TWI380087B - Optical sheet, backlight unit, and liquid crystal display - Google Patents

Optical sheet, backlight unit, and liquid crystal display Download PDF

Info

Publication number
TWI380087B
TWI380087B TW097144846A TW97144846A TWI380087B TW I380087 B TWI380087 B TW I380087B TW 097144846 A TW097144846 A TW 097144846A TW 97144846 A TW97144846 A TW 97144846A TW I380087 B TWI380087 B TW I380087B
Authority
TW
Taiwan
Prior art keywords
diffusion
diffusion particles
optical sheet
particles
diameter
Prior art date
Application number
TW097144846A
Other languages
Chinese (zh)
Other versions
TW200949365A (en
Inventor
Junghoon Lee
Kyongrae Kim
Original Assignee
Lg Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Electronics Inc filed Critical Lg Electronics Inc
Publication of TW200949365A publication Critical patent/TW200949365A/en
Application granted granted Critical
Publication of TWI380087B publication Critical patent/TWI380087B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • G02B5/305Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks including organic materials, e.g. polymeric layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/30Fillers, e.g. particles, powders, beads, flakes, spheres, chips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Description

1380087 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種光學薄片、包括該光學薄片之背光 單元、以及包括該背光單元之液晶顯示器,在諸如電視、 電腦、個人資料助理、行動電話、諸如導航單元之載具終 端工具(例如汽車或飛機)或其它裝置之顯示裝置均爲本發 明可被使用的範圍。 【先前技術】 近年來,可視覺顯示各種電氣信號之資訊之顯示器類 型已快速成長。已提出各種類型之平板顯示器,其具有諸 如薄外形、質地輕以及低功率消耗之優良特性。此外,平 板顯示器正快速取代陰極射線管(CRT)以作爲消費者及工 業所選擇的裝置。 典型平板顯示器包括例如液晶顯示器(LCD)、電漿顯示 面板(PDP)、場發射顯示器(FED)、以及電激發光顯示器(ELD) 。該傳統液晶顯示器由於可提供高對比率及良好的靜止及 動畫顯示特性,故被積極地用來作爲筆記型電腦之顯示面 板、個人電腦之顯示器、電視及其它顯示器。 該液晶顯示器包括一顯不影像之液晶顯不面板以及位 在該液晶顯示面板下方以提供該該液晶顯示面板光線之背 光單元。 該背光單元包括光源及光學薄片。該光學薄片一般包 括擴散薄片、稜鏡薄片、或防護薄片。 若該背光單元提供給該液晶顯示面板之光照度均勻性 1380087 降低,則該液晶顯示器之顯示品質會降低。在相關技術領 域中,該傳統擴散薄片可讓光被均勻擴散至該液晶顯示面 板之顯示區域的整個表面上,以防止光照度均勻性的降低 。然而’僅利用該傳統擴散薄片來確保高光學擴散率 (optical diffusion rate)與照度均勻性是困難的。 【發明内容】 本發明之例示實施例提供一種光學薄片、包括該光學 薄片之背光單元、以及包括該背光單元之液晶顯示器,其 ®可改善光擴散效率。 本發明之例示實施例之附加特徵及優點將於下列說明 中提出,以及在某種程度上該說明將顯而易知的,或者可 藉由實施本發明之例示實施例之實施而得知。本發明之例 示實施例之目的及其它優點藉由在此所寫入之發明說明及 申請專利範圍與隨附圖案所特別指出之結構將可被理解及 達到。 在一態樣中,提供一種光學薄片,其包含反射偏光薄 胃膜以及於該反射偏光薄膜上之第一擴散層,該第一擴散層 包括複數第一擴散粒子,其中當具有該等第一擴散粒子之 體積中最大値之該等第一擴散粒子之直徑爲Dpm時,具有 在到D+2Mm之間的直徑之該等第一擴散粒子之體積 總和爲該等第一擴散粒子之總體積之40 %到80%。 在另一態樣中,提供一種背光單元’其包含光源以及 於該光源上之光學薄片,該光學薄片包括反射偏光薄膜以 及於該反射偏光薄膜上之第一擴散層,該第一擴散層包括 1380087 複數第一擴散粒子,其中當具有該等第—擴散粒子之體積 中最大値之該等第一擴散粒子之直徑爲Dpm時,具有在 Ι2μιη到D + 2Mm之間的直徑之該等第一擴散粒子之體積總 和爲該等第一擴散粒子之總體積之40%到80%。 在更另一態樣中,提供一種液晶顯示器,其包含光源; 於該光源上之光學薄片,該光學薄片包括反射偏光薄膜以 及於該反射偏光薄膜上之第一擴散層,該第一擴散層包括 複數第一擴散粒子;以及於該光學薄片上之液晶顯示面 板’其中當具有該等第一擴散粒子之體積中最大値之該等 第一擴散粒子之直徑爲Dpm時,具有在ϋ-2μιη到D + 2pm 之間的直徑之該等第一擴散粒子之體積總和爲該等第一擴 散粒子之總體積之40%到80%。 在再另一態樣中,提供一種光學薄片,其包含反射偏 光薄膜以及於該反射偏光薄膜上之第一擴散層,該第一擴 散層包括複數第一擴散粒子,其中該等第一擴散粒子之每 一者具有一直徑並且具有該直徑之該等第一擴散粒子之每 一者具有一體積,其中當具有該等第一擴散粒子之體積中 最大値之該等第一擴散粒子之直徑爲 ϋμηι時,具有在 D-2pm到ϋ + 2μηι之間的直徑之該等第一擴散粒子之體積總 和爲該等第一擴散粒子之總體積之40%到80%。 可理解的是,前面一般性描述與以下之詳細描述均僅 爲例示與釋明且試圖對本發明所主張之實施例提供進一步 說明。 【實施方式】 1380087 以下將詳細參照圖示於隨附圖式說明本發明例示性實 施例。 在第一實施例中,提供一種光學薄片,其包含反射偏 光薄膜以及於該反射偏光薄膜上之第一擴散層,該第一擴 散層包括複數第一擴散粒子,其中當具有該等第一擴散粒 子之體積中最大値之該等第一擴散粒子之直徑爲ϋμιη時, 具有在D-2pm到ϋ + 2μιη之間的直徑之該等第一擴散粒子之 體積總和爲該等第一擴散粒子之總體積之40%到80%。亦 ® 即,該第一擴散層具有一預定體積,該體積的40%到80% 係由具有D - 2 μ m到D + 2 μ m之間的直徑之擴散粒子所構成。 此度量稱爲體積百分比。 該等第一擴散粒子之最小直徑可爲0.5 μηι。 該等第一擴散粒子之最大直徑可爲10 /Μ。 D可大體上爲3 μπι到6 μιη。 該等第一擴散粒子之每一者可爲腔粒(cavity)及珠粒 之一。 該等第一擴散粒子可由選自由聚甲基丙烯酸甲酯 (PMMA)、聚苯乙烯、矽以及其組合所組成之群組之材料所 形成。 該光學薄片於該反射偏光薄膜與該第一擴散層間可更 包含第〜黏著層。 該光學薄片於該反射偏光薄膜下方更包含第二擴散 層。 該光學薄片於該反射偏光薄膜與該第二擴散層之間可 1380087 更包含第二黏著層。 該第二擴散層可包括複數第二擴散粒子。 該反射偏光薄膜包括第一層及第二層,其係交替堆疊 並具有不同折射率。 在另一實施例中,提供一種背光單元,其包含光源以 及於該光源上之光學薄片’該光學薄片包括反射偏光薄膜 以及於該反射偏光薄膜上之第一擴散層,該第一擴散層包 括複數第一擴散粒子,其中當具有該等第一擴散粒子之體 ® 積中最大値之該等第一擴散粒子之直徑爲Dpm時,具有在 ϋ-2μιη到D + 2pm之間的直徑之第一擴散粒子的該第一擴散 層之體積百分比爲40%到80%。 在另一實施例中’提供一種液晶顯示器,其包含光源; 於該光源上之光學薄片’該光學薄片包括反射偏光薄膜以 及於該反射偏光薄膜上之第一擴散層,該第一擴散層包括 複數第一擴散粒子;以及於該光學薄片上之液晶顯示面 板,其中當具有該等第一擴散粒子之體積中最大値之該等 m 桌一擴散粒子之直徑爲Dpm時,具有在D-2pm到D + 2pm 之間的直徑之第一擴散粒子的該第一擴散層之體積百分比 爲 4 0 % 到 8 0 %。 在另一實施例中,提供一種光學薄片,其包含反射偏 光薄膜以及於該反射偏光薄膜上之第一擴散層,該第一擴 散層包括複數第一擴散粒子,其中該等第一擴散粒子之每 一者具有一直徑並且具有該直徑之該等第一擴散粒子之每 一者具有一體積’其中當具有該等第一擴散粒子之體積中 ^1380087 最大値之該等第一擴散粒子之直徑爲ϋμπί時,具有在 ϋ-2μηι到D + 2pm之間的直徑之第一擴散粒子的該第一擴散 * 層之體積百分比爲4 0 %到8 0 %。 此後,將參照隨附圖式詳細說明本發明之例示實施例。 第1圖爲依照本發明之例示實施例之光學薄片100之 剖面視圖。 如第1圖中所示,該光學薄片100可包括反射偏光薄 膜1 10及於該反射偏光薄膜1 10上之第一擴散層120。該第 ® —擴散層120可包括複數第一擴散粒子122。 該反射偏光薄膜110可透射或反射來自光源的光。該 反射偏光薄膜110可包括由聚合物所形成之第一層111以 及設置相鄰於該第一層111之第二層112。該第二層112 可由具有一折射率之聚合物所形成,而該折射率係不同於 • 形成該第一層111之聚合物的折射率。 該反射偏光薄膜110可具有以重複方式交替堆疊該等 第一層111與該等第二層112之結構。該第一層111可由 ^ 聚甲基丙烯酸甲酯(PMMA)來形成,以及該第二層112可由 聚醋(polyester)來形成。 在較小的顯示裝置中,該反射偏光薄膜110可具有100 - 卿到300 ym的厚度。在較大的顯示裝置中,該反射偏光薄 . 膜110可具有700卿到800 μιη的厚度。 來自該光源之部分光線係由該反射偏光薄膜110透 射,而來自該光源之另一部分光線係朝向於該反射偏光薄 膜110下之該光源反射。朝向該光源反射的光被再次反射 -10- [1380087 並且入射於該反射偏光薄膜110上。入射於該反 膜110上之部分光線係由該反射偏光薄膜110透 入射於該反射偏光薄膜110上之另一部分光線係 該反射偏光薄膜110下之該光源反射。 換言之,因爲該反射偏光薄膜110具有以交 等具有不同折射率之聚合物層的結構,故該反射 1 1 0可利用一原則(其中該聚合物分子係定向在一 在不同於該等分子之定向方向的偏光方向透射, 同於該等分子之定向方向的偏光方向反射)來改 光源之光效能。 該第一擴散層.,120可藉由該第一擴散層120 第一擴散粒子122而將通過該反射偏光薄膜110纪 該第一擴散層120可包括具有預定黏著特. 121。該樹脂121可使用不飽和聚酯、甲基丙烯酸 基丙烯酸乙酯、甲基丙烯酸異丁酯、甲基丙烯酸 甲基丙烯酸正丁基甲酯、丙烯酸、甲基丙烯酸、 酸羥乙酯、甲基丙烯酸羥丙酯、丙烯酸羥乙酯、丙 經甲基丙烯醯胺、甲基丙烯酸縮水甘油酯、丙烯 丙嫌酸異丁酯、丙烯酸正丁酯、諸如丙烯酸2·乙 合物、丙燒酸2-乙基己酯共聚合物或丙烯酸2_乙 共聚物之丙烯系材料、胺基甲酸酯系材料、環氧 三聚氰胺系材料’但不侷限於此。 於該第一擴散層120內之該等第一擴散粒子 一者可爲第一珠粒。該等第一擴散粒子122之每 射偏光薄 射,並且 再次朝向 替堆疊該 偏光薄膜 方向,以 以及在相 善來自該 內之該等 J光擴散。 丨生之樹脂 甲酯、甲 正丁酯、 甲基丙烯 烯醯胺、 酸乙酯、 基己酯聚 基己酯三 系材料、 1 22之每 一者可由 -11- [1380087 選自由聚甲基丙烯酸甲酯(PM ΜΑ)、聚苯乙烯、矽以 合所組成之群組之材料來形成。 • 該第一擴散層120可包括以該樹脂121爲100 計算之10到50重量份之該等第一擴散粒子122。當 脂121爲1〇〇重量份計算之該等第—擴散粒子122 等於或大於10重量份時,則使用該珠粒可輕易使來 源的光線擴散。當以該樹脂1 2 1爲1 〇〇重量份計算 第一擴散粒子122之數量等於或小於50重量份時, ^降低來自該光源的光線之透射。 分布於該樹脂121內之該等第一擴散粒子122 可爲不均勻。 該等第一擴散粒子122可爲圓形、橢圓形、結 圓形、及不規則圓形,但不侷限於此。 ' 該等第一擴散粒子122於該樹脂121內可爲不 布。 該等第一擴散粒子122之直徑可大體上爲0. ^ ΙΟμιη。當該等第一擴散粒子122之直徑小時,該光 100之光學擴散率可藉由增加該第一擴散層120內 第一擴散粒子122之密度來改善。然而,當該等第 • 粒子1 22之直徑非常小時,則可能發生來自該外部 . 光干涉。因此,當該等第一擴散粒子122之直徑等 於0.5μπι時,該光學薄片100之光學擴散率最大可 至不會發生該光干涉的程度。 當該等第一擴散粒子122之直徑大時’該第一 及其組 重量份 以該樹 之數量 自該光 之該等 則不會 之直徑 合橢圓/ 均勻分 5 μηι 至!J 學薄片 之該等 一擴散 光源的 於或大 被改善 擴散層 -12- 1380087 120必須被厚厚地形成,以確保該光學薄片100之光學擴散 率,因而其難以製造該薄外形光學薄片100。因此,當該等 第一擴散粒子122之直徑等於或小於ΙΟμπι時,可實現該光 學薄片100之薄外形至不會降低該光學薄片100之光學擴 散率的程度。 當具有期望最大値之該等第一擴散粒子122之直徑爲 ϋμιη時,具有在D-2pm到ϋ + 2μηι之間的直徑之第一擴散粒 子的該第一擴散層之體積的百分比爲40%到80%。此度量 ®稱爲體積百分比》 該第一擴散層120之所有該等第一擴散粒子122之直 徑與體積百分比之間的關係參照第2圖之曲線圖說明。在 第2圖之曲線圖中,橫座標代表該等第一擴散粒子122之 直徑(單元爲卿),以及縱座標代表以該等第一擴散粒子1 22 之總體積爲基礎計算之每一直徑之體積百分比。同樣地, 體積百分比爲包含特定直徑之粒子的該擴散層之體積的百 分比。 I 如第2圖中所示,對應於該等第一擴散粒子1 22之體 積中的最大期望値之該第一擴散粒子之直徑D來說,具有 在D-2pm到D + 2pm之間的直徑之第一擴散粒子的該第一擴 散層之體積的百分比爲40%到80%»該等第一擴散粒子122 之最小直徑可爲0.5 μηι,並且該等第一擴散粒子之最大直 徑可爲10 wm。D大體上可爲4 i/m到6 ym。 具有直徑Dpm之該等第一擴散粒子122之體積百分比 可約爲30%。具有直徑D-2pm之該等第一擴散粒子122之 -13- 1380087 體積百分比可約爲10%。具有直徑ϋ + 2μηι之該等第一擴散 粒子122之數量可約爲10%。 例如’對於直徑5卿(亦即,D = 5 )之第一擴散粒子來說, 具有3μιη到7μηι之間的直徑之該等第一擴散粒子122之體 積百分比可約爲100%中的40 %到80%。或者,對於直徑3 卿(亦即’ D = 3)之第一擴散粒子來說,具有1μιη到5μηι之 間的直徑之該等第一擴散粒子122之體積百分比可約爲 100% 中的 40%到 80%。 下列表1指出該直徑分布對於該光學薄片100之擴散 及照度的影響。在表1中,當D爲5⑽時,第一擴散粒子 122具有3μιη與7μίη之間的直徑。符號X、〇、與◎分別 代表該等特性之不良、好以及優良狀態。 表11380087 IX. Description of the Invention: [Technical Field] The present invention relates to an optical sheet, a backlight unit including the same, and a liquid crystal display including the same, such as a television, a computer, a personal data assistant, a mobile phone A display device such as a vehicle terminal tool of a navigation unit (such as a car or an airplane) or other device is a range in which the present invention can be used. [Prior Art] In recent years, display types that can visually display information of various electrical signals have rapidly grown. Various types of flat panel displays have been proposed which have excellent characteristics such as a thin profile, light texture, and low power consumption. In addition, flat panel displays are rapidly replacing cathode ray tubes (CRTs) as a device of choice for consumers and industry. Typical flat panel displays include, for example, liquid crystal displays (LCDs), plasma display panels (PDPs), field emission displays (FEDs), and electroluminescent displays (ELDs). The conventional liquid crystal display is actively used as a display panel for a notebook computer, a display for a personal computer, a television, and other displays because it provides high contrast ratio and good still and animated display characteristics. The liquid crystal display comprises a liquid crystal display panel for displaying an image and a backlight unit positioned under the liquid crystal display panel to provide light of the liquid crystal display panel. The backlight unit includes a light source and an optical sheet. The optical sheet typically comprises a diffusion sheet, a crepe sheet, or a protective sheet. If the illuminance uniformity 1380087 provided by the backlight unit to the liquid crystal display panel is lowered, the display quality of the liquid crystal display is lowered. In the related art, the conventional diffusion sheet allows light to be uniformly diffused onto the entire surface of the display region of the liquid crystal display panel to prevent a decrease in uniformity of illuminance. However, it is difficult to use only the conventional diffusion sheet to ensure high optical diffusion rate and illuminance uniformity. SUMMARY OF THE INVENTION An exemplary embodiment of the present invention provides an optical sheet, a backlight unit including the same, and a liquid crystal display including the same, which can improve light diffusion efficiency. The additional features and advantages of the exemplary embodiments of the present invention are set forth in the description of the invention. The objectives and other advantages of the embodiments of the present invention are set forth in the description and the appended claims. In one aspect, an optical sheet is provided comprising a reflective polarizing thin film and a first diffusion layer on the reflective polarizing film, the first diffusion layer comprising a plurality of first diffusion particles, wherein having the first When the diameter of the first diffusion particles of the largest volume of the diffusion particles is Dpm, the sum of the volumes of the first diffusion particles having a diameter between D+2Mm is the total volume of the first diffusion particles. 40% to 80%. In another aspect, a backlight unit is provided that includes a light source and an optical sheet on the light source, the optical sheet including a reflective polarizing film and a first diffusion layer on the reflective polarizing film, the first diffusion layer including 1380087 a plurality of first diffusing particles, wherein when the diameter of the first diffusing particles having the largest enthalpy of the volumes of the first diffusing particles is Dpm, the first of the diameters between Ι2μηη and D + 2Mm The sum of the volumes of the diffusing particles is from 40% to 80% of the total volume of the first diffusing particles. In another aspect, a liquid crystal display is provided, comprising: a light source; an optical sheet on the light source, the optical sheet comprising a reflective polarizing film and a first diffusion layer on the reflective polarizing film, the first diffusion layer And comprising a plurality of first diffusion particles; and a liquid crystal display panel on the optical sheet, wherein when the diameter of the first diffusion particles having the largest 中 in the volume of the first diffusion particles is Dpm, having ϋ-2μηη The sum of the volumes of the first diffusion particles to the diameter between D + 2pm is 40% to 80% of the total volume of the first diffusion particles. In still another aspect, an optical sheet is provided, comprising: a reflective polarizing film and a first diffusion layer on the reflective polarizing film, the first diffusion layer comprising a plurality of first diffusion particles, wherein the first diffusion particles Each of the first diffusion particles having a diameter and having the diameter has a volume, wherein the diameter of the first diffusion particles having the largest enthalpy of the volumes of the first diffusion particles is In the case of ϋμηι, the sum of the volumes of the first diffusion particles having a diameter between D-2pm and ϋ + 2μηι is 40% to 80% of the total volume of the first diffusion particles. It is to be understood that the foregoing general description DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an exemplary embodiment of the present invention will be described with reference to the drawings. In a first embodiment, there is provided an optical sheet comprising a reflective polarizing film and a first diffusion layer on the reflective polarizing film, the first diffusion layer comprising a plurality of first diffusion particles, wherein having the first diffusion When the diameter of the first diffusion particles of the largest volume of the particles is ϋμιη, the sum of the volumes of the first diffusion particles having a diameter between D-2pm and ϋ + 2μηη is the first diffusion particles 40% to 80% of the total volume. Also, that is, the first diffusion layer has a predetermined volume, and 40% to 80% of the volume is composed of diffusion particles having a diameter of between D - 2 μm and D + 2 μm. This metric is called the volume percentage. The first diffusion particles may have a minimum diameter of 0.5 μm. The first diffusion particles may have a maximum diameter of 10 / Μ. D can be substantially 3 μπι to 6 μιη. Each of the first diffusion particles may be one of a cavity and a bead. The first diffusion particles may be formed of a material selected from the group consisting of polymethyl methacrylate (PMMA), polystyrene, hydrazine, and combinations thereof. The optical sheet may further include a first adhesive layer between the reflective polarizing film and the first diffusion layer. The optical sheet further includes a second diffusion layer under the reflective polarizing film. The optical sheet may further include a second adhesive layer between the reflective polarizing film and the second diffusion layer. The second diffusion layer may include a plurality of second diffusion particles. The reflective polarizing film comprises a first layer and a second layer which are alternately stacked and have different refractive indices. In another embodiment, a backlight unit is provided that includes a light source and an optical sheet on the light source. The optical sheet includes a reflective polarizing film and a first diffusion layer on the reflective polarizing film, the first diffusion layer including a plurality of first diffusion particles, wherein when the diameter of the first diffusion particles having the largest enthalpy of the volume of the first diffusion particles is Dpm, having a diameter between ϋ-2μιη to D + 2pm The volume percentage of the first diffusion layer of a diffusion particle is 40% to 80%. In another embodiment, a liquid crystal display is provided that includes a light source, an optical sheet on the light source, the optical sheet includes a reflective polarizing film, and a first diffusion layer on the reflective polarizing film, the first diffusion layer including a plurality of first diffusion particles; and a liquid crystal display panel on the optical sheet, wherein when the diameter of the m-table diffusion particles having the largest 中 of the first diffusion particles is Dpm, having D-2pm The volume percentage of the first diffusion layer of the first diffusion particles having a diameter of between D + 2pm is from 40% to 80%. In another embodiment, an optical sheet is provided, comprising: a reflective polarizing film and a first diffusion layer on the reflective polarizing film, the first diffusion layer comprising a plurality of first diffusion particles, wherein the first diffusion particles Each having a diameter and each of the first diffusing particles having the diameter has a volume 'where the diameter of the first diffusing particles is the largest 値 of 1380087 in the volume of the first diffusing particles When ϋμπί, the volume percentage of the first diffusion layer of the first diffusion particles having a diameter between ϋ-2μηι and D + 2pm is from 40% to 80%. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 is a cross-sectional view of an optical sheet 100 in accordance with an exemplary embodiment of the present invention. As shown in Fig. 1, the optical sheet 100 may include a reflective polarizing film 110 and a first diffusion layer 120 on the reflective polarizing film 110. The first diffusion layer 120 can include a plurality of first diffusion particles 122. The reflective polarizing film 110 can transmit or reflect light from a light source. The reflective polarizing film 110 may include a first layer 111 formed of a polymer and a second layer 112 disposed adjacent to the first layer 111. The second layer 112 may be formed of a polymer having a refractive index different from the refractive index of the polymer forming the first layer 111. The reflective polarizing film 110 may have a structure in which the first layers 111 and the second layers 112 are alternately stacked in a repeated manner. The first layer 111 may be formed of polymethyl methacrylate (PMMA), and the second layer 112 may be formed of polyester. In a smaller display device, the reflective polarizing film 110 may have a thickness of from 100 Å to 300 μm. In a larger display device, the reflective polarizing is thin. The film 110 may have a thickness of 700 to 800 μm. A portion of the light from the source is transmitted through the reflective polarizing film 110, and another portion of the light from the source is reflected toward the source under the reflective polarizing film 110. The light reflected toward the light source is again reflected by -10- [1380087 and incident on the reflective polarizing film 110. A part of the light incident on the reflective film 110 is reflected by the reflective polarizing film 110 and is incident on the reflective polarizing film 110. The light source under the reflective polarizing film 110 is reflected by the light source. In other words, since the reflective polarizing film 110 has a structure of a polymer layer having different refractive indices, such that the reflection 110 can utilize a principle in which the polymer molecular system is oriented at a different one from the molecules. The direction of polarization in the direction of the transmission is the same as the direction of polarization of the molecules in the direction of the polarization to change the light efficiency of the source. The first diffusion layer 120 may pass through the reflective polarizing film 110 by the first diffusion layer 120 and the first diffusion layer 120 may include a predetermined adhesion layer 121. The resin 121 may be an unsaturated polyester, ethyl methacrylate, isobutyl methacrylate, n-butyl methacrylate, acrylic acid, methacrylic acid, hydroxyethyl methacrylate or hydroxy methacrylate. Propyl ester, hydroxyethyl acrylate, propyl methacrylate, glycidyl methacrylate, propylene acrylate, isobutyl acrylate, such as acrylic acid 2 · ethane, propionate 2 - B The propylene-based material, the urethane-based material, and the epoxy melamine-based material of the hexyl hexyl copolymer or the 2-ethyl acrylate copolymer are, but are not limited thereto. The first diffusion particles in the first diffusion layer 120 may be the first beads. Each of the first diffusion particles 122 is thinned by each of the polarized light beams, and is again directed toward the direction in which the polarizing film is stacked, and in which the J light from the inside is diffused. Twin resin methyl ester, methyl n-butyl ester, methacryl decylamine, acid ethyl ester, hexyl hexyl polyglycolate three-layer material, each of 1 22 can be selected from -11- [1380087 Methyl acrylate (PM ΜΑ), polystyrene, ruthenium are formed by a combination of materials. • The first diffusion layer 120 may include 10 to 50 parts by weight of the first diffusion particles 122 calculated from the resin 121 of 100. When the grease 121 is 1 part by weight of the first diffusion particles 122 equal to or more than 10 parts by weight, the use of the beads can easily diffuse the source light. When the number of the first diffusion particles 122 is equal to or less than 50 parts by weight based on the resin 1 21 as 1 part by weight, the transmission of light from the light source is lowered. The first diffusion particles 122 distributed in the resin 121 may be uneven. The first diffusion particles 122 may be circular, elliptical, circular, and irregular, but are not limited thereto. The first diffusion particles 122 may be omitted in the resin 121. The diameter of the first diffusion particles 122 may be substantially 0. ^ ΙΟμιη. When the diameter of the first diffusion particles 122 is small, the optical diffusivity of the light 100 can be improved by increasing the density of the first diffusion particles 122 in the first diffusion layer 120. However, when the diameter of the first particles 1 22 is very small, interference from the outside may occur. Therefore, when the diameter of the first diffusion particles 122 is equal to 0.5 μm, the optical diffusivity of the optical sheet 100 is maximized to such an extent that the light interference does not occur. When the diameter of the first diffusion particles 122 is large, the first and its component parts by weight of the tree are not the diameter of the ellipse/equal to 5 μηι to the The or-diffused diffusion layer of the one-diffusion light source -12-1380087 120 must be formed thickly to ensure the optical diffusivity of the optical sheet 100, and thus it is difficult to manufacture the thin-profile optical sheet 100. Therefore, when the diameter of the first diffusion particles 122 is equal to or smaller than ΙΟμπι, the thin profile of the optical sheet 100 can be achieved to such an extent that the optical diffusion rate of the optical sheet 100 is not lowered. When the diameter of the first diffusion particles 122 having the desired maximum enthalpy is ϋμιη, the percentage of the volume of the first diffusion layer having the diameter of the first diffusion particles between D-2pm and ϋ + 2μηι is 40% Up to 80%. This metric is referred to as the volume percentage. The relationship between the diameter and the volume percentage of all of the first diffusion particles 122 of the first diffusion layer 120 is illustrated with reference to the graph of Fig. 2. In the graph of Fig. 2, the abscissa represents the diameter of the first diffusion particles 122 (the unit is qing), and the ordinate represents each diameter calculated based on the total volume of the first diffusion particles 1 22 The volume percentage. Similarly, the volume percentage is the percentage of the volume of the diffusion layer containing particles of a particular diameter. I, as shown in FIG. 2, corresponding to the diameter D of the first diffusion particle of the largest desired enthalpy of the volumes of the first diffusion particles 142, having a D-2pm to D + 2pm The percentage of the volume of the first diffusion layer of the first diffusion particles of the diameter is 40% to 80%»the minimum diameter of the first diffusion particles 122 may be 0.5 μm, and the maximum diameter of the first diffusion particles may be 10 wm. D can be substantially 4 i/m to 6 ym. The volume percentage of the first diffusion particles 122 having a diameter Dpm may be about 30%. The -13 - 1380087 volume percentage of the first diffusion particles 122 having a diameter D - 2 pm may be about 10%. The number of such first diffusion particles 122 having a diameter ϋ + 2μηι may be about 10%. For example, for a first diffusion particle having a diameter of 5 Å (i.e., D = 5), the volume percentage of the first diffusion particles 122 having a diameter between 3 μm and 7 μm may be about 40% of 100%. Up to 80%. Alternatively, for a first diffusion particle having a diameter of 3 (i.e., 'D = 3), the volume percentage of the first diffusion particles 122 having a diameter between 1 μm and 5 μm may be about 40% of 100%. Up to 80%. Table 1 below indicates the effect of this diameter distribution on the diffusion and illuminance of the optical sheet 100. In Table 1, when D is 5 (10), the first diffusion particles 122 have a diameter between 3 μm and 7 μίη. The symbols X, 〇, and ◎ represent the poor, good, and excellent states of these characteristics, respectively. Table 1

具有3μηι與7ym之間的直徑之第 —擴散粒子的體積百分比(%) 擴散效應 照度 20 X ◎ 30 X ◎ 40 〇 ◎ 50 〇 〇 60 〇 〇 70 ◎ 〇 80 ◎ 〇 90 ◎ XVolume percentage (%) of the first-diffusion particle having a diameter between 3 μm and 7 μm Diffusion effect Illuminance 20 X ◎ 30 X ◎ 40 〇 ◎ 50 〇 〇 60 〇 〇 70 ◎ 〇 80 ◎ 〇 90 ◎ X

如上述表1中所不,當累積到達約該等第一擴散粒子 122之總體積的40%到80%時,該擴散效應與該照度兩者均 -14- 1380087 爲好或良好。此乃因爲入射至該光學薄片100之光擴散效 應在該累積等於或大於40 %時可獲改善。同樣地,當該累 積等於或小於80%時,可防止照度降低。 因此,當具有D-2pm與D + 2pm之間的直徑之該等第一 擴散粒子122之體積百分比爲約40%至80%時,可改善來 自該光源的光之總擴散效應。 依照本發明之例示實施例,包括該光學薄片之背光單 元係以如下操作: 由一光源所產生的光被入射至該光學薄片上。入射至 該光學薄片上之該光線的一部分會與該第一擴散層之該等 第一擴散粒子碰撞,並且該光線之行進路徑會改變。.,入射 至該光學薄片上之該光線的另一部分會通過該第一擴散層 之放射表面以朝向一液晶顯.示面板行進。 與該等第一擴散粒子碰撞之該光線會與相鄰於該等第 一擴散粒子之其它第一擴散粒子碰撞,並且反覆改變該光 線之行進路徑,而部分光線通過該第一擴散層之放射表面 並朝向該液晶顯示面板。 在許多路徑上完成許多碰撞後,通過該第一擴散層之 放射表面的光可被均勻地入射至該液晶顯示面板上。 如上所述,由於入射至該光學薄片上之光線係被該第 一擴散層內之該等第一擴散粒子反射數次,故改變該光之 行進路徑的同時該光線會被擴散。因此,可改善該照度均 句性。 第3圖爲依照本發明之另一例示實施例之光學薄片 -15- 1380087 2 0 0之剖面視圖。 如第3圖中所示,該光學薄片2 00可包括反射偏光薄 膜210以及於該反射偏光薄膜210上之第一擴散層220。該 第一擴散層220可包括複數第一擴散粒子222。 該光學薄片2 00可於該反射偏光薄膜210與該第一擴 散層220之間更包括第一黏著層230。 可藉由混合該等第一擴散粒子222及樹脂221並施加 或塗布該混合物於該反射偏光薄膜210上而將該第一擴散 ® 層220形成在該反射偏光薄膜210上。 此外,可藉由使用一押出成形方法或一注射成形方 法,以一薄膜形式形成該樹脂221與該等第一擴散粒子 222,以及接著使用一黏著劑將其黏附在該反射偏光薄膜 210上,而將該第一擴散層220形成於該反射偏光薄膜210 上。換言之,該第一黏著層230可被塗布在該反射偏光薄 膜210上以形成該第一擴散層220。 考量光透射與黏著特性下,該第一黏著層230之厚度 ® 可大體上爲1卿到10卿,但不侷限於此。 該反射偏光薄膜210可透射或反射來自光源的光。該 反射偏光薄膜210可包括由聚合物所形成之第—層2Π以 及設置相鄰於該第一層211之第二層212。該第二層212 可由具有一折射率之聚合物所形成,而該折射率係不同於 形成該第一層211之聚合物的折射率。因爲該反射偏光薄 膜210已參照第1圖說明如上,故在此簡化或省略其說明。 該第一擴散層220可藉由該第一擴散層22〇內之該等 -16- 1380087 第一擴散粒子222而使通過該反射偏光薄膜110的: 該第一擴散層2 20可包括具有預定黏著特性 22卜 該第一擴散層220內之該等第一擴散粒子222 者可爲第一珠粒。該等第一擴散粒子222之每一者 選自由聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯、矽以 合所組成之群組之材料來形成。 該第一擴散層220可包括以該樹脂221爲100 ® 計算之10到50重量份之該等第一擴散粒子222。當 脂22 1爲100重量份計算之該等第一擴散粒子222 等於或大於1 0重量份>時,則使用該珠粒可輕易使來 源的光線擴散。當以該樹脂22 1爲1 〇〇重量份計算 第一擴散粒子222之數量等於或小於50重量份時, 降低來自該光源的光線之透射。 該等第一擴散粒子222之直徑可大體上爲〇. ΙΟμηι。當該等第一擴散粒子222之直徑小時,該光 ® 200之光學擴散率可藉由增加該第一擴散層220內 第一擴散粒子222之密度來改善。然而,當該等第 粒子222之直徑非常小時,則會發生來自該外部光 干涉。因此,當該等第二擴散粒子222之直徑等於 〇·5 μιη時,該光學薄片200之光學擴散率最大可被改 會發生該光干涉的程度。 當該等第一擴散粒子222之直徑大時,該第一 2 20必須被厚厚地形成,以確保該光學薄片200之 七擴散。 之樹脂 之每一 可以由 及其組 重量份 以該樹 之數量 自該光 之該等 則不會 5 μ m到 學薄片 之該等 一擴散 源的光 或大於 善至不 擴散層 學擴散 -17- 1380087 率,以及因而其難以製造該薄外形光學薄片2 00。因此,當 該等第一擴散粒子222之直徑等於或小於ΙΟμηι時,可實現 該光學薄片200之薄外形至不會降低該光學薄片200之光 學擴散率的程度。 該等第一擴散粒子222可具有取決於直徑之分布。對 於第一擴散粒子之直徑D來說,具有在ϋ-2μπι到D + 2pm之 間的直徑之該等第一擴散粒子222的體積百分比可約爲 40%到 80%。 如上所述,由於入射至該光學薄片上之光線係被該第 一擴散層內之該等第一擴散粒子反射數次,故改變該光之 行進路徑的同時該光線會被擴散。因此,可改善該照度均 勻性。 第4圖爲依照本發明之另一例示實施例之光學薄片 300之剖面視圖。 如第4圖中所示,該光學薄片3 00可包括反射偏光薄 膜310、於該反射偏光薄膜310上之第一黏著層330、以及 於該第一黏著層3 3 0上之第一擴散層320。該第一擴散層 3 20可包括複數第一擴散粒子322。 該光學薄片3 00可於該反射偏光薄膜310下方更包括 第二黏著層34 0以及於該第二黏著層3 40下之第二擴散層 3 50。 由於已於上述說明該反射偏光薄膜310、該第一黏著層 3 30、以及該第二黏著層340之架構,故在此省略其相關說 明。 -18- 1380087 使用該第二黏著層340以將該反射偏光薄膜310黏附 至該第二擴散層350之方式可相同於該第一黏著層330。 該第二擴散層350可相同於該第一擴散層320。該第二 擴散層3 50可使來自該外部光源的光透過該第二擴散層 350內之複數第二擴散粒子352而擴散。 該第二擴散層350可包括具有預定黏著特性之樹脂 351。該樹脂35 1可使用不飽和聚酯、甲基丙烯酸甲酯、甲 基丙烯酸乙酯、甲基丙烯酸異丁酯、甲基丙烯酸正丁酯、 甲基丙烯酸正丁基甲酯、丙烯酸、甲基丙烯酸、甲基丙烯 酸羥乙酯、甲基丙烯酸羥丙酯、丙烯酸羥乙酯、丙烯醯胺、 羥甲基丙烯醯胺、甲基丙烯酸縮水甘油酯、丙烯酸乙酯、 丙烯酸異丁酯、丙烯酸正丁酯、諸如丙烯酸2_乙基己酯聚 合物、丙烯酸2_乙基己酯共聚合物或丙烯酸2-乙基己酯三 共聚物之丙烯系材料、胺基甲酸酯系材料、環氧系材料、 三聚氰胺系材料,但不侷限於此。· 該第二擴散層350內之該等第二擴散粒子352之每一 者可爲珠粒。該等第二擴散粒子352之每一者可以由選自 由聚甲基丙烯酸甲酯(PMMA)、聚苯乙烯、矽以及其組合所 組成之群組之材料來形成。 該第二擴散層3 50可包括以該樹脂351爲100重量份 計算之10到50重量份之該等第二擴散粒子352。當以該樹 脂351爲100重量份計算之該等第二擴散粒子352之數量 等於或大於10重量份時,則使用該珠粒可輕易使來自該光 源的光線擴散。當以該樹脂3 5 1爲1 〇〇重量份計算之該等 -19- 1380087 第二擴散粒子3 52之數量等於或小於50重量份時,則不會 降低來自該光源的光線之透射。 分布在該樹脂35 1內之該等第二擴散粒子352之直徑 可爲非均句。 該等第二擴散粒子352可爲圓形、橢圓形、結合橢圓/ 圓形、及不規則圓形,但不侷限於此。 該等第二擴散粒子3 52可在該樹脂35 1內爲非均勻分 布。 該等第二擴散粒子352之直徑可大體上爲〇.5μπι到 ΙΟμιη。當該等第二擴散粒子3 52之直徑小時,該光學薄片 300之光學擴散率可藉由增加該第二擴散層350內之該等 第二擴散粒子352之密度來改善。然而,當該等第二擴散 粒子3 5 2之直徑非常小時,則會發生來自該外部光源的光 干涉。因此,當該等第二擴散粒子352之直徑等於或大於 〇·5μηι時,該光學薄片3 00之光學擴散率可最大被改善至不 會發生該光干涉的程度。 當該等第二擴散粒子352之直徑大時,該第二擴散層 3 20必須被厚厚地形成,以確保該光學薄片300之光學擴散 率,以及因而其難以製造該薄外形光學薄片300。因此,當 該等第二擴散粒子3 5 2之直徑等於或小於ι〇μιη時,可實現 該光學薄片300之薄外形至不會降低該光學薄片30〇之光 學擴散率。 在具有該等第一擴散粒子322時,該等第二擴散粒子 352可具有取決於直徑之分布。對於第二擴散粒子之直徑〇 -20- 1380087 來說,具有在D-2Mm到ϋ + 2μιη之間的直徑之第二擴散粒子 的該第二擴散層的體積百分比爲40%到80%。 當具有在D-2pm到ϋ + 2μιη之間的直徑之該等第二擴散 粒子352的體積百分比等於或大於40%時,可改善入射至 該光學薄片3 00上的光擴散效應。 當具有在ϋ-2μιη到D + 2em之間的直徑之該等第二擴散 粒子352的體積百分比等於或小於80%時,可防止照度降 低。 因此,當具有在Γ)-2μιη到ϋ + 2μηι之間的直徑之該等第 二擴散粒子352的體積百分比約爲40%到80%時,則可改 善來自該光源的光擴散效應。 , 第5至7圖係說明依照本發明之例示實施例說明包括 光學薄片之背光單元400之架構之分解透視圖與剖面視圖。 第5至7圖顯示邊緣式背光單元。然而,在其它實施 例中,亦可使用其它類型之背光單元。由於第5至7圖中 所示之光學薄片之架構大體上相同於依照本發明之例示實 施例之該光學薄片’而簡化或整個省略掉其相關說明。 如第5到7圖中所示,該背光單元400可被包含於液 晶顯示器中’以及可對包含於該液晶顯示器中之液晶顯示 面板提供光。 該背光單元4 00可包括光源420以及光學薄片430。該 背光單元400可更包括光導板44〇、反射器450、底蓋460、 以及模框470 ° 該光源42 0可使用接受自外部之驅動電力來產生光’ -21- 1380087 並可放射該所產生的光。 至少一光源420可沿著該光導板440之長軸方向而設 在該光導板4 40之一側。至少一光源420可被設在該光導 板440之兩側的每一側上。來自該光源420的光可直接入 射至該光導板440上。或者,來自該光源4 20的光可自圍 住該光源420之一部分之光源外殼422反射,例如,約3/4 的該光源42 0之外圍表面,以及接著可被入射至該光導板 440 上。 該光源4 20可爲冷陰極螢光燈(CCFL)、熱陰極螢光燈 (HCFL) '外電極螢光燈(EEFL)、以及發光二極體(LED)之 —,但不侷限於此。 .> 該光學薄片430可被設在該光導板440上。 如第5圖中所示,該光學薄片4 30可包括反射偏光薄 膜 430a以及於該反射偏光薄膜 430a上之第一擴散層 4 30b。該第一擴散層430b可包括複數第一擴散粒子。該等 第一擴散粒子可具有取決於直徑之分布。對應於該體積分 布之最大値的第一擴散粒子之直徑D來說,具有在0-2μιη 到Ε) + 2μηι之間的直徑之該等第一擴散粒子之部分的體積總 和可約爲該等第一擴散粒子之總體積之40 %到80%。 如第6圖中所示,該光學薄片430可更包括第二擴散 層43〇c’其於該反射偏光薄膜430a下方包括複數第二擴散 粒子。該等第二擴散粒子可具有取決於直徑之體積分布。 對應於該體積分布之最大値的第二擴散粒子之直徑D來 說’具有在D-2pm到D + 2pm之間的直徑之第二擴散粒子的 -22- 1380087 該第二擴散層之體積百分比爲4〇 %到8〇 %。 在該光學薄片4 30中,該反射偏光薄膜430a可改善光 效率’並且該第一及第二擴散層430b與430c可改善光擴 散效應。因此’可改善該光之照度均勻性。因此,可改善 該背光單元4 00之顯示品質。 稜鏡薄片431與擴散薄片432之至少一者可被設在該 光導板44 0與該光學薄片430之間。該稜鏡薄片431或該 擴散薄片432可被設在該光學薄片430上,並且該稜鏡薄 ® 片431與該擴散薄片432之位置並不侷限於此。 該光導板440可面對該光源420。該光導板440可引導 該光以便向上放射來自該光源420的光。 該反射器450可被設在該光導板440下方。該反射器 450可以向上反射來自該光源420所發出的光,並且該光可 接著經由該光導板440向下放射。 該底蓋460可包括底部462以及自該底部462延伸出 去以形成一收容空間之側部464。該收容空間可容納該光源 ® 420、該光學薄片430、該光導板440、以及該反射器450。 該模框470可大約爲一矩形框。可以由上而下之方式 自該底蓋460之上側將該模框470固定至該底蓋460。 第8到1 〇圖爲說明依照本發明之例示實施例之背光單 元5 0 0的架構之分解透視圖與剖面視圖。 第8到1 〇圖係顯示直下式背光單元,但仍可適用其它 類型之背光單元。由於第8到1〇圖中所示之背光單元可大 體上相同於第5到7圖中所示之該背光單元(除了光源之位 -23- 1380087 置及取決於該光源之位置而改變構件外),故可簡化或可整 個省略掉其相關說明。 如第8到10圖中所示,該背光單元500可被包含於液 晶顯示器中,並可對包含於該液晶顯示器中之液晶顯示面 板提供光。 該背光單元500可包括光源520以及光學薄片530。該 背光單元500可更包括反射器5 50、底蓋5 60、模框5 70以 及擴散板5 80。 至少一光源5 20可被設在該擴散板5 80下方。因此, 來自該光源520的光可被直接入射至該擴散板580上。 該光學薄片530可被設在該擴散板580上。該光學薄 片530可使來自該光源520的光聚焦。 如第8圖中所示,該光學薄片530可包括反射偏光薄 膜5 3 0a,以及於該反射偏光薄膜5 30a上之第一擴散層 5 3 0b。該第一擴散層530b可包括複數第一擴散粒子。該等 第一擴散粒子可具有取決於直徑之體積分布。對應於該體 積分布之最大値的第一擴散粒子之直徑D來說’具有在 D-2pm到ϋ + 2μιη之間的直徑之第一擴散粒子的該第一擴散 層之體積百分比爲4 0 %到8 0 %。 如第9圖中所示,該光學薄片530可更包括第二擴散 層53 0c,其於該反射偏光薄膜530a下方包括複數第二擴散 粒子。該等第二擴散粒子可具有取決於直徑之體積分布。 對應於該體積分布之最大値的第二擴散粒子之直徑D來 說’具有在D-2pm到D + 2pm之間的直控之第一擴散粒子的 -24- 1380087 該第二擴散層之體積百分比爲40 %到80%。 藉由上述特徵,該光學薄片530可改善該光之照度均 勻性。因此,可改善該背光單元500之顯示品質。 稜鏡薄片531與擴散薄片532之至少一者可被設在該 擴散板580與該光學薄片530之間。該稜鏡薄片531或該 擴散薄片532可被設在該光學薄片530上,並且該稜鏡薄 片531與該擴散薄片532之位置並不侷限於此。 該擴散板580可被設在該光源520與該光學薄片530 ® 之間,並可使來自該光源520的光向上擴散。由於該擴散 板5 80在該光源520上,故無法自該背光單元500之頂部 看到該光源520,以及該擴散板5 80可進一步使來自該光源 5 2 0的光擴散。 第1 1至1 3圖係說明依照本發明之例示實施例之液晶 顯示器600的架構之分解透視圖與剖面視圖。第11至13 圖中所示之液晶顯示器600包括第5至7圖中所示之該背 光單元,但不限於此。例如,該液晶顯示器600可包括第8 ® 至10圖中所示之該背光單元。由於第11至13圖中所示之 背光單元已參照第5至7圖而於上述說明,故可簡化或整 個省略掉其相關說明。 如第1 1至1 3圖中所示,該液晶顯示器600可使用液 晶之光電特性顯示影像。 該液晶顯示器600可包括該背光單元6 1 0與液晶顯示 面板7 1 0。 該背光單元610可設在該液晶顯示面板710下方,以 • 25- 1380087 及可對該液晶顯示面板7 1 0提供光。 該背光單元610可包括光源620以及光學薄片630。 該光學薄片630可包括反射偏光薄膜630a,以及於該 反射偏光薄膜630a上之第一擴散層630b。該第一擴散層 6 3 0b可包括複數第一擴散粒子。該等第一擴散粒子可具有 取決於直徑之體積分布。對於第一擴散粒子之直徑D來 說,具有在Ε^2μηι到D + 2pm之間的直徑之第一擴散粒子的 該第一擴散層之體積百分比爲4 0 %到8 0 %。 如第12圖中所示,該光學薄片630可更包括於該反射 偏光薄膜63 0a下方之第二擴散層630c,其包括有複數第二 擴散粒子。該等第二擴散粒子可具有取決於直徑之體積分 布。對於第二擴散粒子之直徑D來說,具有在ϋ-2μηι到 D + 2gm之間的直徑之第二擴散粒子的該第二擴散層之體積 百分比爲40%到80%。 在該光學薄片630中,該反射偏光薄膜630a可改善光 效率,並且該第一及第二擴散層630b與63 0c可改善光擴 散效應。因此,可改善該光之照度均勻性。因此,可改善 該背光單元610之顯示品質。 該背光單元610可更包括光導640、反射器650、底蓋 660、以及模框670。 稜鏡薄片631與擴散薄片632之至少一者可被設在該 光導板640與該光學薄片630之間。該稜鏡薄片631或該 擴散薄片63 2可被設在該光學薄片6 30上,並且該稜鏡薄 片631與該擴散薄片63 2之位置並不侷限於此。 -26- 1380087 該液晶顯示面板7 1 0可被設在該模框670上。該液晶 顯示面板710可被一頂蓋720固定,其中該頂蓋係以由上 而下之方式固定於該底蓋6 60。 該液晶顯示面板710可使用由該背光單元610之光源 620所供應的光來顯示影像。 該液晶顯示面板7 1 0可包括互相相對之彩色濾光基板 712以及薄膜電晶體基板714,其中於該彩色濾光基板712 以及該薄膜電晶體基板7 1 4之間插入液晶。 該彩色濾光基板712可實現顯示於該液晶顯示面板 7 1 0上之影像的色彩。 該彩色濾光基板7 1 2可包括於由透明材料(諸如玻璃或 塑膠)製成之基板上所形成之薄膜彩色濾光器陣列。例如, 該彩色濾光基板712可包括紅色、綠色及藍色之彩色濾光 器。可於該彩色濾光基板712上設置一上偏光板。 該薄膜電晶體基板714可透過一驅動薄膜616而被電 性連接至印刷電路板6 1 8,其中於該印刷電路板上裝配有複 數電路零件。該薄膜電晶體基板7 1 4可響應由該印刷電路 板6 1 8所提供之驅動信號而施加由該印刷電路板6 1 8所供 應之驅動電壓給該等液晶。 該薄膜電晶體基板714可包括薄膜電晶體及於由透明 材料(諸如,玻璃或塑膠)所製成之另一基板上的像素電 極。下偏光板可被設在該薄膜電晶體基板714下方。 如上所述,依照本發明之該等例示實施例,可控制該 光學薄片之擴散層中特定尺寸粒子的比例、包括該光學薄 •27- 1380087 片之背光單元、以及包括該背光單元之液晶顯示器,以擴 散該光線並改善該均勻照度。 此外’依照本發明之該等例示實施例,該光學薄片、 包括該光學薄片之該背光單元、以及包括該背光單元之該 液晶顯示器更可藉由於該反射偏光薄膜下方進一步包括該 第二擴散層以改善該光學薄片之均勻照度。 爲所屬技術領域之熟悉該項技術者可顯而易見的是, 在不脫離本發明之精神或範圍下,可對本發明之實施例作 成各種修正及改變。因此,本發明實施例意欲涵蓋隨附申 請專利範圍及其同等物之範圍內所提供之本發明之修正及 變化。 ., 【圖式簡單說明】 隨附圖式係說明本發明之具體實施例並與發明說明一 同用來說明本發明之原理,其中該等圖式對本發明提供進 一步之理解並倂入且構成本說明書的一部分。其中: 第1圖爲依照本發明之例示實施例之光學薄片之剖面 視圖; 第2圖爲圖示第一擴散層之所有第一擴散粒子之直徑 與體積分布之間的關係之曲線圖; 第3圖爲依照本發明之另一例示實施例之光學薄片之 剖面視圖; 第4圖爲依照本發明之另一例示實施例之光學薄片之 剖面視圖; 第5到7圖係顯示依照本發明之例示實施例之背光單 -28-As shown in Table 1 above, when the accumulation reaches about 40% to 80% of the total volume of the first diffusion particles 122, both the diffusion effect and the illuminance are -14 - 1380087. This is because the light diffusion effect incident on the optical sheet 100 can be improved when the accumulation is equal to or greater than 40%. Similarly, when the cumulative is equal to or less than 80%, the illuminance can be prevented from being lowered. Therefore, when the volume percentage of the first diffusion particles 122 having a diameter between D-2pm and D + 2pm is about 40% to 80%, the total diffusion effect of light from the light source can be improved. In accordance with an illustrative embodiment of the invention, a backlight unit including the optical sheet operates as follows: Light generated by a light source is incident on the optical sheet. A portion of the light incident on the optical sheet collides with the first diffusion particles of the first diffusion layer, and the path of travel of the light changes. Another portion of the light incident on the optical sheet passes through the radiation surface of the first diffusion layer to travel toward a liquid crystal display panel. The light colliding with the first diffusion particles collides with other first diffusion particles adjacent to the first diffusion particles, and repeatedly changes the traveling path of the light, and a portion of the light passes through the first diffusion layer. The surface faces the liquid crystal display panel. After many collisions are completed on a plurality of paths, light passing through the radiation surface of the first diffusion layer can be uniformly incident on the liquid crystal display panel. As described above, since the light incident on the optical sheet is reflected by the first diffusion particles in the first diffusion layer several times, the light is diffused while changing the traveling path of the light. Therefore, the illuminance uniformity can be improved. Figure 3 is a cross-sectional view of an optical sheet -15 - 1380087 2000 in accordance with another exemplary embodiment of the present invention. As shown in Fig. 3, the optical sheet 200 may include a reflective polarizing film 210 and a first diffusion layer 220 on the reflective polarizing film 210. The first diffusion layer 220 can include a plurality of first diffusion particles 222. The optical sheet 200 further includes a first adhesive layer 230 between the reflective polarizing film 210 and the first diffusion layer 220. The first diffusion layer 220 may be formed on the reflective polarizing film 210 by mixing the first diffusion particles 222 and the resin 221 and applying or coating the mixture onto the reflective polarizing film 210. Further, the resin 221 and the first diffusion particles 222 may be formed in a film form by using an extrusion molding method or an injection molding method, and then adhered to the reflective polarizing film 210 by using an adhesive. The first diffusion layer 220 is formed on the reflective polarizing film 210. In other words, the first adhesive layer 230 may be coated on the reflective polarizing film 210 to form the first diffusion layer 220. The thickness of the first adhesive layer 230 can be substantially from 1 to 10, but is not limited thereto, considering the light transmission and adhesion characteristics. The reflective polarizing film 210 can transmit or reflect light from a light source. The reflective polarizing film 210 may include a first layer 2 formed of a polymer and a second layer 212 disposed adjacent to the first layer 211. The second layer 212 may be formed of a polymer having a refractive index different from the refractive index of the polymer forming the first layer 211. Since the reflective polarizing film 210 has been described above with reference to Fig. 1, the description thereof will be simplified or omitted. The first diffusion layer 220 can pass through the reflective polarizing film 110 by the -16 - 1380087 first diffusion particles 222 in the first diffusion layer 22: the first diffusion layer 2 20 can include a predetermined The first diffusion particles 222 in the first diffusion layer 220 may be the first beads. Each of the first diffusion particles 222 is formed of a material selected from the group consisting of polymethyl methacrylate (PMMA), polystyrene, and ruthenium. The first diffusion layer 220 may include 10 to 50 parts by weight of the first diffusion particles 222 calculated from the resin 221 of 100 ® . When the lipid 22 1 is 100 parts by weight of the first diffusion particles 222 calculated to be equal to or more than 10 parts by weight >, the beads can be easily diffused by using the beads. When the number of the first diffusion particles 222 is 50 parts by weight or less based on 1 part by weight of the resin 22 1 , the transmission of light from the light source is lowered. The diameter of the first diffusion particles 222 may be substantially 〇. ΙΟμηι. When the diameter of the first diffusion particles 222 is small, the optical diffusivity of the light ® 200 can be improved by increasing the density of the first diffusion particles 222 in the first diffusion layer 220. However, when the diameter of the first particles 222 is very small, interference from the external light occurs. Therefore, when the diameter of the second diffusion particles 222 is equal to 〇·5 μm, the optical diffusivity of the optical sheet 200 can be maximized to the extent that the light interference occurs. When the diameter of the first diffusion particles 222 is large, the first 2 20 must be formed thickly to ensure the diffusion of the optical sheet 200. Each of the resins may be made up of the amount of the tree and the amount of the tree from the light that is not 5 μm to the light of the diffusion source of the learning sheet or greater than the diffusion of the non-diffusion layer - 17- 1380087 rate, and thus it is difficult to manufacture the thin profile optical sheet 200. Therefore, when the diameter of the first diffusion particles 222 is equal to or smaller than ΙΟμηι, the thin profile of the optical sheet 200 can be achieved to such an extent that the optical diffusivity of the optical sheet 200 is not lowered. The first diffusion particles 222 can have a distribution that depends on the diameter. For the diameter D of the first diffusion particles, the volume percentage of the first diffusion particles 222 having a diameter between ϋ - 2 μm to D + 2 pm may be about 40% to 80%. As described above, since the light incident on the optical sheet is reflected by the first diffusion particles in the first diffusion layer several times, the light is diffused while changing the traveling path of the light. Therefore, the illuminance uniformity can be improved. Figure 4 is a cross-sectional view of an optical sheet 300 in accordance with another exemplary embodiment of the present invention. As shown in FIG. 4, the optical sheet 300 may include a reflective polarizing film 310, a first adhesive layer 330 on the reflective polarizing film 310, and a first diffusion layer on the first adhesive layer 310. 320. The first diffusion layer 3 20 can include a plurality of first diffusion particles 322. The optical sheet 300 further includes a second adhesive layer 34 0 and a second diffusion layer 305 under the second adhesive layer 340 under the reflective polarizing film 310. Since the structure of the reflective polarizing film 310, the first adhesive layer 303, and the second adhesive layer 340 has been described above, the related description is omitted here. -18- 1380087 The second adhesive layer 340 is used to adhere the reflective polarizing film 310 to the second diffusion layer 350 in the same manner as the first adhesive layer 330. The second diffusion layer 350 can be identical to the first diffusion layer 320. The second diffusion layer 350 diffuses light from the external light source through the plurality of second diffusion particles 352 in the second diffusion layer 350. The second diffusion layer 350 may include a resin 351 having a predetermined adhesive property. The resin 35 1 may be an unsaturated polyester, methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, n-butyl methacrylate, n-butyl methacrylate, acrylic acid, methacrylic acid, Hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxyethyl acrylate, acrylamide, methylol decylamine, glycidyl methacrylate, ethyl acrylate, isobutyl acrylate, n-butyl acrylate a propylene-based material such as a 2-ethylhexyl acrylate polymer, a 2-ethylhexyl acrylate copolymer or a 2-ethylhexyl acrylate tri-copolymer, an urethane-based material, or an epoxy-based material. , melamine-based materials, but not limited to this. • Each of the second diffusion particles 352 in the second diffusion layer 350 can be a bead. Each of the second diffusion particles 352 may be formed of a material selected from the group consisting of polymethyl methacrylate (PMMA), polystyrene, ruthenium, and combinations thereof. The second diffusion layer 350 may include 10 to 50 parts by weight of the second diffusion particles 352 calculated by 100 parts by weight of the resin 351. When the number of the second diffusion particles 352 calculated based on 100 parts by weight of the resin 351 is equal to or more than 10 parts by weight, the light from the light source can be easily diffused by using the beads. When the number of the -19 - 1380087 second diffusion particles 3 52 calculated by the resin 3 5 1 is 1 part by weight or less, the transmission of light from the light source is not lowered. The diameter of the second diffusion particles 352 distributed in the resin 35 1 may be a non-uniform sentence. The second diffusion particles 352 may be circular, elliptical, combined elliptical/circular, and irregularly circular, but are not limited thereto. The second diffusion particles 3 52 may be non-uniformly distributed within the resin 35 1 . The diameter of the second diffusion particles 352 may be substantially 〇.5μπι to ΙΟμιη. When the diameter of the second diffusion particles 352 is small, the optical diffusivity of the optical sheet 300 can be improved by increasing the density of the second diffusion particles 352 in the second diffusion layer 350. However, when the diameter of the second diffusion particles 325 is very small, light interference from the external light source occurs. Therefore, when the diameter of the second diffusion particles 352 is equal to or larger than 〇·5 μη, the optical diffusivity of the optical sheet 300 can be improved to the extent that the light interference does not occur. When the diameter of the second diffusion particles 352 is large, the second diffusion layer 3 20 must be formed thickly to secure the optical diffusivity of the optical sheet 300, and thus it is difficult to manufacture the thin-profile optical sheet 300. Therefore, when the diameter of the second diffusion particles 3 5 2 is equal to or smaller than ι 〇 μη, the thin profile of the optical sheet 300 can be achieved without lowering the optical diffusivity of the optical sheet 30 。. When having the first diffusion particles 322, the second diffusion particles 352 may have a distribution depending on the diameter. For the diameter 〇-20-1380087 of the second diffusion particle, the volume percentage of the second diffusion layer having the second diffusion particle having a diameter between D-2Mm and ϋ + 2μη is 40% to 80%. When the volume percentage of the second diffusion particles 352 having a diameter between D-2pm and ϋ + 2μηη is equal to or greater than 40%, the light diffusion effect incident on the optical sheet 300 can be improved. When the volume percentage of the second diffusion particles 352 having a diameter between ϋ-2μηη and D + 2em is equal to or less than 80%, the illuminance can be prevented from being lowered. Therefore, when the volume percentage of the second diffusion particles 352 having a diameter between Γ) - 2 μm to ϋ + 2 μη is about 40% to 80%, the light diffusion effect from the light source can be improved. 5 through 7 illustrate exploded perspective and cross-sectional views of the architecture of a backlight unit 400 including an optical sheet in accordance with an illustrative embodiment of the present invention. Figures 5 through 7 show the edge type backlight unit. However, in other embodiments, other types of backlight units can be used. Since the structure of the optical sheets shown in Figs. 5 to 7 is substantially the same as that of the optical sheet' according to the exemplified embodiment of the present invention, the related description is omitted or omitted entirely. As shown in Figures 5 through 7, the backlight unit 400 can be included in a liquid crystal display' and can provide light to a liquid crystal display panel included in the liquid crystal display. The backlight unit 400 can include a light source 420 and an optical sheet 430. The backlight unit 400 can further include a light guide plate 44, a reflector 450, a bottom cover 460, and a mold frame 470. The light source 42 0 can generate light '-21- 1380087 using driving power received from the outside and can radiate the light. The light produced. At least one light source 420 may be disposed on one side of the light guiding plate 440 along the long axis direction of the light guiding plate 440. At least one light source 420 can be disposed on each side of the two sides of the light guide plate 440. Light from the light source 420 can be incident directly onto the light guide plate 440. Alternatively, light from the light source 420 can be reflected from a light source housing 422 that encloses a portion of the light source 420, for example, about 3/4 of the peripheral surface of the light source 42 0, and can then be incident on the light guide plate 440. . The light source 420 may be a cold cathode fluorescent lamp (CCFL), a hot cathode fluorescent lamp (HCFL) 'external electrode fluorescent lamp (EEFL), and a light emitting diode (LED), but is not limited thereto. The optical sheet 430 may be disposed on the light guide plate 440. As shown in Fig. 5, the optical sheet 430 may include a reflective polarizing film 430a and a first diffusion layer 430b on the reflective polarizing film 430a. The first diffusion layer 430b may include a plurality of first diffusion particles. The first diffusion particles may have a distribution depending on the diameter. The sum of the volumes of the portions of the first diffusion particles having a diameter between 0-2 μm to Ε) + 2 μηι corresponding to the diameter D of the largest enthalpy of the volume distribution may be approximately The total volume of the first diffusion particles is 40% to 80%. As shown in Fig. 6, the optical sheet 430 may further include a second diffusion layer 43〇c' including a plurality of second diffusion particles below the reflective polarizing film 430a. The second diffusion particles may have a volume distribution that depends on the diameter. -22 - 1380087 of the second diffusion particle having a diameter of D-2pm to D + 2pm corresponding to the diameter D of the largest enthalpy of the volume distribution, the volume percentage of the second diffusion layer It is 4〇% to 8〇%. In the optical sheet 430, the reflective polarizing film 430a can improve the light efficiency' and the first and second diffusion layers 430b and 430c can improve the light diffusion effect. Therefore, the illuminance uniformity of the light can be improved. Therefore, the display quality of the backlight unit 400 can be improved. At least one of the ruthenium sheet 431 and the diffusion sheet 432 may be disposed between the light guide plate 440 and the optical sheet 430. The tantalum sheet 431 or the diffusion sheet 432 may be provided on the optical sheet 430, and the position of the thin sheet 431 and the diffusion sheet 432 is not limited thereto. The light guide plate 440 can face the light source 420. The light guide plate 440 can direct the light to emit light from the light source 420 upward. The reflector 450 can be disposed under the light guide plate 440. The reflector 450 can reflect light emitted from the light source 420 upwardly, and the light can then be radiated downward through the light guide plate 440. The bottom cover 460 can include a bottom portion 462 and a side portion 464 extending from the bottom portion 462 to form a receiving space. The receiving space can accommodate the light source ® 420, the optical sheet 430, the light guiding plate 440, and the reflector 450. The mold frame 470 can be approximately a rectangular frame. The mold frame 470 can be fixed to the bottom cover 460 from the upper side of the bottom cover 460 in a top-down manner. 8 through 1 are exploded perspective and cross-sectional views illustrating the architecture of a backlight unit 500 in accordance with an exemplary embodiment of the present invention. The 8th to 1st drawings show the direct-lit backlight unit, but other types of backlight units are still available. The backlight unit shown in FIGS. 8 to 1 may be substantially the same as the backlight unit shown in FIGS. 5 to 7 (except that the position of the light source is -23 - 1380087 and the member is changed depending on the position of the light source). Therefore, it may be simplified or the relevant description may be omitted entirely. As shown in Figs. 8 to 10, the backlight unit 500 can be incorporated in a liquid crystal display and can provide light to a liquid crystal display panel included in the liquid crystal display. The backlight unit 500 can include a light source 520 and an optical sheet 530. The backlight unit 500 may further include a reflector 550, a bottom cover 560, a mold frame 570, and a diffusion plate 580. At least one light source 5 20 can be disposed under the diffuser plate 580. Therefore, light from the light source 520 can be directly incident on the diffusion plate 580. The optical sheet 530 can be disposed on the diffusion plate 580. The optical sheet 530 can focus light from the source 520. As shown in Fig. 8, the optical sheet 530 may include a reflective polarizing film 530a, and a first diffusion layer 530b on the reflective polarizing film 530a. The first diffusion layer 530b may include a plurality of first diffusion particles. The first diffusion particles may have a volume distribution that depends on the diameter. The volume percentage of the first diffusion layer having the diameter of the first diffusion particle having a diameter between D-2pm to ϋ + 2μη corresponding to the diameter D of the largest enthalpy of the volume distribution is 40% Up to 80%. As shown in Fig. 9, the optical sheet 530 may further include a second diffusion layer 530c including a plurality of second diffusion particles below the reflective polarizing film 530a. The second diffusion particles may have a volume distribution that depends on the diameter. The diameter D of the second diffusion particle corresponding to the largest enthalpy of the volume distribution, '-24-1380087 having the first diffusion particle directly controlled between D-2pm and D + 2pm, the volume of the second diffusion layer The percentage is 40% to 80%. With the above features, the optical sheet 530 can improve the uniformity of illumination of the light. Therefore, the display quality of the backlight unit 500 can be improved. At least one of the ruthenium sheet 531 and the diffusion sheet 532 may be disposed between the diffusion plate 580 and the optical sheet 530. The tantalum sheet 531 or the diffusion sheet 532 may be provided on the optical sheet 530, and the position of the tantalum sheet 531 and the diffusion sheet 532 is not limited thereto. The diffuser plate 580 can be disposed between the light source 520 and the optical sheet 530 ® and can diffuse light from the light source 520 upward. Since the diffusion plate 580 is on the light source 520, the light source 520 cannot be seen from the top of the backlight unit 500, and the diffusion plate 580 can further diffuse light from the light source 520. The first to third drawings illustrate exploded perspective and cross-sectional views of the architecture of a liquid crystal display 600 in accordance with an exemplary embodiment of the present invention. The liquid crystal display 600 shown in Figs. 11 to 13 includes the backlight unit shown in Figs. 5 to 7, but is not limited thereto. For example, the liquid crystal display 600 may include the backlight unit shown in Figures 8 through 10. Since the backlight unit shown in Figs. 11 to 13 has been described above with reference to Figs. 5 to 7, the related description can be simplified or omitted entirely. As shown in Figures 11 to 13, the liquid crystal display 600 can display an image using the photoelectric characteristics of the liquid crystal. The liquid crystal display 600 can include the backlight unit 610 and the liquid crystal display panel 710. The backlight unit 610 can be disposed under the liquid crystal display panel 710 to provide light to the liquid crystal display panel 710. The backlight unit 610 can include a light source 620 and an optical sheet 630. The optical sheet 630 may include a reflective polarizing film 630a, and a first diffusion layer 630b on the reflective polarizing film 630a. The first diffusion layer 630b may include a plurality of first diffusion particles. The first diffusion particles may have a volume distribution that depends on the diameter. For the diameter D of the first diffusion particle, the volume percentage of the first diffusion layer having the first diffusion particle having a diameter between Ε2μηι to D + 2pm is from 40% to 80%. As shown in Fig. 12, the optical sheet 630 may further include a second diffusion layer 630c under the reflective polarizing film 63a, which includes a plurality of second diffusion particles. The second diffusion particles can have a volume distribution that depends on the diameter. For the diameter D of the second diffusion particle, the volume percentage of the second diffusion layer having the second diffusion particle having a diameter between ϋ-2μηι to D + 2gm is 40% to 80%. In the optical sheet 630, the reflective polarizing film 630a can improve light efficiency, and the first and second diffusion layers 630b and 63 0c can improve the light diffusion effect. Therefore, the illuminance uniformity of the light can be improved. Therefore, the display quality of the backlight unit 610 can be improved. The backlight unit 610 may further include a light guide 640, a reflector 650, a bottom cover 660, and a mold frame 670. At least one of the ruthenium sheet 631 and the diffusion sheet 632 may be disposed between the light guide plate 640 and the optical sheet 630. The ruthenium sheet 631 or the diffusion sheet 63 2 may be provided on the optical sheet 630, and the position of the ruthenium sheet 631 and the diffusion sheet 63 2 is not limited thereto. -26- 1380087 The liquid crystal display panel 710 may be disposed on the mold frame 670. The liquid crystal display panel 710 can be fixed by a top cover 720, wherein the top cover is fixed to the bottom cover 660 in a top-down manner. The liquid crystal display panel 710 can display an image using light supplied from the light source 620 of the backlight unit 610. The liquid crystal display panel 710 may include a color filter substrate 712 and a thin film transistor substrate 714 opposed to each other, and a liquid crystal is interposed between the color filter substrate 712 and the thin film transistor substrate 71. The color filter substrate 712 can realize the color of the image displayed on the liquid crystal display panel 71. The color filter substrate 71 may be included in a thin film color filter array formed on a substrate made of a transparent material such as glass or plastic. For example, the color filter substrate 712 can include color filters of red, green, and blue. An upper polarizing plate may be disposed on the color filter substrate 712. The thin film transistor substrate 714 can be electrically connected to the printed circuit board 618 via a driving film 616, on which the plurality of circuit components are mounted. The thin film transistor substrate 714 can apply the driving voltage supplied from the printed circuit board 618 to the liquid crystals in response to a driving signal supplied from the printed circuit board 618. The thin film transistor substrate 714 may comprise a thin film transistor and a pixel electrode on another substrate made of a transparent material such as glass or plastic. A lower polarizing plate may be disposed under the thin film transistor substrate 714. As described above, according to the exemplified embodiments of the present invention, a ratio of particles of a specific size in a diffusion layer of the optical sheet, a backlight unit including the optical thin 27-138087, and a liquid crystal display including the backlight unit can be controlled To diffuse the light and improve the uniform illumination. In addition, according to the exemplary embodiments of the present invention, the optical sheet, the backlight unit including the optical sheet, and the liquid crystal display including the backlight unit may further include the second diffusion layer under the reflective polarizing film. To improve the uniform illumination of the optical sheet. It will be apparent to those skilled in the art that various modifications and changes can be made in the embodiments of the invention without departing from the scope of the invention. Therefore, the present invention is intended to cover the modifications and variations of the inventions disclosed herein. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S) The present invention will be described in conjunction with the description of the embodiments of the invention, and Part of the manual. 1 is a cross-sectional view of an optical sheet according to an exemplary embodiment of the present invention; and FIG. 2 is a graph illustrating a relationship between a diameter and a volume distribution of all first diffusion particles of the first diffusion layer; 3 is a cross-sectional view of an optical sheet in accordance with another exemplary embodiment of the present invention; FIG. 4 is a cross-sectional view of an optical sheet in accordance with another exemplary embodiment of the present invention; FIGS. 5 through 7 are diagrams showing Backlighting single-28- of the illustrated embodiment

l38〇〇87 元; 第8到1 〇圖係顯示依照本 光單元;以及 第1 1到1 3圖係顯示依照 顯示器。 【主要元件符號說明】 100 ' 200、300、430、530、630 110、210、310、430a、530a ' 630a 112' 212 120、220、320、430b、530b、.,630b 121 、 221 、 351 122 ' 222 ' 322 230 、 330 340 350 、 430c 、 530c 、 630c 400 、 500 、 610 420 、 520 、 620 422 431' 531、 631 432 、 532 、 632 440 、 640 450 、 550 、 650 明之另一例示實施例之背 發明之例示實施例之液晶 光學薄片 反射偏光薄膜 第一層 第二層 第一擴散層 樹脂 第一擴散粒子 第一黏著層 第二黏著層 第二擴散層 第二擴散粒子 背光單元 光源 光源外殼 稜鏡薄片 擴散薄片 光導板 反射器 29- 1380087 4 6 0 ' 560、 660 底 蓋 462 底 部 464 側 部 470 ' 5 70 ' 670 模 框 580 擴 散 板 600 液 晶 顯 示 器 616 驅 動 薄 膜 6 18 印 刷 電 路 板 7 10 液 晶 顯 示 面 板 7 12 彩 色 濾 光 基 板 7 14 薄 膜 電 晶 體 基板 720 頂 蓋L38〇〇87 yuan; the 8th to 1st drawings are displayed according to this light unit; and the 1st to 1st drawings are displayed according to the display. [Main component symbol description] 100 '200, 300, 430, 530, 630 110, 210, 310, 430a, 530a ' 630a 112' 212 120, 220, 320, 430b, 530b, ., 630b 121, 221, 351 122 ' 222 ' 322 230 , 330 340 350 , 430c , 530c , 630c 400 , 500 , 610 420 , 520 , 620 422 431 531 , 631 432 , 532 , 632 440 , 640 450 , 550 , 650 another exemplary embodiment The liquid crystal optical sheet reflective polarizing film of the exemplary embodiment of the invention is first layer second layer first diffusion layer resin first diffusion particle first adhesive layer second adhesive layer second diffusion layer second diffusion particle backlight unit light source light source housing稜鏡Sheet diffusion sheet light guide reflector 29- 1380087 4 6 0 '560, 660 bottom cover 462 bottom 464 side 470 ' 5 70 ' 670 frame 580 diffuser 600 liquid crystal display 616 drive film 6 18 printed circuit board 7 10 Liquid crystal display panel 7 12 color filter substrate 7 14 thin film transistor substrate 720 top cover

30-30-

Claims (1)

1380087 修正本 ' 第97 144846號「光學薄片、背光單元及液晶顯示器」專利案 ' (2012年7月23日修正) 十、申請專利範圍: 1. 一種光學薄片,包含: 反射偏光薄膜:以及 於該反射偏光薄膜上之第一擴散層,該第一擴散層包 括複數第一擴散粒子, 其中當具有在該等第一擴散粒子之體積中最大値之該 • 等第一擴散粒子之直徑爲ϋμπι時,具有在ϋ-2μιη及 D + 2pm之間的直徑之該等第一擴散粒子之體積總和爲該 等第一擴散粒子之體積之40%到8 0% ; 且其中D大體上係在3μιη到6μιη。 2. 如申請專利範圍第1項之光學薄片,其中該等第一擴散 • 粒子之最小直徑爲0.5,。 3. 如申請專利範圍第1項之光學薄片,其中該等第一擴散 粒子之最大直徑爲10,》 ® 4.如申請專利範圍第1項之光學薄片,其中該等第一擴散 粒子之每一者爲腔粒(cavity)及珠粒當中之—。 5. 如申請專利範圍第1項之光學薄片,其中該等第一擴散 - 粒子係由選自由聚甲基丙烯酸甲酯(PMMA)、聚苯乙嫌、 矽以及其組合所組成之群組之材料所形成。 6. 如申請專利範圍第1項之光學薄片,其中於該反射偏光 薄膜與該第一擴散層間更包含第—黏著層。 7. 如申請專利範圍第1項之光學薄片,其中於該反射偏光 1380087 修正本 薄膜下方更包含第二擴散層,該第二擴散層包括複數第 二擴散粒子。 8. 如申請專利範圍第7項之光學薄片,其中於該反射偏光 薄膜與該第二擴散層之間更包含第二黏著層。 9. 如申請專利範圍第7項之光學薄片,其中當具有在該等 第二擴散粒子之體積中最大値之該等第二擴散粒子之直 徑爲ϋμιη時,具有在D-2pm及D + 2pm之間的直徑之該 等第二擴散粒子之體積總和爲該等第二擴散粒子之總體 積之40%到8 0%。 10. 如申請專利範圍第1項之光學薄片,其中該反射偏光薄 膜包括第一層及第二層,其係交替堆疊並具有不同折射 率。 11. 一種背光單元,包含: 光源;以及 於該光源上之光學薄片,該光學薄片包括反射偏光薄 膜及於該反射偏光薄膜上之第一擴散層,該第一擴散層 包括複數第一擴散粒子, 其中當具有在該等第一擴散粒子之體積中最大値之該 等第一擴散粒子之直徑爲〇μιη時’具有在D-2pm及 D+ 2 μιη之間的直徑之該等第一擴散粒子之體積總和爲該 等第一擴散粒子之總體積之4〇%到80% ; 且其中D大體上係在3μπι到6μιη。 12. 如申請專利範圍第11項之背光單元’其中於該反射偏光 薄膜下方更包含第二擴散層,該第二擴散層包括複數第 修正本 二擴散粒子。 13·如申請專利範圍第12項之背光單元,其中當具有在該等 第二擴散粒子之體積中最大値之該等第二擴散粒子之直 徑爲ϋμιη時,具有在D-2pm及D + 2pm之間的直徑之該 等第二擴散粒子之體積總和爲該等第二擴散粒子之總體 積之4 0 %到8 0 %。 1 4 _ 一種液晶顯示器,包含: 光源; 於該光源上之光學薄片,該光學薄片包括反射偏光薄 膜及於該反射偏光薄膜上之第一擴散層,該第一擴散層 包括複數第一擴散粒子,以及 於該光學薄片上之液晶顯示面板, 其中當具有在該等第一擴散粒子之體積中最大値之該 等第一擴散粒子之直徑爲ϋμπι時,具有在ϋ-2μιη及 ϋ + 2μιη之間的直徑之該等第一擴散粒子之體積總和爲該 等第一擴散粒子之總體積之40%到8 0% ; 且其中D大體上係在3μιη到6μιη。 1 5 .如申請專利範圍第1 4項之液晶顯示器,其中於該反射偏 光薄膜下方更包含第二擴散層,該第二擴散層包括複數 第二擴散粒子。 1 6 .如申請專利範圍第1 5項之液晶顯示器,其中當具有該等 第二擴散粒子之體積中最大値之該等第二擴散粒子之直 徑爲ϋμηι時,具有在D-2pm及ϋ + 2μιη之間的直徑之該 1380087 修正本 積之40%到8 0%。 17.如申請專利範圍第16項之液晶顯示器,其中該第二百分 比爲.4 0 %到8 0 %。1380087 Amendment to the 'Patent No. 97 144846' Optical Film, Backlight Unit and Liquid Crystal Display' (as amended on July 23, 2012) X. Patent Application Range: 1. An optical sheet comprising: a reflective polarizing film: Reflecting a first diffusion layer on the polarizing film, the first diffusion layer comprising a plurality of first diffusion particles, wherein when the volume of the first diffusion particles is the largest, the diameter of the first diffusion particles is ϋμπι The sum of the volumes of the first diffusion particles having a diameter between ϋ-2μηη and D + 2pm is 40% to 80% of the volume of the first diffusion particles; and wherein D is substantially at 3μιη To 6μιη. 2. The optical sheet of claim 1, wherein the first diffusion particles have a minimum diameter of 0.5. 3. The optical sheet of claim 1, wherein the first diffusion particles have a maximum diameter of 10, and the optical sheet of the first aspect of the invention, wherein each of the first diffusion particles One is cavity and among the beads. 5. The optical sheet of claim 1, wherein the first diffusion-particles are selected from the group consisting of polymethyl methacrylate (PMMA), polystyrene, hydrazine, and combinations thereof. The material is formed. 6. The optical sheet of claim 1, wherein the reflective polarizing film and the first diffusion layer further comprise a first adhesive layer. 7. The optical sheet of claim 1, wherein the reflective polarizer 1380087 further comprises a second diffusion layer under the modified film, the second diffusion layer comprising a plurality of second diffusion particles. 8. The optical sheet of claim 7, wherein the second adhesive layer is further included between the reflective polarizing film and the second diffusion layer. 9. The optical sheet of claim 7, wherein when the diameter of the second diffusion particles having the largest enthalpy in the volume of the second diffusion particles is ϋμιη, having D-2pm and D + 2pm The sum of the volumes of the second diffusion particles between the diameters is 40% to 80% of the total volume of the second diffusion particles. 10. The optical sheet of claim 1, wherein the reflective polarizing film comprises a first layer and a second layer which are alternately stacked and have different refractive indices. 11. A backlight unit, comprising: a light source; and an optical sheet on the light source, the optical sheet comprising a reflective polarizing film and a first diffusion layer on the reflective polarizing film, the first diffusion layer comprising a plurality of first diffusion particles Where the first diffusion particles having a diameter between D-2pm and D+2 μη when the diameter of the first diffusion particles having the largest 値 in the volume of the first diffusion particles is 〇μηη The sum of the volumes is from 4% to 80% of the total volume of the first diffusion particles; and wherein D is substantially between 3 μm and 6 μm. 12. The backlight unit of claim 11, wherein the second diffusion layer further comprises a plurality of second modified diffusion particles under the reflective polarizing film. 13. The backlight unit of claim 12, wherein when the diameter of the second diffusion particles having the largest enthalpy in the volume of the second diffusion particles is ϋμιη, having D-2pm and D + 2pm The sum of the volumes of the second diffusion particles between the diameters is from 40% to 80% of the total volume of the second diffusion particles. 1 4 _ A liquid crystal display comprising: a light source; an optical sheet on the light source, the optical sheet comprising a reflective polarizing film and a first diffusion layer on the reflective polarizing film, the first diffusion layer comprising a plurality of first diffusion particles And a liquid crystal display panel on the optical sheet, wherein when the diameter of the first diffusion particles having the largest 在 in the volume of the first diffusion particles is ϋμπι, having ϋ-2μιη and ϋ+2μιη The sum of the volumes of the first diffusion particles between the diameters is 40% to 80% of the total volume of the first diffusion particles; and wherein D is substantially between 3 μm and 6 μm. The liquid crystal display of claim 14, wherein the second polarizing layer further comprises a second diffusion layer under the reflective polarizing film, the second diffusion layer comprising a plurality of second diffusion particles. The liquid crystal display of claim 15, wherein when the diameter of the second diffusion particles having the largest volume among the volumes of the second diffusion particles is ϋμηι, having D-2pm and ϋ+ The 1380087 of the diameter between 2μιη corrects 40% to 80% of the product. 17. The liquid crystal display of claim 16, wherein the second percentage is from .40% to 80%.
TW097144846A 2008-05-28 2008-11-20 Optical sheet, backlight unit, and liquid crystal display TWI380087B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20080049663 2008-05-28
KR1020080083867A KR100962442B1 (en) 2008-05-28 2008-08-27 Optical Sheet, Back light Unit And Liquid Crystallization Display Comprising Thereof

Publications (2)

Publication Number Publication Date
TW200949365A TW200949365A (en) 2009-12-01
TWI380087B true TWI380087B (en) 2012-12-21

Family

ID=41407506

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097144846A TWI380087B (en) 2008-05-28 2008-11-20 Optical sheet, backlight unit, and liquid crystal display

Country Status (3)

Country Link
KR (1) KR100962442B1 (en)
CN (1) CN101592747B (en)
TW (1) TWI380087B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI596385B (en) * 2012-02-13 2017-08-21 東麗股份有限公司 Reflective film
KR20170064039A (en) * 2015-11-30 2017-06-09 엘지디스플레이 주식회사 Optical Film And Liquid Crystal Display Comprising The Same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1214613A1 (en) * 1999-09-20 2002-06-19 3M Innovative Properties Company Optical films having at least one particle-containing layer
JP5102955B2 (en) * 2005-01-06 2012-12-19 株式会社ジロオコーポレートプラン Light diffusion sheet and backlight unit using the same
US7781013B2 (en) * 2005-02-21 2010-08-24 Fujifilm Corporation Method of designing a diffusion film, a process for producing the same, and a diffusion film obtained thereby
KR20070071346A (en) * 2005-12-30 2007-07-04 쓰리엠 이노베이티브 프로퍼티즈 컴파니 An optical film composite for bright enhancement comprising a birefringent polymer layer
KR100885608B1 (en) * 2006-05-30 2009-02-24 주식회사 엘지화학 Multi-layered light diffusion plate and liquid crystal display device comprising the same
US20080002256A1 (en) 2006-06-30 2008-01-03 3M Innovative Properties Company Optical article including a beaded layer

Also Published As

Publication number Publication date
KR20090123749A (en) 2009-12-02
TW200949365A (en) 2009-12-01
CN101592747B (en) 2012-01-25
KR100962442B1 (en) 2010-06-14
CN101592747A (en) 2009-12-02

Similar Documents

Publication Publication Date Title
KR100957496B1 (en) Reflective Polarized Light Film, Back Light Unit And Liquid Crystal display Device Comprising the same
US7569257B2 (en) Light modulating plate, backlight assembly having the same and display device having the same
KR100945392B1 (en) Optical Sheet, Back Light Unit And Liquid Crystal Display Device Comprising The Same
JP2006128060A5 (en)
TWI416202B (en) Optical member
US8508693B2 (en) Backlight unit and liquid crystal display device having the same
JP2007165029A (en) Display device
US20080310019A1 (en) Refractive index decrement film, polarizing member having the same and display device having the same
KR20080070357A (en) Backlight unit and method of manufacturing the same and display having the same
US7956954B2 (en) Optical sheet, backlight unit, and liquid crystal display
TW201734600A (en) Backlight unit and display device including the same
US8310623B2 (en) Optical sheet and liquid crystal display including the same
TW200809262A (en) Multilayer film, backlight unit and liquid crystal display having the same
US20090296022A1 (en) Optical sheet, backlight unit, and liquid crystal display
KR100989046B1 (en) Optical Sheet, Back Light Unit And Liquid Crystal Display Device Comprising The Same
KR100960556B1 (en) Optical sheet and Liquid Crystal Display using the same
TWI380087B (en) Optical sheet, backlight unit, and liquid crystal display
JP2012533763A (en) Concentrating optical sheet
KR20090119544A (en) Optical sheet, back light unit and liquid crystal display device comprising the same
KR101413140B1 (en) Light diffusion plate having non-uniform local microlens array pattern and liquid crystal display device comprising the same
KR20120073074A (en) Display apparatus
KR100829672B1 (en) Diffuser sheet, backlight unit having the diffuser sheet and liquid crystal display having the diffuser sheet
KR101705904B1 (en) Backlight Unit And Liquid Crystal Display Comprising The Same
KR20090125920A (en) Optical sheet, back light unit and liquid crystal display device comprising the same
KR20080082272A (en) Back light unit and liquid crystal display module using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees