exposed, and the pattern on the patterned side can be used to improve the light-emitting efficiency. 201001744 [Embodiment] Hereinafter, reference will be made to __, which is based on the light of the embodiment of the present invention and a method of manufacturing the same. x Brother's embodiment, ... 々 椚 椚 无 无 无 无 无 无 无 无 无 无 无 无 无 无 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 凊 凊 凊 凊 凊 凊 凊 凊 凊 凊3Α, step by step] always like the township S11 system provides a rounded sacrificial substrate 21, in this embodiment t, such as the residual it blue sapphire sapphire substrate. The substrate 21 can be a sapphire. Please refer to the figure. Step S12 is to form a photovoltaic element (4) on the patterned sacrificial substrate 21, so that the photo-electric element 22 has a _-side 221, and the patterned side 221 has a transfer. pattern. In addition, the photovoltaic element 22 is mainly grown by thin film deposition, and a gallium GaN (GaN) material can be used to fabricate a blue light emitting diode. A photo-electric element 22 includes a first semiconductor layer, a light-emitting layer, and a second-conductor layer 224', a semiconductor layer 222 formed over the patterned sacrificial substrate, and a light-emitting layer formed on the first semiconductor layer 222. The milk is then placed on the luminescent layer milk to form a first-semiconductor layer 224. The first semiconductor layer a2 and the second semiconductor layer can be knives, not the -N type semiconductor and -? The type of semiconductor layer, of course, is also interchangeable, and is not limited. In addition, the photovoltaic element η can also adopt more complicated structures such as more semiconductor layers or more luminescent layers. On the second day of the second, and FIG. 3C, step S13 forms a carrier substrate 23 in the photocell to carry the photo-read 22 . The carrier substrate a is bonded to the optoelectronic tg member 22 by means of plating or bonding. The carrier substrate 23 may be a conductive material that can directly function as an electrode of the photovoltaic element 22. Referring to Fig. 3D, step S14 is to invert the photovoltaic device 2' and then pattern the sacrificial substrate 21 by laser stripping, whereby the patterned side 221 is exposed. The transfer pattern on the patterned side 221 in this embodiment may be a grating (inverse) pattern, a ball lens pattern or a fresnel pattern. Among them, the grating pattern can be designed according to the wavelength characteristics of the photovoltaic element 22. Alternatively, this step may be performed by first stripping the sacrificial substrate 21 by laser stripping and then flipping the photovoltaic device 2. As shown in FIG. 3E, step S15 forms an electrode 24 on the patterned side 221 of the photovoltaic element 22. In this way, the photovoltaic device 2 of the vertical structure can be completed. As described above, the transfer pattern on the patterned side 221 can reduce the reflection of light inside the photovoltaic element 22, thereby improving the external luminous efficiency of the photovoltaic device 2. In addition, the transfer pattern on the patterned side 221 can be designed to impart a directionality to the passing light (as shown in Figure 3E). However, in the present embodiment, the characteristics of the light passing through the patterned side 221 are not limited. For this reason, it is well known to those skilled in the art that the transfer pattern can be designed according to its requirements so that the light passing through the patterned side 221 has a full range ( Coffee i direction) sex. The following embodiment of the patterned sacrificial substrate 21_L can be performed, for example, as shown in FIG. 4A to FIG. 4C, wherein the pattern on the patterned sacrificial substrate 21 can include an arc pattern (FIG. 4A), The groove pattern (Fig. 4B) or a groove pattern (Fig. 4c), the line width d of the pattern on the patterned sacrificial substrate 21 may be - micron (ring _ 8 201001744 mete 〇 grade or one nanometer (face 〇 mete The 〇 level, for example, the line width of the pattern _ 5 μm Um. Then, by the above method, the photovoltaic device of the corresponding structure shown in Fig. 4F can be manufactured. The second embodiment is shown in Fig. 5. Steps S21 to S29 are touched according to the manufacturing method of the photovoltaic device according to the present invention. Hereinafter, please refer to FIG. 6A to FIG. 6A. Referring to FIG. 6A, the step S21 is provided, the board, the substrate 3 A single plate does not have a pattern. Referring to FIG. 6B, step S22 forms a patterned sacrificial substrate 3ι, and in the spine, a deposition-slow-contact 3]2 slanting pattern _ 312 is formed. The buffer layer 312 is formed on the substrate 311, for example, but not limited to, by transfer or The buffer layer 312 is still completely covered by the substrate 311, thereby assisting the formation of subsequent photovoltaic elements. As shown in FIG. 6C, step S23 forms a photovoltaic element 32. The patterning of the sacrificial substrate 31 is such that the photo-electric element 32 has a patterned side cut. The photo-transistor 32 includes a first semiconductor layer 322, a light-emitting layer 323, and a first-half 'body layer 324'. On the patterned sacrificial substrate 31, a light-emitting layer 323 is formed on the first semiconductor layer 322, and then a second semiconductor layer 324 is formed on the light-emitting layer 323. The first semiconductor layer 322 and the second semiconductor layer 324 are respectively A 半导体-type semiconductor and a p-type semiconductor layer, of course, are also interchangeable, and 201001744 is not limited thereto. 凊 继 继 芬 照 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图First, step s24 is to deposit a layer 331 on the photovoltaic element & first, then step ms re-deposited - dielectric layer illusion, then, step S20, patterned dielectric layer 33 〇 to form: a patterned dielectric layer 332. Wherein, the first conductive layer 331 and the second semiconductor layer may be ohmic contacts ((), such that the first conductive layer and the interface of the second semiconductor layer 324 have a smaller resistance value to reduce photoelectricity. The current loss of the element 32. In this embodiment, the first conductive layer is formed by deposition, so it has a surface characteristic of 2 to reflect light. The material of the first conductive layer 331 can be turned, gold, silver, A group consisting of a combination of recording, recording, meridian, titanium, recording, meaning, chi, dirty, weaving/combination, or other suitable metal or gold compound. In addition to the reflective effect, the conductive layer 331 can also provide a good heat conduction path. The material of the layer 332 can be a dielectric material such as oxygen cutting or nitriding. Referring to FIG. 6G, the step prevention system is combined with a second conductive layer % on the first electrical layer and the patterned dielectric layer. In the present embodiment, the thickness of the second conductive layer 4 is at least ten times greater than the thickness of the first conductive layer, and the thickness thereof is about 〇〇μm or more. Therefore, the first and second ends of the H, the second layer of the electrical layer 34 can be directly read as a carrier substrate 7 1 . In addition, the method of combining the second conductive layer 34 can be used for electricity or 10 201001744 bonding. Referring to Fig. 6H, the step (10) is to invert the photovoltaic device 3, and the sacrificial substrate 31 is patterned by laser stripping, whereby the patterned side 321 is exposed. Referring to Fig. 61, the step S29 forms an electrode % on the patterned side 321 of the photovoltaic element 32. Wherein, the electrode 35 is disposed opposite to the patterned dielectric layer, so that the pattern 丨% layer 332 can achieve better current resistance, so that the current distribution of the photovoltaic element is relatively uniform. It is worth mentioning that the above steps are not limited to this order, and the steps can be changed according to the focus of the process. In the above step S22, the formation pattern of the patterned sacrificial substrate 31 is not limited, and the substrate can be directly patterned to form the patterned sacrificial substrate 31 as shown in FIG. Moreover, the user can form a buffer layer on the substrate after directly patterning the substrate, and pattern the buffer layer 12 to form a sacrificial substrate % as shown in FIG. 7B. The implementation of the pattern on the sacrificial substrate 1 can be, for example, shown in Figures 4A to 。. Further, after the photovoltaic element 32 is formed in the patterned sacrificial substrate %, the outer surface side of the photovoltaic element 32 can be roughened to improve the luminous efficacy of the photovoltaic device 3. For example, the photo-electric element 32 is made of tantalum nitride, and its lattice arrangement is a nutrient (G"〇Iar) patterning the sacrificial substrate, and the nitrogen polarity (N_polar) is external to the second semiconductor layer. The 324 series can be finely used to naturally form a rough surface. In addition, the 'second semi-conductive 黯324 can also be surface treated to achieve surface roughening 201001744

效果。利用以上方式可使第二半導體層似具有如圖8A〜圖8D 所不之不同的粗化結構325。因此,在光電元件η的二侧皆可制 作出不平整的表面。 衣 —另外’於本實酬巾,並非限定圖齡電層说的樣式,其 實施態樣亦可如圖9所示。圖案介電層说的__ 6i中圖案 介電層332的圖案來的寬,特別是在電極35正下方的圖案的寬度 約略與電極35同寬,藉以避免電流僅紐於電極%的正下方流 動。 机 第三實施例 請參照圖10所示,依據本發明第三實施例之光電裝置的制造 方法係包括步驟测至步驟咖以下請同時參照圖Μ至'圖 11J。 請參照圖11A所示,步驟S3〇1係提供一基板411,接著,如 圖11B所示,步驟纖係圖案化基板如以形成一圖案化犧牲基 板41。於本實施例巾,_化犧牲基板Μ關雜可如前述實施 例圖案化犧牲基板的圖案。 請參照® 11C所示,步,驟S303係形成一光電元件42於圖案 化犧牲基板41上,使得光電元件42具有一圖案化侧421,圖案化 側421會有一轉印圖案。 光電元件42包含-第—半導體層422、一發光層423及一第 201001744 一半導體層424’第一半導體層422形成於圖案化犧牲基板41上, 接著於第一半導體層422上形成發光層423,而後於發光層423 上形成第二半導體層424。 °月苓知、圖11D所示,步驟S304係粗化光電元件42的一外表 面側425,亦即粗化第二半導體層424的上表面。 請繼續參照圖11E〜圖UG所示,步驟S3〇5〜s3〇7係形成一 反射歐姆接觸膜43於光電元件42上。首先,請參照圖nE所示, 步驟S3〇5係沉積一介電層43〇於光電元件犯上,然後,步驟讓 係圖案化介電層賴以形成—圖案介電層432,接著,步驟幻〇7 沉積一第—導電層431於圖案介電層432以及光電元件42上。 齡照圖冊〜圖戶斤示,步驟S308係電錄一第二導電層 :於第電層431上’然後,步驟S3〇9係翻轉光電裝置4,並 田射剝離圖案化犧牲基板41 ’圖案化側421因而露出。接著,步 驟如0係形成-電極45於光電元件42的圖案化側421。另外^ 如圖12A所示,圖案介電層432亦可採較寬的圖案,或如圖迦 所不,圖案介電層432至少有二個或二個以上的圖案在電極 Α» Λ * 值件一提的是 具可依據$ 丄< π娜更个偟限於此順序 之需要而進行步驟之調換。 由於本實施做可述第二實施例的差異是在於反射歐姆与 翻各層哺側私及_,鱗轉__名稱或袖 201001744 的元件係具有相晴性以及類似的變化,故此不再贅述各元件的 細部特性。 另外’除了監光發光二極體之外,前述各實施例的製造方法 亦可用於製造—綠光發光二極體白光發光二極體、—雷射二 極體(laser diode, LD)、一光感測器(ph〇t〇detect〇r,pD)或—太 陽能電池(S〇WU)料綠裝置。換句簡,祕的製造方法 亦可用於製造寬能_光電二極體,例如m_v_光電二極體。 綜上所述,因依據本發明之光電裝纽魏造方法,其係將 先電元件縣於圖減犧牲基板上,並藉由_随化犧牲基 大反’而使得光電元件具有—_化侧。由於f知基板為一平板, ^此,較於習知技術,本發明之光電裝置可以提高光電裝置的 先政率。此外,光電兀件的圖案化侧不需經過侧製程,因而 减少光電裝置的製造步驟。 、上所輕為糊性,轉為限繼者。任何未脫離本發明 :神與齡,_其進行之敎修改或變更,均應包含於後附 〈肀睛專利範圍中。 圖式簡單說明】 圖1為習知發光二極體裝置的示意圖; 圖2為依據本發明第一實施例之光電裝置之製造方法驟 .程圖; 圖3A至圖3E為依據本發明第一實施例之光電裝置之製造方 14 201001744 法的不意圖, 圖4A至圖4F為依據本發明第一實施例之光電裝置的圖案化 犧牲基板上圖案的示意圖; 圖5為依據本發明第二實施例之光電裝置之製造方法的步驟 流程圖; 圖6A至圖61為依據本發明第二實施例之光電裝置之製造方 法的不意圖, 圖7A至圖7B為依據本發明第二實施例之光電裝置的圖案化 犧牲基板的示意圖; 圖8A至圖8D為依據本發明第二實施例之光電裝置的粗化結 構的示意圖; 圖9為依據本發明第二實施例之光電裝置的圖案介電層的示 意圖; 圖10為依據本發明第三實施例之光電裝置之製造方法的步驟 流程圖; 圖11A至圖11J為依據本發明第三實施例之光電裝置之製造 方法的示意圖;以及 圖12A至圖12B為依據本發明第三實施例之光電裝置的圖案 介電層的示意圖。 【主要元件符號說明】 1 :發光二極體 15 201001744 11、311、411 :基板 131 : N型半導體層 132 :發光層 133 : P型半導體層 ' 14 :透明導電層 ' 15 : P型電極 16 : N型電極 2、3、4:光電裝置 21、 3卜41 :圖案化犧牲基板 22、 32、42 :光電元件 221、 321、421 :圖案化側 222、 322、422 :第一半導體層 223、 323、423 :發光層 224、 324、424 :第二半導體層 23 :承載基板 24、35、45 :電極 ' 312 :緩衝層 33、43 :反射歐姆接觸膜 330、 430 :介電層 331、 431 :第一導電層 332、 432 :圖案介電層 201001744 34、44 ··第二導電層 425 :光電元件的外表面侧 d :線寬 L::光線 • S11〜S15、S21〜S29、S301〜S310 :製造方法的步驟 17effect. In the above manner, the second semiconductor layer can be made to have a roughened structure 325 which is different as shown in Figs. 8A to 8D. Therefore, an uneven surface can be formed on both sides of the photovoltaic element η. Clothing - in addition to the actual reward towel, is not limited to the style of the age of the electrical layer, its implementation can also be shown in Figure 9. The width of the pattern dielectric layer 332 in the pattern dielectric layer is __6i, especially the width of the pattern directly under the electrode 35 is approximately the same width as the electrode 35, so as to avoid the current only directly below the electrode %. flow. RELATED EMBODIMENT Referring to Fig. 10, a method of manufacturing a photovoltaic device according to a third embodiment of the present invention includes the steps of measuring the steps below, and referring to Fig. 11J. Referring to FIG. 11A, step S3〇1 provides a substrate 411. Next, as shown in FIG. 11B, the substrate is patterned to form a patterned sacrificial substrate 41. In the embodiment of the invention, the sacrificial substrate can be patterned to pattern the sacrificial substrate as in the previous embodiment. Referring to FIG. 11C, in step S303, a photovoltaic element 42 is formed on the patterned sacrificial substrate 41 such that the photovoltaic element 42 has a patterned side 421 and the patterned side 421 has a transfer pattern. The photo-electric element 42 includes a first semiconductor layer 422, a light-emitting layer 423, and a first semiconductor layer 422. The first semiconductor layer 422 is formed on the patterned sacrificial substrate 41, and then a light-emitting layer 423 is formed on the first semiconductor layer 422. Then, a second semiconductor layer 424 is formed on the light emitting layer 423. As shown in Fig. 11D, step S304 roughens an outer surface side 425 of the photovoltaic element 42, i.e., roughens the upper surface of the second semiconductor layer 424. Referring to Fig. 11E to Fig. UG, steps S3〇5 to s3〇7 form a reflective ohmic contact film 43 on the photovoltaic element 42. First, referring to FIG. 7E, step S3〇5 deposits a dielectric layer 43 on the photo-electric component, and then, the step of patterning the dielectric layer to form a pattern dielectric layer 432, and then, step-by-step 〇7 deposits a first conductive layer 431 on the patterned dielectric layer 432 and the photovoltaic element 42. Step S308 is to record a second conductive layer on the first electrical layer 431. Then, step S3〇9 is to invert the photovoltaic device 4, and the field stripping patterned sacrificial substrate 41' The patterned side 421 is thus exposed. Next, the step is such that the -electrode 45 is formed on the patterned side 421 of the photovoltaic element 42. In addition, as shown in FIG. 12A, the pattern dielectric layer 432 may also have a wider pattern, or as shown in FIG. 12, the pattern dielectric layer 432 has at least two or more patterns at the electrode Α» Λ * value. It is mentioned that the steps can be changed according to the need of $ 丄 < π Na is more limited to this order. The difference between the embodiment and the second embodiment is that the reflection ohms and the layers of the layers and the sleeves of the sleeves 201001744 have similar characteristics, and thus the details are not described herein. The detailed characteristics of the component. In addition, in addition to the light-emitting diode, the manufacturing method of the foregoing embodiments can also be used to manufacture a green light-emitting diode white light-emitting diode, a laser diode (LD), and a laser diode (LD). A light sensor (ph〇t〇detect〇r, pD) or a solar cell (S〇WU) green device. In other words, the secret manufacturing method can also be used to manufacture a wide-energy photodiode, such as a m_v_photodiode. In summary, according to the method of fabricating a photovoltaic device according to the present invention, the device is replaced by a sacrificial substrate, and the photovoltaic element has a _- side. Since the substrate is a flat plate, the photovoltaic device of the present invention can improve the prince rate of the photovoltaic device as compared with the prior art. In addition, the patterned side of the photovoltaic element does not need to be subjected to a side process, thereby reducing the manufacturing steps of the photovoltaic device. It is lightly ambiguous and turned into a limited successor. Any departure from the invention: God and Age, _ its modifications or alterations shall be included in the scope of the attached patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a conventional light-emitting diode device; FIG. 2 is a schematic view showing a manufacturing method of a photovoltaic device according to a first embodiment of the present invention; FIG. 3A to FIG. The manufacturing method of the photovoltaic device of the embodiment 14 201001744 is not intended, FIG. 4A to FIG. 4F are schematic diagrams showing the pattern on the patterned sacrificial substrate of the photovoltaic device according to the first embodiment of the present invention; FIG. 5 is a second embodiment of the present invention. FIG. 6A to FIG. 61 are schematic diagrams showing a method of manufacturing a photovoltaic device according to a second embodiment of the present invention, and FIGS. 7A to 7B are photovoltaics according to a second embodiment of the present invention. FIG. 8A to FIG. 8D are schematic diagrams showing a roughened structure of a photovoltaic device according to a second embodiment of the present invention; FIG. 9 is a patterned dielectric layer of a photovoltaic device according to a second embodiment of the present invention; Figure 10 is a flow chart showing the steps of a method of manufacturing a photovoltaic device according to a third embodiment of the present invention; and Figures 11A to 11J are diagrams showing the manufacture of a photovoltaic device according to a third embodiment of the present invention. A schematic diagram of a method; and Figures 12A through 12B are schematic views of a patterned dielectric layer of a photovoltaic device in accordance with a third embodiment of the present invention. [Description of main component symbols] 1 : Light-emitting diode 15 201001744 11, 311, 411 : Substrate 131 : N-type semiconductor layer 132 : Light-emitting layer 133 : P-type semiconductor layer ' 14 : Transparent conductive layer ' 15 : P-type electrode 16 : N-type electrodes 2, 3, 4: optoelectronic devices 21, 3, 41: patterned sacrificial substrates 22, 32, 42: photovoltaic elements 221, 321, 421: patterned sides 222, 322, 422: first semiconductor layer 223 323, 423: light-emitting layer 224, 324, 424: second semiconductor layer 23: carrier substrate 24, 35, 45: electrode '312: buffer layer 33, 43: reflective ohmic contact film 330, 430: dielectric layer 331, 431: first conductive layer 332, 432: patterned dielectric layer 201001744 34, 44 · second conductive layer 425: outer surface side of photovoltaic element d: line width L:: light • S11~S15, S21~S29, S301 ~S310: Step 17 of the manufacturing method

Claims (1)

201001744 十、申請專利範圍-· 1、 種光電裝置之製造方法,包含下列步驟: 形成-光電元件於-圖案化犧牲基板上,使得該光電元件具有 一圖案化側; - 形成一承載基板於該光電元件上方來承载該光電元件;以及 .剝離該圖案化犧牲基板。 2、 如申請專利範圍第丨項所述之製造方法,其中縣電元件為— 發光二極體。 ~ 3、 如申請專利範圍帛1項所述之製造方法,其中通過該圖案化側 之一光線具有一全方位性或—指向性。 4、 如申請專利範圍第i項所述之製造方法,其中該圖案化侧之— 轉印圖案為-光柵ϋ案、—球面鏡贿L圼耳圖案。 5、 如申請專利範圍第1項所述之製造方法,更包含下列步驟: 形成一反射歐姆接觸膜於該光電元件上,其中該反射歐姆接觸 膜具有一圖案介電層及一第一導電層。 6、 如申請專利範圍第5項所述之製造方法,其中該承載基板具有 一第二導電層,該第二導電層與該第一導電層接觸,該第—導 電層與該光電元件接觸。 7、 如申請專利範圍第6項所述之製造方法,其中該第二導電層的 居度大於亥弟電層的厚度至少十倍以上。· 8、 如申請專利範圍第6項所述之製造方法,其中形成該承載基板 的步驟包含: ' 18 201001744 電鍍該第二導電層於該反射歐姆接觸膜上。 9、 如申請專利範圍第5項所述之製造方法,其中形成該反射歐姆 接觸膜的步驟包含: 沉積一介電層於該光電元件上; 圖案化該介電層以形成該圖案介電層;以及 沉積該第一導電層於該圖案介電層上。 10、 如申請專利範圍第5項所述之製造方法,其中形成該反射歐 姆接觸膜的步驟包含: 沉積該第一導電層於該光電元件上; 沉積一介電層於該第一導電層上;以及 圖案化該介電層以形成該圖案介電層。 11、 如申請專利範圍第1項所述之製造方法,更包含: 提供一基板;以及 直接圖案化該基板以形成該圖案化犧牲基板。 12、 如申請專利範圍第1項所述之製造方法,更包含: 提供一基板; 形成一缓衝層於該基板上;以及 圖案化該缓衝層以形成該圖案化犧牲基板。 13、 如申請專利範圍第12項所述之製造方法,其中圖案化該緩衝 層之步驟後,該缓衝層全面覆蓋該基板,該緩衝層協助該光 電元件蟲晶形成。 19 201001744 14、 如中請專利顧第1項所述之製造方法,更包含: 提供一基板; 圖案化該基板; 形成一緩衝層於該基板上;以及 圖案化該緩衝層以形成該圖案化犧牲基板。 15、 如申請專利範圍第1項所述之製造方法,更包含: 形成一電極於該光電元件的該圖案化侧。 16、 一種光電裝置,包含: 一承載基板;以及 一光電元件,具有一第一側及一第二側,該第一側具有—轉 印圖案亥承載基板位於該第二側。 17、 如申請專利範圍第16項所述之光電裝置,其中該光電元件為 一發光二極體。 18、 如申請專利範圍第16項所述之光電裝置,其中通過誘轉印圖 案之一光線具有一全方位性或一指向性。 19、 如申請專利範圍第16項所述之光電裝置,其中該轉印圖案為 一光栅圖案、一球面鏡圖案或一菲涅耳圖案。 20、 如申請專利範圍第16項所述之光電裝置,更包含: —反射歐姆接觸膜,位於該承載基板及該光電元件之間,並 具有一圖案介電層及一第一導電層。 21、 如申請專利範圍第20項所述之光電裝置,其中該承載基板具 20 201001744 有一第二導電層,該第二導電層與該第一導電層接觸,該第 一導電層與該光電元件的該第二侧接觸。 22、 如申請專利範圍第21項所述之光電裝置,其中該第二導電層 的厚度大於該第一導電層的厚度至少十倍以上。 23、 如申請專利範圍第20項所述之光電裝置,其中該圖案介電層 位於該光電元件上,該第一導電層位於該圖案介電層上。 24、 如申請專利範圍第20項所述之光電裝置,其中該第一導電層 位於該光電元件上,該圖案介電層位於該第一導電層上。 25、 如申請專利範圍第16項所述之光電裝置,更包含: 一電極,位於該光電元件的該第一侧。 21201001744 X. Patent Application Scope - 1. A method for manufacturing a photovoltaic device, comprising the steps of: forming a photovoltaic element on a patterned sacrificial substrate such that the photovoltaic element has a patterned side; - forming a carrier substrate thereon The photovoltaic element is carried over the photovoltaic element; and the patterned sacrificial substrate is stripped. 2. The manufacturing method as claimed in claim 3, wherein the county electrical component is a light-emitting diode. The manufacturing method of claim 1, wherein the light passing through the patterned side has a omnidirectional or directional property. 4. The manufacturing method according to claim i, wherein the patterning side is a - transfer pattern, a spherical mirror, and a spherical pattern. 5. The manufacturing method of claim 1, further comprising the steps of: forming a reflective ohmic contact film on the photovoltaic element, wherein the reflective ohmic contact film has a patterned dielectric layer and a first conductive layer . 6. The manufacturing method of claim 5, wherein the carrier substrate has a second conductive layer in contact with the first conductive layer, the first conductive layer being in contact with the photovoltaic element. 7. The manufacturing method according to claim 6, wherein the second conductive layer has a residence degree greater than at least ten times greater than a thickness of the Haidi electric layer. 8. The manufacturing method of claim 6, wherein the step of forming the carrier substrate comprises: ' 18 201001744 electroplating the second conductive layer on the reflective ohmic contact film. 9. The manufacturing method of claim 5, wherein the step of forming the reflective ohmic contact film comprises: depositing a dielectric layer on the photovoltaic element; patterning the dielectric layer to form the patterned dielectric layer And depositing the first conductive layer on the patterned dielectric layer. 10. The manufacturing method of claim 5, wherein the step of forming the reflective ohmic contact film comprises: depositing the first conductive layer on the photovoltaic element; depositing a dielectric layer on the first conductive layer And patterning the dielectric layer to form the patterned dielectric layer. 11. The method of manufacturing of claim 1, further comprising: providing a substrate; and directly patterning the substrate to form the patterned sacrificial substrate. 12. The method of manufacturing of claim 1, further comprising: providing a substrate; forming a buffer layer on the substrate; and patterning the buffer layer to form the patterned sacrificial substrate. 13. The manufacturing method according to claim 12, wherein after the step of patterning the buffer layer, the buffer layer completely covers the substrate, and the buffer layer assists in formation of the photonic element. The method of manufacturing the method of claim 1, further comprising: providing a substrate; patterning the substrate; forming a buffer layer on the substrate; and patterning the buffer layer to form the patterning Sacrifice the substrate. 15. The method of manufacturing of claim 1, further comprising: forming an electrode on the patterned side of the photovoltaic element. 16. An optoelectronic device comprising: a carrier substrate; and a photovoltaic element having a first side and a second side, the first side having a transfer pattern on the second side. 17. The photovoltaic device of claim 16, wherein the photovoltaic element is a light emitting diode. 18. The photovoltaic device of claim 16, wherein the light passing through the induced transfer pattern has a omnidirectional or directional property. 19. The photovoltaic device of claim 16, wherein the transfer pattern is a grating pattern, a spherical mirror pattern or a Fresnel pattern. 20. The photovoltaic device of claim 16, further comprising: a reflective ohmic contact film between the carrier substrate and the photovoltaic element, and having a patterned dielectric layer and a first conductive layer. The optoelectronic device of claim 20, wherein the carrier substrate 20 201001744 has a second conductive layer, the second conductive layer is in contact with the first conductive layer, the first conductive layer and the photoelectric component The second side of the contact. The optoelectronic device of claim 21, wherein the second conductive layer has a thickness greater than at least ten times greater than a thickness of the first conductive layer. 23. The optoelectronic device of claim 20, wherein the patterned dielectric layer is on the optoelectronic component, the first electrically conductive layer being on the patterned dielectric layer. 24. The photovoltaic device of claim 20, wherein the first conductive layer is on the photovoltaic element, and the patterned dielectric layer is on the first conductive layer. 25. The photovoltaic device of claim 16, further comprising: an electrode located on the first side of the photovoltaic element. twenty one
TW097123759A 2008-06-25 2008-06-25 Electro-optical device and manufacturing method thereof TWI369791B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097123759A TWI369791B (en) 2008-06-25 2008-06-25 Electro-optical device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097123759A TWI369791B (en) 2008-06-25 2008-06-25 Electro-optical device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201001744A true TW201001744A (en) 2010-01-01
TWI369791B TWI369791B (en) 2012-08-01

Family

ID=44824944

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097123759A TWI369791B (en) 2008-06-25 2008-06-25 Electro-optical device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI369791B (en)

Also Published As

Publication number Publication date
TWI369791B (en) 2012-08-01

Similar Documents

Publication Publication Date Title
TW201143146A (en) Light emitting device
TW200941774A (en) Light emitting diodes with smooth surface for reflective electrode
TW201545385A (en) Optoelectronic device and method for manufacturing the same
TW201143147A (en) Light emitting device
TW200903850A (en) Light emitting diode apparatus and manufacturing method thereof
TW201203637A (en) Light emitting device package
TW200826322A (en) LED and manufacture method thereof
TW201146080A (en) Light emitting device, light emitting device package, and lighting system
TW201248939A (en) Light emitting device, light emitting device package, and light unit
TW201603319A (en) Optoelectronic device and method for manufacturing the same
TW201143171A (en) Light emitting device and light unit
US9466767B2 (en) Optoelectronic device and method for manufacturing the same
TW200527712A (en) Semiconductor light emitting device
CN101884088A (en) Have light-emitting diode chip for backlight unit and manufacture method thereof that high light extracts
CN102916102B (en) Optoelectronic component
CN101621098B (en) Photoelectronic device and manufacturing method thereof
TW201001744A (en) Electro-optical device and manufacturing method thereof
TWI618264B (en) Optoelectronic device and method for manufacturing the same
US9865777B2 (en) Semicondcutor light-emitting device and fabricating method thereof
TWI721501B (en) Optoelectronic device and method for manufacturing the same
TWI662720B (en) Optoelectronic device and method for manufacturing the same
TWI669834B (en) Optoelectronic device and method for manufacturing the same
TWI625869B (en) Optoelectronic device and method for manufacturing the same
CN115411164A (en) Light emitting diode with improved electrode conductivity and preparation method thereof
TWI604635B (en) Optoelectronic device and method for manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees