200950115 六、發明說明: 【發明所屬技術領域】 發明領域 本發明係關於-種染料敏化太陽能電池模組,較特定 .5 i也關於-種具有在電池或子模組之間的重疊部份處的一導 線上形成的一彎曲或突出的染料敏化太陽能電池模組,如 此藉由多個彎曲或突出增加該導線的長度以增加邊緣,因 ❹ 此擴張沿該等邊緣的傳導路徑,使得電流可沿該等邊緣更 佳且一致地流動以減少染料敏化太陽能電池模組的串聯電 10 阻,從而改進太陽能電池模組的光電轉換效率。 【先前技4标;1 發明背景 自從一染料敏化奈米粒子氧化鈦太陽能電池於1991年 由瑞士洛桑理工學院(EPFL)的Michael Gratzel等人開發,許 15 多與此有關的研究在進行中。因為該染料敏化太陽能電池 % 較之於現有的矽太陽能電池具有顯著較低的製造成本,其 可代替現有的非晶矽太陽能電池。且,與矽太陽能電池不 同,染料敏化太陽能電池是主要是由能夠吸收可見光以產 生電子空洞對的染料分子及傳導該等產生電子的過渡金屬 20 氧化物所組成的一光電化學太陽能電池。 大體上,一染料敏化太陽能電池的一單元電池由上方 及下方透明基板、分別形成於該等透明基板上的導電透明 電極、形成於相當於一第一電極的導電透明電極上的一染 料吸收過渡金屬氧化物多孔層、形成於相當於—第二電極 200950115 的導電透明電極上的—觸媒薄膜電極、 之間的一 屬氧化物’例如加2多孔電極與該觸媒薄膜電極4度金 電解質所組成。 5 10 、,也且古乍 ,之現有的矽太陽能電 〜、有很低的效率。因此,增加該電池本身的效率 在積極地進行,且通過整合為—模㈣效枝進 ^ 率的研究也在進行。 阿攻 、因此,對—模組之改進及一新穎的整合方法存有需 求’該整合方法可解決—染料敏化太陽能電池模組因整合 導致之效率減少問題,在該染料敏化太陽能電池模組中: 鄰接的電池或子模組藉由一正電極及一與其鄰接的—負電 極之間的一重疊被電連接。 C 明内穷】 發明概要 爲了克服先前技術中的該等問題,本發明的一目的是 提供-種染料敏化太陽能電池模組,其可使在電池或子模 組之間的—重㈣份處的-導_修最,】、化以減少染料 敏化太陽能電池模_串聯電阻,由此改進太陽能電池模 組的光電轉換效率。 ^ :克服°亥目的,本發明提供一染料敏化太陽能電池 模組其巾鄰接電池或子模組藉由—正電極和與其鄰接的 負電極之間@ f疊被電連接,其中該重疊部份的至少 -側具有從該正電極或負電極的一端引出的一導線且其中 間具有一彎曲或彎轉的突出。 200950115 ' 依據本發明的染料敏化太陽能電池模組,一彎曲或突 出,尤其一在該彎曲/突出點急劇彎轉的邊緣在電池或子模 組之間的重疊部份處的一導線上形成,且因而該導線的長 度藉由多個彎曲或突出被增加以增加邊緣。且,因為電流 ' 5 沿表面或邊緣尤其一導體的頂點流動,傳導路徑藉由增加 該等頂點被擴張,且電流藉邊緣均勻分佈而減少染料敏化 太陽能電池模組的串聯電阻故更佳且均勻地沿邊緣流動, 從而改進太陽能電池模組的光電轉換效率。 〇 且,如果一絕緣薄膜塗層等等的干擾的由多個尖頂端 ίο 的結構產生,該絕緣薄膜可很容易被破壞因此易於電連接。 圖式簡單說明 . 第1圖是繪示本發明的一染料敏化太陽能電池模組中 的電池之間的連接的一個實施例的截面視圖,及連接之前 的一個電池的平面圖。 15 第2圖是繪示本發明的一染料敏化太陽能電池模組中 的子模組之間的連接的一個實施例的截面視圖,及連接之 參 前的一個子模組的平面圖。 第3圖是繪示用於本發明的染料敏化太陽能電池模組 中的子模組的另一實施例的平面圖。 20 第4圖是繪示用於本發明的染料敏化太陽能電池模組 中的子模組的另一實施例的平面圖。 第5圖是繪示用於本發明的染料敏化太陽能電池模組 中的子模組的另一實施例的平面圖。 【實施方式3 5 200950115 較佳實施例之詳細說明 現在將詳細說明本發明。 本發明係關於一種染料敏化太陽能電池模組,其中鄰 接的電池或子模組藉由一正電極及與其鄰接的一負電極之 5 間的一重疊被電連接,其中該重疊部份的至少一側具有從 該正電極或負電極的一端引出的一導線且在中間具有一彎 曲或彎轉的突出。 現在將參考附圖說明本發明。 本發明的染料敏化太陽能電池模組的具體範例如第1 10 圖至第5圖所示。特別地,因為電流沿表面或邊緣尤其一導 體的頂端流動,在本發明中,一導線不是像在先前技術中 一樣形成為直的,而是中間(非指中央而是一非端部的特定 部份)具有一彎曲或彎轉突出以增加該導線的長度從而增 加縱向邊緣,或該邊緣可藉由突出的結構被增加。該彎曲 15 可被形成為如第1圖所示的一弧形形狀,且較佳地,如第2 圖至第4圖所示,該導線的彎曲具有角狀邊緣,此可提供更 佳的表面頂端,促進電流流動到鄰接電池或子模組的電 極。該突出可以是任意形狀,且如第5圖所示,具有許多頂 端的一四角突出或多角突出因其促進電流流動故為較佳 20 的。 且,如第1圖至第5圖所示,該導線最好是由該正電極 或負電極的一端所引出且再被連接至該正電極或負電極的 另一端的一閉環,因為在這種情況下,電流流動至鄰接電 池或子模組可在兩部份進行,因此使電流均勻流動在該整 200950115 個導線上。 5 ❹ 10 15 ❸ 且,如第2圖至第4圖所示,該導線的彎曲最好包含至 少一個鋸齒形狀或突出及凹陷「[」形狀(第3圖至第4圖), 因為其可使長度及邊緣、頂端面積最大化。且,該鋸齒卅 狀或突出及凹陷「[」形狀(意指突出及凹陷「C」形狀在 一平面上由一邊到另一邊或反覆地被形成)較佳地具有〜 規則間距,使得因部件的均勻分佈促進電流流動至鄰接電 池或子模組的電極而使電流均勻流動在整個導線上。 該導線可由在電池結構中之TC〇(透明導電氧化物)薄 膜或觸媒電極薄膜結構被形成且接著使其形成圖案,或其 可由孔板印刷或先前技術的印刷方法被個別形成或在塗復 後形成圖案等等。在後者的情況中,TC0薄膜或對應於讀 電池電極之觸媒電極薄膜與個別形成的導線之間的電連镇 應該被個別形成。 本發明的具體範例緣示於第1圖中,其中電池之間的〜 電連接由該第一電池(左)的第一電極(下方電極)及與其鄰 接的該第二電池(右)的第二電極(上方電極)之間的一重疊 形成,且由該第一電池的該下方電極引出的一導線(在如所 示的範例中,與由氧化物及染料組成的一層連接的TC〇層) 具有一弧形的彎曲。該下方電極可以是一與如第丨圖所示由 氧化物及染料組成的一層連接的TCO層;或者,如果—電 池如第2圖所示被倒置對稱地形成,一與一觸媒電極(pt)層 連接的TCO層可與一導線連接。且如果一電池不包含一 TCO層,一觸媒電極層可與—導線連接,或該層形成圖案 20 200950115 之一形式本身可以是一導線。 . 另一具體範例繪示於第2圖中,其中多個整合子模組之 間的一電連接由該第一子模組(左)的第一電極(上方電極) 及與其鄰接之該第二子模組(右)的第二電極(下方電極)之 5 間的一重疊形成’且從該第二子模組的下方電極引出的一 導線具有一鋸齒形的彎曲。該下方電極可以是如第2圖所示 與一觸媒電極(Pt)連接的一TCO層;或者,如果一子模組如 -第1圖所示被倒置對稱地形成,與由氧化物及染料組成的— 層連接的一TCO層可與一導線連接。且,如果一子模組不 © 包含一tco層,一觸媒電極層可與一導線連接’或一圖案 形式的該層本身可以是一導線。 另外’如第3圖及第4圖所示,該導線可包含突出及凹 陷「c」形狀從一邊到另一邊地重複(第3圖),或形成第3 圖中突出及凹陷「[」形狀的直線可由一邊被重覆到另— 15 邊的突出及凹陷細部「cj形狀組成(第4圖,其中第3圖的 該等直線仍由突出及凹陷組成)。因此,邊緣及頂端可被最 大化。在第3圖至第5圖繪示的該等子模組中,電池之間的 Ο 電連接方法依電池間的接法(並聯連接或串聯連接)而彼此 不同’且概要地緣示電池被電連接,電連接的具體方法可 20 依據先前技術的太陽能電池整合方法被個別地達成。且, 電池或子模組之間的連接及第1圖至第4圖所繪示的每一電 池的構造僅為說明本發明,且本發明之範圍不受其限制, 且染料敏化太陽能電池的各種已知構造可被應用於本發 明。 8 200950115 • 最後,如第5圖所示,該導線可包含一突出。上述效果 可藉由除形成一彎曲外在一導線形成一突出被獲得。如第5 圖所示,具有許多頂端的四角形或多邊形形式的一突出促 進電流流動。 .5 一太陽能電池模組可藉由將一導電膠塗覆至上述形成 _ 的子模組之間的一重疊部份被製造以形成一裝配,在該裝 配的上/下表面上結合一絕緣膜,例如EVA,且接合該上/ 下表面上的一保護玻璃。 ❹ 本發明不限制於上述範例及所附的圖式,且各種修改 10 及改變可由該技藝中具有通常知識者做出而不違背如所附 申請專利範圍所描述的本發明之層面及範圍。 【圖式簡單說明3 • 第1圖是繪示本發明的一染料敏化太陽能電池模組中 的電池之間的連接的一個實施例的截面視圖,及連接之前 15 的一個電池的平面圖。 第2圖是繪示本發明的一染料敏化太陽能電池模組中 的子模組之間的連接的一個實施例的截面視圖,及連接之 前的一個子模組的平面圖。 第3圖是繪示用於本發明的染料敏化太陽能電池模組 20 中的子模組的另一實施例的平面圖。 第4圖是繪示用於本發明的染料敏化太陽能電池模組 中的子模組的另一實施例的平面圖。 第5圖是繪示用於本發明的染料敏化太陽能電池模組 中的子模組的另一實施例的平面圖。 9 200950115 【主要元件符號說明】 10a···上方玻璃 10b…下方玻璃 20a···上方 TCO 20b···下方TCO 30…氧化鈦粒子 40···觸媒電極 50…密封材料 60".導電膠 100…太陽能電池之電池 110…導體 120…下方普通玻璃 130…導線 Θ❹ 10BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dye-sensitized solar cell module, which is more specific. a curved or protruding dye-sensitized solar cell module formed on a wire such that the length of the wire is increased by a plurality of bends or protrusions to increase the edge, thereby expanding the conduction path along the edges Current can flow better and consistently along the edges to reduce the series electrical resistance of the dye-sensitized solar cell module, thereby improving the photoelectric conversion efficiency of the solar cell module. [Previous Technical Standards; 1 Background of the Invention Since a dye-sensitized nanoparticle titanium oxide solar cell was developed in 1991 by Michael Gratzel of the Lausanne Institute of Technology (EPFL) in Switzerland, more than 15 studies related to this are underway. . Since the dye-sensitized solar cell has a significantly lower manufacturing cost than the existing tantalum solar cell, it can replace the existing amorphous germanium solar cell. Further, unlike the tantalum solar cell, the dye-sensitized solar cell is a photoelectrochemical solar cell mainly composed of a dye molecule capable of absorbing visible light to generate an electron hole pair and a transition metal 20 oxide which conducts the electrons. In general, a unit cell of a dye-sensitized solar cell absorbs a dye from an upper and lower transparent substrate, a conductive transparent electrode respectively formed on the transparent substrate, and a dye formed on a conductive transparent electrode corresponding to a first electrode. a transition metal oxide porous layer, a catalyst film electrode formed on the conductive transparent electrode corresponding to the second electrode 200950115, a genus oxide between the two, for example, a porous electrode and a catalyst film electrode 4 degrees gold Composition of electrolytes. 5 10 , and also the ancient 乍 , the existing 矽 solar power ~, has a very low efficiency. Therefore, increasing the efficiency of the battery itself is actively carried out, and research on integration into a mode (four) effect rate is also underway. A, therefore, there is a need for improvement of the module - a novel integration method - the integration method can solve the problem of efficiency reduction caused by integration of the dye-sensitized solar cell module in the dye-sensitized solar cell module In the group: Adjacent batteries or sub-modules are electrically connected by an overlap between a positive electrode and a negative electrode adjacent thereto. SUMMARY OF THE INVENTION In order to overcome such problems in the prior art, it is an object of the present invention to provide a dye-sensitized solar cell module that can provide a weight-to-weight (four) portion between cells or sub-modules At the point of - guide _ repair the most, to reduce the dye sensitized solar cell module _ series resistance, thereby improving the photoelectric conversion efficiency of the solar cell module. ^: Overcoming the purpose of the invention, the present invention provides a dye-sensitized solar cell module in which a towel adjacent battery or sub-module is electrically connected by a @f stack between a positive electrode and a negative electrode adjacent thereto, wherein the overlap portion At least one side of the portion has a wire drawn from one end of the positive or negative electrode with a curved or curved protrusion therebetween. 200950115 'The dye-sensitized solar cell module according to the present invention is bent or protruded, in particular, on a wire at the edge of the overlap between the battery or the sub-module at the edge of the sharp bend of the bend/projection point. And thus the length of the wire is increased by a plurality of bends or protrusions to increase the edge. Moreover, since the current '5 flows along the surface or the edge, especially the apex of a conductor, the conduction path is better by increasing the vertices and the current is uniformly distributed by the edges to reduce the series resistance of the dye-sensitized solar cell module. Uniformly flowing along the edge, thereby improving the photoelectric conversion efficiency of the solar cell module.且 Moreover, if the interference of an insulating film coating or the like is caused by the structure of a plurality of pointed tips, the insulating film can be easily broken and thus easily electrically connected. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing an embodiment of a connection between cells in a dye-sensitized solar cell module of the present invention, and a plan view of a battery before connection. 15 is a cross-sectional view showing an embodiment of a connection between sub-modules in a dye-sensitized solar cell module of the present invention, and a plan view of a sub-module connected thereto. Fig. 3 is a plan view showing another embodiment of a sub-module used in the dye-sensitized solar cell module of the present invention. 20 Fig. 4 is a plan view showing another embodiment of a sub-module used in the dye-sensitized solar cell module of the present invention. Fig. 5 is a plan view showing another embodiment of a sub-module used in the dye-sensitized solar cell module of the present invention. [Embodiment 3 5 200950115 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail. The present invention relates to a dye-sensitized solar cell module in which an adjacent battery or sub-module is electrically connected by an overlap between a positive electrode and a negative electrode adjacent thereto, wherein at least the overlapping portion One side has a wire leading from one end of the positive or negative electrode and has a curved or curved protrusion in the middle. The invention will now be described with reference to the accompanying figures. Specific examples of the dye-sensitized solar cell module of the present invention are shown in Figs. 10 to 5, for example. In particular, since the current flows along the surface or edge, especially the top end of a conductor, in the present invention, a wire is not formed straight as in the prior art, but is intermediate (not the center but a non-end specific Part) has a curved or curved protrusion to increase the length of the wire to increase the longitudinal edge, or the edge can be increased by the protruding structure. The bend 15 can be formed into an arc shape as shown in Fig. 1, and preferably, as shown in Figs. 2 to 4, the bend of the wire has a horned edge, which provides a better The top of the surface facilitates the flow of current to the electrodes adjacent to the cell or sub-module. The projections may be of any shape, and as shown in Fig. 5, a four-corner or multi-angle projection having a plurality of apexes is preferred because it promotes current flow. Moreover, as shown in FIGS. 1 to 5, the wire is preferably a closed loop which is drawn from one end of the positive electrode or the negative electrode and is connected to the other end of the positive electrode or the negative electrode, because In this case, the current flowing to the adjacent battery or sub-module can be performed in two parts, so that the current flows evenly over the entire 200950115 wires. 5 ❹ 10 15 ❸ and, as shown in Figures 2 to 4, the bending of the wire preferably includes at least one sawtooth shape or protrusion and depression "[" shape (Figs. 3 to 4) because it can Maximize length and edge, top area. Moreover, the serrated or protruding and recessed "[" shape (meaning that the protrusion and depression "C" shape is formed on one plane from one side to the other or repeatedly) preferably has a regular spacing of ~ The uniform distribution promotes current flow to the electrodes adjacent to the cell or sub-module to allow current to flow evenly throughout the wire. The wire may be formed from a TC(trans (transparent conductive oxide) film or catalyst electrode film structure in a battery structure and then patterned, or it may be individually formed or coated by orifice printing or prior art printing methods. Forming a pattern after the repetition. In the latter case, the electrical connection between the TC0 film or the catalyst electrode film corresponding to the read battery electrode and the individually formed wires should be formed separately. A specific example of the present invention is shown in Fig. 1, wherein the electrical connection between the batteries is made up of a first electrode (lower electrode) of the first battery (left) and a second battery (right) adjacent thereto An overlap between the two electrodes (upper electrode), and a wire drawn from the lower electrode of the first cell (in the example shown, a layer of TC layer connected to a layer composed of an oxide and a dye) ) has an arcuate curvature. The lower electrode may be a TCO layer connected to a layer composed of an oxide and a dye as shown in FIG. 2; or, if the battery is formed symmetrically inverted as shown in FIG. 2, one and a catalyst electrode ( The pt) layer-connected TCO layer can be connected to a wire. And if a battery does not include a TCO layer, a catalyst electrode layer may be connected to the wire, or the layer may be patterned. One of the forms may be a wire. Another specific example is shown in FIG. 2, wherein an electrical connection between the plurality of integrated sub-modules is performed by the first electrode (upper electrode) of the first sub-module (left) and the first adjacent thereto An overlap between five of the second electrodes (lower electrodes) of the two sub-modules (right) forms 'and a wire drawn from the lower electrode of the second sub-module has a zigzag curve. The lower electrode may be a TCO layer connected to a catalyst electrode (Pt) as shown in FIG. 2; or, if a sub-module is formed in an inverted symmetric manner as shown in FIG. 1, A TCO layer consisting of a dye layer can be connected to a wire. Moreover, if a sub-module does not contain a tco layer, a catalyst electrode layer can be connected to a wire' or the layer itself can be a wire. In addition, as shown in Figs. 3 and 4, the wire may include a protrusion and a depression "c" shape repeated from one side to the other (Fig. 3), or a protrusion and depression "[" shape in the third figure. The straight line can be composed of the cj shape of the protruding and concave details that are repeated to the other side of the other side (Fig. 4, wherein the straight lines of Fig. 3 are still composed of protrusions and depressions). Therefore, the edge and the tip can be maximized. In the sub-modules shown in Figures 3 to 5, the electrical connection method between the batteries is different from each other depending on the connection between the batteries (parallel connection or series connection). The specific method of being electrically connected and electrically connected can be individually achieved according to the prior art solar cell integration method. Moreover, the connection between the battery or the sub-module and each of the batteries shown in FIGS. 1 to 4 The configuration is merely illustrative of the invention, and the scope of the invention is not limited thereto, and various known configurations of the dye-sensitized solar cell can be applied to the invention. 8 200950115 • Finally, as shown in Fig. 5, the wire Can contain a highlight. Above A protrusion can be obtained by forming a protrusion in addition to forming a bend. As shown in Fig. 5, a protrusion having a plurality of tips in a quadrangular or polygonal form promotes current flow. .5 A solar cell module can be used An overlapping portion of a conductive paste applied to the sub-modules formed as described above is fabricated to form an assembly, and an insulating film such as EVA is bonded to the upper/lower surface of the assembly, and the upper/joining is performed/ A protective glass on the lower surface. The present invention is not limited to the above examples and the accompanying drawings, and various modifications and variations can be made by those of ordinary skill in the art without departing from the scope of the appended claims. Aspects and scope of the present invention. [Simple description of the drawings 3] Fig. 1 is a cross-sectional view showing one embodiment of the connection between cells in a dye-sensitized solar cell module of the present invention, and before the connection A plan view of a battery of Fig. 2. Fig. 2 is a cross-sectional view showing one embodiment of the connection between the submodules in a dye-sensitized solar cell module of the present invention, and before the connection A plan view of a sub-module of the dye-sensitized solar cell module 20 of the present invention. FIG. 4 is a plan view showing another embodiment of the sub-module used in the dye-sensitized solar cell module 20 of the present invention. A plan view of another embodiment of a sub-module in a dye-sensitized solar cell module. FIG. 5 is a view showing another embodiment of a sub-module used in the dye-sensitized solar cell module of the present invention. 9 200950115 [Description of main component symbols] 10a···Upper glass 10b...Lower glass 20a···Upper TCO 20b···Lower TCO 30...Titanium oxide particles 40·· Catalyst electrode 50...Sealing material 60" Conductive adhesive 100... Solar battery 110...Conductor 120...Under normal glass 130...Wire Θ❹ 10