TW201000764A - Mechanically-actuated microfluidic pinch valve - Google Patents

Mechanically-actuated microfluidic pinch valve Download PDF

Info

Publication number
TW201000764A
TW201000764A TW097125723A TW97125723A TW201000764A TW 201000764 A TW201000764 A TW 201000764A TW 097125723 A TW097125723 A TW 097125723A TW 97125723 A TW97125723 A TW 97125723A TW 201000764 A TW201000764 A TW 201000764A
Authority
TW
Taiwan
Prior art keywords
microfluidic
valve
actuator
finger
layer
Prior art date
Application number
TW097125723A
Other languages
Chinese (zh)
Inventor
Gregory John Mcavoy
Emma Rose Kerr
Kia Silverbrook
Original Assignee
Silverbrook Res Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Silverbrook Res Pty Ltd filed Critical Silverbrook Res Pty Ltd
Publication of TW201000764A publication Critical patent/TW201000764A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14427Structure of ink jet print heads with thermal bend detached actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00253Processes for integrating an electronic processing unit with a micromechanical structure not provided for in B81C1/0023 - B81C1/00246
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14427Structure of ink jet print heads with thermal bend detached actuators
    • B41J2002/14435Moving nozzle made of thermal bend detached actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/05Microfluidics
    • B81B2201/052Ink-jet print cartridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid
    • G01N2035/1041Ink-jet like dispensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Micromachines (AREA)

Abstract

A microfluidic pinch valve. The valve comprises a microfluidic channel defined in a compliant body; a valve sleeve defined by a section of the microfluidic channel, the valve sleeve having a membrane wall defining part of an outer surface of the body; a compression member for pinching the membrane wall against an opposed wall of the valve sleeve; and a thermal bend actuator for moving the compression member between a closed position in which the membrane wall is sealingly pinched against the opposed wall, and an open position in which the membrane wall is disengaged from the opposed wall.

Description

201000764 九、發明說明 【發明所屬之技術領域】 本發明係有關於晶片上實驗室(LOC )及微流體技 術。提供完全整合的微流體系統(如,LOC裝置)以及不 會只依賴軟光刻製程之微流體裝置已被開發。 【先前技術】 “晶片上實驗室(Lab-on-a-chip) ”(LOC)係一用來 描述只有幾平方公釐或平方公分的裝置,其能夠實施與一 標準的實驗室相關之大量的工作。L 0 C裝置包含微流體通 道,其能夠處理奈升(nanoliter)及皮升(piC0liter)範 圍之極小體積。L0C裝置在化學及生物分析上的應用刺激 了在這些領域的硏究,特別是如果L0C裝置可被夠便宜 地製造以提供拋棄式生物分析工具的話。例如,L O C技術 的目標之一爲提供即時的DNA偵測裝置,其可被單次使 用然後拋棄。 L0C裝置的製造係源自於標準MEMS技術,已爲大家 接受之微影成像技術被用來製造矽晶圓上的裝置。對於絕 大多數的L0C裝置而言流體控制是關鍵。因此,L0C裝 置典型地包含一陣列之可獨立地控制的微流體裝置,譬如 像是閥與泵。雖然L0C裝置原本是從以矽爲基礎的MEM S 技術發展出來的,但最近已轉向使用彈性物指之軟光刻技 術。對於形成有效的閥密封件而言,彈性物質遠比矽更爲 適合。因此’聚二甲基矽氧烷(PDMS )現已成爲製造在 201000764 LOC晶片中的微流體裝置的首選材料。一 PDMS微流體平 台典型地係使用軟光刻技術來製造然後再安裝於一玻璃基 材上。 最常被使用在L0C裝置中的閥種類爲‘Quake,閥, 如美國專利第7,2 5 8,7 7 4號所揭露者,該專利的揭示內容 藉由此參照而被倂於本文中。該‘ Quake ’閥使用在一控 制通道內的流體壓力(如,氣體壓力或液壓)來以—種傳 統氣動夾緊閥(pinch valve)的方式來塌縮一相鄰的流體 流通道的PDMS壁。簡短地參照圖1A-1C,該Quake閥包 含一流體流通道1及控制通道2其延伸橫貫該流體流通道 1。一膜片3將通道1及2隔開。通道1及2係藉由使用 軟光刻技術而被界定在一撓性的彈性基材中,譬如像是 PDMS中,用以提供一微流體結構4。該微流體結構4被 結合至一平面基材5上’譬如一玻璃載片上。 如圖 1B所示,該流體流通道 1是“開放的 (open ) ” 。在圖1C中,控制通道2的加壓(由一外部 的泵引入其內之氣體或液體所施加的壓力)造成膜片3向 下偏轉藉以緊束該流體流通道1並控制流經該通道1的流 體流。因此,藉由改變在控制通道2中的壓力可提供一可 線性地致動的閥系統,使得該流體流通道1可藉由移動膜 片3而如所需地被打開或關閉。(爲了顯示的目的,圖 1 C中的流體流通道1係被顯示位在“幾乎關閉”的位 置,而不是“完全關閉”的位置。) 多個Quake閥可合作用以提供一蠕動泵。因此,該 -6- 201000764201000764 IX. Description of the Invention [Technical Field of the Invention] The present invention relates to on-wafer laboratory (LOC) and microfluidic technology. Microfluidic devices that provide fully integrated microfluidic systems (e.g., LOC devices) and that do not rely solely on soft lithography processes have been developed. [Prior Art] "Lab-on-a-chip" (LOC) is a device for describing only a few square millimeters or square centimeters, which is capable of implementing a large number of standards related to a standard laboratory. work. The L 0 C device contains a microfluidic channel that is capable of handling very small volumes in the range of nanoliter and piC0liter. The application of L0C devices in chemical and biological analysis has spurred research in these areas, especially if L0C devices can be manufactured inexpensively to provide disposable bioanalytical tools. For example, one of the goals of the L O C technology is to provide an instant DNA detection device that can be used a single time and then discarded. The manufacture of L0C devices is derived from standard MEMS technology, and the lithographic imaging technology that has been accepted is used to fabricate devices on germanium wafers. Fluid control is critical for most L0C devices. Thus, L0C devices typically include an array of independently controllable microfluidic devices such as valves and pumps. Although the L0C device was originally developed from the 矽-based MEM S technology, it has recently turned to the use of elastic lithography. Elastomers are far more suitable than 矽 for forming effective valve seals. Therefore, poly(dimethyl methoxide) (PDMS) has now become the material of choice for microfluidic devices fabricated in 201000764 LOC wafers. A PDMS microfluidic platform is typically fabricated using soft lithography and then mounted on a glass substrate. The type of valve that is most commonly used in L0C devices is 'Quake, a valve, as disclosed in U.S. Patent No. 7,258,075, the disclosure of which is incorporated herein by reference. . The 'Quake' valve uses fluid pressure (eg, gas pressure or hydraulic pressure) in a control channel to collapse the PDMS wall of an adjacent fluid flow path in the manner of a conventional pneumatic pinch valve. . Referring briefly to Figures 1A-1C, the Quake valve includes a fluid flow channel 1 and a control channel 2 extending across the fluid flow channel 1. A diaphragm 3 separates the channels 1 and 2. Channels 1 and 2 are defined in a flexible, resilient substrate, such as PDMS, by using soft lithography to provide a microfluidic structure 4. The microfluidic structure 4 is bonded to a planar substrate 5, such as a glass slide. As shown in Fig. 1B, the fluid flow path 1 is "open". In Fig. 1C, the pressurization of the control passage 2 (the pressure exerted by the gas or liquid introduced therein by an external pump) causes the diaphragm 3 to deflect downwardly to tightly bind the fluid flow passage 1 and control the flow through the passage. 1 fluid flow. Accordingly, a linearly actuatable valve system can be provided by varying the pressure in the control passage 2 such that the fluid flow passage 1 can be opened or closed as desired by moving the diaphragm 3. (For purposes of illustration, the fluid flow channel 1 in Figure 1C is shown in the "almost closed" position, not the "fully closed" position.) Multiple Quake valves can cooperate to provide a peristaltic pump. Therefore, the -6- 201000764

Quake’閥系統已被用來產生在一個LOC裝置中之數千個 閥與泵。如上文中提到的,這些裝置在化學及生物領域中 之潛在的應用數量非常的大,範圍包括從燃料電池到DN A 定序器。 然而,目前的微流體裝置,譬如像是描述於美國專利 第7,2 5 8,774號中者,都具有數項問題。詳言之,這些先 前技藝的微流體裝置必需被安插到外部控制系統中,空氣 /真空系統及/或抽吸系統中才能發揮作用。雖然用軟光刻 技術形成的微流體平台也許是很小且製造上也便宜,但驅 動微流體裝置所需的外部支援系統(即// TAS裝置)相對 上昂貴且實際的微流體平台大。因此,目前的技術仍然無 法提供完犬整合之拋棄式LOC // TAS裝置。提供一種無需 過多的外部支援系統來驅動之完全整合的LOC裝置是所 想要的。 【發明內容】 在第一態樣中,本發明提供一種蠕動微流體泵,其包 含: 一抽吸室,其被設置在一入口與一出口之間; 多個活動的指件其被設置在該抽吸室的一壁中,該等 指件沿著該壁被安排成一列;及 多個熱彎曲致動器,每一致動器都與一個別的指件相 關連使得該熱彎曲致動件的致動會造成該個別的指件移動 進入該抽吸室中, 201000764 其中該泵被建構來藉由該等指件的運動用以在該抽吸 室中提供一蠕動抽吸動作。 選擇上地(optionally ),該抽吸室是細長形的,且 該等指件沿著該抽吸室的一縱向壁被設置成一列。 選擇上地,每一指件都橫向地延伸橫跨該室。 選擇上地,該等指件都被設置成相對的指件對,在一 相對的指件對中的每一指件都指向該抽吸室的一中央縱軸 線。 選擇上地,每一指件都包含該熱彎曲致動器。 選擇上地,該抽吸室包含一室頂其與一基材間隔開 來,及側壁其延伸在該室頂與一由該基材所界定的地板之 間。 選擇上地,該等指件被設置在該室頂中。 選擇上地,每一熱彎曲致動器都包含: 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作,使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動樑膨 脹,造成該致動器的彎曲。 選擇上地,每一指件的範圍(extent )係由該被動樑 來界定。 選擇上地,該主動樑被熔接至該被動樑。 選擇上地,該主動樑界定一延伸在一對電極之間之彎 曲電流路徑,該等電極被連接至用來控制每一致動器的控 制電路。 -8- 201000764 選擇上地,該熱彈性物質係選自於一包含氮化鈦,氮 化鈦鋁及釩鋁合金的族群中。 選擇上地,該被動樑係由一選自於包含氧化矽,氮化 矽及氮氧化矽的族群中之物質所構成的。 選擇上地,該基材包含用來控制每一致動器的控制電 路。 選擇上地,該基材爲一矽基材,該控制電路係被包含 在該矽基材的至少一 CMOS層中。 選擇上地,該壁被覆蓋一聚合體層,該聚合體層提供 一機械性密封於每一指件與該壁之間。 選擇上地,該聚合體層係由聚二甲基矽氧烷 (PDMS )所組成。 選擇上地,該入口被界定在該基材中。 在進一步的態樣中,一種微流體系統被提供,其包含 該微流體栗,該微流體泵包含: 一抽吸室,其被設置在一入口與一出口之間; 多個活動的指件其被設置在該抽吸室的一壁中,該等 指件沿著該壁被安排成一列;及 多個熱彎曲致動器,每一致動器都與一個別的指件相 關連使得該熱彎曲致動件的致動會造成該個別的指件移動 進入該抽吸室中, 其中該泵被建構來藉由該等指件的運動用以在該抽吸 室中提供一蠕動抽吸動作。 在另一態樣中,一種微流體系統被提供,其包含該微 -9- 201000764 流體泵,該微流體泵包含= 一抽吸室,其被設置在一入口與一出口之間; 多個活動的指件其被設置在該抽吸室的一壁中,該等 指件沿著該壁被安排成一列;及 多個熱彎曲致動器,每一致動器都與一個別的指件相 關連使得該熱彎曲致動件的致動會造成該個別的指件移動 進入該抽吸室中, 其中該泵被建構來藉由該等指件的運動用以在該抽吸 室中提供一蠕動抽吸動作, 其爲一 LOC裝置或一微型總分析系統(Micro Total Analysis System ) 。 在一第二態樣中,本發明提供一種MEM S積體電路其 包含一或多個蠕動微流體泵及用來控制該一或多個泵之控 制電路,每一泵都包含: 一抽吸室,其被設置在一入口與一出口之間; 多個活動的指件其被設置在該抽吸室的一壁中,該等 指件沿著該壁被安排成一列;及 多個熱彎曲致動器,每一致動器都與一個別的指件相 關連使得該熱彎曲致動件的致動會造成該個別的指件移動 進入該抽吸室中, 其中該控制電路控制該等多個致動器的致動,且該控 制電路被建構來藉由該等指件的蠕動運動用以在每一抽吸 室中提供一蠕動抽吸動作。 選擇上地,該抽吸室是細長形的,且該等指件沿著該 -10- 201000764 抽吸室的一縱向壁被設置成一列。 選擇上地,每一指件都橫向地延伸橫跨該室。 選擇上地,該等指件都被設置成相對的指件對,在一 相對的指件對中的每一指件都指向該抽吸室的一中央縱軸 線。 選擇上地,每一指件都包含該熱彎曲致動器。 選擇上地,該抽吸室包含一室頂其與一基材間隔開 來,及側壁其延伸在該室頂與一由該基材所界定的地板之 間。 選擇上地,該等指件被設置在該室頂中。 選擇上地,每一熱彎曲致動器都包含: 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作,使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動樑膨 脹,造成該致動器的彎曲。 選擇上地,每一指件的範圍(extent )係由該被動樑 來界定。 選擇上地,該主動樑被熔接至該被動樑。 選擇上地,該主動樑界定一延伸在一對電極之間之彎 曲電流路徑,該等電極被連接至用來控制每一致動器的控 制電路。 選擇上地,該熱彈性物質係選自於一包含氮化鈦,氮 化鈦鋁及釩鋁合金的族群中。 選擇上地,該被動樑係由一選自於包含氧化矽,氮化 -11 - 201000764 矽及氮氧化矽的族群中之物質所構成的。 選擇上地,該基材爲一矽基材,該控制電路係被包含 在該矽基材的至少一 CMOS層中。 選擇上地,該壁被覆蓋一聚合體層,該聚合體層提供 一機械性密封於每一指件與該壁之間。 選擇上地,該聚合體層係由聚二甲基矽氧烷 (PDMS )所組成。 選擇上地,該聚合體層界定該MEMS積體電路的一外 表面。 選擇上地,該出口被界定在該外表面中。 選擇上地,該入口被界定在該基材中。 在另一態樣中,一種包含該MEMS積體電路的微流體 系統被提供,該MEMS積體電路包含一或多個蠕動微流體 泵及用來控制該一或多個泵之控制電路,每一栗都包含: 一抽吸室,其被設置在一入口與一出口之間; 多個活動的指件其被設置在該抽吸室的一壁中,該等 指件沿著該壁被安排成一列;及 多個熱彎曲致動器,每一致動器都與一個別的指件相 關連使得該熱彎曲致動件的致動會造成該個別的指件移動 進入該抽吸室中, 其中該控制電路控制該等多個致動器的致動,且該控 制電路被建構來藉由該等指件的蠕動運動用以在每一抽吸 室中提供一蠕動抽吸動作。 在一第三態樣中,本發明提供一種機械式致動的微流 -12- 201000764 體閥,其包含: 一入口璋; 一出口埠; 一熱彎曲致動器;及 一閥閉合件,其與該致動器合作使得該熱彎曲致動件 的致動會造成該閉合件的運動,藉以調節一從該入口埠至 該出口埠的流體流。 選擇上地,該彎曲致動器包含: 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作,使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動樑膨 脹,造成該致動器的彎曲。 選擇上地,該主動樑被溶接至該被動樑。 選擇上地,該主動樑界定一延伸在一對電極之間之彎 曲電流路徑,該等電極被連接至用來控制每一致動器的控 制電路。 選擇上地,該熱彈性物質係選自於一包含氮化鈦,氮 化鈦鋁及釩鋁合金的族群中。 選擇上地,該被動樑係由一選自於包含氧化矽,氮化 矽及氮氧化矽的族群中之物質所構成的。 選擇上地,至少該致動器被界定在一矽基材的一 MEMS層中。 選擇上地,該基材包含用來控制該致動器的控制電 路,該控制電路被包含在該基材的至少一 C Μ Ο S層中。 -13- 201000764 選擇上地,該入口埠與該出口埠被界定在一矽基材的 —MEMS層中。 選擇上地,該入口埠與該出口埠被界定在聚合的微流 體平台中。 選擇上地,該閉合件是由一順從物質(compliant material )所構成用以與該閥的密封表面密封地嚙合。 選擇上地,該閉合件是由一彈性體所構成。 選擇上地,該閉合件係由聚二甲基矽氧烷(PDMS ) 所構成。 選擇上地,該閉合件被熔接或黏合(bind )至該熱彎 曲致動器。 選擇上地,該致動造成該閥的開啓或關閉。 選擇上地,該致動造成該閥的部分開啓或部分關閉。 在第四實施例中,本發明提供一種微流體系統,其包 含一黏合至一聚合的微流體平台之MEMS積體電路,該系 統包含一或多個微流體裝置,其中該等微流體裝置中的至 少一者包含一 MEMS致動器其被設置在該積體電MEMS 層中。 選擇上地,該等微流體裝置係選自於包含微流體閥與 微流體泵的族群中。 選擇上地,所有的微流體裝置都包含一設置在該 MEMS層中的MEMS致動器。 選擇上地,該MEMS層更包含一微加熱器用來加熱一 在一微流通道內的流體。 -14- 201000764 選擇上地,該 MEMS積體電路包含一矽基材且該 MEMS層被形成在該基材上。 選擇上地,該MEM S層被覆蓋一聚合體層。 選擇上地,該聚合體層界定該MEMS積體電路的一黏 合層。 選擇上地,該聚合體層是由可光圖案化* (photopatternable )的 PDMS 所組成的。 選擇上地,該微流體平台包含一聚合物本體其具有一 或多個界定於其內的微流體通道。 選擇上地,該聚合物本體是由PDMS所組成。 選擇上地,該等微流體通道的至少一者與該至少一微 流體裝置流體聯通。 選擇上地,該MEMS積體電路包含用來控制該致動器 的控制電路,該控制電路被包含在該基材的至少一 C Μ 0 S 層中。 選擇上地,該MEMS致動器爲一熱彎曲致動器。 選擇上地,熱彎曲致動器包含: 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作,使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動樑膨 脹,造成該致動器的彎曲。 選擇上地,該主動樑被熔接至該被動樑。 選擇上地,該主動樑界定一延伸在一對電極之間之彎 曲電流路徑,該等電極被連接至用來控制每一致動器的控 -15- 201000764 制電路。 選擇上地,該熱彈性物質係選自於一包含氮化鈦,氮 化鈦鋁及釩鋁合金的族群中。 選擇上地,該被動樑係由一選自於包含氧化矽,氮化 矽及氮氧化矽的族群中之物質所構成的。 在一進一步的態樣中,一種微流體系統被提供其包含 一黏合至一聚合的微流體平台之MEMS積體電路,該系統 包含一或多個微流體裝置,其中該等微流體裝置中的至少 一者包含一設置在該積體電路的一 MEMS層內之MEMS 致動器,其爲一 LOC裝置或一微型總分析系統(Micro Total Analysis System, β T A S )。 在第五態樣中,本發明提供一種微流體系統其包含一 積體電路其具有一黏合至一聚合的微流體平台之黏合表 面,該微流體系統包含一或多個被該積體電路中的控制電 路所控制的微流體裝置, 其中該等微流體裝置的至少一者包含一 MEMS致動 器,其被設置在該積體電路的一 MEMS層中,該MEMS 層被覆蓋一聚合物體其界定該積體電路的該黏合表面。 選擇上地,該等微流體裝置係選自於包含微流體閥與 微流體泵的族群中。 選擇上地,該等微流體裝置被設置在下面所列的任何 一者中: 該積體電路; 該微流體平台;及 -16- 201000764 介於該積體電路與該微流體平台之間的一界面。 選擇上地,該積體電路包含一矽積材其具有至少一 COMS層,且該控制電路被包含在該至少一 COMS層中。 選擇上地,該積體電路包含一矽基材且該MEMS層被 形成在該基材上。 選擇上地,該聚合體層是由可光圖案化的PDMS所組 成的。 選擇上地,該微流體平台包含一聚合物本體其具有一 或多個微流體通道界定於其內。 選擇上地,該聚合物本體是由PDMS所組成的。 選擇上地,該等微流體通道的至少一者與該至少一微 流體裝置流體聯通。 選擇上地,該MEMS致動器爲一熱彎曲致動器。 選擇上地,熱彎曲致動器包含: 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作,使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動樑膨 脹,造成該致動器的彎曲。 選擇上地,該主動樑被熔接至該被動樑。 選擇上地,該主動樑界定一延伸在一對電極之間之彎 曲電流路徑,該等電極被連接至用來控制每一致動器的控 制電路。 選擇上地,該熱彈性物質係選自於一包含氮化鈦,氮 化鈦鋁及釩鋁合金的族群中。 -17- 201000764 選擇上地,該被動樑係由一選自於包含氧化矽,氮化 矽及氮氧化矽的族群中之物質所構成的。 選擇上地,該積體電路與該聚合的微流體平台流體聯 通及/或機械式聯通。 在另一態樣中,一種微流體系統被提供其包含一積體 電路其具有黏合至一聚合的微流體平台之黏合表面,該微 流體系統包含一或多個被該積體電路中的控制電路所控制 的微流體裝置, 其中該等微流體裝置中的至少一者包含一設置在該積 體電路的一 MEMS層內之MEMS致動器,該MEMS層被 覆蓋一聚合體層其界定該積體電路的該黏合表面,其爲一 LOC裝置或一微型總分析系統(Micro Total Analysis System, β T A S )。 在第六態樣中,本發明提供一種包含一 MEMS積體電 路的微流體系統,該MEMS積體電路包含: 一矽基材其具有一或多個微流體通道界定於其內; 至少一層控制電路,用來控制一或多個微流體裝置; 一 MEMS層其包含該一或多個微流體裝置:及 一聚合體層其覆蓋該MEMS層, 其中該聚合體層的至少一部分提供一用於該等微流體 裝置的至少一者的密封。 選擇上地,該MEMS積體電路包含該微流體系統的操 作所需之所有的微流體裝置及控制電路。 選擇上地,該等微流體裝置係選自於包含微流體閥與 -18- 201000764 微流體泵的族群中。 選擇上地,該控制電路係被包含在至少一 CMOS層 中〇 選擇上地,該聚合體層是由PDMS所組成的。 選擇上地,該聚合體層界定該MEMS積體電路的一外 表面。 選擇上地,MEM S積體電路係透過該聚合體層被安裝 在一被動基材上。 選擇上地,該至少一微流體裝置包含一 MEMS致動 器。 選擇上地,該MEMS致動器爲一熱彎曲致動器。 選擇上地,熱彎曲致動器包含: 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作,使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動樑膨 脹,造成該致動器的彎曲。 選擇上地,該主動樑被熔接至該被動樑。 選擇上地,該主動樑界定一延伸在一對電極之間之彎 曲電流路徑,該等電極被連接至用來控制每一致動器的控 制電路。 選擇上地,該熱彈性物質係選自於一包含氮化鈦,氮 化鈦鋁及釩鋁合金的族群中。 選擇上地,該被動樑係由一選自於包含氧化矽,氮化 矽及氮氧化矽的族群中之物質所構成的。 -19- 201000764 選擇上地,該微流體裝置爲一微流體閥其包含一設置 在一入口埠與一出口埠之間的密封表面,及其中該聚合體 層的該至少一部分被建構來與該密封表面密封地嚙合。 選擇上地,該密封嚙合調節從該入口埠至該出口埠的 流體流。 選擇上地,該微流體裝置爲一微流體蠕動泵其包含: 一抽吸室,其被設置在一入口與一出口之間;及 多個活動的指件,其被設置在該抽吸室的一壁中,該 等指件沿著該壁被安排成一列且被建構成可藉由該等指件 的運動來提供一蠕動的抽吸動作, 其中該聚合體層的該至少一部分提供介於每一指件與 該壁之間的一機械式密封。 在一進一步的態樣中,一種微流體系統被提供其包含 一 MEMS積體電路,該MEMS積體電路包含: 一矽基材,其具有一或多個微流體通道界定於其內; 至少一層控制電路,用來控制一或多個微流體裝置; 一 MEMS層其包含一或多個微流體裝置;及 一覆蓋該MEMS層的聚合體層, 其中該聚合體層的至少一部分提供一用於該等微流體 裝置的至少一者的密封, 其爲一 LOC裝置或一微型總分析系統(Micro Total Analysis System, β T A S ) 。 在第七態樣中,本發明提供一種微流體閥,其包含: 一入口 ί阜; -20- 201000764 一出口埠; 一堰部,其被設置在該入口埠與該出口埠之間,該堰 部具有一密封表面; 一隔膜,用來與該密封表面密封地嚙合;及 至少一熱彎曲致動器,用來將該隔膜移動於一關閉的 位置與一打開的位置之間,在該關閉的位置時該隔膜與該 密封表面密封地嚙合及在該打開的位置時該隔膜與該密封 表面脫離。 選擇上地,在該打開的位置時,一連接通道被界定在 該隔膜與該密封表面之間,該連接通道提供該入口璋與該 出口埠之間的流體聯通。 選擇上地,該打開的位置包括一完全打開的位置與一 部分打開的位置。 選擇上地,該隔膜被熔接或黏合到至少一活動的指 件,該致動器造成該指件的運動。 選擇上地,該至少一指件包含該熱彎曲致動器。 選擇上地,依據本發明的該微流體閥包含一對相對的 指件,每一指件都指向該堰部,其中該隔膜橋接在該對相 對的指件之間。 選擇上地,該閥被形成在一基材上,該隔膜與該等指 件與該基材間隔開來,且該堰部從該基材朝向該隔膜延 伸。 選擇上地,該堰部被設置在該對相對的指件之間的中 央處。 -21 - 201000764 選擇上地,每一指件都包含一各自的熱彎曲致動器。 選擇上地,每一熱彎曲致動器都包含: 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作,使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動樑膨 脹,造成該致動器的彎曲。 選擇上地,每一指件的範圍(extent )係由該被動樑 來界定。 選擇上地,該主動樑被熔接至該被動樑。 選擇上地,該主動樑界定一延伸在一對電極之間之彎 曲電流路徑,該等電極被連接至用來控制每一致動器的控 制電路。 選擇上地,該熱彈性物質係選自於一包含氮化鈦,氮 化鈦鋁及釩鋁合金的族群中。 選擇上地,該被動樑係由一選自於包含氧化矽,氮化 矽及氮氧化矽的族群中之物質所構成的。 選擇上地,該基材包含用來控制該至少一致動器的控 制電路。 選擇上地,該基材爲一矽基材,該控制電路係被包含 在該矽基材的至少一 CMOS層中。 選擇上地,該該隔膜是由一聚合體層的至少一部分界 定的。 選擇上地,該聚合體層係由聚二甲基矽氧烷 (PDMS )所組成。 -22 - 201000764 選擇上地,多個依據本發明的微流體閥被串聯地設置 以使用於蠕動泵中。 在第八態樣中,本發明提供一種MEMS積體電路其包 含一或多個微流體隔膜閥及用於該一或多個閥的控制電 路,每一閥都包含: 一入口璋; 一出口埠; 一堰部,其被設置在該入口埠與該出口埠之間,該堰 部具有一密封表面; 一隔膜,用來與該密封表面密封地嚙合;及 至少一熱彎曲致動器,用來將該隔膜移動於一關閉的 位置與一打開的位置之間,在該關閉的位置時該隔膜與該 密封表面密封地嚙合及在該打開的位置時該隔膜與該密封 表面脫離, 其中該控制電路被建構來控制該至少一致動器的致 動,以控制該閥的打開與關閉。 選擇上地,在該打開的位置時,一連接通道被界定在 該隔膜與該密封表面之間,該連接通道提供該入口埠與該 出口埠之間的流體聯通。 選擇上地,該打開的位置包括一完全打開的位置與一 部分打開的位置。 選擇上地,該隔膜被熔接或黏合到至少一活動的指 件,該致動器造成該指件的運動。 選擇上地,該至少一指件包含該熱彎曲致動器。 -23- 201000764 選擇上地’依據本發明的該MEMS積體電路包含一對 相對的指件’每一指件都指向該堰部,其中該隔膜橋接在 該對相對的指件之間。 選擇上地’該閥被形成在一基材上,該隔膜與該等指 件與該基材間隔開來,且該堰部從該基材朝向該隔膜延 伸。 選擇上地,該堰部被設置在該對相對的指件之間的中 央處。 選擇上地,每一指件都包含一各自的熱彎曲致動器。 選擇上地,每一熱彎曲致動器都包含: 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作,使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動樑膨 脹,造成該致動器的彎曲。 選擇上地,每一指件的範圍(extent )係由該被動樑 來界定。 選擇上地,該主動樑被熔接至該被動樑。 選擇上地,該主動樑界定一延伸在一對電極之間之彎 曲電流路徑,該等電極被連接至用來控制每一致動器的控 制電路。 選擇上地,該熱彈性物質係選自於一包含氮化鈦’氮 化鈦鋁及釩鋁合金的族群中。 選擇上地,該被動樑係由一選自於包含氧化矽’氮化 矽及氮氧化矽的族群中之物質所構成的。 -24 - 201000764 選擇上地’該基材爲一砂基材,該控制電路係被包含 在該矽基材的至少一 CMOS層中。 選擇上地,該隔膜是由一聚合體層的至少一部分界定 的。 選擇上地’該聚合體層係由聚二甲基矽氧烷 (P D M S )所組成。 選擇上地,該聚合體層界定該M EMS積體電路的一外 表面。 選擇上地,多個該等閥被串聯地設置且該控制電路被 建構來控制每一致動器的致動,以提供一蠕動抽吸動作。 在第九態樣中,本發明提供一種微流體緊束閥 (pinch valve),其包含: —微流體通道’其被界定在一順從本體(compliant body)中; 一閥套,其由該微流體通道的一段所界定,該閥套具 有一隔膜壁其界定該本體的外表面的至少一部分: 該壓縮件,用來對著該閥套的一相對的壁緊束該隔膜 壁;及 一熱彎曲致動器,用來將該壓縮件移動於一關閉的位 置與一打開的位置之間,在該關閉的位置時該隔膜壁被對 著該相對的壁緊束,而在該打開的位置時該隔膜壁脫離該 相對的壁。 選擇上地,該打開的位置包括一完全打開的位置與一 部分打開的位置。 -25- 201000764 選擇上地,一活動的指件與該壓縮件嚙合,該指件被 建構來透過該致動件的運動將該壓縮件迫動於該打開的位 置與該關閉的位置之間。 選擇上地,該壓縮件被夾在該指件與該隔膜壁之間。 選擇上地,該壓縮件從該隔膜件突伸出。 選擇上地,該壓縮件在該熱彎曲致動件位在一靜止的 狀態時被朝向該關閉的位置偏動。 選擇上地,一 MEM S積體電路被黏合至該本體的外表 面,該活動的指件被包含在該積體電路的一 MEMS層中。 選擇上地,該MEM S積體電路包含一由一聚合體層所 界定的黏合表面,該黏合表面被黏合至該本體的外表面。 選擇上地,該聚合體層覆蓋該MEMS層。 選擇上地,該聚合體層及/或該順從本體是由PDMS 組成的。 選擇上地,該致動器的致動造成該指件移動遠了該本 體,藉以打開該閥;及 該致動器的未致動(deactuation )造成該指件移動朝 向該本體,藉以關閉該閥。 選擇上地,該活動的指件包含該熱彎曲致動器。 選擇上地,該熱彎曲致動器包含: 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作,使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動樑膨 脹,造成該致動器的彎曲。 -26- 201000764 選擇上地,每一指件的範圍(extent)係由該被動樑 來界定。 選擇上地,該主動樑被熔接至該被動樑。 選擇上地’該主動樑界定一延伸在一對電極之間之彎 曲電流路徑’該等電極被連接至用來控制每一致動器的控 制電路。 選擇上地,該熱彈性物質係選自於一包含氮化鈦,氮 化鈦鋁及釩鋁合金的族群中;及該被動樑係由一選自於包 含氧化矽’氮化矽及氮氧化矽的族群中之物質所構成的。 選擇上地,該MEM S積體電路包含一矽基材,其具有 被包含在至少一 CMOS層中的控制電路。 選擇上地,一種微流體系統被提供其包含依據本發明 的微流體閥。 選擇上地,依據本發明的微流體系統包含多個被串聯 地設置的閥。 在第十態樣中,本發明提供一種微流體系統其包含: (A) —微流體平台,其包含: 一順從本體其具有一微流體通道界定於其內; 一閥套,其由該微流體通道的一段所界定,該閥套 具有一隔膜壁其界定該本體的外表面的至少一部分; 一壓縮件,用來對著該閥套的一相對的壁緊束該隔 膜壁;及 (B ) — MEMS積體電路其被黏合至該本體的外表 面,該MEMS積體電路包含: -27- 201000764 一活動的指件與該壓縮件嚙合,該指件被建構來透 過該致動件的運動將該壓縮件迫動於一關閉的位置與一打 開的位置之間,在該關閉的位置時該隔膜壁被對著該相對 的壁緊束,而在該打開的位置時該隔膜壁脫離該相對的 壁; 一與該指件相關連之熱彎曲致動器,該致動器被建 構來控制該指件的運動;及 控制電路,用來控制該致動器的致動以控制該閥套 的打開與關閉。 選擇上地,該打開的位置包括一完全打開的位置與一 部分打開的位置。 選擇上地,該壓縮件被夾在該指件與該隔膜壁之間。 選擇上地,該壓縮件從該隔膜件突伸出。 選擇上地,該壓縮件爲該隔膜壁的一部分。 選擇上地,該壓縮件在該熱彎曲致動件位在一靜止的 狀態時被朝向該關閉的位置偏動。 選擇上地,該MEM S積體電路包含一由一聚合體層所 界定的黏合表面,該黏合表面被黏合至該本體的外表面。 選擇上地,該聚合體層覆蓋一包含該活動的指件的 MEMS 層。 選擇上地,該聚合體層及/或該順從本體是由PDMS 組成的。 選擇上地,該致動器的致動造成該指件移動遠了該本 體,藉以打開該閥;及 -28- 201000764 該致動器的未致動(deactuation)造成該指件移動朝 向該本體,藉以關閉該閥。 選擇上地,該活動的指件包含該熱彎曲致動器。 選擇上地,該熱彎曲致動器包含: 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作’使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動棵膨 脹,造成該致動器的彎曲。 選擇上地,每一指件的範圍(extent)係由該被動樑 來界定。 選擇上地,該主動樑被熔接至該被動樑。 選擇上地,該主動樑界定一延伸在一對電極之間之彎 曲電流路徑,該等電極被連接至用來控制每一致動器的控 制電路。 選擇上地,該熱彈性物質係選自於一包含氮化鈦’氮 化鈦鋁及釩鋁合金的族群中。 選擇上地,該被動樑係由一選自於包含氧化矽’氮化 矽及氮氧化矽的族群中之物質所構成的。 選擇上地,該MEMS積體電路包含一矽基材’其具有 被包含在至少一 CMOS層中的控制電路。 在第十一態樣中,本發明提供一種微流體系統其包 含: (A) —微流體平台,其包含: 一順從本體其具有一微流體通道界定於其內; -29- 201000764 一細長形室,其由該微流體通道的一段所界定,該 室具有一隔膜壁其界定該本體的外表面的至少一部分; 多個壓縮件,它們沿著該隔膜壁被間隔開來’每一 壓縮件都被建構來對著該室的一相對的壁緊束該隔膜壁的 一個別的部分;及 (B) — MEMS積體電路其被黏合至該本體的外表 面,該MEMS積體電路包含: 多個活動的指件,每一指件都與一個別的壓縮件嚙 合,每一指件都被建構來將該個別的壓縮件迫動於一關閉 的位置與一打開的位置之間,在該關閉的位置時該隔膜壁 之該個別的部分被對著該相對的壁緊束’而在該打開的位 置時該隔膜壁之該個別的部分脫離該相對的壁; 多個熱彎曲致動器,每一熱彎曲致動器都與一個別 的指件相關連,用以控制該個別的指件的運動;及 控制電路,用來控制該等致動器的致動。 選擇上地,該控制電路被建構來提供以下所列的一或 多項: (i) 透過該等指件的蠕動運動提供在該室內的一蠕 動抽吸動作; (ii) 透過該等指件的蠕動運動提供在該室內的一混 合動作; (i i i )在該室內的一協同一致的抽吸動作。 選擇上地,該混合動作產生流體的一紊流通過該室。 選擇上地,該協同一致的抽吸動作將所有的壓縮件協 -30- 201000764 同一致地移動至一打開的位置或一關閉的位置。 選擇上地,該控制電路被建構來可互換地提供該蠕動 抽吸動作,該混合動作及該協同一致的抽吸動作中的兩種 或更多種。 選擇上地,每一壓縮件優被夾在其個別的指件與該隔 膜壁之間。 選擇上地,每一壓縮件從該隔膜件突伸出。 選擇上地,每一壓縮件爲該隔膜壁的一部分。 選擇上地,每一壓縮件在該熱彎曲致動件位在一靜止 的狀態時被朝向該關閉的位置偏動。 選擇上地,該MEM S積體電路包含一由一聚合體層所 界定的黏合表面,該黏合表面被黏合至該本體的外表面。 選擇上地,該聚合體層覆蓋一包含該活動的指件的 MEMS 層。 選擇上地,該聚合體層及/或該順從本體是由PDMS 組成的。 選擇上地,每一致動器的致動都造成其個別的指件移 動遠了該本體,藉以將該隔膜壁的一個別的部分脫離該相 對的壁;及 每一致動器的未致動(d e a c t u a t i ο η )造成該個別的指 件移動朝向該本體,藉以對著該相對的壁密封地緊束該隔 膜壁的一個別的部分。 選擇上地,每一活動的指件都包含該熱彎曲致動器。 選擇上地,每一熱彎曲致動器都包含: 201000764 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作,使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動樑膨 脹,造成該致動器的彎曲。 選擇上地,每一指件的範圍(extent )係由該被動樑 來界定。 選擇上地,該主動樑被熔接至該被動樑。 選擇上地,該主動樑界定一延伸在一對電極之間之彎 曲電流路徑,該等電極被連接至用來控制每一致動器的控 制電路。 選擇上地,該熱彈性物質係選自於一包含氮化鈦,氮 化鈦鋁及釩鋁合金的族群中;及該被動樑係由一選自於包 含氧化矽,氮化矽及氮氧化矽的族群中之物質所構成的。 選擇上地,該MEM S積體電路包含一矽基材,其具有 被包含在至少一 CMOS層中的控制電路。 在第十二態樣中,本發明提供一種微流體系統其包含 一黏合至一微流體平台的MEMS積體電路,該微流體平台 包含一聚合本體其具有至少一微流體通道界定於其內,且 該MEMS積體電路包含至少一熱彎曲致動器,其中該微流 體系統被建構成該至少一致動器的運動會造成該通道的閉 合。 選擇上地,該至少一熱彎曲致動器與一個別的活動的 指件相關連使得該熱彎曲致動器的致動可造成該個別的指 件的運動。 -32- 201000764 選擇上地,該指件與該微流體通道的一壁嚙合。 選擇上地,一依據本發明的微流體系統其被建構成該 指件朝向該微流體平台的運動可藉由對著一相對的壁緊束 該壁來造成該通道的閉合。 選擇上地,該運動是由該熱彎曲致動器的未致動提供 的。 選擇上地,一種依據本發明的微流體系統包含多個活 動的指件其被建構成如一線性蠕動泵一般。 選擇上地,該泵與一界定在該聚合本體內的控制通道 流體聯通,該控制通道與該微流體通道合作使得用一控制 流體加壓該控制通道可造成該微流體通道的緊束式閉合。 選擇上地,該控制流體爲一提供氣壓式控制的氣體, 或一提供液壓式控制的液體。 選擇上地,該至少一熱彎曲致動器被設置在該MEMS 積體電路的一· MEMS層中。 選擇上地,該 MEMS積體電路包含一矽基材且該 MEMS層被形成在該基材上。 選擇上地,該MEMS積體電路包含用來控制該至少一 熱彎曲致動器之控制電路,該控制電路被包含在該基材的 至少一 CMOS層中。 選擇上地,該MEMS層被一聚合體層覆蓋。 選擇上地,該聚合體層界定該MEMS積體電路的一黏 合表面。 選擇上地,該聚合體層是由可光圖案化的PDMS組成 -33- 201000764 的。 選擇上地,該聚合本體是由該PDMS所組成的。 選擇上地,該熱彎曲致動器包含: 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作,使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動樑膨 脹,造成該致動器的彎曲。 選擇上地,每一指件的範圍(extent )係由該被動樑 來界定。 選擇上地,該主動樑被熔接至該被動樑。 選擇上地,該主動樑界定一延伸在一對電極之間之彎 曲電流路徑,該等電極被連接至用來控制每一致動器的控 制電路。 選擇上地,該熱彈性物質係選自於一包含氮化鈦,氮 化鈦鋁及釩鋁合金的族群中;及該被動樑係由一選自於包 含氧化矽,氮化矽及氮氧化矽的族群中之物質所構成的。 選擇上地,一種依據本發明的微流體系統其爲一 LOC 裝置或一微型總分析系統(Micro Total Analysis System, // TAS )。 在第十三態樣中,本發明提供一種微流體系統其包含 一氣壓式或液壓式緊束閥,該緊束閥包含: 一界定於一順從本體中的微流體通道; 一可膨脹的控制通道,其與該微流體通道的一閥區段 合作使得該控制通道之氣壓式或液壓式加壓可造成該控制 -34- 201000764 通道的膨脹及該閥區段的緊束閉合, 其中該微流體系統包含一晶片上(on-chip) MEMS泵 其與該控制通道流體聯通用來加壓該控制通道。 選擇上地,該閥區段包含可彈性地塌陷的壁。 選擇上地,該控制通道的一壁與該閥區段的一壁嚙 合。 選擇上地,關閉該泵可釋放該控制通道內的壓力,藉 以打開該閥區段。 選擇上地,依據本發明的該微流體系統包含用來控制 該泵之晶片上控制電路,並藉以控制該閥區段的關閉。 選擇上地,依據本發明的該微流體系統包含一黏合至 一微流體平台的MEMS積體電路,該微流體平台包含一聚 合本體其具有該微流體通道及該控制通道界定於其內,及 該MEMS積體電路包含該MEMS泵。 選擇上地,該MEMS泵包含多個活動的指件其被建構 成爲一線性的蠕動泵,每一指件都與一個別的熱彎曲致動 器相關連用來移動一個別的指件。 選擇上地,每一指件都包含一個別的熱彎曲致動器。 選擇上地,該MEMS泵被設置在該MEMS積體電路 的一 MEMS層中。 選擇上地,該 MEMS積體電路包含一矽基材且該 MEMS層被形成在該基材上。 選擇上地,該MEMS積體電路包含用來控制該至少一 熱彎曲致動器之控制電路,該控制電路被包含在該基材的 -35- 201000764 至少一 CMOS層中。 選擇上地,該MEMS層被一聚合體層覆蓋。 選擇上地,該聚合體層界定該MEMS積體電路的一黏 合表面。 選擇上地,該聚合體層是由可光圖案化的PDMS組成 的。 選擇上地,該聚合本體是由該PDMS所組成的。 選擇上地,該熱彎曲致動器包含: 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作,使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動樑膨 脹,造成該致動器的彎曲。 選擇上地,每一指件的範圍(extent )係由該被動樑 來界定。 選擇上地,該主動樑被熔接至該被動樑。 選擇上地,該被動樑界定每一指件的一範圍 (extent) ° 選擇上地,該主動樑界定一延伸在一對電極之間之彎 曲電流路徑,該等電極被連接至用來控制每一制動器的控 制電路。 選擇上地,該熱彈性物質係選自於一包含氮化鈦,氮 化鈦鋁及釩鋁合金的族群中;及該被動樑係由一選自於包 含氧化矽,氮化矽及氮氧化矽的族群中之物質所構成的。 -36- 201000764 【實施方式】 爲了避免疑慮’用於本文中之“微流體 (microfluidics) ”一詞具有其在此技藝中之—般性意涵。 典型地’微流體系統或結構係以微米的尺度加以建造且包 含至少一微流體通道其具有小於約100微米的寬度。該等 微流體通道通常具有一範圍在1-8000微米,1_500微米, 1 -300微米,2-250微米,3-150微米或54 00微米之間的 寬度。微流體系統及裝置典型地能夠處理小於1 〇〇()奈 升,小於1 0 0奈升’小於1 〇奈升,小於]奈升,小於1 〇 〇 皮升或小於1 0皮升的流體量。 呈使用於本文中時’ ‘微流體系統(micro fluidic system ) ”係指一單一的整合單元其通常是成爲一 ‘晶 片’的形式(即,其具有類似於一典型的微型晶片的尺 寸)。一微流體‘晶片’典型地具有小於約5公分,小於 約4公分’小於約3公分,小於約2公分,或小於約1公 分的寬度及/或長度尺寸。該晶片典型地具有一小於約5 公釐’小於約2公釐或小於約1公釐的厚度。該晶片可被 安裝到一被動基材,譬如一玻璃載片,上用以提供它結構 上的剛性及強健度。 一微流體系統典型地包含一或多個微流體通道及一或 多個微流體裝置(如,微泵,微閥,等等)。再者,描述 於本文中的微流體系統典型地包含用來驅動在該系統中的 微流體裝置所需之所有必要的支援系統(如,控制電 路)。 -37- 201000764 當使用於本文中時,“微流體平台”係指微流體通道, 微流體室及/或微流體裝置的一平台,其傳統上需要外部 的支援系統用以操作(如,晶片外(off-chip )泵,晶片 外電路等等)。微流體平台典型地具有一用軟光刻製程所 製造的聚合本體。如將變得明顯的,一微流體平台可形成 一依據本發明之黏合的微流體系統。依據本發明之黏合的 微流體系統大體上包含一透過一界面黏著劑而黏合至一微 流體平台的積體電路。典型地,一黏合的微流體系統具有 流體聯通及/或機械式溝通於該積體電路與該微流體平台 之間。 “晶片上實驗室(Lab-on-a-chip) ”或(L0C)裝置是 微流體系統的例子。大體上,L0C是一用來表明單一或多 個實驗室處理的規模縮小至晶片格式。一 L0C裝置典型 地包含多個微流體通道,微流體室及微流體裝置(如,微 泵,微閥等等)。 一“微型總分析系統”(// TAS )是一 L0C裝置的例子 其被特別建構來實施一系列能夠進行化學或生物分析的實 驗室處理。 任何依據發明的微流體系統都可以是一 L0C裝置或 一 /2 TAS。熟習此技藝者將能夠利用本發明的技術設計用 於適合一特定應用之L0C裝置(或任何微流體統)的架 構。微流體系統的某些典型的應用爲酵素分析(如,葡萄 糖及乳酸分析),DNA分析(如,聚合酶連鎖反應及高產 出定序),但白質體,疾病診斷,用於毒素/病原體之空 -38- 201000764 氣/水樣本的分析’燃料電池,微混合器等等。可在一 LOC裝置中被實施之傳統實驗室操作的數量實際上是無限 制的’且本發明並不偏限於微流體技術的任何特定應用。 在噴墨噴嘴組件中之熱彎曲致動 到目前位止,本案申請人已描述了許多適於形成頁寬 列印頭之熱彎曲致動的噴墨噴嘴組件。這些噴墨噴嘴的一 些元件與描述於本文中之微流體系統及裝置相關。因此, 下面將簡單描述一噴墨噴嘴組件。 典型地,噴墨噴嘴組件係被建造於一 CMO S矽基材 上。該基材的CMOS層提供用來致動每一列印頭噴所需之 所有必要的邏輯與驅動電路(極,控制電路)。 圖2及3顯示在兩個不同的製造階段的一個此種噴嘴 組件1 0 0,如描述於本案申請人稍早於2 0 0 7年6月15日 提申之美國專利申請案第1 1 /763440號中所描述的,該申 請案的內容藉由此參照被倂於本文中。 圖1顯示已部分完成之噴嘴組件,用以顯示該彎曲致 動器的特徵。因此,參考圖1’其顯示出該噴嘴組件 被形成在一 CMOS砂基材102上。一噴嘴室係由一與該基 材102間隔開來的室頂與從該室頂延伸至該基材102 之側壁所界定。該室頂104是由一活動的部分108與—固 定不動的部分11 〇所構成’這兩個部分之間界定出一間隙 109。一噴嘴開口 112被界定在該活動的部分108中用以 噴出墨水。 -39- 201000764 該活動的部分108包含一熱彎曲致動器其具有一對懸 臂操’其形式爲一上主動樑丨14被溶接至—下被動樑 116°該下被動樑116界定該室頂的該活動的部分1〇8的 伸展程度。該上主動樑114包含一對臂n4A及114B其由 各自的電極接點1 18A及1 18B縱長向地延伸。臂1 MA及 114B的遠端透過一連接件115而相連接。該連接件n5 包含一欽導電墊117,其可促進在此接合區域附近的傳導 性。因此’該主動樑114界定一彎曲的或曲折的導電路徑 於電極接點1 1 8 A與1 1 8 B之間。 電極接點1 1 8A與1 1 8B在該噴嘴組件的一端處被設置 成彼此相鄰且透過各自的連接器柱119被連接至該基材 102的一金屬CMOS層120。該COMS層120包含用來致 動該彎曲致動器所需的驅動電路。 該被動樑1 1 6典型地是由任何電及熱絕緣物質所組 成’譬如像是二氧化矽,氮化矽等等。該熱彈性主動樑 1 1 4可由任何適合的熱彈性物質所組成,譬如像是氮化 鈦’氮化鈦鋁及鋁合金。如在本案申請人2006年12月4 曰所提申之共同繫屬中的美國專利申請案第n/6〇7,976號 中所描述的’釩鋁合金是較佳的材料,因爲它們結合了高 熱膨脹,低密度及高楊氏模數的有利特性。 參考圖3,其顯示在製造後續階段中之一完整的噴嘴 組件。圖2的噴嘴組件1 〇 〇具有—噴嘴室! 2 2及一墨水入 口 124用來供應墨水至噴嘴室。此外,整個室頂都被覆蓋 —層聚二甲基矽氧烷(PDMS)。該pdMS層126具有多 -40- 201000764 重功能’包括:保護該彎曲致動器,讓該室頂1〇4厭水及 提供一用於該間隙109之機械式密封。該pDMS層126具 有一夠低的楊氏模數以容許墨水經由該噴嘴開口丨丨2的致 動與噴射。 關於該PDMS層126的一包括其功能與製造在內的更 詳細的描述可在2007年1 1月29日提申之美國專利申請 案第1 1/946,840號中可找到(該案內容藉由此參照而被倂 於本文中)。 當需要將一墨水滴從該噴嘴室1 2 2噴出時,一電流流 經介於電接點1 1 8之間的該主動樑1 1 4。該主動樑1 1 4被 該電流快速地加熱並相對於該被動樑1 1 6快速地膨脹,藉 以造成該活動的部分108相對於該固定不動的部分n〇朝 向該基材102向下彎曲。此運動造成墨水因爲在該噴嘴室 122內部的壓力快速升高而從該噴嘴開口 112噴射出。當 電流停止流經時,該活動的部分1 0 8被容許回到其靜止的 位置’如圖2及3所示’這會將墨水經由該入口 1 2 4吸入 到該噴嘴室122中,爲下一次噴墨作準備。 由以上所述可知,該PDMS層126顯著地改善了噴嘴 組件100的操作。如在美國專利申請案第1 1 /94 6,8 4 0號中 所描述的’該PDMS層126的形成係藉由一 MEMS製程的 旋施(spin-on)可光圖案化的PDMS來完成的。本案申請 人已開發出利用可光圖案化的PDMS之各種MEMS製程, 其可被修改以使用在多種應用中。利用P D M S的微流體裝 置及系統將於下文中描述。 -41 - 201000764 微流體泵 圖4及5顯示一包含一列MEMS裝置的線性蠕動杲 200,每一 MEMS裝置在結構上都類似於上文所述之熱彎 曲致動的噴墨噴嘴組件100。圖4以立體圖顯示該泵 200,其中一上PDMS層被移走用以露出每一 MEMS裝置 的細部。 該線性蠕動泵200被形成在一 CMOS矽基材202的表 面上。一抽吸室203是由一與該基材2 02間隔開來的室頂 204與從該室頂延伸至該基材202的側壁20 6所界定。該 室頂204與側壁206典型地是由氧化矽或氮化矽所組成且 係使用類似於在美國專利申請案第Π/763,440號中所描述 的製程來建造。 該抽吸室2 03的形式爲一細長的通道,其縱長地延伸 在一泵入口 208與一泵出口 210之間。如圖4所示,該泵 入口 208被界定在該抽吸室203的一地板212中且一流體 經由一被界定爲穿透該矽基材之泵入口通道214而被饋送 至該泵入口 108。該泵出口 210被界定在該抽吸室203的 室頂204中的一個與該泵入口丨08相反的端部處。該泵入 口 2 0 8及泵出口 2 1 0的此配置被特別地建構以提供完全整 合的L0C裝置,這將於下文中說明。然而,將可被瞭解 的是’在其最廣的形式中,該蠕動泵20 0可具有任何適合 的泵入口與出口配置,只要該等蠕動抽吸指件被設置在泵 入口與出口之間即可。 -42- 201000764 上PDMS層已被拿掉之圖4顯示出三個蠕 220,它們沿著該抽吸室203的縱長長度被排 間隔開來。因爲與上文所描述的噴墨噴嘴組件 所以每一指件220可藉由熱彎曲致動而可移動 203中。因此,每一指件220都包含一MEMS 器,其形式爲一與一被動樑合作的主動樑222 該主動樑222被熔接至該被動樑224,且該被 定每一活動的指件220的範圍(extent)。 被動樑224通常是用與室頂204相同的材 且指件220與室頂是被一周邊間隙226隔開 Μ E M S製造期間由一蝕刻處理來形成的。 該主動樑222界定一彎曲電流路徑其延伸 接點22 8之間。在保持該噴墨噴嘴組件1 〇〇上 222包含一對由個別的電極接點228延伸出之 229的遠端被一連接件23〇連接起來。 每一指件2 2 0都橫向地延伸橫跨由該抽吸 定之該縱長的通道的室頂204。因此’將可被 藉由控制每一指件2 2 0的運動’ 一蠕動抽吸動 到一在該抽吸室2 0 3內的流體上。熟習此技藝 的是利用一類似的抽吸動作的線性蠕動泵’例 國專利第4,909,710號中者,該專利的內容藉 被倂於本文中。 每一指件致動的控制是由在該矽基材202 層240來提供,如圖5所示。圖5爲該泵200 動抽吸指件 成一列且被 100類似, 至該抽吸室 熱彎曲致動 。典型地, 肋樑224界 料來形成, 來,其係在 在一對電極 ,該主動樑 臂229 。臂 室203所界 瞭解的是, 作可被施加 者將會知道 如描述在美 由此參照而 中的 C Μ Ο S 的立體圖其 -43- 201000764 包括一 PDMS之上聚合體密封層242。泵200被切開通過 一指件220 ’用以露出部分的金屬CMOS層240。該 CMOS層240透過一連接器柱244與每一電極接點22 8連 接,該連接器柱從該CMOS層延伸穿過側壁206,並與電 極接點接觸。該CMOS層240包含用來致動每一指件220 所需之所有的控制與驅動電路。因此,一包含該泵200的 晶片包含用來致動該泵之所有必要的控制與驅動電路’因 而無需任何外部的晶片外(Off-chip )控制。晶片上(〇n-chip )控制是依據本發明的泵200的優點之一。 再者,與用一陣列的‘ Quake ’閥來建造的蠕動泵 (如描述於美國專利第7,25 8,774號中者)相反地’泵 2〇〇並不需要任何控制流體(如,空氣)來驅動該蠕動動 作。‘Quake’閥(及‘Quake’泵)都依賴在一控制通道 內的流體(其必需由外部供應),但該機械式致動的栗 2〇〇則是完全自給自足的且不需要任何外部的輸入’必需 被抽吸之致動流體除外。 再次參考圖5,該聚合體密封層242 (典型地爲 PDMS )使用類似於美國專利申請案第1 1 /763,44〇號中所 描述的製造技術而被沉積在室頂204上,且該泵出口 210 被界定穿過該聚合體層。當然,該聚合體層242具有夠低 的楊氏模數,用以讓每一指件2 2 0在致動期間能夠運動。 該聚合體層242主要係提供該周邊間隙在每一指件220周 圍的機械式密封,而且亦提供每一熱彎曲致動器保護層。 再者,PDMS提供一理想的黏合表面來將一包含該微 -44 - 201000764The Quake' valve system has been used to generate thousands of valves and pumps in a LOC unit. As mentioned above, the potential applications of these devices in the chemical and biological fields are very large, ranging from fuel cells to DN A sequencers. However, current microfluidic devices, such as those described in U.S. Patent No. 7,258,774, have several problems. In particular, these prior art microfluidic devices must be inserted into an external control system, in an air/vacuum system and/or a suction system. While microfluidic platforms formed using soft lithography may be small and inexpensive to manufacture, the external support systems required to drive microfluidic devices (i.e., // TAS devices) are relatively expensive and the actual microfluidic platforms are large. As a result, current technology still does not provide a disposable LOC // TAS device for dog integration. It is desirable to provide a fully integrated LOC device that is driven without excessive external support systems. SUMMARY OF THE INVENTION In a first aspect, the present invention provides a peristaltic microfluidic pump comprising: a suction chamber disposed between an inlet and an outlet; a plurality of movable fingers disposed at In a wall of the suction chamber, the fingers are arranged in a row along the wall; and a plurality of thermal bending actuators, each actuator being associated with a further finger such that the thermal bending is actuated Actuation of the piece causes the individual fingers to move into the suction chamber, 201000764 wherein the pump is configured to provide a peristaltic suction action in the suction chamber by movement of the fingers. Optionally, the suction chamber is elongate and the fingers are arranged in a row along a longitudinal wall of the suction chamber. Selecting the upper ground, each finger extends laterally across the chamber. Preferably, the fingers are disposed as opposing pairs of fingers, each finger of an opposing pair of fingers being directed toward a central longitudinal axis of the suction chamber. Selecting the upper ground, each finger contains the thermal bending actuator. Optionally, the suction chamber includes a chamber top spaced from a substrate, and the side wall extends between the top of the chamber and a floor defined by the substrate. The uppers are selected and the fingers are placed in the roof. Selecting the upper ground, each thermal bending actuator comprises: an active beam formed of a thermoelastic material; and a passive beam mechanically cooperating with the active beam such that a current flows through the active beam The active beam is heated and expands relative to the passive beam, causing bending of the actuator. Selecting the upper ground, the extent of each finger is defined by the passive beam. The upper beam is selected and the active beam is welded to the passive beam. The upper beam is selected to define a curved current path extending between a pair of electrodes that are coupled to a control circuit for controlling each actuator. -8- 201000764 Selecting the upper layer, the thermoelastic material is selected from the group consisting of titanium nitride, titanium aluminum nitride and vanadium aluminum alloy. The upper beam is selected from the group consisting of a substance selected from the group consisting of cerium oxide, cerium nitride and cerium oxynitride. Selecting the ground, the substrate contains control circuitry for controlling each actuator. Preferably, the substrate is a germanium substrate, and the control circuitry is included in at least one CMOS layer of the germanium substrate. Optionally, the wall is covered by a polymeric layer that provides a mechanical seal between each finger and the wall. The upper layer is selected to be composed of polydimethyl methoxy alkane (PDMS). The upper floor is selected and the inlet is defined in the substrate. In a further aspect, a microfluidic system is provided comprising the microfluidic pump, the microfluidic pump comprising: a suction chamber disposed between an inlet and an outlet; a plurality of movable fingers It is disposed in a wall of the suction chamber, the fingers are arranged in a row along the wall; and a plurality of thermal bending actuators, each actuator being associated with one of the other fingers such that Actuation of the thermal bending actuator causes the individual fingers to move into the suction chamber, wherein the pump is configured to provide a peristaltic suction in the suction chamber by movement of the fingers action. In another aspect, a microfluidic system is provided comprising the micro-9-201000764 fluid pump, the microfluidic pump comprising = a suction chamber disposed between an inlet and an outlet; The movable finger is disposed in a wall of the suction chamber, the fingers are arranged in a row along the wall; and a plurality of thermal bending actuators, each actuator and one other finger Associated such that actuation of the thermal bending actuator causes the individual fingers to move into the suction chamber, wherein the pump is configured to provide for movement in the suction chamber by movement of the fingers A peristaltic pumping action, which is a LOC device or a Micro Total Analysis System. In a second aspect, the present invention provides a MEM S integrated circuit comprising one or more peristaltic microfluidic pumps and control circuitry for controlling the one or more pumps, each pump comprising: a suction a chamber disposed between an inlet and an outlet; a plurality of movable fingers disposed in a wall of the suction chamber, the fingers being arranged in a row along the wall; and a plurality of heat a bending actuator, each actuator being associated with a further finger such that actuation of the thermal bending actuator causes the individual fingers to move into the suction chamber, wherein the control circuit controls the Actuation of a plurality of actuators, and the control circuit is configured to provide a peristaltic pumping action in each of the suction chambers by the peristaltic motion of the fingers. The upper chamber is selected, the suction chamber being elongate, and the fingers are arranged in a row along a longitudinal wall of the suction chamber of -10-201000764. Selecting the upper ground, each finger extends laterally across the chamber. Preferably, the fingers are disposed as opposing pairs of fingers, each finger of an opposing pair of fingers being directed toward a central longitudinal axis of the suction chamber. Selecting the upper ground, each finger contains the thermal bending actuator. Optionally, the suction chamber includes a chamber top spaced from a substrate, and the side wall extends between the top of the chamber and a floor defined by the substrate. The uppers are selected and the fingers are placed in the roof. Selecting the upper ground, each thermal bending actuator comprises: an active beam formed of a thermoelastic material; and a passive beam mechanically cooperating with the active beam such that a current flows through the active beam The active beam is heated and expands relative to the passive beam, causing bending of the actuator. Selecting the upper ground, the extent of each finger is defined by the passive beam. The upper beam is selected and the active beam is welded to the passive beam. The upper beam is selected to define a curved current path extending between a pair of electrodes that are coupled to a control circuit for controlling each actuator. Preferably, the thermoelastic material is selected from the group consisting of titanium nitride, titanium aluminum nitride and vanadium aluminum alloy. The upper beam is selected from a substance selected from the group consisting of cerium oxide, nitriding -11 - 201000764 cerium and cerium oxynitride. Preferably, the substrate is a germanium substrate, and the control circuitry is included in at least one CMOS layer of the germanium substrate. Optionally, the wall is covered by a polymeric layer that provides a mechanical seal between each finger and the wall. The upper layer is selected to be composed of polydimethyl methoxy alkane (PDMS). The upper layer is selected to define an outer surface of the MEMS integrated circuit. The upper ground is selected and the outlet is defined in the outer surface. The upper floor is selected and the inlet is defined in the substrate. In another aspect, a microfluidic system including the MEMS integrated circuit is provided, the MEMS integrated circuit including one or more peristaltic microfluidic pumps and control circuitry for controlling the one or more pumps, each A pump includes: a suction chamber disposed between an inlet and an outlet; a plurality of movable fingers disposed in a wall of the suction chamber, the fingers being along the wall Arranged in a row; and a plurality of thermal bending actuators, each actuator being associated with one of the other fingers such that actuation of the thermal bending actuator causes the individual fingers to move into the suction chamber The control circuit controls actuation of the plurality of actuators, and the control circuit is configured to provide a peristaltic pumping action in each of the suction chambers by the peristaltic motion of the fingers. In a third aspect, the present invention provides a mechanically actuated microfluid-12-201000764 body valve comprising: an inlet port; an outlet port; a thermal bending actuator; and a valve closure member, It cooperates with the actuator such that actuation of the thermal bending actuator causes movement of the closure to adjust a fluid flow from the inlet weir to the outlet weir. Selecting the upper actuator, the bending actuator comprises: an active beam formed of a thermoelastic material; and a passive beam mechanically cooperating with the active beam such that when a current is passed through the active beam, The active beam will heat up and expand relative to the passive beam, causing the actuator to bend. The upper beam is selected and the active beam is welded to the passive beam. The upper beam is selected to define a curved current path extending between a pair of electrodes that are coupled to a control circuit for controlling each actuator. Preferably, the thermoelastic material is selected from the group consisting of titanium nitride, titanium aluminum nitride and vanadium aluminum alloy. The upper beam is selected from the group consisting of a substance selected from the group consisting of cerium oxide, cerium nitride and cerium oxynitride. Preferably, the actuator is defined in a MEMS layer of a substrate. Optionally, the substrate includes a control circuit for controlling the actuator, the control circuit being included in at least one C Μ Ο S layer of the substrate. -13- 201000764 Selecting the upper floor, the inlet port and the outlet port are defined in a MEMS layer of a substrate. The upper port is selected and the outlet port is defined in the aggregated microfluidic platform. The upper member is selected to be constructed of a compliant material for sealing engagement with the sealing surface of the valve. The upper part is selected and the closure is composed of an elastomer. The upper part is selected to be composed of polydimethyl methoxy alkane (PDMS). The upper member is selected and the closure is welded or bonded to the thermal bending actuator. Selecting the ground, the actuation causes the valve to open or close. Selecting the ground, the actuation causes the valve to be partially open or partially closed. In a fourth embodiment, the present invention provides a microfluidic system comprising a MEMS integrated circuit bonded to a polymeric microfluidic platform, the system comprising one or more microfluidic devices, wherein the microfluidic devices are At least one of the MEMS actuators is disposed in the integrated electrical MEMS layer. Preferably, the microfluidic device is selected from the group consisting of a microfluidic valve and a microfluidic pump. Selecting the ground, all microfluidic devices include a MEMS actuator disposed in the MEMS layer. Optionally, the MEMS layer further includes a microheater for heating a fluid within a microfluidic channel. -14- 201000764 Selecting the upper layer, the MEMS integrated circuit includes a germanium substrate and the MEMS layer is formed on the substrate. Selecting the upper layer, the MEM S layer is covered by a polymer layer. The upper layer is selected to define an adhesive layer of the MEMS integrated circuit. Selecting the upper layer, the polymer layer is composed of a photopatternable PDMS. Optionally, the microfluidic platform comprises a polymeric body having one or more microfluidic channels defined therein. Selecting the upper layer, the polymer body is composed of PDMS. Optionally, at least one of the microfluidic channels is in fluid communication with the at least one microfluidic device. Preferably, the MEMS integrated circuit includes a control circuit for controlling the actuator, the control circuit being included in at least one C Μ 0 S layer of the substrate. Selecting the ground, the MEMS actuator is a thermal bending actuator. Selecting the upper ground, the thermal bending actuator comprises: an active beam formed of a thermoelastic material; and a passive beam mechanically cooperating with the active beam such that when a current is passed through the active beam, The active beam will heat up and expand relative to the passive beam, causing the actuator to bend. The upper beam is selected and the active beam is welded to the passive beam. Selecting the ground, the active beam defines a curved current path extending between a pair of electrodes that are connected to a control circuit that controls each actuator -15-201000764. Preferably, the thermoelastic material is selected from the group consisting of titanium nitride, titanium aluminum nitride and vanadium aluminum alloy. The upper beam is selected from the group consisting of a substance selected from the group consisting of cerium oxide, cerium nitride and cerium oxynitride. In a further aspect, a microfluidic system is provided that includes a MEMS integrated circuit bonded to a polymeric microfluidic platform, the system comprising one or more microfluidic devices, wherein the microfluidic devices At least one of the MEMS actuators disposed in a MEMS layer of the integrated circuit is a LOC device or a Micro Total Analysis System (β TAS ). In a fifth aspect, the present invention provides a microfluidic system comprising an integrated circuit having an adhesive surface bonded to a polymeric microfluidic platform, the microfluidic system comprising one or more integrated circuits a microfluidic device controlled by a control circuit, wherein at least one of the microfluidic devices comprises a MEMS actuator disposed in a MEMS layer of the integrated circuit, the MEMS layer being covered by a polymer body The bonding surface of the integrated circuit is defined. Preferably, the microfluidic device is selected from the group consisting of a microfluidic valve and a microfluidic pump. Selecting the upper layer, the microfluidic devices are disposed in any one of the following: the integrated circuit; the microfluidic platform; and -16- 201000764 between the integrated circuit and the microfluidic platform An interface. Preferably, the integrated circuit includes a cascading material having at least one COMS layer, and the control circuit is included in the at least one COMS layer. The upper circuit is selected to include a germanium substrate and the MEMS layer is formed on the substrate. The upper layer is selected and the polymer layer is composed of a photopatternable PDMS. Optionally, the microfluidic platform comprises a polymeric body having one or more microfluidic channels defined therein. Selecting the upper layer, the polymer body is composed of PDMS. Optionally, at least one of the microfluidic channels is in fluid communication with the at least one microfluidic device. Selecting the ground, the MEMS actuator is a thermal bending actuator. Selecting the upper ground, the thermal bending actuator comprises: an active beam formed of a thermoelastic material; and a passive beam mechanically cooperating with the active beam such that when a current is passed through the active beam, The active beam will heat up and expand relative to the passive beam, causing the actuator to bend. The upper beam is selected and the active beam is welded to the passive beam. The upper beam is selected to define a curved current path extending between a pair of electrodes that are coupled to a control circuit for controlling each actuator. Preferably, the thermoelastic material is selected from the group consisting of titanium nitride, titanium aluminum nitride and vanadium aluminum alloy. -17- 201000764 Selecting the upper layer, the passive beam is composed of a substance selected from the group consisting of cerium oxide, cerium nitride and cerium oxynitride. Optionally, the integrated circuit is in fluid communication and/or mechanical communication with the polymeric microfluidic platform. In another aspect, a microfluidic system is provided that includes an integrated circuit having an adhesive surface bonded to a polymeric microfluidic platform, the microfluidic system comprising one or more controls in the integrated circuit a microfluidic device controlled by a circuit, wherein at least one of the microfluidic devices comprises a MEMS actuator disposed within a MEMS layer of the integrated circuit, the MEMS layer being covered by a polymer layer defining the product The bonding surface of the body circuit is a LOC device or a Micro Total Analysis System (β TAS ). In a sixth aspect, the present invention provides a microfluidic system comprising a MEMS integrated circuit, the MEMS integrated circuit comprising: a germanium substrate having one or more microfluidic channels defined therein; at least one layer of control a circuit for controlling one or more microfluidic devices; a MEMS layer comprising the one or more microfluidic devices: and a polymer layer covering the MEMS layer, wherein at least a portion of the polymer layer provides a A seal of at least one of the microfluidic devices. Preferably, the MEMS integrated circuit contains all of the microfluidic devices and control circuitry required for operation of the microfluidic system. Preferably, the microfluidic device is selected from the group consisting of a microfluidic valve and a -18-201000764 microfluidic pump. Preferably, the control circuit is included in at least one CMOS layer, and the polymer layer is composed of PDMS. The upper layer is selected to define an outer surface of the MEMS integrated circuit. Selecting the upper layer, the MEM S integrated circuit is mounted on a passive substrate through the polymer layer. Optionally, the at least one microfluidic device comprises a MEMS actuator. Selecting the ground, the MEMS actuator is a thermal bending actuator. Selecting the upper ground, the thermal bending actuator comprises: an active beam formed of a thermoelastic material; and a passive beam mechanically cooperating with the active beam such that when a current is passed through the active beam, The active beam will heat up and expand relative to the passive beam, causing the actuator to bend. The upper beam is selected and the active beam is welded to the passive beam. The upper beam is selected to define a curved current path extending between a pair of electrodes that are coupled to a control circuit for controlling each actuator. Preferably, the thermoelastic material is selected from the group consisting of titanium nitride, titanium aluminum nitride and vanadium aluminum alloy. The upper beam is selected from the group consisting of a substance selected from the group consisting of cerium oxide, cerium nitride and cerium oxynitride. -19- 201000764 Selecting a ground, the microfluidic device is a microfluidic valve comprising a sealing surface disposed between an inlet port and an outlet port, and wherein the at least a portion of the polymer layer is constructed to seal with the seal The surface is in sealing engagement. The upper seal is selected to adjust the fluid flow from the inlet port to the outlet port. Selecting the upper ground, the microfluidic device is a microfluidic peristaltic pump comprising: a suction chamber disposed between an inlet and an outlet; and a plurality of movable fingers disposed in the suction chamber In a wall, the fingers are arranged in a row along the wall and constructed to provide a peristaltic pumping action by movement of the fingers, wherein at least a portion of the polymer layer provides A mechanical seal between each finger and the wall. In a further aspect, a microfluidic system is provided that includes a MEMS integrated circuit comprising: a germanium substrate having one or more microfluidic channels defined therein; at least one layer a control circuit for controlling one or more microfluidic devices; a MEMS layer comprising one or more microfluidic devices; and a polymer layer overlying the MEMS layer, wherein at least a portion of the polymer layer provides a A seal of at least one of the microfluidic devices, which is a LOC device or a Micro Total Analysis System (β TAS ). In a seventh aspect, the present invention provides a microfluidic valve comprising: an inlet 阜; -20- 201000764 an outlet port; a weir portion disposed between the inlet port and the outlet port, The crotch portion has a sealing surface; a diaphragm for sealingly engaging the sealing surface; and at least one thermal bending actuator for moving the diaphragm between a closed position and an open position, The diaphragm is sealingly engaged with the sealing surface when in the closed position and the diaphragm is disengaged from the sealing surface in the open position. In the open position, a connecting passage is defined between the diaphragm and the sealing surface, the connecting passage providing fluid communication between the inlet port and the outlet port. Selecting the upper position, the open position includes a fully open position and a partially open position. Optionally, the diaphragm is welded or bonded to at least one movable finger that causes movement of the finger. Selecting the upper ground, the at least one finger comprises the thermal bending actuator. Optionally, the microfluidic valve in accordance with the present invention includes a pair of opposed fingers, each finger being directed toward the crotch portion, wherein the diaphragm is bridged between the pair of opposed fingers. Optionally, the valve is formed on a substrate spaced apart from the substrate by the diaphragm and the weir extends from the substrate toward the diaphragm. The upper jaw is selected and is placed at the center between the pair of opposing fingers. -21 - 201000764 Select the upper ground, each finger contains a separate thermal bending actuator. Selecting the upper ground, each thermal bending actuator comprises: an active beam formed of a thermoelastic material; and a passive beam mechanically cooperating with the active beam such that a current flows through the active beam The active beam is heated and expands relative to the passive beam, causing bending of the actuator. Selecting the upper ground, the extent of each finger is defined by the passive beam. The upper beam is selected and the active beam is welded to the passive beam. The upper beam is selected to define a curved current path extending between a pair of electrodes that are coupled to a control circuit for controlling each actuator. Preferably, the thermoelastic material is selected from the group consisting of titanium nitride, titanium aluminum nitride and vanadium aluminum alloy. The upper beam is selected from the group consisting of a substance selected from the group consisting of cerium oxide, cerium nitride and cerium oxynitride. Optionally, the substrate includes a control circuit for controlling the at least one actuator. Preferably, the substrate is a germanium substrate, and the control circuitry is included in at least one CMOS layer of the germanium substrate. The upper layer is selected to be defined by at least a portion of a polymer layer. The upper layer is selected to be composed of polydimethyl methoxy alkane (PDMS). -22 - 201000764 Selecting the upper ground, a plurality of microfluidic valves according to the present invention are arranged in series for use in a peristaltic pump. In an eighth aspect, the present invention provides a MEMS integrated circuit comprising one or more microfluidic diaphragm valves and control circuitry for the one or more valves, each valve comprising: an inlet port; an outlet a jaw disposed between the inlet port and the outlet port, the crotch portion having a sealing surface; a diaphragm for sealingly engaging the sealing surface; and at least one thermal bending actuator, Used to move the diaphragm between a closed position and an open position in which the diaphragm is sealingly engaged with the sealing surface and in the open position the diaphragm is disengaged from the sealing surface, wherein The control circuit is configured to control actuation of the at least actuator to control opening and closing of the valve. In the open position, a connecting passage is defined between the diaphragm and the sealing surface, the connecting passage providing fluid communication between the inlet port and the outlet port. Selecting the upper position, the open position includes a fully open position and a partially open position. Optionally, the diaphragm is welded or bonded to at least one movable finger that causes movement of the finger. Selecting the upper ground, the at least one finger comprises the thermal bending actuator. -23- 201000764 Selecting the Upper Ground The MEMS integrated circuit in accordance with the present invention includes a pair of opposing fingers 'each finger pointing toward the crotch portion, wherein the diaphragm is bridged between the pair of opposing fingers. The upper door is selected to be formed on a substrate spaced apart from the substrate by the separator and extending from the substrate toward the diaphragm. The upper jaw is selected and is placed at the center between the pair of opposing fingers. Selecting the upper ground, each finger contains a respective thermal bending actuator. Selecting the upper ground, each thermal bending actuator comprises: an active beam formed of a thermoelastic material; and a passive beam mechanically cooperating with the active beam such that a current flows through the active beam The active beam is heated and expands relative to the passive beam, causing bending of the actuator. Selecting the upper ground, the extent of each finger is defined by the passive beam. The upper beam is selected and the active beam is welded to the passive beam. The upper beam is selected to define a curved current path extending between a pair of electrodes that are coupled to a control circuit for controlling each actuator. Preferably, the thermoelastic material is selected from the group consisting of titanium nitride' titanium aluminum nitride and vanadium aluminum alloy. The upper beam is selected from a material selected from the group consisting of yttrium oxide yttrium nitride and yttrium oxynitride. -24 - 201000764 Selecting the upper substrate' is a sand substrate, and the control circuit is included in at least one CMOS layer of the germanium substrate. The upper layer is selected and the membrane is defined by at least a portion of a polymer layer. The upper layer is selected to be composed of polydimethyl methoxy alkane (P D M S ). The upper layer is selected to define an outer surface of the M EMS integrated circuit. Selecting the upper ground, a plurality of such valves are arranged in series and the control circuit is configured to control the actuation of each actuator to provide a peristaltic pumping action. In a ninth aspect, the present invention provides a microfluidic pinch valve comprising: - a microfluidic channel 'defined in a compliant body; a valve sleeve from which the micro Defining a section of the fluid passageway, the valve sleeve has a diaphragm wall defining at least a portion of an outer surface of the body: the compression member for tightening the diaphragm wall against an opposing wall of the valve sleeve; and a heat a bending actuator for moving the compression member between a closed position and an open position in which the diaphragm wall is tightened against the opposing wall, and in the open position The diaphragm wall is detached from the opposing wall. Selecting the upper position, the open position includes a fully open position and a partially open position. -25- 201000764 Selecting the upper ground, a movable finger engages the compression member, the finger being configured to urge the compression member between the open position and the closed position by movement of the actuator . The upper member is selected and the compression member is sandwiched between the finger and the diaphragm wall. The upper member is selected to project from the diaphragm member. The upper member is selected to be biased toward the closed position when the thermal bending actuating member is in a stationary state. In the upper layer, a MEM S integrated circuit is bonded to the outer surface of the body, and the movable finger is included in a MEMS layer of the integrated circuit. Optionally, the MEM S integrated circuit includes an adhesive surface defined by a polymeric layer that is bonded to the outer surface of the body. The upper layer is selected to cover the MEMS layer. Selecting the upper layer, the polymer layer and/or the compliant body is composed of PDMS. Selecting the upper ground, the actuation of the actuator causes the finger to move farther away from the body, thereby opening the valve; and the unactuation of the actuator causes the finger to move toward the body, thereby closing the valve. Selecting the upper ground, the active finger includes the thermal bending actuator. Optionally, the thermal bending actuator comprises: an active beam formed of a thermoelastic material; and a passive beam mechanically cooperating with the active beam such that when a current is passed through the active beam The active beam will heat and expand relative to the passive beam, causing bending of the actuator. -26- 201000764 Selecting the upper ground, the extent of each finger is defined by the passive beam. The upper beam is selected and the active beam is welded to the passive beam. Selecting the upper ground 'the active beam defines a curved current path extending between a pair of electrodes' which are connected to a control circuit for controlling each actuator. Selecting the upper layer, the thermoelastic material is selected from the group consisting of titanium nitride, titanium aluminum nitride and vanadium aluminum alloy; and the passive beam is selected from the group consisting of yttrium oxide containing tantalum nitride and nitrogen oxide Composed of substances in the shackles. Preferably, the MEM S integrated circuit includes a germanium substrate having control circuitry included in at least one CMOS layer. Alternatively, a microfluidic system is provided which comprises a microfluidic valve in accordance with the present invention. Preferably, the microfluidic system according to the invention comprises a plurality of valves arranged in series. In a tenth aspect, the present invention provides a microfluidic system comprising: (A) a microfluidic platform comprising: a compliant body having a microfluidic channel defined therein; a valve sleeve by which the micro Defining a section of the fluid passageway, the valve sleeve has a diaphragm wall defining at least a portion of an outer surface of the body; a compression member for tightening the diaphragm wall against an opposing wall of the valve sleeve; and (B a MEMS integrated circuit that is bonded to an outer surface of the body, the MEMS integrated circuit comprising: -27- 201000764 a movable finger engaging the compressing member, the finger being configured to pass through the actuating member Movement urging the compression member between a closed position and an open position in which the diaphragm wall is tightened against the opposing wall and the diaphragm wall is disengaged in the open position The opposite wall; a thermal bending actuator associated with the finger, the actuator being configured to control movement of the finger; and a control circuit for controlling actuation of the actuator to control the The valve sleeve is opened and closed. Selecting the upper position, the open position includes a fully open position and a partially open position. The upper member is selected and the compression member is sandwiched between the finger and the diaphragm wall. The upper member is selected to project from the diaphragm member. The upper member is selected and the compression member is part of the diaphragm wall. The upper member is selected to be biased toward the closed position when the thermal bending actuating member is in a stationary state. Optionally, the MEM S integrated circuit includes an adhesive surface defined by a polymeric layer that is bonded to the outer surface of the body. Selecting the upper layer, the polymer layer covers a MEMS layer containing the active fingers. Selecting the upper layer, the polymer layer and/or the compliant body is composed of PDMS. Selecting the upper ground, the actuation of the actuator causes the finger to move farther away from the body, thereby opening the valve; and -28-201000764 the actuator's deactuation causes the finger to move toward the body In order to close the valve. Selecting the upper ground, the active finger includes the thermal bending actuator. Optionally, the thermal bending actuator comprises: an active beam formed of a thermoelastic material; and a passive beam mechanically cooperating with the active beam such that when a current is passed through the active beam, The active beam will heat and expand relative to the passive tree causing bending of the actuator. Selecting the upper ground, the extent of each finger is defined by the passive beam. The upper beam is selected and the active beam is welded to the passive beam. The upper beam is selected to define a curved current path extending between a pair of electrodes that are coupled to a control circuit for controlling each actuator. Preferably, the thermoelastic material is selected from the group consisting of titanium nitride' titanium aluminum nitride and vanadium aluminum alloy. The upper beam is selected from a material selected from the group consisting of yttrium oxide yttrium nitride and yttrium oxynitride. Alternatively, the MEMS integrated circuit includes a germanium substrate having a control circuit included in at least one CMOS layer. In an eleventh aspect, the present invention provides a microfluidic system comprising: (A) a microfluidic platform comprising: a compliant body having a microfluidic channel defined therein; -29- 201000764 an elongated shape a chamber defined by a section of the microfluidic channel, the chamber having a diaphragm wall defining at least a portion of an outer surface of the body; a plurality of compression members spaced apart along the diaphragm wall to 'each compression member Both are constructed to grip a different portion of the diaphragm wall against an opposing wall of the chamber; and (B) - the MEMS integrated circuit is bonded to the outer surface of the body, the MEMS integrated circuit comprising: a plurality of movable fingers, each finger engaging a further compression member, each finger being configured to urge the individual compression member between a closed position and an open position, In the closed position the individual portion of the diaphragm wall is tightened against the opposing wall and the individual portion of the diaphragm wall is disengaged from the opposing wall in the open position; a plurality of thermal bending actuations , each thermal bending actuator And an individually associated finger member connected for controlling the movement of the individual finger member; and a control circuit for controlling the plurality of actuators actuated. Selecting the ground, the control circuit is constructed to provide one or more of the following: (i) providing a peristaltic pumping action within the chamber through the peristaltic motion of the fingers; (ii) through the fingers The peristaltic motion provides a mixing action within the chamber; (iii) a coordinated suction action within the chamber. Selecting the ground, the mixing action produces a turbulent flow of fluid through the chamber. Selecting the upper ground, the coordinated suction action moves all of the compression members -30-201000764 to an open position or a closed position. Preferably, the control circuit is configured to interchangeably provide the peristaltic pumping action, the mixing action and the coherent pumping action of two or more. With the upper layer selected, each compression member is preferably sandwiched between its individual fingers and the diaphragm wall. Each of the compression members protrudes from the diaphragm member. The upper layer is selected and each compression member is part of the diaphragm wall. In the upper position, each of the compression members is biased toward the closed position when the thermal bending actuator is in a stationary state. Optionally, the MEM S integrated circuit includes an adhesive surface defined by a polymeric layer that is bonded to the outer surface of the body. Selecting the upper layer, the polymer layer covers a MEMS layer containing the active fingers. Selecting the upper layer, the polymer layer and/or the compliant body is composed of PDMS. Selecting the upper ground, each actuator actuation causes its individual fingers to move farther away from the body, thereby disengaging a different portion of the diaphragm wall from the opposing wall; and unactuating each actuator ( Deactuati ο η ) causes the individual fingers to move towards the body, thereby sealingly sealing a different portion of the diaphragm wall against the opposing wall. Selecting the upper ground, each active finger contains the thermal bending actuator. Selecting the upper ground, each thermal bending actuator comprises: 201000764 an active beam consisting of a thermoelastic material; and a passive beam mechanically cooperating with the active beam such that when a current is passed through the active In the case of a beam, the active beam heats up and expands relative to the passive beam, causing bending of the actuator. Selecting the upper ground, the extent of each finger is defined by the passive beam. The upper beam is selected and the active beam is welded to the passive beam. The upper beam is selected to define a curved current path extending between a pair of electrodes that are coupled to a control circuit for controlling each actuator. Selecting the upper layer, the thermoelastic material is selected from the group consisting of titanium nitride, titanium aluminum nitride and vanadium aluminum alloy; and the passive beam is selected from the group consisting of cerium oxide, cerium nitride and nitrogen oxide. Composed of substances in the shackles. Preferably, the MEM S integrated circuit includes a germanium substrate having control circuitry included in at least one CMOS layer. In a twelfth aspect, the present invention provides a microfluidic system comprising a MEMS integrated circuit bonded to a microfluidic platform, the microfluidic platform comprising a polymeric body having at least one microfluidic channel defined therein, And the MEMS integrated circuit includes at least one thermal bending actuator, wherein the microfluidic system is configured to cause movement of the at least one actuator to cause closure of the passage. Optionally, the at least one thermal bending actuator is associated with one of the other movable fingers such that actuation of the thermal bending actuator can cause movement of the individual fingers. -32- 201000764 Selecting the upper ground, the finger engages a wall of the microfluidic channel. Alternatively, a microfluidic system in accordance with the present invention constructed to move the finger toward the microfluidic platform can cause closure of the channel by tightening the wall against an opposing wall. The upper ground is selected and the motion is provided by the unactuated actuator of the thermal bending actuator. Alternatively, a microfluidic system in accordance with the present invention comprises a plurality of movable fingers that are constructed as a linear peristaltic pump. Optionally, the pump is in fluid communication with a control channel defined within the polymeric body, the control channel cooperating with the microfluidic channel such that pressurizing the control channel with a control fluid can result in tight closure of the microfluidic channel . Alternatively, the control fluid is a gas that provides pneumatic control, or a hydraulically controlled fluid. Preferably, the at least one thermal bending actuator is disposed in a MEMS layer of the MEMS integrated circuit. Optionally, the MEMS integrated circuit includes a germanium substrate and the MEMS layer is formed on the substrate. Optionally, the MEMS integrated circuit includes a control circuit for controlling the at least one thermal bending actuator, the control circuit being included in at least one CMOS layer of the substrate. The upper MEMS layer is selected and the MEMS layer is covered by a polymer layer. The upper layer is selected to define an adhesive surface of the MEMS integrated circuit. Selecting the upper layer, the polymer layer is composed of photopatternable PDMS -33- 201000764. Selecting the upper layer, the aggregate body is composed of the PDMS. Optionally, the thermal bending actuator comprises: an active beam formed of a thermoelastic material; and a passive beam mechanically cooperating with the active beam such that when a current is passed through the active beam The active beam will heat and expand relative to the passive beam, causing bending of the actuator. Selecting the upper ground, the extent of each finger is defined by the passive beam. The upper beam is selected and the active beam is welded to the passive beam. The upper beam is selected to define a curved current path extending between a pair of electrodes that are coupled to a control circuit for controlling each actuator. Selecting the upper layer, the thermoelastic material is selected from the group consisting of titanium nitride, titanium aluminum nitride and vanadium aluminum alloy; and the passive beam is selected from the group consisting of cerium oxide, cerium nitride and nitrogen oxide. Composed of substances in the shackles. In the above, a microfluidic system according to the present invention is a LOC device or a Micro Total Analysis System (TAS). In a thirteenth aspect, the present invention provides a microfluidic system comprising a pneumatic or hydraulic tight valve, the tight valve comprising: a microfluidic channel defined in a compliant body; an expandable control a passage that cooperates with a valve section of the microfluidic passage such that pneumatic or hydraulic pressurization of the control passage can cause expansion of the control -34-201000764 passage and tight closure of the valve section, wherein the The fluid system includes an on-chip MEMS pump that is fluidly coupled to the control channel to pressurize the control channel. The upper portion is selected and the valve section contains walls that are resiliently collapsed. A top wall is selected, a wall of the control channel engaging a wall of the valve section. Selecting the upper ground, closing the pump releases the pressure in the control passage to open the valve section. Optionally, the microfluidic system in accordance with the present invention includes on-wafer control circuitry for controlling the pump and thereby controlling closure of the valve section. Optionally, the microfluidic system according to the present invention comprises a MEMS integrated circuit bonded to a microfluidic platform, the microfluidic platform comprising a polymeric body having the microfluidic channel and the control channel defined therein, and The MEMS integrated circuit includes the MEMS pump. Selecting the upper landscaping, the MEMS pump includes a plurality of movable fingers that are constructed as a linear peristaltic pump, each finger being associated with a different thermal bending actuator for moving one of the other fingers. Select the upper ground, each finger contains a different thermal bending actuator. The upper MEMS pump is disposed in a MEMS layer of the MEMS integrated circuit. Optionally, the MEMS integrated circuit includes a germanium substrate and the MEMS layer is formed on the substrate. Optionally, the MEMS integrated circuit includes a control circuit for controlling the at least one thermal bending actuator, the control circuit being included in at least one CMOS layer of -35-201000764 of the substrate. The upper MEMS layer is selected and the MEMS layer is covered by a polymer layer. The upper layer is selected to define an adhesive surface of the MEMS integrated circuit. Selecting the upper layer, the polymer layer is composed of photopatternable PDMS. Selecting the upper layer, the aggregate body is composed of the PDMS. Optionally, the thermal bending actuator comprises: an active beam formed of a thermoelastic material; and a passive beam mechanically cooperating with the active beam such that when a current is passed through the active beam The active beam will heat and expand relative to the passive beam, causing bending of the actuator. Selecting the upper ground, the extent of each finger is defined by the passive beam. The upper beam is selected and the active beam is welded to the passive beam. Selecting the upper beam, the passive beam defines an extent of each finger. Selecting the upper ground, the active beam defines a bending current path extending between a pair of electrodes, the electrodes being connected to control each A brake control circuit. Selecting the upper layer, the thermoelastic material is selected from the group consisting of titanium nitride, titanium aluminum nitride and vanadium aluminum alloy; and the passive beam is selected from the group consisting of cerium oxide, cerium nitride and nitrogen oxide. Composed of substances in the shackles. - 36 - 201000764 [Embodiment] For the avoidance of doubt, the term "microfluidics" as used herein has its ordinary meaning in the art. Typically a microfluidic system or structure is constructed on a micron scale and comprises at least one microfluidic channel having a width of less than about 100 microns. The microfluidic channels typically have a width in the range of 1-8000 microns, 1-500 microns, 1-300 microns, 2-250 microns, 3-150 microns or 5400 microns. Microfluidic systems and devices are typically capable of handling fluids of less than 1 〇〇() liters, less than 100 liters liters less than 1 〇 liter, less than 1 liter, less than 1 〇〇 liter or less than 10 liters the amount. As used herein, 'micro fluidic system' refers to a single integrated unit that is typically in the form of a 'wafer' (ie, having dimensions similar to a typical microchip). A microfluidic 'wafer' typically has a width and/or length dimension of less than about 5 centimeters, less than about 4 centimeters less than about 3 centimeters, less than about 2 centimeters, or less than about 1 centimeter. The wafer typically has a less than about The thickness of 5 mm' is less than about 2 mm or less than about 1 mm. The wafer can be mounted to a passive substrate, such as a glass slide, to provide structural rigidity and robustness. The fluid system typically includes one or more microfluidic channels and one or more microfluidic devices (eg, micropumps, microvalves, etc.). Further, the microfluidic systems described herein typically include a drive for driving All necessary support systems (eg, control circuits) required for the microfluidic device in the system. -37- 201000764 As used herein, "microfluidic platform" refers to a microfluidic channel, a microfluidic chamber. And/or a platform for a microfluidic device that traditionally requires an external support system for operation (eg, off-chip pumps, off-chip circuits, etc.) The microfluidic platform typically has a soft lithography Processed polymeric body. As will become apparent, a microfluidic platform can form a bonded microfluidic system in accordance with the present invention. The bonded microfluidic system in accordance with the present invention generally comprises an interfacial adhesive. An integrated circuit bonded to a microfluidic platform. Typically, a bonded microfluidic system has fluid communication and/or mechanical communication between the integrated circuit and the microfluidic platform. The on-a-chip) or (L0C) device is an example of a microfluidic system. In general, L0C is a scale used to indicate single or multiple laboratory processes down to the wafer format. A L0C device typically contains multiple Microfluidic channels, microfluidic chambers, and microfluidic devices (eg, micropumps, microvalves, etc.). A "micro total analysis system" (//TAS) is an example of a L0C device that is specifically constructed to implement a The series is capable of laboratory processing for chemical or biological analysis. Any microfluidic system according to the invention may be a L0C device or a /2 TAS. Those skilled in the art will be able to utilize the techniques of the present invention to design for a particular application. Architecture of L0C devices (or any microfluidic system). Some typical applications for microfluidic systems are enzyme analysis (eg, glucose and lactic acid analysis), DNA analysis (eg, polymerase chain reaction and high-output sequencing), But white matter, disease diagnosis, use of toxins/pathogens -38- 201000764 Analysis of gas/water samples 'fuel cells, micro-mixers, etc. The number of traditional laboratory operations that can be implemented in a LOC device is actually The above is unlimited 'and the invention is not limited to any particular application of microfluidic technology. Thermal Bending Actuation in Inkjet Nozzle Assembly To date, the Applicant has described a number of thermal bending actuated inkjet nozzle assemblies suitable for forming a pagewidth printhead. Some of the components of these ink jet nozzles are associated with the microfluidic systems and devices described herein. Therefore, an ink jet nozzle assembly will be briefly described below. Typically, ink jet nozzle assemblies are constructed on a CMO S® substrate. The CMOS layer of the substrate provides all of the necessary logic and drive circuitry (poles, control circuitry) required to actuate each of the printheads. Figures 2 and 3 show one such nozzle assembly 100 at two different stages of manufacture, as described in the Applicant's U.S. Patent Application Serial No. 1 1 filed on Jun. 15, 2007. The contents of this application are hereby incorporated herein by reference. Figure 1 shows a partially completed nozzle assembly for characterizing the bending actuator. Thus, reference is made to Figure 1 ' which shows that the nozzle assembly is formed on a CMOS sand substrate 102. A nozzle chamber is defined by a chamber top spaced from the substrate 102 and a sidewall extending from the chamber top to the substrate 102. The chamber roof 104 defines a gap 109 between a movable portion 108 and a fixed portion 11 ’. A nozzle opening 112 is defined in the active portion 108 for ejecting ink. -39- 201000764 The portion 108 of the activity includes a thermal bending actuator having a pair of cantilevered operations in the form of an upper active beam 14 that is fused to the lower passive beam 116. The lower passive beam 116 defines the roof The extent of the activity of the part 1〇8. The upper active beam 114 includes a pair of arms n4A and 114B that extend longitudinally from respective electrode contacts 1 18A and 1 18B. The distal ends of the arms 1 MA and 114B are connected by a connector 115. The connector n5 includes a pad of conductive pads 117 that promotes conductivity in the vicinity of the bond area. Thus, the active beam 114 defines a curved or tortuous conductive path between the electrode contacts 1 18 A and 1 18 B. Electrode contacts 1 18A and 1 18B are disposed adjacent one another at one end of the nozzle assembly and are coupled to a metal CMOS layer 120 of the substrate 102 through respective connector posts 119. The COMS layer 120 includes the drive circuitry needed to actuate the bend actuator. The passive beam 1 16 is typically composed of any electrical and thermal insulating material such as cerium oxide, tantalum nitride or the like. The thermoelastic active beam 1 14 can be composed of any suitable thermoelastic material such as titanium nitride titanium aluminum nitride and aluminum alloy. 'Vanadium-aluminum alloys are preferred materials as described in U.S. Patent Application Serial No. 5/7,976, the entire disclosure of which is assigned to Advantageous properties of thermal expansion, low density and high Young's modulus. Referring to Figure 3, there is shown one complete nozzle assembly in a subsequent stage of manufacture. The nozzle assembly 1 of Figure 2 has a nozzle chamber! 2 2 and an ink inlet 124 are used to supply ink to the nozzle chamber. In addition, the entire roof is covered - a layer of polydimethyl siloxane (PDMS). The pdMS layer 126 has a multi-40-201000764 heavy function' including: protecting the bending actuator, allowing the chamber top 1〇4 to be water-repellent and providing a mechanical seal for the gap 109. The pDMS layer 126 has a low Young's modulus to permit actuation and ejection of ink through the nozzle opening 丨丨2. A more detailed description of the PDMS layer 126, including its function and manufacture, can be found in U.S. Patent Application Serial No. 1 1/946,840, filed on Jan. 29, 2007. This reference is cited in this article). When an ink droplet needs to be ejected from the nozzle chamber 1 2 2, a current flows through the active beam 1 14 between the electrical contacts 1 1 8 . The active beam 112 is rapidly heated by the current and rapidly expands relative to the passive beam 116, thereby causing the movable portion 108 to flex downwardly toward the substrate 102 relative to the stationary portion n. This movement causes the ink to be ejected from the nozzle opening 112 because the pressure inside the nozzle chamber 122 rises rapidly. When the current stops flowing, the active portion 108 is allowed to return to its rest position 'as shown in Figures 2 and 3'. This will draw ink into the nozzle chamber 122 via the inlet 1 24, for the next Prepare for an inkjet. As can be seen from the above, the PDMS layer 126 significantly improves the operation of the nozzle assembly 100. The formation of the PDMS layer 126 is accomplished by a spin-on photo-patternable PDMS of a MEMS process as described in U.S. Patent Application Serial No. 1 1/94,8,409. of. The applicant of the present application has developed various MEMS processes utilizing photopatternable PDMS that can be modified for use in a variety of applications. Microfluidic devices and systems utilizing P D M S will be described below. -41 - 201000764 Microfluidic Pumps Figures 4 and 5 show a linear peristaltic crucible 200 comprising a column of MEMS devices, each of which is structurally similar to the thermally curved inkjet nozzle assembly 100 described above. Figure 4 shows the pump 200 in a perspective view with an upper PDMS layer removed to expose the details of each MEMS device. The linear peristaltic pump 200 is formed on the surface of a CMOS substrate 202. A suction chamber 203 is defined by a chamber top 204 spaced from the substrate 206 and a side wall 206 extending from the chamber top to the substrate 202. The top 204 and side walls 206 are typically comprised of yttrium oxide or tantalum nitride and are constructed using a process similar to that described in U.S. Patent Application Serial No. 763/440. The suction chamber 302 is in the form of an elongated passage extending longitudinally between a pump inlet 208 and a pump outlet 210. As shown in FIG. 4, the pump inlet 208 is defined in a floor 212 of the suction chamber 203 and a fluid is fed to the pump inlet 108 via a pump inlet passage 214 defined to penetrate the crucible substrate. . The pump outlet 210 is defined at an end of the chamber top 204 of the suction chamber 203 opposite the pump inlet 丨08. This configuration of pump inlet 2 0 8 and pump outlet 2 1 0 is specifically constructed to provide a fully integrated L0C device, as will be explained below. However, it will be appreciated that 'in its broadest form, the peristaltic pump 20 0 can have any suitable pump inlet and outlet configuration as long as the peristaltic suction fingers are disposed between the pump inlet and outlet Just fine. -42- 201000764 The upper PDMS layer has been removed. Figure 4 shows three creeps 220 which are spaced apart along the length of the suction chamber 203. Because of the ink jet nozzle assembly described above, each finger 220 can be moved 203 by thermal bending actuation. Thus, each finger 220 includes a MEMS device in the form of an active beam 222 that cooperates with a passive beam. The active beam 222 is welded to the passive beam 224 and is positioned for each movable finger 220. Scope (extent). The passive beam 224 is typically of the same material as the roof 204 and the finger 220 is separated from the roof by a peripheral gap 226. Μ E M S is formed by an etching process during manufacture. The active beam 222 defines a curved current path that extends between the junctions 22 8 . The distal end of the ink jet nozzle assembly 1 222 including a pair of 229 extending from the individual electrode contacts 228 is joined by a connector 23 。. Each finger 220 extends laterally across the roof 204 of the elongated passage defined by the suction. Thus, 'will be able to be pumped to a fluid within the suction chamber 203 by controlling the movement of each finger 2 20 '. A person skilled in the art is a linear peristaltic pump that utilizes a similar pumping action, as described in the Japanese Patent No. 4,909,710, the disclosure of which is incorporated herein. The actuation of each finger actuation is provided by layer 202 of the crucible substrate 202, as shown in FIG. Figure 5 shows the pump 200 moving the fingers in a row and being similar to 100, to the suction chamber being thermally bent and actuated. Typically, the rib members 224 are formed to be attached to a pair of electrodes, the active beam arms 229. It is understood that the arm chamber 203 is understood to be a perspective view of C Μ Ο S as described in the U.S. reference. The -43-201000764 includes a polymer sealing layer 242 over the PDMS. The pump 200 is slit through a finger 220' to expose a portion of the metal CMOS layer 240. The CMOS layer 240 is coupled to each of the electrode contacts 22 8 through a connector post 244 that extends from the CMOS layer through the sidewalls 206 and is in contact with the electrodes. The CMOS layer 240 includes all of the control and drive circuitry needed to actuate each finger 220. Thus, a wafer containing the pump 200 contains all of the necessary control and drive circuitry for actuating the pump' thus eliminating the need for any external off-chip control. On-chip (〇n-chip) control is one of the advantages of the pump 200 in accordance with the present invention. Furthermore, in contrast to a peristaltic pump constructed with an array of 'Quake' valves (as described in U.S. Patent No. 7,258,774), the pump 2 does not require any control fluid (e.g., air). To drive the creep action. The 'Quake' valve (and 'Quake' pump) relies on fluid in a control channel (which must be supplied externally), but the mechanically actuated pump 2 is completely self-sufficient and does not require any external The input 'except for the actuating fluid that must be pumped. Referring again to FIG. 5, the polymeric sealing layer 242 (typically PDMS) is deposited on the roof 204 using manufacturing techniques similar to those described in U.S. Patent Application Serial No. 1 1/763, the entire disclosure of A pump outlet 210 is defined through the polymer layer. Of course, the polymeric layer 242 has a low Young's modulus to allow each finger 2200 to move during actuation. The polymeric layer 242 primarily provides a mechanical seal around the perimeter of each finger 220, and also provides a thermal bending actuator protective layer. Furthermore, PDMS provides an ideal bonding surface to include one of the micro-44 - 201000764

流體泵200的MEMS積體電路黏合至—以軟光刻技術製成 之傳統的微流體平台。一MEMS積體電路與一傳統的L0C 平台的整合是本發明的一項特別有利的特徵且將於下文中 作更詳細的說明。 替代的微流體泵 當然,泵200可以有許多不同的形式。例如,指件 2 0 0的數目與方位可被改變用以將蠕動動作最佳化。現翻 到圖6 ’其顯示一利用與上文所述之泵2 0 0相同的操作原 理設計之替代的線性蠕動泵2 5 0的平面圖。在圖6中,該 上聚合體層242已被移走用以露出個別的指件22〇及抽吸 室203。爲了清晰起見,相同的標號被用來描述圖6中相 同的特徵。 因此’泵250包含一縱長通道形式的抽吸室203。成 對的指件2 2 0被設置在該室2 0 3的室頂,且多對指件對沿 著該室縱長地延伸成列。在一對指件對中的每一指件2 2 0 都指向該室2 0 3的一中央的縱長軸線,用以藉由在同一指 件對中之兩個指件的同步致動來將蠕動抽吸作用最大化。 在抽吸期間,相反的指件對可被致動(如,依序地致動) 用以提供該蠕動抽吸作用。當然,任何致動的順序都可被 用來將抽吸最佳化,例如在美國專利第4,9 09,7 1 0號中所 描述的順序。在一些抽吸循環中,多於一對的指件對可被 同時地致動,或某些指件對可被部分地致動。熟習此技藝 者將可在本發明的氛圍下輕易地想出利用泵2 5 0之最佳的 -45- 201000764 蠕動抽吸循環。 仍參考圖6,指件220被設置在泵入口 208與泵出口 210之間。一介於該泵出口 21〇與該等指件220之間的出 口通道252包含—閥系統254。該閥系統254包含一通道 電路256其被建構來將由該出口 21〇朝向該入口 208之流 體回流(backflow ))減至最小。因此,該閥系統25 4將 該栗250的效率進一步最佳化。雖然一非常簡單的閥系統 254被示於圖6中,但將可被理解的是任何止回閥都可被 用來改善依據本發明之單向泵的效率。 當然’依據本發明的泵只要透過該晶片上CMOS改變 指件致動的順序就可被作成是可逆的。 包含MEMS微泵之完全整合的LOC裝置 如上文所述’一 P D M S聚合體層2 4 2提供一理想的黏 合表面用來將Μ E M S積體電路黏合至用軟光刻技術製成之 傳統的微流體平台。這讓C Μ Ο S控制電路能夠與微流體裝 置整合在一完全整合的L0C裝置中。因此,藉由省掉對 於外部之晶片外的控制系統與抽吸系統(這些系統在傳統 的L0C裝置中是必要的)需求,可達成一重大的好處。 介於一傳統的 PDMS微流體平台與一塗上PDMS之 MEMS積體電路之間的界面黏合係使用多層pd MS軟光刻 處理中習知的傳統技術來達成。這些技術對於熟習軟光刻 處理的人而言是習知的。典型地,每一 PDMS表面都曝露 在氧電漿中且兩個表面藉由施加壓力而被黏合在一起。 -46- 201000764 圖7顯示一依據本發明的簡單的整合的LOC裝置是 如何使用傳統的PDMS黏合技術來製造。一 MEMS積體電 路(或晶片)290包含一矽基材202,一 CMOS層240及 MEMS層 260。該MEMS層260包含MEMS微流體泵 200。在該示意的積體電路290中,兩個MEMS泵200A 及200B被示出,每一MEMS微流體泵都包含多個熱彎曲 致動的指件220用來提供一蠕動抽吸動作。當然,實際上 每一MEMS積體電路290都可包含數百或數千個MEMS 裝置,包括栗200在內。 該MEMS層260被覆蓋該PDMS層2 42,其界定該積 體電路290的一外黏合表面243。 一傳統的微流體平台295是由一PDMS的本體280所 構成,多個微流體通道,室及/或微流體裝置被界定於該 本體內。在圖 7中所示的示意微流體平台 295中,一 ‘Quake,閥2 82被示出其包含一與一控制通道286合作 的流體通道284。一任意的反應室亦被界定在該PDMS本 體2 8 0中。如在此技藝中所習知的’任何三維度的微流體 平台295都可用傳統的軟光刻技術來製造。 該微流體平台295的該本體2 80具有一黏合表面 281,一控制流體入口 283及一流體通道入口 2 8 5被界定 在黏合表面內。該控制流體入口 28 3及流體通道入口 285 與它們各自的控制通道286及流體通道284流體聯通。該 微流體平台295的控制流體入口 2 8 3及流體通道入口 285 被設置成與界定在該MEMS積體電路290的PDMS層242 -47 - 201000764 中的栗出口 274及2 76對準。 兩個黏合表面243及281藉由將每一表面曝露在氧電 漿下及施加壓力而被黏合在一起。所得到之黏合的組件以 一整合的LOC裝置300的形式被示於圖8中。 在該整合的LOC裝置3 00中,該積體電路290所控 制的CMOS層240所控制的泵200將流體抽吸至該PDMS 微流體平台的微流體通道286及284中。泵200可抽吸 (用來驅動該PDMS平台295中的閥之)控制流體或該裝 置所使用之實際樣本流體(如,用於分析的流體)。因 此,該CMOS控制電路可被用來提供對於該整合的LOC 裝置3 00的操作的一完全的控制。 —簡單的例子現將被描述用以顯示出該LOC裝置300 是如何能夠被實際地操作。一控制流體進入一第一入口 2 70且使用該微流體栗200被抽吸至該微流體平台295的 控制通道2 8 6中。該控制通道2 8 6被該控制流體加壓。如 上文中參照圖1A-C所描述的,該控制通道286與該流體 通道2 84重疊且合作,用以形成閥2 82。當控制通道286 被該控制流體加壓時,該流體通道2 8 4的一壁被塌陷,而 這將會關閉該閥282。因此,在該室28 8的下游的一段流 體通道284被閥282所關閉,因而將一裝置出口 287與該 室2 8 8流體地隔絕。 當閥2 8 2關閉時,一進入到一第二入口 2 7 2的樣本流 體藉由使用微流體泵200B而被抽吸經由該流體通道284 到達該室2 8 8內。其它的流體(如,試劑)亦可經由其它 -48- 201000764 流體通道(未示出)被抽吸至該室28 8中。一但所有的流 體都已被抽吸至該室288中且已經過足夠的時間長度之 後,閥2 8 2可藉由關閉泵2 0 0 A而被打開,並容許流體流 經該流通道2 8 4的該下游段朝向該裝置出口 2 8 7。 此簡單的例子顯示出該整合的L Ο C裝置3 0 0如何能 夠透過CMOS電路及MEMS微泵200提供對於LOC操作 的完整控制。該LOC裝置3 00的一特別的優點爲,不再 需要外部的晶片外泵及/或控制系統。該控制流體可以是 空氣(其提供該閥282的氣壓式控制)或液體(其提供該 閥282的液壓式控制)。 雖然本文中所提供的例子非常簡單,但熟習此技藝者 將可瞭解到本發明可被用來提供一具有一複雜之閥,泵及 通道的錯綜複雜的陣列之複雜的LOC裝置的控制。 本發明的一顯著的優點爲,它與既有之以微流體平台 的軟光刻製造技術爲基礎的LOC技術完全相容。複雜的 微流體平台已使用軟光刻技術加以製造。這些傳統的平台 只需要微小的修改’以整合到本發明所提供之該可以 COMS控制之LOC裝置中。 微流體閥 如上文所述,以矽爲基礎的MEMS技術承襲了在微流 體及LOC領域中的限制。微流體閥通常主要是在LOC裝 置中且硬的,沒有撓曲性的材料,譬如像是矽,無法提供 在閥中所需要之密封嚙合。此限制的確是微流體從以矽爲 -49- 201000764 基礎的MEMS光刻技術轉向以順從的( c o m p 1 i a n t )聚合 物(譬如P D M S )爲基礎之軟光刻技術的主要原因。 迄今,本案申請人已展現了 PDMS如何能夠被整合至 一傳統的以矽爲基礎的MEMS製程中。將被描述的是,同 一技術如何讓有效的微流體閥能夠使用傳統的以矽爲基礎 的MEMS技術來製造。又,這些閥並不需要外部的流體供 應或控制系統,這是與上文中所描述之‘ Quake ’閥是相 反的。雖然熟習此技藝者能夠藉由將PDMS整合至以矽爲 基礎的Μ E M S製程中而想出許多其它的變化例,但在下文 中將描述兩種閥。在每一種例子中,一 PDMS表面與另一 表面(如,矽表面,氧化矽表面,PDMS表面等等)的嚙 合提供一閥動作所需的密封嚙合。再者,每一閥的形式爲 一機械式作動的閥’相對表面的嚙合是由一熱彎曲致動器 的致動或不致動來驅動的’該熱彎曲致動器本身是被晶片 上C Ο M S所控制的。 在聚合體微流體通道中提供閉合的閥 參考圖9,其顯示一微流體緊束閥3 1 0 ’該閥係藉由 將一聚合體微流體平台312與一具有PDMS表面層3 16的 MEMS積體電路314黏合在一起而形成的。該PDMS層 3 16界定該MEMS積體電路314的第一黏合表面313。 該MEMS積體電路314包含一建構在一 C〇MS矽基材 315上的致動指件318。該致動指件318在結構上與上文 中參考圖4及5描述之指件220的設計相同。因此,雖然 -50- 201000764 該致動指件3 1 8只示意地顯示於圖9中’但可假設 了上文中所述之指件220的所有特徵’包括熱彎曲 在內。 微流體平台3 1 2是用標準的軟光刻技術製成的 一聚合本體(如,PDMS本體)320,一微流體通道 界定於該本體內。該通道322包括一套管部分324 該微流體平台312的一鄰近的第二黏合表面325。 部分324與該第二黏合表面3 25被一層PD MS分隔 該層PDMS界定該套管部分的一外壁326。該外壁 含一壓縮件3 28其從該外壁突伸出並延伸遠離該第 表面325 。 如在圖9中所見,當兩個黏合表面313及325 在一起時,該壓縮件3 2 8與該致動指件3 1 8對準。 該外壁326突伸出,該壓縮件328在黏合處理期間 第一黏合表面313,且被壓擠抵住該套管部分324 330。因此,該套管部分324被該黏合處理緊束閉合 在圖9所示之組裝好的LOC裝置350中,該 在該致動指件318處在其靜止狀態時是被關閉的, 流體可通過該套管部分324。現參照圖1 〇 ,該指件 318被致動且向下彎曲,藉以拉動該壓縮件318朝 基材315。此致動將該外壁326迫離該內壁330,該 因而被打開以容許流體流經該套管部分3 24。 該閥3 1 0的一項優點爲,當該指件致動器3 } 8 靜止的狀態時’該閥被偏動而被關閉。這表示一包 它包含 致動器 且包含 3 22被 其通過 該套管 開來, 3 26包 二黏合 被黏合 藉由從 緊貼該 的內壁 〇 閥3 10 且沒有 致動器 向該矽 閥3 10 處在其 含該閥 -51 - 201000764 3 1〇的LOC裝置將不會渴求功率(power)。一進一步的 優點爲,可藉由控制供應至該指件致動器3 1 8的致動功率 來調整該閥的打開。使用此機械式致動的緊束閥可以輕易 地達到閥的部分關閉。 很明顯地,多個閥3 1 0可被串聯地設置用以提供一微 流體裝置340,如圖1 1所示。該裝置340可被建構來提供 一蠕動抽吸動作。 或者,該裝置340可透過每一指件致動器318的協同 致動而單純地提供一更有效率的閥動作。 裝置3 40亦可被建構來產生一紊流,其對於將流體混 合很有用。典型地,以微尺度流動的流體因爲層流的關係 所以很難混合。因此’裝置34〇可被用作爲一“微型混合 器”。將可被理解的是,最佳的混合動作會不同於蠕動抽 吸動作。本發明的優點在於,裝置3 4 0可如一閥,一微型 混合器或蠕動閥般地被互換著使用。該CMOS控制電路可 被建構來只要改變該等指件致動器3 1 8的致動順序即可提 供一閥動作’ 一混合動作或一抽吸動作於該裝置3 4 0中。 或者’當被用作爲一泵時,該裝置340可被‘調整’ 到一特定流體的個別特。例如,較黏稠的液體所需要的蠕 動抽吸循環不同於(如,較慢)一較不黏稠的液體。本發 明的一項優點爲,個別地控制每一指件致動器3 1 8之該 CMOS控制電路可相應地被建構,用以‘調整,該泵至特 定流體的特性。使用傳統L 0 C技術無法達到該晶片上 CMOS電路所能達成的控制。 -52- 201000764 提供在一矽微流體通道中閉合之閥 參考圖12及13,其顯示形成在一 CMOS矽基材351 上之微流體隔膜式閥3 50。該閥3 5 0係完全自給自足於一 MEMS積體電路360中。因此,該閥 3 50可省掉將該 M EMS積體電路360黏合至一微流體平台’因爲MEMS積 體電路可包含了產生一完整的LOC SyTAS所需要之所 有的控制電路,微通道,閥及泵。與現已成爲業界的標準 之軟光刻技術相反地,閥3 5 0爲完全使用矽基礎的Μ E M S 技術建造之L0C裝置鋪路。 或者,該MEMS積體電路3 60如上文描述的仍可被黏 合至一微流體平台。將可被理解的是’在微流體平台中的 微通道可被連接至該MEMS積體電路360中之流體出口 (未示出)用以產生一 L0C裝置。 現翻到圖1 2及1 3,該閥3 5 0包含一對相對的第—及 第二致動指件352及353,它們都指向—中央鞍部或堰部 354其具有一密封面355。該堰部354主要是氧化矽的一 個塊體,其可在該閥350的側壁於MEMS製造期間被界定 的同一時間被界定。將可被瞭解的是’每一指件3 52及 3 5 3在設計上於上文描述的指件220類似° 堰部3 54將該閥3 50分成一入口埠3 5 6及—出口璋 358。一層PDMS359橋接在該第一及第二致動指件352與 3 5 3之間,用以形成一室頂3 6 2其如一用於該閥3 5 0的隔 膜般地作用。 -53- 201000764 如圖12所示’入口埠356透過一連接通道361與該 出口部3 5 8流體地聯通,該連接通道被界定在該堰部354 的密封表面3 5 5與室頂3 62之間。在圖13中’每一指件 352及353被致動且朝向該矽基材351向下彎曲。指件 352及353的此一彎曲將該室頂362拉動而與該堰部354 的密封面355密封地嚙合。介於該室頂362與該密封面 3 5 5之間的此密封嚙合可防止任何流體從該入口埠3 56流 至該出口埠358(反之亦然)。因此,閥350如圖13所示 地被關閉。 指件352及3 5 3之後續的未致動將該室頂3 62從與密 封面3 5 5的密封嚙合中釋放,因爲指件回到如圖1 2所示 的靜止狀態。 因此,一種有高度效率的隔膜閥3 5 0被提供,其利用 一 PDMS層來提供用於該閥之密封隔膜。藉以以此方式使 用 PDMS,可製造出用於界定在硬質材料中,譬如以矽爲 基礎之MEMS積體電路中,之微流體通道的有效閥。將可 被瞭解的是,此一閥可被使用在各種微流體系統中,譬如 LOC裝置中。 當可被瞭解的是,本發明已單純地以舉例的方式加以 描述且細部的修改可在本發明的範圍內被達成,本發明的 範圍係有申請專利範圍來加以界定。 【圖式簡單說明】 本發明的實施例現將以舉例的方式參考附圖加以說 -54 - 201000764 明,其中: 圖1 A - C顯示一先前技術的閥系統; 圖2顯示一部分製造完成之熱彎曲致動的噴墨噴嘴組 件; 圖3爲一完整的噴墨噴嘴組件的切開的立體圖; 圖4爲一 MEMS微流體泵的立體圖,其中一聚合物密 封層被移走用以露出MEMS裝置; 圖5爲圖4所示之泵的切開的立體圖其包括該聚合物 密封層; 圖6爲另一 MEMS微流體泵的平面圖; 圖7示意地顯示在黏合之前之一黏合的微流體平台與 一 MEMS積體電路。 圖8示意地顯示一整合的LOC裝置其包含一黏合的 微流體平台與MEMS積體電路; 圖9示意地顯示一藉由將一微流體平台與一 MEMS積 體電路黏合而製成的微流體緊束閥; 圖1 〇顯示圖9的微流體緊束閥在打開的位置; 圖11顯不一多功能裝置其包含多個如圖10所不之微 流體緊束閥被串聯地設置; 圖1 2顯示一微流體隔膜閥在打開的位置;及 圖1 3顯示圖1 2的微流體隔膜閥在關閉的位置。 【主要元件符號說明】 1 :流體流通道 -55- 201000764 2 :控制通道 3 :隔膜 4 :微流體結構 5 :平面基材 1 0 0 :噴嘴組件 102 :基材 1 〇 4 :室頂 1 0 6 :側壁 1 〇 8 :活動的部分 1 1 0 :靜止不動的部分 1 1 2 :噴嘴開口 1 1 4 :主動樑 1 1 6 :被動樑 1 1 4 A :臂 1 1 4B :臂 1 1 8 A :電極接點 1 1 8 b :電極接點 1 1 5 :連接件 117 :導電墊 1 1 9 :連接器柱 120: CMOS 層 1 2 2 :噴嘴室 1 2 4 :墨水入口 126 : PDMS 層 201000764 1 0 9 :間隙 2 〇 0 :線性蠕動泵 202 :基材 203 :抽吸室 2 〇 4 :室頂 2 0 6 :側壁 208 :泵入口 2 1 2 :地板 2 1 0 :泵出口 214 :泵入口通道 220 :指件 222 :主動樑 2 2 4 :被動樑 2 2 6 :周邊間隙 2 2 8 :電極接點 229 :臂 23 0 :連接件 240 : CMOS 層 242 :聚合體密封層 244 :連接器柱 2 5 0 :線性蠕動泵 25 2 :出口通道 2 5 4 :閥系統 2 5 6 :通道電路 -57- 201000764 260 : MEMS 層 290: MEMS積體電路 2 4 3 :外黏合層 2 9 5 :微流體平台 282 : ‘Quake’閥 284 :流體通道 2 8 6 :控制通道 2 8 8 :反應通道 2 8 0 : PDMS 本體 28 1 :黏合表面 2 8 3 :控制流體入口 285:流體通道入口 274 :泵出口 276 :泵出口 3 00 :整合的LOC裝置 2 7 0 :第一入口 200A :微流體泵 272 :第二入口 200B :微流體泵 2 8 7 :裝置出口 3 1 〇 :微流體緊束閥 312:聚合體微流體平台 314: MEMS積體電路 316 : PDMS 層 201000764 313:第一黏合表面 3 1 5 : CMOS矽基材 3 1 8 :致動指件 320 :聚合本體(PDMS本體) 322 :微流體通道 3 2 4 :套管部分 3 2 5 :第二黏合部分 3 2 6 :外壁 3 2 8 :壓縮件 330 :內壁 3 5 0 : L0C 裝置 340 :微流體裝置 360: MEMS積體電路 3 5 2 :第一致動指件 3 5 3 :第二致動指件 3 5 4 :堰部 3 5 5 :密封面 3 5 7 :側壁 3 5 6 :入口埠 3 5 8 :出口埠 3 5 9 : PDMS 層 3 6 2 :室頂 -59The MEMS integrated circuit of fluid pump 200 is bonded to a conventional microfluidic platform made by soft lithography. The integration of a MEMS integrated circuit with a conventional LOC platform is a particularly advantageous feature of the present invention and will be described in greater detail below. Alternative Microfluidic Pumps Of course, pump 200 can take many different forms. For example, the number and orientation of the fingers 200 can be changed to optimize the peristaltic action. Turning now to Figure 6' shows a plan view of a linear peristaltic pump 250 that is replaced with the same operational rationality as the pump 200 described above. In Figure 6, the upper polymer layer 242 has been removed to expose the individual fingers 22 and the suction chamber 203. For the sake of clarity, the same reference numerals have been used to describe the same features in Fig. 6. Thus, pump 250 includes a suction chamber 203 in the form of an elongated channel. Pairs of fingers 220 are disposed at the top of the chamber of the chamber 203, and pairs of fingers extend lengthwise along the chamber. Each of the pair of finger pairs 2 2 0 is directed toward a central longitudinal axis of the chamber 2 0 3 for simultaneous actuation of the two fingers in the same pair of fingers. Maximize peristaltic suction. During pumping, opposing finger pairs can be actuated (e.g., sequentially actuated) to provide the peristaltic suction. Of course, any order of actuation can be used to optimize the suction, such as the sequence described in U.S. Patent No. 4,9,09,7,100. In some suction cycles, more than one pair of fingers can be actuated simultaneously, or some pairs of fingers can be partially actuated. Those skilled in the art will readily be able to devise the optimal -45-201000764 peristaltic suction cycle utilizing the pump 250 in the atmosphere of the present invention. Still referring to Figure 6, finger 220 is disposed between pump inlet 208 and pump outlet 210. An outlet passage 252 between the pump outlet 21 and the fingers 220 includes a valve system 254. The valve system 254 includes a channel circuit 256 that is configured to minimize backflow of the fluid from the outlet 21 to the inlet 208. Therefore, the valve system 254 further optimizes the efficiency of the pump 250. While a very simple valve system 254 is shown in Figure 6, it will be appreciated that any check valve can be used to improve the efficiency of the one-way pump in accordance with the present invention. Of course, the pump according to the present invention can be made reversible by simply changing the order in which the fingers are actuated by the CMOS on the wafer. A fully integrated LOC device comprising a MEMS micropump as described above 'a PDMS polymer layer 242 provides an ideal bonding surface for bonding a Μ EMS integrated circuit to a conventional microfluidic fabricated by soft lithography platform. This allows the C Μ S control circuit to be integrated with the microfluidic device in a fully integrated L0C device. Therefore, a significant benefit can be achieved by eliminating the need for external control systems and suction systems that are necessary in conventional L0C devices. Interfacial bonding between a conventional PDMS microfluidic platform and a PDMS coated MEMS integrated circuit is accomplished using conventional techniques known in the art of multilayer pd MS soft lithography. These techniques are well known to those skilled in the art of soft lithography. Typically, each PDMS surface is exposed to an oxygen plasma and the two surfaces are bonded together by application of pressure. -46- 201000764 Figure 7 shows how a simple integrated LOC device in accordance with the present invention can be fabricated using conventional PDMS bonding techniques. A MEMS integrated circuit (or wafer) 290 includes a germanium substrate 202, a CMOS layer 240 and a MEMS layer 260. The MEMS layer 260 includes a MEMS microfluidic pump 200. In the illustrated integrated circuit 290, two MEMS pumps 200A and 200B are shown, each MEMS microfluidic pump including a plurality of thermally bent actuated fingers 220 for providing a peristaltic pumping action. Of course, virtually every MEMS integrated circuit 290 can include hundreds or thousands of MEMS devices, including the pump 200. The MEMS layer 260 is covered by the PDMS layer 2 42, which defines an outer bonding surface 243 of the integrated circuit 290. A conventional microfluidic platform 295 is comprised of a body 280 of PDMS with a plurality of microfluidic channels, chambers and/or microfluidic devices defined within the body. In the schematic microfluidic platform 295 shown in Figure 7, a 'Quake, valve 2 82 is shown to include a fluid passage 284 that cooperates with a control passage 286. An arbitrary reaction chamber is also defined in the PDMS body. Any three-dimensional microfluidic platform 295 as is known in the art can be fabricated using conventional soft lithography techniques. The body 202 of the microfluidic platform 295 has an adhesive surface 281 with a control fluid inlet 283 and a fluid passage inlet 285 defined within the adhesive surface. The control fluid inlet 28 3 and fluid passage inlet 285 are in fluid communication with their respective control passages 286 and fluid passages 284. The control fluid inlet 283 and the fluid passage inlet 285 of the microfluidic platform 295 are arranged to align with the pump outlets 274 and 2 76 defined in the PDMS layers 242-47 - 201000764 of the MEMS integrated circuit 290. The two bonding surfaces 243 and 281 are bonded together by exposing each surface to an oxygen plasma and applying pressure. The resulting bonded assembly is shown in Figure 8 in the form of an integrated LOC device 300. In the integrated LOC device 300, the pump 200 controlled by the CMOS layer 240 controlled by the integrated circuit 290 draws fluid into the microfluidic channels 286 and 284 of the PDMS microfluidic platform. Pump 200 can be pumped (used to drive a valve in the PDMS platform 295) to control fluid or the actual sample fluid (e.g., fluid used for analysis) used by the device. Thus, the CMOS control circuit can be used to provide a complete control over the operation of the integrated LOC device 300. - A simple example will now be described to show how the LOC device 300 can be actually operated. A control fluid enters a first inlet 2 70 and is pumped into the control passage 286 of the microfluidic platform 295 using the microfluidic pump 200. The control channel 286 is pressurized by the control fluid. The control passage 286 overlaps and cooperates with the fluid passage 2 84 to form the valve 2 82 as described above with reference to Figures 1A-C. When the control passage 286 is pressurized by the control fluid, a wall of the fluid passage 824 is collapsed and this will close the valve 282. Thus, a section of fluid passage 284 downstream of chamber 28 8 is closed by valve 282, thereby isolating a device outlet 287 from chamber 28 8 . When the valve 28 is closed, a sample stream entering a second inlet 272 is drawn through the fluid passage 284 into the chamber 288 by use of the microfluidic pump 200B. Other fluids (e.g., reagents) may also be drawn into the chamber 28 8 via other -48-201000764 fluid passages (not shown). Once all of the fluid has been drawn into the chamber 288 and has passed for a sufficient length of time, the valve 28 2 can be opened by closing the pump 200 A and allowing fluid to flow through the flow channel 2 This downstream section of 8 4 faces the device outlet 2 8 7 . This simple example shows how the integrated L Ο C device 300 can provide complete control of LOC operation through CMOS circuitry and MEMS micropump 200. A particular advantage of the LOC device 300 is that no external off-chip pumps and/or control systems are required. The control fluid can be air (which provides pneumatic control of the valve 282) or liquid (which provides hydraulic control of the valve 282). While the examples provided herein are very simple, those skilled in the art will appreciate that the present invention can be used to provide control of a complex LOC device having an intricate array of complex valves, pumps and passages. A significant advantage of the present invention is that it is fully compatible with the existing LOC technology based on the soft lithography manufacturing technology of the microfluidic platform. Complex microfluidic platforms have been fabricated using soft lithography. These conventional platforms require only minor modifications' to be integrated into the COMS controllable LOC device provided by the present invention. Microfluidic Valves As mentioned above, germanium-based MEMS technology inherits the limitations of microfluidics and LOC. Microfluidic valves are typically primarily in LOC devices and are hard, and non-flexible materials, such as, for example, do not provide the required sealing engagement in the valve. This limitation is indeed the main reason for the shift of microfluidics from MEMS lithography based on --49-201000764 to soft lithography based on compliant ( c o m p 1 i a n t ) polymers such as P D M S . To date, applicants in this case have demonstrated how PDMS can be integrated into a traditional 矽-based MEMS process. It will be described how the same technology enables efficient microfluidic valves to be fabricated using conventional 矽-based MEMS technology. Again, these valves do not require an external fluid supply or control system, as opposed to the "Quake' valve described above. While many skilled in the art will be able to devise many other variations by integrating PDMS into a 矽-based Μ E M S process, two valves will be described below. In each of the examples, the engagement of a PDMS surface with another surface (e.g., a ruthenium surface, a ruthenium oxide surface, a PDMS surface, etc.) provides the sealing engagement required for a valve action. Furthermore, each valve is in the form of a mechanically actuated valve 'the engagement of the opposite surface is driven by actuation or non-actuation of a thermal bending actuator' which is itself on the wafer C Ο MS controlled. Providing a closed valve in the polymeric microfluidic channel Referring to Figure 9, a microfluid tight valve 3 1 0 ' is shown by a polymer microfluidic platform 312 and a MEMS having a PDMS surface layer 3 16 The integrated circuit 314 is formed by bonding together. The PDMS layer 316 defines a first bonding surface 313 of the MEMS integrated circuit 314. The MEMS integrated circuit 314 includes an actuating finger 318 constructed on a C 〇 MS 矽 substrate 315. The actuating finger 318 is structurally identical to the design of the finger 220 described above with reference to Figures 4 and 5. Thus, although -50-201000764 the actuating finger 318 is only shown schematically in Figure 9' it is assumed that all of the features' of the finger 220 described above include thermal bending. The microfluidic platform 31 is a polymeric body (e.g., PDMS body) 320 fabricated using standard soft lithography techniques, and a microfluidic channel is defined within the body. The channel 322 includes a sleeve portion 324 and an adjacent second adhesive surface 325 of the microfluidic platform 312. Portion 324 is separated from the second adhesive surface 325 by a layer of PD MS. The layer PDMS defines an outer wall 326 of the sleeve portion. The outer wall includes a compression member 3 28 that projects from the outer wall and extends away from the first surface 325. As seen in Figure 9, when the two adhesive surfaces 313 and 325 are brought together, the compression member 3 28 is aligned with the actuation finger 3 1 8 . The outer wall 326 protrudes and the compression member 328 is pressed against the sleeve portion 324 330 during the bonding process by the first adhesive surface 313. Thus, the sleeve portion 324 is tightly closed by the bonding process in the assembled LOC device 350 shown in Figure 9, which is closed when the actuation finger 318 is in its rest state, the fluid can pass The sleeve portion 324. Referring now to Figure 1, the finger 318 is actuated and bent downwardly to pull the compression member 318 toward the substrate 315. This actuation forces the outer wall 326 away from the inner wall 330, which is thereby opened to allow fluid to flow through the sleeve portion 324. An advantage of the valve 310 is that the valve is biased and closed when the finger actuator 3<8> is in a stationary state. This means that a pack containing the actuator and containing 3 22 is passed through the sleeve, and the 3 26 packs of adhesive are bonded by the inner valve 3 3 3 from the inner wall and without the actuator to the raft Valve 3 10 at its LOC unit containing the valve -51 - 201000764 3 1〇 will not be eager for power. A further advantage is that the opening of the valve can be adjusted by controlling the actuation power supplied to the finger actuator 3 18 . Partial closure of the valve can be easily achieved using this mechanically actuated tensioning valve. It will be apparent that a plurality of valves 310 may be arranged in series to provide a microfluidic device 340, as shown in FIG. The device 340 can be constructed to provide a peristaltic pumping action. Alternatively, the device 340 can simply provide a more efficient valve action through coordinated actuation of each finger actuator 318. Device 3 40 can also be constructed to create a turbulent flow that is useful for mixing fluids. Typically, fluids flowing at microscales are difficult to mix due to laminar flow. Thus the 'device 34' can be used as a "micromixer". It will be appreciated that the optimal mixing action will be different from the peristaltic pumping action. An advantage of the present invention is that the device 300 can be used interchangeably like a valve, a micromixer or a peristaltic valve. The CMOS control circuit can be configured to provide a valve action as long as the sequence of actuation of the finger actuators 3 18 is changed. A mixing action or a pumping action in the device 300. Or 'when used as a pump, the device 340 can be 'adjusted' to a particular feature of a particular fluid. For example, a more viscous liquid requires a peristaltic pumping cycle that is different (e.g., slower) than a less viscous liquid. An advantage of the present invention is that the CMOS control circuitry that individually controls each of the finger actuators 3 1 8 can be correspondingly configured to 'adjust the characteristics of the pump to a particular fluid. Controls that can be achieved with CMOS circuits on the wafer cannot be achieved using conventional L0C technology. -52- 201000764 Valves Provided to Close in a Microfluidic Channel Referring to Figures 12 and 13, there is shown a microfluidic diaphragm valve 350 formed on a CMOS substrate 351. The valve 350 is fully self-sufficient in a MEMS integrated circuit 360. Therefore, the valve 350 can eliminate the bonding of the M EMS integrated circuit 360 to a microfluidic platform because the MEMS integrated circuit can include all of the control circuits, microchannels, valves required to produce a complete LOC SyTAS. And pump. Contrary to the soft lithography technology that has become the standard in the industry, the valve 350 is a paving of L0C devices built entirely using 矽 E M S technology. Alternatively, the MEMS integrated circuit 3 60 can still be bonded to a microfluidic platform as described above. It will be appreciated that the microchannels in the microfluidic platform can be coupled to fluid outlets (not shown) in the MEMS integrated circuit 360 for generating an L0C device. Turning now to Figures 12 and 13 , the valve 350 includes a pair of opposing first and second actuating fingers 352 and 353 which are both directed toward the central saddle or crotch portion 354 which has a sealing surface 355. The crotch portion 354 is primarily a block of yttrium oxide that can be defined at the same time that the sidewalls of the valve 350 are defined during MEMS fabrication. It will be appreciated that 'each finger 3 52 and 3 5 3 are similar in design to the finger 220 described above. The crotch portion 3 54 divides the valve 3 50 into an inlet 埠 3 5 6 and an outlet 璋358. A layer of PDMS 359 is bridged between the first and second actuating fingers 352 and 353 to form a chamber top 362 which functions as a diaphragm for the valve 350. -53- 201000764 'The inlet port 356 is in fluid communication with the outlet portion 358 through a connecting passage 361 as shown in Fig. 12, the connecting passage being defined at the sealing surface 35 5 of the weir portion 354 and the chamber roof 3 62 between. In Fig. 13, 'each of the fingers 352 and 353 is actuated and bent downward toward the crucible base material 351. This bending of the fingers 352 and 353 pulls the chamber top 362 into sealing engagement with the sealing surface 355 of the jaw 354. This sealing engagement between the chamber top 362 and the sealing surface 35 5 prevents any fluid from flowing from the inlet port 356 to the outlet port 358 (or vice versa). Therefore, the valve 350 is closed as shown in FIG. Subsequent unactuation of fingers 352 and 353 causes the roof 3 62 to be released from the sealing engagement with the cover 35 5 as the fingers return to a rest position as shown in FIG. Thus, a highly efficient diaphragm valve 350 is provided that utilizes a PDMS layer to provide a sealed diaphragm for the valve. By using PDMS in this manner, an effective valve for defining a microfluidic channel in a hard material, such as a MEMS-based MEMS integrated circuit, can be fabricated. It will be appreciated that this valve can be used in a variety of microfluidic systems, such as LOC devices. It is to be understood that the present invention has been described by way of example only, and modifications of the details may be made within the scope of the invention, and the scope of the invention is defined by the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS [0007] Embodiments of the present invention will now be described by way of example with reference to the accompanying drawings in which: FIG. 1A - C shows a prior art valve system; Thermally actuated inkjet nozzle assembly; Figure 3 is a cutaway perspective view of a complete inkjet nozzle assembly; Figure 4 is a perspective view of a MEMS microfluidic pump with a polymeric sealing layer removed to expose the MEMS device Figure 5 is a cutaway perspective view of the pump of Figure 4 including the polymeric sealing layer; Figure 6 is a plan view of another MEMS microfluidic pump; Figure 7 is a schematic illustration of one of the microfluidic platforms bonded prior to bonding A MEMS integrated circuit. Figure 8 shows schematically an integrated LOC device comprising a bonded microfluidic platform and a MEMS integrated circuit; Figure 9 schematically shows a microfluid made by bonding a microfluidic platform to a MEMS integrated circuit. Figure 1 shows the microfluid tight valve of Figure 9 in an open position; Figure 11 shows a multi-function device comprising a plurality of microfluid tight valves as shown in Figure 10 arranged in series; 1 2 shows a microfluidic diaphragm valve in the open position; and FIG. 13 shows the microfluidic diaphragm valve of FIG. 12 in the closed position. [Main component symbol description] 1 : Fluid flow channel -55- 201000764 2 : Control channel 3 : Diaphragm 4 : Microfluidic structure 5 : Planar substrate 1 0 0 : Nozzle assembly 102 : Substrate 1 〇 4 : Room top 1 0 6 : Side wall 1 〇 8 : Active part 1 1 0 : Stationary part 1 1 2 : Nozzle opening 1 1 4 : Active beam 1 1 6 : Passive beam 1 1 4 A : Arm 1 1 4B : Arm 1 1 8 A: electrode contact 1 1 8 b : electrode contact 1 1 5 : connector 117 : conductive pad 1 1 9 : connector post 120 : CMOS layer 1 2 2 : nozzle chamber 1 2 4 : ink inlet 126 : PDMS layer 201000764 1 0 9 : gap 2 〇 0 : linear peristaltic pump 202 : substrate 203 : suction chamber 2 〇 4 : chamber top 2 0 6 : side wall 208 : pump inlet 2 1 2 : floor 2 1 0 : pump outlet 214 : Pump inlet passage 220: finger 222: active beam 2 2 4 : passive beam 2 2 6 : peripheral gap 2 2 8 : electrode joint 229 : arm 23 0 : connector 240 : CMOS layer 242 : polymer sealing layer 244 : Connector column 2 5 0 : linear peristaltic pump 25 2 : outlet channel 2 5 4 : valve system 2 5 6 : channel circuit -57- 201000764 260 : MEMS layer 290: MEMS integrated circuit 2 4 3 : outer bonding layer 2 9 5: microfluid Table 282: 'Quake' valve 284: Fluid channel 2 8 6 : Control channel 2 8 8 : Reaction channel 2 8 0 : PDMS body 28 1 : Bonding surface 2 8 3 : Control fluid inlet 285: Fluid channel inlet 274: Pump outlet 276: pump outlet 3 00: integrated LOC device 2 7 0 : first inlet 200A: microfluidic pump 272: second inlet 200B: microfluidic pump 2 8 7 : device outlet 3 1 〇: microfluid tight valve 312: Polymer microfluidic platform 314: MEMS integrated circuit 316: PDMS layer 201000764 313: first bonding surface 3 1 5 : CMOS 矽 substrate 3 1 8 : actuation finger 320 : polymeric body (PDMS body) 322 : microfluid Channel 3 2 4 : sleeve portion 3 2 5 : second adhesive portion 3 2 6 : outer wall 3 2 8 : compression member 330 : inner wall 3 5 0 : L0C device 340 : microfluidic device 360 : MEMS integrated circuit 3 5 2: first actuating finger 3 5 3 : second actuating finger 3 5 4 : crotch portion 3 5 5 : sealing surface 3 5 7 : side wall 3 5 6 : inlet 埠 3 5 8 : outlet 埠 3 5 9 : PDMS Layer 3 6 2 : Room Top - 59

Claims (1)

201000764 十、申請專利範圍 1·—種微流體緊束閥(pinch valve),其包含: 一微流體通道,其被界定在一順從本體(compliant b 〇 d y)中; 一閥套,其由該微流體通道的一段所界定,該閥套具 有一隔膜壁其界定該本體的外表面的至少一部分; 該壓縮件,用來對著該閥套的一相對的壁緊束該隔膜 壁;及 一熱彎曲致動器,用來將該壓縮件移動於一關閉的位 置與一打開的位置之間,在該關閉的位置時該隔膜壁被對 著該相對的壁緊束,而在該打開的位置時該隔膜壁脫離該 相對的壁。 2 .如申請專利範圍第1項之微流體閥,其中該打開的 位置包括一完全打開的位置與一部分打開的位置。 3 .如申請專利範圍第1項之微流體閥,其中一活動的 指件與該壓縮件嚙合,該指件被建構來透過該致動件的運 動將該壓縮件迫動於該打開的位置與該關閉的位置之間。 4 .如申請專利範圍第3項之微流體閥,其中該壓縮件 被夾在該指件與該隔膜壁之間。 5 .如申請專利範圍第4項之微流體閥’其中該壓縮件 從該隔膜件突伸出。 6 .如申請專利範圍第3項之微流體閥,其中該壓縮件 在該熱彎曲致動件處在一靜止的狀態時被朝向該關閉的位 置偏動。 -60- 201000764 7. 如申請專利範圍第3項之微流體閥’其中一 MEMS 積體電路被黏合至該本體的外表面’該活動的丨曰件被包3 在該積體電路的一 MEMS層中。 8. 如申請專利範圍第7項之微流體閥’其中該MEMS 積體電路包含一由一聚合體層所界定的黏合表面,該黏口 表面被黏合至該本體的該外表面。 9如申請專利範圍第8項之微流體閥’其中該聚合體 層覆蓋該MEMS層。 1 0 .如申請專利範圍第8項之微流體閥’其中該聚合體 層及/或該順從本體是由P D M S組成的。 1 1 .如申請專利範圍第7項之微流體閥’其中: 該致動器的致動造成該指件移動遠離該本體’藉以打 開該閥;及 該致動器的未致動(deactuation)造成該指件移動朝向 該本體’藉以關閉該閥。 j 2.如申請專利範圍第7項之微流體閥,其中該活動的 指件包含該熱彎曲致動器。 1 3 .如申請專利範圍第1 2項之微流體閥,其中該熱彎 曲致動器包含: 一主動樑,其由一熱彈性物質所構成;及 一被動樑,其機械性地與該主動樑合作,使得當一電 流通過該主動樑時,該主動樑會加熱並相對於該被動樑膨 脹,造成該致動器的彎曲。 1 4 .如申請專利範圍第1 3項之微流體閥,其中該指件 -61 - 201000764 的範圍(extent)係由該被動樑來界定。 1 5 .如申請專利範圍第丨3項之微流體閥,其中該主動 樑被溶接至該被動樑。 1 6 ·如申請專利範圍第丨3項之微流體閥,其中該主動 樑界定一延伸在一對電極之間之彎曲電流路徑,該等電極 被連接至用來控制每一致動器的控制電路。 1 7 .如申請專利範圍第1 3項之微流體閥,其中該熱彈 性物質係選自於一包含氮化鈦,氮化鈦鋁及釩鋁合金的族 群中;及該被動樑係由一選自於包含氧化矽’氮化矽及氮 氧化矽的族群中之物質所構成的。 18.如申請專利範圍第7項之微流體閥,其中該MEMS 積體電路包含一矽基材,其具有被包含在至少一 CMOS層 中的控制電路。 1 9 . 一種微流體系統,其包含申請專利範圍第1項之微 流體閥。 2 〇 .如申請專利範圍第1 9項之微流體系統’其包含多 個被串聯地安排的微流體閥。 -62-201000764 X. Patent Application No. 1 - A microfluidic pinch valve comprising: a microfluidic channel defined in a compliant body; a valve sleeve by which Defining a section of the microfluidic channel, the valve sleeve having a diaphragm wall defining at least a portion of an outer surface of the body; the compression member for tightening the diaphragm wall against an opposing wall of the valve sleeve; a thermal bending actuator for moving the compression member between a closed position and an open position in which the diaphragm wall is tightened against the opposing wall, and in the open The diaphragm wall is disengaged from the opposing wall in position. 2. The microfluidic valve of claim 1, wherein the open position comprises a fully open position and a partially open position. 3. The microfluidic valve of claim 1, wherein a movable finger engages the compression member, the finger being configured to urge the compression member to the open position by movement of the actuator Between the closed position and the position. 4. The microfluidic valve of claim 3, wherein the compression member is sandwiched between the finger and the diaphragm wall. 5. The microfluidic valve of claim 4, wherein the compression member protrudes from the diaphragm member. 6. The microfluidic valve of claim 3, wherein the compression member is biased toward the closed position when the thermal bending actuator is in a stationary state. -60- 201000764 7. The microfluidic valve of claim 3, wherein one of the MEMS integrated circuits is bonded to the outer surface of the body, the movable element is packaged in a MEMS of the integrated circuit In the layer. 8. The microfluidic valve of claim 7, wherein the MEMS integrated circuit comprises an adhesive surface defined by a polymeric layer, the adhesive surface being bonded to the outer surface of the body. 9. A microfluidic valve as claimed in claim 8 wherein the polymeric layer covers the MEMS layer. 10. The microfluidic valve of claim 8 wherein the polymeric layer and/or the compliant body is comprised of P D M S. 1 1. The microfluidic valve of claim 7 wherein: the actuation of the actuator causes the finger to move away from the body to open the valve; and the actuator is not actuated The finger is caused to move toward the body 'by closing the valve. j. The microfluidic valve of claim 7, wherein the movable finger comprises the thermal bending actuator. 13. The microfluidic valve of claim 12, wherein the thermal bending actuator comprises: an active beam formed of a thermoelastic material; and a passive beam mechanically coupled to the active The beams cooperate such that as a current flows through the active beam, the active beam heats up and expands relative to the passive beam, causing bending of the actuator. 1 4. The microfluidic valve of claim 13 wherein the extent of the finger -61 - 201000764 is defined by the passive beam. The microfluidic valve of claim 3, wherein the active beam is fused to the passive beam. The microfluidic valve of claim 3, wherein the active beam defines a bending current path extending between a pair of electrodes connected to a control circuit for controlling each actuator . The microfluidic valve of claim 13, wherein the thermoelastic material is selected from the group consisting of titanium nitride, titanium aluminum nitride and vanadium aluminum alloy; and the passive beam system is It is selected from the group consisting of a substance containing a group of cerium oxide, cerium nitride and cerium oxynitride. 18. The microfluidic valve of claim 7, wherein the MEMS integrated circuit comprises a germanium substrate having a control circuit included in at least one CMOS layer. A microfluidic system comprising the microfluidic valve of claim 1 of the scope of the patent. 2 〇. The microfluidic system of claim 19, which comprises a plurality of microfluidic valves arranged in series. -62-
TW097125723A 2008-06-20 2008-07-08 Mechanically-actuated microfluidic pinch valve TW201000764A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2008/000881 WO2009152547A1 (en) 2008-06-20 2008-06-20 Bonded microfluidics system comprising cmos-controllable microfluidic devices

Publications (1)

Publication Number Publication Date
TW201000764A true TW201000764A (en) 2010-01-01

Family

ID=41433571

Family Applications (11)

Application Number Title Priority Date Filing Date
TW097125727A TW201000765A (en) 2008-06-20 2008-07-08 Microfluidic system comprising pinch valve and on-chip MEMS pump
TW097125718A TW201000760A (en) 2008-06-20 2008-07-08 Bonded microfluidics system comprising CMOS-controllable microfluidic devices
TW097125716A TW201000759A (en) 2008-06-20 2008-07-08 Bonded microfluidics system comprising MEMS-actuated microfluidic devices
TW097125722A TW201000389A (en) 2008-06-20 2008-07-08 MEMS integrated circuit comprising microfluidic diaphragm valve
TW097125720A TW201000387A (en) 2008-06-20 2008-07-08 Microfluidic system comprising MEMS integrated circuit
TW097125714A TW201000758A (en) 2008-06-20 2008-07-08 Mechanically-actuated microfluidic valve
TW097125721A TW201000388A (en) 2008-06-20 2008-07-08 Mechanically-actuated microfluidic diaphragm valve
TW097125725A TW201000761A (en) 2008-06-20 2008-07-08 Bonded microfluidic system comprising thermal bend actuated valve
TW097125711A TW201000386A (en) 2008-06-20 2008-07-08 Thermal bend actuated microfluidic peristaltic pump
TW097125723A TW201000764A (en) 2008-06-20 2008-07-08 Mechanically-actuated microfluidic pinch valve
TW097125712A TW201000763A (en) 2008-06-20 2008-07-08 MEMS integrated circuit comprising peristaltic microfluidic pump

Family Applications Before (9)

Application Number Title Priority Date Filing Date
TW097125727A TW201000765A (en) 2008-06-20 2008-07-08 Microfluidic system comprising pinch valve and on-chip MEMS pump
TW097125718A TW201000760A (en) 2008-06-20 2008-07-08 Bonded microfluidics system comprising CMOS-controllable microfluidic devices
TW097125716A TW201000759A (en) 2008-06-20 2008-07-08 Bonded microfluidics system comprising MEMS-actuated microfluidic devices
TW097125722A TW201000389A (en) 2008-06-20 2008-07-08 MEMS integrated circuit comprising microfluidic diaphragm valve
TW097125720A TW201000387A (en) 2008-06-20 2008-07-08 Microfluidic system comprising MEMS integrated circuit
TW097125714A TW201000758A (en) 2008-06-20 2008-07-08 Mechanically-actuated microfluidic valve
TW097125721A TW201000388A (en) 2008-06-20 2008-07-08 Mechanically-actuated microfluidic diaphragm valve
TW097125725A TW201000761A (en) 2008-06-20 2008-07-08 Bonded microfluidic system comprising thermal bend actuated valve
TW097125711A TW201000386A (en) 2008-06-20 2008-07-08 Thermal bend actuated microfluidic peristaltic pump

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW097125712A TW201000763A (en) 2008-06-20 2008-07-08 MEMS integrated circuit comprising peristaltic microfluidic pump

Country Status (4)

Country Link
EP (1) EP2300355A1 (en)
KR (1) KR20100124827A (en)
TW (11) TW201000765A (en)
WO (1) WO2009152547A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750600B (en) * 2020-02-27 2021-12-21 國立臺灣大學 Fluid measurement device and fabrication method thereof
WO2021242259A1 (en) * 2020-05-29 2021-12-02 Hewlett-Packard Development Company, L.P. On-die logic to suppress fluidic actuator operation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136212A (en) * 1996-08-12 2000-10-24 The Regents Of The University Of Michigan Polymer-based micromachining for microfluidic devices
US6117643A (en) * 1997-11-25 2000-09-12 Ut Battelle, Llc Bioluminescent bioreporter integrated circuit
US6632400B1 (en) * 2000-06-22 2003-10-14 Agilent Technologies, Inc. Integrated microfluidic and electronic components
US7794056B2 (en) * 2006-12-04 2010-09-14 Silverbrook Research Pty Ltd Inkjet nozzle assembly having thermal bend actuator with an active beam defining substantial part of nozzle chamber roof

Also Published As

Publication number Publication date
TW201000761A (en) 2010-01-01
KR20100124827A (en) 2010-11-29
TW201000386A (en) 2010-01-01
TW201000759A (en) 2010-01-01
WO2009152547A1 (en) 2009-12-23
EP2300355A1 (en) 2011-03-30
TW201000389A (en) 2010-01-01
TW201000758A (en) 2010-01-01
TW201000763A (en) 2010-01-01
TW201000760A (en) 2010-01-01
TW201000387A (en) 2010-01-01
TW201000765A (en) 2010-01-01
TW201000388A (en) 2010-01-01

Similar Documents

Publication Publication Date Title
US8092761B2 (en) Mechanically-actuated microfluidic diaphragm valve
US7892496B2 (en) Mechanically-actuated microfluidic pinch valve
US7842248B2 (en) Microfluidic system comprising microfluidic pump, mixer or valve
US8062612B2 (en) MEMS integrated circuit comprising microfluidic diaphragm valve
US8080220B2 (en) Thermal bend actuated microfluidic peristaltic pump
US8075855B2 (en) MEMS integrated circuit comprising peristaltic microfluidic pump
US7981386B2 (en) Mechanically-actuated microfluidic valve
US20090314368A1 (en) Microfluidic System Comprising Pinch Valve and On-Chip MEMS Pump
JP5456904B2 (en) Microfluidic cartridge with parallel pneumatic interface plate
US6811133B2 (en) Hydraulically amplified PZT mems actuator
JP2010513790A (en) Microfluidic device
Churski et al. Droplet on demand system utilizing a computer controlled microvalve integrated into a stiff polymeric microfluidic device
US7887756B2 (en) Microfluidic system comprising mechanically-actuated microfluidic pinch valve
JP2005283331A (en) Microchip and micropump
US20090317302A1 (en) Microfluidic System Comprising MEMS Integrated Circuit
TW201000764A (en) Mechanically-actuated microfluidic pinch valve
US20090314367A1 (en) Bonded Microfluidics System Comprising CMOS-Controllable Microfluidic Devices
US20090315126A1 (en) Bonded Microfluidic System Comprising Thermal Bend Actuated Valve
US20090317301A1 (en) Bonded Microfluidics System Comprising MEMS-Actuated Microfluidic Devices
KR101635459B1 (en) Programmable Micropump
Johnson et al. Silicon oxide diaphragm valves and pumps with TiNi thin film actuation
Li et al. Fabrication of thermal plastic microfluidic devices with peristaltic micropumps and microvalves
JP2008304377A (en) Sample introducing microdevice
Kang Applications of micromachining and MEMS technology in microfluidics