TW200949366A - Optical sheet, backlight unit, and liquid crystal display - Google Patents

Optical sheet, backlight unit, and liquid crystal display Download PDF

Info

Publication number
TW200949366A
TW200949366A TW097144849A TW97144849A TW200949366A TW 200949366 A TW200949366 A TW 200949366A TW 097144849 A TW097144849 A TW 097144849A TW 97144849 A TW97144849 A TW 97144849A TW 200949366 A TW200949366 A TW 200949366A
Authority
TW
Taiwan
Prior art keywords
optical sheet
adhesive layer
diffusion
polarizing film
reflective polarizing
Prior art date
Application number
TW097144849A
Other languages
Chinese (zh)
Other versions
TWI380088B (en
Inventor
Jung-Hoon Lee
Kyong-Rae Kim
Original Assignee
Lg Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Electronics Inc filed Critical Lg Electronics Inc
Publication of TW200949366A publication Critical patent/TW200949366A/en
Application granted granted Critical
Publication of TWI380088B publication Critical patent/TWI380088B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/30Fillers, e.g. particles, powders, beads, flakes, spheres, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • B32B2333/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)

Abstract

An optical sheet, a backlight unit including the optical sheet, and a liquid crystal display including the backlight unit may be provided. The optical sheet may include a reflective polarizing film, a first adhesive layer on one surface of the reflective polarizing film, and a first diffusion layer on the first adhesive layer. The first diffusion layer may include a first light transmitting material and a plurality of first diffusion particles provided therein. A difference between a refractive index of the first adhesive layer and a refractive index of the first light transmitting material is less than or equal to approximately 0.2.

Description

200949366 九、發明說明: 【發明所屬之技術領域】 本發明之具體實施係關於一種光學薄片、包括該光學 薄片之背光單元、及/或包括該背光單元之液晶顯示器。 【先前技術】 顯示領域可視覺地顯示不同電氣信號之資訊。在該顯 示領域中,已提出各種類型之平板顯示器,具有諸如薄外 形、重量輕以及低功率消耗之優良特性。此外,平板顯示 〇 器將用來取代陰極射線管(CRT)。 平板顯示器之例子包括液晶顯示器(LCD)、電漿顯示面 板(PDP)、場發射顯示器(FED)、以及電激發光顯示器(ELD) 。該液晶顯示器由於高對比率及良好的動繪顯示特性,故 可被用來作爲筆記型電腦之顯示面板、個人電腦之顯示器 、及/或TV顯示器。 液晶顯示器可被考量爲光接收顯示器。液晶顯示器可 包括顯示影像之液晶顯示面板以及位在該該液晶顯示面板 〇 下方以提供該液晶顯示面板光之背光單元。 該背光單元可包括光源及光學薄片。該光學薄片可包 括擴散薄片、稜鏡薄片'或防護薄片。 若該背光單元提供給該液晶顯示面板之光照度均勻性 降低,則該液晶顯示器之顯示品質會降低。擴散薄片可讓 光均勻地擴散至該液晶顯示面板之顯示區域的整個表面上 ,以防止該光之照度均勻性降低。然而,僅利用該擴散薄 片來確保高光學擴散性與照度均勻性可能是困難的。 -5- 200949366 【發明内容】 本發明係鑑於前述習知的問題而開發者,其目的在提 供一種真空泵的運轉停止控制方法及運轉停止控置送。 【實施方式】 第1圖爲依照本發明之例示實施例之光學薄片之剖面 視圖。其它具體實施例及架構也在本發明之範圍內。 更具體地說,第1圖顯示一種光學薄片100,其包括反 射偏光薄膜110及於該反射偏光薄膜110上之第一擴散層 〇 120(或擴散單元)。該第一擴散層120可包括第一光透射材 料121及複數第一擴散粒子122。該等第一擴散粒子122 可被嵌入該第一光透射材料121中。 . 該反射偏光薄膜110可透射或反射來自光源的光。該 - 反射偏光薄膜110可包括由聚合物所形成之第一層111以 及設置相鄰於該第一層111之第二層112。該第二層112 可由具有一折射率之聚合物所形成,而該折射率係不同於 形成該第一層111之聚合物的折射率。 〇 該反射偏光薄膜110可具有以重複方式交替堆疊該第 一層111與該第二層112之結構。該第一層111可由聚甲 基丙烯酸甲酯(PMMA)來形成,以及該第二層112可由聚酯 (polyester)來形成。 來自該光源之部分光線可藉由該反射偏光薄膜110透 射,以及來自該光源之另一部分光可朝向位在該反射偏光 薄膜110下方之光源反射。朝向該光源反射的光可被再次 反射並且可入射於該反射偏光薄膜110上。入射於該反射 -6- 200949366 偏光薄膜110上之部分光可藉由該反射偏光薄膜110透 射,並且入射於該反射偏光薄膜110上之另一部分光可再 次朝向位在該反射偏光薄膜110下方之該光源反射。 換言之,因爲該反射偏光薄膜110具有該第一層111 與該第二層112以重複方式交替堆疊之結構,故該反射偏 光薄膜110可利用一原則,其中該聚合物分子係定向在一 方向,以傳送在不同於該等分子之定向方向的偏光,以及 反射相同於該等分子之定向方向的偏光,而得以改善來自 © 該光源之光效率。 該反射偏光薄膜110可具有約100 ίΜ到300 μπι的厚度, 其取決於顯示裝置之尺寸。當該反射偏光薄膜110之厚度 等於或大於100 μιη時,使用偏光及反射原則可改善光效 • 率。當該反射偏光薄膜110之厚度等於或小於300μιη時, 可實現薄外形之光學薄片。 該第一擴散層120可使用該第一擴散層120中之該第 一擴散粒子122(及/或複數氣泡)使來自外部光源的光學擴 〇 散。 形成該第一擴散層120之該第一光透射材料121可包 括例如:不飽和聚酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、 甲基丙烯酸異丁酯、甲基丙烯酸正丁酯、甲基丙烯酸正丁 基甲酯、丙烯酸、甲基丙烯酸、甲基丙烯酸羥乙酯、甲基 丙烯酸羥丙酯、丙烯酸羥乙酯、丙烯醯胺、羥甲基丙烯醯 胺、甲基丙烯酸縮水甘油酯、丙烯酸乙酯、丙烯酸異丁酯、 丙烯酸正丁酯、諸如丙烯酸2-乙基己酯聚合物、丙烯酸2- -7- 200949366 乙基乙酯共聚合物或丙烯酸2-乙基乙酯三共聚物之丙烯系 材料、胺基甲酸酯系材料、環氧系材料、三聚氰胺系材料、 聚碳酸酯以及聚苯乙烯。也可使用其它材料。 在該第一擴散層120中之該等第—擴散粒子122可爲 珠粒(諸如以腔粒方式設置)。該等第―擴散粒子122之每— 者可由選自由聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯、砂以 及其組合所組成之群組之材料來形成。 若干該等珠粒可被露出於該等第—擴散層12〇之外部。 Ο 該第—擴散層120可再包括或可選擇地包括複數氣 泡’用以擴散來自外部光源的光。可設置該等氣泡以代替 該等第一擴散粒子122,或者可與該等第—擴散粒子122 一同設置。 * 該第一擴散層120可包括基於該第一光透射材料 121’該等第一擴散粒子122之重量份之1〇到50。當基於 該第一光透射材料121,該等第一擴散粒子122之量等於或 大於重量份10時’則可防止(或降低)來自使用該等珠粒(或 © 該等氣泡)之該光源的光難以擴散。當基於該第一光透射材 料121’該等第一擴散粒子丨22之數量等於或小於重量份的 50時’可防止來自該光源發出的光之透射的降低。 分布在該第一光透射材料121中之該等不同的第一擴 散粒子122之直徑可爲互相不同的(或非均句 該等第一擴散粒子122可爲圓形、橢圓形、雪人形、 及/或相等的圓形。也可使用其它形狀。 該等第一擴散粒子122可在該第一光透射材料121各 -8, 200949366 處爲非均勻分布。 該等第一擴散粒子122之直徑可約爲〇·5μιη到ΙΟμιη。 當該等第一擴散粒子122之直徑小時,該光學薄片1〇〇之 光學擴散性可藉由增加在該第一擴散層120中之該等第一 擴散粒子122之密度來改善。然而,當該等第一擴散粒子 1 2 2之直徑非常小時,則會發生來自該外部光源的光之干 涉。因此,當該等第一擴散粒子122之直徑等於或大於 0.5 μιη時,該光學薄片100之光學擴散性可改善至不會發生 © (或會最低限度發生)該光干涉。 當該等第一擴散粒子122之直徑大時,必須形成厚的 該第一擴散層120,以確保該光學薄片100之光學擴散係 . 數,以及因而其可能難以製造薄外形的光學薄片100。因 , 此,當該等第一擴散粒子122之直徑等於或小於ΙΟμπι時, 可實現該光學薄片100之薄外形至不會降低(或大體上不會 降低)該光學薄片100之光學擴散係數的程度。 包括該光學薄片之背光單元可操作及說明如下。由一 © 光源所產生的光可被入射至該光學薄片上。入射至該光學 薄片上之該光的一部分會與該第一擴散單元之該等第一擴 散粒子碰撞,並且該光之行進路徑會改變。入射至該光學 薄片上之該光的另一·部分會通過該第一擴散層之放射表面 朝向一液晶顯示面板。 與該等第一擴散粒子碰撞之光會與相鄰於此碰撞之第 一擴散粒子之其它第一擴散粒子碰撞,並且再度改變該光 線之行進路徑。部分光(其行進路徑改變二次的部分)會通 -9- 200949366 過該第一擴散層之放射表面而朝向該液晶顯示面板。另一 部分光(行進路徑改變二次的部分)會與該等第一擴散粒子 碰撞,並且會改變光的行進路徑。 通過該第一擴散層之放射表面的光可被均勻入射至該 液晶顯示面板上。 該光學薄片100於該反射偏光薄膜110與該第一擴散 層120之間可再包括第一黏著層130。 可藉由結合該第一光透射材料121與該等第一擴散粒 〇 子122(及/或氣泡),以及於該反射偏光薄膜1 10上施加或 塗布該混合物而將該第一擴散層120形成於該反射偏光薄 膜 1 10 上。 . 可藉由使用一押出成形方法或一射出成形方法,以一 薄膜形式形成該第一光透射材料121與該等第一擴散粒子 122(或氣泡),以及接著使用一黏著劑將其黏附在該反射偏 光薄膜110上,而將該第一擴散層120形成於該反射偏光 薄膜110上。該第一黏著層130可被塗布在該反射偏光薄 ® 膜110上以形成該第一擴散層120。 該第一黏著層130可選自由丙烯酸系黏著劑、橡膠系 黏著劑、矽系黏著劑以及其組合所組成之群組之材料來形 成。 該丙烯酸系黏著劑之例子包括諸如丙烯酸乙酯、丙烯 酸丁酯、丙烯酸戊酯、丙烯酸2-乙基己酯、丙烯酸辛酯、 丙烯酸環己酯及丙烯酸苄酯之丙烯酸烷酯,以及諸如甲基 丙烯酸丁酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸環己酯 -10- 200949366 及甲基丙烯酸苄酯之甲基丙烯酸烷酯。 該橡膠系黏著劑可包括含有天然橡膨、@ 一異戊二烯 膠、苯乙烯-丁二烯橡膠、再生橡膠、聚異丁燒 T豕曜、苯 烯-異戊二烯-苯乙烯橡膠、以及苯乙烯-丁二蜣〜 —柿-本乙烯橡 作爲主要構成之嵌段共聚物。 該矽系黏著劑之例示可包括二甲基矽氣 /铒烷系材料以 二苯基矽氧烷系材料。 考量光透射比及黏著特性,該第一黏著磨 有層130之厚 ^ 可約爲Ιμιη到ΙΟμιη。也可使用其它厚度。 該第一黏著層130之厚度可爲第一表面niQ的〜 叫i ) 1 a與第二 面1 3 1 b之最高點間的距離;以及該第一表面]w 1 J 1 &興該 二表面131b之最低點間的距離之平均値。該第—黏著 130之平均厚度可約爲Ιμιη到ΙΟμπι。 在該第一表面131a與該第二表面131b之第—位置 的距離T1可不同於在該第一表面131a與該第二表面13 之第二位置間的距離T2。該等距離T1與T2可滿足下列 程式:10nmS | T1-T2 | $2μιη。T1代表在該第一表面131a 該第二表面131b之間的第一厚度,以及T2代表該第一 面131a與該第二表面131b之間的第二厚度。參照第1圖 垂直距離T1與T2爲沿著大體上垂直於該反射偏光薄膜1 之表平面之向量的距離。 下列表1指出取決於該等距離T1與T2之間關係之 光學薄片100之擴散效應及照度。在下列表丨中,X、c 與◎分別代表該等特性之不良、好以及優良狀態。 橡 乙 膠 及 度 表 第 層 間 lb 方 與 表 I ' 10 該 -11- 200949366 表1200949366 IX. Description of the Invention: The present invention relates to an optical sheet, a backlight unit including the same, and/or a liquid crystal display including the same. [Prior Art] The display field can visually display information of different electrical signals. In this display field, various types of flat panel displays have been proposed which have excellent characteristics such as a thin profile, light weight, and low power consumption. In addition, the flat panel display will be used to replace the cathode ray tube (CRT). Examples of flat panel displays include liquid crystal displays (LCDs), plasma display panels (PDPs), field emission displays (FEDs), and electroluminescent displays (ELDs). The liquid crystal display can be used as a display panel of a notebook computer, a display of a personal computer, and/or a TV display due to its high contrast ratio and good dynamic display characteristics. The liquid crystal display can be considered as a light receiving display. The liquid crystal display may include a liquid crystal display panel that displays an image and a backlight unit positioned below the liquid crystal display panel to provide light of the liquid crystal display panel. The backlight unit may include a light source and an optical sheet. The optical sheet may comprise a diffusion sheet, a tantalum sheet ' or a protective sheet. If the uniformity of illumination provided by the backlight unit to the liquid crystal display panel is lowered, the display quality of the liquid crystal display is lowered. The diffusion sheet allows light to be uniformly diffused onto the entire surface of the display region of the liquid crystal display panel to prevent the uniformity of illumination of the light from being lowered. However, it may be difficult to utilize only the diffusion sheet to ensure high optical diffusivity and illuminance uniformity. -5-200949366 SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and an object thereof is to provide a method and control method for stopping operation of a vacuum pump. [Embodiment] Fig. 1 is a cross-sectional view showing an optical sheet according to an exemplary embodiment of the present invention. Other specific embodiments and architectures are also within the scope of the invention. More specifically, Fig. 1 shows an optical sheet 100 including a reflective polarizing film 110 and a first diffusion layer 120 (or a diffusion unit) on the reflective polarizing film 110. The first diffusion layer 120 may include a first light transmissive material 121 and a plurality of first diffusion particles 122. The first diffusion particles 122 may be embedded in the first light transmissive material 121. The reflective polarizing film 110 can transmit or reflect light from a light source. The reflective polarizing film 110 may include a first layer 111 formed of a polymer and a second layer 112 disposed adjacent to the first layer 111. The second layer 112 may be formed of a polymer having a refractive index different from the refractive index of the polymer forming the first layer 111. The reflective polarizing film 110 may have a structure in which the first layer 111 and the second layer 112 are alternately stacked in a repeated manner. The first layer 111 may be formed of polymethyl methacrylate (PMMA), and the second layer 112 may be formed of polyester. Part of the light from the light source can be transmitted through the reflective polarizing film 110, and another portion of the light from the light source can be reflected toward the light source positioned below the reflective polarizing film 110. Light reflected toward the light source may be reflected again and may be incident on the reflective polarizing film 110. A portion of the light incident on the reflective film -6-200949366 may be transmitted through the reflective polarizing film 110, and another portion of the light incident on the reflective polarizing film 110 may be again oriented below the reflective polarizing film 110. The light source is reflected. In other words, since the reflective polarizing film 110 has a structure in which the first layer 111 and the second layer 112 are alternately stacked in a repeated manner, the reflective polarizing film 110 can utilize a principle in which the polymer molecular system is oriented in one direction. The light efficiency from the source is improved by transmitting polarized light in a direction different from the orientation of the molecules and reflecting polarized light in the same direction as the orientation of the molecules. The reflective polarizing film 110 may have a thickness of about 100 Μ to 300 μm depending on the size of the display device. When the thickness of the reflective polarizing film 110 is equal to or greater than 100 μm, the principle of polarization and reflection can be used to improve the luminous efficiency. When the thickness of the reflective polarizing film 110 is equal to or less than 300 μm, a thin-profile optical sheet can be realized. The first diffusion layer 120 may use the first diffusion particles 122 (and/or plural bubbles) in the first diffusion layer 120 to diffuse optical light from an external source. The first light transmissive material 121 forming the first diffusion layer 120 may include, for example, an unsaturated polyester, methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, n-butyl methacrylate, n-Butyl methacrylate, acrylic acid, methacrylic acid, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxyethyl acrylate, acrylamide, methylol acrylamide, glycidyl methacrylate, Ethyl acrylate, isobutyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate polymer, 2- -7- 200949366 ethyl ethyl acrylate copolymer or 2-ethyl ethyl acrylate copolymer A propylene-based material, a urethane-based material, an epoxy-based material, a melamine-based material, a polycarbonate, and polystyrene. Other materials can also be used. The first diffusion particles 122 in the first diffusion layer 120 may be beads (such as disposed in a cavity). Each of the first "diffusion particles 122" may be formed of a material selected from the group consisting of polymethyl methacrylate (PMMA), polystyrene, sand, and combinations thereof. A plurality of the beads may be exposed outside of the first diffusion layer 12〇. The first diffusion layer 120 may further or alternatively include a plurality of bubbles to diffuse light from an external source. These bubbles may be provided in place of the first diffusion particles 122 or may be provided together with the first diffusion particles 122. * The first diffusion layer 120 may include 1 to 50 parts by weight based on the first diffusion particles 122 of the first light transmissive material 121'. When the amount of the first diffusion particles 122 is equal to or greater than 10 parts by weight based on the first light transmissive material 121, then the source from the use of the beads (or the bubbles) can be prevented (or reduced). The light is difficult to spread. When the number of the first diffusion particles 丨 22 is equal to or less than 50 parts by weight based on the first light transmitting material 121', the decrease in the transmission of light from the light source can be prevented. The diameters of the different first diffusion particles 122 distributed in the first light transmitting material 121 may be different from each other (or the non-uniform first diffusion particles 122 may be circular, elliptical, snowman, And/or equal circular shapes. Other shapes may also be used. The first diffusion particles 122 may be non-uniformly distributed at the first light transmissive material 121 -8, 200949366. The diameter of the first diffusion particles 122 When the diameter of the first diffusion particles 122 is small, the optical diffusivity of the optical sheet 1 can be increased by the first diffusion particles in the first diffusion layer 120. The density of 122 is improved. However, when the diameter of the first diffusion particles 1 2 2 is very small, interference of light from the external light source occurs. Therefore, when the diameter of the first diffusion particles 122 is equal to or larger than At 0.5 μm, the optical diffusivity of the optical sheet 100 can be improved so that the light interference does not occur (or will occur to a minimum). When the diameter of the first diffusion particles 122 is large, the first must be formed thick. Diffusion layer 120 To ensure the optical diffusion coefficient of the optical sheet 100, and thus it may be difficult to manufacture the thin-profile optical sheet 100. Therefore, when the diameter of the first diffusion particles 122 is equal to or smaller than ΙΟμπι, the optical can be realized. The thin profile of the sheet 100 is such that it does not reduce (or substantially does not reduce) the degree of optical diffusion coefficient of the optical sheet 100. The backlight unit including the optical sheet is operable and illustrated as follows. Light generated by a source can be Being incident on the optical sheet, a portion of the light incident on the optical sheet collides with the first diffusion particles of the first diffusion unit, and the path of the light changes. Incident on the optical sheet The other part of the light passes through the radiation surface of the first diffusion layer toward a liquid crystal display panel. The light colliding with the first diffusion particles will be the first one of the first diffusion particles adjacent to the collision. The diffusing particles collide and change the path of the ray again. Part of the light (the part whose travel path changes twice) will pass through the -9-200949366 The radiation surface of the diffusion layer faces the liquid crystal display panel. Another portion of the light (the portion where the traveling path changes twice) collides with the first diffusion particles and changes the traveling path of the light. The radiation through the first diffusion layer The light of the surface may be uniformly incident on the liquid crystal display panel. The optical sheet 100 may further include a first adhesive layer 130 between the reflective polarizing film 110 and the first diffusion layer 120. The first light may be combined The transmissive material 121 and the first diffusion granules 122 (and/or bubbles), and the mixture is applied or coated on the reflective polarizing film 110 to form the first diffusion layer 120 on the reflective polarizing film 1 10 The first light transmitting material 121 and the first diffusion particles 122 (or bubbles) may be formed in a film form by using an extrusion forming method or an injection molding method, and then using an adhesive to bond it. Adhered to the reflective polarizing film 110, the first diffusion layer 120 is formed on the reflective polarizing film 110. The first adhesive layer 130 may be coated on the reflective polarizing thin film 110 to form the first diffusion layer 120. The first adhesive layer 130 may be formed of a material selected from the group consisting of an acrylic adhesive, a rubber adhesive, an enamel adhesive, and a combination thereof. Examples of the acrylic adhesive include alkyl acrylate such as ethyl acrylate, butyl acrylate, amyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, cyclohexyl acrylate and benzyl acrylate, and such as methyl group. Butyl acrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate-10-200949366 and alkyl methacrylate of benzyl methacrylate. The rubber-based adhesive may include natural rubber swelling, @-isoprene rubber, styrene-butadiene rubber, recycled rubber, polyisobutylene oxide, styrene-isoprene-styrene rubber. And a block copolymer of styrene-butadiene--persimmon-present vinyl rubber as a main component. An example of the lanthanide-based adhesive may include a dimethyl helium/decane-based material as a diphenyl sulfoxide-based material. Considering the light transmittance and adhesion characteristics, the thickness of the first adhesive grinding layer 130 can be about Ιμιη to ΙΟμιη. Other thicknesses can also be used. The thickness of the first adhesive layer 130 may be the distance between the first surface niQ and the highest point of the second surface 1 3 1 b; and the first surface] w 1 J 1 & The average 値 of the distance between the lowest points of the two surfaces 131b. The first adhesive 130 may have an average thickness of about ιμιη to ΙΟμπι. The distance T1 between the first surface 131a and the first position of the second surface 131b may be different from the distance T2 between the first surface 131a and the second position of the second surface 13. The equidistances T1 and T2 satisfy the following formula: 10nmS | T1-T2 | $2μιη. T1 represents a first thickness between the first surface 131a and the second surface 131b, and T2 represents a second thickness between the first surface 131a and the second surface 131b. Referring to Fig. 1, the vertical distances T1 and T2 are distances along a vector substantially perpendicular to the plane of the reflective polarizing film 1. Table 1 below indicates the diffusion effect and illuminance of the optical sheet 100 depending on the relationship between the equidistances T1 and T2. In the following list, X, c, and ◎ represent the poor, good, and excellent states of these characteristics, respectively. Rubber and rubber and the first layer of the table lb square and Table I ' 10 The -11- 200949366 Table 1

Τ1-Τ2| (μπι) 擴散效應 照度 0.005 X ◎ 0.01 〇 ◎ 0.03 〇 ◎ 0.05 〇 〇 0.1 〇 〇 0.5 〇 〇 1 ◎ 〇 2 ◎ 〇 5 ◎ X 如上述表1所示,當距離T1與T2滿足下列方程式: 10nm^|Tl-T2|時,會使來自該光源的光因爲在該第一黏著 層130之一表面上之彎曲表面或不平坦表面而擴散。當距 離T1與T2滿足下列方程式:|τΐ-Τ2|$2μηι時,可防止因 該第一黏著層130之大的高度差而造成照度降低。 該第一光透射材料121之折射率與該第一黏著層130 之折射率間的差値可約小於或等於0.2。 下列表2指出取決於該第一光透射材料121之折射率 與該第一黏著層130之折射率間的差値之該光學薄片1〇〇 之照度特性與光損失防止效率。在下列表2中,X、〇、與 ◎分別代表該等特性之不良、好以及優良狀態。 -12- 200949366 表2 在第一光透射材料與第一Τ1-Τ2| (μπι) Diffusion effect illuminance 0.005 X ◎ 0.01 〇 ◎ 0.03 〇 ◎ 0.05 〇〇 0.1 〇〇 0.5 〇〇 1 ◎ 〇 2 ◎ 〇 5 ◎ X As shown in Table 1 above, when the distances T1 and T2 are satisfied The following equation: 10 nm^|Tl-T2| causes light from the source to diffuse due to a curved or uneven surface on one surface of the first adhesive layer 130. When the distances T1 and T2 satisfy the following equation: |τΐ-Τ2|$2μηι, it is possible to prevent the illuminance from being lowered due to the large height difference of the first adhesive layer 130. The difference between the refractive index of the first light transmitting material 121 and the refractive index of the first adhesive layer 130 may be less than or equal to 0.2. The following Table 2 indicates the illuminance characteristics and the light loss preventing efficiency of the optical sheet 1 取决于 depending on the difference between the refractive index of the first light transmitting material 121 and the refractive index of the first adhesive layer 130. In the following Table 2, X, 〇, and ◎ represent the poor, good, and excellent states of these characteristics, respectively. -12- 200949366 Table 2 in the first light transmission material and the first

#著層之折射率間的差値 照度特性 光損失防止效率 0 ◎ ◎ 0.05 ◎ ◎ 0.1 〇 〇 0.15 〇 〇 0.2 〇 〇 0.25 X X 0.3 X X 如上述表2所示,當在該第一光透射材料121與該第 —黏著層130之折射率間的差値等於或大於〇時,可防止 自該光源發出的光損失並可改善其照度。當在該第一光透 射材料1 2 1與該第一黏著層1 3 0之折射率間的差値約小於 或等於0.2時,自該光源發出的光在該第一黏著層130與 該第一擴散層120間的介面上會被反射或折射。因此,可 防止於端緣上之光損失所造成之照度降低。 該光學薄片100可防止來自該光源的光損失並可藉由 讓在該第一光透射材料121與該第一黏著層130之折射率 間的差値小於或等於〇. 2來改善該照度。 第2圖爲依照本發明之例示實施例之光學薄片之剖面 視圖。其它具體實施例及架構也仍在本發明之範圍內。 如第2圖中所示,光學薄片2 00可包括反射偏光薄膜 21〇、於該反射偏光薄膜210上之第一黏著層230、以及於 -13- 200949366 該第一黏著層230上之第一擴散層220。該第一擴散層2 20 可包括第一光透射材料221及複數第一擴散粒子222(及/或 複數珠粒或氣泡)。該等第一擴散粒子2 22可被嵌入該第一 光透射材料221中。該反射偏光薄膜可包括由聚合物所形 成之第一層211以及設置相鄰於該第一層211之第二層 212 ° 該第一黏著層230之厚度可爲第一表面231a與第二表 面231b之最高點間的距離以及該第一表面231a與該第二 © 表面231b之最低點間的距離之平均値。該第一黏著層之平 均厚度可約爲Ιμιη到ΙΟμιη。 該光學薄片200於該反射偏光薄膜210下方又包括第 二黏著層240’以及於該第二黏著層240上之第二擴散層 25 0 ° 該第二黏著層240可包括互相面對之第三表面241a與 第四表面241b。該第三表面241a及/或第四表面241b可爲 一彎曲表面或不平坦表面》 ® 考量光透射比及黏著特性,該第二黏著層240之厚度 可約爲Ιμιη到ΙΟμιη。也可使用其它厚度。 該第二黏著層2 40之厚度可爲在該第四表面24 lb與第 三表面241a之最高點間的距離以及在該第四表面241b與 第三表面241a之最低點間的距離之平均値。該第二黏著層 240之平均厚度可約爲Ιμιη到ΙΟμιη。 在該第四表面241b與第三表面241a之第一位置間的 距離T3可不同於在該第四表面241b與第三表面241a之第 -14- 200949366 二位置間的距離T4。類似於該第一黏著層230,該等距離 Τ3與Τ4可滿足下列方程式:lOnmS丨Τ3-Τ4丨£2μιη。Τ3代表 在該第三表面241a與該第四表面241b之間的第三厚度, 以及T4代表在該第三表面241a與該第四表面241b之間的 第四厚度。參照第2圖,垂直距離T3與T4爲沿著大體上 垂直於該反射偏光薄膜210之表平面之向量的距離。 當距離T3與T4滿足下列方程式:lOnmS | T3-T4 |時, 會使來自該光源發出的光因爲該第二黏著層240之表面上 Ο 之彎曲表面或不平坦表面而擴散。當距離T3與T4滿足下 列方程式:|Τ3·Τ4|52μηι時,可防止因該第二黏著層240 之過大的高度差而造成照度降低。 .、 該第二擴散層250可相同或類似於該第一擴散層 220。該第二擴散層25 0可使來自該外部光源的光透過在第 二光透射材料251中之複數第二擴散粒子252(及/或氣泡) 而擴散。 形成該第二擴散層250之該第二光透射材料251可包 ® 括例如:不飽和聚酯、甲基丙烯酸甲酯、甲基丙烯酸乙酯、 甲基丙烯酸異丁酯、甲基丙烯酸正丁基、丙烯酸、甲基丙 烯酸、甲基丙烯酸羥乙酯、甲基丙烯酸羥丙酯、甲基丙稀 酸正丁基甲酯、丙烯酸、甲基丙烯酸、甲基丙烯酸羥乙酯、 甲基丙烯酸羥丙酯、丙烯酸羥乙酯、丙烯醯胺、羥甲基丙 烯醯胺、甲基丙烯酸縮水甘油酯、丙烯酸乙酯、丙嫌酸異 丁酯、丙烯酸正丁酯、諸如丙烯酸2-乙基己酯聚合物、丙 烯酸2-乙基乙酯共聚合物或丙烯酸2-乙基乙酯三共聚物之 -15- 200949366 丙嫌酸系材料、胺基甲酸酯系材料、環氧基系材料、三聚 氰胺系材料'聚碳酸酯以及聚苯乙烯。也可使用其它材料。 在該第二擴散層250中之該等第二擴散粒子252之每 一者可爲珠粒(諸如以腔粒方式設置)。該等第二擴散粒子 252之每一者可由選自由聚甲基丙烯酸甲酯(pmma)、聚苯 乙燒、砂以及其組合所組成之群組之材料來形成。 若干該等珠粒可被露出於該等第一擴散層220及/或該 第二擴散層250之外部。 © 該第二擴散層250可再包括或可選擇地包括複數氣 泡’用以擴散來自該外部光源的光。可設置該等氣泡以代 替該等第二擴散粒子252,或者可與該等第二擴散粒子252 一同設置。 該第二擴散層250可包括,基於該第二光透射材料 251,該等第二擴散粒子252之重量份的百分之10到5〇 1 當基於該第二光透射材料251,該等第二擴散粒子252之數 量等於或大於重量份10時,可防止(或降低)來自使用該等 ® 珠粒之該光源的光難以擴散。當基於該第二光透射材料 251 ’該等第二擴散粒子252之數量等於或小於重量份5〇 時,可防止來自該光源發出的光之透射的降低。 分布在該第二光透射材料251中之該等不同的第二_ 散粒子252之直徑可爲互相不同的(或非均勻)。 該等第二擴散粒子252可爲圓形、橢圓形、雪人形、 及/或相等的圓形。也可使用其它形狀。 該等第二擴散粒子252可在該第二光透射材料251名^ •16- 200949366 處爲非均勻分布。 該等第二擴散粒子252之直徑可約爲〇.5μιη到ΙΟμιη。 當該等第二擴散粒子25 2之直徑小時,該光學薄片200之 光學擴散性可藉由增加該第二擴散層250中之該等第二擴 散粒子252之密度來改善。然而,當該等第二擴散粒子252 之直徑非常小時,則會發生來自該外部光源的光干涉。因 此,當該等第二擴散粒子252之直徑等於或大於0.5μιη時’ 該光學薄片200之光學擴散性可改善至不會發生(或會最低 © 限度發生)該光干涉。 當該等第二擴散粒子25 2之直徑大時,可以形成厚的 該第二擴散層250,,以確保該光學薄片200之光學擴散性, 因此可能難以製造薄外形的光學薄片200。因此,當該等第 二擴散粒子252之直徑等於或小於ΙΟμιη時,可實現該光學 薄片200之薄外形至不會降低(或大體上不會降低)該光學 薄片2 00之光學擴散係數的程度。 該第二黏著層240可被用以將該反射偏光薄膜210黏 ® 附至該第二擴散層250及/或可相同於該第一黏著層230。 該第二黏著層240可選自由丙稀酸系黏著劑、橡膠系黏 著劑、矽系黏著劑以及其組合所組成之群組之材料來形成。 該丙烯酸鍵黏著劑之例示包括諸如丙烯酸乙酯、丙烯 酸丁酯、丙烯酸戊酯、丙烯酸2-乙基己酯、丙烯酸辛酯、 丙烯酸環己酯及丙烯酸苄酯之丙烯酸烷酯,以及諸如甲基 丙烯酸丁酯、甲基丙烯酸2-乙基己酯、甲基丙烯酸環己酯 及甲基丙烯酸苄酯之甲基丙烯酸烷酯。 -17- 200949366 該橡膠系黏著劑可包括含有天然橡膠、異戊二稀橡 膠、苯乙烯-丁二烯橡膠、再生橡膠、聚異丁烯橡膠、苯乙 烯-異戊二烯-苯乙烯橡膠、以及苯乙烯-丁二烯苯乙烯橡膠 作爲主要構成之嵌段共聚物。 該砂系黏著劑之例示可包括聚二甲基矽氧烷系材料以 及二苯基矽氧院系材料。 該第二光透射材料251之折射率與該第二黏著層24〇 之折射率間的差値可大體上約小於或等於〇.2。 © 當在該第二光透射材料251與該第二黏著層240之折 射率間的差値等於或大於〇時,可防止自該光源發出的光 損失並可改善其照度。當在該第二光透射材料251與該第 二黏著層240之折射率間的差値約小於或等於〇.2時,自 該光源發的光在該第二黏著層240與該第二擴散層250間 的介面上會被反射或折射。因此,可防止(及/或降低)於端 緣之光損失所造成之照度降低。 該光學薄片200可防止來自該光源的光損失並可藉由 © 讓在該第二光透射材料251與該第二黏著層240間之折射 率的差値小於或等於0.2來改善該照度。 第3A與3B圖係說明依照本發明之例示實施例,說明 包括光學薄片之背光單元之架構之分解立體圖與剖面視 圖。其它具體實施例及架構也仍在本發明之範圍內。 第3A與3B圖顯示邊緣式背光單元。由於第3A與3B 圖中所示之光學薄片之架構大體上相同於上述之該等光學 薄片,故可簡化進一步之說明或可整個省略掉。 -18- 200949366 如第3A與3B圖中所示,背光單元300可被包含於液 晶顯示器中,並可對包含於該液晶顯示器中之液晶顯示面 板提供光。 該背光單元3 00可包括光源3 20以及光學薄片330。該 背光單元300可再包括光導3 40(或光導板)、反射器350(或 反射板)、底蓋360、以及模框370。 該光源320可使用自該光源外部所接受之驅動電力來 產生光,並可放射該所產生的光。 〇 該光源320可沿著該光導340之長軸方向而設在該光 導340之一側。該光源320也可設在該光導340之兩側上。 來自該光源3 20的光可直接入射至該光導340上。或者, 來自該光源3 20的光可自圍住該光源320之一部分之光源 外殻3 22反射,例如,圍住該光源320之約3/4的外部四周 表面,以及接著該光線可入射至該光導340上。 該光源320可爲冷陰極螢光燈(CCFL)、熱陰極螢光燈 (HCFL)、外電極螢光燈(EEFL)、以及發光二極體(LED)之 ® —。也可使用其它光源。 該光學薄片330可被設在該光導3 40上。該光學薄片 330可將來自該光源320的光聚焦。 該光學薄片3 30可包括反射偏光薄膜、於該反.射偏光 薄膜之一表面上之第一黏著層、以及於該第一黏著層上之 第一擴散層。該第一擴散層可包括第一光透射材料以及複 數第一擴散粒子(及/或珠粒)。在該第一黏著層之折射率與 該第一光透射材料之折射率間的差値可約小於或等於〇.2。 -19- 200949366 可防止該光學薄片330之光損失並可改善該光學薄片 330之照度。因此,可改善該背光單元300之顯示品質。 擴散薄片332及/或稜鏡薄片331可被設在該光導340 與該光學薄片330之間。 該光導3 40可面對該光源320。該光導340可引導該光 以便以向上方式放射來自該光源320的光。 該反射器350可被設在該光導3 40下方。該反射器350 可以向上方式反射來自該光源3 20的光,以及接著該光可 © 經由該光導340向下放射。 該底蓋360可包括底部362以及自該底部362延伸出 去以形成一收容空間之側部364。該收容空間可收容該光源 320、該光學薄片330、該光導3 40、以及該反射器350。 該模框370可大約爲一矩形框。該模框370可自該底 蓋3 60之上側以頂端朝下之方式被固定至該底蓋360。 第3C圖係顯示依照本發明之例示實施例之背光單 元。其它具體實施例及架構也仍在本發明之範圍內。 〇 如第3C圖中所示,除了該光學薄片330除了該第一擴 散層220與該第一黏著層230外更包括該第二擴散層250 與該第二黏著層240外,該背光單元3 00可大體上相同於 第3A與3B圖中所示之背光單元300。因此’爲便於說明, 將省略該背光單元3 00之進一步說明。 第4A與4B圖係說明依照本發明之例示實施例之背光 單元的架構之分解立體圖與剖面視圖。其它具體實施例及 架構也仍在本發明之範圍內。 -20- 200949366 第4A與4B圖係顯示直接式背光單元。由於第4A與 4B圖中所示之背光單元400可大體上相同於第3A與3B圖 中所示之該背光單元300(除了光源之位置及取決於該光源 之位置而改變構成元件外),故可簡化進一步說明或可整個 省略掉。 如第4A與4B圖中所示,該背光單元400可被包含於 液晶顯示器中,並可對包含於該液晶顯示器中之液晶顯示 面板提供光。 〇 該背光單元4 00可包括光源4 20以及光學薄片430。該 背光單元400可再包括反射器450、底蓋460、以及擴散板 480 ° 該光源4 20可被設在該擴散板4 80下方。因此’來自 該光源420的光可直接入射至該擴散板480上。 該光學薄片430可被設在該擴散板480上。該光學薄 片430可使來自該光源420的光聚焦。 該光學薄片430可包括反射偏光薄膜、於該反射偏光 © 薄膜之一表面上之第一黏著層、以及於該第一黏著層上之 第一擴散層。該第一擴散層可包括第一光透射材料以及複 數第一擴散粒子(及/或珠粒)。在該第一黏著層之折射率與 該第一光透射材料之折射率間的差値可約小於或等於 0.2。該光學薄片430可相當於上述該等光學薄片之一。 可防止該光學薄片4 30之光損失並可改善該光學薄片 430之照度。因此,可改善該背光單元400之顯示品質。 擴散薄片432及/或稜鏡薄片431可被設在該擴散板 -21- 200949366 480與該光學薄片430之間。 該擴散板480可被設在該光源420與該光學薄片43G 之間,並可以向上方式使來自該光源420的光學擴散。由 於該擴散板480在該光源420上,故自該背光單元400之 頂部可能無法看到該光源420,以及該擴散板480可進一步 使來自該光源420的光學擴散。 第 4C圖係顯示依照本發明之例示實施例之背光單 元。其它具體實施例及架構也仍在本發明之範圍內。 Ο 如第4C圖中所示,除了該光學薄片430除了該第一擴 散層220與該第一黏著層230外又再包括該第二擴散層250 與該第二黏著層240外,該背光單元,400可大體上相同於 第4A與4B圖中所示之背光單元400。因此,可省略該背 光單元400之進一步說明。 第5A與5B圖係說明依照本發明之例示實施例之液晶 顯示器的架構之分解立體圖與剖面視圖。其它具體實施例 及架構也仍在本發明之範圍內。Between the refractive index of the layer, the illuminance characteristic, the light loss prevention efficiency 0 ◎ ◎ 0.05 ◎ ◎ 0.1 〇〇 0.15 〇〇 0.2 〇〇 0.25 XX 0.3 XX as shown in Table 2 above, when the first light transmitting material When the difference 折射率 between the refractive index of the first adhesive layer 130 and the refractive index of the first adhesive layer 130 is equal to or greater than 〇, the light loss from the light source can be prevented and the illuminance can be improved. When the difference between the refractive index of the first light transmitting material 1 21 and the first adhesive layer 130 is less than or equal to 0.2, the light emitted from the light source is in the first adhesive layer 130 and the first The interface between a diffusion layer 120 is reflected or refracted. Therefore, the illuminance caused by the loss of light on the edge is prevented from being lowered. The optical sheet 100 can prevent light loss from the light source and can improve the illuminance by making the difference 折射率 between the refractive indices of the first light transmitting material 121 and the first adhesive layer 130 less than or equal to 0.2. Figure 2 is a cross-sectional view of an optical sheet in accordance with an illustrative embodiment of the present invention. Other specific embodiments and architectures are also within the scope of the invention. As shown in FIG. 2, the optical sheet 200 may include a reflective polarizing film 21A, a first adhesive layer 230 on the reflective polarizing film 210, and a first on the first adhesive layer 230 on -13-200949366. Diffusion layer 220. The first diffusion layer 2 20 can include a first light transmissive material 221 and a plurality of first diffusion particles 222 (and/or a plurality of beads or bubbles). The first diffusion particles 22 may be embedded in the first light transmissive material 221. The reflective polarizing film may include a first layer 211 formed of a polymer and a second layer 212 disposed adjacent to the first layer 211. The thickness of the first adhesive layer 230 may be a first surface 231a and a second surface. The distance between the highest point of 231b and the average distance between the first surface 231a and the lowest point of the second © surface 231b. The first adhesive layer may have an average thickness of about ιμιη to ΙΟμιη. The optical sheet 200 further includes a second adhesive layer 240' under the reflective polarizing film 210 and a second diffusion layer 25 0 on the second adhesive layer 240. The second adhesive layer 240 may include a third surface facing each other. The surface 241a and the fourth surface 241b. The third surface 241a and/or the fourth surface 241b may be a curved surface or an uneven surface. The light transmittance and adhesion characteristics may be considered. The second adhesive layer 240 may have a thickness of about ιμηη to ΙΟμιη. Other thicknesses can also be used. The thickness of the second adhesive layer 2 40 may be the distance between the fourth surface 24 lb and the highest point of the third surface 241a and the average distance between the fourth surface 241b and the lowest point of the third surface 241a. . The second adhesive layer 240 may have an average thickness of about ιμηη to ΙΟμιη. The distance T3 between the fourth surface 241b and the first position of the third surface 241a may be different from the distance T4 between the fourth surface 241b and the second position of the third surface 241a. Similar to the first adhesive layer 230, the equidistances Τ3 and Τ4 can satisfy the following equation: lOnmS丨Τ3-Τ4丨£2μιη. Τ3 represents a third thickness between the third surface 241a and the fourth surface 241b, and T4 represents a fourth thickness between the third surface 241a and the fourth surface 241b. Referring to Fig. 2, the vertical distances T3 and T4 are distances along a vector substantially perpendicular to the plane of the reflective polarizing film 210. When the distances T3 and T4 satisfy the following equation: lOnmS | T3-T4 |, light emitted from the light source is diffused due to the curved or uneven surface of the surface of the second adhesive layer 240. When the distances T3 and T4 satisfy the following equation: |Τ3·Τ4|52μηι, it is possible to prevent the illuminance from being lowered due to an excessive height difference of the second adhesive layer 240. The second diffusion layer 250 may be the same or similar to the first diffusion layer 220. The second diffusion layer 25 0 diffuses light from the external light source through the plurality of second diffusion particles 252 (and/or bubbles) in the second light transmitting material 251. The second light transmissive material 251 forming the second diffusion layer 250 may include, for example, an unsaturated polyester, methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, and butyl methacrylate. Base, acrylic acid, methacrylic acid, hydroxyethyl methacrylate, hydroxypropyl methacrylate, n-butyl methyl methacrylate, acrylic acid, methacrylic acid, hydroxyethyl methacrylate, hydroxypropyl methacrylate , hydroxyethyl acrylate, acrylamide, hydroxymethyl acrylamide, glycidyl methacrylate, ethyl acrylate, isobutyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate polymer , 2-ethyl ethyl acrylate copolymer or 2-ethyl ethyl acrylate copolymer -15- 200949366 Aromatic acid-based material, urethane-based material, epoxy-based material, melamine-based material 'Polycarbonate and polystyrene. Other materials can also be used. Each of the second diffusion particles 252 in the second diffusion layer 250 may be a bead (such as disposed in a cavity). Each of the second diffusion particles 252 may be formed of a material selected from the group consisting of polymethyl methacrylate (pmma), polystyrene, sand, and combinations thereof. A plurality of the beads may be exposed outside of the first diffusion layer 220 and/or the second diffusion layer 250. © The second diffusion layer 250 can further or alternatively include a plurality of bubbles 'to diffuse light from the external source. The bubbles may be disposed in place of or in addition to the second diffusion particles 252. The second diffusion layer 250 may include, based on the second light transmissive material 251, 10% to 5% of the weight of the second diffusion particles 252, based on the second light transmissive material 251, the When the number of the two diffusion particles 252 is equal to or greater than 10 parts by weight, it is possible to prevent (or reduce) the light from the light source using the ® beads from being difficult to diffuse. When the number of the second diffusion particles 252 is equal to or less than 5 parts by weight based on the second light transmissive material 251', a decrease in the transmission of light from the light source can be prevented. The diameters of the different second scatter particles 252 distributed in the second light transmissive material 251 may be mutually different (or non-uniform). The second diffusion particles 252 can be circular, elliptical, snowman shaped, and/or equal circular. Other shapes can also be used. The second diffusion particles 252 may be non-uniformly distributed at the second light transmissive material 251, ^16-200949366. The second diffusion particles 252 may have a diameter of about 55 μmη to ΙΟμιη. When the diameter of the second diffusion particles 25 2 is small, the optical diffusivity of the optical sheet 200 can be improved by increasing the density of the second diffusion particles 252 in the second diffusion layer 250. However, when the diameter of the second diffusion particles 252 is very small, light interference from the external light source occurs. Therefore, when the diameter of the second diffusion particles 252 is equal to or greater than 0.5 μm, the optical diffusibility of the optical sheet 200 can be improved to such an extent that the light interference does not occur (or may occur at a minimum of ? limit). When the diameter of the second diffusion particles 25 2 is large, the second diffusion layer 250 may be formed thick to ensure optical diffusibility of the optical sheet 200, and thus it may be difficult to manufacture the thin-profile optical sheet 200. Therefore, when the diameter of the second diffusion particles 252 is equal to or smaller than ΙΟμηη, the thin profile of the optical sheet 200 can be achieved without reducing (or substantially not reducing) the degree of optical diffusion coefficient of the optical sheet 200. . The second adhesive layer 240 can be used to adhere the reflective polarizing film 210 to the second diffusion layer 250 and/or can be the same as the first adhesive layer 230. The second adhesive layer 240 may be formed of a material selected from the group consisting of an acrylic adhesive, a rubber adhesive, an enamel adhesive, and a combination thereof. Examples of the acrylic bond adhesive include alkyl acrylate such as ethyl acrylate, butyl acrylate, amyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, cyclohexyl acrylate and benzyl acrylate, and such as methyl An alkyl methacrylate of butyl acrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate and benzyl methacrylate. -17- 200949366 The rubber-based adhesive may include natural rubber, isoprene rubber, styrene-butadiene rubber, recycled rubber, polyisobutylene rubber, styrene-isoprene-styrene rubber, and benzene. Ethylene-butadiene styrene rubber is a block copolymer mainly composed. Examples of the sand-based adhesive may include a polydimethyl siloxane-based material and a diphenyl fluorene-based material. The difference between the refractive index of the second light transmissive material 251 and the refractive index of the second adhesive layer 24A may be substantially less than or equal to 0.2. © When the difference 折 between the refractive indices of the second light transmitting material 251 and the second adhesive layer 240 is equal to or greater than 〇, light loss from the light source can be prevented and the illuminance thereof can be improved. When the difference between the refractive indices of the second light transmitting material 251 and the second adhesive layer 240 is less than or equal to 〇.2, the light emitted from the light source is in the second adhesive layer 240 and the second diffusion The interface between layers 250 will be reflected or refracted. Therefore, the illuminance caused by the loss of light at the edge can be prevented (and/or reduced). The optical sheet 200 can prevent light loss from the light source and can improve the illuminance by making the difference 折射 of the refractive index between the second light transmitting material 251 and the second adhesive layer 240 less than or equal to 0.2. 3A and 3B are exploded perspective and cross-sectional views illustrating the architecture of a backlight unit including an optical sheet in accordance with an exemplary embodiment of the present invention. Other specific embodiments and architectures are also within the scope of the invention. Figures 3A and 3B show an edge type backlight unit. Since the structure of the optical sheets shown in Figs. 3A and 3B is substantially the same as those of the above-described optical sheets, further explanation may be simplified or may be omitted entirely. -18- 200949366 As shown in Figures 3A and 3B, the backlight unit 300 can be included in a liquid crystal display and can provide light to a liquid crystal display panel included in the liquid crystal display. The backlight unit 300 can include a light source 320 and an optical sheet 330. The backlight unit 300 may further include a light guide 34 (or light guide), a reflector 350 (or a reflector), a bottom cover 360, and a mold frame 370. The light source 320 can generate light using driving power received from outside the light source and can emit the generated light.光源 The light source 320 can be disposed on one side of the light guide 340 along the long axis direction of the light guide 340. The light source 320 can also be disposed on both sides of the light guide 340. Light from the source 3 20 can be incident directly onto the light guide 340. Alternatively, light from the source 3 20 can be reflected from a portion of the light source housing 32 that encloses a portion of the source 320, for example, about 3/4 of the outer perimeter surface of the source 320, and then the light can be incident upon The light guide 340 is on. The light source 320 can be a cold cathode fluorescent lamp (CCFL), a hot cathode fluorescent lamp (HCFL), an external electrode fluorescent lamp (EEFL), and a light emitting diode (LED). Other light sources can also be used. The optical sheet 330 can be disposed on the light guide 340. The optical sheet 330 can focus light from the light source 320. The optical sheet 3 30 may include a reflective polarizing film, a first adhesive layer on one surface of the reverse polarizing film, and a first diffusion layer on the first adhesive layer. The first diffusion layer can include a first light transmissive material and a plurality of first diffusion particles (and/or beads). The difference between the refractive index of the first adhesive layer and the refractive index of the first light transmissive material may be less than or equal to 〇.2. -19- 200949366 can prevent light loss of the optical sheet 330 and can improve the illumination of the optical sheet 330. Therefore, the display quality of the backlight unit 300 can be improved. A diffusion sheet 332 and/or a ruthenium sheet 331 may be disposed between the light guide 340 and the optical sheet 330. The light guide 340 can face the light source 320. The light guide 340 can direct the light to emit light from the light source 320 in an upward manner. The reflector 350 can be disposed below the light guide 340. The reflector 350 can reflect light from the source 3 20 in an upward manner, and then the light can be emitted downward through the light guide 340. The bottom cover 360 can include a bottom portion 362 and a side portion 364 extending from the bottom portion 362 to form a receiving space. The accommodating space can accommodate the light source 320, the optical sheet 330, the light guide 340, and the reflector 350. The mold frame 370 can be approximately a rectangular frame. The mold frame 370 can be fixed to the bottom cover 360 from the upper side of the bottom cover 3 60 with the top end facing downward. Figure 3C shows a backlight unit in accordance with an illustrative embodiment of the present invention. Other specific embodiments and architectures are also within the scope of the invention. For example, as shown in FIG. 3C, the backlight unit 3 is not included except the first diffusion layer 220 and the first adhesive layer 230, and the second diffusion layer 250 and the second adhesive layer 240. 00 may be substantially the same as backlight unit 300 shown in Figures 3A and 3B. Therefore, further description of the backlight unit 300 will be omitted for convenience of explanation. 4A and 4B are exploded perspective and cross-sectional views showing the structure of a backlight unit in accordance with an exemplary embodiment of the present invention. Other specific embodiments and architectures are also within the scope of the invention. -20- 200949366 Figures 4A and 4B show a direct backlight unit. Since the backlight unit 400 shown in FIGS. 4A and 4B can be substantially the same as the backlight unit 300 shown in FIGS. 3A and 3B (except for the position of the light source and depending on the position of the light source, the constituent elements are changed), Therefore, further explanation may be simplified or may be omitted entirely. As shown in Figures 4A and 4B, the backlight unit 400 can be included in a liquid crystal display and can provide light to a liquid crystal display panel included in the liquid crystal display. The backlight unit 400 may include a light source 420 and an optical sheet 430. The backlight unit 400 can further include a reflector 450, a bottom cover 460, and a diffuser plate 480 °. The light source 4 20 can be disposed under the diffuser plate 480. Therefore, light from the light source 420 can be directly incident on the diffusion plate 480. The optical sheet 430 can be disposed on the diffusion plate 480. The optical sheet 430 can focus light from the source 420. The optical sheet 430 may include a reflective polarizing film, a first adhesive layer on a surface of the reflective polarizing film, and a first diffusion layer on the first adhesive layer. The first diffusion layer can include a first light transmissive material and a plurality of first diffusion particles (and/or beads). The difference between the refractive index of the first adhesive layer and the refractive index of the first light transmissive material may be less than or equal to 0.2. The optical sheet 430 can correspond to one of the optical sheets described above. The light loss of the optical sheet 304 can be prevented and the illuminance of the optical sheet 430 can be improved. Therefore, the display quality of the backlight unit 400 can be improved. A diffusion sheet 432 and/or a tantalum sheet 431 may be disposed between the diffusion sheet - 21 - 200949366 480 and the optical sheet 430. The diffuser plate 480 can be disposed between the light source 420 and the optical sheet 43G and can diffuse optically from the light source 420 in an upward manner. Since the diffuser 480 is on the light source 420, the light source 420 may not be visible from the top of the backlight unit 400, and the diffuser 480 may further diffuse optically from the light source 420. Figure 4C shows a backlight unit in accordance with an illustrative embodiment of the present invention. Other specific embodiments and architectures are also within the scope of the invention. As shown in FIG. 4C, except that the optical sheet 430 includes the second diffusion layer 250 and the second adhesive layer 240 in addition to the first diffusion layer 220 and the first adhesive layer 230, the backlight unit 400 may be substantially identical to backlight unit 400 shown in FIGS. 4A and 4B. Therefore, further explanation of the backlight unit 400 can be omitted. 5A and 5B are exploded perspective and cross-sectional views showing the structure of a liquid crystal display according to an exemplary embodiment of the present invention. Other specific embodiments and architectures are also within the scope of the invention.

® 第5A與5B圖中所示之液晶顯示器500可包括第3A 與3B圖中所示之該等背光單元。例如,該液晶顯示器500 可包括背光單元510,其類似於第4A與4B圖中所示之該 背光單元。由於第5A與5B圖中所示之該背光單元5 10已 參照上述第3A與3B圖說明,故可簡化其進一步之說明或 可整個省略掉。 如第5A與5B圖中所示,該液晶顯示器500可使用液 晶之光電特性顯不影像。 -22- 200949366 該液晶顯示器500可包括該背光單元510與液晶顯示 面板610。該背光單元510可設在該液晶顯示面板610下 方,以及可對該液晶顯示面板610提供光》 該背光單元510可包括光源520以及光學薄片530。自 該光源5 20的光可自光源外殼5 22被反射。該背光單元510 可再包括光導540、反射器550(或反射板)、底蓋560、以 及模框570。 擴散薄片5 32及/或稜鏡薄片531可被設在該光導540 〇 與該光學薄片530之間。 該底蓋560可包括底部562以及自該底部562延伸出 去以形成一收容空間之側部564。 該液晶顯示面板610可被設在該模框570上。該液晶 顯示面板610可被一頂蓋620固定,該頂蓋係以頂端朝下 之方式固定於該底蓋560。 該液晶顯示面板610可使用由該背光單元510之光源 520所供應的光來顯示影像。 〇 該液晶顯示面板610可包括彩色濾光基板612以及薄 膜電晶體基板614,互相面對,其中於該彩色濾光基板612 以及該薄膜電晶體基板6 1 4之間插入液晶。 該彩色濾光基板612可實現顯示於該液晶顯示面板 6 1 0上之彩色影像。 該彩色濾光基板612可包括在由透明材料(諸如玻璃或 塑膠)製成之基板上所形成之薄膜彩色濾光器陣列。例如, 該彩色濾光基板612可包括紅色、綠色及藍色之彩色濾光 -23- 200949366 器。可於該彩色濾光基板612上設置一上偏光板。 該薄膜電晶體基板614可透過一驅動薄膜516而被電 性連接至印刷電路板518,其中於該印刷電路板上裝配有複 數電路部分。該薄膜電晶體基板614可響應由該印刷電路 板5 1 8所提供之驅動信號而施加由該印刷電路板5 1 8所供 應之驅動電壓給液晶。 該薄膜電晶體基板614可包括薄膜電晶體及於由透明 材料(諸如,玻璃或塑膠)所製成之另一基板上的像素電 〇 極。下偏光板可被設在該薄膜電晶體基板614下方》 第5C圖係顯示依照本發明之例示實施例之液晶顯示 器。其它具體實施例及架構也在本發明之範圍內。 如第5C圖中所示,除了該光學薄片5 30除了該第一擴 散層220與該第一黏著層230外再包括該第二擴散層250 與該第二黏著層240外,該液晶顯示器500可大體上相同 於第5A與5B圖中所示之該液晶顯示器500。因此,將省 略該液晶顯示器500之進一步說明。 〇 依照該等例示實施例,光學薄片、包括該光學薄片之 背光單元、以及包括該背光單元之液晶顯示器可藉由在該 第一擴散層中所包括之複數第一擴散粒子(或珠粒),使來 自該光源的光學擴散並改善照度均勻性。 依照該等例示實施例,該光學薄片、包括該光學薄片 之該背光單元、以及包括該背光單元之該液晶顯示器可藉 由於該反射偏光薄膜下方進一步包括一第二擴散層再改善 照度均勻性。 -24- .200949366 依照該等例示實施例,該光學薄片、包括該光學薄片 之該背光單元、以及包括該背光單元之該液晶顯示器,藉 由調整形成該擴散層之該光透射材料之折射率以及該黏著 層之折射率,可防止該光學薄片之光損失並改善照度。 依照該等例示實施例,該光學薄片、包括該光學薄片 之該背光單元、以及包括該背光單元之該液晶顯示器,藉 由於該反射偏光薄膜與該擴散層之間形成具有彎曲、不平 坦或非均勻表面之黏著層,可使光學擴散並改善該照度均 ❹ 勻性。 本發明之例示實施例可提供光學薄片、包括該光學薄 片之背光單元、以及包括能改善光學擴散效率之該背光單 元之液晶顯示器。 光學薄片可包括反射偏光薄膜、於該反射偏光薄膜之 一表面上之第一黏著層、以及於該第一黏著層上之第一擴 散層(或單兀)。該第一擴散層可包括第一光透射材料及複 數第一擴散粒子。在該第一黏著層之折射率與該第一光透 〇 射材料之折射率間的差値可約小於或等於0.2。 背光單元可包括光源以及於該光源上之光學薄片。該 光學薄片可包括反射偏光薄膜、於該反射偏光薄膜之一表 面上之第一黏著層,以及於該第一黏著層上之第一擴散層 (或單元)。該第一擴散層可包括第一光透射材料以及複數 第一擴散粒子。在該第一黏著層之折射率與該第一光透射 材料之折射率間的差値可約小於或等於0.2。該第一黏著層 可具有第一厚度與第二厚度,並且該第一厚度T1以及第二 -25- 200949366 厚度T2大體上滿足下列方程式:lOnmS |Τ1-Τ2|$2μιη。 液晶顯示器可包括光源、於該光源上之光學薄片、以 及於該光學薄片上之液晶面板。該光學薄片可包括反射偏 光薄膜、於該反射偏光薄膜之一表面上之第一黏著層、以 及於該第一黏著層上之第一擴散層(或單元)。該第一擴散 層可包括第一光透射材料及複數第一擴散粒子。在該第一 黏著層之折射率與該第一光透射材料之折射率間的差値可 約小於或等於0.2。該第一黏著層可具有第一厚度與第二厚 〇 度,並且該第一厚度Τ1與該第二厚度Τ2大體上滿足下列 方程式:10ηιη£|Τ1-Τ2|£2μιη。 於此說明書中所提及之”一個實施例”、”實施例”、”例 示實施例”等,其意指關於具體實施例所述之特定特徵、結 構、或特性係包含於本發明之至少一個實施例中。說明書 中於各個不同位置所呈現之措辭態樣並非必定均參照相同 實施例。此外,當於任何具體實施例中說明之特定特徵、 結構、或特性時,其意指於其它實施例中對此等特徵、結 〇 構、或特性之影響仍在所屬技術領域中之熟悉該項技術者 的範圍內。 雖然已參照許多例示實施例來說明實施例,但應了解 的是,許多其它修飾或實施例可藉由那些所屬技術領域中 之技術者而發明,其將仍落入本揭示原則之精神與範圍 內。更特別地,在本揭示、圖式及隨附申請專利範圍之範 圍內,對於主體組合配置之構成部分及/或配置所作各種改 變與修飾均爲可行的。除了可對構成部分及/或配置作改變 -26- 200949366 胃I飾外’替代使用對於所屬技術領域中之技術者來說將 也是顯而易知的。 【圖式簡單說明】 胃參照下列圖式詳細說明本發明之配置與具體實施例 ’其中相同元件符號對應相同元件,以及其中: 第1圖爲依照本發明之例示實施例之光學薄片之剖面 視圖; 第2圖爲依照本發明之例示實施例之光學薄片之剖面 〇 視圖; 第3A與3B圖係顯示依照本發明之例示實施例之背光 單元; ·) 第3C圖係顯示依照本發明之例示實施例之背光單元; 第4A與4B圖係顯示依照本發明之例示實施例之背光 單元; 第4C圖係顯示依照本發明之例示實施例之背光單元; 第5A與5B圖係顯示依照本發明之例示實施例之液晶 ® 顯示器;以及 第5C圖係顯示依照本發明之例示實施例之液晶顯示 器。 【主要元件符號說明】 100、200、330、430、530 光學薄片 110 ' 210 反射偏光薄膜The liquid crystal display 500 shown in Figures 5A and 5B may include the backlight units shown in Figures 3A and 3B. For example, the liquid crystal display 500 can include a backlight unit 510 similar to the backlight unit shown in Figures 4A and 4B. Since the backlight unit 5 10 shown in Figs. 5A and 5B has been described with reference to the above-described 3A and 3B drawings, further explanation thereof may be simplified or may be omitted entirely. As shown in Figs. 5A and 5B, the liquid crystal display 500 can display an image using the photoelectric characteristics of the liquid crystal. -22- 200949366 The liquid crystal display 500 can include the backlight unit 510 and the liquid crystal display panel 610. The backlight unit 510 can be disposed under the liquid crystal display panel 610 and can provide light to the liquid crystal display panel 610. The backlight unit 510 can include a light source 520 and an optical sheet 530. Light from the source 5 20 can be reflected from the light source housing 522. The backlight unit 510 can further include a light guide 540, a reflector 550 (or a reflector), a bottom cover 560, and a mold frame 570. A diffusion sheet 5 32 and/or a ruthenium sheet 531 may be disposed between the light guide 540 〇 and the optical sheet 530. The bottom cover 560 can include a bottom portion 562 and a side portion 564 extending from the bottom portion 562 to form a receiving space. The liquid crystal display panel 610 can be disposed on the mold frame 570. The liquid crystal display panel 610 can be fixed by a top cover 620 which is fixed to the bottom cover 560 with the top end facing downward. The liquid crystal display panel 610 can display an image using light supplied from the light source 520 of the backlight unit 510. The liquid crystal display panel 610 may include a color filter substrate 612 and a thin film transistor substrate 614 that face each other with liquid crystal interposed between the color filter substrate 612 and the thin film transistor substrate 61. The color filter substrate 612 can realize a color image displayed on the liquid crystal display panel 610. The color filter substrate 612 can include a thin film color filter array formed on a substrate made of a transparent material such as glass or plastic. For example, the color filter substrate 612 can include color filters of red, green, and blue -23-200949366. An upper polarizing plate may be disposed on the color filter substrate 612. The thin film transistor substrate 614 can be electrically connected to the printed circuit board 518 through a driving film 516 on which a plurality of circuit portions are mounted. The thin film transistor substrate 614 can apply a driving voltage supplied from the printed circuit board 518 to the liquid crystal in response to a driving signal supplied from the printed circuit board 158. The thin film transistor substrate 614 may comprise a thin film transistor and a pixel electrode on another substrate made of a transparent material such as glass or plastic. The lower polarizing plate may be disposed under the thin film transistor substrate 614. Fig. 5C is a view showing a liquid crystal display according to an exemplary embodiment of the present invention. Other specific embodiments and architectures are also within the scope of the invention. As shown in FIG. 5C, in addition to the optical sheet 530 including the second diffusion layer 250 and the second adhesive layer 240 in addition to the first diffusion layer 220 and the first adhesive layer 230, the liquid crystal display 500 The liquid crystal display 500 can be substantially identical to that shown in Figures 5A and 5B. Therefore, further explanation of the liquid crystal display 500 will be omitted. According to the exemplified embodiments, an optical sheet, a backlight unit including the optical sheet, and a liquid crystal display including the backlight unit may have a plurality of first diffusion particles (or beads) included in the first diffusion layer , diffusing light from the source and improving illuminance uniformity. According to the exemplified embodiments, the optical sheet, the backlight unit including the optical sheet, and the liquid crystal display including the backlight unit can improve illuminance uniformity by further including a second diffusion layer under the reflective polarizing film. -24-.200949366, in accordance with the exemplary embodiments, the optical sheet, the backlight unit including the optical sheet, and the liquid crystal display including the backlight unit, by adjusting a refractive index of the light transmissive material forming the diffusion layer And the refractive index of the adhesive layer prevents light loss of the optical sheet and improves illuminance. According to the exemplified embodiments, the optical sheet, the backlight unit including the optical sheet, and the liquid crystal display including the backlight unit are formed by bending, unevenness or non-form between the reflective polarizing film and the diffusion layer. The adhesion layer on the uniform surface allows optical diffusion and improves the uniformity of the illumination. Exemplary embodiments of the present invention can provide an optical sheet, a backlight unit including the optical sheet, and a liquid crystal display including the backlight unit capable of improving optical diffusion efficiency. The optical sheet may include a reflective polarizing film, a first adhesive layer on a surface of the reflective polarizing film, and a first diffusion layer (or a single layer) on the first adhesive layer. The first diffusion layer can include a first light transmissive material and a plurality of first diffusion particles. The difference between the refractive index of the first adhesive layer and the refractive index of the first optically permeable material may be less than or equal to 0.2. The backlight unit can include a light source and an optical sheet on the light source. The optical sheet may include a reflective polarizing film, a first adhesive layer on one surface of the reflective polarizing film, and a first diffusion layer (or unit) on the first adhesive layer. The first diffusion layer may include a first light transmissive material and a plurality of first diffusion particles. The difference between the refractive index of the first adhesive layer and the refractive index of the first light transmissive material may be less than or equal to 0.2. The first adhesive layer may have a first thickness and a second thickness, and the first thickness T1 and the second -25-200949366 thickness T2 substantially satisfy the following equation: lOnmS |Τ1-Τ2|$2μιη. The liquid crystal display can include a light source, an optical sheet on the light source, and a liquid crystal panel on the optical sheet. The optical sheet may include a reflective polarizing film, a first adhesive layer on one surface of the reflective polarizing film, and a first diffusion layer (or unit) on the first adhesive layer. The first diffusion layer can include a first light transmissive material and a plurality of first diffusion particles. The difference between the refractive index of the first adhesive layer and the refractive index of the first light transmissive material may be less than or equal to 0.2. The first adhesive layer may have a first thickness and a second thickness, and the first thickness Τ1 and the second thickness Τ2 substantially satisfy the following equation: 10ηιη£|Τ1-Τ2|£2μιη. "an embodiment,", "an embodiment,", "exemplary embodiment", etc., as used in this specification, means that the particular features, structures, or characteristics described with respect to the specific embodiments are included in the invention. In one embodiment. The wording of the various aspects in the specification is not necessarily referring to the same embodiment. In addition, when the specific features, structures, or characteristics are described in any particular embodiment, it is intended that the influence of such features, structures, or characteristics in other embodiments is still familiar in the art. Within the scope of the technician. Although the embodiments have been described with reference to a number of exemplary embodiments, it is understood that many other modifications or embodiments can be inferred by those skilled in the art, which still fall within the spirit and scope of the disclosed principles Inside. More particularly, various modifications and adaptations are possible in the component parts and/or arrangements of the subject combination arrangement in the scope of the disclosure, the drawings and the accompanying claims. In addition to making changes to the components and/or configuration -26-200949366 Stomach I will be readily apparent to those skilled in the art. BRIEF DESCRIPTION OF THE DRAWINGS The configuration of the present invention is described in detail with reference to the following drawings, wherein the same elements have the same elements, and wherein: FIG. 1 is a cross-sectional view of an optical sheet in accordance with an exemplary embodiment of the present invention. 2 is a cross-sectional view of an optical sheet in accordance with an exemplary embodiment of the present invention; FIGS. 3A and 3B are diagrams showing a backlight unit in accordance with an exemplary embodiment of the present invention; and FIG. 3C is a view showing an exemplary embodiment of the present invention a backlight unit of an embodiment; FIGS. 4A and 4B are diagrams showing a backlight unit according to an exemplary embodiment of the present invention; FIG. 4C is a diagram showing a backlight unit according to an exemplary embodiment of the present invention; FIGS. 5A and 5B are diagrams showing the invention according to the present invention. The liquid crystal display of the exemplary embodiment; and the 5C is a liquid crystal display according to an exemplary embodiment of the present invention. [Main component symbol description] 100, 200, 330, 430, 530 optical sheet 110 ' 210 reflective polarizing film

111 、 211 -27- 200949366 112、212 第二層 120 ' 220 第一擴散層 121 、 221 第一發光材料 122 ' 222 第一擴散粒子 130 、 230 第一接合層 131a 、 231a 第一表面 ❹ 131b 、 231b 第二表面 T1 第一厚度 T2 第二厚度 ’ 240 第二接合層 241a 第三表面 241b 第四表面 250 第二擴散層 T3 第三厚度 T4 第四厚度 251 第二發光材料 252 第二擴散粒子 300 、 400 、 510 背光單元 320 ' 420 ' 520 光源 -28- 200949366 322 、 522 光源外殼 331 、 431 、 531 稜鏡薄片 332 、 432 、 532 擴散薄片 340 、 540 光導 350 、 450 、 550 反射器 360 、 460 ' 560 底蓋 362 ' 562 底部 364 、 564 側部 370 ' 470 ' 570 ’ 模框 480 擴散板 500 液晶顯示器 516 驅動薄膜 518 ❹ 印刷電路板 610 液晶顯示面板 612 彩色濾光基板 614 薄膜電晶體基板 620 頂蓋 -29-111, 211 -27- 200949366 112, 212 second layer 120' 220 first diffusion layer 121, 221 first luminescent material 122' 222 first diffusion particles 130, 230 first bonding layer 131a, 231a first surface ❹ 131b, 231b second surface T1 first thickness T2 second thickness '240 second bonding layer 241a third surface 241b fourth surface 250 second diffusion layer T3 third thickness T4 fourth thickness 251 second luminescent material 252 second diffusion particle 300 , 400, 510 backlight unit 320 ' 420 ' 520 light source -28- 200949366 322 , 522 light source housing 331 , 431 , 531 稜鏡 sheet 332 , 432 , 532 diffusion sheet 340 , 540 light guide 350 , 450 , 550 reflector 360 , 460 '560 bottom cover 362 '562 bottom 364, 564 side 370 ' 470 ' 570 ' framing 480 diffuser 500 liquid crystal display 516 drive film 518 印刷 printed circuit board 610 liquid crystal display panel 612 color filter substrate 614 thin film transistor substrate 620 Top cover -29-

Claims (1)

200949366 十、申請專利範圍: 1. 一種光學薄片,包括: 反射偏光薄膜; 第一黏著層,於該反射偏光薄膜之一表面上;以及 第一擴散層,於該第一黏著層上,該第一擴散層包括 第一光透射材料及複數第一擴散粒子, 其中在該第一黏著層之折射率與該第一光透射材料之 折射率間的差値約小於或等於0.2, 〇 其中該第一黏著層包括第一表面與第二表面,其中τι 表示在該第一表面與該第二表面間的第一厚度,T2表示 在該第一表面與該第二表面間的第二厚度,以及T1與T2 大體上滿足下列方程式:1〇ηπ^|Τ1-Τ2|£2μιη。 2. 如申請專利範圍第1項之光學薄片,其中更包含: 第二擴散層,於該反射偏光薄膜之另一表面上。 3. 如申請專利範圍第2項之光學薄片,其中更包含: 第二黏著層,於該反射偏光薄膜與該第二擴散層之 〇 間,該第二黏著層包括第三表面與第四表面, 其中Τ3表示在該第三表面與該第四表面間的第三厚 度,Τ4表示在該第三表面與該第四表面間的第四厚度, 以及其中 Τ3 與 Τ4 大體上滿足下列方程式·· 10nmS | Τ3-Τ4 | 52μπι 〇 4. 如申請專利範圍第3項之光學薄片,其中該第二黏著層 之平均厚度約爲Ιμιη到ΙΟμιη。 5. 如申請專利範圍第2項之光學薄片,其中該第一黏著層 -30- .200949366 或該第二黏著層係選自由丙烯酸系黏著劑、橡膠系黏著 劑、矽系黏著劑以及其組合所組成之群組之材料來形成。 6. 如申請專利範圍第2項之光學薄片,其中該第二擴散層 包括第二光透射材料以及複數第二擴散粒子。 7. 如申請專利範圍第6項之光學薄片,其中該等第二擴散 粒子之一的直徑約爲0.5μιη到ΙΟμιη。 8. 如申請專利範圍第6項之光學薄片,其中該等擴散粒子 之每一者爲珠粒。 〇 9.如申請專利範圍第6項之光學薄片,其中該等第一擴散 粒子或該等第二擴散粒子之每一者係選自由聚甲基丙稀 酸甲酯(ΡΜΜΑ)、聚苯乙烯、矽以及其組合所組成之群組 之材料來形成。 10. 如申請專利範圍第1項之光學薄片,其中該第一黏著層 之平均厚度約爲Ιμιη到ΙΟμιη。 11. 如申請專利範圍第1項之光學薄片,其中該等第一擴散 粒子之一的直徑約爲0.5μιη到ΙΟμιη。 〇 12.如申請專利範圍第1項之光學薄片,其中該第一擴散層 更包括複數氣泡。 13. 如申請專利範圍第1項之光學薄片,其中該反射偏光薄 膜之厚度約爲ΙΟΟμιη到300μιη。 14. 如申請專利範圍第1項之光學薄片,其中該反射偏光薄 膜包括第一層及第二層,以及其中該第一層之折射率不 同於該第二層之折射率。 15. —種背光單元,包含: -31- .200949366 光源;以及 光學薄片,接收來自該光源的光,該光學薄片包括: 反射偏光薄膜; 第一黏著層,於該反射偏光薄膜之一表面上;以及 第一擴散層’於該第一黏著層上’該第一擴散層包括 第一光透射材料及複數第一擴散粒子, 其中在該第一黏著層之折射率與該第一光透射材料之 折射率間的差値約小於或等於0.2, 〇 其中該第一黏著層包括第一表面與第二表面,其中τι 表不在該第一表面與該第二表面間的第一厚度,T2表示 在該第一表面與該第二表面間的第二厚度,以及T1與T2 大體上滿足下列方程式:10ηιη^|Τ1-Τ2|$2μιη。 16. 如申請專利範圍第15項之背光單元,其中該光學薄片更 包括: 第二擴散層,於該反射偏光薄膜之另一表面上;以及 第二黏著層’於該反射偏光薄膜與該第二擴散層之 © 間,該第二黏著層包括第三表面與第四表面, 其中Τ3表示該第三表面與該第四表面間的第三厚度, Τ4表示在該第三表面與該第四表面間的第四厚度,以及 其中 Τ3 與 Τ4 大體上滿足下列方程式: 10nmS | Τ3-Τ4 | $2μιη ° 17. —種液晶顯不器,包含: 光源; 光學薄片’接收來自該光源發出的光,該光學薄片包 -32- 200949366 括: 反射偏光薄膜; 第一黏著層,於該反射偏光薄膜之一表面上;以及 第一擴散層,於該第一黏著層上,該第一擴散層包括 第一光透射材料及複數第一擴散粒子,以及 液晶面板,於該光學薄片上, 其中在該第一黏著層之折射率與該第一光透射材料之 折射率間的差値約小於或等於0.2, 0 其中該第一黏著層包括第一表面與第二表面,其中T1 表示在該第一表面與該第二表面間的第一厚度,T2表示 在該第一表面與該第二表面間的第二厚度,以及T1與 T2大體上滿足下列方程式:10nmS | T1-T2 | $2μιη。 18. 如申請專利範圍第17項之液晶顯示器,其中該光學薄片 更包括: 第二擴散層,於該反射偏光薄膜之另一表面上;以及 第二黏著層,於該反射偏光薄膜與該第二擴散層之 〇 間,該第二黏著層包括第三表面與第四表面, 其中Τ3表示在該第三表面與該第四表面間的第三厚 度,Τ4表示在該第三表面與該第四表面間的第四厚度, 以及其中 Τ3 與 Τ4 大體上滿足下列方程式: lOnmS | Τ3-Τ4 | 32μιη。 19. 一種光學薄片,包含: 反射偏光薄膜; 第一黏著層,於該反射偏光薄膜之一表面上;以及 -33- 200949366 第一擴散層,於該第一黏著層上,該第一擴散層包括 第一光透射材料及複數氣泡, 其中在該第一黏著層之折射率與該第一光透射材料之 折射率間的差値約小於或等於0.2, 其中該第一黏著層包括第一表面與第二表面,其中T1 表示在該第一表面與該第二表面間的第一厚度,T2表示 在該第一表面與該第二表面間的第二厚度,以及T1與 T2大體上滿足下列方程式:10ηπ^|τΐ-Τ2|^2μιη。 ® 20.如申請專利範圍第19項之光學薄片,其中更包含: 第二擴散層,於該反射偏光薄膜之另一表面上;以及 第二黏著層,於該反射偏光薄膜與.,該第二擴散層之 間’該第二黏著層包括第三表面與第四表面, 其中Τ3表示在該第三表面與該第四表面間的第三厚 度’ Τ4表示在該第三表面與該第四表面間的第四厚度, 以及其中 Τ3 與 Τ4大體上滿足下列方程式: l〇nmS 丨 Τ3-Τ4 丨 $2μιη。 ❿ -34-200949366 X. Patent application scope: 1. An optical sheet comprising: a reflective polarizing film; a first adhesive layer on a surface of the reflective polarizing film; and a first diffusion layer on the first adhesive layer, the first a diffusion layer includes a first light transmissive material and a plurality of first diffusion particles, wherein a difference between a refractive index of the first adhesive layer and a refractive index of the first light transmissive material is less than or equal to 0.2, wherein the first An adhesive layer includes a first surface and a second surface, wherein τι represents a first thickness between the first surface and the second surface, and T2 represents a second thickness between the first surface and the second surface, and T1 and T2 generally satisfy the following equation: 1〇ηπ^|Τ1-Τ2|£2μιη. 2. The optical sheet of claim 1, further comprising: a second diffusion layer on the other surface of the reflective polarizing film. 3. The optical sheet of claim 2, further comprising: a second adhesive layer between the reflective polarizing film and the second diffusion layer, the second adhesive layer comprising a third surface and a fourth surface Where Τ3 denotes a third thickness between the third surface and the fourth surface, Τ4 denotes a fourth thickness between the third surface and the fourth surface, and wherein Τ3 and Τ4 substantially satisfy the following equation·· The optical sheet of claim 3, wherein the second adhesive layer has an average thickness of about ιμιη to ΙΟμιη. 5. The optical sheet of claim 2, wherein the first adhesive layer -30-.200949366 or the second adhesive layer is selected from the group consisting of an acrylic adhesive, a rubber adhesive, an adhesive, and combinations thereof. The materials of the group formed are formed. 6. The optical sheet of claim 2, wherein the second diffusion layer comprises a second light transmissive material and a plurality of second diffusion particles. 7. The optical sheet of claim 6, wherein one of the second diffusion particles has a diameter of about 0.5 μm to ΙΟμηη. 8. The optical sheet of claim 6, wherein each of the diffusing particles is a bead. The optical sheet of claim 6, wherein each of the first diffusion particles or the second diffusion particles is selected from the group consisting of polymethyl methacrylate (poly), polystyrene The material of the group consisting of 矽, 矽 and combinations thereof is formed. 10. The optical sheet of claim 1, wherein the first adhesive layer has an average thickness of from about ιμηη to ΙΟμιη. 11. The optical sheet of claim 1, wherein one of the first diffusion particles has a diameter of about 0.5 μm to ΙΟμηη. The optical sheet of claim 1, wherein the first diffusion layer further comprises a plurality of bubbles. 13. The optical sheet of claim 1, wherein the reflective polarizing film has a thickness of from about ιμηη to 300 μιη. 14. The optical sheet of claim 1, wherein the reflective polarizing film comprises a first layer and a second layer, and wherein the refractive index of the first layer is different from the refractive index of the second layer. 15. A backlight unit comprising: -31-.200949366 a light source; and an optical sheet receiving light from the light source, the optical sheet comprising: a reflective polarizing film; a first adhesive layer on a surface of the reflective polarizing film And the first diffusion layer 'on the first adhesive layer', the first diffusion layer comprises a first light transmissive material and a plurality of first diffusion particles, wherein a refractive index of the first adhesive layer and the first light transmissive material The difference between the refractive indices is less than or equal to 0.2, wherein the first adhesive layer comprises a first surface and a second surface, wherein τι represents a first thickness between the first surface and the second surface, T2 represents A second thickness between the first surface and the second surface, and T1 and T2 substantially satisfy the following equation: 10ηιη^|Τ1-Τ2|$2μιη. 16. The backlight unit of claim 15, wherein the optical sheet further comprises: a second diffusion layer on the other surface of the reflective polarizing film; and a second adhesive layer 'on the reflective polarizing film and the first Between the two diffusion layers, the second adhesive layer includes a third surface and a fourth surface, wherein Τ3 represents a third thickness between the third surface and the fourth surface, and Τ4 represents the third surface and the fourth surface The fourth thickness between the surfaces, and wherein Τ3 and Τ4 substantially satisfy the following equation: 10nmS | Τ3-Τ4 | $2μιη ° 17. A liquid crystal display comprising: a light source; an optical sheet 'receiving light from the light source The optical sheet package-32-200949366 includes: a reflective polarizing film; a first adhesive layer on a surface of the reflective polarizing film; and a first diffusion layer on the first adhesive layer, the first diffusion layer includes a first light transmissive material and a plurality of first diffusion particles, and a liquid crystal panel on the optical sheet, wherein a refractive index of the first adhesive layer and a refractive index of the first light transmissive material The difference between the rates is less than or equal to 0.2, 0 wherein the first adhesive layer comprises a first surface and a second surface, wherein T1 represents a first thickness between the first surface and the second surface, and T2 represents The second thickness between the first surface and the second surface, and T1 and T2 substantially satisfy the following equation: 10 nmS | T1-T2 | $2 μιη. 18. The liquid crystal display of claim 17, wherein the optical sheet further comprises: a second diffusion layer on the other surface of the reflective polarizing film; and a second adhesive layer on the reflective polarizing film and the first Between the two diffusion layers, the second adhesive layer includes a third surface and a fourth surface, wherein Τ3 indicates a third thickness between the third surface and the fourth surface, and Τ4 indicates the third surface and the third surface The fourth thickness between the four surfaces, and wherein Τ3 and Τ4 generally satisfy the following equation: lOnmS | Τ3-Τ4 | 32μιη. 19. An optical sheet comprising: a reflective polarizing film; a first adhesive layer on a surface of the reflective polarizing film; and -33-200949366 a first diffusion layer on the first adhesive layer, the first diffusion layer The first light transmissive material and the plurality of bubbles, wherein a difference between a refractive index of the first adhesive layer and a refractive index of the first light transmissive material is less than or equal to 0.2, wherein the first adhesive layer comprises a first surface And a second surface, wherein T1 represents a first thickness between the first surface and the second surface, T2 represents a second thickness between the first surface and the second surface, and T1 and T2 substantially satisfy the following Equation: 10ηπ^|τΐ-Τ2|^2μιη. The optical sheet of claim 19, further comprising: a second diffusion layer on the other surface of the reflective polarizing film; and a second adhesive layer on the reflective polarizing film and the Between the two diffusion layers, the second adhesive layer includes a third surface and a fourth surface, wherein Τ3 indicates a third thickness between the third surface and the fourth surface Τ4 indicates the third surface and the fourth surface The fourth thickness between the surfaces, and wherein Τ3 and Τ4, substantially satisfy the following equation: l〇nmS 丨Τ3-Τ4 丨$2μιη. ❿ -34-
TW097144849A 2008-05-28 2008-11-20 Optical sheet, backlight unit, and liquid crystal display TWI380088B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080049662 2008-05-28
KR1020080080266A KR100945392B1 (en) 2008-05-28 2008-08-18 Optical Sheet, Back Light Unit And Liquid Crystal Display Device Comprising The Same

Publications (2)

Publication Number Publication Date
TW200949366A true TW200949366A (en) 2009-12-01
TWI380088B TWI380088B (en) 2012-12-21

Family

ID=41407510

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097144849A TWI380088B (en) 2008-05-28 2008-11-20 Optical sheet, backlight unit, and liquid crystal display

Country Status (3)

Country Link
KR (1) KR100945392B1 (en)
CN (1) CN101592754B (en)
TW (1) TWI380088B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479203B (en) * 2011-12-30 2015-04-01 Skc Haas Display Films Co Ltd Microlens optical sheet, and backlight unit and liquid crystal display using same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379151B1 (en) * 2010-11-09 2014-03-28 주식회사 엘지화학 Backlight unit
KR101629522B1 (en) * 2010-12-10 2016-06-13 (주)엘지하우시스 Adhesive composition for a backlight unit, a backlight unit and a liquid crystal display device
TWI459044B (en) 2011-06-03 2014-11-01 Innocom Tech Shenzhen Co Ltd Optical sheet and method for manufacturing the same and liquid crystal display device using the same
CN102809774B (en) * 2011-06-03 2015-02-11 群康科技(深圳)有限公司 Optical film and liquid crystal display device using same
CN105891919B (en) * 2015-02-17 2018-10-23 奇美实业股份有限公司 Light transmitting base material
KR102309284B1 (en) * 2018-08-03 2021-10-06 주식회사 엘지에너지솔루션 Method of measument for undissolved solutes in polymer solution
KR20210017519A (en) * 2019-08-08 2021-02-17 삼성전자주식회사 Display module, display panel, and display apparatus
CN114280842A (en) * 2021-12-21 2022-04-05 Tcl华星光电技术有限公司 Backlight module, display device and electronic equipment
CN114675366A (en) * 2022-03-08 2022-06-28 厦门天马显示科技有限公司 Polarizer and display device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4101339B2 (en) 1997-09-25 2008-06-18 大日本印刷株式会社 Light diffusing film, manufacturing method thereof, polarizing plate with diffusing layer, and liquid crystal display device
US6208466B1 (en) * 1998-11-25 2001-03-27 3M Innovative Properties Company Multilayer reflector with selective transmission
JP2002006124A (en) 2000-06-22 2002-01-09 Lintec Corp Semi-transparent and semi-reflective sheet
US7781013B2 (en) * 2005-02-21 2010-08-24 Fujifilm Corporation Method of designing a diffusion film, a process for producing the same, and a diffusion film obtained thereby
US20060291055A1 (en) 2005-06-15 2006-12-28 3M Innovative Properties Company Diffuse Multilayer Optical Article
KR20070071346A (en) * 2005-12-30 2007-07-04 쓰리엠 이노베이티브 프로퍼티즈 컴파니 An optical film composite for bright enhancement comprising a birefringent polymer layer
JP2008003514A (en) * 2006-06-26 2008-01-10 Keiwa Inc Optical unit and liquid crystal display module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479203B (en) * 2011-12-30 2015-04-01 Skc Haas Display Films Co Ltd Microlens optical sheet, and backlight unit and liquid crystal display using same

Also Published As

Publication number Publication date
CN101592754B (en) 2012-03-07
KR20090123747A (en) 2009-12-02
CN101592754A (en) 2009-12-02
KR100945392B1 (en) 2010-03-04
TWI380088B (en) 2012-12-21

Similar Documents

Publication Publication Date Title
TWI380088B (en) Optical sheet, backlight unit, and liquid crystal display
JP6636927B2 (en) Display device and lighting device
KR101771557B1 (en) Display Apparatus
KR100957496B1 (en) Reflective Polarized Light Film, Back Light Unit And Liquid Crystal display Device Comprising the same
JP2008027885A (en) Diffusion plate assembly and backlight assembly including same
KR20070091519A (en) Light scattering film for direct-in and embedded backlight module
CN111045249B (en) Optical film
TW201734600A (en) Backlight unit and display device including the same
US8558966B2 (en) Liquid crystal display device including back light having improved light concentration efficiency
US8310623B2 (en) Optical sheet and liquid crystal display including the same
US20090296022A1 (en) Optical sheet, backlight unit, and liquid crystal display
US7956954B2 (en) Optical sheet, backlight unit, and liquid crystal display
KR100960556B1 (en) Optical sheet and Liquid Crystal Display using the same
KR101585000B1 (en) Liquid Crystal Display Device
TWI351562B (en) Backlight module, liquid crystal display apparatus
KR100989046B1 (en) Optical Sheet, Back Light Unit And Liquid Crystal Display Device Comprising The Same
TW200905253A (en) Light-emitting module, diffusion unit and diffusion sheet
KR101413140B1 (en) Light diffusion plate having non-uniform local microlens array pattern and liquid crystal display device comprising the same
TW200949368A (en) Optical sheet, backlight unit, and liquid crystal display
TWI380087B (en) Optical sheet, backlight unit, and liquid crystal display
KR101988007B1 (en) Backlight unit and liquid crystal display device including the same
KR101264725B1 (en) Display Device
WO2021088226A1 (en) Backlight module and display device
KR100829672B1 (en) Diffuser sheet, backlight unit having the diffuser sheet and liquid crystal display having the diffuser sheet
CN208969260U (en) Optical component

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees