TW200949941A - Method for curing a porous low dielectric constant dielectric film - Google Patents

Method for curing a porous low dielectric constant dielectric film Download PDF

Info

Publication number
TW200949941A
TW200949941A TW098107312A TW98107312A TW200949941A TW 200949941 A TW200949941 A TW 200949941A TW 098107312 A TW098107312 A TW 098107312A TW 98107312 A TW98107312 A TW 98107312A TW 200949941 A TW200949941 A TW 200949941A
Authority
TW
Taiwan
Prior art keywords
low
dielectric film
substrate
radiation
dielectric
Prior art date
Application number
TW098107312A
Other languages
Chinese (zh)
Other versions
TWI421939B (en
Inventor
Jun-Jun Liu
Dorel I Toma
Eric M Lee
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/043,814 external-priority patent/US7977256B2/en
Priority claimed from US12/043,772 external-priority patent/US7858533B2/en
Priority claimed from US12/043,835 external-priority patent/US20090226694A1/en
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of TW200949941A publication Critical patent/TW200949941A/en
Application granted granted Critical
Publication of TWI421939B publication Critical patent/TWI421939B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A method of curing a low dielectric constant (low-k) dielectric film on a substrate is described, wherein the dielectric constant of the low-k dielectric film is less than a value of approximately 4. The method comprises exposing the low-k dielectric film to infrared (IR) radiation and ultraviolet (UV) radiation.

Description

200949941 六、發明說明: . 【相關申請案的交互參照】 ' [0001] 本申請案係相關於申請中之美國專利申請案第200949941 VI. Description of the invention: . [Reciprocal Reference of Related Applications] ' [0001] This application is related to the US Patent Application No.

* 11/269581 號,標題為「MULTI_STEP SYSTEM AND METHOD FOR CURING A DIELECTRIC FILM」,申請曰期為 2005 年 11 月 9 曰;以及美國專利申請案第11/517358號,標題為「THERMAL PROCESSING SYSTEM FOR CURING DIELECTRIC FILMS」,申 請曰期為2006年9月8曰。更進一步而言,本申請案係相關於: 共同申請中之美國專利申請案第12/043814號,標題為「METHOD FOR REMOVING A PORE-GENERATION MATERIAL FROM AN © UNCURED LOW-K DIELECTRIC FILM」(TDC-007),申請曰期為 於此相同之曰期;共同申請中之美國專利申請案第丨2/〇43835號, 標題為「POROUS SiCOH-CONTAINING DIELECTRIC! FILM AND AMETHOD OF PREPARING」(TDC-008),申請日期為於此相同 之曰期;以及共同申請中之美國專利申請案第12/〇4385〇號,標題* 11/269581, entitled "MULTI_STEP SYSTEM AND METHOD FOR CURING A DIELECTRIC FILM", the application period is November 9th, 2005; and US Patent Application No. 11/517358, entitled "THERMAL PROCESSING SYSTEM FOR CURING" DIELECTRIC FILMS, the application deadline is September 8, 2006. Further, the present application is related to: US Patent Application Serial No. 12/043,814, entitled "METHOD FOR REMOVING A PORE-GENERATION MATERIAL FROM AN © UNCURED LOW-K DIELECTRIC FILM" (TDC- 007), the application period is the same period; the US Patent Application No. 2/〇43835, entitled "POROUS SiCOH-CONTAINING DIELECTRIC! FILM AND AMETHOD OF PREPARING" (TDC-008) , the date of application is the same period of time; and the title of US Patent Application No. 12/〇4385, in the co-application, title

為「METHOD FOR TREATING DIELECTRIC FILM WITH INFRARED RADIATI〇N」(TDC-009) ’申請日期為於此相同之日 期。這些申請案的整體内容藉由參考文獻方式合併於此。 【發明所屬之技術領域】 ❹ _2]本發明侧於—翻於處理介電朗方法,且更具體而 1 = 關於一種利用電磁(EM)輻射來處理低介電常數(低電膜 【先前技術】 夕。尤其,低-k膜正被使用在半導㈣置+之金屬線間的;= 3 200949941 [〇〇叫似㈣與更傳統之 人多孔性而使機械強度更加次 不堅®且&者導 〇 強化為目標而探索其他i;匕t的^而s不可或缺。以機械性 用於集成。 技使多孔性低·k膜更堅固且適 iofh° t的硬化包含為了在膜内造成交聯而處理使用例 π人%Λ由基的聚合反應為形成交聯的主要途 二田時’改善了例如揚氏係數(γ〇<簡如㈣、 裂勃度及介面接著等機械性質,藉此改善低_k膜之製 ❹ 超低介電常數之乡錄介電膜的 ji·桌各膜之/儿積後處理(硬化)的目的皆不同,包含例如去 ί盖& ί溶=燃盡用以在多孔性介電膜上形成孔洞的成孔劑、、 改善此膜之機械性質等等。 λ j^膜而言’習知地使低介電常數(低-k)材料在 至4〇〇C之範圍内熱硬化。例如,爐硬化法已足以製成堅固、 緻猎之具有約大於2.5之介電常數的低·k膜。妙合處 多=介辑如超低切)時,可使^處^熱^ 聯程度’不再足以製成具有適當強度之祕的互連結構 [〇〇I8i、在熱硬化綱’可林魏介電獅情形下將—適當量 =里傳送至介賴。然*,在所研究的溫度範_,僅可產生 /里的自由基。由於熱能在熱量至基板的柄合巾損失以及周圍環 4 200949941 熱失,所以在待硬化之低·k财實際上僅可吸收少量 •:二有型繼爐硬化法需要高溫及長硬化時間。但 -之低具熱硬化t缺乏起始劑的生成,以及在初沉積 聯程度。、子有大量的甲基停止反應’可使其難以達到所需之交 【發明内容】 。於一種利用電磁(EM)輕射來處理低介電常 例’說明一種基板上之低介電常數(低-k)介 ’其中低_k介電膜之介電常數係小於大約4之數 輕射 將低·k介賴曝露至紅外線㈣輻射及料線(UV) 介電膜曝露至笛^匕3 .在基板上形成低-k介電膜;將低-k 將介雷膜卜線(ir)輕射;在曝露至第一 ir輻射之後, ❹ 後,將低士 外fuv)輕射;以及在曝露至UV輕射之 介電常====:物獅,她好電膜之 時間為第射維持第二持續時間,其中第二持續 持續時間開始後之’且其中第二持續時_始於第一 二時間。° —時間’ a結束於第-持續時間結束前之第 [介電匕气,·::種基板上之低介電常數(低-k) 其匕3在基板上形成低-k介電膜,該低_k 5 200949941 介電膜包含結構形成材料及孔洞生成材料;由低·k介電膜實質上 •去,孔洞生成材料,以形成多孔性低-k介電膜;在去除步驟之後, _ 於=孔f生低k ;|電膜中產生交聯起始劑;以及在產生交聯起始 之後,父聯多孔性低_k介電膜。 【實施方式】 [rfLb ί以下之說明中’為了幫助對本發明之透徹瞭解以及說 ^性^非限概之㈣’將提出例如處理祕之特定構造盥各構 ,,之敘述等等的具體細節。然而,吾人應瞭解,本i明ί 在这些具體細節以外的其他實施例中加以實現。 ❹ =4]發明人察覺#代性硬化方法係針對熱硬化本身的一些 =。例如’當與熱硬化製程比較時,#代性硬化方法在能量^ 遞方面更有效,且以高能粒子(如經加速的電子、離子、或中性粒 7之形式被發現的較高能階’可㈣激發低士 2 #此有效地切斷化學鍵結^解離側基。這些替 生2聯起始劑(自由基)’且可改善在實際交聯中所 傳遞可在減低之熱預算下增加交聯的程度。 [=25]此外,發明人已瞭解,#膜強度對於似及 ❹The date of application for "METHOD FOR TREATING DIELECTRIC FILM WITH INFRARED RADIATI〇N" (TDC-009)' is the same date. The entire content of these applications is hereby incorporated by reference. [Technical Field to Which the Invention Is Applicable] _2 _2] The present invention is side-turned to process a dielectric Lang method, and more specifically 1 = about a method of using electromagnetic (EM) radiation to process a low dielectric constant (low-voltage film [Prior Art] In particular, the low-k film is being used between the semi-conducting (four)-set metal wires; = 3 200949941 [The squeaky (four) and more traditional human porosity make the mechanical strength more subtle and & 者 〇 〇 〇 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索 探索In the film, cross-linking is caused to treat the use case π human % Λ from the polymerization of the base to the main way of forming cross-linking 'improved, for example, the Young's coefficient (γ 〇 简 简 简 简 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四Such mechanical properties, thereby improving the low-k film manufacturing process, the ultra-low dielectric constant of the dielectric film, the ji·table film / the post-product processing (hardening) purposes are different, including, for example, to cover & ί dissolve = burns pore formers for forming pores on porous dielectric films, improves the mechanical properties of the film In the case of λ j^ film, it is customary to thermally harden a low dielectric constant (low-k) material in the range of up to 4 ° C. For example, the furnace hardening method is sufficient to make a strong, hunting A low-k film with a dielectric constant greater than about 2.5. If the combination is too large (such as ultra-low cut), the degree of heat can not be enough to make an interconnect with appropriate strength. The structure [〇〇I8i, in the case of the thermostable class] can be transferred to the appropriate amount. In the case of the temperature range studied, only free radicals can be generated. Since the thermal energy is lost to the shank of the substrate and the heat loss of the surrounding ring 4 200949941, only a small amount can be absorbed in the low to be hardened. • The two-type furnace hardening method requires high temperature and long hardening time. However, the low heat-hardening t lacks the formation of the initiator, as well as the degree of initial deposition. The large number of methyl groups stop the reaction', making it difficult to achieve the desired intersection. [Inventive content] (EM) light shot to deal with low dielectric constants' to illustrate a low dielectric constant (low-k) on a substrate where low _k The dielectric constant of the dielectric film is less than about 4, the light shot is low-k exposed to the infrared (four) radiation and the material line (UV) dielectric film is exposed to the flute 3. The low-k dielectric is formed on the substrate. Electro-film; low-k will be light-guided (ir) light; after exposure to the first ir radiation, after ❹, will be lighter outside the fuv); and in the exposure to UV light Often ====: lion, her time is good for the first shot to maintain the second duration, where the second duration lasts after the start and the second duration _ begins at the first two. °—Time' a ends at the end of the first-duration period [dielectric helium, ·:: low dielectric constant (low-k) on the substrate) 匕3 forms a low-k dielectric film on the substrate , the low _k 5 200949941 dielectric film comprises a structure forming material and a hole generating material; the low-k dielectric film substantially removes the hole to form a material to form a porous low-k dielectric film; after the removing step , _ = = hole f is low k; | cross-linking initiator is produced in the electric film; and after the initiation of cross-linking, the parent-linked porous low-k dielectric film. [Embodiment] [rfLb ί In the following description, in order to facilitate a thorough understanding of the present invention and to say that the nature of the invention is not limited thereto, the specific details of the specific structure, the description, and the like of the processing secret will be proposed. . However, it should be understood that the present invention is implemented in other embodiments than those specific details. ❹ = 4] The inventor perceives that the generation hardening method is directed to some of the heat hardening itself. For example, the 'generation hardening method is more efficient in terms of energy transfer when compared with the thermosetting process, and high energy particles (such as higher energy levels found in the form of accelerated electrons, ions, or neutral particles 7). Can (4) motivate the lower 2 2 which effectively cuts off the chemical bonding ^ dissociation of the side groups. These alternative 2 initiators (free radicals) can improve the transfer in the actual cross-linking can be increased under the reduced thermal budget The degree of cross-linking. [=25] In addition, the inventors have learned that #膜强度为似似

時,替代性硬化方法可改善此膜之機械性質。例如,可使 束(dectron beam,EB)、紫外線_輻射、紅外線⑽轄射 (=__,雨)輻射來硬化低-k膜及UL 時不犧牲介電性質及薄臈疏水性。 。纖強度同 [0026]然而,儘管EB、UV、IR及MW硬化均且右豆太| & 益處,這些技術亦仍具有限制。如ΕΒ * υν之高 二用以產生過多的交聯用之交聯起始劑(自由基)的高 在補充性基板加熱下之大幅改善機械性質。另一方面,及 ^可造成化學鍵結無區分性的解離,其可能不利地降低膜 ^物=電性質,如喪失疏水性、增加朗膜應力1洞^ 朋壞、膜層緻欲化及增加介電常數。此外,低能量硬化源 硬化)可提供主要在熱傳遞效率上之顯著改善,但同時且(有副作 6 200949941 用,如電弧放電或電晶體損壞(MW)。 [0027] 依據一實施例’說明硬化基板上之低介電常數(低七)介 電膜的方法,其中低-k介電膜之介電常數小於約為4之數值。該 方法包含將低七膜曝露至包含紫外線(UV)輻射及紅外線(ir)輻射 的非離子化電磁(EM)輻射。UV曝露可包含複數個uv曝露,其中 各UV曝露可包含或不包含不同的強度、功率、功率密度、或波 長範圍、或任何其二者或更多者的組合。IR曝露可包含複數個IR 曝露’其中各IR曝露可包含或不包含不同的強度、功率、功率密 度、或波長範圍、或任何其二者或更多者的組合。 [0028] 在uv曝露期間,可藉由升高基板之溫度至約2〇〇。〇至 約600C之範圍内的UV熱溫度而加熱低士介電膜。或者,熱 溫度在約3〇〇t:至約5〇(rc的範圍内。或者,uv熱溫度在約35〇!c' 至約45(TC的範圍内。可藉由傳導加熱、對流加熱、或輕射加熱、 或任何其二者或更多者的組合而進行基板的加熱。 [0029] 。在1R曝露期間,可藉由升高基板之溫度至約2〇〇。〇至 $ 2〇〇c之,圍内的ir熱溫度而加熱低士介電膜。或者,ir熱溫 二至約5(K^的翻内。或者’瓜熱溫度在約350。。至 ❹ 二何其-去m l可藉由傳導加熱、對流加熱、或輻射加熱、或 一者或更多者的組合而進行基板的熱能加熱。 心:J甘此外’可在―曝露前、^"曝露期間、或UV曝露後、 者或更多者的組合進行熱能加熱。再此外,可在IR曝 ㈣曝,或任狀二者_者的組合 III > 'uv ^ ^ ^ uv 可在IR 、—者或更夕者的組合時進行IR曝露。再此外, 多者的組合日、輯嶋、_其二者或更 溫度至約㈣或二者讀,可藉由升高基板之 電膜。或之範圍内的預熱處理溫度而加熱低-k介 -者預熱處理》皿度在約3〇〇t:至約5〇〇<t的範圍内,且較 7 200949941 =地’預熱處理溫度在約35(rc至約4筑的範圍内。 、、田曝露或IR曝露或二者之後,可藉由升高基板之 制It者’後熱處理溫度在約3〇〇t>C至約5〇〇〇C的範圍内。或者, ^處理溫度在約%代至約。⑽範關。 考 的H。依據另一實施例說明處理基板上之介電膜 3二Ϊ處基板可為半導體、金屬導體、或任何介電膜將 4=1 基板。介電膜可具有小於_之介電常數(約為 ❹ 數(乾焊及之ί電常數可在3·8至3.9的範圍内}的介電常 及/或硬化别、或乾燥及域硬化後、或二者)。在本發明之 ▲種^例巾,介電膜可具有小於3 G之介電常數(乾燥及/或硬化 Γ 及/或硬化後、或二者)、小於2.5之介電常數、小於2.2 之’丨電$數、或小於1.7之介電常數。 [=035]可將介電膜說明為低介電常數(低_k)膜或超低七膜。介 膜可包3有機、無機、及有機_無機混合材料中少一。 外介電膜可為多孔性或非多孔性。 幻考此 ▲彳電膜可包括例如含有結構形成材料及孔洞生成材料 冗相或雙相多孔性低士膜。結構形成材料可包含由結構形成母 ^出之原子、分子、或分子碎片。孔洞生成材料可包含由孔洞 生成母核(例如成孔劑)分出之原子、分子、或分子碎片。單相或雙 孔膜在移除孔洞生成材料之前可具有較移除孔洞生成 材料之後為尚之介電常數。 [〇〇37]舉例而言,形成單相多孔性低士膜可包含:在基板之表 3沉積具有微弱地鍵結至結構形成分子之孔洞生成分子側基的 …構形成分子。此外,例如形成雙相多孔性低_k膜可包含在基板 之表面上共聚合結構形成分子及孔洞生成分子。 [f〇38]此外,介電膜可含有導致介電常數在乾燥及/或硬化前 咼於乾燥及/或硬化後的濕氣、水、溶劑及/或其他污染物。 [0039] 可使用如在來自東京威力科創(Tokyo Electron Limited ’ TEL)的商用 Clean Track ACT 8 s〇D 及 ACT 12 s〇D 鍍 8 200949941 膜糸統中所扼供之化學氣相沉積(chemical vapor deposition,CVD) • 技術、或旋塗介電(spin-on dielectric,SOD)技術,而形成介電膜。An alternative hardening process can improve the mechanical properties of the film. For example, dectron beam (EB), ultraviolet radiation, infrared (10) radiation (=__, rain) radiation can be used to harden the low-k film and UL without sacrificing dielectric properties and thin hydrophobicity. . Fiber strength is similar [0026] However, despite the benefits of EB, UV, IR and MW hardening and right Bean too | & For example, the height of ΕΒ* υν is high to produce excessive cross-linking initiator (free radical) for cross-linking. The mechanical properties are greatly improved under the heating of the supplementary substrate. On the other hand, and ^ can cause chemically indiscriminate dissociation, which may unfavorably reduce the film properties = electrical properties, such as loss of hydrophobicity, increase of lame film stress, 1 hole, poor performance, film formation and increase Dielectric constant. In addition, the low energy hardening source hardens) can provide a significant improvement in heat transfer efficiency primarily, but at the same time (with a side effect 6 200949941, such as arc discharge or transistor damage (MW). [0027] According to an embodiment A method of hardening a low dielectric constant (low seven) dielectric film on a substrate, wherein the low-k dielectric film has a dielectric constant less than about 4. The method includes exposing the lower seven film to ultraviolet light (UV) Radiation and infrared (ir) radiation of non-ionized electromagnetic (EM) radiation. UV exposure may comprise a plurality of uv exposures, wherein each UV exposure may or may not contain different intensities, powers, power densities, or wavelength ranges, or Any combination of two or more. IR exposure may comprise a plurality of IR exposures, wherein each IR exposure may or may not contain different intensities, powers, power densities, or wavelength ranges, or any two or more thereof [0028] During the uv exposure, the lower dielectric film can be heated by raising the temperature of the substrate to about 2 Torr to a temperature of about 600 C. The thermal temperature is About 3〇〇t: to about 5〇 (rc's van Or, the uv heat temperature is in the range of about 35 〇!c' to about 45 (TC. It can be performed by conduction heating, convection heating, or light-fire heating, or a combination of two or more thereof. Heating of the substrate. [0029] During the 1R exposure, the lower dielectric film can be heated by raising the temperature of the substrate to about 2 Torr to 〇〇2 〇〇c. Or, ir heat temperature is two to about 5 (K^ of the inside of the turn. Or 'melon temperature is about 350.. to ❹ two - it can be transferred by conduction heating, convection heating, or radiant heating, or one or The heat energy of the substrate is heated by a combination of more. Heart: J Gan's can be heated by heat in combination with "pre-exposure, ^", exposure, or after UV exposure, or a combination of more. In the case of IR exposure (four) exposure, or combination of both, III > 'uv ^ ^ ^ uv can be IR exposed in the combination of IR, - or even more. In addition, the combination of many,嶋, _ or both of them to about (four) or both, can be heated by raising the temperature of the substrate or the preheating temperature within the range The low-k-pre-heat treatment has a range of about 3 〇〇t: to about 5 〇〇<t, and is higher than 7 200949941 = ground' pre-heat treatment temperature is about 35 (rc to about 4) Within the range of construction, field exposure, or IR exposure, or both, the post-heat treatment temperature of the substrate can be increased by about 3 〇〇t > C to about 5 〇〇〇 C by raising the substrate. Or, the processing temperature is from about % to about. (10) Fan. Test H. According to another embodiment, the dielectric film on the substrate is processed. The substrate at the second side may be a semiconductor, a metal conductor, or any dielectric film. Place 4=1 substrate. The dielectric film may have a dielectric constant less than _ (approximately the number of turns (dry soldering and ί electrical constant may be in the range of 3. 8 to 3.9) dielectric constant and / or hardening, or drying and hardening After, or both. In the invention, the dielectric film may have a dielectric constant of less than 3 G (dry and/or hardened and/or hardened, or both), less than 2.5. The dielectric constant, less than 2.2, or the dielectric constant less than 1.7. [=035] The dielectric film can be described as a low dielectric constant (low_k) film or an ultra-low film. It can contain 3 organic, inorganic, and organic _ inorganic mixed materials. The external dielectric film can be porous or non-porous. Magic film can include, for example, structural formation materials and void-forming materials. Or a two-phase porous barrier film. The structure-forming material may comprise atoms, molecules, or molecular fragments formed by the structure. The pore-forming material may comprise atoms separated by pores to form a parent core (eg, a pore former), Molecular, or molecular fragmentation. Single- or double-porous membranes may have a reduced pore-forming material prior to removal of the pore-forming material. Then, the dielectric constant is still used. [〇〇37] For example, forming a single-phase porous low-pressure film may include: depositing a side layer of a pore-forming molecule having a weak bond to a structure-forming molecule on the surface of the substrate... Further, for example, forming a two-phase porous low-k film may include copolymerizing a structure forming molecule and a pore-forming molecule on the surface of the substrate. [F〇38] In addition, the dielectric film may contain a dielectric constant Moisture, water, solvent and/or other contaminants after drying and/or hardening before drying and/or hardening. [0039] Commercial Clean, such as from Tokyo Electron Limited 'TEL, can be used. Track ACT 8 s〇D and ACT 12 s〇D plating 8 200949941 Chemical vapor deposition (CVD) in membrane systems • Technology, or spin-on dielectric (SOD) Technology to form a dielectric film.

Clean Track ACT 8(200mm)及 ACT 12(300mm)鍍膜系統提供 S0D - 材料用之鍍膜、烘烤、及硬化工具。可將Track系統配置成處理 100mm、200mm、30〇mm、及更大尺寸之基板。其他如熟悉旋塗 介電技術及CVD介電技術者已知之用於在基板上形成介電膜的 系統及方法適用於本發明。 ' [0040] 例如,介電膜可包含使用CVD技術所沉積之無機的矽 酸鹽基材料,如氧化之有機矽烷(或有機矽氧烷)。此膜的實例包含 來自 Applied Materials,Inc.之商用 Back DiamondTMCVD 有機矽酸 ❹ 鹽玻璃(org_silicate glass,〇SG)膜、或來自 Novellus Systems 之 商用 CoralTMCVD 膜。 [0041] 此外,例如多孔性介電膜可包含單相材料,如具有在硬 化製程期間抑制交聯以產生小空隙(或孔洞)之末端有機侧基的氧 化矽基基質。此外’例如多孔性介電膜可包含雙相材料,如具有 在硬化製程期間被分解及蒸發之有機材料的内含物(如成孔劑)之 氧化石夕基基質。 [0042] 此外,介電膜可包含使用SOD技術所沉積之無機矽酸 鹽基材料’如氫石夕倍半氧烧(hydrogen silsequioxane,HSQ)或甲基 ❹ 倍半氧石夕烧(methyl silsequioxane ’ MSQ)。此膜的實例包含來自The Clean Track ACT 8 (200mm) and ACT 12 (300mm) coating systems provide S0D - coating, baking, and hardening tools for materials. The Track system can be configured to handle substrates of 100mm, 200mm, 30mm, and larger sizes. Other systems and methods known to those skilled in the art of spin-on dielectric and CVD dielectrics for forming dielectric films on substrates are suitable for use in the present invention. [0040] For example, the dielectric film may comprise an inorganic phthalate-based material deposited using CVD techniques, such as oxidized organodecane (or organic decane). Examples of such films include commercial Back DiamondTM CVD organic strontium silicate glass (org silicate glass) films from Applied Materials, Inc., or commercial CoralTM CVD films from Novellus Systems. Furthermore, for example, the porous dielectric film may comprise a single phase material, such as a cerium oxide based substrate having terminal organic side groups that inhibit cross-linking during the hardening process to create small voids (or voids). Further, for example, the porous dielectric film may comprise a dual phase material such as a oxidized cerium substrate having an inclusion of an organic material (e.g., a pore former) which is decomposed and evaporated during the hardening process. In addition, the dielectric film may comprise an inorganic silicate-based material deposited using SOD technology such as hydrogen silsequioxane (HSQ) or methyl sesquisulfate (methyl silsequioxane). 'MSQ). An example of this film contains

Dow Coming 之商用 f〇x HSQ、來自 Dow Coming 之商用 XLK 多 孔性 HSQ、以及來自 jsrMicroelectronics 之商用 JSRLKD-5109。 [0043] 此外尚有,介電膜可包含使用SOD技術所沉積之有機 材料。此膜的實例包含來自Dow Coming之商用FOx HSQ、來自Dow Coming's commercial f〇x HSQ, commercial XLK multi-hole HSQ from Dow Coming, and commercial JSRLKD-5109 from jsrMicroelectronics. [0043] Furthermore, dielectric films may comprise organic materials deposited using SOD technology. An example of this film contains commercial FOx HSQ from Dow Coming, from

Dow Chemical 之商用 SiLK-I、SiLK-J、SiLK-H、SiLK-D、多孔性Commercial use of Dow Chemical SiLK-I, SiLK-J, SiLK-H, SiLK-D, porosity

SiLK-T、多孔性SiLK-Y及多孔性SiLK-Z半導體介電樹脂;以及 來自 Honeywell 之商用 FLARE:™、及 Nanoglass®。 -[0044] 該方法包含由510中非必須地乾燥第一處理系統中之 基板上的介電膜之步驟開始的流程圖5〇〇。第一處理系統可包含被 • 配置成移除或部份移除介電膜中之一或更多污染物的乾燥系統, 9 200949941 =物包含例域氣、水、溶劑、翻 •材料、孔洞生成分子、孔洞生成分 何:殘f孔洞生成 礙隨後的硬化製程之污染物成刀子之碎片或任何其他可能妨 Π,520 *,將介電膜曝露至uv轄射下。UV曝露可在 理系統可包含硬化系統:】 、”被-置成糟由4成或部份造成介電膜内之交聯, 之機械性質。在乾燥製程之後,可在 系統傳送至第二處理系統俾使污染情形 ❹ 露至uv輻射可包含將介電膜曝露至來自 lfSf 夕:f、一或更多 UV 發光二極體(light emittins diodes, ,、或-或更多UV雷射、或其中之二或更多者之袓合的uv 輕I之波長可在約100奈米(麵meter,nm)至約600nm _ ^ 。或者,UV輻射之波長可在約200nm至約400nm的範 ,内。或者’ UV輻射之波長可在約150nm至約3〇〇nm的範圍内。 或者^uv輻射之波長可在約170nm至約24〇nm的範圍内。或者, UV輻射之波長可在約2〇〇nm至約24〇nm的範圍内。 [0047] 在將介電膜曝露至UV輻射的期間,可藉由升高基板之 溫度至約200 C至約600°C之範圍内的UV熱溫度而加熱介電膜。 或者,uv熱溫度可在約30(rc至約500。(:的範圍内。或者,uv 熱溫度可在約35(TC至約45(TC的範圍内。或者,在將介電膜曝露 至υγ輻射之前或將介電膜曝露至uv輻射之後或二者時,'可藉 由升高基板之溫度而加熱介電膜。基板之加熱可包含傳導加熱、 對流加熱、或輻射加熱、或其中任何二或更多者之組合。 [0048] 非必須地,在將介電膜曝露至UV輻射的期間,可將介 電膜曝露至IR輻射。將介電膜曝露至IR輻射可包含將介電膜曝 露至來自一或更多IR燈、一或更多IR發光二極體(light emitting diodes ’ LEDs)、或一或更多IR雷射、或其中之二或更多者之組合 的IR輻射。IR輻射之波長方面可在約1微米(micron)至約25微米 的範圍内。或者’ IR輻射之波長可在約2〇〇nm至約400nm的範圍 200949941 内。或者,IR輻射之波長可在約2微米至約2〇微米的範圍内。或 • 者,1R輻射之波長可在約8微米至約14微米的範圍内。或者,IR 輻射之波長可在約8微米至約12微米的範圍内。或者,IR輻射之 • 波長可在約9微米至約1〇微米的範圍内。 [0049] 在530中,將介電膜曝露至IR輻射。將介電膜曝露至 IR輻射可包含將介電膜曝露至來自一或更多讯燈、一或更多IR 發光二極體(light emitting diode,LED)、或一或更多IR雷射、或 其二者或更多者之組合的IR輻射。IR輻射之波長可在約i微米 (micron)至約25微米的範圍内。或者,IR輻射之波長可在約2〇〇nm ^約40〇nm的範圍内。或者,IR輻射之波長可在約2微米至約2〇 〇 巧米的範圍内。或者,IR輻射之波長可在約8微米至約14微米的 範圍内。或者,IR輻射之波長可在約8微米至約12微米的範圍内。 ,者,IR輻射之波長可在約9微米至約1〇微米的範圍内。IR曝 露可在UV曝露之前、UV曝露期間、或UV曝露之後、或其二者 或更多者之組合時進行。 ^ [0050] 再者,在將介電膜曝露至IR輻射之期間,可藉由升高 基板之溫度至約20CTC至約60(TC之範圍内的ir熱溫度而加埶^ 電膜。或者,IR熱溫度可位於約300。〇至約5〇(rc的範圍内。再或 者,IR熱溫度可位於約350。(:至約450°C的範圍内。或者,在將介 ❹ 電膜曝,至IR輻射之前或將介電膜曝露至IR輻射之後或二者 時,可藉由升尚基板之溫度而加熱介電膜。基板之加熱可包含傳 導加熱、對流加熱、或輻射加熱、或任何其二者或更多者的組合。 [〇〇51]如以上所述,在1尺曝露期間,經由吸收IR能量而;J熱 介電膜。然而,加熱步驟可更包含藉由將基板置於基板支架上了 且使用加熱裝置加熱基板支架,而傳導性地加熱基板。舉例’而言, 加熱裝置可包含電阻加熱元件。 α [0052] 發明人已察覺可在硬化製程之不同階段期間改變所傳 -遞之能階(hv)。硬化製程可包含用於去除濕氣及/或污染物、去除 _ ^洞生成材料、分解孔洞生成材料、產生交聯起始劑、介電膜之 交聯、以及擴散交聯起始劑的機構。各機構可能需要不同的傳遞 200949941 能量至介電膜之能階及速率。 • ff]舉例而言,在去除孔洞生成材料的_,去 在R波長吸收光子而促成。發明人已發現汉 ^ : ' UV曝露更有效地協助去除孔洞生成材科。㈣比紙加熱或 [0054]此外,例如在去除孔洞生成材料的期間,去 分解孔洞生成材料加以協助。去除的製程可包含由 j之IR曝露。發明人已發錢曝露可藉由解離孔^^斤= 如孔洞生成分子及/或孔洞生成分子碎片)與ϋ材科(例 ❹ =’而促進具有IR曝露之去除製程。^例 ^^在W波長(例如約編至約45Gnm)下之光子^收 縣,例如在產生交聯起始劑的期間,起始 可措由使用储卿紐料_發_離 ^ ^ 離可雲要且右,认曝露所促成。例如’鍵解 H #約獅至4GGnm之波長的能階。 以护h 步而言,例如在交聯的期間,交聯製程可由足 ❹ 熱能所促成。發明人已發現交聯可由1R曝露 促成。例如’形成及重組鍵結可能需要具有 鹽低主波長係例如對應至石夕氧烧基有機石夕酸 膜之乾燥製程、介電膜之IR曝露、以及介電膜之 Πιΐ»同之處理系統中進行,或各在分開的處理系統中進 [上燥製程可在第一處理系統中進行且IR曝露及υν曝 二曝露者二例如介電膜之1R曝露可在與 ㈡可在真空狀態下將基板由第二處理系統傳送至 弟一處理系統俾使污染情形降至最低。 &另外’在非必須之乾燥製程、—曝露製程、及1r曝 統帽介在=改變,化之介電膜的後處理系 逼订後處理。例如,後處理可包含對介電膜進行熱 12 200949941 f理。或者,例如後處理可包含在介電膜上旋雜冷I •另—膜,俾提高其後之薄臈_著性或改盖佈或氣相沉積 .3由二,撕擊介電膜而在後處“統以二= i 後處理可包含執行-或更多的在介ΐί上 [00^ 、或將介電膜曝露至電漿中等製程。、 的方法。該方說明處理基板上之介電膜 ΐΖ:ΖΖΤ-ί^ [=〇]在62”,將介電臈曝露至第一 IR輻射。舉 =電=露至第—IR^射可促進由介電膜全部去除除 ,電ί^ϊ则、或版任何:㈣恤ί聯3 段足夠長的時間,以由介電膜實質上去除所ί ❿ ii生^:孔洞生成材料、殘留孔洞生成材料、包含孔 二及/或孔洞生成分子之碎片的孔洞生成材料、交聯抑制 劑、或殘叙聯抑糊、或任何其二者或更多者的組合。 [m將介電膜曝露至第一 ir輕射可包含將介電膜曝露至多 輻射、單色IR輻射、脈波IR輻射、或連續波IR輻射、或 二中ί任何二或更多者的組合。例如,將介電膜曝露至第-IR輻 射可匕含將介電膜曝露至一或更多IR燈、一或更多IR發光二極 體他故伽她^^丄孤广或者一或更多瓜雷射”戈其中之 組合。第-IR轄射可含有高達約2_cm2之功率密度。例如,第 一 IR^輻射可含有在約lw/cm2至約2〇w/cm2之範圍内的功率密 度。第一 IR輻射之波長可在約!微米至約25微米之範圍内。或 者,,一 IR輻射之波長可在約2微米至約2〇微米之範圍内。或 者,第一 IR輻射之波長可在約8微米至約14微米之範圍内。或 13 200949941 者,第一 IR輻射之波長可在約8微米至約丨2微米之範圍内。或 者,第一 IR輻射之波長可在約9微米至約10微米之範圍内。 在第一 IR曝露期間改變第一瓜功率密度、或第一瓜波長、戋二 者。 [0062] 非必須地,在第一 IR曝露期間,可藉由升高基板之溫 度至約200 c至約600 C之範圍内的第一 ir熱處理溫度而加埶介 電膜。或者,第一 IR熱處理溫度可在約3〇(rc至約冗^^的^圍 内。再或者,第一 IR熱處理溫度可在約35(rc至約45(rc的範圍 内。 Ο [0063] 在630中,在第一 IR曝露之後將介電膜曝露至uv輻 射。例如,將基板曝露至UV輪射可促進在介電膜中生成交聯起 始劑(或自由基)。 [0064] 將介電膜曝露至UV輻射可包含將介電膜曝露至多色 uv輻射、單色uv輻射、脈波uv輻射、或連續波uv輻射、或 其二者或更多者的組合。例如,將介電膜曝露至uv輻射可包含 將介電膜曝露至源自於一或更多UV燈、一或更多uv發光二極 體(LED)、或一或更多uv雷射、或其中之組合的uv輻射。uv 輻射可含有在約O.lmW/cm2至約2000mW/cm2之範圍内的功率密 度。UV輻射之波長可在約至約6〇〇nm之範圍 内。或者’ UV輻射之波長可在約200nm至約400nm之範圍内。 或者’ UV輕射之波長可在約l5〇nm至約300nm之範圍内。或者, UV輕射之波長可在約I70nm至約240nm之範圍内。或者,UV 幸昌射之波長可在約200nm至約240nm之範圍内。 [0065] 非必須地,在UV曝露期間,可藉由升高基板之溫度至 約200°C至約600°C之範圍内的UV熱處理溫度,而加熱介電膜。 或者’ UV熱處理溫度可位於約300°C至約500〇C的範圍内。再或 者’UV熱處理溫度可位於約35(TC至約45(TC的範圍内。 [0066] 在640中’將介電膜曝露至第二IR輻射。例如,將介 電膜曝露至第二IR輻射可促成介電膜之交聯。 [0067] 將介電膜曝露至第二IR輻射可包含將介電膜曝露至多 200949941 色IR輻射、單色IR輕射、航由 .其中之任何二或更多者的組合i例如^介輕射r或 f可包含將介賴曝露至_或更多汉燈、—或 r第-IR輕 IW/cm至約20w/cm2之範圍内的功率密^ 有在約 可位於約I微米至約25微米之範圍内。g 田^波長 或者,第二IR輻射之波 或者,第二IR輻射之波 或者,第二IR輻射之波 可在第一 IR曝露期間改 長可在約2微米至約20微米之範圍内$者第一1尺輪射之波 長可在約8微米至約14微米之範圍内 長可在約8微米至約12微米之範圍内 © 長可在約9微米至約10微米之範圍内。1隹; 變第二瓜功率密度、或第二IR波長、或二者„ Γί^2ηηΐ必須地’在第二1R曝露期間’可藉由升高基板之溫 肉ϋΐ ί 熱處〉皿度可在約30(rc至約500°C的範圍 ^。再或者,第二IR熱處理溫度可在約35(rc至約彻的範^ 範圍内 範圍内 [0070] ΓΖ曝地’在第—IR曝露之至少—部分的期間,可將 弟一 UV輻射。例如,將介電膜曝露至第二UV輻 〇 ϊ i f斷或解離介電膜中之鍵結,以幫助去除上述之各種材 λα ·αΓ V輻射可含有約0.lmW/cm2至約2000mW/cm2之範圍 ^ ® 密度。第一 UV輕射之波長可在約1⑽11111至約60〇nm之 ί = 2。或者,第二UV輕射之波長可在約2〇〇nm至約40〇nm之 。或者,第二UV輕射之波長可在約150nm至約3〇〇nm之 章色 或者’第一 UV輪射之波長可在約i70nm至約240nm之 或者’第二UV輻射之波長可在約2〇〇nm至約240nm之 非必須地’在UV曝露之至少一部分的期間,可將介電 滕至第三IR輻射。第三IR輻射可含有高達約20w/cm2之功 率猪又。例如,第三IR輻射可含有約lW/cm2至約2〇w/cm2之範 15 200949941 之範圍内 之範圍内 之範圍内 之範圍内 。ί三_之波長可在約1微米至約25微米 範圍内或者,第二IR輻射之波長可在約2微米至約20微 或者,第三IR輻射之波長可在約8微米至約14微^ 或者,第三IR輻射之波長可在約8微米至約12微^ 或者’第三IR輻射之波長可在約9微米至約1〇微^ 可在第二IR曝露期間改變第三IR功率密声、七势一 IR波長、或二者。 又取弟二SiLK-T, porous SiLK-Y and porous SiLK-Z semiconductor dielectric resins; and commercial FLARE:TM, and Nanoglass® from Honeywell. - [0044] The method comprises a flow chart 5 of 510 beginning with the step of optionally drying the dielectric film on the substrate in the first processing system. The first processing system can include a drying system configured to remove or partially remove one or more contaminants in the dielectric film, 9 200949941 = the object contains gas, water, solvent, material, holes Generating molecules and pores are generated. The residual f-holes form fragments of the knife that hinder the subsequent hardening process, or any other possibility, 520*, exposing the dielectric film to the uv. UV exposure can include a hardening system in the system: "," is mechanically separated by 4% or part of the dielectric film. After the drying process, it can be transferred to the second system. Processing the system to expose the contamination to uv radiation can include exposing the dielectric film to lfSf: one, one or more UV emit diodes (light emitters diodes, , or - or more UV lasers, Or a combination of two or more of the uv light I may have a wavelength of about 100 nanometers (meters, nm) to about 600 nm _ ^. Alternatively, the wavelength of the UV radiation may range from about 200 nm to about 400 nm. The wavelength of the UV radiation may range from about 150 nm to about 3 〇〇 nm. Or the wavelength of the ^uv radiation may range from about 170 nm to about 24 〇 nm. Alternatively, the wavelength of the UV radiation may be In the range of about 2 〇〇 nm to about 24 〇 nm. [0047] During exposure of the dielectric film to UV radiation, the temperature of the substrate can be raised to a range of about 200 C to about 600 ° C. The dielectric film is heated by the UV heat temperature. Alternatively, the uv heat temperature may be in the range of about 30 (rc to about 500.) or uv heat temperature. Can be in the range of about 35 (TC to about 45 (TC). Or, before exposing the dielectric film to υ gamma radiation or after exposing the dielectric film to uv radiation or both, 'by raising the substrate Heating the dielectric film at a temperature. Heating of the substrate may include conduction heating, convection heating, or radiant heating, or a combination of any two or more thereof. [0048] Optionally, exposing the dielectric film to UV radiation The dielectric film can be exposed to IR radiation during exposure. Exposing the dielectric film to IR radiation can include exposing the dielectric film to one or more IR lamps, one or more IR LEDs (light emitting diodes) IR radiation of LEDs), or one or more IR lasers, or a combination of two or more thereof. The wavelength of IR radiation may range from about 1 micron to about 25 microns. Or 'IR The wavelength of the radiation may be in the range of about 2 〇〇 nm to about 400 nm 200949941. Alternatively, the wavelength of the IR radiation may range from about 2 microns to about 2 〇 microns. Alternatively, the wavelength of the 1R radiation may be about 8 From micron to about 14 microns. Alternatively, the wavelength of IR radiation can range from about 8 microns to about 1 In the range of 2 microns, alternatively, the wavelength of the IR radiation can range from about 9 microns to about 1 〇. [0049] In 530, the dielectric film is exposed to IR radiation. The dielectric film is exposed to IR. Radiation can include exposing the dielectric film to one or more lights, one or more IR light emitting diodes (LEDs), or one or more IR lasers, or both or more The combination of IR radiation. The wavelength of the IR radiation can range from about i microns (micron) to about 25 microns. Alternatively, the wavelength of the IR radiation can be in the range of about 2 〇〇 nm ^ about 40 〇 nm. Alternatively, the wavelength of the IR radiation can range from about 2 microns to about 2 Torr. Alternatively, the wavelength of the IR radiation can range from about 8 microns to about 14 microns. Alternatively, the wavelength of the IR radiation can range from about 8 microns to about 12 microns. The wavelength of the IR radiation can range from about 9 microns to about 1 inch. IR exposure can be carried out prior to UV exposure, during UV exposure, or after UV exposure, or a combination of two or more. [0050] Further, during the exposure of the dielectric film to the IR radiation, the film may be applied by raising the temperature of the substrate to an ir thermal temperature in the range of about 20 CTC to about 60 (TC). The IR heat temperature may be in the range of about 300 〇 to about 5 〇 (rc). Alternatively, the IR heat temperature may be in the range of about 350. (: to about 450 ° C. Alternatively, in the dielectric film Exposure, prior to IR radiation or after exposing the dielectric film to IR radiation or both, the dielectric film can be heated by raising the temperature of the substrate. Heating of the substrate can include conduction heating, convection heating, or radiant heating, Or any combination of two or more. [〇〇51] As described above, during the 1 foot exposure, by absorption of IR energy; J thermal dielectric film. However, the heating step may further comprise The substrate is placed on the substrate holder and the substrate holder is heated using a heating device to electrically heat the substrate. For example, the heating device may comprise a resistive heating element. [0052] The inventors have observed that different stages of the curing process can be performed Change the energy level (hv) of the pass-through period. The hardening process can be used Mechanisms for removing moisture and/or contaminants, removing _^ hole-forming materials, decomposing pore-forming materials, producing cross-linking initiators, cross-linking of dielectric films, and diffusing cross-linking initiators. Organizations may need to be different Passing 200949941 energy to the energy level and rate of the dielectric film. • ff] For example, in removing the hole-forming material _, to absorb photons at the R wavelength, the inventors have found that ^ ^ ' UV exposure is more effective To assist in the removal of the hole-forming material. (4) Heating than paper or [0054] In addition, for example, during the removal of the hole-forming material, the decomposition of the hole-generating material is assisted. The removal process may include IR exposure by j. The inventor has issued Money exposure can be achieved by dissociating pores, such as pore-forming molecules and/or pore-forming molecular fragments, and coffin (eg ❹ = ' to facilitate the removal process with IR exposure. ^^^^ at W wavelength (eg Photon to about 45Gnm) to receive counties, for example, during the period of production of cross-linking initiator, the initial can be used to use the Chu Qing New Materials _ hair _ away ^ ^ away from the cloud and right, recognize the exposure Promote. For example, 'key solution H # about lion to 4GGnm The energy level of the wavelength. In the case of the h step, for example during the cross-linking, the cross-linking process can be facilitated by the thermal energy of the foot. The inventors have found that cross-linking can be facilitated by 1R exposure. For example, 'forming and recombining bonds may need to have The low main wavelength of the salt is, for example, corresponding to the drying process of the diarrhea-based organic phosphatic acid film, the IR exposure of the dielectric film, and the processing system of the dielectric film, or separate processing systems. Zhongjin [The drying process can be carried out in the first processing system and the IR exposure and the exposure of the second exposure, such as the 1R exposure of the dielectric film, can be carried out in the vacuum state to transfer the substrate from the second processing system to the younger brother. A processing system minimizes contamination. & In addition, after the unnecessary drying process, the exposure process, and the 1r exposure cap are changed, the post-treatment of the dielectric film is forced to be processed. For example, post-treatment can include heat treatment of the dielectric film. Alternatively, for example, the post-treatment may include a whirl cold on the dielectric film, or a film, which may increase the thickness of the film or the vapor deposition. 3 by two, tearing the dielectric film In the latter part, the process of processing the substrate can be performed on the substrate by the process of "execution" or "more on the dielectric film [00^, or the dielectric film is exposed to the plasma process. Dielectric film: ΖΖΤ-ί^ [=〇] At 62", the dielectric 臈 is exposed to the first IR radiation. Lift = electricity = dew to the first - IR ^ shot can be promoted by the dielectric film to remove all, electric ϊ ^ ϊ, or version of any: (four) ί 联 3 3 paragraphs long enough to be substantially removed by the dielectric film ί ii ii raw ^: pore-forming material, residual pore-forming material, pore-forming material containing pores and/or fragments of pore-forming molecules, crosslinking inhibitors, or remnant inhibitors, or both A combination of more people. [m exposing the dielectric film to the first ir light shot may include exposing the dielectric film to multiple radiation, monochromatic IR radiation, pulsed IR radiation, or continuous wave IR radiation, or two or more of any two or more combination. For example, exposing the dielectric film to the first-IR radiation may include exposing the dielectric film to one or more IR lamps, one or more IR light-emitting diodes, or A combination of multiple melon lasers. The first-IR radiation may contain a power density of up to about 2 cm 2 . For example, the first IR radiation may contain power in the range of about 1 w/cm 2 to about 2 〇 w/cm 2 . Density. The wavelength of the first IR radiation may range from about ! microns to about 25 microns. Alternatively, the wavelength of an IR radiation may range from about 2 microns to about 2 microns. Alternatively, the first IR radiation The wavelength may range from about 8 microns to about 14 microns. Or 13 200949941, the wavelength of the first IR radiation may range from about 8 microns to about 丨 2 microns. Alternatively, the wavelength of the first IR radiation may be about In the range of 9 microns to about 10 microns. The first melon power density, or the first melon wavelength, 戋 is changed during the first IR exposure. [0062] Optionally, during the first IR exposure, Increasing the temperature of the substrate to a first ir heat treatment temperature in the range of about 200 c to about 600 C to coat the dielectric film Alternatively, the first IR heat treatment temperature may be in the range of about 3 Torr (rc to about rms). Alternatively, the first IR heat treatment temperature may be in the range of about 35 (rc to about 45 (rc). Ο [0063 The dielectric film is exposed to uv radiation after the first IR exposure at 630. For example, exposing the substrate to UV radiation can promote the formation of a crosslinking initiator (or free radical) in the dielectric film. Exposing the dielectric film to UV radiation can include exposing the dielectric film to polychromatic uv radiation, monochromatic uv radiation, pulse uv radiation, or continuous wave uv radiation, or a combination of two or more. For example, Exposing the dielectric film to uv radiation can comprise exposing the dielectric film to one or more UV lamps, one or more uv light emitting diodes (LEDs), or one or more uv lasers, or The combined uv radiation. The uv radiation may contain a power density in the range of from about 0.1 mil W/cm 2 to about 2000 mW/cm 2 . The wavelength of the UV radiation may range from about 6 〇〇 nm to about . The wavelength may range from about 200 nm to about 400 nm. Or the wavelength of the 'UV light shot may range from about 15 nm to about 300 nm. Or, UV light shot. The wavelength may range from about I70 nm to about 240 nm. Alternatively, the UV wavelength may range from about 200 nm to about 240 nm. [0065] Optionally, during UV exposure, the temperature of the substrate may be raised. Heating the dielectric film to a UV heat treatment temperature in the range of about 200 ° C to about 600 ° C. Or 'the UV heat treatment temperature may be in the range of about 300 ° C to about 500 ° C. Or the 'UV heat treatment temperature. It can be located in the range of about 35 (TC to about 45 (TC). [0066] The dielectric film is exposed to a second IR radiation at 640. For example, exposing the dielectric film to the second IR radiation can promote crosslinking of the dielectric film. Exposing the dielectric film to the second IR radiation may comprise exposing the dielectric film to at most 200949941 color IR radiation, monochromatic IR light radiation, navigation, a combination of any two or more of which, for example, The shot r or f may comprise a power density in the range of exposure to _ or more han lamps, or r-IR-IR IW/cm to about 20 w/cm 2 , at about 1 μm to about Within the range of 25 microns. g field wavelength or wave of second IR radiation or wave of second IR radiation or wave of second IR radiation may be varied from about 2 microns to about 20 microns during the first IR exposure. The wavelength of the first 1 foot shot may range from about 8 microns to about 14 microns long and may range from about 8 microns to about 12 microns. The length may range from about 9 microns to about 10 microns. 1隹; change the second melon power density, or the second IR wavelength, or both „ Γί^2ηηΐ must be 'during the second 1R exposure' can be raised by raising the temperature of the substrate ί 热 hot> In the range of about 30 (rc to about 500 ° C.) or, the second IR heat treatment temperature can be in the range of about 35 (rc to about the range of the range of [0070] ΓΖ exposure" in the first -IR exposure For at least part of the period, the UV radiation can be applied. For example, the dielectric film is exposed to the second UV radiation if the bond in the dielectric film is broken or dissociated to help remove the various materials λα · αΓ described above. The V radiation may have a density in the range of from about 0.1 lm/cm 2 to about 2000 mW/cm 2 . The wavelength of the first UV light ray may be from about 1 (10) 11111 to about 60 〇 ί = 2. Alternatively, the second UV light shot The wavelength may be from about 2 〇〇 nm to about 40 〇 nm. Alternatively, the wavelength of the second UV light may be from about 150 nm to about 3 〇〇 nm or the wavelength of the first UV shot may be about i70 nm. Up to about 240 nm or 'the wavelength of the second UV radiation may be optionally between about 2 〇〇 nm and about 240 nm' during at least a portion of the UV exposure, the dielectric may be Up to the third IR radiation. The third IR radiation may contain up to about 20 w/cm 2 of power. For example, the third IR radiation may contain a range of from about 1 W/cm 2 to about 2 〇 w/cm 2 of the range of 15 200949941. Within the range of ί _, the wavelength may be in the range of about 1 micrometer to about 25 micrometers or the wavelength of the second IR radiation may be in the range of about 2 micrometers to about 20 micrometers, or the wavelength of the third IR radiation may be From about 8 microns to about 14 micrometers, the wavelength of the third IR radiation can range from about 8 microns to about 12 micrometers or the wavelength of the third IR radiation can range from about 9 microns to about 1 microsecond. Change the third IR power dense sound, seven potential-IR wavelength, or both during exposure.

[0071] 在曝露或第一 IR曝露或二者之前,可_由并古 溫度至約細°〇至約_°C之範圍内的預熱處理溫^而加C =。或者,預熱處理溫度可在約30(TC至約50(TC的範圍内:再 Ο 或者,預熱處理溫度可在約35(TC至約450°C的範圍内。 [0072] 在UV曝露或第二ir曝露或二者之後,可古 板之溫度至約200Ϊ至約_°C之範圍内的躺處理:艾 =。後熱處奴度可在約⑽。以約 或者,後熱處理溫度可在約35(Tc至約450。(:的範圍内。 m依實施例’說明硬化基板上之低介電常數(低七) 膜的方法。该方法包含在基板上形成低七介電膜,其中低_ 料及孔洞生成材料。維持第-持續時間之曝露 輕射。在第一持續時間中,維持第二持續時間之 ❹之;輻射,其中第二持續時間為第一持續時間 的笛1⑽其中第—制時職起始於第—持續時間開始之後 Γ00741 ^ ’且終止於第—持續時間終止之前的第二時間點。 3,依據再另一實施例來說明硬化基板上之低介 程圖700’其中低-k介電膜包含結構形成材料 材料㈣在720 1 ’由低_k介電膜實質上去除孔洞生成 ;聯===劑=含濕氣、水分、雜質、=成材 -丄ϊίίΓί成料、包含孔洞生成分子及/或孔洞生成分子之 碎片的孔洞生成材料、或其二者或更多者的任何組合。 200949941 餘去除孔洞生成材料之後,在多孔性低-k介電 • 性低-k介電膜之4構形成材料^聯 〇 "[0071] Before exposure or first IR exposure or both, C = can be added from the preheat treatment temperature in the range of from about 20 °C to about _ °C. Alternatively, the preheat treatment temperature can be in the range of about 30 (TC to about 50 (TC): again, or the preheat treatment temperature can be in the range of about 35 (TC to about 450 ° C. [0072] In UV exposure Or after the second ir exposure or both, the temperature of the ancient plate may be in the range of about 200 Ϊ to about _ ° C: Ai =. The heat of the post-heating may be about (10). The temperature may be about or after the heat treatment. A method of hardening a low dielectric constant (lower seven) film on a substrate is described in the range of about 35 (Tc to about 450. (in the range of m.). The method comprises forming a low dielectric film on the substrate, Wherein the low material and the hole generating material maintain the first-last exposure light exposure. In the first duration, the second duration is maintained; the radiation, wherein the second duration is the first duration of the flute 1 (10) The first-time job starts at the second time point before the start of the first duration - Γ 00741 ^ ' and terminates before the end of the - duration. 3. According to another embodiment, the low-intermediate diagram on the hardened substrate is illustrated. 700' of which low-k dielectric film contains structure forming material material (four) at 720 1 'by low _ The k dielectric film substantially removes the pore formation; the joint ===agent = moisture, moisture, impurities, = material - 丄ϊίίίί, material containing pores, and/or pore-forming materials Any combination of two or more. 200949941 After removing the pore-forming material, the material is formed in the low-k dielectric low-k dielectric film.

Si清除此外,該方法可非必須地包含切斷低Μ電膜中的鍵結 〇 决&八工4、,生成材枓、結構形成材料的微弱鍵結側基、孔洞 ίϋιι同生成分子之碎片、或其中之二或更多者的任^ 士如,父聯抑制劑可包含孔洞生成材料,其中且有έ士構來 介電膜包含使基板之表面構形 子具有微 至,,將低士介電膜曝露至IR輻射。將低-k介電 =射',_射、或連續⑽輻射、或其中之^更$ 2至ΐί 介電膜曝露至IR輻射可包含將低-k介電膜ί rXim、有約獅至約12微米之波長的ir輻射。 介電膜曝Λ必Tifv可將低士介電膜曝露至uv輻射。將低七 射、單多輻射可包含將低士介電膜曝露至多色uv輻 二或f夕輕射、脈波uv輻射、或連續波uv輻射、或其中之 G-ΐ °將低·k介電膜曝露至uv輻射可包含將 長的UV _ in_feter)至約600奈米之波 替赤入=曰曝可在IR曝露之後。或者,可在IR曝露之 戚間發生UV曝露。例如,在1R曝露期間發生iuv 曝路可含有約300奈米至約奈米之波長。 17 200949941 [0080] 在830中,調整夺應如^、 .之機械性質、低-k介電膜之電㈣整低介電膜 七介電膜之孔尺寸、或低之^^電=光學性質、低 '者的組合。交聯抑制劑之殘留量可景壇丄ί其:之二或更多 疏水性、及電漿電阻。 a其他性負,包含碳濃度、 _1]機械性質可包含彈性模 性質可包含介電常數(k)。辟性f 4折f H、或二者。電 _2]調整交聯抑制劑之殘率⑻。 ❹ 介電膜實質上去除交聯抑制劑。例如曝^^低士 UV輻射之前實質上去除交聯抑制劑。在將低幻丨電膜曝露至 =3]或者’調整交聯抑制劑之 [0084]或者’調整父聯抑制劑之殘留量可包 期間之uv曝露的持續時間、uv 二露 UV劑量、或其二者或更多者的组人。v強度A UV曝露之 ❹ Η冰好七二間將低士介電膜曝露至第二IR輻私。 IR輻射二口匕3在UV曝露之後將低_k介電膜曝露至第三 包含在瓜曝露之後將低士介電祕露 至第一 UV輕射,且在IR曝露期In addition, the method may optionally include cutting the bond in the low-electrode film, and forming a weak bond side group, a hole in the structure forming material, and a pore-forming molecule. Fragments, or two or more of them, such as a parent-linked inhibitor, may comprise a pore-forming material, wherein the gentleman-structured dielectric film comprises a surface conformation of the substrate having a slight The shiatsu dielectric film is exposed to IR radiation. Exposing a low-k dielectric = shot ', _ shot, or continuous (10) radiation, or a ^ 2 to ΐ dielectric film to IR radiation may include a low-k dielectric film ί rXim, having a lion to Ir radiation of a wavelength of about 12 microns. Dielectric film exposure Tifv can expose the low-voltage dielectric film to uv radiation. The low seven-shot, single-multiple radiation may include exposing the low-pressure dielectric film to a multi-color uv spoke or a light uv radiation, a pulse wave uv radiation, or a continuous wave uv radiation, or wherein the G-ΐ ° will be low·k Exposure of the dielectric film to uv radiation can include a long UV _ in_feter) to about 600 nanometers of bottling. The exposure can be after IR exposure. Alternatively, UV exposure can occur between IR exposures. For example, iuv exposure during 1R exposure may contain wavelengths from about 300 nm to about 100 nm. 17 200949941 [0080] In 830, adjusting the mechanical properties of the resist, such as the mechanical properties of the low-k dielectric film, the hole size of the seven dielectric film of the low dielectric film, or the low voltage of the optical film A combination of nature and low's. The residual amount of the crosslinking inhibitor can be as follows: two or more of hydrophobicity, and plasma resistance. a other negative, including carbon concentration, _1] mechanical properties may include elastic mode properties may include a dielectric constant (k). Creativity f 4 fold f H, or both. Electricity _2] Adjust the residual rate of the crosslinking inhibitor (8).介 The dielectric film substantially removes the crosslinking inhibitor. For example, the crosslinking inhibitor is substantially removed prior to exposure to low pressure UV radiation. Exposing the low illusion film to =3] or 'adjusting the crosslinking inhibitor to [0084] or 'adjusting the residual amount of the parental inhibitor to the duration of the uv exposure during the package, uv 2 exposure UV dose, or a group of two or more of them. v Intensity A UV exposure ❹ Η 好 好 七 七 七 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低 低IR radiation II 匕 3 exposes the low _k dielectric film to the third after UV exposure. Contains the low temperature dielectric to the first UV light after the exposure of the melon, and during the IR exposure period.

輻射,其中第二UV輻射係與第& 曝露至第二UV 劑之殘留量可包含調整在IR曝露期第5 ° =交聯抑制 間、第二UV曝露之uv強度第二1H:uv曝露的持續時 中之二或更多者的組合。將介電膜曝 路其 300奈米至約450奈米之波長。 罘UV輻射可包含約 [0087]非必須地’可在IR曝露之前、IR曝霪划、+ τ 露之後、或其中之二或更多者的組合時 5 R曝 [〇购可在真空情況或受控制的大氣中進行 18 200949941 [0089] 依據-實例,結構形成材料可包含二乙氧曱基石夕烧 (diethoxymethylsilane ’ DEMS),且孔洞生成材料可包含箱類 (terpene)、冰片烯(norb〇mene)、5·二甲基 q,4_ 環辛二烯 • (5-dimethyl-M-cy—)、十氫化蔡(decahydr〇naphthale;;)、 乙苯(ethylbenzene)、或檸檬油精(lim〇nene)、或其二者或更多者的 組合。例如,孔洞生成材料可包含α_祐品烯('a拉 e, ATRP) 〇 [0090] 依據另-實例,說明絲板上製備多孔性低_k介電膜的 方法。該方法包含:使用化學氣相沉積(chemical vap〇r dep〇siti〇n, CVD)製程在基板上形成含siCOH介電膜,其中CVD製程使用 ® DEMS及孔洞生成材料;曝露含sic〇H介電膜至ir藉射維接足 夠長以實質上去除孔洞生成材料的第一持續時間;在IR曝露之 後,曝露含SiCOH介電膜至UV輻射維持第二持續時間;以及在 该第一持續時間之部份或全部期間加熱含Sic〇H介電膜。 [0091] 將含SiCOH介電膜曝露至ir輻射可包含具有約9微米 至約10微米(例如9.4微米)之波長的ir輻射。將含sic〇H介電 膜曝露至UV輻射可包含具有約ι7〇奈米至約24〇奈米(例如 222nm)之波長的UV輻射。加熱含SiCOH介電膜可包含加教基板 至約300°C至約500。(:之溫度。 ”' [0092] IR曝露及UV曝露可在分離的處理室中進行,或ir曝 Ό 露及UV曝露可在相同的處理室中進行。 [0093] 孔洞生成材料可包含萜類、冰片烯、5-二甲基-1,4-環 辛一稀、十虱化萘、乙苯、或檸檬油精、或其中之二或更多者的 組合。例如,孔洞生成材料可包含〜萜品烯(ATRp)。 [0094] 表1提供了預計具有約2.2至2.25之介電常數的多孔性 低-k介電膜之資料。多孔性低_k介電臈包含由CVD製程所形成之 多孔性含SiCOH介電膜,該CVD製程係使用包括二乙氧甲基石夕 - 院(DEMS)之結構形成材料及包括(X-萜品烯(ATRP)之孔洞生成材 料。將「原始」之具有額定厚度(埃,Angstrom , A)及折射率⑻ 的含SiCOH介電膜曝露至IR輻射,而導致「IR後」厚度(A)及「瓜 19 200949941 後」折射率(η)。之後,將「IR後」含SiCOH介電膜曝露至UV輻 射同時加熱’而導致「UV+加熱後」厚度(A)及「UV+加熱後」折 射率⑻。Radiation, wherein the second UV radiation system and the residual amount of the & exposure to the second UV agent may comprise adjusting the 5° = cross-linking inhibition during the IR exposure period, the uv intensity of the second UV exposure, the second 1H: uv exposure A combination of two or more of the durations. The dielectric film is exposed to a wavelength of from 300 nm to about 450 nm.罘UV radiation may comprise about [0087] optionally "may be exposed to IR, after IR exposure, after + τ, or a combination of two or more of them. Or controlled atmosphere 18 200949941 [0089] According to an example, the structure forming material may comprise diethoxymethylsilane 'DEMS, and the pore-forming material may comprise terpene, norbornene (norbene) 〇mene), 5· dimethyl q, 4_ cyclooctadiene • (5-dimethyl-M-cy—), decahydr〇 naphthale;, ethylbenzene, or lemon olein ( Lim〇nene), or a combination of two or more thereof. For example, the pore-forming material may comprise α_------------- ('a pull-e, ATRP) 依据 [0090] According to another example, a method of preparing a porous low-k dielectric film on a wire plate is illustrated. The method comprises: forming a siCOH-containing dielectric film on a substrate by a chemical vapor deposition (CVD) process, wherein the CVD process uses ® DEMS and a pore-forming material; and the exposure includes sic〇H The first duration of the electrical film to ir is sufficiently long to substantially remove the void-forming material; after the IR exposure, exposing the SiCOH-containing dielectric film to UV radiation for a second duration; and during the first duration The Sic〇H dielectric film is heated during part or all of the period. Exposing the SiCOH-containing dielectric film to ir radiation can comprise ir radiation having a wavelength of from about 9 microns to about 10 microns (eg, 9.4 microns). Exposing the sic 〇H containing dielectric film to UV radiation can comprise UV radiation having a wavelength of from about 1 nanometer nanometer to about 24 nanometers (e.g., 222 nm). Heating the SiCOH-containing dielectric film can include teaching the substrate to between about 300 ° C and about 500. (: Temperature. "' [0092] IR exposure and UV exposure may be performed in separate processing chambers, or ir exposure and UV exposure may be performed in the same processing chamber. [0093] The pore-forming material may comprise ruthenium a combination of a class, a borneol, a 5-dimethyl-1,4-cyclooctane, a deuterated naphthalene, an ethylbenzene, or a lemon olein, or a combination of two or more thereof. For example, a pore-forming material may be used. Included ~ terpinene (ATRp). [0094] Table 1 provides information on a porous low-k dielectric film that is expected to have a dielectric constant of about 2.2 to 2.25. Low porosity _k dielectric 臈 includes CVD process The formed porous SiCOH-containing dielectric film is formed using a structure forming material including diethyloxymethyl-stone (DEMS) and a pore-forming material including (X-terpinene (ATRP). The "original" SiCOH-containing dielectric film with nominal thickness (Angstrom, A) and refractive index (8) is exposed to IR radiation, resulting in "after IR" thickness (A) and "melon 19 200949941" refractive index (η After that, the "after IR" SiCOH-containing dielectric film is exposed to UV radiation while heating, resulting in "UV+heated" thickness (A) and "UV+ plus After heat, the refractive index (8).

-------->-^ 二· - X X , Z.11 | 4.4 ❹ [0095] 仍參照表1,提供了 IR後及UV後的膜厚度之收縮率 (%):此外,提供了 UV之波長及UV曝露時間(分,min)。另外, 還提供結果性之硬化多孔性低七介電膜的介電常數㈨及彈性模數 。如表1所不,在uv輻射及加熱之前使用厌輻射導致 於23 ’且低至2.09。另外,可達到低介電常數(亦即 k-2.ll)同時亦可達到可接受的機械性質(亦即E=4 44Gp [0096] 為了比較性之目的,在不曝露至IR輻射的情況下,輝 化使用_之CVD製程卿成的含SiC()H介電膜&幻 f Ξ2Γ「υν+力,後」折射率為約請8至約“34,'此結果ϊ :恩® L 1中所提供之結果為高。較高的折射率可指出膜芦中之 二?魏材料’例如較低多孔性膜、及/或膜氧化: 的方法。該方法包含:使用化學氣相沉積 3-------->-^ 2· - XX , Z.11 | 4.4 ❹ [0095] Still referring to Table 1, the shrinkage (%) of the film thickness after IR and after UV is provided: The wavelength of UV and the UV exposure time (minutes, min) are provided. In addition, the dielectric constant (9) and the elastic modulus of the resulting hardened porous low-seven dielectric film are also provided. As shown in Table 1, the use of anaerobic radiation prior to uv radiation and heating results in 23 ' and as low as 2.09. In addition, a low dielectric constant (i.e., k-2.ll) can be achieved while achieving acceptable mechanical properties (i.e., E = 4 44 Gp [0096] for comparison purposes, without exposure to IR radiation. Next, the CVD process using the CVD process of SiC () H dielectric film & f f Ξ 2 Γ "υ ν + force, after" refractive index is about 8 to about "34, 'This result ϊ: En® The results provided in L 1 are high. A higher refractive index may indicate a method of oxidizing the material in the membrane, such as a lower porous membrane, and/or membrane oxidation: the method comprises: using a chemical vapor phase Deposition 3

^ SiCOH ^ CVD ”_ S_介電膜至 ίΐ fFa1 5 ; Λ !R ί! uv曝露期間’曝細⑽介赚 200949941 時間;以及在UV曝露之後,曝露含SiCOH介電膜至第二m 射維持第四持續時間 、 一^ SiCOH ^ CVD _ S_ dielectric film to ίΐ fFa1 5 ; Λ !R ί! During exposure of uv, 'exposure (10) earns 200949941 time; and after UV exposure, exposes SiCOH-containing dielectric film to second m-shot Maintain the fourth duration, one

[0098]該方法可更包含在部份或全部之第二持續時間期 熱含SiCOH介電膜。此外,第三持續時間可與第二持續時間 [〇〇99]將含SiCOH介電膜曝露至第—IR輻射可包含具 微米至约10微米(如9.4微米)之波長的IR輻射。將含Sic〇H八 電膜曝露至UV輻射可包含具有約17〇奈米至約23〇奈米(如 奈米)之波長的UV輻射。將含SiCOH介電膜曝露至第二IR輻射 可包含具有約9微米至約1〇微米(如9.4微米)之波長的IR_射 將含SiCOH介電膜曝露至第三IR輻射可包“有mg約 10微米(如9.4微米)之波長的IR輻射。加熱含Sic〇H介電膜可包 含加熱基板至約30(TC至約500°C之溫度。 、 [00100] 孔洞生成材料可包含萜類、冰片稀、5-二甲基·ι,4_ 環辛二烯、十氫化萘、乙苯、或檸檬油精、或其中之二或更多者 的組合。例如,孔洞生成材料可包含α_萜品烯(ATRp)。 [00101] 表2長:供了預計具有約2.2至2.25之介電常數的多孔 性低-k介電膜之資料。多孔性低_k介電膜包含由CVD製程所形成 之多孔性含SiCOH介電膜,該CVD製程係使用包括二乙氧甲基 矽烷(DEMS)之結構形成材料及包括α_萜品烯(ATRp)之孔洞生成 材料。使用二製程硬化「原始」之具有額定厚度(埃,Angst麵, A)及折射率(n)的含SiCOH介電膜’即:(丨)習知之uv/熱能製程(亦 即無IR曝露);以及(2)將原始膜層曝露至IR輻射(9 4微米),然後 曝露至IR輻射(9.4微米)及Uv輻射(222_,然後曝露至IR輕射 (9.4微米)之硬化製程。 表2 原始 uv/熱處理後 收縮率 k E Η 厚度 (A) η 6100 1.495 厚度 _(Α) η 5350 1.329 後-(%) (GPa) (GPa) 13 2.2 4.51 0.45 21 200949941 原始 IR+UV/IR+IR 後 收縮率 k E Η 厚度 (A) η 厚度 ㈧ η 後 _(%) (GPa) (GPa) 6137 1.488 5739 1.282 6.5 2.1 3.99 0.28 6107 1.5 5473 1.297 10.4 2.1 4.26 0.35 6173 1.498 5483 1.302 11.2 2.1 4.71 0.46 6135 1.499 5374 1.306 12.4 2.1 4.78 0,48[0098] The method may further comprise thermally containing a SiCOH dielectric film during a portion or all of the second duration. Additionally, the third duration may be followed by exposing the SiCOH-containing dielectric film to a second duration [〇〇99] to the IR radiation having a wavelength from micrometers to about 10 micrometers (e.g., 9.4 micrometers). Exposure of the Sic(R) containing hexa film to UV radiation can comprise UV radiation having a wavelength of from about 17 nanometers to about 23 nanometers (e.g., nanometer). Exposing the SiCOH-containing dielectric film to the second IR radiation may comprise IR-rays having a wavelength of from about 9 microns to about 1 micron (eg, 9.4 microns) exposing the SiCOH-containing dielectric film to the third IR radiation. IR radiation having a wavelength of about 10 microns (e.g., 9.4 microns). Heating the Sic〇H containing dielectric film can include heating the substrate to a temperature of about 30 (TC to about 500 ° C. [00100] The pore-forming material can comprise ruthenium a combination of steroids, borneol, 5-dimethyl ι, 4_cyclooctadiene, decalin, ethylbenzene, or limonene, or a combination of two or more thereof. For example, the pore-forming material may comprise α. _ Terpinene (ATRp) [00101] Table 2 Length: Information for a porous low-k dielectric film expected to have a dielectric constant of about 2.2 to 2.25. Low porosity _k dielectric film comprising CVD The porous SiCOH-containing dielectric film formed by the process uses a structure forming material including diethyloxymethyl decane (DEMS) and a pore-forming material including α_terpinene (ATRp). "Original" SiCOH-containing dielectric film with nominal thickness (Angstrom, Angst surface, A) and refractive index (n) 'ie: (丨) conventional uv/thermal energy (i.e., no IR exposure); and (2) exposing the original film to IR radiation (94 microns), then exposing to IR radiation (9.4 microns) and Uv radiation (222_, then exposure to IR light (9.4) Table 2 Original uv / shrinkage after heat treatment k E 厚度 Thickness (A) η 6100 1.495 Thickness _(Α) η 5350 1.329 Post-(%) (GPa) (GPa) 13 2.2 4.51 0.45 21 200949941 Original IR+UV/IR+IR post-shrinkage k E Η thickness (A) η thickness (eight) η post _(%) (GPa) (GPa) 6137 1.488 5739 1.282 6.5 2.1 3.99 0.28 6107 1.5 5473 1.297 10.4 2.1 4.26 0.35 6173 1.498 5483 1.302 11.2 2.1 4.71 0.46 6135 1.499 5374 1.306 12.4 2.1 4.78 0,48

[00102] 表2提供了習知之UV/熱能製程的「UV/熱處理後」 厚度(A)及「UV/熱處理後」折射率(n),以及ir+uy/ir+ir後製程 的「IR+UV/IR+IR後」厚度(A)及「IR+UV/IR+IR後」折射率⑻。 此外,提供了 UV/熱處理後及IR+UV/IR+IR後的膜厚度之收縮率 (%)。另外,提供了結果性硬化多孔性低-k介電膜之介電常數(k)、 彈性模數(E)(GPa)及硬度(H)(GPa)。如表2所示,在UV轄射及加 熱之前、以及UV曝露期間及之後使用IR輻射,導致介電常數低 於2.;!。此外,可達到低介電常數(亦即k=21)同時可達到可接受的 機械性質,亦即E=4.71GPa且H=0.46GPa。比較性地來說, IR+UV/IR+IR硬化製程以較少之收縮率而產生較低之介電常數。 另外,兩硬化製程之機械性質洱及印係大約相同。 [00103]因此,使用IR曝露及UV曝露可導致形成二乙氧甲基 矽烷(DEMS)基之多孔性介電膜,其包含約21或更低之介電;^ 數、約1.31或更低之折射率、約4GPa或更大之彈性模數、及 0.45GPa或更大之硬度。 [00104]纟3提供了預計具有大約2之介電常數的多孔性低七 介電膜之倾。乡孔性低_k介電膜包含由CVD製程卿多 性含SCOH介電臈’該CVD製程係使用包括二乙氧甲基石夕烷 (DEMS)之結獅紐料及&括α_ # AT ^ ^ ^ 原始之含㈣H介電膜,即:⑴ 熱月b製程(亦即無1r曝露);⑵僅將原始膜層曝露至IR輻射(94 微未)之硬化製程;(3)在習知之㈣熱能製程之前將原始膜層^露 22 200949941 至IR輻射(9.4微米)之硬化製程;以及(4)將原始膜層曝露至IR 輻射(9.4微米)’然後曝露至IR輻射(9.4微米)及UV輻射(222nm), 然後曝露至IR輻射(9.4微米)之硬化製程。 表3 製程類型 η 收縮率(%) k E(GPa) H(GPa) UV/熱能 1.275 33 1.92 2.52 0.28 僅IR 1.174 15 1.66 1.2 0.1 IR+UV/熱能 1.172 29 1.65 2.4 0.33 IR+UV/IR+IR 1.172 26 1.68 2.34 0.28 1.164 29 1.66 2.08 0.25 ❹ (%) Μ 表3提供了硬化製程之每一者後的折射率(η)、收縮率 介電常數(k)、彈性模數(E)(GPa)及硬度(H)(GPa)之結果。如 表3所不’使用IR輻射(有或#uv輻射)導致介電常數低於丨7(而 =大於1.9)。當僅使用IR輻射來硬化原始膜層時,可達到低介電 1數(亦即k=1.66)同時亦可達到可接受之機械性質,亦即 =1.2GPa且H=0.1GPa。然而,當使用IR輻射及uv輻射來硬化 原始膜層時,可達到低介電常數(亦gpk=16 ❿ f E=234GPa X H=0.28GPa 〇 ^ 較低之介電常數(k= J 1.68)。更進一步而言,當使用IR輕射時,可藉由使用w 而改善機械性質(E及Η)。 〜射 陶06]因此’使用IR輻射及UV輻射可導致形成备 y_S獻纽性介植,其包含約 〇.2GPa或更大之硬度。 ^大之彈性輪數、及約 ,一么實施例’圖5A顯示處理基板上之介電膜用的 23 200949941 程度,該等污染物包含例如濕氣、水物 材料、殘留孔洞生紐料、結構形成:劑、雜質、孔洞生成 生成分子、孔洞生成分子之碎片、交之微弱鍵結侧基、孔洞 片、或任何其他可能妨礙在硬化系統丨卩^劑、3^聯抑制劑之碎 [00108]例如,從乾燥製起之、-re #中進行硬化製程的污染物。 電膜内出現之特定污“,可。^製程之後充分地減少介 腦。污染物減少之程度可使用7立; 7^fuLd 5 FTIR)^^^»^s; spe^oscop^^^^ 測^或者,例如可充分地使介電臈内出現之特p定污染物m 至100%。或者,例如可充分地使介雷 /' 80%至ι_。 ^ H軸出現之特定污染物減少 ΓΓΙ]卿5A,硬化緖1G可用以為了例如改善介電 f由在介電膜内造成或部份造成交聯來硬化介 j 1G可用以藉由造成或部份造成引發交聯、 ❹ ίί1Λ成材料、分解孔洞生成材料等等而硬化介電膜。硬化 U10可包含-或更多輻射源’用以曝露具有介電膜之基板至多 重電磁波長下的電磁(electro_magnetic,ΕΜ)輻射。例如,一或更 多輻射源可包含紅外線(IR)鋪源及料鄉jV)輻娜。可同時、 循序、或部份互相重疊地進行曝露基板至υν輻射及IR輻射。在 循序曝露期間’可例如在將基祕紅瓜輻射之前或將基板曝露 至IR輕射之後或一者,將基板曝露至UV輕射。此外,在循序曝 露期間’可例如在將基板曝露至uv輻射之前或將基板曝露至uv 輻射之後或二者,將基板曝露至丨尺輻射。 [00110] 例如,IR輻射可包含約1微米至25微米之IR輻射源。 此外’例如IR輻射可在約2微米至約20微米之範圍内,或約8 微米至約14微米之範圍内,或約8微米至約12微米之範圍内, 或約9微米至約10微米之範圍内。此外,例如uv輻射可包含產 生約1〇〇奈米(nanometer,nm)至約600nm之輻射的UV頻帶源。 另外’例如UV輻射可在約200nm至約400nm之範圍内,或約 150nm至約3〇〇nm之範圍内,或約I70nm至約240nm之範圍内, 24 200949941 或約200nm至約240nm之範圍内。 [ΓΓ2Ι,所示’可將傳送系統3G祕至乾燥 ^統20,俾使傳送基板出入乾燥系统2〇及硬化系统1〇,並 ί ^統*交換基板。傳送祕3G可傳送基板來往乾燥 統1G同時維持真空之環境。乾燥及硬化系統加 ί 一株以i f达系統3〇可例如包含多重元件製造系統40内之處 理Hi,’多4元件製造純4G可容許傳送基板來往處 製程,可使用=二來為耦=生:中之 =件。乾燥及硬化系統2。及10、及傳送系統= 燥系統20、或硬化系統10、或 電膜,發明之另一實施例中’圖5Β顯示處理基板[00102] Table 2 provides the "UV/heat treated" thickness (A) and the "UV/heat treated" refractive index (n) of the conventional UV/thermal process, and the "IR" after the ir+uy/ir+ir process. +UV/IR+IR "thickness (A) and "IR+UV/IR+IR" refractive index (8). Further, the shrinkage ratio (%) of the film thickness after UV/heat treatment and after IR+UV/IR+IR was provided. Further, the dielectric constant (k), the elastic modulus (E) (GPa), and the hardness (H) (GPa) of the resulting hardened porous low-k dielectric film are provided. As shown in Table 2, the use of IR radiation before UV irradiation and heating, and during and after UV exposure resulted in a dielectric constant less than 2.; In addition, a low dielectric constant (i.e., k = 21) can be achieved while achieving acceptable mechanical properties, i.e., E = 4.71 GPa and H = 0.46 GPa. In contrast, the IR+UV/IR+IR hardening process produces a lower dielectric constant with less shrinkage. In addition, the mechanical properties of the two hardening processes and the printing system are about the same. [00103] Thus, the use of IR exposure and UV exposure can result in the formation of a diethoxymethyl decane (DEMS) based porous dielectric film comprising a dielectric of about 21 or less; ^, about 1.31 or less. The refractive index, an elastic modulus of about 4 GPa or more, and a hardness of 0.45 GPa or more. [00104] 纟3 provides a tilt of a porous low-seven dielectric film that is expected to have a dielectric constant of about two. The low porosity of the _k dielectric film consists of a CVD process containing SCOH dielectric 臈 'This CVD process uses a lion sulphate including diethyl ethoxymethyl sulphate (DEMS) and &alpha_# AT ^ ^ ^ The original contains (IV) H dielectric film, namely: (1) heat month b process (ie no 1r exposure); (2) only the original film layer is exposed to IR radiation (94 micro-not) hardening process; (3) in the ha (4) Prior to the thermal process, the original film layer is exposed to a hardening process from 200949941 to IR radiation (9.4 microns); and (4) the original film layer is exposed to IR radiation (9.4 microns)' and then exposed to IR radiation (9.4 microns). And UV radiation (222 nm), then exposed to IR radiation (9.4 microns) hardening process. Table 3 Process Type η Shrinkage (%) k E(GPa) H(GPa) UV/ Thermal Energy 1.275 33 1.92 2.52 0.28 IR 1.174 15 1.66 1.2 0.1 IR+UV/Thermal Energy 1.172 29 1.65 2.4 0.33 IR+UV/IR+ IR 1.172 26 1.68 2.34 0.28 1.164 29 1.66 2.08 0.25 ❹ (%) Μ Table 3 provides the refractive index (η), shrinkage permittivity (k), and elastic modulus (E) of each of the hardening processes ( GPa) and hardness (H) (GPa) results. The use of IR radiation (with or #uv radiation) as shown in Table 3 results in a dielectric constant lower than 丨7 (and = greater than 1.9). When only the IR radiation is used to harden the original film layer, a low dielectric number (i.e., k = 1.66) can be achieved while achieving acceptable mechanical properties, i.e., =1.2 GPa and H = 0.1 GPa. However, when IR radiation and uv radiation are used to harden the original film layer, a low dielectric constant can be achieved (also gpk = 16 ❿ f E = 234GPa XH = 0.28 GPa 〇 ^ lower dielectric constant (k = J 1.68) Further, when using IR light, the mechanical properties (E and Η) can be improved by using w. ~ 射陶06] Therefore, using IR radiation and UV radiation can lead to the formation of y_S Planting, which comprises a hardness of about GP2 GPa or greater. ^ Large elastic wheel number, and about, an embodiment 'Figure 5A shows the degree of treatment of the dielectric film on the substrate 23 200949941, the contaminants contain For example, moisture, water materials, residual pores, structure formation: agents, impurities, pore formation molecules, fragments of pore-forming molecules, weakly bonded side groups, holes, or any other may interfere with hardening System 丨卩 剂 剂 剂 剂 [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [ Reduce the amount of the brain. The extent of the reduction of pollutants can be used 7; 7^fuLd 5 FTIR)^^ ^»^s; spe^oscop^^^^ Measure or, for example, sufficiently to make the specific p-contaminant m in the dielectric m m to 100%. Or, for example, the sigma/'80% can be sufficiently To ι_. ^ The specific contaminant reduction in the H-axis ΓΓΙ] Qing 5A, hardening 1G can be used to improve the dielectric f by causing or partially causing cross-linking in the dielectric film to harden the mediation Hardening the dielectric film by causing or partially causing cross-linking, ❹ ίίί1 forming materials, decomposing pore-forming materials, etc. Hardening U10 may include - or more radiation sources to expose the substrate having the dielectric film to multiple electromagnetic wavelengths Electromagnetic (electron) radiation. For example, one or more radiation sources may include infrared (IR) source and material. The substrate may be exposed to the substrate simultaneously, sequentially, or partially overlapping. Radiation and IR radiation. During sequential exposure, the substrate may be exposed to UV light, for example, prior to or after exposing the substrate to IR light. Alternatively, during sequential exposure, for example Exposing the substrate to the uv radiation or exposing the substrate After uv radiation or both, the substrate is exposed to scale radiation. [00110] For example, IR radiation can comprise an IR radiation source of between about 1 micron and 25 microns. Further, for example, IR radiation can range from about 2 microns to about 20 microns. In the range, or in the range of from about 8 microns to about 14 microns, or in the range of from about 8 microns to about 12 microns, or in the range of from about 9 microns to about 10 microns. Further, for example, uv radiation can comprise about 1 inch. UV source of radiation from nanometer (nm) to about 600 nm. Further, for example, UV radiation may range from about 200 nm to about 400 nm, or from about 150 nm to about 3 〇〇 nm, or from about I70 nm to about 240 nm, 24 200949941 or from about 200 nm to about 240 nm. . [ΓΓ2Ι, shown] can transfer the transfer system 3G to the drying system 20, so that the transfer substrate enters and exits the drying system 2〇 and the hardening system 1〇, and the substrate is exchanged. The transmission 3G can transport the substrate to and from the dry 1G while maintaining the vacuum environment. The drying and hardening system plus one can be used to include the processing in the multi-component manufacturing system 40, for example, the multi-component 4 manufacturing pure 4G can transfer the substrate to and from the process, and can be coupled with == Health: Medium = Pieces. Drying and hardening system 2. And 10, and the transport system = drying system 20, or hardening system 10, or an electric film, in another embodiment of the invention 'Figure 5 Β shows the processing substrate

r^rM ❹ 用以蔣介雷瞄tb·^ ^、砰具」配置。例如,乾燥系統110可 抑制劑去之污染物、孔洞生成材料、及/或交聯 分、ί劑程度’該等污染物包含例如濕氣、水 材料之微弱鍵結側基?孔洞留,洞生成材料、結構形成 ⑽中進行硬化製程m或任何其他可能妨礙在硬化系統r^rM ❹ Used for Chiang Kai-Ray to aim tb·^ ^, cookware. For example, the drying system 110 can inhibit the contaminants, pore-forming materials, and/or cross-linking components, and the extent of the emulsifier. The contaminants contain, for example, moisture, weakly bonded side groups of the water material. Hole retention, hole formation material, structure formation (10) in the hardening process m or any other may hinder the hardening system

IT^m iVZ 外,處理系統1〇〇可l必項改善介電膜之機械性質。另 處理系統140。例如^處理改變已硬化之介電膜的後 積另-臈,以提昇隨後之膜塗佈或氣相沉 如可利用藉由例如將基板曝;增而 25 200949941 方式,在後處縣統巾達雜著性的提昇。 ==傳地如圖5B所示’可為了傳送基板出入乾燥系統 減至乾齡統11G,且可為了傳送基板出 Ϊ往處理系統⑽。傳送系統13G可傳送基板 系統120及非必須的後處理系統i4。同時 ’傳送系統i3G可與—或更多之基板e(未顯示) 二二板。儘官圖5b僅顯示二或三個處理系統,其他包含例如姓 ❹ ❹ 統、塗佈系統、圖㈣統、度量系統等等之處理 ί 傳送糸統130。為了隔離發生在乾燥及硬化系統中之 ^用離組件15G耦接各系統。例如,隔離組件150可 絕,至少一絕熱組件’以及用以提供真空隔絕 、 此外,例如傳送系統130可作為隔離組件15〇 邵TO。 [00117]基板之IR曝露可在乾燥系統110、或硬化车絲120、 或分離的處理(未顯示)巾制卜 級化錢120 上之介]雷膜,二發明之另一實施例中’圖5C顯示處理基板 以及;系統2(K)。處理系統包含乾燥系統210、 =硬化系統220。例如,乾燥系統21〇可用以將介電膜中之一或 、膜生成材料、及7或交聯抑麵去除、或減少至足 ,該等、染物包含例如濕氣、水分、溶劑、雜質、孔洞 急成ϊΠΐί洞ΐ成材料、微弱地鍵結至結構形成材料之侧 Γ!卞1 生成刀子、孔洞生成分子之碎片、交聯抑制劑、交聯抑 4無任何可能在硬化线22G中妨礙硬化製程之 ΓΓ9]此外,例如硬化系統220可用以藉由造成或部份造成 二„交聯而硬化介魏,關如改善介賴之機械性質。 統/^可,須地包含用崎更介賴的後處理系 、先240例如,後處理可包含熱能加熱。此外,例如後處理可包含 26 200949941 在介電膜上旋轉塗佈或氣相沉積 黏著性或改善疏水性。或者 ,層以扣歼隨後之膜層的 .而使離子輕微地衝擊介魏由例如曝絲板至電漿中 •昇。 輯而在後處理系統中達到黏著性的提 [00120]可將乾燥系統210、硬化糸m β 作成水平配置或垂直配置(亦即、並 f f系統240 傳送系統230輕接至乾燥系 ^傳 ^圖5= 斤示’可將 ❹ 可將傳送系統230输至硬化系送基板進出乾燥系統; 220 ;以及可將傳送系送基板進出硬化系統 出後處理系統240。傳送李统23Q处系統240以傳达基板進 硬化系❹。及非必系 [00121]此外,傳送系統時維持真空之環境。 交換基板。儘管圖5CM堇顯亍-二条一或更多之基板£(未顯示) 統、沉積系統、塗佈系ί顯ΐ景例r刻系 仍可存取傳送系統230。為了糸統1 2 3 4等之處理系統 J,可使用隔離組件25。_各系中g 含用以提供熱隔絕之至少—猫献· j如知離組件250可包 閘閥組件。此外,例如傳送系用以提供真空隔絕之 份。 寻泛系統23〇可作為隔離組件250之一部 27 1 10 2 基板在乾燥系統20與傳送系統3() ^ fm口 3 許基板在乾燥系統20與硬化_ 1Q^ ^ ^ == 3 100 5C 200 ΧΐΖ 許基=過=210、22G、240分別包含至少一傳送開口,以容 4 [00124]現參照圖6 ’依據本發明之另一實施例而顯示乾燥系 200949941 楣^。ΐ卡系統300包含用以產生乾燥置於基板支架32〇上之基 ΐ包人、無污染物之環境的乾燥室310。乾燥系統 你田,^至^燥$310絲板支架320的熱處理裝置330,且其 & 猎升尚基板325之溫度而蒸發污染物,例如濕氣、水分、 等。另外,乾燥系統300可包含耦接至乾燥室ίο之 献置,,且其係肋在具有振舰場的情形下局部地加 二=染物。乾燥系統可利用熱處理裝置330、或微波處理裝置340、 或二者以協助乾燥基板325上之介電膜。In addition to IT^m iVZ, the processing system 1 must improve the mechanical properties of the dielectric film. The system 140 is also processed. For example, the treatment changes the post-product of the hardened dielectric film to enhance the subsequent film coating or vapor deposition, for example, by exposing the substrate; for example, 25 200949941, in the back of the county A hybrid improvement. == Grounding as shown in Fig. 5B' can be transferred to the drying system to the dry age system 11G, and can be transported to the processing system (10) for transporting the substrate. The transport system 13G can transport the substrate system 120 and the optional post-processing system i4. At the same time, the transmission system i3G can be used with - or more substrates e (not shown). Figure 5b shows only two or three processing systems, others include processes such as surnames, coating systems, diagrams, and measurement systems. In order to isolate the occurrence of the drying and hardening system, the system is coupled to the assembly 15G. For example, the isolation assembly 150 can be used to provide at least one thermal insulation assembly and to provide vacuum isolation. Further, for example, the delivery system 130 can be used as the isolation assembly 15 . [00117] The IR exposure of the substrate can be in the drying system 110, or the hardened wire 120, or a separate process (not shown) on the wafers, and in another embodiment of the invention. Figure 5C shows the processing substrate and system 2 (K). The processing system includes a drying system 210, a hardening system 220. For example, the drying system 21 can be used to remove, or reduce, one of the dielectric films, or the film-forming material, and the cross-linking surface, such as moisture, moisture, solvents, impurities, The hole is rushed into a hole, and the hole is weakly bonded to the side of the structure forming material! 卞1 The knives, the fragments of the pore-forming molecules, the crosslinking inhibitor, and the cross-linking 4 are not likely to interfere with the hardening line 22G. In addition, for example, the hardening system 220 can be used to harden or smear by causing or partially causing two cross-linking, such as improving the mechanical properties of the mediation. For example, post-treatment may include thermal energy heating. Further, for example, post-treatment may include 26 200949941 spin coating or vapor deposition adhesion or improved hydrophobicity on the dielectric film.歼 歼 歼 歼 歼 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子 离子m β is made horizontal Or vertical configuration (ie, and ff system 240 transfer system 230 is lightly connected to the drying system ^ Figure 5 = pinning 'can be used to transfer the transfer system 230 to the hardened substrate to and from the drying system; 220; The transfer system feeds the substrate into and out of the hardening system out-of-treatment system 240. The system 240 at the Lith 23Q is transmitted to convey the substrate into the hardening system. And it is not necessary to maintain the vacuum environment during the transfer of the system. Although the Fig. 5CM 堇 亍 二 二 二 二 二 二 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍 仍Alternatively, the treatment system J can be used with the isolation assembly 25. Each of the systems contains at least one of the means for providing thermal insulation, such as a catwalk valve assembly, and, for example, a conveyor system for providing vacuum isolation. The pan-system 23 can be used as one of the isolation components 250 27 1 10 2 substrate in the drying system 20 and the transport system 3 () ^ fm port 3 substrate in the drying system 20 and hardened _ 1Q ^ ^ ^ == 3 100 5C 200 ΧΐΖ Xuji = over = 210, 22G, 240 respectively contain at least one pass The opening is provided for the capacity of the substrate. [00124] Referring now to Figure 6, a drying system 200949941 is shown in accordance with another embodiment of the present invention. The Leica system 300 includes a base bag for producing a dry substrate placed on the substrate holder 32. Drying chamber 310 for human, non-contaminating environment. Drying system, heat treatment device 330 of the $310 silk plate holder 320, and the temperature of the substrate 325 is evaporated to evaporate pollutants, such as moisture. In addition, the drying system 300 can include a coupling to the drying chamber, and the ribs locally add two dyes in the case of a vibrating yard. The drying system can utilize heat treatment device 330, or microwave treatment device 340, or both to assist in drying the dielectric film on substrate 325.

[〇〇125]熱處理裝置330可包含嵌入基板支架320之一或更多 傳導性加熱元件,其係耦接至電源及溫度控制器。舉例而言,各 加熱元件可包含耦接至用以供給電力之電源的電阻加熱元件。或 者,熱處理裴置330可包含耦接至電源及控制器之一或更多輻射 ! 生加熱元件。舉例而言’各輻射性加熱元件可包含輕接至用以供 給,力之電源的加熱燈。基板325之溫度可在例如約2(rc至約 600°C之範圍内,且較佳地,該溫度可在約2〇〇〇c至約6〇〇〇c之範 圍内。例如,基板325之溫度可在約300〇C至約500。(:、或350°C 至約450°C之範圍内。 [00126] 微波處理源340可包含用以透過頻率之頻寬掃描微波 頻率的可變頻率微波源。頻率變化避免了電荷增加且因此容許微 波乾燥技術無損害地應用在靈敏的電子裝置上。 [00127] 在一實例中’乾燥系統300可包含結合可變頻率微波 裝置及熱處理裝置之乾燥系統,例如來自Lambda Technologies,Inc.(860 Aviation Parkway,Suite 900,Morrisville,NC 27560)的商業用微波爐。 ’ [00128] 基板支架320可用以或不用以夾持基板325。例如, 基板支架320可用以機械性或電氣性地夾持基板325。 [00129] 更進一步而言,乾燥系統可包含用於曝露基板325至 IR輻射之IR賴射源。 [00130] 再次參照圖6,乾燥系統300可更包含耦接至乾燥室 之氣體喷射系統350,且其係用以將沖洗氣體引導至乾燥室310。 28 200949941 =洗氣體可例如包含舰氣體’如稀有紐錢氣。此外 •系統300可包含耦接至乾燥室310之真空泵系統355,且其儀用以、 排空乾燥室310。在乾燥製程期間,可使基板325處於且^ . 真空條件之惰性氣體環境。 次不具 [00131]另外’乾燥系、统300可包含控制器、360,其係搞旌$ ,燥-31。、基板支架32。、熱處理裝置33。、微波處理裝置34〇、 ,體噴射系、统350、及真空果系统355。控制器36〇包含理 記憶體、以及數位I/O蜂,該等能產生控制電壓,該控制電壓‘ 以通k及啟麟乾燥系統300之輸入、而且監控來自乾燥系統’珊 之輸出。使用儲存於記憶體中之程式用以依據所儲存之製程 © 與乾燥系統300互動。可使用控制器36〇來配置任何數 ^牛(310、320、330、340、350、或 355),且控制器 36〇 可收^、 提供、處理、儲存、及顯示來自處理元件之倾。控制器% 包含用於控制一或更多處理元件的許多應用方式。例如,控制器 360可包含圖形使用者介面(graphic卿丨咖如^側)構 ^ 示),其可提供讓使用者得以監控及/或㈣—或更多處理元件的介 面。 =0132],參照圖7’依據本發明之另—實關而顯示硬化系 、先400。硬化系統4〇〇包含用以產生硬化置於基板支架42〇上之美 ❹板425用的潔淨、無污染物之環境的硬化室410。硬化系統4〇土〇 更包。含-或更多輕射源,其係用以將具有介電膜之基板425曝露 至早一、多重、窄頻帶、或寬頻帶電磁波長的電磁 (electro-magnetic,EM)輻射。一或更多輻射源可包含非必須的瓜輻 ^源440及UV _源445。可同時、依序、或互相 曝露至UV輻射及非必須的IR輻射中。 ϋ [00133] IR輻射源440可包含寬頻帶IR源(如多色性),或可包 含窄頻帶IR源(如單色性)。IR輻射源可包含一或更多IR燈、一 *或更,多1R LED、、或一或更多1R雷射(連續波,C〇ntiim〇us wave(CW)、乂調式、或酿波)、或其任何、组合。IR功率密度可高 •達約肩—。舉例而言,IR功率密度可在約隱一至約 29 200949941 5圍内。IR^射波長可在約1微米至約25微米的範圍 =輪射波長可在約8微米至約14微米的範圍内。或者, 也ίΐίί可在約8微紅約12微米的範_。或者,IR輻射 it約1〇微米的範圍内。例如’ IR輻射源44〇 匕3 2雷射系統。此外,例如IR輻射源440可包含且有約】 微米之光譜輸出的1R元件,如陶竞元件或碳化石夕元 imt40可包含具有光參數放大之半導體雷射(二極 體),或離子、鈦藍寶石(Ti:sapphire)雷射;或染料雷射。 e ❿ υν 11射源445可包含寬頻帶UV源(如多色性”或可 〇 3乍頻帶UV源(如單色性)(3UV輻射源可包含一或更多υν燈、 多UVLED、或-或更多υν雷射(連續波(cw)、可調式、 ίΪ波其任何組合。糊而言’ UV輻射可由微波源、電狐 放電”丨電障壁放電、或電子衝擊生成等而產生。UV功率密度可 f,O.lmW/cm2至約200〇mw/cm2的範圍内。UV波長可在約1〇〇 不米(nm)至約600nm的範圍内。或者,uv輕射波長可在約2〇〇nm 至約4〇〇T的範_。或者,uv輻射波長可在約至約 300nm的範圍内。或者,uv輻射波長可在約17〇nm至約24_ 的範_。或者,uv輻射波長可在約200nm至約24〇nm的範圍 内。舉例而言,UV輻射源445可包含具有約18〇nm至約獨nm 之光谱輸出的直流(DC)或脈波燈,如氘燈;或者uv輻射源 445可包含半導體雷射(二極體)、(氮)氣體雷射、三倍(或四倍)頻 Nd:YAG雷射、或銅蒸氣雷射。 [00135] IR輻射源440、或UV输源445、或二者可包含任 何數目之光學裝置以調整一或更多輸出輻射之性質。舉例而言, 各輻射源可更包錢H絲鏡、縣器(b_ expan㈣、射柱 準直儀(beam collimator)等等。此種如熟悉光學及電磁波傳播之技 藝者已知的光學操作裝置係適用於本發明。 [00136] 基板支架420可更包含可用以升高級/或控制基板425 之溫度的溫度控制系統。溫度控制系統可為埶處理裝置43〇之一 部份。基板支架420可包含嵌入基板支架42〇内之一或更多傳導 30 200949941 性力:熱元件’其_接至電·溫度控·。舉响言,各加熱 70件可包含雛至㈣供給電力之電源的電阻 地包含-歧乡胁咖熱耕。基 ί ,至約_°C的麵内,且較佳地,該溫度可在 、、勺200 C至約_ C的範圍内。例如,基板425之溫度 至約5〇(TC的範圍,或約35(rc至約45(^的範圍内。隹、,〇 i〇H α此外,基板支架420可用以或不用以夾持基板425。 歹1 ,土板支架420可用以機械性或電力性地夾持基板425。 ^138]再次參照圖7,硬化系統4〇〇可更包含輕接至硬化室 的氣體嘴射系統450 ’且其係用以將沖洗氣體導引至硬化室 中洗氣體可例如包含惰性氣體,如稀有氣體或氮氣。或者, 沖洗现體可包含其他氣體,例如氏、順3、CxHy、或任何盆组合。 此外,硬化系統400可更包含耦接至硬化室41〇之真空、泵系統 =5 ’且其係用以排空硬化室41〇。在硬化製程期間,可使基板 處於具有或不具真空條件之沖洗氣體環境。 [〇〇13^]此外,硬化系統400可包含控制器460,其係耦接至 ,化室410、基板支架42〇、熱處理裝置43〇、IR輻射源44〇、uv[〇〇125] The heat treatment device 330 can include one or more conductive heating elements embedded in the substrate holder 320 that are coupled to the power source and temperature controller. For example, each heating element can include a resistive heating element coupled to a power source for supplying electrical power. Alternatively, the heat treatment device 330 can include one or more radiation heating elements coupled to the power source and the controller. For example, each of the radiating heating elements may include a heat lamp that is lightly coupled to a power source for supplying power. The temperature of the substrate 325 can range, for example, from about 2 (rc to about 600 ° C, and preferably, the temperature can range from about 2 ° C to about 6 ° C. For example, the substrate 325 The temperature can range from about 300 〇C to about 500. (:, or 350 ° C to about 450 ° C. [00126] The microwave processing source 340 can include a variable frequency for scanning the microwave frequency through the frequency bandwidth. The rate of microwave source. The frequency change avoids the increase in charge and thus allows the microwave drying technique to be applied to sensitive electronic devices without damage. [00127] In an example, the drying system 300 can include a combination of a variable frequency microwave device and a heat treatment device. A drying system, such as a commercial microwave oven from Lambda Technologies, Inc. (860 Aviation Parkway, Suite 900, Morrisville, NC 27560). [00128] The substrate holder 320 may or may not be used to hold the substrate 325. For example, the substrate holder 320 The substrate 325 can be mechanically or electrically held. [00129] Further, the drying system can include an IR source for exposing the substrate 325 to IR radiation. [00130] Referring again to FIG. 6, the drying system 300 More include coupling a gas injection system 350 to the drying chamber, and which is used to direct the flushing gas to the drying chamber 310. 28 200949941 = The scrubbing gas may, for example, contain a naval gas such as a rare New Zealand gas. In addition, the system 300 may include coupling to dryness. The vacuum pump system 355 of the chamber 310 is used to evacuate the drying chamber 310. During the drying process, the substrate 325 can be placed in an inert gas environment under vacuum conditions. The second step is [00131] The 300 may include a controller, 360, which is smashed by $, dry-31, substrate holder 32, heat treatment device 33, microwave processing device 34, body spray system, system 350, and vacuum fruit system 355. The device 36 includes a memory, and a digital I/O bee, which can generate a control voltage, which is input from the k and the Kailin drying system 300, and monitors the output from the drying system. The program in the memory is used to interact with the drying system 300 in accordance with the stored process ©. Any number of controllers (310, 320, 330, 340, 350, or 355) can be configured using the controller 36〇, and the controller 36〇 acceptable ^ Providing, processing, storing, and displaying the tilt from the processing element. The controller % includes many applications for controlling one or more processing elements. For example, the controller 360 can include a graphical user interface (graphically 丨 如 如 ^ Side), which provides an interface for the user to monitor and/or (4)- or more processing elements. =0132], the hardening system, first 400 is shown in accordance with another embodiment of the present invention with reference to Fig. 7'. The hardening system 4 includes a hardened chamber 410 for producing a clean, non-contaminating environment for hardening the enamel plate 425 placed on the substrate holder 42. Hardening system 4 〇 soil 〇 more package. A light source comprising - or more, is used to expose a substrate 425 having a dielectric film to an electro-magnetic (EM) radiation of an early, multiple, narrow band, or broadband electromagnetic wavelength. One or more of the radiation sources may include a non-essential source 440 and a UV source 445. It can be exposed to UV radiation and unwanted IR radiation simultaneously, sequentially, or with each other. [00133] The IR radiation source 440 can include a broadband IR source (e.g., pleochroism) or can include a narrowband IR source (e.g., monochromatic). The IR radiation source may comprise one or more IR lamps, one* or more, more 1R LEDs, or one or more 1R lasers (continuous wave, C〇ntiim〇us wave (CW), 乂 、, or brewing waves ), or any combination thereof. IR power density can be high. For example, the IR power density can range from about one to about 29 200949941. The IR wavelength can range from about 1 micron to about 25 microns = the emission wavelength can range from about 8 microns to about 14 microns. Or, also ίΐίί can be about 8 reddish about 12 microns. Alternatively, the IR radiation it is in the range of about 1 micron. For example 'IR radiation source 44 〇 2 3 2 laser system. In addition, for example, the IR radiation source 440 can include a 1R component having a spectral output of about [micron], such as a ceramic component or a carbonization fossil imt40, which can include a semiconductor laser (diode) with optical parameter amplification, or ions, Titanium sapphire (Ti: sapphire) laser; or dye laser. e ❿ 11 11 11 source 445 may comprise a broadband UV source (eg pleochroism) or a 乍 3 乍 band UV source (eg monochromatic) (3 UV radiation source may comprise one or more υ ν lamps, multiple UV LEDs, or - or more υ ν lasers (continuous wave (cw), adjustable, Ϊ Ϊ any combination of them. For the paste, 'UV radiation can be generated by microwave source, electric fox discharge, 障 electric barrier discharge, or electron impact generation. The UV power density may range from f.O.lmW/cm2 to about 200〇mw/cm2. The UV wavelength may range from about 1 〇〇 not meters (nm) to about 600 nm. Alternatively, the uv light-wavelength wavelength may be The range of about 2 〇〇 nm to about 4 〇〇 T. Alternatively, the uv radiation wavelength may range from about to about 300 nm. Alternatively, the uv radiation wavelength may range from about 17 〇 nm to about 24 _. The uv radiation wavelength can range from about 200 nm to about 24 〇 nm. For example, the UV radiation source 445 can comprise a direct current (DC) or pulse wave lamp having a spectral output of from about 18 〇 nm to about nm, such as 氘. The uv radiation source 445 may comprise a semiconductor laser (diode), a (nitrogen) gas laser, a triple (or quadruple) frequency Nd:YAG laser, or a copper vapor laser. [00135] IR radiation Source 440, or UV source 445, or both, can include any number of optical devices to adjust the properties of one or more output radiation. For example, each source can be more expensive H-mirror, county (b_expan (4) A beam collimator, etc. Such an optical operating device as known to those skilled in the art of optical and electromagnetic wave propagation is suitable for use in the present invention. [00136] The substrate holder 420 may further comprise a Or a temperature control system that controls the temperature of the substrate 425. The temperature control system can be part of the 埶 processing device 43. The substrate holder 420 can include one or more conductive layers embedded in the substrate holder 42. 200949941 'It's connected to the electricity and temperature control. It is said that each of the 70 pieces of heating can contain the electric resistance of the power supply to the (4) power supply - Qi Xiangxie coffee hot tillage. Based on the surface of the _ ° C Preferably, and preferably, the temperature is in the range of 200 C to about _ C. For example, the temperature of the substrate 425 is about 5 〇 (the range of TC, or about 35 (rc to about 45 (^) In the range of 隹, 〇i〇H α In addition, the substrate holder 420 can be used with or without a clip Substrate 425. 歹1, the soil support 420 can be used to mechanically or electrically hold the substrate 425. ^138] Referring again to Figure 7, the hardening system 4 can further include a gas nozzle system 450 that is lightly coupled to the hardened chamber. 'And it is used to guide the flushing gas into the hardening chamber. The scrubbing gas may, for example, contain an inert gas such as a rare gas or nitrogen. Alternatively, the flushing body may contain other gases such as cis, cis, CxHy, or any basin. combination. Further, the hardening system 400 may further include a vacuum coupled to the hardening chamber 41, a pump system = 5 ' and which is used to evacuate the hardening chamber 41. During the hardening process, the substrate can be placed in a flushing gas environment with or without vacuum conditions. [〇〇13^] In addition, the hardening system 400 can include a controller 460 coupled to the chemical chamber 410, the substrate holder 42〇, the heat treatment device 43〇, the IR radiation source 44〇, uv

G 源445、氣體喷射系統450、以及真空泵系統455。控制器46〇 上s Μ處理器、記憶體、以及數位1/〇埠,該等能產生控制電壓, =控制電壓係足以通信及啟動對硬化系統4〇〇之輸入、而且監控 蚀土硬化系統400之輸出。使用儲存於記憶體中之程式俾依據所 ,存之製程配方與硬化系統互動。可使用控制器·來配置 任何數目之處理元件(410、420、430、440、445、450、或455), 且=制器460可收集、提供、處理、儲存、及顯示來自處理元件 =資料。控制器460可包含用於控制一或更多處理元件的許多應 一方式。例如,控制器460可包含圖形使用者介面(GUI)構件(未顯 不),其可提供讓使用者得以監控及/或控制一或更多處理元件的便 利介面。 [00140] 控制器 360 及 460 可以 DELL PRECISION WORKSTATION 61〇tm的形式實施。控制器36〇及46〇亦可以一 31 200949941 般目的之電腦、處理器、數位信號處理器等等的 控制器,及460執行容納:電腦; 夕Ϊ令之—或更多程序,而執行本發明之部份 =之教示_的指令,_於_料‘、=有=本 或其他於此綱之資料。電腦可讀式舰之實例為光碟犬磁 碟、軟性磁碟、磁光碟、PR0M(EPR0M、EEp 快閃£ ^ DRAM、SRAM、嶋M、或任何其他磁、 CD-ROM)、或任何其他光學媒體、打孔卡、紙帶^^= ❹ ❹ ί媒3波(叮綱兩彡权物雜舰、紐«他電啊ί Ϊ 11 360及糊設置在關於乾燥系統300及硬 化系統4GG謂近處,或祕網際娜或0 I. ΪΓ 4〇0 ° ^ ^ L 一么直接連、線、内部網路、以及網際網路,而盘乾燥系統 300及硬化系統400交換資料。可將控制器36〇及杯 至;立於 ff立置之内部網路_卩裝置製造商料),或_錄^販售商 位置之内部網路(亦即設備製造商等等)。另外 腦 制器、伺服器等等)可存取控制器36〇及46〇,以經由 連線、内部網路、以及網際網路來交換資料。 [00=2] 糾,本發明之實施例可作為或用以支援此 之處理核心(如電腦之處理器,例如控制器或上執^ f媒體上或其中實施或實現的軟體程式。機 器了讀式舰包含任何祕以可被機器讀取 ’機器可讀式舰可包含例如以下之媒 體.唯唄讀、體(read only memoiy,R0M)、隨機存 存賴、絲齡職、以及快閃 m土儘管在以上之細節中已說明本發明之一些實施例,孰 〜、此技*者將易於察覺:在實f上不f離本發明之新穎教示及優 32 200949941 點的情況下,仍可能有許多變化例。因此,計畫將所有此變化例 包含於本發明之範圍内。 【圖式簡單說明】 [0015] 在隨附圖式中: [0016] [0017] [0018] [0019] [0020] 圖1為依據實施例’處理介電膜的方法之流程圖; 圖2為依據另一實施例,處理介電膜的方法之流程圖 圖3為依據另一實施例,處理介電膜的方法之流程圖 圖4為依據另一實施例,處理介電膜的方法之流程圖 ❺ _ . _ 圖5A至5C為依據實施例,乾燥系統及硬化系統用之 傳遞系統的概略圖; W 6為依射—實施彳狀乾㈣_概略翻面圖;及 圖7為依據另一實施例之硬化系統的概略橫剖面圖。 【主要元件符號說明】 1 處理系統 10 硬化系統 20 乾燥糸統 30 傳送系統 40 多重元件製造系統 50 隔離組件 100 處理系統 110 乾燥系統 120 硬化系統 130 傳送系統 140 後處理系統 150 隔離組件 200 處理系統 210 乾燥系統 220 硬化系統 230 傳送系統 33 200949941 240 後處理系統 250 隔離組件 * 300 - 310 320 325 330 340 350 355 〇 360 400 410 420 425 430 440 445 450 455 © 460 500 510 520 530 600 610 620 '630 - 640 乾燥系統 乾燥室 基板支架 基板 熱處理裝置 微波處理裝置 氣體噴射系統 真空泵系統 控制器 硬化系統 硬化室 基板支架 基板 熱處理裝置 IR輻射源 UV輻射源 氣體喷射系統 真空泵系統 控制器 流程圖 在乾燥系統中使介電膜乾燥 將介電膜曝露至紫外線(UV)輻射 將介電膜曝露至紅外線(IR)輻射 流程圖 在基板上形成低_k介電膜 將低-k介電膜曝露至第一紅外線(IR)輻射 將低-k介電膜曝露至紫外線(IR)輻射 將低-k介電膜曝露至第二紅外線(IR)輻射 34 200949941 700 710 720 730 740 800 810 820 830G source 445, gas injection system 450, and vacuum pump system 455. The controller 46 is s Μ Μ processor, memory, and digital 1/〇埠, which can generate a control voltage, = control voltage is sufficient to communicate and initiate input to the hardened system 4, and monitor the erosion hardening system 400 output. Use the program stored in the memory to interact with the hardening system according to the process recipe. Any number of processing elements (410, 420, 430, 440, 445, 450, or 455) can be configured using the controller, and the controller 460 can collect, provide, process, store, and display from the processing elements = data . Controller 460 can include a number of ways to control one or more processing elements. For example, controller 460 can include a graphical user interface (GUI) component (not shown) that provides a convenient interface for the user to monitor and/or control one or more processing elements. [00140] The controllers 360 and 460 can be implemented in the form of DELL PRECISION WORKSTATION 61〇tm. The controllers 36 and 46 can also be used as a controller for a computer, a processor, a digital signal processor, etc., and a 460, for example, a computer; a program; or more programs, and Part of the invention = instruction of the instruction _, _ _ material ', = have = this or other information of this class. Examples of computer-readable ships are optical disk dogs, flexible disks, magneto-optical disks, PR0M (EPR0M, EEp flash DRAM, SRAM, 嶋M, or any other magnetic, CD-ROM), or any other optics. Media, punch card, paper tape ^^= ❹ ί ί media 3 wave (叮纲 two 彡 物 杂 杂 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , or Secret Internet or 0 I. ΪΓ 4〇0 ° ^ ^ L Direct connection, line, internal network, and Internet, while disk drying system 300 and hardening system 400 exchange data. Controller 36〇 and cup to; internal network based on ff standing _ 卩 device manufacturer), or _ recording the internal network of the vendor location (ie equipment manufacturer, etc.). In addition, the controller, server, etc. can access the controllers 36〇 and 46〇 to exchange data via the connection, the internal network, and the Internet. [00=2] Correctively, embodiments of the present invention may be used as or in support of a processing core (such as a processor of a computer, such as a controller or a software program implemented or implemented on the media). The read ship contains any secrets that can be read by the machine. The machine-readable ship can contain, for example, the following media. Read only memoiy (R0M), random deposits, silk age, and flash m. Although some embodiments of the present invention have been described in the above details, it will be readily appreciated that in the case of the novel teachings of the present invention and the preferred 32 200949941 points, There may be many variations. Therefore, the plan includes all such variations within the scope of the present invention. [Simple Description of the Drawings] [0015] In the accompanying drawings: [0016] [0018] [0019] 1 is a flow chart of a method of processing a dielectric film according to an embodiment; FIG. 2 is a flow chart of a method of processing a dielectric film according to another embodiment, FIG. 3 is a process according to another embodiment; Flowchart of the method of electrical film FIG. 4 is a process for processing a dielectric film according to another embodiment. Flowchart of the method _ _ _ FIGS. 5A to 5C are schematic diagrams of a transfer system for a drying system and a hardening system according to an embodiment; W 6 is an illuminating-implementing a dry (four) _ rough turning view; and FIG. 7 A schematic cross-sectional view of a hardening system according to another embodiment. [Description of main components] 1 Processing system 10 Hardening system 20 Drying system 30 Transfer system 40 Multi-component manufacturing system 50 Isolation assembly 100 Processing system 110 Drying system 120 Hardening System 130 Transfer System 140 Aftertreatment System 150 Isolation Assembly 200 Processing System 210 Drying System 220 Hardening System 230 Transfer System 33 200949941 240 Aftertreatment System 250 Isolation Components * 300 - 310 320 325 330 340 350 355 〇 360 400 410 420 425 430 440 445 450 455 © 460 500 510 520 530 600 610 620 '630 - 640 Drying system Drying chamber Substrate Bracket substrate Heat treatment unit Microwave processing unit Gas injection system Vacuum pump system Controller Hardening system Hardening chamber Substrate Bracket Substrate Heat treatment device IR radiation source UV radiation source Gas injection system vacuum pump system control Flowchart Drying Dielectric Film in Drying System Exposing Dielectric Film to Ultraviolet (UV) Radiation Exposing Dielectric Film to Infrared (IR) Radiation Flowchart Forming Low-k Dielectric Film on Substrate Will Low-k Exposure of the electrical film to first infrared (IR) radiation exposing the low-k dielectric film to ultraviolet (IR) radiation exposing the low-k dielectric film to second infrared (IR) radiation 34 200949941 700 710 720 730 740 800 810 820 830

流程圖 介鶴’錄·k ^觀錢構形成材 實質上去除孔洞生成材料,以形成多孔性低 形成起始劑 流程圖 該低_k介電膜包含結構形成材 在基板上形成低-k介電膜 料及交聯抑制劑 、 將電膜曝露至IR輕射 調整交聯抑制劑之殘留量The flow chart of the crane 'reporting k ^ 钱 构 constituting material substantially removes the pore-forming material to form a low porosity forming initiator flow chart. The low-k dielectric film comprising the structural forming material forms a low-k on the substrate Dielectric film and crosslinking inhibitor, exposure of the film to IR light-radiation adjustment cross-linking inhibitor residue

3535

Claims (1)

200949941 七、申請專利範圍: h一種基板上之低介電常數(低士)介電膜的硬化方法,包含: 在一基板上形成一低-k介電膜; ’ 將該低_k介電膜曝露至一第一紅外線(ir)輕射; 在該曝露至該帛-IR細之步狀後,麟低_k介電膜曝露 至一紫外線(UV)輻射;以及 在該曝露至該UV輻射之步驟之後,將該似介電膜曝露至 一第二紅外線(IR)輻射, 其中該低-k介電膜之-介電常數係小於大約4之一數值。 ❹ ❹ ^板上之低介電常數(低⑷介電膜的硬 在該第-IR曝露_ ’藉由升高該基板之—溫度至—第一瓜 項ίί板上之低介電常數(低-k)介電膜的硬 内。'、〜第 ”、、處理溫度在約350°C至約450。(:之範圍 ㈣電常娜·_膜的硬 在5亥UV曝露期間’藉由升高該基一一 田 =熱繼介電膜,該uv熱溫度係在約:ΐ至: 600:C 之 6.如申料概Μ丨奴絲上从介電常數(似)介電膜的硬 36 200949941 化方法,更包含: 在該第二瓜曝露顧’藉由升高該基板之—溫度至 熱,溫度而加熱該低-k介賴,該第二IR熱處理 &amp; 200°C至約600eC之範圍内。 又竹任约 圍内 8.如申請專利範圍f 1項之基板上之低介電常數(低士)介電 ® 硬化方法,其中該第一 IR曝露係於與該UV曝露不同之一處理系 統中進行。 1 9·如申請專嫌11帛1項之基板上之齡冑錄(低_k)介電膜的 硬化方法,其中該第一 IR曝露係於與該uv曝露相同之處理系統 中進行。 ,'' 10. 如申請專利範圍第1項之基板上之低介電常數(低士)介電膜的 硬化方法,其中該曝露該低_k介電膜至UV輻射之步驟包含曝露 該低-k介電膜至多色UV輻射、單色UV輻射、脈波uv輻射、 w 或連續波uv輻射、或其二者或更多者的一組合。 11. 如申請專利範圍第1項之基板上之低介電常數(低_k)介電膜的 硬化方法,其中該曝露該低_k介電膜至uv輻射之步驟包含曝露 該低-k介電膜至來自一或更多UV燈、一或更多UV LEDs、或一 或更多UV雷射、或其二者或更多者之一組合的uv輕射。 37 1 I2.如申請專利範圍第1項之基板上之低介電常數(低-k)介電膜的 硬化方法,其中該曝露該低_k介電膜至UV輻射之步驟包含曝露 - 該低-^^介電膜至具有約200奈米至約400奈米之波長的uv輻射。 200949941 I3.如申請專利範圍第1項之基板上之低介電常數(低-k)介電膜的 ,化方法,其中該曝露該低-k介電膜至UV輻射之步驟包含曝露 忒低-k介電膜至具有約2〇〇奈米至約24〇奈米之波長的輻射。 如申請專利範圍帛1項之基板上之低介電常數(低-k)介電膜的 化方法其中5亥曝露該低士介電膜至該第一 JR輻射之步驟 介電膜至多色IR轄射、單色汉輻射、脈波 或連續波IR輻射、或其二者或更多者的一組合。 ❹ L如申請專概圍第1項之基板上之低介電常數(低$介電膜的 成^方法,其中該曝露該低_k介電膜至該第一 IR關之步驟包含 膜至/自一或更多1心、一或更多1R led、或 次更夕R雷射、或其二者或更多者之一組合的uv輻射。 1 如申轉她圍第1項之基板上之低介電常數(低_k)介電膜的 驟勺ίί,中該•露該低-让介電膜至該第一或第二瓜輻射之步 g =曝露該低-k介電膜至具有約8微米至約12微米之波長的汉 範圍第1項之基板上之低介電常數(低士)介電膜的 匕方法,其中該曝露該低七介電膜iUV幸昌射之步驟更包含. 汛幸畐^該uv曝露之至少一部分期間曝露該低-k介電臈至一第三 申明專利範圍第17項之基板上之低介電常數(低士)介電膜 k=露該似介魏至鮮三IR触之步驟包 ^曝路祕.k介電虹具有約8财至約u微米之波長的 電膜的 19.如申請專利範圍帛1項之基板上之低介電常數(低士)介 38 200949941 硬化方法,更包含: 膜、清潔該介電膜、或曝露該介 介電膜:積^由ί行下列-或更多步驟來處理該 電膜至電漿。 硬化方i: 錄(㈣介電膜的 性低七介概含-她該多孔 ❹ ❹ 2的2诗1 申方t專項之基板上之低介電常數(低七)介電膜 (norbo_e)广5 一11生成材料包含萜類(terPene)、冰片烯 (norbonrene)、5_ 一 甲基·i,4 環辛二烯、十 、乙笨、或檸檬卿麵㈣、或其厶 23·如申請專利範圍第i項之基板上之低介電常數(低_k)介電膜 硬化方法,更包含: 、 在β亥第一 IR曝露期間,曝露該低_k介電膜至一第二輻 射’其中对二11¥#|射係與該第_IR曝露之後的該uv轄射不 同。 24. 如申請專利範圍第23項之基板上之低介電常數(低七)介電獏 的硬化方法,其中該第二UV輻射包含曝露該低_k介電膜至具有 約300奈米至450奈米之波長的UV輻射。 25. —種基板上之低介電常數(低七)介電膜的硬化方法,包含: 在一基板上形成一低-k介電膜,該低-k介電膜包含一結構形 39 200949941 成材料及一孔洞生成材料; 以 及 曝露該低-k介電膜至紅外線(IR)輕射維持一第一持續時間; 射維㈡獨,曝露該低_k介電膜至紫外線_輻 接中該第二持續時間少於該第—持續時間’且其中該第-捭 間之一第一時㈣200949941 VII. Patent application scope: h A hardening method for a low dielectric constant (lower) dielectric film on a substrate, comprising: forming a low-k dielectric film on a substrate; 'putting the low_k dielectric Exposing the film to a first infrared (ir) light shot; after exposing to the 帛-IR fine step, the lin-low dielectric film is exposed to an ultraviolet (UV) radiation; and the exposure to the UV After the step of irradiating, the dielectric-like film is exposed to a second infrared (IR) radiation, wherein the low-k dielectric film has a dielectric constant less than about one of four. ❹ ❹ ^ Low dielectric constant on the board (low (4) dielectric film hard in the first-IR exposure _ ' by raising the substrate - temperature to - the first melon ί 板上 plate low dielectric constant ( Low-k) dielectric film hard inside. ', ~ first", processing temperature is about 350 ° C to about 450. (: range (four) electric Chang Na · _ film hard during 5 Hai UV exposure 'borrowed By raising the base-one field = thermal successor dielectric film, the uv heat temperature is about: ΐ to: 600: C of 6. According to the application of the Μ丨 slave silk from the dielectric constant (like) dielectric The film of the hard 36 200949941 method further comprises: heating the low-k in the second melon exposure by heating the substrate to a temperature, the second IR heat treatment &amp; 200° C to a range of about 600 eC. Also in the vicinity of the bamboo. 8. A low dielectric constant (lower) dielectric® hardening method on a substrate of the patent application range f1, wherein the first IR exposure is The UV exposure is performed in one of the different processing systems. 1 9·If applying for a hardening method on a substrate (low-k) dielectric film which is suspected of being 11帛1, the first IR exposure is The uv Execution in the same processing system. , '' 10. The method of hardening a low dielectric constant (lower) dielectric film on a substrate according to claim 1 of the patent application, wherein the low-k dielectric film is exposed to The step of UV radiation comprises exposing the low-k dielectric film to polychromatic UV radiation, monochromatic UV radiation, pulse uv radiation, w or continuous wave uv radiation, or a combination of two or more thereof. A method for hardening a low dielectric constant (low-k) dielectric film on a substrate of claim 1 wherein the step of exposing the low-k dielectric film to uv radiation comprises exposing the low-k dielectric film To uv light shots from one or more UV lamps, one or more UV LEDs, or one or more UV lasers, or a combination of two or more thereof. 37 1 I2. A method of hardening a low dielectric constant (low-k) dielectric film on a substrate of the first aspect, wherein the step of exposing the low-k dielectric film to UV radiation comprises exposing - the low-^ dielectric film to having UV radiation having a wavelength of from about 200 nm to about 400 nm. 200949941 I3. Low dielectric constant (low-k) dielectric film on a substrate as claimed in claim 1 And a method of exposing the low-k dielectric film to UV radiation comprising exposing the low-k dielectric film to radiation having a wavelength of from about 2 nanometers to about 24 nanometers. a method for forming a low dielectric constant (low-k) dielectric film on a substrate of the range 帛1, wherein the low-level dielectric film is exposed to the step of the first JR radiation to a multi-color IR ray, Monochromatic Han radiation, pulse wave or continuous wave IR radiation, or a combination of two or more thereof. ❹L. For the application of the low dielectric constant on the substrate of the first item (lower dielectric film formation method), the step of exposing the low-k dielectric film to the first IR-off film comprises a film to / uv radiation from one or more 1 heart, one or more 1R led, or a second-time R laser, or a combination of two or more thereof. On the low dielectric constant (low _k) dielectric film, ίί, 中 露 露 - low - let the dielectric film to the first or second melon radiation step g = expose the low-k dielectric Membrane to a low dielectric constant (lower) dielectric film on a substrate of the first range of the Han range having a wavelength of from about 8 micrometers to about 12 micrometers, wherein the low seven dielectric film iUV The step further includes: 汛 畐 该 该 该 该 该 uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv uv The method of exposing the Wei to the fresh three IR touches is to expose the road. The k dielectric rainbow has an electric film having a wavelength of about 8 to about u micron. 19. The low range on the substrate of the patent application range 帛1 Dielectric constant (lower)介38 200949941 Hardening method, further comprising: film, cleaning the dielectric film, or exposing the dielectric film: the following - or more steps to process the film to the plasma. Hardening side i: recorded ((4) The dielectric film's low-level seven-inclusive - her porous ❹ 的 2 2 poems 1 Shen Fang t special substrate on the low dielectric constant (low seven) dielectric film (norbo_e) wide 5-11 generation The material comprises terPene, norbonrene, 5-monomethyl i, 4 cyclooctadiene, ten, b stupid, or lemon noodles (four), or its 厶23. The low dielectric constant (low_k) dielectric film hardening method on the substrate further comprises: exposing the low-k dielectric film to a second radiation during the first IR exposure of βH, wherein the pair is 11 ¥#|The shooting system is different from the uv radiation after the _IR exposure. 24. The low dielectric constant (low seven) dielectric enthalpy hardening method on the substrate of claim 23, wherein the The second UV radiation comprises exposing the low-k dielectric film to UV radiation having a wavelength of between about 300 nm and 450 nm. 25. Low dielectric constant on the substrate ( VII) A method of hardening a dielectric film, comprising: forming a low-k dielectric film on a substrate, the low-k dielectric film comprising a structural shape 39 200949941 material and a hole generating material; and exposing the low- The k dielectric film to the infrared (IR) light shot maintains a first duration; the radiation dimension (2) is unique, and the low _k dielectric film is exposed to the ultraviolet ray - the second duration is less than the first duration - And one of the first-days (four) %· 基板上之低介電常數(低·k)介電膜的硬化方法,包含: μΪΓ基板上形成—触介電膜,該低_k介電膜包含—結構形 成材料及一孔洞生成材料; t該似介賴實質上去除該賴生成㈣, 性低-k介電膜; 又几 在該去除步驟之後,於該纽性低_k介賴巾產生交聯起始 劑,以及 在該產生該交聯起始劑之步驟後,交聯該多孔性低_k介電膜。 n申轉機_ 26項之絲上之齡電常數(低_k)介電膜 的硬化方法,更包含: 切斷該低-k介電膜中之鍵結,以協助該去除步驟。 28. —種基板上之低介電常數(低七)介電膜的硬化方法,包含: 在一基板上形成一低士介電膜,其中該低_k介電膜包含一結 構形成材料及一交聯抑制劑; 曝露該低_1^介電膜至紅外線(IR)輻射;以及 調整該交聯抑制狀-麵量,關整該低_k介電膜之一機 ,性質、該低介電膜之一電性質、該低士介電膜之一光學性質、 該低-k介電膜之一孔洞尺寸、或該低士介電膜之一孔隙度、或1 二者或更多者的一組合。 、 200949941 29.如申請專利範圍帛28項之基板上之低介電常數(低 的硬化方法’其中該交聯抑制劑包含濕氣、水分、溶劑、:、、 孔洞生成㈣、殘留孔洞生成材料、微弱地鍵結 开 料之側基、孔洞生成分子、或制生齡子之利、或 更多者的任何組合。 、贫观 =如申請專利範圍第28項之基板上之低介電常數(低七)介 的硬化方法,其中該交聯抑侧包含―孔洞生成材料:且, =具=,形成,該交聯抑制劑之繼介電臈的 = 基—表面上共聚合—結構形成分子與-孔洞^ 28項之基板上之低介電倾(低妁介電膜 t 成交聯抑制劑之繼介電膜的2 ϊ二沉積具有一微弱地鍵結至該結構形 成刀子之孔洞生成为子侧基的一結構形成分子。 ❹ 申Λ專圍第28項之基板上之低介電常數(似)介電膜 在該料露期間 的步驟包含:' mκ;丨電獏實質上去除該交聯抑制劑。 的硬化方法,其中該交聯抑制劑二; 外線_輕射之步驟之前被實質上去2使該低k )丨電膜曝路至紫 34.如申請專利範圍第28項之基板上 整5亥IR曝路之一持續時間、該I f 露之一IR劑量、或其二者或更多者的一組合。度或錢曝 200949941 35.如申請專利範圍 的硬化方法,其中該 或二者。 第28項之基板上之低介電常數(低_幻介電膜 機械性質包含一彈性模數(E)、或一硬度(1^、 ㈣28狀基板上之低介電常娜_k)介電膜 的更化方法、中該電性質包含-介電常數⑻。 28奴基紅德介冑錄_介電膜 的更化方法,其中魏學性質包含—折射率⑻。 28鄉板上之齡嫩_介電膜 將該低-k介電膜曝露至紫外線(UV)輻射。 39.如申請專利範圍帛38項之基板上之低介電常數(低-k)介電膜 的硬化方法,其中該UV曝露在該IR曝露之後進行。 、 40.如申凊專利範圍第38項之基板上之低介電常數(低七)介電膜 的硬化方法,其中該UV曝露係發生於該IR曝露之部份或全部期%· A method of hardening a low dielectric constant (low·k) dielectric film on a substrate, comprising: forming a contact dielectric film on the μΪΓ substrate, the low-k dielectric film comprising a structure forming material and a hole generating material </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; After the step of producing the crosslinking initiator, the porous low-k dielectric film is crosslinked. The hardening method of the dielectric constant (low_k) dielectric film on the wire of the hexagram is further included: cutting the bond in the low-k dielectric film to assist the removal step. 28. A method for hardening a low dielectric constant (lower seven) dielectric film on a substrate, comprising: forming a low dielectric film on a substrate, wherein the low-k dielectric film comprises a structure forming material and a crosslinking inhibitor; exposing the low dielectric film to infrared (IR) radiation; and adjusting the crosslinking inhibition-face amount, and closing the low-k dielectric film, the property, the low An electrical property of the dielectric film, an optical property of the low-voltage dielectric film, a hole size of the low-k dielectric film, or a porosity of the low-voltage dielectric film, or 1 or more a combination of people. , 200949941 29. Low dielectric constant on a substrate as claimed in application No. 28 (low hardening method 'where the crosslinking inhibitor contains moisture, moisture, solvent, :, pore formation (4), residual pore-forming material , weakly bonding the side groups of the material to be opened, the pore-forming molecules, or the combination of the benefits of the ageing, or more. The poor dielectric = the low dielectric constant on the substrate as in claim 28 (Low seven) medium hardening method, wherein the cross-linking side comprises a pore-forming material: and, = with =, forming, the cross-linking inhibitor of the dielectric enthalpy = base-surface copolymerization - structure formation The low dielectric dip on the substrate of the molecule and the hole (the low dielectric film t of the cross-linking inhibitor) has a weak bond to the structure to form the hole of the knife. A structure forming molecule that becomes a side group. 低 The low dielectric constant (like) dielectric film on the substrate of the 28th item of the application of Λ Λ 在 在 在 在 在 在 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' a crosslinking method of the crosslinking inhibitor, wherein the crosslinking Formulation 2; the external line _ light shot step is substantially removed 2 to expose the low k) 丨 film to purple 34. One of the 5 hr IR exposure on the substrate of claim 28, I f is an IR dose, or a combination of two or more thereof. Degree or money exposure 200949941 35. A hardening method as claimed in the patent application, wherein the or both. Electrical constant (lower-phantom dielectric mechanical properties include an elastic modulus (E), or a hardness (1^, (4) 28-like substrate on a low dielectric constant _k) dielectric film modification method, in the The electrical properties include - dielectric constant (8). 28 基 红 红 红 _ _ 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 介 28 28 28 28 28 28 28 28 -k dielectric film is exposed to ultraviolet (UV) radiation. 39. A method of hardening a low dielectric constant (low-k) dielectric film on a substrate according to claim 38, wherein the UV exposure is exposed to the IR exposure Thereafter, 40. A method for hardening a low dielectric constant (low seven) dielectric film on a substrate according to claim 38 of the patent application scope, wherein the UV exposure Department occurred in the exposure of some or all of the IR 41.如申請專利範圍第38項之基板上之低介電常數(低七)介電膜 的硬化方法,其中該調整該交聯抑制劑之該殘留量的步驟包含調 整在該IR曝露期間之該UV曝露的一持續時間、該UV曝露之一 UV強度、或該uv曝露之一 uv劑量、或其二者或更多者的一組 合0 42.如申凊專利範圍第28項之基板上之低介電常數(低-k)介電膜 的硬化方法,更包含: 在該IR曝露之後’將該低_k介電膜曝露至紫外線(UV)輻射; 42 200949941 以及 在該UV曝露期間’將該低-k介電膜曝露至第二IR輻射。 • 43·如申請專利範圍第42項之基板上之低介電常數(低-k)介電膜 的硬化方法,更包含: 在該UV曝露之後,將該低士介電膜曝露至第三ir輻射。 44.如申請專利範圍第28項之基板上之低介電常數(低_k)介雷膜 的硬化方法,更包含: ' 在該IR曝露之後,將該低-k介電膜曝露至第一紫外線⑴乂) 韓射,以及 在該IR曝露期間’將該低-k介電膜曝露至第二uv輕射,其 中該第二UV曝露與該第一 UV曝露不同。 八 45. 如申請專利範圍第44項之基板上之低介電常數(低士)介電膜 的硬化方法,其中該調整該交聯抑制劑之該殘留量的步驟包含調 整該IR期間之該第二UV曝露的一持續時間、該第二uv曝露之 一 UV強度、或該第二UV曝露之一 UV劑量、或其二者或更多者 的一組合。 46. 如申請專利範圍第28項之基板上之低介電常數(低_k)介電膜 的硬化方法,更包含: 在5亥IR曝露剛、§亥IR曝露期間、或該IR曝露後、或其二者 或更多者的任何組合時加熱該基板^ 八一 =·種在基板上製備乡孔性低介電常數(低_k)介電膜的方法,包 含: 使用一化學氣相沉積(CVD)製程在一基板上形成一含sic〇H ,其中該CVD製程使用二乙氧甲基魏(DEMS)及一孔洞 43 200949941 時間曝射維持足夠長之-第-持續 • -第===,曝露該含_介電膜請輻射維持 在該第二持續時間之部份或全部期間加熱該含sic0H 膜。 48·如申請專利範圍第47項之在基板上製備多孔性低介電常數(低 -k)介電膜的方法,其中該孔洞生成材料包含箱類、冰片稀、5_二 甲基-卜4-環辛二烯、十氫化萘、乙苯、或捧樣油精、或其二者或 〇 更多者的一組合。 49.如申請專利範圍第47項之在基板上製備多孔性低介電常數(低 -k)介電膜的方法,其中該孔洞生成材料包含〜萜品烯 (alpha-terpinene, ATRP) ° 50_ —種在基板上製備多孔性低介電常數(低介電膜的方法,包 含: ' 使用一化學氣相沉積(CVD)製程在一基板上形成一含SiC〇H 介電膜’其中该CVD製程使用二乙氧曱基矽烷(DEMS)及一孔洞 生成材料, 曝露該含SiCOH介電膜至第一 IR輻射維持足夠長之一第一 持續時間,以充分去除該孔洞生成材料; 在該第一 IR曝露之後’曝露該含Sic〇H介電膜至uv 維持一第二持續時間; ' 曰 在該UV曝露期間,曝露該含SiCOH介電膜至第二IR輕射 維持一第三持續時間;以及 S ’ 在該UV曝露之後,曝露該含SiCOH介電膜至第三IR輕射 ' 維持一第四持續時間。 、 — 田、 200949941 51.如申請專利範圍第5〇 W介麵的枝,更包含:紅製備多孔性齡電常數(低 .膜。在該第二持續時間之部份或全部期間加熱該含Sic〇H介電 士)介電膜上製備多孔性低介電常數(低 Μ.如申B青專利圍第50項之在基板上製借 册電_方法,其巾該孔洞生成材常τ低 甲基卜4.環辛二烯、十氫化萘、' 類、冰片烯、5-二 更多者的一組合。 ’、本或知棣油精、或其二者或 其中該第二持續時間係與該第二持續時間重疊。 55. —種介電膜,包含:41. A method of hardening a low dielectric constant (low seven) dielectric film on a substrate according to claim 38, wherein the step of adjusting the residual amount of the crosslinking inhibitor comprises adjusting during the IR exposure a combination of a duration of the UV exposure, a UV intensity of the UV exposure, or a uv dose of the uv exposure, or a combination of two or more thereof. 42. On a substrate as claimed in claim 28 A method of hardening a low dielectric constant (low-k) dielectric film, further comprising: exposing the low-k dielectric film to ultraviolet (UV) radiation after the IR exposure; 42 200949941 and during the UV exposure 'Exposing the low-k dielectric film to the second IR radiation. • 43. The method of hardening a low dielectric constant (low-k) dielectric film on a substrate of claim 42 of the patent application, further comprising: exposing the low dielectric film to the third after the UV exposure Ir radiation. 44. The method for hardening a low dielectric constant (low_k) smear film on a substrate of claim 28, further comprising: 'exposing the low-k dielectric film to the first after the IR exposure An ultraviolet (1) 乂) Korean shot, and during the IR exposure, the low-k dielectric film is exposed to a second uv light shot, wherein the second UV exposure is different from the first UV exposure. 8. The method of hardening a low dielectric constant (lower) dielectric film on a substrate of claim 44, wherein the step of adjusting the residual amount of the crosslinking inhibitor comprises adjusting the IR period A duration of the second UV exposure, a UV intensity of the second uv exposure, or a UV dose of the second UV exposure, or a combination of two or more thereof. 46. The method for hardening a low dielectric constant (low_k) dielectric film on a substrate of claim 28, further comprising: during 5 HAI IR exposure, § HI IR exposure, or after the IR exposure Or heating the substrate in any combination of two or more of them. A method for preparing a township low dielectric constant (low-k) dielectric film on a substrate, comprising: using a chemical gas A phase deposition (CVD) process forms a sic 〇H on a substrate, wherein the CVD process uses DEMS and a hole 43 200949941 to maintain a sufficiently long time-first-continuous ===, exposing the _ dielectric film, the radiation is maintained to maintain the sic0H film during part or all of the second duration. 48. A method of preparing a porous low dielectric constant (low-k) dielectric film on a substrate according to claim 47, wherein the pore-forming material comprises a box, a borneol thin, a 5-dimethyl-b A combination of 4-cyclooctadiene, decalin, ethylbenzene, or olein, or a combination thereof. 49. A method of preparing a porous low dielectric constant (low-k) dielectric film on a substrate according to claim 47, wherein the pore-forming material comprises alpha-terpinene (ATRP) ° 50_ a method for preparing a porous low dielectric constant (a low dielectric film on a substrate, comprising: 'forming a SiC〇H dielectric film on a substrate using a chemical vapor deposition (CVD) process> wherein the CVD The process uses diethoxy decyl decane (DEMS) and a pore-forming material to expose the SiCOH-containing dielectric film until the first IR radiation is maintained for a sufficient length for a first duration to substantially remove the void-forming material; After exposure to IR, 'exposure the Sic-containing H dielectric film to uv for a second duration; ' 曰 during the UV exposure, exposing the SiCOH-containing dielectric film to a second IR light strike for a third duration And S 'after exposure to the UV, exposing the SiCOH-containing dielectric film to the third IR light-emitting' to maintain a fourth duration. -, Tian, 200949941 51. As claimed in the patent application, the fifth interface of the W interface , including: red preparation of porous age electrical constants ( Membrane. The porous low dielectric constant is prepared by heating the Sic〇H dielectric dielectric film during part or all of the second duration (lower than 申. On the substrate, a method of making a book is used, and the hole-forming material is usually a combination of a τ-low methyl group, a cyclooctadiene, a decalin, a class, a norbornene, and a 5-two. The present or the sputum olein, or both or the second duration thereof overlaps the second duration. 55. A dielectric film comprising: 一二乙氧甲基矽烷(DEMS)基之多孔性介電膜,盆包含約工7 或更低之一介電常數、約L17或更低之一折射率'、約'15Gpa更 大之一彈性模數、以及約〇.2GPa或更大之一硬度。'’ 一 56. —種介電膜,包含: 一二乙氧曱基石夕炫(DEMS)基之多孔性介電膜,其包含約2.1 或更低之一介電常數、約1.31或更低之一折射率、約4GPa或更 大之一彈性模數、以及約〇.45GPa或更大之一硬度。 八、圖式: 45A diethoxymethyl decane (DEMS) based porous dielectric film comprising one of a dielectric constant of about 7 or less, a refractive index of about one of L17 or lower, and one of about 15 GPa. The modulus of elasticity, and one of hardnesses of about 2 GPa or more. A composite dielectric film comprising: a diethoxy phthalocyanine (DEMS) based porous dielectric film comprising a dielectric constant of about 2.1 or less, about 1.31 or less One refractive index, one elastic modulus of about 4 GPa or more, and one hardness of about 4545 GPa or more. Eight, schema: 45
TW098107312A 2008-03-06 2009-03-06 Method for curing a porous low dielectric constant dielectric film TWI421939B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/043,814 US7977256B2 (en) 2008-03-06 2008-03-06 Method for removing a pore-generating material from an uncured low-k dielectric film
US12/043,772 US7858533B2 (en) 2008-03-06 2008-03-06 Method for curing a porous low dielectric constant dielectric film
US12/043,835 US20090226694A1 (en) 2008-03-06 2008-03-06 POROUS SiCOH-CONTAINING DIELECTRIC FILM AND A METHOD OF PREPARING

Publications (2)

Publication Number Publication Date
TW200949941A true TW200949941A (en) 2009-12-01
TWI421939B TWI421939B (en) 2014-01-01

Family

ID=41056604

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098107312A TWI421939B (en) 2008-03-06 2009-03-06 Method for curing a porous low dielectric constant dielectric film

Country Status (6)

Country Link
JP (2) JP5490024B2 (en)
KR (1) KR101538531B1 (en)
CN (2) CN101960556B (en)
DE (1) DE112009000518T5 (en)
TW (1) TWI421939B (en)
WO (1) WO2009111473A2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9017933B2 (en) * 2010-03-29 2015-04-28 Tokyo Electron Limited Method for integrating low-k dielectrics
JP2012104703A (en) * 2010-11-11 2012-05-31 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor device and substrate processing apparatus
CN104143524A (en) * 2013-05-07 2014-11-12 中芯国际集成电路制造(上海)有限公司 Manufacturing method for semiconductor device
US10109478B2 (en) * 2016-09-09 2018-10-23 Lam Research Corporation Systems and methods for UV-based suppression of plasma instability
US11476145B2 (en) 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
CN118315254A (en) 2019-01-22 2024-07-09 应用材料公司 Feedback loop for controlling pulse voltage waveform
US11462388B2 (en) 2020-07-31 2022-10-04 Applied Materials, Inc. Plasma processing assembly using pulsed-voltage and radio-frequency power
US11798790B2 (en) 2020-11-16 2023-10-24 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11901157B2 (en) 2020-11-16 2024-02-13 Applied Materials, Inc. Apparatus and methods for controlling ion energy distribution
US11791138B2 (en) 2021-05-12 2023-10-17 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11948780B2 (en) 2021-05-12 2024-04-02 Applied Materials, Inc. Automatic electrostatic chuck bias compensation during plasma processing
US11967483B2 (en) 2021-06-02 2024-04-23 Applied Materials, Inc. Plasma excitation with ion energy control
US11569066B2 (en) 2021-06-23 2023-01-31 Applied Materials, Inc. Pulsed voltage source for plasma processing applications
US12106938B2 (en) 2021-09-14 2024-10-01 Applied Materials, Inc. Distortion current mitigation in a radio frequency plasma processing chamber
US11972924B2 (en) 2022-06-08 2024-04-30 Applied Materials, Inc. Pulsed voltage source for plasma processing applications

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002023629A2 (en) * 2000-09-13 2002-03-21 Shipley Company, L.L.C. Electronic device manufacture
US6692903B2 (en) * 2000-12-13 2004-02-17 Applied Materials, Inc Substrate cleaning apparatus and method
US6756085B2 (en) * 2001-09-14 2004-06-29 Axcelis Technologies, Inc. Ultraviolet curing processes for advanced low-k materials
US20030224544A1 (en) * 2001-12-06 2003-12-04 Shipley Company, L.L.C. Test method
JP3726071B2 (en) * 2002-06-05 2005-12-14 東京エレクトロン株式会社 Heat treatment method
US7404990B2 (en) * 2002-11-14 2008-07-29 Air Products And Chemicals, Inc. Non-thermal process for forming porous low dielectric constant films
US7098149B2 (en) * 2003-03-04 2006-08-29 Air Products And Chemicals, Inc. Mechanical enhancement of dense and porous organosilicate materials by UV exposure
TWI240959B (en) * 2003-03-04 2005-10-01 Air Prod & Chem Mechanical enhancement of dense and porous organosilicate materials by UV exposure
US6897162B2 (en) * 2003-10-20 2005-05-24 Wafermasters, Inc. Integrated ashing and implant annealing method
US20060081557A1 (en) * 2004-10-18 2006-04-20 Molecular Imprints, Inc. Low-k dielectric functional imprinting materials
US7622378B2 (en) * 2005-11-09 2009-11-24 Tokyo Electron Limited Multi-step system and method for curing a dielectric film
US20070173071A1 (en) * 2006-01-20 2007-07-26 International Business Machines Corporation SiCOH dielectric
JP2007214156A (en) * 2006-02-07 2007-08-23 Yatabe Hitoo Semiconductor device
JP2007324170A (en) * 2006-05-30 2007-12-13 Yoshimi Shiotani Irradiation device and semiconductor production system employing the same

Also Published As

Publication number Publication date
WO2009111473A2 (en) 2009-09-11
KR101538531B1 (en) 2015-07-21
WO2009111473A3 (en) 2010-01-14
KR20120041641A (en) 2012-05-02
JP5490024B2 (en) 2014-05-14
CN102789975A (en) 2012-11-21
DE112009000518T5 (en) 2011-05-05
JP2014007416A (en) 2014-01-16
TWI421939B (en) 2014-01-01
CN101960556A (en) 2011-01-26
JP2011514678A (en) 2011-05-06
CN101960556B (en) 2013-09-18
CN102789975B (en) 2015-10-14

Similar Documents

Publication Publication Date Title
TW200949941A (en) Method for curing a porous low dielectric constant dielectric film
TWI360832B (en) Multi-step system and method for curing a dielectr
TWI431689B (en) Method for curing a dielectric film
US7977256B2 (en) Method for removing a pore-generating material from an uncured low-k dielectric film
US7858533B2 (en) Method for curing a porous low dielectric constant dielectric film
TWI240959B (en) Mechanical enhancement of dense and porous organosilicate materials by UV exposure
US7335980B2 (en) Hardmask for reliability of silicon based dielectrics
TWI282125B (en) Method for curing low dielectric constant film by electron beam
JP5102618B2 (en) Method for forming a SiCOH dielectric film
JP2016167633A (en) Method of integrating low dielectric constant insulator
TW201125037A (en) Wet oxidation process performed on a dielectric material formed from a flowable CVD process
TW200937575A (en) Method and system for forming an air gap structure
TW200814194A (en) Thermal processing system for curing dielectric films
TW200816313A (en) Method to reduce gas-phase reactions in a PECVD process with silicon and organic precursors to deposit defect-free initial layers
JP2009290026A (en) Film forming method of semiconductor device which uses neutral particle
TW201620003A (en) Low-k dielectric film formation
US10147640B2 (en) Method for removing back-filled pore-filling agent from a cured porous dielectric
US20090226695A1 (en) Method for treating a dielectric film with infrared radiation
US20090226694A1 (en) POROUS SiCOH-CONTAINING DIELECTRIC FILM AND A METHOD OF PREPARING
JP2011091161A (en) Method of forming low dielectric constant insulating film

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees