TW201001347A - Remote image coordinate landslide surveillance system and method thereof - Google Patents

Remote image coordinate landslide surveillance system and method thereof Download PDF

Info

Publication number
TW201001347A
TW201001347A TW97122844A TW97122844A TW201001347A TW 201001347 A TW201001347 A TW 201001347A TW 97122844 A TW97122844 A TW 97122844A TW 97122844 A TW97122844 A TW 97122844A TW 201001347 A TW201001347 A TW 201001347A
Authority
TW
Taiwan
Prior art keywords
coordinate
image
monitoring system
remote
ground
Prior art date
Application number
TW97122844A
Other languages
Chinese (zh)
Other versions
TWI380247B (en
Inventor
jin-dong Zhuang
zheng-chuan Chen
shu-qun Chen
Wei-Yan Wang
Ming-Zhi Lu
Zheng-Pei Cai
Original Assignee
Ming-Zhi Lu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ming-Zhi Lu filed Critical Ming-Zhi Lu
Priority to TW97122844A priority Critical patent/TW201001347A/en
Publication of TW201001347A publication Critical patent/TW201001347A/en
Application granted granted Critical
Publication of TWI380247B publication Critical patent/TWI380247B/zh

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention relates to a remote image coordinate landslide surveillance system which comprises: at least one coordinate plane that is set up on a slope to be measured for receiving a set of parallel lights and generating a set of projection point (P2N, P1N); a rotation positioning stage disposed at a remote fixed location. The rotation positioning stage has a base which contains a set of parallel light sources, an acquisition unit and a computation unit. The set of parallel light sources generate a set of projection points on said coordinate plane, the acquisition unit respectively acquires a first images of the projection points (P2N, P1N) at a first time and a second image of the projection points (P2N, P1N) after moving at a second time. The computation unit calculates the changes of coordinates of said projection image (P2N, P1N) and the displaced projection image (P2N, P1N), then determines the landslide situation based on the foregoing changes. The present invention provides a method for remote image coordinate landslide surveillance.

Description

201001347 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種遠距影像座標地滑監測系統,特別 是一種利用一組平行光源投射在一座標平面上產生一組基 準投射點,再由該等基準投射點的座標變化監測地滑現象 的遠距影像座標地滑監測系統。 【先前技術】 近幾年來由於地球氣候的異常變化及地球暖化現象造成 全球環境異變,世界各地風災與地震等天然災害頻傳,使 得山坡地結構越來越不穩定,波地滑動或土石流等災害不 時傳出,且各地因地滑或土石流所衍的災難不斷發生,而 其中潛在的坡地滑動地區不計其數。因此相關研究單位無 不對此等坡地災害防治系統投入極大的人力與物力。 在習知各種坡地災害防治系統中,包括了接觸式的量 測方法,目前最常使用的地滑監測為地表地滑計,它是旋 轉編碼器所產生的脈波數代表地滑位移量的大小,必須把 量測裝置先固定在「不動點」,然後利用一銦鋼纜連接到 待監測的地點(動點),使得架設此種地表地滑計,常受 限於地形,而無法大量設置。若「不動點」和「動點」之 間的距離太長,將使安裝架設更加困難。許多地滑監測的 計劃均架設此種地表地滑計,但因地滑區樹木生長或倒 掉,動物的碰撞或搖晃,或落石壓住...等情況的發生,而 造成更多錯誤的量測結果。 在非接觸式的遠距量測方法中,例如超音波測距或雷 射測距儀(Laser Finder )等,應用於各式各樣的距離量測, 201001347 但這兩種測距方法所量測的距離均為量測設備到待測點之 間的距離,而地滑的發生可能是下沉或左、右移動,所以 雷射測距和超音波測距的方法,鮮少被用做地滑監測使 用。且這兩方法分別以音波和光波反射的原理。計算音波 和光波來回的飛驰時間,而得知距離的遠近。所以雖然不 需要在待測坡地上找尋一堅固的地基,而係利用遠處的穩 定地基進行遠距量測,然而由於該等遠距量測方法皆以反 射原理完成距離量測的目的,因此反射面的反射率優劣或 反射面的面積是否足夠均會影響量測的準確性。再者,待 測坡地附近地形、地物的不同皆會造成不同角度的偏向, 致使該等遠距量測方法,例如超音波測距或雷射測距等, 僅能使用於監測變動量較大的地滑現象,且由於反射原理 的限制,致使該等遠距量測方法亦無法用於進行地滑位移 量以及滑動方向的監測。 在其他的非接觸式遠距量測方法中,亦有以影像圖形 辨識的技術,從事地滑監測的研究或以人造衛星定位系統 (GPS),以高空攝影所取得的影像晝面辨識地形地貌的變 化進行影像圖形的辨識以及影像信號的分析,進而研判地 滑發生的區域,該量測方法係將二個時間點所擷取之影像 畫面進行辨識與分析比較即可取得二個時間點之間的地滑 位移量。影像辨識之量測方法需進行全晝面影像圖形辨識 及影像資料的儲存與運算,但地滑發生時,地形地貌的改 變,常會使原本所設定的特徵改變或消失,造成影像辨識 的準確度下降,且運算量大之計算單元亦會造成耗電量的 大幅增加,因此在缺乏足夠電源供應時容易造成量測準確 度的下降,且由GPS高空攝影所完成的地滑研判,均屬於 201001347 事後解讀或事實記錄,並因人造衛星拍攝的週期性,以及 此為大範圍的研判,對於許多許多可能造成地滑潛勢區 域,並無法由此種方式達到即時監測的功能。 【發明内容】 本發明之目的在於提供一種遠距影像座標地滑監測系 統,藉由傳統之攝影機擷取一組平行光源所產生的投射亮 點作為基準值,再根據不同時間所擷取之投射亮點計算地 滑方向與距離。 為達到上述目的,本發明係提供一種遠距影像座標地 滑監測系統,包括:至少一座標平面,設置在一待測坡地 上,用以接收一組平行光源並產生一組投射點(P2N, P1N);以及一旋轉定位台,設置於一遠端固定點,具有一 基座,該基座包含一組平行光源、一擷取單元以及一計算 單元,該組平行光源係產生一組投射點於該座標平面上, 而該擷取單元係用以在第一時間與第二時間分別擷取投射 於前述座標平面之投射點影像(P2N, Pm)之第一晝面及投 射點影像(P2N, P1N)移動後之第二畫面,而該一計算單元, 用以計算前述投射點影像(p2N, p1N)與移動後之投射點影 像(P2N, Pin)的座標值之變化,再由前述變化判斷前述坡地 的滑動情形。 為達到上述目的,本發明復提供一種遠距影像座標地 滑監測方法,包括以下步驟:投射一組平行光源至一坡地 上的一座標平面以產生一組投射點(P2N, P1N);令一擷取單 元於第一時間及第二時間各擷取包含前述座標平面的投射 點影像(P2N,P1N)之第一晝面與投射點影像(P2N,P1N)移動 後之第二晝面;令一計算單元計算前述二組投射點影像 201001347 (P2N, P1N)與移動後之投射 化;以及根據前述變化列點二:象(p2N, P1N)的座標值變 + _珂述峽地的滑動情形。 達到上述目的之本蝥明 係可經由簡單之硬體處理雷/a影像座標地滑監測系統 面上的二投射亮點,再根據環境亮度以定位座標平 變化監測待測坡地的地、、典狀15時間的投射亮點之座標值 的成本與體積,且進一:降5耗!,可大幅降低系統設置 路模組的結合可以將複數個本發2、。土且2Zig-Bee網 =;:】為-個大範圍的監控系统,以擴大其應_。 雖j本發明將參閱含有發明較佳每 以充分描述’但在此描述之前應瞭解I:本一: 可修改本文中所描述之發明 本仃技勢之人士 此,需瞭解以下之描述對熟悉本行;ΐ 泛之揭示,且其内容不在於限制本^之人士而吕為一廣 丹很據該4投射點的座標值變 形。本發明之遠距影像座標地滑監 月 i力板再待測點的坡地端設置-壓 壓克力板即可產=====射投射至該 於該遠端固定點處亦設置一】值的投射點’且藉由 能的操作,即可且將攝影機做拉近功 化,並進而在壓克力板上的座標值變 在其他實施例中,該組平行雷射可以是任意的光源, 201001347 只要在一定的距離内(例如100〜200公尺)能夠提供一清晰 的投射點並與周圍環境產生明顯亮度差即可。而該壓克力 板可以是任意一種具有一平面之平板,使得攝影機可以透 過該平板觀察該等雷射光束所產生之投射點的位置。該攝 影機一般而言為一 CCD或CMOS之數位攝影機,然而其 他影像擷取單元亦可達到相同之功效。 參考第一圖為本發明一實施例之遠距影像座標地滑監 測系統的系統架構圖,包括一設置在不同待測點坡地上的 ' 第一監測裝置10與第二監測裝置11,以及一設置在遠端 固定點之旋轉定位台12,該第一監測裝置10及第二監測 裝置11均各包括一壓克力板13,而該旋轉定位台12上設 有一基座14,該基座14上包含一組平行雷射光源21、22、 一攝影機15以及一計算單元16,該組平行雷射光源21、 22係投射一組平行光源至該第一監測裝置10及第二監測 裝置11的壓克力板13上,並分別產生二對投射點(P2A, Pia)、(P2B, Pm),因此攝影機15可由前方拍攝到包含該二 組投射點(P2A, Pi A)、(P2B,PlB)的影像之晝面,並將所操取 I 晝面資訊提供給計算單元16進行比較、分析。 於本實施例中,於該第一監測裝置10及第二監測裝置 11之壓克力板13的四個角隅各設有一高輝度LED17,且 於該第一監測裝置10及第二監測裝置11電性連接一電源 管理單元18,而該電源管理單元18連接一太陽能板19用 以接收太陽能做為電源供應來源,使該第一監測裝置10及 第二監測裝置11於夜間產生四個高輝度LED17發光時的 亮點影像圖形,這四個亮點影像圖形所圍成的四方形則為 該壓克力板13的面積,俾使於夜間無法攝取遠方地形地貌 的景象,卻能由四個高輝度LED17及二平行雷射光源21、 201001347 22,得知地滑的位移量和地滑的方向及角度,且再藉由固 定好旋轉定位台12及攝影機15,以及二平行雷射光源21、 22後,依該第一監測裝置10及第二監測裝置11的位置, 設定好旋轉定位台12和各壓克力板13之間的角度(0m), 將使本發明之遠距影像座標地滑監測系統100只用一套量 測裝置(攝影機15和二平行雷射光源21、22)即可依序 完成各點地滑位移的監測。而前述計算單元16為一硬體運 算電路,且該計算單元16進一步連接一無線網路模組(圖 未示),用以傳輸資料,而該無線網路模組為一 Zig-Bee網 路模組,且前述無線網路模組可用於與鄰近之其他地滑監 測系統進行資料分享。 另在該實施例中,為了簡化運算的成本,因此在該壓 克力板13的表面即為繪製有用以標示座標的格線之刻度 板。且該組平行雷射光源21、22可採用水平、垂直或任 意角度的設置方式,該計算單元16皆可將不同時間所擷 取晝面中的資訊進行比對分析,而不致影響量測之準確 度。在本發明下述實施例中,為了說明上的便利,該組平 行雷射光源21、22係採用水平或垂直兩種設置方式。 請參考第二圖,係顯示本發明攝影機拉近功能之投射點 影像所產生之晝面。於本實施例中,僅以一個監測裝置之 壓克力板13作說明,該攝影機15係藉由焦距的調整致使 在壓克力板1 3的影像上取得較為清晰的投射點(P2N,P1N) 之影像,當把攝影機15設定為’’拉近”功能時,則壓克力板 13和投射點(P2N,Pin)將產生最大的影像圖形,該壓克力板 13的實際長度為Ls,於影像晝面上所佔的像素值為Nh (Ls),而該壓克力板的寬度為^\^,於影像晝面上所佔的 像素值為Nv ( Ws),投射點之間的實際距離ds,兩投射點 10 201001347 影像圖形相隔的像素值為Nh (屯),t 的解析度rhs及垂直方向位移的^測^水平方向位移量測 表示為 、析度Rvs,可以分別201001347 IX. Description of the Invention: [Technical Field] The present invention relates to a remote image coordinate grounding monitoring system, in particular, a set of parallel projections are used to generate a set of reference projection points on a target plane, and then The coordinate change of the reference projection points monitors the remote image coordinate ground slip monitoring system of the ground slip phenomenon. [Prior Art] In recent years, due to abnormal changes in the Earth's climate and global warming, global environmental changes have occurred. Natural disasters such as windstorms and earthquakes have spread around the world, making the structure of hillsides more and more unstable, such as wave-sliding or earth-rock flow. Disasters have occurred from time to time, and disasters caused by ground slips or earth-rock flows have continued to occur, and there are countless potential slope-sliding areas. Therefore, the relevant research units have invested a great deal of manpower and material resources in these slope disaster prevention and control systems. In the conventional slope disaster prevention and control system, the contact measurement method is included. The most commonly used ground slip monitoring is the surface slip meter, which is the pulse wave number generated by the rotary encoder representing the ground slip displacement. Size, the measuring device must be fixed at the "fixed point" first, and then connected to the location to be monitored (moving point) by an indium steel cable, so that the ground sliding gauge is erected, often limited by the terrain, and cannot be large Settings. If the distance between "not moving point" and "moving point" is too long, it will make the installation more difficult. Many plans for ground-sliding monitoring have erected such surface slips, but because of the growth or dumping of trees in the ground-sliding area, the collision or shaking of animals, or the suppression of falling rocks, etc., caused more errors. Measurement results. In the non-contact remote measurement method, such as ultrasonic ranging or laser range finder (Laser Finder), it is applied to various distance measurement, 201001347, but the two methods are used. The distance measured is the distance between the measuring device and the point to be measured, and the occurrence of ground slip may be sinking or moving left and right, so the method of laser ranging and ultrasonic ranging is rarely used. Ground slip monitoring is used. And these two methods are based on the principle of sound wave and light wave reflection. Calculate the speed of the sound wave and the light wave back and forth, and know the distance of the distance. Therefore, although it is not necessary to find a strong foundation on the slope to be measured, and the remote foundation is used for remote measurement, since the distance measurement methods all use the reflection principle to complete the distance measurement, Whether the reflectivity of the reflective surface is good or the area of the reflective surface is sufficient will affect the accuracy of the measurement. Furthermore, the differences in topography and features near the slope to be measured will cause deflections at different angles, so that such distance measurement methods, such as ultrasonic ranging or laser ranging, can only be used to monitor fluctuations. Large ground slip phenomenon, and due to the limitation of the reflection principle, the distance measurement methods cannot be used for monitoring the ground slip displacement and the sliding direction. In other non-contact remote measurement methods, there are also techniques for image pattern recognition, which are engaged in the research of ground-slip monitoring or the use of satellite positioning systems (GPS) to identify terrains with images obtained from aerial photography. The change of the image pattern and the analysis of the image signal, and then the area where the ground slip occurs is determined. The measurement method compares and analyzes the image images captured at two time points to obtain two time points. The amount of ground slip displacement between. The method of image recognition requires full-face image recognition and image data storage and calculation. However, when the ground slip occurs, the change of topography and geomorphology often changes or disappears the original set features, resulting in the accuracy of image recognition. The calculation unit with a large amount of calculation will also cause a large increase in power consumption. Therefore, in the absence of sufficient power supply, it is easy to cause a decrease in measurement accuracy, and the ground-sliding judgments completed by GPS aerial photography belong to 201001347. Post-interpretation or fact-taking, and due to the periodicity of satellite shooting, and this is a wide-ranging study, for many of the many areas that may cause the ground-sliding potential, it is impossible to achieve immediate monitoring by this means. SUMMARY OF THE INVENTION The object of the present invention is to provide a remote image coordinate ground sliding monitoring system, which uses a conventional camera to capture a projected bright spot generated by a set of parallel light sources as a reference value, and then according to different time projections Calculate the direction and distance of the ground slip. In order to achieve the above object, the present invention provides a remote image coordinate ground sliding monitoring system, comprising: at least one marking plane disposed on a slope to be tested for receiving a set of parallel light sources and generating a set of projection points (P2N, P1N); and a rotating positioning table disposed at a distal fixed point, having a base, the base comprising a set of parallel light sources, a capture unit and a computing unit, the set of parallel light sources generating a set of projection points On the coordinate plane, the capturing unit is configured to capture the first pupil plane and the projection point image (P2N) of the projection point image (P2N, Pm) projected on the coordinate plane at the first time and the second time respectively. , P1N) a second picture after the movement, and the calculation unit is configured to calculate a change in the coordinate value of the projected point image (p2N, p1N) and the projected point image (P2N, Pin) after the movement, and then the change Judging the sliding condition of the aforementioned slope. In order to achieve the above object, the present invention provides a remote image coordinate grounding monitoring method, comprising the steps of: projecting a set of parallel light sources to a marking plane on a slope to generate a set of projection points (P2N, P1N); The capturing unit captures the first surface of the projection point image (P2N, P1N) including the coordinate plane and the second surface of the projection point image (P2N, P1N) after the first time and the second time; A calculation unit calculates the projections of the two sets of projection point images 201001347 (P2N, P1N) and after the movement; and according to the foregoing change, the point 2: the coordinate value of the image (p2N, P1N) changes + _ describes the sliding situation of the gorge . The purpose of achieving the above purpose is to monitor the two projection bright points on the system surface by simple hardware processing of the lightning/a image coordinates, and then monitor the ground of the slope to be measured according to the ambient brightness. The cost and volume of the coordinate value of the projected time of the 15th time, and one: reduce the 5 consumption!, can greatly reduce the combination of the system setting road module can be a plurality of the original 2,. Earth and 2Zig-Bee network =;:] is a large-scale monitoring system to expand its _. Although the present invention will be described with reference to the preferred embodiments of the invention, it should be understood that it should be understood that it should be understood that it is understood that the following descriptions are familiar to those skilled in the art. The Bank; ΐ The general disclosure, and its content is not to limit the person of this ^ and Lu Weiyi Guang Dan is very deformed according to the coordinates of the 4 projection points. The remote image coordinate of the present invention is set on the slope end of the re-measuring point of the re-measurement of the moon, and the pressure-pressing plate can be produced. =====The projection is projected to the fixed point of the distal end. The projection point of the value 'and by the operation of the energy, and the camera can be made close to work, and then the coordinate value on the acrylic plate is changed in other embodiments, the set of parallel lasers can be arbitrary The light source, 201001347 can provide a clear projection point and a significant difference in brightness from the surrounding environment within a certain distance (for example, 100 to 200 meters). The acryl plate may be any flat plate having a flat surface through which the camera can observe the position of the projection point produced by the laser beams. The camera is generally a CCD or CMOS digital camera, but other image capture units can achieve the same effect. 1 is a system architecture diagram of a remote image coordinate ground sliding monitoring system according to an embodiment of the present invention, including a first monitoring device 10 and a second monitoring device 11 disposed on different slopes of a point to be measured, and a The rotary positioning table 12 is disposed at the distal fixed point. The first monitoring device 10 and the second monitoring device 11 each include an acrylic plate 13 , and the rotating positioning table 12 is provided with a base 14 . 14 includes a set of parallel laser light sources 21, 22, a camera 15 and a computing unit 16, the set of parallel laser light sources 21, 22 projecting a set of parallel light sources to the first monitoring device 10 and the second monitoring device 11 On the acrylic plate 13, and respectively generate two pairs of projection points (P2A, Pia), (P2B, Pm), so the camera 15 can be photographed from the front to include the two sets of projection points (P2A, Pi A), (P2B, The face of the image of PlB), and the information of the I face is provided to the calculation unit 16 for comparison and analysis. In this embodiment, a high-brightness LED 17 is disposed in each of the four corners of the acrylic plate 13 of the first monitoring device 10 and the second monitoring device 11, and the first monitoring device 10 and the second monitoring device are disposed. 11 is electrically connected to a power management unit 18, and the power management unit 18 is connected to a solar panel 19 for receiving solar energy as a power supply source, so that the first monitoring device 10 and the second monitoring device 11 generate four highs at night. The bright spot image pattern when the luminance LED 17 emits light, the square surrounded by the four bright spot image patterns is the area of the acrylic plate 13, so that the night landscape cannot be ingested at night, but can be four high The luminance LED 17 and the two parallel laser light sources 21 and 201001347 22 know the displacement amount of the ground slip and the direction and angle of the ground slip, and further fix the rotary positioning table 12 and the camera 15, and the two parallel laser light sources 21, After 22, according to the positions of the first monitoring device 10 and the second monitoring device 11, the angle (0m) between the rotary positioning table 12 and each of the acrylic plates 13 is set, so that the telephoto image of the present invention is coordinately Slip monitoring system 100 A measuring means (camera 15, and two parallel laser beam source 21, 22) to sequentially complete the displacement slippery monitoring points. The computing unit 16 is a hardware computing circuit, and the computing unit 16 is further connected to a wireless network module (not shown) for transmitting data, and the wireless network module is a Zig-Bee network. The module, and the foregoing wireless network module can be used for data sharing with other nearby sliding monitoring systems. Also in this embodiment, in order to simplify the cost of the calculation, the surface of the acryl plate 13 is a scale plate on which the ruled lines for indicating coordinates are drawn. The parallel laser light sources 21 and 22 can be arranged horizontally, vertically or at any angle. The calculating unit 16 can compare and analyze the information in the captured time at different times without affecting the measurement. Accuracy. In the following embodiments of the present invention, for convenience of explanation, the set of parallel laser light sources 21, 22 are arranged in either horizontal or vertical. Please refer to the second figure, which shows the face created by the projection point image of the zoom function of the camera of the present invention. In the present embodiment, only the acrylic plate 13 of a monitoring device is used. The camera 15 adjusts the focal length to obtain a clear projection point on the image of the acrylic plate 13 (P2N, P1N). The image, when the camera 15 is set to the ''nraw'' function, the acrylic plate 13 and the projection point (P2N, Pin) will produce the largest image pattern, and the actual length of the acrylic plate 13 is Ls The pixel value occupied on the image surface is Nh (Ls), and the width of the acrylic plate is ^\^, and the pixel value occupied on the image surface is Nv (Ws), between the projection points The actual distance ds, two projection points 10 201001347 The pixel value of the image pattern is Nh (屯), the resolution rh of t and the displacement of the vertical direction are measured as the resolution Rvs, which can be respectively

RR

LL

N 公式(1)N formula (1)

RR

W —^71^7) 公式(2) 由公式(1)及公式(2)可將實際長 面中的像素值計算出各點的實際距離。 可由影像晝 當有地滑現象發生的時候,攝影機15和 =2卜22’因固定在遠端固定點(不動點)m f =會改變’而壓克力㈣因設置在待測點坡地: ^動點),所以該壓克力板13會隨地滑現象而移位 ’射點不動,該壓克力板13做相對移動,所以於影; i面上’將得到該壓克力板13影像圖形和投射點影 形相對的位移量,便能由影像晝面中以像素值計算得知實 際地滑的位移量,並得到距離解析度更高的影像晝面。、 參考第三A圖與第三B圖所示為本發明不同實施例 中,以一組投射點(Psn,P1N)影像所產生之晝面。其中,第 三A圖所示為該組平行雷射光源21、22採用垂直設置方 式的實施例,此時投射點PZN與投射點P1N的水平座標值 相同,而垂直座標值不同;另外,第三B圖所示為該組平 行雷射光源21、22採用水平設置方式的實施例,此時投 射點Ρπ與投射點piN的垂直座標值相同,而水平座標值不 同。 11 201001347 由於該組雷射光源21、22採用平行設置的方式,因此 無論該組平行雷射光源21、22與該壓克力板13之間的距 離是否改變皆不會影響該組投射點〇P2N,P1N)在壓克力板13 上的距離’且該組投射點(P2N,P1N)的座標值之移動情形亦 將同步於待測點坡地的地滑情形。 參考第四A圖、第四B圖分別表示第三A圖與第三B 圖所示之實施例中待測坡地下沈時的投射點(P2N, P1N)的 影像之座標值變化。如圖所示,當坡地下沈時,則投射點 (P2N,P 1N)的影像之座標值即會在垂直方向往上移動。 參考第五A圖、第五B圖分別表示第四A圖與第四B 圖所示之實施例中待測坡地除了下沈之外分別向右移與左 移之情形。如第四A圖所示,當坡地向右移時,則投射點 (P2N,Pin)的影像之座標即會在水平方向往左邊移動’而如 弟四B圖所不^當坡地向左移動時,則投射點(Pn2,Pin)的 影像之座標即會在水平方向往右邊移動。 參考第六A圖,表示第三A圖所示之實施例中待測坡 地向上隆起、往右移動並產生向右傾斜,此時投射點(P2N, P1N)的影像之座標即會在垂直方向往下移動以及在水平方 向往左邊移動,並且產生向左傾斜;再參考第六B圖的情 形,表示第三B圖所示之實施例中待測坡地下沈、往右移 動並產生向左傾斜,此時投射點(P2N,Pin)的影像之座標 即會在垂直方向往上移動以及在水平方向往左邊移動,並 且產生向右傾斜。 因此,根據第三A圖至第六B圖所示之實施例,本發 明之遠距影像座標地滑監測系統可在初始設定時的第一時 間擷取該投射點(P2N, P1N)的影像之座標資料作為基準值, 致使各種地滑現象所造成的位移變化或方向的改變,都能 12 201001347 於每一個任意時間所擷取、紀錄的影像晝面所得知,以達 到長期監測地滑現象的目的。 在本發明的遠距影像座標地滑監測系統中,因此壓克 力板13與攝影機15之間的相對距離以及攝影角度可保持 固定,且攝影機15所拍攝的影像晝面亦將固定在同一個 影像範圍,並只擷取包含投射點(P2N, Pm)以及該壓克力板 13的座標平面之影像,因此可以減少計算單元16的運算 負載,進而降低系統設置的成本與體積,並有效降低系統 的耗電量。 進一步而言,由於固定點與待測點之間不需要藉由銦 鋼纜或其他纜線而連接,而僅需透過平行雷射光源21、22 進行遠距的投射,因此可將環境的影響降至最低。而由於 可藉由攝影機15對壓克力板13作拉近功能之攝影方式, 因此可大幅提升量測的解析度。且由於平行雷射光源21、 22在壓克力板13的表面上所產生之投射點(P2N,P1N)已產 生一定程度之亮度,且並於該壓克力板13上設有四個高 輝度之LED17,因此在夜間週遭環境亮度降低時,藉由該 組投射點(P2N, Pin)的影像及四個亮輝度之LED17發光時 的亮點影像圖形,使遠方的地形地貌更趨明顯,致使本發 明之遠距影像座標地滑監測系統可以不受白天或夜晚等時 間限制,亦不需要額外架設照明器材。 請參考第七A圖至第七D圖係顯示本發明遠距影像座 標監測系統二平行雷射光源與攝影機之光學軸心垂直與非 垂直狀態之示意圖。由於待測點坡地的地形限制,當平行 雷射光源21、22與第一監測裝置10及第二監測裝置11的 壓克力板13並非位於同一等高線上時,將會導致平行雷 射光源21、22投射至壓克力板13表面上之光束無法呈現 13 201001347 垂直狀態,亦即該壓克力板13與攝影機15的光學軸心 (optical axis )並非垂直狀況時,則像素值與距離將有非 線性的比例關係,而造成量測誤差增加,以及增加計算單 元16運算的負載,故所架設二平行雷射光源21、22的主 要目的,在於使本發明遠距影像座標監測系統100可以有 自我校正的功能,使量測結果能更精確。當將攝影機15作 距離量測儀器使用時,必須使該光學軸心真正與該壓克力 板13成垂直狀態,才能使像素值與距離有線性的比例關 係。本發明將攝影機15和二平行雷射光源21、22固定在 同一基座12上成為距離量測的裝置,並且把二平行雷射光 源21、22調整成與攝影機15光學轴心相互平行,則不論 量測裝置如何移動或轉動,平行雷射光源21、22所產生的 投射點將位於光學轴心的兩側,並且與光學軸心保持等距 關係,如第七A圖所示,當該壓克力板13與光學轴心垂 直的時候,這兩個投射點的影像圖形到影像晝面中心點OC 的像素值將相等,即N (V P2N) =N (V P1N),如第七B 圖所示。 於本實施例中,該壓克力板13是否垂直於地面,僅以 一條細線和一個重鐘即完成是否垂直於地面的校正,但該 壓克力板13水平方向是否與攝影機15光學軸心成垂直狀 態並非内眼可觀看出,故當二平行雷射光源21、22之雷射 亮點於螢幕上的影像圖形觀看得知N(SP2N)不等於N(S Pin)時,如第七C圖及第七D圖所示,則可以旋轉該基 座12的攝影角度,當調整到N (SP2N) =N (SP1N)時, 則表示該壓克力板13與攝影機15的光學軸心成垂直狀 態,俾使本發明可自我校正,並且是在固定點之處完成校 正手續,並不必至待測點的地滑區,去重新調整壓克力板 14 201001347 13。W —^71^7) Equation (2) From equations (1) and (2), the actual distance of each point can be calculated from the pixel values in the actual long face. When the image can be seen when the ground slip phenomenon occurs, the camera 15 and = 2 Bu 22' are fixed at the fixed point at the distal end (the fixed point) mf = will change 'and the acrylic (4) is set at the slope of the point to be tested: ^ Move point), so the acrylic plate 13 will shift with the sliding phenomenon, 'the spot does not move, the acrylic plate 13 moves relative to each other, so the shadow; the 'surface' will get the image of the acrylic plate 13 The relative displacement of the figure and the projected point shadow can be calculated from the pixel value of the image surface to calculate the actual sliding displacement, and obtain the image plane with higher distance resolution. Referring to the third A diagram and the third B diagram, the pupil plane generated by a set of projection point (Psn, P1N) images in different embodiments of the present invention is shown. The third A figure shows an embodiment in which the parallel laser light sources 21 and 22 of the group are vertically arranged. At this time, the horizontal coordinate value of the projection point PZN and the projection point P1N are the same, and the vertical coordinate values are different; FIG. 3B shows an embodiment in which the parallel laser light sources 21 and 22 of the group are horizontally arranged. At this time, the projection point Ρπ is the same as the vertical coordinate value of the projection point piN, and the horizontal coordinate values are different. 11 201001347 Since the set of laser light sources 21, 22 are arranged in parallel, no matter whether the distance between the set of parallel laser light sources 21, 22 and the acrylic plate 13 is changed, the set of projection points will not be affected. The distance of P2N, P1N) on the acrylic plate 13 and the movement of the coordinate values of the set of projection points (P2N, P1N) will also be synchronized with the ground slip condition of the slope of the point to be measured. Referring to the fourth A map and the fourth B graph, respectively, the coordinate value changes of the image of the projection point (P2N, P1N) when the slope to be measured is lowered in the embodiment shown in the third A diagram and the third B diagram. As shown in the figure, when the slope sinks, the coordinate value of the image of the projection point (P2N, P 1N) will move up in the vertical direction. Referring to the fifth A diagram and the fifth B diagram, respectively, the case where the slopes to be measured in the fourth A diagram and the fourth B diagram are shifted to the right and leftward, respectively, except for sinking. As shown in the fourth A diagram, when the slope is moved to the right, the coordinates of the image of the projection point (P2N, Pin) will move to the left in the horizontal direction, and if the image is not moved to the left as the slope At this time, the coordinates of the image of the projection point (Pn2, Pin) move to the right in the horizontal direction. Referring to FIG. 6A, it is shown that the slope to be measured in the embodiment shown in FIG. 3A is uplifted, moved to the right, and tilted to the right, and the coordinates of the image of the projection point (P2N, P1N) are in the vertical direction. Move down and move to the left in the horizontal direction, and produce a tilt to the left; refer to the case of Figure 6B, indicating that the slope to be measured in the embodiment shown in Figure 3B sinks, moves to the right and produces to the left Tilt, the coordinates of the image of the projection point (P2N, Pin) will move up in the vertical direction and to the left in the horizontal direction, and will tilt to the right. Therefore, according to the embodiments shown in the third A to sixth panels, the telephoto image ground slip monitoring system of the present invention can capture the image of the projection point (P2N, P1N) at the first time of initial setting. The coordinate data is used as the reference value, so that the change of displacement or the direction caused by various ground sliding phenomena can be known by 12 201001347 in the image captured and recorded at any arbitrary time to achieve long-term monitoring of ground slip phenomenon. the goal of. In the remote image coordinate ground sliding monitoring system of the present invention, the relative distance between the acrylic plate 13 and the camera 15 and the photographing angle can be kept fixed, and the image plane captured by the camera 15 will be fixed in the same The image range and only the image including the projection point (P2N, Pm) and the coordinate plane of the acrylic plate 13, so that the calculation load of the calculation unit 16 can be reduced, thereby reducing the cost and volume of the system setting, and effectively reducing The power consumption of the system. Further, since the fixed point and the point to be tested need not be connected by indium steel cables or other cables, but only through the parallel laser light sources 21, 22 for long-distance projection, the environmental impact can be exerted. Minimized. Since the image pickup mode of the acrylic plate 13 can be made by the camera 15, the resolution of the measurement can be greatly improved. And because the projection points (P2N, P1N) generated on the surface of the acrylic plate 13 by the parallel laser light sources 21, 22 have produced a certain degree of brightness, and are provided with four highs on the acrylic plate 13 Brightness LED17, so when the ambient brightness is reduced at night, the image of the set of projection points (P2N, Pin) and the bright image of the four bright LEDs 17 make the distant terrain more obvious. The remote image coordinate ground sliding monitoring system of the present invention can be free from time constraints such as daytime or nighttime, and does not require additional lighting equipment. Please refer to FIGS. 7A to 7D for a schematic diagram showing the vertical and non-vertical states of the optical axis of the parallel laser light source and the camera of the remote image coordinate monitoring system of the present invention. Due to the topographical limitation of the slope of the point to be measured, when the parallel laser light sources 21, 22 and the acrylic plates 13 of the first monitoring device 10 and the second monitoring device 11 are not on the same contour, the parallel laser light source 21 will be caused. 22, the light beam projected onto the surface of the acrylic plate 13 cannot assume the vertical state of 13 201001347, that is, when the optical axis of the acrylic plate 13 and the camera 15 are not perpendicular, the pixel value and distance will be There is a non-linear proportional relationship, which causes an increase in measurement error, and increases the load calculated by the computing unit 16, so the main purpose of erecting the two parallel laser light sources 21, 22 is to enable the remote image coordinate monitoring system 100 of the present invention to Self-correcting features make measurement results more accurate. When the camera 15 is used as a distance measuring instrument, the optical axis must be made perpendicular to the acryl plate 13 in order to make the pixel value linearly proportional to the distance. The present invention fixes the camera 15 and the two parallel laser light sources 21, 22 on the same susceptor 12 as a distance measuring device, and adjusts the two parallel laser light sources 21, 22 to be parallel to the optical axis of the camera 15, Regardless of how the measuring device moves or rotates, the projection points produced by the parallel laser sources 21, 22 will be located on either side of the optical axis and in an equidistant relationship with the optical axis, as shown in Figure 7A, when the pressure When the gram plate 13 is perpendicular to the optical axis, the image values of the two projected points to the center point OC of the image plane will be equal, that is, N (V P2N) = N (V P1N), such as the seventh B The figure shows. In this embodiment, whether the acrylic plate 13 is perpendicular to the ground, whether correction is perpendicular to the ground by only one thin line and one heavy clock, but whether the horizontal direction of the acrylic plate 13 is opposite to the optical axis of the camera 15 The vertical state is not visible to the inner eye, so when the laser highlights of the two parallel laser light sources 21, 22 are viewed on the screen, N (SP2N) is not equal to N (S Pin), such as the seventh C. As shown in FIG. 7 and FIG. D, the photographing angle of the susceptor 12 can be rotated. When N (SP2N)=N (SP1N) is adjusted, the acryl plate 13 and the optical axis of the camera 15 are formed. In the vertical state, the present invention is self-correcting, and the calibration procedure is completed at a fixed point, and it is not necessary to go to the ground sliding zone of the point to be measured to re-adjust the acrylic plate 14 201001347 13 .

參考第八圖及第九圖分別表示在不同的地滑狀態下由 攝影機12所擷取一壓克力板之影像晝面。於第八圖中, sci為原設定於壓克力板影像圖形的中心點,SC]為發生地 滑後所得到該壓克力板影像圖形的中心點,(p p XReferring to the eighth and ninth drawings, respectively, the image planes of an acrylic plate captured by the camera 12 in different ground slip conditions are shown. In the eighth figure, sci is set to the center point of the image of the acrylic plate image, and SC] is the center point of the image of the acrylic plate obtained after the slippage occurs (p p X

Pm)為原設定影像晝面上四個高輝度LED影像圖形所在的 位置’而(PA2, PB2, PC2, Pc>2)為地滑發生後,四個高輝产 LED17影像圖形所在的位置。 & 對投射點P1N及PZN而言,該壓克力板13向左移動所 造成的變化量ΔΝη (Pin)和變化量ΔΝΗ (PZN)分別為 △Nh (P1N) =NH (P1N ’ 1) —Nh (PlN,2)---公式(3) △NH (P2N) =NH (P2N,1) —Nh (p2N , 2)---公式⑷ 貝J田ΔΝΗ ( p1N ) > 〇,ΔΝη (P2N) >〇,表示發生向左移位 的地滑情形,而當δνη(ρ1ν) <〇,ΔΝη(Ρ2ν) <〇,表示 發生向右移的地滑情形。而實際水平方向,地滑位移量ΔΕ)Η 可表示為 ADH—1/2xRHSx[|ANh (Ρ]Ν) | + |ΔΝη (Ρ2ν) |]---公式(5〕 採平均值計算’以減少誤差量。 於第九圖中,係為地滑下沉的影像圖形分析,其中得知投 射點Pin及Ρ2Ν而發生下沉地滑所造成的變化量分別為ΔΝν (Pin)和ΔΝν (Ρ2Ν),可以表示為 ΔΝν (Ρ1Ν) =NV (Ρ1Ν > 1) — Νν (Pin » 2)---公式(6) △Νγ ( Ρ2Ν) =NV ( Ρ2Ν ’ 1 ) — Νν ( Ρ2Ν ’ 2 )---公式(7) 此時若ΔΝν (Pin) >〇,ΔΝν (Ρ2Ν) >0,表示發生下沉的 地滑情形,而當ΔΝν (Ρ1Ν) <〇,ΔΝν (Ρ2Ν) <〇,表示發 生隆起之形。所以實際垂直方向,地滑位移量ν可表 示為 ---公式(8) 15 201001347 ADV=l/2xRVSx[|ANv (Ρ1Ν) | + |ΔΝν (P2N) I] 採平均值計算,以減少誤差量。 進一步而言,當地滑現象產生時,由於固定點的平行 雷射光源21、22並無移動,而是移動點的壓克力板13在 進行移動,因此相當於被拍攝的投射點(P2N,Pin)沒有任何 移動,而是移動整個影像晝面。 參考第十圖為第九圖所示實施例之影像晝面的變化, 其中影像畫面113代表尚未發生地滑現象時由攝影機15所 擷取之初始影像,在影像晝面113中所得到的投射點影像 即為初始影像座標(P2N, Pin) ’而中心座標為SCi。當地 滑發生後,攝影機15與壓克力板13相對於初始影像座標 (P2n, Pin) 往左並往下移動,因此攝影機15所擷取新的 影像晝面114的中心座標將由SC!改為SC2,且由公式 (6)、公式(7)及公式(8)得知其下沉的位移量,以及 由公式(3)、公式(4)及公式(5)得知其左移的位移量, 即可由公式(5)及公式(8)同時得知兩方向實際之位移 量。 參考第十一圖為第十圖所示實施例之影像晝面的變 化,其中第十一圖所示之地滑狀態可視為先進行下沉與左 移的動作之後再進行傾斜,因此可將攝影機12所擷取之 影像晝面分為影像晝面115與116等二個過程,其中影像 晝面115所示為進行下沉與左移的地滑動作之後所擷取之 影像晝面,而影像晝面116所示為在下沉與左移之後再進 行傾斜的地滑動作所擷取之影像晝面。 如第十一圖所示,發生地滑現象的時候,不只有水平位 移(左、右移動)或垂直位移(下陷或隆起)也可能因地 質關係,而使得所設置的壓克力板13產生傾斜的狀況,如 16 201001347 圖中所不(PA3,PB3,PC3,PD3)四個高輝度LED17B成一個 傾斜的四方形,乃因地滑位移有下沉、左移,並造成壓克 力板13傾斜的狀況。當此壓克力板13影像圖形的中心由 sq移動至(SCO時,該SCi至(Sc3)之位移量的量測, ,以SC】和SC3水平像素值的變化量及垂直像素值的變化 里,得出地滑的位移量,則水平位移量ADH及垂直位 △DV,可表示為 狀里 ADH = RHSx (INSCJI-INSC3I) ADV=RVSx (IMSCd—|MSC3|)---公式(l〇) 當(NSC「NSC3) >〇 ’代表左移地滑《Μ%〜 >〇則代表下沉地滑,則由四個高輝度LED17. SC3) 標位置即可得知SC】在影像晝面上的座標值,』θ形座 值,用此表示發生地滑後,壓克力板u的中心'、、' 壬意數 於任何位置上。 ’可能位 NSCj = l/4[NAj + NBj + NCj + NDj] MSCj = l/4[MAj + MBj + MCj + MDj] 公式(11) 公式(12) 則任意狀況的水平位移量△OH』及垂直位移量( U) 為量測的通式,如下所示 Vj,將成 ADHj = RHSx (INSC^-INSCjI) ____公 adv^rvsx (Imsc^-imsCjI) ___八jU3) 則NSC「NSCj>0表示向左移動的地滑, > 〇表示向下陷移動的地滑。 1〜Msc· _在本發明之遠距影像座標地滑監夠系統之 示出影像晝面中亮度最高的二個亮點,再.管,僅需槺 標值而進行位移量計算,而不需要進行二二=¾點的座 程。因此,在本發明的實施例中,計算m^像辨識過 置高效能的運算處理器或工業電腦,:::不需要毁 僅而要错由簡單石更 17 201001347 體\路參的考處』里:式即可進行所需之運算。 像座標地滑監二圖二11二圖係顯示本發明遠距影 明之遠距影像座標地滑監測系i =之。本發 測點坡地上的複數個監測裝置1〇,:包寺 f之旋轉定位台12,該複數個監測裝^ 測Ιΐίο轉以有―基座14輯應該複數 台12内相對基板'4;二:=,且:該旋轉定位 台12可旋轉’而該 ^ ^歸23 ’俾使該旋轉位 、-攝影機15以及—叶^單\=組平行雷射光源21、 組平行雷射光源21、22係投射:苡= ;=之::攝影機15可由前方拍攝到包含該組投射 進行比較、^。絲賴取晝面:#訊提供料算單元16 接故田疋位台12時,該定位雷射24所對應到的光 面,魏到雷射光錢’職賴拍攝的影像晝 办心疋镜到所架設的壓克力板13,便能以此精密的定 位雷射完成多點監測的實現。 於本實施射’因各壓克力板13所架㈣位置到量測 裝置之間的距離,並不相同,所產生的影像圖形大小也不 樣,在影像大小不一樣,攝影距離不相同,攝影機放大、 縮小=例不知道的情況下,此圖形辨識的方法’更難完成 位移量的量測,故本發明利用四個高輝度LED影像圖形在 影像晝面中的座標值,便能完成地滑位移量的量測,並得 18 201001347 知雙轴位移量的大小。所以只要定位雷射24完成定位後, 可任意調整攝影機15放大縮小的比例,並改變其焦距而得 到最清晰的影像晝面,此顏色和亮度判斷出四個高輝度 LED影像圖形的座標值,就能由公式(13)及公式(14) 得知水平方向左(右)移動的位移量及垂直方向下沉(隆 起)的位移量。因所創新的壓克力板13設計,使得日夜均 能測得地滑的位移量,所有量測公式都沒有使用到攝影機 15的相關參數,所以該壓克力板13架設的位置,並沒有 固定攝影距離的限制,再加上旋轉定位台12的設定有精密 的雷射定位,只要依壓克力板13所設置的方向,此兩道平 行雷射光束完成垂直攝影的校正,並固定光接收器20,便 能實現多點監測的目標。 請參考第十三圖係顯示本發明遠距影像座標監測方法 之流程圖。本發明遠距影像座標監測方法,包含以下步驟: 步驟101,首先投射一組平行光源至一坡地上的一座標平 面以產生一組投射點(p2N, P1N),接著進行步驟102 ;步驟 102,令一擷取單元於第一時間及第二時間各擷取包含前述 座標平面的投射點影像(P2N,P1N)之第一晝面與投射點影 像(P2M,P1M)之第二畫面,並該第一晝面及第二晝面利用 攝影機之拉近功能放大,以使影像晝面清晰,接著進行步 驟103 ;步驟103,令一計算單元計算前述二組投射點影像 (P2N,PiN)與(P2m,Pim)的座標值變化,接著進行步驟1〇3 ; 以及步驟104,依該計算單元計算後的座標值變化判斷前 述坡地的滑動情形,例如地滑下沉、隆起、左移、右移或 傾斜。 本發明之遠距影像座標地滑監測系統僅以二平行雷射 光源,設於離待偵測區很遠的固定點上,並調整其投射角 19 201001347 度,使二平行雷射光源所發出的光束為平行狀態,並於待 測點上設置固定面積大小的壓克力板,使二平行雷射光線 投射於該壓克力板上,產生兩個亮度遠大於背景亮度的投 射亮點,並設置一攝影機於二平行雷射光源之中央,並以 攝影機「拉近」的功能,將得到壓克力板最大的影像圖形, 其影像圖形中,將包含兩個投射亮點的影像圖形,該二平 行雷射光源與攝影機固定在同一基座上,則兩者之間的相 對位置將永遠不會改變,俾使於地滑情形發生時,該壓克 力板將隨地滑的發生而產生移動,則兩個投射亮點的影像 圖形,將和塵克力板的影像圖形,產生相對的位移量,則 只要以像素值為單位,計算出兩者之間影像圖形的位移 量,以得知真正地滑位移量及其位移的方向。 另本發明之遠距影像座標地滑監測系統,以雷射光 束做遠距離的投射,而不使用銦鋼纜,因此能夠真正實 現遠距非接觸式的地滑量測,並以攝影機做為量測儀器 使用,而使攝影機不再只是當「監看」的功用。且因雷射 光束所產生的投射亮點的亮度可以形成強烈的對比,就 能以簡單的電路,完成座標值的儲取,且有量測結構簡 單,成本低,量測速度快,耗電量少,體積小等優點, 更重要的是可以只用一組量測系統,就能同時測知地滑 得位移量與地滑方向。縱使夜間且沒有燈光的情況下, 也能正確地監測地滑是否發生,及地滑的位移量與地滑 的方向。 在詳細說明本發明的較佳實施例之後,熟悉該項技術 領域者可清楚的瞭解,在不脫離下述申請專利範圍與精神 下進行各種變化與改變,且本發明亦不受限於說明書中所 舉實施例的實施方式。 20 201001347 【圖式簡單說明】 第一圖為一遠距影像座標地滑監測系統的系統架構圖; 第二圖為本發明攝影機拉近功能之投射點影像所產生 之晝面; 第三A圖為垂直設置之投射點影像所產生之晝面; 第三B圖為水平設置之投射點影像所產生之晝面; 第四A圖為第三A圖所示實施例中產生坡地下沈的投 射點的影像畫面; 第四B圖為第三B圖所示實施例中產生坡地下沈的投射 點的影像晝面; 第五A圖為第四A圖所示實施例中產生坡地右移的投 射點的影像晝面, 第五B圖為第四B圖所示實施例中產生坡地左移的投射 點的影像晝面; 第六A圖為第三A圖所示實施例中產生坡地向上隆 起、往右移動並產生向右傾斜的投射點的影像晝面; 第六B圖為第三B圖所示實施例中產生坡地向下沈、往 右移動並產生向左傾斜的投射點的影像晝面; 第七A圖為本發明遠距影像座標監測系統二平行雷射 光源與攝影機之光學軸心垂直之側視圖; 第七B圖為本發明遠距影像座標監測系統二平行雷射 光源與攝影機之光學軸心垂直之示意圖; 第七C圖為本發明遠距影像座標監測系統二平行雷射 光源與攝影機之光學軸心非垂直之側視圖; 第七D圖為本發明遠距影像座標監測系統二平行雷射 光源與攝影機之光學軸心非垂直之示意圖; 21 201001347 第八圖為本發明由攝影機所擷取一壓克力板產生地滑 左移之影像畫面; 第九圖為為本發明由攝影機所擷取一壓克力板產生地 滑下沉之影像晝面; 第十圖為為第九圖所示實施例中產生左移並下沈之影 像晝面; 第十一圖為第十圖所示實施例之影像晝面的變化示意 圖; 第十二圖為本發明遠距影像座標地滑監測系統另一實 施例之系統架構圖;以及 第十三圖為本發明遠距影像座標監測方法之流程圖。 元件符號說明: 100---遠距影像座標地滑監測系統 10---第一監測裝置 11 ---第二監測裝置 113、114、115、116 ---影像晝面 12 ---旋轉定位台 13 —壓克力板 14 —基座 15…攝影機 16---計算單元Pm) is the position where the four high-brightness LED image patterns on the image plane are located. (PA2, PB2, PC2, Pc> 2) is the position where the four high-glow LED17 image patterns are located after the ground slip occurs. & For the projection points P1N and PZN, the amount of change ΔΝη (Pin) and the amount of change ΔΝΗ (PZN) caused by the movement of the acrylic plate 13 to the left are ΔNh (P1N) = NH (P1N ' 1), respectively. —Nh (PlN,2)---Formula (3) △NH (P2N) =NH (P2N,1)—Nh (p2N , 2)---Formula (4) Bay J ΔΝΗ ( p1N ) > 〇, ΔΝη (P2N) > 〇 indicates a ground slip situation in which the shift to the left occurs, and when δνη(ρ1ν) <〇, ΔΝη(Ρ2ν) <〇, indicates a ground slip situation in which the shift to the right occurs. In the actual horizontal direction, the ground slip displacement ΔΕ)Ε can be expressed as ADH—1/2xRHSx[|ANh (Ρ]Ν) | + |ΔΝη (Ρ2ν) |]---Formula (5) In the ninth figure, it is the image analysis of the ground slip and sinking. The change caused by the sinking and slipping of the projection points Pin and Ρ2Ν is ΔΝν (Pin) and ΔΝν (Ρ2Ν, respectively). ), can be expressed as ΔΝν (Ρ1Ν) = NV (Ρ1Ν > 1) — Νν (Pin » 2)---Formula (6) △Νγ ( Ρ2Ν) =NV ( Ρ2Ν ' 1 ) — Νν ( Ρ2Ν ' 2 ) ---Formula (7) At this time, if ΔΝν (Pin) > 〇, ΔΝν (Ρ2Ν) > 0, it means that the sinking of the ground slip occurs, and when ΔΝν (Ρ1Ν) <〇, ΔΝν (Ρ2Ν) <;〇, indicating the shape of the bulge. Therefore, the actual vertical direction, the amount of ground slip displacement ν can be expressed as --- formula (8) 15 201001347 ADV=l/2xRVSx[|ANv (Ρ1Ν) | + |ΔΝν (P2N) I The average value is calculated to reduce the amount of error. Further, when the local slip phenomenon occurs, since the parallel laser light sources 21, 22 at the fixed point do not move, the acrylic plate 13 of the moving point is The movement of the line is equivalent to the movement of the projected point (P2N, Pin), but the movement of the entire image. Referring to the tenth figure, the image of the embodiment shown in the ninth embodiment changes, wherein the image is displayed. 113 represents the initial image captured by the camera 15 when the ground slip phenomenon has not occurred, and the projection point image obtained in the image plane 113 is the initial image coordinate (P2N, Pin) ' and the central coordinate is SCi. The local slip occurs. Thereafter, the camera 15 and the acrylic plate 13 are moved to the left and downward with respect to the initial image coordinates (P2n, Pin), so that the center coordinates of the new image plane 114 captured by the camera 15 will be changed from SC! to SC2, and The displacement amount of the sinking is known from the formula (6), the formula (7), and the formula (8), and the displacement amount of the left shift is known from the formula (3), the formula (4), and the formula (5), that is, The actual displacement amount in both directions can be known simultaneously by the formula (5) and the formula (8). Referring to the eleventh figure, the change of the image plane of the embodiment shown in the tenth figure, wherein the ellipse shown in the eleventh figure The state can be regarded as the action of sinking and shifting left first. Therefore, the image plane captured by the camera 12 can be divided into two processes: the image pupils 115 and 116, wherein the image pupil 115 shows the image captured after the sinking and the left shifting. The facet, and the image face 116 is the image face taken by the grounding action after the sinking and the left shifting. As shown in the eleventh figure, when the ground slip phenomenon occurs, not only the horizontal displacement (left and right movement) or the vertical displacement (sag or bulge) may cause the acrylic plate 13 to be generated due to the geological relationship. The tilting condition, such as 16 201001347 (PA3, PB3, PC3, PD3), the four high-brightness LEDs 17B are formed into a slanted square, because the ground sliding displacement is sinking, shifting to the left, and causing the acrylic sheet 13 tilted condition. When the center of the image pattern of the acrylic plate 13 is moved from sq to (SCO, the measurement of the displacement amount of the SCi to (Sc3), the change amount of the SC] and SC3 horizontal pixel values and the change of the vertical pixel value In the case of the displacement of the ground slip, the horizontal displacement ADH and the vertical position ΔDV can be expressed as ADH = RHSx (INSCJI-INSC3I) ADV=RVSx (IMSCd-|MSC3|)---formula (l 〇) When (NSC "NSC3" > 〇 ' stands for left-handed sliding "Μ%~ > 〇 represents sinking and sliding, then four high-brightness LEDs 17. SC3) can be found in the position of SC] The coordinate value on the face of the image, θ-shaped seat value, used to indicate that the center of the acrylic plate u, ', ' is at any position after the occurrence of ground slip. 'Possible position NSCj = l/4[ NAj + NBj + NCj + NDj] MSCj = l/4[MAj + MBj + MCj + MDj] Equation (11) Equation (12) The horizontal displacement △OH" and the vertical displacement (U) of any condition are measured The general formula, as shown below, Vj, will become ADHj = RHSx (INSC^-INSCjI) ____ public adv^rvsx (Imsc^-imsCjI) ___ eight jU3) then NSC "NSCj> 0 means the ground slip to the left , > 〇 indicates a downward movement 1~Msc· _ In the remote image coordinate of the present invention, the system displays the two bright spots with the highest brightness in the image plane, and then the tube only needs to mark the value and calculate the displacement. There is no need to perform a two-two=3⁄4 point range. Therefore, in the embodiment of the present invention, the calculation of the m^ image identifies an ultra-high-performance arithmetic processor or an industrial computer, ::: need not be destroyed only The mistake is made by the simple stone more 17 201001347 body \ road test": the type can be used to carry out the required operations. Like the coordinates of the slides 2, 2, 2, 2 shows the remote image of the remote image of the present invention Sliding monitoring system i =. A plurality of monitoring devices on the slope of the measuring point 1〇, the rotating positioning table 12 of Baosi f, the plurality of monitoring devices Ιΐ ο ο ο 12 opposite substrate '4; two: =, and: the rotary positioning table 12 can be rotated 'and the ^ ^ 23 '俾 to make the rotation position, - camera 15 and - leaf ^ single \ = group parallel laser light source 21 , group parallel laser light source 21, 22 system projection: 苡 = ; =:: camera 15 can be photographed from the front to include the group of projections Comparison, ^. Silk Lai take the noodles: #讯给料计16 When connected to the Tiantian position table 12, the positioning of the laser corresponds to the glossy surface, Wei to the laser light money 'receiving images拍摄The enamel mirror 13 to the erected acrylic plate 13 enables the precise positioning of the laser to achieve multi-point monitoring. In the present embodiment, the distance between the position of the frame (four) of each acrylic plate 13 and the measuring device is not the same, and the size of the image pattern generated is also different, and the image size is different, and the shooting distance is different. If the camera zooms in and out = the case is unknown, the method of pattern recognition is more difficult to measure the displacement amount, so the present invention can complete the coordinate value of the four high-luminance LED image images in the image plane. The measurement of the amount of ground slip displacement, and the size of the biaxial displacement is known as 18 201001347. Therefore, as long as the positioning of the laser 24 is completed, the zoom ratio of the camera 15 can be arbitrarily adjusted, and the focal length can be changed to obtain the clearest image plane. The color and brightness determine the coordinate values of the four high-brightness LED image patterns. From Equations (13) and (14), the amount of displacement in the horizontal direction to the left (right) and the amount of displacement in the vertical direction (bump) can be known. Because of the innovative design of the acrylic plate 13, the displacement of the ground slip can be measured day and night, and all the measurement formulas do not use the relevant parameters of the camera 15, so the position of the acrylic plate 13 is not set. The limitation of the fixed photographic distance, coupled with the precise laser positioning of the rotary positioning table 12, is as long as the direction of the acryl plate 13 is set, the two parallel laser beams are corrected for vertical photography, and the light is fixed. The receiver 20 can achieve the goal of multi-point monitoring. Please refer to the thirteenth figure for showing a flow chart of the remote image coordinate monitoring method of the present invention. The remote image coordinate monitoring method of the present invention comprises the following steps: Step 101: First, project a set of parallel light sources to a target plane on a slope to generate a set of projection points (p2N, P1N), and then proceed to step 102; Having the first capturing unit (P2N, P1N) and the second image of the projected point image (P2M, P1M) in the first time and the second time, respectively The first side surface and the second side surface are enlarged by the zoom function of the camera to make the image surface clear, and then step 103 is performed; in step 103, a calculation unit calculates the two sets of projection point images (P2N, PiN) and ( The coordinate value of P2m, Pim) is changed, and then step 1〇3 is performed; and in step 104, the sliding situation of the slope is determined according to the change of the coordinate value calculated by the calculation unit, for example, the sliding subsidence, the bulging, the left shift, and the right shift Or tilt. The remote image coordinate ground sliding monitoring system of the present invention is only disposed on a fixed point far away from the to-be-detected area by a two parallel laser light source, and adjusts its projection angle 19 201001347 degrees to be emitted by the two parallel laser light sources. The light beam is in a parallel state, and an acrylic plate of a fixed area is disposed on the point to be measured, so that two parallel laser rays are projected on the acrylic plate to generate two projected bright spots whose brightness is much larger than the background brightness, and Set a camera in the center of the two parallel laser light sources, and use the function of "pull closer" of the camera to obtain the largest image pattern of the acrylic plate. The image pattern will contain two image images of the projected bright spots. When the parallel laser light source and the camera are fixed on the same base, the relative position between the two will never change, so that when the ground slip occurs, the acrylic plate will move along with the slippage. Then, the image pattern of the two projected bright spots will generate a relative displacement amount with the image pattern of the dust plate, and the displacement amount of the image pattern between the two is calculated as the pixel value. In that truly sliding displacement direction and displacement amount. In addition, the remote image coordinate ground sliding monitoring system of the present invention uses a laser beam to make a long-distance projection without using an indium steel cable, so that the remote non-contact ground sliding measurement can be truly realized, and the camera is used as a camera. The measuring instrument is used, so that the camera is no longer just a function of "monitoring". And because the brightness of the projected bright spot generated by the laser beam can form a strong contrast, the coordinate value can be stored in a simple circuit, and the measuring structure is simple, the cost is low, the measuring speed is fast, and the power consumption is low. Less, smaller size, and more importantly, it is possible to simultaneously measure the amount of displacement and the direction of ground slip using only one set of measurement systems. Even if there is no light at night, it is possible to correctly monitor whether the ground slip occurs, and the displacement of the ground slip and the direction of the ground slip. Various changes and modifications can be made without departing from the scope and spirit of the invention, and the invention is not limited by the description. Embodiments of the illustrated embodiments. 20 201001347 [Simple diagram of the diagram] The first diagram is the system architecture diagram of a long-distance image coordinate ground-sliding monitoring system; the second diagram is the pupil surface produced by the projection point image of the camera zoom-in function of the invention; The pupil plane generated by the projection point image set vertically; the third panel B is the pupil plane generated by the horizontally placed projection point image; the fourth A diagram is the projection of the slope depression generated in the embodiment shown in the third diagram A The image of the image of the point; the fourth B is the image plane of the projection point of the slope in the embodiment shown in the third B; the fifth A is the right shift of the slope in the embodiment shown in the fourth A diagram. The image plane of the projection point, the fifth B is the image plane of the projection point which generates the left shift of the slope in the embodiment shown in FIG. 4B; the sixth A diagram shows the slope up in the embodiment shown in the third A diagram. Uplifting, moving to the right and producing an image plane of the projection point inclined to the right; Figure 6B is a projection point in the embodiment shown in the third B diagram that causes the slope to sink downward, to the right, and to the left. Image 昼; 7A is the remote image coordinate monitoring system of the present invention The second parallel laser light source is perpendicular to the optical axis of the camera; the seventh B is a schematic diagram of the parallel laser light source of the remote image coordinate monitoring system of the present invention being perpendicular to the optical axis of the camera; The remote image coordinate monitoring system of the present invention has a non-perpendicular side view of the parallel laser light source and the optical axis of the camera; the seventh D figure is the optical axis of the parallel laser light source and the camera of the remote image coordinate monitoring system of the present invention. Vertical diagram; 21 201001347 The eighth figure is an image screen of the invention which is obtained by taking a squeezing force plate from the camera and sliding left to the left; the ninth picture is the production of an acrylic sheet by the camera according to the present invention. Sliding down the image of the image; the tenth figure is the image plane that produces the left shift and sinks in the embodiment shown in the ninth figure; the eleventh figure shows the change of the image plane of the embodiment shown in the tenth figure. 12 is a system architecture diagram of another embodiment of a remote image coordinate ground slip monitoring system of the present invention; and a thirteenth diagram is a flow chart of a remote image coordinate monitoring method of the present invention. Description of component symbols: 100---Remote image coordinate ground slide monitoring system 10---First monitoring device 11--Second monitoring device 113, 114, 115, 116 --- Image surface 12 --- Rotating Positioning table 13 - Acrylic plate 14 - Base 15 ... Camera 16 - Calculation unit

17…高輝度LED 18 ---電源管理單元 19 —太陽能板 20---光接收器 22 201001347 21、22 —行雷射 23——旋轉轴承 24 定位雷射 101〜104 —步驟流程17...High-brightness LED 18 --- Power Management Unit 19 — Solar Panel 20---Optical Receiver 22 201001347 21, 22 — Ray Laser 23 — Rotary Bearing 24 Positioning Laser 101~104 — Step Flow

Claims (1)

201001347 十、申請專利範圍: 1. 一種遠距影像座標地滑監測系統,包括: 至少一座標平面,設置在一待測坡地上,用以接 收一組平行光源並產生一組投射點(P2N,P1N);以及 一旋轉定位台,設置於一遠端固定點,具有一基 座,該基座包含一組平行光源、一操取單元以及一計算 早元’該組平行光源係產生'組投射點於該座標平面 上,而該擷取單元係用以在第一時間與第二時間分別擷 取投射於前述座標平面之投射點影像(P2N,Pin)之第一晝 面及投射點影像(P2N,P1N)移動後之第二畫面,而該一計 算單元,用以計算前述投射點影像(P2N,P1N)與移動後 之投射點影像(P2N,Pin)的座標值之變化,再由前述變 化判斷前述坡地的滑動情形。 2. 如申請專利範圍第1項之遠距影像座標地滑監測系統, 其中前述投射點影像(P2N,P1N)的座標值僅在水平軸上產 生變化,則由投射點影像(P2N, P1N)上的像素值NH (P2N, P1N)的各別投射點的像素值NH (P2N)及NH (P1N)之變 化量判斷位移方向。 3. 如申請專利範圍第2項之遠距影像座標地滑監測系統, 其中當NH (P2N)及NH (P1N)之變化量大於0時,則表 不產生向左移動之地滑’而當Nh (P2N)及Nh (Pin)之 變化量小於〇時,則表示產生向右移動之地滑。 4. 如申請專利範圍第1項之遠距影像座標地滑監測系統, 其中前述投射點影像(P2N, Pm)的座標值僅在垂直轴上產 生變化,則由投射點影像(P2N, P1N)上的像素值Nv (P2N, P1N)的各別投射點的像素值Nv (P2N)及Nv (P1N)之變 化量判斷位移方向。 24 201001347 5. 如申請專利範圍第4項之遠距影像座標地滑監測系統, 其中當Nv (P2N)及Nv (P1N)之變化量大於0時,則表示 產生下沉移動之地滑,而當Nv (P2N)及Nv (P1N)之變化 量小於0時,則表示產生隆起移動之地滑。 6. 如申請專利範圍第1項之遠距影像座標地滑監測系統, 其中前述計算單元進一步計算前述第一畫面與前述第二 晝面的水平軸之夾角,以得知地滑之傾斜角度。 7. 如申請專利範圍第1項之遠距影像座標地滑監測系統, 其中前述計算單元進一步計算前述第一晝面與前述第二 晝面的垂直軸之夾角,以得知地滑之傾斜角度。 8. 如申請專利範圍第1項之遠距影像座標地滑監測系統, 其中前述座標平面之四角隅各設有一高輝度LED。 9. 如申請專利範圍第1項之遠距影像座標地滑監測系統, 其中前述擷取單元具有一 CCD或CMOS鏡頭。 10如申請專利範圍第1項之遠距影像座標地滑監測系統, 其中前述計算單元為一硬體運算電路。 11. 如申請專利範圍第1項之遠距影像座標地滑監測系統, 其中前述計算單元進一步連接一無線網路模組,用以傳輸 資料。 12. 如申請專利範圍第11項之遠距影像座標地滑監測系 統,其中前述無線網路模組為一 Zig-Bee網路模組,且前 述無線網路模組可用於與鄰近之其他地滑監測系統進行 資料分享。 13. —種遠距影像座標地滑監測系統,包括: 複數個座標平面,設置在一待測坡地上,用以接 收一組平行光源並產生一組投射點(P2N,P1N);以及 一旋轉定位台,設置於一遠端固定點,具有一基座 25 201001347 及對應該複數個座標平面設有複數個光接收器,該 包含〆組平行光源、一擷取單元以及一計算單元,立= 該基板側邊對應該複數個光接收器位置處,設有一定位 雷射’該組平行光源係產生一組投射點於該座標平面 上,而該梅取單元係用以在第一時間與第二時間分別擷 取投射於該座標平面之投射點影像(p2N,P1N)之第一畫面 及投射點影像(P2N, P1N)移動後之第二晝面,而該一計算 單元,用以計算前述投射點影像(P2N, piN)與移動後之 投射點影像(P2N,P1N)的座標值之變化,再由前述變化判 斷前述坡地的滑動情形,且於轉動該旋轉定位台時,藉 由該定位雷射所對應之該光接收器,接收該雷射光信 號’俾使選擇所要擷取之投射點影像之座標平面。 14. 如申請專利範圍第13項之遠距影像座標地滑監測系 統,其中前述投射點影像(P2N, Pin)的座標值僅在水平 軸上產生變化,則由投射點影像(P2N,P1N)上的像素值 Nh (P2N,P1N)的各別投射點的像素值nh (p2N)及Nh (Pm)之變化量判斷位移方向。 15. 如申請專利範圍第14項之遠距影像座標地滑監測系 統,其中當Νη (P2N)及NH (P1N)之變化量大於0時, 則表示^生向左移動之地滑,而當Nh(P2n)及Nh(Pin) 之變化量小於〇時,則表示產生向右移動之地滑。 如申睛專利範圍第13項之遠距影像座標地滑監測系 統’其中/ϋ述投射點影像(P2N,Pin)的座標值僅在垂直軸 ^產生變化,則由投射點影像(P2N,P1N)上的像素值Nv P2N,PlN)的各別投射點的像素值Νν (Ρ2Ν)及Nv (Pin) 之變化量判斷位移方向。 17·如申凊專利範圍第16項之遠距影像座標地滑監測系 26 201001347 統,其中當Nv (P2N)及Nv (P1N)之變化量大於0時,則 表示產生下沉移動之地滑,而當Νν (Ρ2Ν)及Νν (Ρ1Ν)之 變化量小於〇時,則表示產生隆起移動之地滑。 18. 如申請專利範圍第13項之遠距影像座標地滑監測系 統,其中前述計算單元進一步計算前述第一晝面與前述 第二晝面的水平軸之失角,以得知地滑之傾斜角度。 19. 如申請專利範圍第13項之遠距影像座標地滑監測系 統,其中前述計算單元進一步計算前述第一晝面與前述 第二晝面的垂直軸之夾角,以得知地滑之傾斜角度。 20. 如申請專利範圍第13項之遠距影像座標地滑監測系 統,其中前述座標平面之四角隅各設有一高輝度LED。 21. 如申請專利範圍第13項之遠距影像座標地滑監測系 統,其中前述擷取單元具有一 CCD或CMOS鏡頭。 22. 如申請專利範圍第13項之遠距影像座標地滑監測系 統,其中前述計算單元為一硬體運算電路。 23. 如申請專利範圍第13項之遠距影像座標地滑監測系 統,其中前述計算單元進一步連接一無線網路模組,用以 傳輸資料。 24. 如申請專利範圍第23項之遠距影像座標地滑監測系 統,其中前述無線網路模組為一 Zig-Bee網路模組,且前 述無線網路模組可用於與鄰近之其他地滑監測系統進行 資料分享。 25. —種遠距影像座標地滑監測方法,包括以下步驟: 投射一組平行光源至一坡地上的一座標平面以產生 一組投射點(P2N, P 1N); 令一擷取單元於第一時間及第二時間各擷取包含前 述座標平面的投射點影像(P2N, P1N)之第一晝面與投射 27 201001347 點影像(P2N,P1N)移動後之第二晝面,· 與移3算前述二組投射點影像(P- p-) 栌攄乂叶、^、f影像心,1^)的座標值變化;以及 根據則述變化判斷前述坡地的滑動情形。 26二申=?,第25項之遠距影像座標地滑監測方 轴上i生影像(P2N,P1N)的座標值僅在水平 射點影像(P2N,P1N)上的像素值 η (P2N,=N)的各別投射點的像素值〜(Μ及Nh (Pin)之邊化量判斷位移方向。 2二ic第26項之遠距影像座標地滑監測方 MlJ * Γ 2 Η (P2N)及Nh (Pin)之變化量大於〇時, 則表不產生向左移動之地滑,而當Nh(P2n) 於0時,則表示產生向右移動之地滑。1N 法如::亡職圍第25項之遠距影像座標地滑監測方 :產ΐ!,受射點影像(P2N,〜)的座標值僅在垂直轴 產生全化,則由投射點影像(Ρ2ν,Μ上的像素值Nv :ρ1Ν)的各別投射點的像素值Νν (Ρ2Ν)及 之邊化置判斷位移方向。 1Ν; 範圍第28項之遠距影像座標地滑監測方 =田NV(P2N) & Nv(Pin)之變化量大於〇時,則 不產生下沉移動之地滑,而當Nv (?抓)及N 小於G時’職示產生隆祕動之地滑。 法利範圍第25項之遠距影像座標地滑監測方 述計算單元進—步計算前述第—晝面與 Μ 夾角,以得知地滑之傾斜角度。 法,aI-^圍第25項之遠距影像座標地滑監測方 其中4計算單元進—步計算前述第—晝面與前述 28 201001347 第二晝面的垂直軸之夾角,以得知地滑之傾斜角度。 32. 如申請專利範圍第25項之遠距影像座標地滑監測方 法,其中前述座標平面之四角隅各設有一高輝度LED。 33. 如申請專利範圍第25項之遠距影像座標地滑監測方 法,其中前述擷取單元具有一 CCD或CMOS鏡頭。 34. 如申請專利範圍第25項之遠距影像座標地滑監測方 法,其中前述計算單元為一硬體運算電路。 35. 如申請專利範圍第25項之遠距影像座標地滑監測方 • 法,其中前述計算單元進一步連接一無線網路模組,用以 傳輸資料。 36. 如申請專利範圍第35項之遠距影像座標地滑監測方 法,其中前述無線網路模組為一 Zig-Bee網路模組,且前 述無線網路模組可用於與鄰近之其他地滑監測系統進行 資料分享。 :;; 29201001347 X. Patent application scope: 1. A remote image coordinate ground sliding monitoring system, comprising: at least one marking plane, arranged on a slope to be tested, for receiving a set of parallel light sources and generating a set of projection points (P2N, P1N); and a rotating positioning table disposed at a distal fixed point, having a base, the base comprising a set of parallel light sources, a fetching unit, and a computing early element 'the set of parallel light sources generating a 'group projection Pointing on the coordinate plane, and the capturing unit is configured to capture the first pupil plane and the projection point image of the projection point image (P2N, Pin) projected on the coordinate plane at the first time and the second time respectively ( P2N, P1N) the second picture after the movement, and the calculation unit is configured to calculate a change in the coordinate value of the projected point image (P2N, P1N) and the projected point image after moving (P2N, Pin), and then The change judges the sliding condition of the aforementioned slope. 2. For the remote image coordinate grounding monitoring system of Patent Application No. 1, wherein the coordinates of the projected point image (P2N, P1N) only change on the horizontal axis, the projection point image (P2N, P1N) The amount of change in the pixel values NH (P2N) and NH (P1N) of the respective projection points of the upper pixel values NH (P2N, P1N) determines the displacement direction. 3. For example, if the variation of NH (P2N) and NH (P1N) is greater than 0, the remote image coordinate grounding monitoring system of Patent Application No. 2 shall not be generated. When the amount of change of Nh (P2N) and Nh (Pin) is less than 〇, it means that the slip to the right is generated. 4. For example, in the remote image coordinate grounding monitoring system of claim 1, wherein the coordinates of the projected image (P2N, Pm) only change on the vertical axis, the projection point image (P2N, P1N) The amount of change in the pixel values Nv (P2N) and Nv (P1N) of the respective projection points of the upper pixel values Nv (P2N, P1N) determines the displacement direction. 24 201001347 5. For example, the remote image coordinate grounding monitoring system of claim 4, wherein when the variation of Nv (P2N) and Nv (P1N) is greater than 0, it means that the sinking movement is slippery, and When the amount of change of Nv (P2N) and Nv (P1N) is less than 0, it means that the ground motion of the swell movement occurs. 6. The remote image coordinate ground slip monitoring system of claim 1, wherein the calculating unit further calculates an angle between the first picture and a horizontal axis of the second side surface to know an inclination angle of the ground sliding. 7. The remote image coordinate ground slip monitoring system of claim 1, wherein the calculating unit further calculates an angle between the first pupil plane and a vertical axis of the second pupil plane to know the tilt angle of the ground slip . 8. The remote image coordinate grounding monitoring system of claim 1, wherein each of the four corners of the coordinate plane is provided with a high-intensity LED. 9. The remote image coordinate grounding monitoring system of claim 1, wherein the drawing unit has a CCD or CMOS lens. [10] The remote image coordinate grounding monitoring system of claim 1, wherein the calculation unit is a hardware operation circuit. 11. The remote-image coordinate ground-sliding monitoring system of claim 1, wherein the computing unit is further connected to a wireless network module for transmitting data. 12. The remote image coordinate grounding monitoring system of claim 11, wherein the wireless network module is a Zig-Bee network module, and the wireless network module is applicable to other neighboring places. Sliding monitoring system for data sharing. 13. A remote image coordinate ground slide monitoring system comprising: a plurality of coordinate planes disposed on a slope to be tested for receiving a set of parallel light sources and generating a set of projection points (P2N, P1N); and a rotation The positioning platform is disposed at a distal fixed point, and has a base 25 201001347 and a plurality of optical receivers corresponding to the plurality of coordinate planes, the set of parallel light sources, a capturing unit and a calculating unit, The side of the substrate corresponds to a plurality of light receiver positions, and a positioning laser is provided. The set of parallel light sources generates a set of projection points on the coordinate plane, and the plumbing unit is used for the first time and the first time. At the second time, the first picture of the projection point image (p2N, P1N) projected on the coordinate plane and the second picture after the projection point image (P2N, P1N) are moved, and the calculation unit is used to calculate the foregoing a change in the coordinate value of the projected point image (P2N, piN) and the projected image of the projected point (P2N, P1N), and then the above-mentioned change determines the sliding condition of the slope, and when the rotating positioning table is rotated, the positioning is performed mine Of the corresponding light receiver receiving the laser beam signal 'Bishi selected coordinate plane of the image point projected to be fetched. 14. For example, in the remote image coordinate grounding monitoring system of claim 13, wherein the coordinate value of the projected point image (P2N, Pin) changes only on the horizontal axis, the projection point image (P2N, P1N) The amount of change in the pixel values nh (p2N) and Nh (Pm) of the respective projection points of the upper pixel values Nh (P2N, P1N) determines the displacement direction. 15. For example, if the variation of Νη (P2N) and NH (P1N) is greater than 0, then the distance between the Νη (P2N) and NH (P1N) is greater than 0, When the amount of change of Nh(P2n) and Nh(Pin) is less than 〇, it means that the slip to the right is generated. For example, in the remote image coordinate grounding monitoring system of the 13th item of the patent scope, the coordinate value of the projection point image (P2N, Pin) is changed only on the vertical axis ^, and the projection point image (P2N, P1N) The amount of change in the pixel values Νν (Ρ2Ν) and Nv (Pin) of the respective projection points of the pixel values Nv P2N, P1N) determines the displacement direction. 17·For example, the remote image coordinate grounding monitoring system of the 16th item of the application scope of the patent application is in the form of the 2010-01347 system. When the variation of Nv (P2N) and Nv (P1N) is greater than 0, it means that the sinking movement is slippery. When the amount of change of Νν (Ρ2Ν) and Νν (Ρ1Ν) is less than 〇, it means that the ground motion of the ridge movement occurs. 18. The remote image coordinate ground slip monitoring system of claim 13, wherein the calculating unit further calculates a lost angle of the horizontal axis of the first pupil plane and the second pupil plane to know the tilt of the ground slip angle. 19. The remote image coordinate ground slip monitoring system of claim 13, wherein the calculating unit further calculates an angle between the first pupil plane and a vertical axis of the second pupil plane to know the tilt angle of the ground slip . 20. The remote-image coordinate ground-sliding monitoring system of claim 13 wherein each of the four corners of the coordinate plane is provided with a high-intensity LED. 21. The remote image coordinate grounding monitoring system of claim 13 wherein the drawing unit has a CCD or CMOS lens. 22. The remote image coordinate ground motion monitoring system of claim 13 wherein said computing unit is a hardware operating circuit. 23. The remote image coordinate grounding monitoring system of claim 13 wherein said computing unit is further coupled to a wireless network module for transmitting data. 24. The remote video coordinate grounding monitoring system of claim 23, wherein the wireless network module is a Zig-Bee network module, and the wireless network module is applicable to other neighboring locations. Sliding monitoring system for data sharing. 25. A remote image coordinate grounding monitoring method comprising the steps of: projecting a set of parallel light sources to a marking plane on a slope to generate a set of projection points (P2N, P1N); At the first time and the second time, the first pupil plane and the projection 27 201001347 point image (P2N, P1N) after the movement of the projection point image (P2N, P1N) including the coordinate plane are captured, and the movement is performed. Calculate the coordinate values of the two sets of projection point images (P-p-) 栌摅乂 leaf, ^, f image heart, 1^); and judge the sliding situation of the sloping land according to the change described. 26========================================================================================================================== =N) The pixel value of each projection point ~(Μ and Nh (Pin) are determined by the amount of marginalization. 22ic The remote image coordinate grounding monitoring of the 26th item MlJ * Γ 2 Η (P2N) And when the change of Nh (Pin) is greater than 〇, then the table does not produce the slip to the left, and when Nh(P2n) is 0, it means the slip to the right. 1N method:: The remote image coordinate of the 25th item is monitored by the slick: the ΐ!, the coordinate value of the image (P2N, ~) is only normalized on the vertical axis, and the image is projected by the projection point (Ρ2ν, the pixel on the Μ The pixel value Νν (Ρ2Ν) and the edge of each projection point of the value Nv : ρ1 Ν are judged to be the displacement direction. 1Ν; The far-distance image coordinate of the range item 28 is the slip monitoring unit = Field NV (P2N) & Nv When the amount of change of (Pin) is greater than 〇, then the slip of the sinking movement does not occur, and when Nv (?) and N are less than G, the job shows a sneak sway. The 25th item of the Farley range Remote image The standard sliding monitoring method calculation unit further calculates the angle between the first surface and the Μ surface to know the inclination angle of the ground sliding. The method, the ai-^ circumference of the remote image coordinate ground monitoring unit of the 25th item The calculation unit further calculates the angle between the aforementioned first-side surface and the vertical axis of the second surface of the aforementioned 28 201001347 to know the inclination angle of the ground sliding. 32. The distance image coordinates of the 25th item of the patent application range is grounded. The monitoring method, wherein the four corners of the coordinate plane are respectively provided with a high-intensity LED. 33. The remote image coordinate grounding monitoring method according to claim 25, wherein the drawing unit has a CCD or CMOS lens. For example, the remote image coordinate grounding monitoring method of claim 25, wherein the calculation unit is a hardware operation circuit. 35. The remote image coordinate grounding monitoring method according to claim 25 of the patent application scope, wherein The computing unit is further connected to a wireless network module for transmitting data. 36. The remote video coordinate ground sliding monitoring method according to claim 35, wherein the wireless network module Zig-Bee is a network module, said wireless network module and the front can be used to share data with other monitoring systems adjacent to the slippery: 29 ;;
TW97122844A 2008-06-19 2008-06-19 Remote image coordinate landslide surveillance system and method thereof TW201001347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97122844A TW201001347A (en) 2008-06-19 2008-06-19 Remote image coordinate landslide surveillance system and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97122844A TW201001347A (en) 2008-06-19 2008-06-19 Remote image coordinate landslide surveillance system and method thereof

Publications (2)

Publication Number Publication Date
TW201001347A true TW201001347A (en) 2010-01-01
TWI380247B TWI380247B (en) 2012-12-21

Family

ID=44824841

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97122844A TW201001347A (en) 2008-06-19 2008-06-19 Remote image coordinate landslide surveillance system and method thereof

Country Status (1)

Country Link
TW (1) TW201001347A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012100288A1 (en) * 2011-01-28 2012-08-02 Groundprobe Pty Ltd Slope stability alarm
TWI457863B (en) * 2011-12-20 2014-10-21 Univ Nat Taiwan Ocean A disaster alarm prevention device and a method thereof
CN114459350A (en) * 2022-02-10 2022-05-10 合肥惟新半导体科技有限公司 PCB board intellectual detection system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012100288A1 (en) * 2011-01-28 2012-08-02 Groundprobe Pty Ltd Slope stability alarm
AU2012211028B2 (en) * 2011-01-28 2015-01-22 Groundprobe Pty Ltd Slope stability alarm
TWI457863B (en) * 2011-12-20 2014-10-21 Univ Nat Taiwan Ocean A disaster alarm prevention device and a method thereof
CN114459350A (en) * 2022-02-10 2022-05-10 合肥惟新半导体科技有限公司 PCB board intellectual detection system

Also Published As

Publication number Publication date
TWI380247B (en) 2012-12-21

Similar Documents

Publication Publication Date Title
EP1219925B1 (en) Surveying apparatus
US20160078636A1 (en) Image-based surface tracking
US20060017938A1 (en) Three-dimensional surveying instrument and electronic storage medium
CN102635056B (en) Measuring method for construction depth of asphalt road surface
CN108709542B (en) Coordinate transformation-based rapid measurement method, system and device
Li et al. Measuring the interstory drift of buildings by a smartphone using a feature point matching algorithm
EP0523166A4 (en) Computer assisted video surveying and method therefor
CN100424466C (en) Noncontact three-dimensional measuring method and device
EP3353492B1 (en) Device and method to locate a measurement point with an image capture device
WO2022126339A1 (en) Method for monitoring deformation of civil structure, and related device
WO2007007528A1 (en) Image processor and environment information observing device
KR20120051875A (en) Apparatus and method for monitoring a structure using motion capture method
JP2021504776A (en) Slope stability visualization
TW529309B (en) Displacement measuring method of image sensor
US20120183205A1 (en) Method for displacement measurement, device for displacement measurement, and program for displacement measurement
JP2007225423A (en) Displacement measuring apparatus
TW201001347A (en) Remote image coordinate landslide surveillance system and method thereof
JP6178127B2 (en) Building measuring apparatus and measuring method
Guo et al. A measurement system applicable for landslide experiments in the field
CN108534702A (en) A kind of deflection real-time measurement apparatus and method
CN102155937B (en) Method for measuring flexible netty surface shape by shooting
CN102854200A (en) Array substrate detection apparatus
CN114119670A (en) Flow velocity measuring method for acquiring river video based on smart phone
TWI457863B (en) A disaster alarm prevention device and a method thereof
Cleveland et al. Principles and applications of digital photogrammetry for geotechnical engineering

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees