TW200950629A - Metal/ceramic composite substrate and method for manufacturing the same - Google Patents

Metal/ceramic composite substrate and method for manufacturing the same Download PDF

Info

Publication number
TW200950629A
TW200950629A TW97119141A TW97119141A TW200950629A TW 200950629 A TW200950629 A TW 200950629A TW 97119141 A TW97119141 A TW 97119141A TW 97119141 A TW97119141 A TW 97119141A TW 200950629 A TW200950629 A TW 200950629A
Authority
TW
Taiwan
Prior art keywords
buffer layer
copper
composite substrate
heat
wire
Prior art date
Application number
TW97119141A
Other languages
Chinese (zh)
Inventor
Chun-Te Tao
Hsiao-Chen Hsu
Chin-Chin Wang
Original Assignee
Witspool Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Witspool Corp filed Critical Witspool Corp
Priority to TW97119141A priority Critical patent/TW200950629A/en
Publication of TW200950629A publication Critical patent/TW200950629A/en

Links

Abstract

A metal/ceramic composite substrate includes a thermo-conducting copper plate, a circuit-forming copper plate, a ceramic plate, a first buffer layer, and a second buffer layer. The ceramic plate is disposed between the thermo-conducting copper plate and the circuit-forming copper plate. The first buffer layer bonds the ceramic plate and the thermo-conducting copper plate, and the second buffer layer bonds the ceramic plate and the circuit-forming copper plate. A method for manufacturing the metal/ceramic composite substrate is also disclosed.

Description

200950629 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種散熱基板,且特別是有關於 種金屬陶瓷複合基板。 【先前技術】 隨著資訊及通訊科技的蓬勃發展,半導鱧及光電元 件的散熱問題也愈受重視。一般而言,通常會將各種電 β 子元件,例如動態隨機存取記憶體(dynamic rand〇m access memory,DRAM )、各種元件電路、積體電路、發 光二極體(light emitted diode,LED )封裝於基板上。若 無法透過基板有效地將電子產品元件所產生的熱能傳遞 到外部,將會影響電子產品的效能以及安全性。 可將基板之各材料層接合的習知技術分為兩種,一 種為有膠接合技術’另一種為無膠接合技術。有膠接合 技術所用的有機膠體為高分子環氧樹脂,由於其本身的 © 熱安定性以及電氣絕緣性不佳’往往會減低基板之散熱 效果與熱安定性。另一方面,無膠接合技術則是將金屬 材料層和陶竞材料層之間介面進行熔接,由於其熱安定 性不佳,使得現有金屬陶瓷複合基板的製備面臨考驗。 因此’亟需提出一種方法以改良金屬陶瓷複合基板 的熱安定性以及熱傳導性質。 【發明内容】 本發明之一方面就是在提供一種金屬陶瓷複合基 200950629 板。根據本發明之一實施例,金屬陶瓷複合基板包含散 熱銅片、導線銅片、陶瓷板、第一緩衝層以及第二緩衝 層。其中,陶瓷板介於散熱銅片以及導線銅片之間。第 一緩衝層接合陶瓷板以及散熱銅片,且第二缓衝層接合 陶瓷板以及導線銅片。上述第一緩衝層以及第二緩衝層 之材料為金屬,且其熱膨脹係數介於銅以及陶瓷板之材 料的熱膨脹係數之間。 本發明之另一方面提供一種金屬陶瓷複合基板的製 備方法。根據本發明一實施例,上述方法包含下列步驟。 於陶瓷板的外表面上形成一緩衝層。上述緩衝層之材料 為金屬,且其熱膨脹係數介於銅以及陶瓷板之材料的熱 膨脹係數之間。疊合散熱銅片、陶瓷板以及導線銅片而 形成一夾層結構,其中散熱銅片以及導線銅片位於陶瓷 板之相對二側並分別與該缓衝層相毗連。將夾層結構置 於一高溫爐内並升溫至一熔接溫度,使緩衝層分別接合 陶瓷板與散熱銅片間之第一介面、以及陶瓷板與導線銅 片間之第二介面。將接合後之之夾層結構冷卻至室溫, 以維持金屬陶瓷複合基板之第一介面以及第二介面之接 合穩定度。 在本發明另一實施例中,金屬陶瓷複合基板的製備 方法包含下列步驟。於散熱銅片之外表面上形成第一緩 衝層’以及於導線銅片之外表面上形成第二緩衝層。上 述第一緩衝層以及第二緩衝層之材料為金屬,且其熱膨 服係數介於銅以及陶瓷板之材料的熱膨脹係數之間。疊 合散熱銅片、陶瓷板以及導線銅片而形成一夾層結構, 200950629 其中散熱銅片以及導線銅片位於陶瓷板之相對二側並分 別與第一緩衝層及第二緩衝層相毗連。將夾層結構置於 一高溫爐内並升溫至一熔接溫度,使第一緩衝層接合陶 瓷板與散熱銅片間之第一介面、以及第二緩衝層接合陶 瓷板與導線銅片間之第二介面。將接合後之夾層結構冷 卻至室溫,以維持金屬陶瓷複合基板之第一介面以及第 二介面之接合穩定度。 【實施方式】 常見的無膠型散熱基板,是在一高溫環境下利用無 氧銅(銅含量2 99.9% )與氧化鋁進行熔接,而形成金屬 陶瓷複合基板。金屬陶瓷複合基板在後續製程如形成導 線時或使用中’常會經歷升溫、冷卻之過程,因此金屬 陶瓷複合基板的熱安定性非常重要。然而,在0-100°C的 條件下,無氧銅的熱膨脹係數約為16.5*10·6(理論值), 而氧化鋁的熱膨脹係數約為6.5*ΙΟ-6 (理論值)。這樣的 差異代表兩者熱漲冷縮的性質差異太大,而易導致銅箔 導線剝離或產生介面缺陷。200950629 IX. Description of the Invention: [Technical Field] The present invention relates to a heat dissipating substrate, and more particularly to a cermet composite substrate. [Prior Art] With the rapid development of information and communication technology, the heat dissipation problem of semi-conducting and optoelectronic components has become more and more important. In general, various electric beta components, such as dynamic random access memory (DRAM), various component circuits, integrated circuits, and light emitting diodes (LEDs) are usually used. Packaged on a substrate. If the thermal energy generated by the electronic components is not effectively transmitted to the outside through the substrate, the effectiveness and safety of the electronic product will be affected. There are two conventional techniques for joining the various material layers of the substrate, one being a glue bonding technique and the other being a glueless bonding technique. The organic colloid used in the adhesive bonding technique is a polymer epoxy resin, which tends to reduce the heat dissipation effect and thermal stability of the substrate due to its own thermal stability and poor electrical insulation. On the other hand, the glueless bonding technique is to weld the interface between the metal material layer and the ceramic material layer. Due to its poor thermal stability, the preparation of the existing cermet composite substrate is facing a test. Therefore, there is a need to propose a method for improving the thermal stability and thermal conductivity of a cermet composite substrate. SUMMARY OF THE INVENTION One aspect of the present invention is to provide a cermet composite substrate 200950629. According to an embodiment of the invention, the cermet composite substrate comprises a heat-dissipating copper sheet, a copper wire, a ceramic plate, a first buffer layer, and a second buffer layer. Among them, the ceramic plate is interposed between the heat-dissipating copper piece and the copper wire of the wire. The first buffer layer bonds the ceramic plate and the heat sink copper, and the second buffer layer bonds the ceramic plate and the wire copper. The material of the first buffer layer and the second buffer layer is metal, and the coefficient of thermal expansion is between the coefficients of thermal expansion of the material of the copper and the ceramic plate. Another aspect of the present invention provides a method of preparing a cermet composite substrate. According to an embodiment of the invention, the method comprises the following steps. A buffer layer is formed on the outer surface of the ceramic plate. The material of the buffer layer is metal and its coefficient of thermal expansion is between the coefficients of thermal expansion of the material of copper and ceramic plates. The heat dissipating copper piece, the ceramic plate and the wire copper piece are laminated to form a sandwich structure, wherein the heat dissipating copper piece and the wire copper piece are located on opposite sides of the ceramic plate and respectively adjacent to the buffer layer. The sandwich structure is placed in a high temperature furnace and heated to a fusing temperature such that the buffer layer respectively engages the first interface between the ceramic plate and the heat dissipating copper sheet, and the second interface between the ceramic plate and the conductor copper sheet. The bonded sandwich structure is cooled to room temperature to maintain the joint stability of the first interface and the second interface of the cermet composite substrate. In another embodiment of the invention, the method of preparing a cermet composite substrate comprises the following steps. A first buffer layer is formed on the outer surface of the heat-dissipating copper sheet and a second buffer layer is formed on the outer surface of the copper wire. The material of the first buffer layer and the second buffer layer is metal, and the coefficient of thermal expansion is between the coefficient of thermal expansion of the material of the copper and the ceramic plate. The heat dissipating copper piece, the ceramic plate and the wire copper piece are laminated to form a sandwich structure. In 200950629, the heat dissipating copper piece and the wire copper piece are located on opposite sides of the ceramic board and adjacent to the first buffer layer and the second buffer layer, respectively. Laminating the sandwich structure in a high temperature furnace and raising the temperature to a fusion temperature, the first buffer layer bonding the first interface between the ceramic plate and the heat dissipation copper sheet, and the second buffer layer bonding the second between the ceramic plate and the copper wire interface. The bonded sandwich structure is cooled to room temperature to maintain the bonding stability of the first interface and the second interface of the cermet composite substrate. [Embodiment] A common non-gel type heat-dissipating substrate is formed by welding oxygen-free copper (copper content 2 99.9%) with alumina in a high-temperature environment to form a cermet composite substrate. The cermet composite substrate is subjected to a process of heating and cooling during subsequent processes such as forming a wire or in use, and therefore the thermal stability of the cermet composite substrate is very important. However, at 0-100 ° C, the coefficient of thermal expansion of oxygen-free copper is about 16.5*10·6 (theoretical value), and the coefficient of thermal expansion of alumina is about 6.5*ΙΟ-6 (theoretical value). Such a difference means that the nature of the heat and cold shrinkage is too different, which may lead to peeling of the copper foil wire or interface defects.

有鑑於上述問題,相關領域亟需兼具熱傳導性以及 熱安定性之金屬陶瓷複合基板。 實施例I 本發明一實施例提出一種金屬陶瓷複合基板。第1 圖闞明依照本實施例的金屬陶瓷複合基板1〇〇的概要剖面 圖。在第1圖中,金屬陶瓷複合基板1〇〇包含散熱銅片 200950629 110、導線銅片115、陶瓷板120、第一緩衝層130以及 第二緩衝層135。陶瓷板120介於散熱銅片11〇以及導線 銅片115之間。第一緩衝層130接合陶瓷板12〇以及散 熱銅片110’以及第二緩衝層135接合陶瓷板120以及導 線銅片115。上述第一緩衝層130以及第二緩衝層135之 材料為金屬。 . 為了在陶瓷板120和散熱銅片11〇以及導線銅片115 之間提供良好的熱膨脹緩衝能力,所選擇之第一緩衝層 130以及第二緩衝層135之材料的熱膨脹係數α 1必須介 於於陶瓷板120之材料的熱膨脹係數〇:2以及銅之熱膨脹 係數α 3之間。此外,所選緩衝層材料之氧化活性不可過 低,以利金屬陶瓷複合基板100之接合。上述之緩衝層 130、135之材料可以是鎳、鈦、锆、或鐵。為了同時兼顧 提供熱膨脹緩衝能力、以及不影響金屬陶瓷複合基板100 功能兩種需求,第一緩衝層130以及第二緩衝層135之 厚度可為約100 nm至約10000 nm,或可為次微米等級或 至數微米。 上述之陶瓷板120的材料可為氧化鋁或氮化鋁。上述之 陶瓷板120的厚度不拘。 上述之散熱銅片110以及導線銅片115之材料可以 是無氧銅或紅銅(銅含量為約99.9-99.99% h由於無氧 銅所含的雜質較少(少於0.001%)’其高溫下的接合條 件較易控制,常用來製造金屬陶瓷複合基板材料。然而, 無氧銅的價格高出紅銅許多,本案發明人在中華民國專 利申請案「無膠型導熱基板及其製備方法」(申請案號, 200950629 申請日)中’揭露以紅銅製備無膠型導熱基板的方法, 此處將之納入作為參照。 上述之散熱鋼片110以及導線銅片115之厚度可為 約0.01 mm至約1 mm。值得注意的是,散熱銅片11〇主 要可負責金屬陶究複合基板1〇〇之導熱、散熱功能;而 導線銅片115則可供日後於其上形成所需導線線路。由 於散熱銅片110與導線銅片115的功能不同,二者的厚 度也可以不同。一般而言,為了提供較佳的導熱以及散 熱效果,散熱銅片U0之厚度hi可大於導線銅片115之 厚度h2。然而,為了避免因為散熱銅片u〇及導線銅片 115厚度差異過大,而導致金屬陶瓷複合基板1〇〇因受熱 後膨脹不均勻而撓曲變形,散熱銅片11〇之厚度hl應不 大於導線銅片115之厚度h2的4倍(亦即,hl$4*h2)。 根據本實施例之金屬陶瓷複合基板1〇〇如下:散熱 銅片110以及導線銅片115之材料為紅銅,且散熱銅片 110之厚度hi為約0.3 mm至約1 mm,導線銅片115之 © 厚度h2為約〇.01 mm至約1 mm;陶究板12〇的材料為氧 化鋁陶瓷板,且厚度不拘;第一緩衝層130以及第二緩衝 層!35之材料為錄,且厚度分別為次微米等級。 本實施例之金屬陶瓷複合基板100必須經過後續製 程,例如,必須於導線銅片115上形成所需導 方可運用於電子元件之封裝。在這些後續製程=封裝 製程中,金屬陶瓷複合基板100往往需歷經多次的升溫、 降溫的過程《如上所述,由於紅銅的熱膨脹係數(17*10_δ) 和氧化鋁的熱膨脹係數(6.5*10-6)相去甚遠,在金屬陶 9 200950629 瓷基板100受熱膨脹的過程中,銅片110/115以及陶瓷板 120受熱膨脹之程度也有很大的差異。此時,由於第一緩 衝層130和/或第二緩衝層135例如鎳的熱膨脹係數 (13.3*1〇_6)介於銅以及陶瓷板120之材料之間,亦即上 述緩衝層130/135受熱膨脹之程度介於銅片110/115以及 陶瓷板120之間,因此緩衝層130/135可在散熱銅片110 和陶瓷板120以及導線銅片115和陶瓷板120之間發揮 缓衝的功能,減少銅片110/115剝離的機會。 ❹In view of the above problems, there is a need for a cermet composite substrate having both thermal conductivity and thermal stability in related fields. Embodiment I An embodiment of the present invention provides a cermet composite substrate. Fig. 1 is a schematic cross-sectional view showing a cermet composite substrate 1 according to the present embodiment. In Fig. 1, the cermet composite substrate 1A includes a heat-dissipating copper sheet 200950629 110, a wire copper piece 115, a ceramic plate 120, a first buffer layer 130, and a second buffer layer 135. The ceramic plate 120 is interposed between the heat-dissipating copper sheets 11A and the wire copper sheets 115. The first buffer layer 130 bonds the ceramic plate 12A and the heat-dissipating copper plate 110' and the second buffer layer 135 bonds the ceramic plate 120 and the copper wire 115. The material of the first buffer layer 130 and the second buffer layer 135 is metal. In order to provide a good thermal expansion buffering capability between the ceramic plate 120 and the heat-dissipating copper sheet 11〇 and the conductor copper sheet 115, the thermal expansion coefficient α 1 of the material of the selected first buffer layer 130 and the second buffer layer 135 must be between The material of the ceramic plate 120 has a thermal expansion coefficient 〇: 2 and a thermal expansion coefficient α 3 of copper. In addition, the oxidation activity of the selected buffer layer material should not be too low to facilitate bonding of the cermet composite substrate 100. The material of the buffer layers 130, 135 described above may be nickel, titanium, zirconium, or iron. In order to simultaneously satisfy the requirements of providing thermal expansion buffering capability and not affecting the function of the cermet composite substrate 100, the first buffer layer 130 and the second buffer layer 135 may have a thickness of about 100 nm to about 10000 nm, or may be a sub-micron level. Or to a few microns. The material of the ceramic plate 120 described above may be aluminum oxide or aluminum nitride. The thickness of the ceramic plate 120 described above is not limited. The material of the heat-dissipating copper sheet 110 and the wire copper piece 115 may be oxygen-free copper or copper (the copper content is about 99.9-99.99% h. Since the oxygen-free copper contains less impurities (less than 0.001%)' The bonding conditions are easier to control and are commonly used to fabricate cermet composite substrate materials. However, the price of oxygen-free copper is much higher than that of red copper. The inventor of the present invention applied for a patent-free "non-gel type thermally conductive substrate and its preparation method" in the Republic of China. (Application No., 200950629 Application No.) discloses a method for preparing a non-gel type heat-conductive substrate made of red copper, which is incorporated herein by reference. The heat-dissipating steel sheet 110 and the copper wire 115 may have a thickness of about 0.01 mm. It is worth about 1 mm. It is worth noting that the heat-dissipating copper sheet 11〇 can mainly be responsible for the heat conduction and heat dissipation functions of the metal ceramic composite substrate 1; and the conductor copper sheet 115 can be used to form the required wire line thereon. Since the functions of the heat-dissipating copper sheet 110 and the wire copper sheet 115 are different, the thicknesses of the two pieces may be different. Generally, in order to provide better heat conduction and heat dissipation, the thickness hi of the heat-dissipating copper sheet U0 may be larger than that of the wire. The thickness h2 of the sheet 115. However, in order to avoid the difference in thickness between the heat-dissipating copper sheet and the copper strip 115, the cermet composite substrate 1 is flexibly deformed due to uneven expansion after being heated, and the heat-dissipating copper sheet 11〇 The thickness hl should be no more than 4 times the thickness h2 of the wire copper piece 115 (that is, hl$4*h2). The cermet composite substrate 1 according to the present embodiment is as follows: the heat-dissipating copper piece 110 and the wire copper piece 115 The material is red copper, and the thickness hi of the heat-dissipating copper sheet 110 is about 0.3 mm to about 1 mm, and the thickness h2 of the copper wire 115 is about 〇.01 mm to about 1 mm; the material of the ceramic plate 12 is oxidized. The aluminum ceramic plate has the same thickness; the materials of the first buffer layer 130 and the second buffer layer !35 are recorded and the thickness is submicron. The cermet composite substrate 100 of the embodiment must be subjected to a subsequent process, for example, Forming a desired lead on the copper strip 115 can be applied to the packaging of electronic components. In these subsequent processes = packaging processes, the cermet composite substrate 100 often needs to undergo a plurality of processes of temperature rise and temperature reduction as described above, Red copper heat The expansion coefficient (17*10_δ) is far from the thermal expansion coefficient of alumina (6.5*10-6). During the thermal expansion of the metal ceramic 9 200950629 porcelain substrate 100, the copper sheet 110/115 and the ceramic plate 120 are thermally expanded. There is also a big difference. At this time, since the thermal expansion coefficient (13.3*1〇_6) of the first buffer layer 130 and/or the second buffer layer 135 such as nickel is between the materials of the copper and the ceramic plate 120, that is, The buffer layer 130/135 is thermally expanded between the copper sheet 110/115 and the ceramic board 120, so that the buffer layer 130/135 can be in the heat dissipation copper sheet 110 and the ceramic board 120, and the conductor copper sheet 115 and the ceramic board 120. The buffer function is used to reduce the chance of copper sheet 110/115 peeling. ❹

實施例II 根據本發明另一實施例,提出一種金屬陶瓷複合基板的 製備方法。第2圖繪示根據本實施例製備第1圖之金屬陶瓷 複合基板100時,所用的夾層結構205。應可理解,本實施例 中所用之材料及規格與上文實施例I中所述相同,此處不再贅 述。 根據本實施例,製備金屬陶瓷複合基板100的方法包含 © 以下步驟。於陶瓷板220之外表面上形成緩衝層230,緩衝層 230之材料為金屬,且其熱膨脹係數介於紅銅的熱膨脹係數與 氧化鋁的熱膨脹係數之間。疊合散熱銅片210、陶瓷板220以 及導線銅片215而形成夾層結構205,其中散熱銅片210以及 導線銅片215位於陶瓷板220之相對二側並分別與緩衝層230 相毗連。將夾層結構205置於一高溫爐内並升溫至一熔接 溫度,以分別接合陶瓷板220與散熱銅片210間的第一 介面250、以及陶瓷板220與導線銅片215間的第二介面 255。將夾層結構205冷卻至室溫(約25°C ),以維持第 200950629 一介面250以及第二介面255之接合穩定度。 上述緩衝層230之形成方法為電鍍法或濺鍍法。本 實施例中,係利用電鍍法於陶瓷板220之外表面上形成 缓衝層230。 在高溫爐内進行上述熔接時,適當的熔接溫度為約 1060°C至約l〇75°C。本實施例中,所用之熔接溫度為約 1060°C至約l〇65°C。高溫爐内的氣體組成大致為:氮、 氧(濃度約為1*1〇·6-1〇〇*1〇·6)、以及少量水蒸氣。 值得注意的是,在上述將夾層結構205冷卻至室溫 的過程中,金屬陶瓷複合基板100中所包含的各種材料會因 為溫度降低而收縮。傳統金屬陶瓷複合基板中,因為銅以及 氧化鋁收縮比率的差異,往往導致接合介面中產生眾多孔 隙而形成介面缺陷,而影響基板之熱傳導性質。然而,根 據本實施例之方法所形成之緩衝層230,除了實施例I中所 述之緩衝能力外,尚可減少介面250/255中之孔隙形成,因 而可改善上述介面缺陷以提升最終產品的導熱、散熱性能。Embodiment II According to another embodiment of the present invention, a method of preparing a cermet composite substrate is proposed. Fig. 2 is a view showing a sandwich structure 205 used when the cermet composite substrate 100 of Fig. 1 is prepared according to the present embodiment. It should be understood that the materials and specifications used in this embodiment are the same as those described in Embodiment I above, and will not be described herein. According to the present embodiment, the method of preparing the cermet composite substrate 100 includes the following steps. A buffer layer 230 is formed on the outer surface of the ceramic plate 220. The material of the buffer layer 230 is metal, and the coefficient of thermal expansion is between the coefficient of thermal expansion of the red copper and the coefficient of thermal expansion of the aluminum oxide. The heat dissipating copper sheet 210, the ceramic board 220, and the conductor copper sheet 215 are laminated to form a sandwich structure 205, wherein the heat dissipating copper sheet 210 and the conductor copper sheet 215 are located on opposite sides of the ceramic board 220 and adjacent to the buffer layer 230, respectively. The sandwich structure 205 is placed in a high temperature furnace and heated to a fusion temperature to respectively bond the first interface 250 between the ceramic plate 220 and the heat dissipation copper sheet 210, and the second interface 255 between the ceramic plate 220 and the conductor copper sheet 215. . The sandwich structure 205 is cooled to room temperature (about 25 ° C) to maintain the bonding stability of the interface 200950629 and the second interface 255. The buffer layer 230 is formed by a plating method or a sputtering method. In the present embodiment, the buffer layer 230 is formed on the outer surface of the ceramic board 220 by electroplating. When the above welding is carried out in a high temperature furnace, a suitable welding temperature is from about 1060 ° C to about 10 ° C ° C. In this embodiment, the fusion temperature used is from about 1060 ° C to about 10 ° C. The gas composition in the high-temperature furnace is roughly nitrogen, oxygen (concentration is about 1*1〇·6-1〇〇*1〇·6), and a small amount of water vapor. It is to be noted that, in the above-described process of cooling the sandwich structure 205 to room temperature, various materials contained in the cermet composite substrate 100 may shrink due to a decrease in temperature. In the conventional cermet composite substrate, because of the difference in shrinkage ratio between copper and alumina, a large number of pores are formed in the bonding interface to form interface defects, which affect the heat conduction properties of the substrate. However, the buffer layer 230 formed according to the method of the present embodiment can reduce the formation of voids in the interface 250/255 in addition to the buffering capacity described in Embodiment 1, thereby improving the above-mentioned interface defects to enhance the final product. Thermal and thermal performance.

實施例III 根據本發明又一實施例,提出另一種金屬陶瓷複合基板 的製備方法。第3圖繪示根據本實施例製備第1圖之金屬陶 瓷複合基板1〇〇時,所用的夾層結構305。應可理解,此處僅 敘述實施例與實施例II中不同之步驟,並不在贅述其餘相同 之材料、規格、及方法。 根據本實施例,製備金屬陶瓷複合基板1〇〇的方法包含 以下步驟。於散熱銅片310之外表面上形成第一緩衝層330, 11 200950629 以及於導線銅片315之外表面上形成第二緩衝層335。其中, 第一缓衝層330以及第二緩衝層335之材料為金屬,且其熱 膨脹係數介於紅銅的熱膨脹係數與氧化鋁的熱膨脹係數之 間。疊合散熱銅片310、陶瓷板320以及導線銅片315而形成 一夾層結構305,其中散熱銅片310以及導線銅片315位於陶 瓷板320之相對二側並分別與第一緩衝層33〇及第二緩衝層 335相础連。將夾層結構3〇5置於一高溫爐内並升溫至一 溶接溫度’使第一緩衝層330接合陶瓷板320與散熱銅 片310間的第一介面35〇、以及第二緩衝層335接合陶瓷 板320與導線銅片315間的第二介面355。將夾層結構 305冷卻至室溫(約25°C ),以維持第一介面35〇以及第 二介面355之接合穩定度。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍内备可作各種之更動與满飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。Embodiment III According to still another embodiment of the present invention, a method of preparing another cermet composite substrate is proposed. Fig. 3 is a view showing a sandwich structure 305 used in the preparation of the metal ceramic composite substrate 1 of Fig. 1 according to the present embodiment. It should be understood that only the steps of the embodiment and the embodiment II are described herein, and the same materials, specifications, and methods are not described herein. According to this embodiment, the method of preparing the cermet composite substrate 1 包含 includes the following steps. A first buffer layer 330, 11 200950629 is formed on the outer surface of the heat dissipation copper sheet 310, and a second buffer layer 335 is formed on the outer surface of the conductor copper sheet 315. The material of the first buffer layer 330 and the second buffer layer 335 is metal, and the thermal expansion coefficient is between the thermal expansion coefficient of the red copper and the thermal expansion coefficient of the aluminum oxide. The heat dissipating copper piece 310, the ceramic plate 320 and the wire copper piece 315 are stacked to form a sandwich structure 305, wherein the heat dissipating copper piece 310 and the wire copper piece 315 are located on opposite sides of the ceramic plate 320 and respectively respectively associated with the first buffer layer 33. The second buffer layer 335 is connected. The sandwich structure 3〇5 is placed in a high temperature furnace and heated to a melting temperature 'the first buffer layer 330 is bonded to the first interface 35A between the ceramic plate 320 and the heat dissipation copper sheet 310, and the second buffer layer 335 is bonded to the ceramic. A second interface 355 between the board 320 and the conductor copper piece 315. The sandwich structure 305 is cooled to room temperature (about 25 ° C) to maintain the bonding stability of the first interface 35 〇 and the second interface 355. While the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and the invention may be practiced otherwise without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

W 【圖式簡單說明] 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂’所附圖式之詳細說明如下: 第1圖闞明依照本發明一實施例的金屬陶瓷複合基板 的概要剖面圖。 第2圖闡明依照本發明-實施例之方法製備第1圖之 金屬陶瓷複口基板時,所用之夾層結構的概要剖面圏。 第3圖闞明依照本發明另一實施例之方法製備第1圖 12 200950629 之金屬陶瓷複合基板時,所用之夾層結構的概要剖面圖。BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; A schematic cross-sectional view of a cermet composite substrate. Fig. 2 is a view showing a schematic cross-sectional view of the sandwich structure used in the preparation of the cermet composite substrate of Fig. 1 in accordance with the method of the present invention. Fig. 3 is a schematic cross-sectional view showing the sandwich structure used in the preparation of the cermet composite substrate of Fig. 12 200950629 in accordance with another embodiment of the present invention.

【主要元件符號說明】 100 :金屬陶瓷複合基板 115、215、315 :導線銅片 130、230、330 :第一緩衝層 205、305 :夾層結構 250、350 :第一介面 340 :散熱銅片 hi :散熱銅片厚度 110、210、310 :散熱銅片 120、220、320 :陶瓷板 135、335 :第二緩衝層 240 :陶瓷板 255、355 :第二介面 345 :導線銅片 h2 :導線銅片厚度[Description of main component symbols] 100: cermet composite substrate 115, 215, 315: wire copper sheets 130, 230, 330: first buffer layer 205, 305: sandwich structure 250, 350: first interface 340: heat sink copper sheet hi : Heat sink copper thickness 110, 210, 310: heat sink copper sheets 120, 220, 320: ceramic plates 135, 335: second buffer layer 240: ceramic plates 255, 355: second interface 345: wire copper sheet h2: wire copper Sheet thickness

1313

Claims (1)

200950629 十、申請專利範圍: 1' 一種金屬陶瓷複合基板,包含: 一散熱銅片; 一導線銅片; 一陶瓷板,介於該散熱銅片與該導線銅片之間; 第一緩衝層’接合該陶瓷板與該散熱銅片;以及 一第二緩衝層’接合該陶瓷板與該導線銅片,其中 〇 該第一緩衝層以及第二緩衝層之材料為金屬,且其熱膨 服係數介於銅的熱膨脹係數與該陶竟板之材#的熱膨服 係數之間。 如凊求項1所述之金屬陶瓷複合基板,其中該 第-緩衝層以及該第二緩衝層之材料係選自由錄、鈦、 錘、以及鐵組成之群組。 ❹ 3.如請求項1所述之金屬陶瓷複合基板,其中該 ^ 10000 该第一緩衝層之厚度分別為約100nm至 約 10000 nm 〇 4. 散熱銅片 如凊求項1所述之金屬陶究複合基板, 與該導線銅片之材料為無氧銅或紅钢。 其中該 5·如請求項1所述之金屬陶竟複合基板其中該 200950629 散熱銅片之厚度與該導線銅片 至約1 mm。 之厚度分別為約 〇·〇1 mm 7. 如請求項i所述之金屬陶竟複合基板,其中該 陶瓷板之材料為氧化鋁或氮化鋁。 ❹ 8, 一種金屬陶瓷複合基板的製備方法,包含: (a) 於陶瓷板之外表面上形成一緩衝層,該緩衝層 之材料為金屬’且其熱膨脹係數介於銅的熱膨脹係數與 該陶瓷板之材料的熱膨脹係數之間; (b) 疊合一散熱銅片、該陶瓷板以及一導線銅片而形 成一夾層結構,其中該散熱銅片以及該導線銅片位於該 陶瓷板之相對二側並分別與該緩衝層毗連; ® (c)於一高溫爐内升溫該夹層結構至一熔接溫度,使 該緩衝層接合該散熱銅片及該導線鋼片;以及 (d)冷卻該夾層結構至一室溫。 一種金屬陶瓷複合基板的製備方法,包含: (a) 於一散熱銅片之外表面上形成一第一缓衝 層’該第一缓衝層之材料為金屬且其熱膨脹係數介 於銅以及該陶瓷板之材料的熱膨脹係數之間; (b) 於一導線銅片之外表面上形成一第二緩衡 15 200950629 緩衝層之材料相 層,該第二緩衝層之材料與該第 同; (以疊合該散熱銅片、一陶瓷板以及該 形成-夾層結構,其中該散熱鋼片以及該導線二: 位於該陶瓷板之相對二側並分 x 及該第二緩衝層晚連; 與该第-緩衝層 (d) 於一高溫爐内升溫該夾層結構至一熔接溫200950629 X. Patent application scope: 1' A cermet composite substrate comprising: a heat-dissipating copper piece; a wire copper piece; a ceramic plate between the heat-dissipating copper piece and the wire copper piece; the first buffer layer' Engaging the ceramic plate and the heat dissipating copper sheet; and a second buffer layer 'bonding the ceramic plate and the wire copper piece, wherein the first buffer layer and the second buffer layer are made of metal, and the thermal expansion coefficient thereof Between the thermal expansion coefficient of copper and the thermal expansion coefficient of the material of the ceramic board. The cermet composite substrate according to claim 1, wherein the material of the first buffer layer and the second buffer layer is selected from the group consisting of recording, titanium, hammer, and iron. The cermet composite substrate according to claim 1, wherein the thickness of the first buffer layer is from about 100 nm to about 10000 nm 〇4. The heat-dissipating copper sheet is metal ceramic according to claim 1. The composite substrate is made of copper oxide or red steel. Wherein the metal ceramic composite substrate according to claim 1 wherein the thickness of the 200950629 heat-dissipating copper sheet is about 1 mm from the copper of the conductor. The thickness is about 〇·〇1 mm. 7. The metal ceramic composite substrate according to claim i, wherein the material of the ceramic plate is alumina or aluminum nitride. ❹ 8. A method for preparing a cermet composite substrate, comprising: (a) forming a buffer layer on a surface of the ceramic plate, the material of the buffer layer being metal and having a coefficient of thermal expansion between the thermal expansion coefficient of the copper and the ceramic (b) superimposing a heat-dissipating copper sheet, the ceramic board, and a wire copper sheet to form a sandwich structure, wherein the heat-dissipating copper sheet and the copper strip of the wire are located opposite to the ceramic plate Sides are respectively adjacent to the buffer layer; (c) heating the sandwich structure to a fusion temperature in a high temperature furnace to bond the buffer layer to the heat dissipation copper sheet and the wire steel sheet; and (d) cooling the interlayer Structure to a room temperature. A method for preparing a cermet composite substrate, comprising: (a) forming a first buffer layer on a surface of a heat dissipating copper sheet; the material of the first buffer layer is metal and the coefficient of thermal expansion is between copper and Between the thermal expansion coefficients of the material of the ceramic plate; (b) forming a second phase of the material layer of the second buffer 15 200950629 buffer layer on the outer surface of the copper wire, the material of the second buffer layer is the same; The heat dissipating copper sheet, the ceramic plate, and the forming-sandwich structure are laminated, wherein the heat dissipating steel sheet and the wire 2 are located on opposite sides of the ceramic plate and are separated by x and the second buffer layer; The first buffer layer (d) heats the sandwich structure to a fusion temperature in a high temperature furnace 度’使該第-緩衝層及該第二緩衝層接合該陶; 板,以及 (e) 冷卻該夾層結構至一室溫。 1〇·如請求項8或9所述之金屬陶瓷複合基板的製 備方法,其中該緩衝層之金屬材料係選自由鎳、鈦、锆、 以及鐵組成之群紐_。 11.如請求項8或9所述之金屬陶瓷複合基板的製 〇 備方法,其中該緩衝層之厚度分別為約100 nm至約10000 nm ° 12.如請求項8所述之金屬陶瓷複合基板的製備方 法’其中該緩衝層的形成方法為電鍍或濺鍍法。 13_如請求項9所述之金屬陶瓷複合基板的製備方 法’其中該第〜緩衝層以及該第二緩衝層的形成方法為 電鍍或濺鍍法〇 200950629 14'如請求項8或9所述之金屬陶瓷複合基板的製 備方法’其中該熔接溫度為約106(TC至約1075°C。 15·如請求項8或9所述之金屬陶瓷複合基板的製 備方法’其中該熔接溫度為約1060°C至約1065t。 ❽ 16.如請求項8或9所述之金屬陶瓷複合基板的製 備方法’其中該散熱銅片與該導線銅片為無氧銅或紅銅。 17·如請求項8或9所述之金屬陶瓷複合基板的製 備方法’其中該散熱銅片之厚度與該導線銅片之厚度分 別為約0.01 mm至約1 mm。 18.如請求項8或9所述之金屬陶瓷複合基板的製 備方法’其中該散熱銅片之厚度不大於該導線銅片之厚 ® 度的4倍。 19.如請求項8或9所述之金屬陶瓷複合基板的製 備方法’其中該陶瓷板之材料為氧化鋁或氮化鋁。 17Degrees such that the first buffer layer and the second buffer layer are bonded to the pottery; the plate, and (e) the sandwich structure is cooled to a room temperature. The method for producing a cermet composite substrate according to claim 8 or 9, wherein the metal material of the buffer layer is selected from the group consisting of nickel, titanium, zirconium, and iron. The method for preparing a cermet composite substrate according to claim 8 or 9, wherein the buffer layer has a thickness of about 100 nm to about 10000 nm, respectively. 12. The cermet composite substrate according to claim 8 The preparation method of the buffer layer is a plating or sputtering method. 13_ The method for preparing a cermet composite substrate according to claim 9, wherein the first buffer layer and the second buffer layer are formed by electroplating or sputtering 〇200950629 14' as described in claim 8 or 9. The preparation method of the cermet composite substrate, wherein the fusion temperature is about 106 (TC to about 1075 ° C. The preparation method of the cermet composite substrate according to claim 8 or 9 wherein the fusion temperature is about 1060 The method for preparing a cermet composite substrate according to claim 8 or 9, wherein the heat-dissipating copper sheet and the copper wire of the wire are oxygen-free copper or copper. 17 Or a method for producing a cermet composite substrate according to claim 9 wherein the thickness of the heat-dissipating copper sheet and the thickness of the copper sheet of the conductor are respectively from about 0.01 mm to about 1 mm. 18. The cermet according to claim 8 or 9. The method for preparing a composite substrate, wherein the thickness of the heat-dissipating copper sheet is not more than 4 times the thickness of the copper sheet of the wire. 19. The method for preparing a cermet composite substrate according to claim 8 or 9, wherein the ceramic plate The material is alumina or aluminum nitride 17
TW97119141A 2008-05-23 2008-05-23 Metal/ceramic composite substrate and method for manufacturing the same TW200950629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97119141A TW200950629A (en) 2008-05-23 2008-05-23 Metal/ceramic composite substrate and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97119141A TW200950629A (en) 2008-05-23 2008-05-23 Metal/ceramic composite substrate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
TW200950629A true TW200950629A (en) 2009-12-01

Family

ID=44871394

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97119141A TW200950629A (en) 2008-05-23 2008-05-23 Metal/ceramic composite substrate and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TW200950629A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11765861B2 (en) 2011-10-17 2023-09-19 Asia Vital Components Co., Ltd. Vapor chamber structure
US11879690B2 (en) 2020-05-06 2024-01-23 Asia Vital Components (China) Co., Ltd. Flexible wick structure and deformable heat-dissipating unit using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11765861B2 (en) 2011-10-17 2023-09-19 Asia Vital Components Co., Ltd. Vapor chamber structure
US11879690B2 (en) 2020-05-06 2024-01-23 Asia Vital Components (China) Co., Ltd. Flexible wick structure and deformable heat-dissipating unit using the same

Similar Documents

Publication Publication Date Title
TWI521651B (en) Manufacturing method of substrate for power module having heatsink, substrate for power module having heatsink, and power module
US6310775B1 (en) Power module substrate
US8921996B2 (en) Power module substrate, power module, and method for manufacturing power module substrate
TW201041093A (en) Section-difference type ceramics base copper-clad laminate set and manufacturing method thereof
TW201701975A (en) Bonded body, power module substrate with heat sink, heat sink and method of producing bonded body, method of producing power module substrate with heat sink and method of producing heat sink
JP5504842B2 (en) Power module substrate, power module substrate with heat sink, power module, and method for manufacturing power module substrate
TW201531188A (en) Jointed body and power module substrate
TW200835431A (en) Ceramic/metal composite structure and method of manufacturing the same
CN101685805A (en) Metal ceramic composite substrate and preparation method thereof
WO2018180159A1 (en) Method for producing insulated circuit board with heat sink
JP2010098059A (en) Substrate for power module with heat sink, power module with heat sink, substrate for power module with buffer layer, and method of manufacturing substrate for power module with heat sink
JP2010098057A (en) Substrate for power module with heat sink, power module with heat sink and substrate for power module with buffer layer
JP2011119652A (en) Method for producing substrate for power module with heat sink, substrate for power module with heat sink, and power module
TW201248949A (en) Light emitting diode carrier assemblies and method of fabricating the same
CN103057202A (en) Lamination-structured heat sink material and preparation method
TW201037803A (en) Multi-layer packaging substrate, method for making the packaging substrate, and package structure of light-emitting semiconductor
JP5018737B2 (en) Manufacturing method of semiconductor device
JP7081686B2 (en) Joined body, insulated circuit board with heat sink, and heat sink
TW200950629A (en) Metal/ceramic composite substrate and method for manufacturing the same
JP5640569B2 (en) Power module substrate manufacturing method
JP2014039062A (en) Substrate for power module, substrate for power module having heat sink, power module, and method for manufacturing substrate for power module
TW201232725A (en) Package carrier
JP6561886B2 (en) Manufacturing method of power module substrate with heat sink
JP2004152972A (en) Ceramic circuit board with heat sink and its manufacturing method
JP2004152971A (en) Ceramic circuit board with heat sink and its manufacturing method