TW200949017A - Multi-tank electrolytic water generating apparatus - Google Patents

Multi-tank electrolytic water generating apparatus Download PDF

Info

Publication number
TW200949017A
TW200949017A TW097119696A TW97119696A TW200949017A TW 200949017 A TW200949017 A TW 200949017A TW 097119696 A TW097119696 A TW 097119696A TW 97119696 A TW97119696 A TW 97119696A TW 200949017 A TW200949017 A TW 200949017A
Authority
TW
Taiwan
Prior art keywords
tank
electrolyzed water
water generating
generating apparatus
cathode
Prior art date
Application number
TW097119696A
Other languages
Chinese (zh)
Inventor
Wei Fang
Lin-Chi Chen
Ming-Yih Chang
Jing-Yang Chiu
Yeh-Hsing Lao
Yi-Cheng Wang
Shi-Wei Kong
Ping-Huang Wu
Original Assignee
Wei Fang
Lin-Chi Chen
Ming-Yih Chang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wei Fang, Lin-Chi Chen, Ming-Yih Chang filed Critical Wei Fang
Priority to TW097119696A priority Critical patent/TW200949017A/en
Publication of TW200949017A publication Critical patent/TW200949017A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

A multi-tank electrolytic water generating apparatus includes a tank main tank body and two separating devices. The main tank body is divided by the separation devices into three tank units. The separation devices can be selected from water impermeable partitions or partitions having ion permeable membranes. Depending on the selected partitions, anodes and/or cathodes are disposed in at least two of the three tank units. Therefore, the apparatus of the present invention can be used for generating strongly acidic, strongly basic, weakly acidic, weakly basic, salt-containing or salt-free electrolytic water.

Description

200949017 九、發明說明: 【發明所屬之技術領域】 本發明係關於電解水產生裝置,尤其關於多槽式電解 水產生裝置。 【先前技術】 早爲熟知的隔膜式電解水裝置,例如揭示於本國專利 公告第477833號。於電解槽中離子穿透膜係設置於陽極及 陰極之間。藉由離子穿透膜將陽極及陰極互相隔開,以便 β 經電解後在陽極側產生酸性電解水而在陰極側產生鹼性電 解水。 另一種亦爲人知的無隔膜式電解水裝置,例如揭示於 本國專利公告第436468號。由於在電解槽中陽極及陰極之 間並不設有離子穿透膜,在此種不具有離子穿透膜的電解 槽中經電解後可產生偏中性、弱酸或弱鹼的電解水。 【發明內容】 本發明目的之一在於提供一種多槽式電解水產生裝 ® 置,其結合了隔膜式及無隔膜式電解水裝置的優點及功效。 本發明之另一目的在於提供一種多槽式電解水產生裝 置,用於產生強酸、強鹼、弱酸、弱鹼、含鹽或無鹽的電 解水。 本發明之又一目的在於提供一種多槽式電解水產生裝 置’用於製備具有諸如殺菌、消毒、清潔、漂白、氧化或 還原等功能的功能性電解水。 上述目的及其他目的將藉由申請專利範圍獨立項所界 200949017 定的多槽式電解水產生裝置而達成。其他有利的樣態則界 定於各附屬項中。 本發明之多槽式電解水產生裝置包含槽本體及兩個分 隔裝置’其中槽本體係藉由分隔裝置分隔成三個槽單元, 分隔裝置係可選用不透水的隔板或包含離子穿透膜的隔 板’依所選用的分隔裝置而定,三個槽單元中之至少二者 係配置有陽極及/或陰極。本發明裝置可依需求而彈性地改 變隔板及電極的配置,以便製備各種用途之電解水。 © 當分隔裝置皆選用不透水隔板時,於每一槽單元內配 置陽極及陰極。此時,每一槽單元則作用成無隔膜式電解 槽,例如可用於製備弱酸、弱鹼或偏中性的電解水。 當分隔裝置其中一者係選用不透水隔板而另一分隔裝 置係選用包含離子穿透膜的隔板時,將陽極及陰極分別配 置於由包含離子穿透膜的隔板所分隔之兩個槽單元。又, 於遠離由包含離子穿透膜的隔板且由不透水隔板所分隔之 槽單元中配置陽極及陰極。在此情況下,由包含離子穿透 ® 膜的隔板所分隔之兩個槽單元一同作用成隔膜式電解槽, 例如可用於在陽極側製備酸性電解水,在陰極側製備鹼性 電解水;遠離由包含離子穿透膜的隔板的槽單元,亦即不 與包含離子穿透膜的隔板接觸或相鄰的槽單元,此時係作 用成無隔膜式電解槽,例如可用於製備弱酸、弱鹼或偏中 性的電解水。 當分隔裝置皆選用包含離子穿透膜的隔板時,於彼此 不相鄰的兩個槽單元之一者中配置陽極,而於彼此不相鄰 200949017 的兩個槽單元之另一者中配置陰極。換言之,同時由兩個 包含離子穿透膜的隔板所分隔之槽單元是沒有配置任何電 極而且裝塡有含有高濃度電解質溶液,較佳爲飽和濃度, 更佳爲過飽和濃度。在此情況下,不同於無隔膜式電解槽 或隔膜式電解槽,同時由兩個包含離子穿透膜的隔板所分 隔之槽單元(即未配置電極且裝塡有高濃度電解質溶液的 槽單元)具有類似於鹽橋的作用,且可分別於陽極側之槽 單元及陰極側之槽單元製備例如無鹽的酸性及鹼性電解 © 水。所謂無鹽電解水係指電解水中不含使用的電解質成分。 有利地,分隔裝置係可抽換的,以便視需要調整改變 隔板及電極的配置。 有利地,槽本體包含一封蓋,用以防止電解過程產生 的氣體散逸,或者可利於收集及/或進一步處理產生的氣 體。 有利地,於槽本體或於封蓋上設置供給部,用於投入 可作爲電解質之鹽類或化合物,且/或用於注入含電解質的 ® 溶液。較佳地,供給部可設置一個或對應於各槽單元而設 置多個。 有利地,於槽本體分別設置用於將未經電解處理之液 體或原水供應至槽本體的入口及用於將經電解處理之液體 或電解水自槽本體排出的出口。較佳地,入口及出口各可 設置一個或對應於各槽單兀而設置多個。 應了解的是,未經電解處理之液體可經由供給部供應 至槽本體。相對地,可作爲電解質之鹽類或化合物、含電 200949017 解質的溶液亦可經由入口供應至槽本體。 依上述揭示,雖然可作爲電解質之鹽類或化合物、含 電解質的溶液及未經電解處理之液體係經由各自的入口或 供給部供應至槽本體,但亦可經由共用的供給部或入口供 應至槽本體。如此,供給部及入口只需擇一設置。 本發明所屬技術領域中具有通常知識者,在參閱本發 明說明書及附圖後,將可最佳地理解本發明之技術特點以 及其他目的與優點。 Ο 【實施方式】 以下將參照附圖,說明本發明之較佳實施例。所例示 之實施例僅爲較佳的範例,並非用來限定本發明之請求範 圍。 第1圖至第3圖顯示根據本發明之多槽式電解水產生 裝置1。多槽式電解水產生裝置1包含槽本體10及兩個分 隔裝置12、14,其中槽本體10係藉由分隔裝置12、14分 隔成三個槽單元1〇.1、1〇.2、1〇.3。分隔裝置12、14係可 ® 選用不透水的隔板或局部包含離子穿透膜的隔板。電極(陽 極及陰極)的配置則依所選用的分隔裝置而不同,將於下 文詳細說明。 第1圖顯示根據本發明之多槽式電解水產生裝置1的 電極及隔板可能的配置之其中一種’其中分隔裝置12、14 皆選用不透水的隔板。槽本體1〇係藉由分隔裝置12、14 分隔成三個槽單元10.1、10.2、10.3。槽單元10.1配置有 陽極16.1、陰極18.1、入口 20.1及出口 22.1。槽單元10.2、 200949017 10.3具有與槽單元lo.i相同的構造,各自配置有陽極 16.2、 16.3、陰極 18.2、18.3、入口 20_2、20.3 及出口 22.2、 22.3。 在此情況下’每—槽單元1〇.1、ι〇·2、ι〇_3係作用 成無隔膜式電解槽。 第2圖顯示根據本發明之多槽式電解水產生裝置1的 電極及隔板另一種可能的配置,其中分隔裝置12選用不透 水的隔板’而分隔裝置14選用包含離子穿透膜的隔板。槽 本體10係藉由分隔裝置12、14分隔成三個槽單元lo.i、 Ο 10·2、10,3。與第1圖不同之處在於,只有槽單元10.1同 時配置有陽極16.1及陰極18.1,槽單元10.2配置有陽極 16.2,槽單元10.3配置有陰極18.3。雖然未圖示,槽單元 10.2配置有陰極而槽單元10.3配置有陽極的樣態仍是可預 期的。在此情況下,槽單元10.1係作用成無隔膜式電解槽, 而槽單元10.2、10.3兩者一同作用成隔膜式電解槽。 第3圖顯示根據本發明之多槽式電解水產生裝置1的 電極及隔板又一種可能的配置,其中分隔裝置12、14皆選 〇用包 含離子穿透膜的隔板。槽本體10係藉由分隔裝置12、 14分隔成三個槽單元10.1、10.2、10.3。槽單元10.1配置 有陽極16.1,槽單元10.3配置有陰極18.3,而槽單元10.2 未配置任何電極。除槽單兀10.2不須設置出口外,每一槽 本體具有各自的入口及出口。在槽單元10.2已預先設置出 口的情況下,最好是關閉槽單元10.2之出口。 以下將以電解食鹽水爲例說明藉由本發明之裝置製備 具殺菌功能的次氯酸溶液。 200949017 請回頭參照第1圖所示之多槽式電解水產生裝置1。 在電解過程中,在每一槽單元的陽極處,水h2o釋出電子 ^產生氧氣02及氫離子H+,氯離子(:1_釋出電子產生氯 氣Cl2。氯氣Cl2又溶於食鹽水,因而產生鹽酸HC1、次氯 酸HC10及次氯酸鈉NaCIO。在每一槽單元的陰極處,水 H2〇接收電子e_產生氫氣H2及氫氧離子〇H_。氫氧離子 〇H_又與鈉離子Na+結合產生氫氧化鈉NaOH。設置於每一 槽單元中的陽極與陰極沒有藉由離子穿透膜隔開,即每一 © 槽單元係作用成無隔膜式電解槽,使得槽單元中的經電解 處理的食鹽水呈弱酸或弱鹼。第2圖中的槽單元10.1也是 同樣作用成無隔膜式電解槽,在此進行的電解反應亦如上 所述。 第2圖中的槽單元10.2及槽單元10.3由於藉由包含離 子穿透膜的隔板所區隔,槽單元10.2及槽單元10.3兩者一 同作用成隔膜式電解槽,其中,配置有陽極16.2的槽單元 1〇_2爲陽極側電解槽,配置有陰極18.3的槽單元1〇·3爲 ® 陰極側電解槽。在陽極側電解槽之陽極處,水H20釋出電 子e·產生氧氣〇2及氫離子H+,氯離子Cl_釋出電子e·產生 氯氣Cl2。氯氣Cl2又溶於食鹽水,因而產生鹽酸HC1、次 氯酸HCIO及次氯酸鈉NaCIO。在陰極側電解槽的陰極處’ 水H20接收電子e·產生氫氣H2及氫氧離子OH·。氫氧離子 〇Η·又與鈉離子Na +結合產生氫氧化鈉NaOH。由於鹽酸HCI 及氫氧化鈉NaO Η藉離子穿透膜彼此隔開,所以在槽單元 10.2中經電解處理的食鹽水會呈強酸,在槽單元10.3中經 -10- 200949017 電解處理的食鹽水會呈強鹼。 在第3圖所示情況下,分隔裝置12、14皆選用包含離 子穿透膜的隔板。槽單元10.2不配置有任何電極’且裝塡 有高濃度的食鹽水,較佳爲飽和濃度食鹽水,更佳爲過飽 和濃度食鹽水。此時,槽單元1〇_2之作用類似於鹽橋’用 於電連接槽單元1〇·1及槽單元10.3。配置有陽極16.1的 槽單元10.1爲陽極側電解槽且裝塡有不含氯化鈉NaCl的 (即無鹽的)溶液、水或純水,配置有陰極18.3的槽單元 〇 10.3爲陰極側電解槽且裝塡有不含氯化鈉NaCl的(即無鹽 的)溶液、水或純水。在陽極側電解槽之陽極處,水H20 釋出電子^產生氧氣〇2及氫離子H+。氯離子Cr自槽單元 v 10.2透過離子穿透膜游離至槽單元10.1,接著在陽極處釋 放出電子產生氯氣Cl2。氯氣Cl2又溶於不含氯化鈉NaCl 的溶液,因而產生鹽酸HC1及次氯酸HCIO。相較於第1 圖與第2圖所示者,不會在陽極側生成次氯酸鈉NaCIO。 在陰極側電解槽的陰極處,水H20接收電子e-產生氫氣H2 ® 及氫氧離子〇『。鈉離子Na+自槽單元10.2透過離子穿透 膜游離至槽單元10.3,而與氫氧離子OH·結合產生氫氧化 鈉NaOH。相較於第1圖及第2圖所示者,差異在於供應至 陽極側電解槽及陰極側電解槽未經電解處理之原水本身不 含氯化鈉NaCl’因此可在陽極側電解槽及陰極側電解槽製 備無鹽的電解水。在本例的情況下,在陰極側電解槽可製 備不含鹽的氫氧化鈉NaOH溶液。藉由本發明將可進一步 應用於製備高純度的氫氧化鈉NaOΗ。 200949017 在陽極側電解槽(槽單元10·1)及在陰極側電解槽(槽 單元10.3 )中液體因不含氯化鈉NaCl,最好將陽極或陰極 儘可能地配置在離子穿透膜附近,以利於導電。或者,在 電解初期,依各槽單元的電解產物而定,可分別在陽極側 電解槽添加例如鹽酸HC1,在陰極側電解槽添加例如氫氧 化鈉NaOH作爲電解質,以利於導電。 用於製備含次氯酸的殺菌水之電解質,雖然上述實施 例中以氯化鈉NaCl爲例,但不以此爲限。亦可使用其他以 ® 氯基爲基礎的電解質、含氯的化合物或鹽類、鹼金屬氯化 物或鹼土金屬氯化物,例如,氯化鉀KC1、氯化鈣CaCl2、 氯化鎂MgCl2、次氯酸鈉NaOCl或鹽酸HC1等等。 丨 根據本發明之裝置所製備的電解水可直接使用或進一 步視需求添加有機酸及/或醇類及/或界面活性劑,以謀求 其特性的變化,例如改變酸鹼値或改善殺菌、消毒、清潔 等能力。 儘管上述實施例中,電極的配置係視分隔裝置的類別 ® 而定,但預先在每一個槽單元中無差別地各配置兩個電極 是有利的。因爲所謂的陽極或陰極係取決於電極與電源的 正極或與負極連接’所以只需從外部藉由改變各電極導線 與電源之間的連接’即可達成與上述實施例實質等效的配 置。舉例說明,中斷電極與電源的連接,使電極閒置,實 質上可視爲沒有配置電極。又,例如選擇性地將電極連接 到電源的正極或負極’即可令電極選擇性地作用成陽極或 負極。藉此方式’陽極及陰極的配置可輕易地在電解水產 -12- 200949017 生裝置之外部來實施。 雖然本發明參照較佳實施例而進行說明示範,惟應了 解的是在不脫離本發明之精神及範疇內,對於本發明所屬 技術領域中具有通常知識者而言,仍得有許多變化及修 改。因此,本發明並.不限制於所揭露的實施例,而是以後 附申請專利範圍之文字記載爲準,即不偏離本發明申請專 利範圍所爲之均等變化與修飾,應仍屬本發明之涵蓋範圍。 【圖式簡單說明】 Ο 第1圖係顯示根據本發明之多槽式電解水產生裝置之 電極及隔板的一種配置; 第2圖係顯示根據本發明之多槽式電解水產生裝置之 電極及隔板的另一種配置;及 第3圖係顯示根據本發明之多槽式電解水產生裝置之 電極及隔板的再一種配置。 【主要元件符號說明】 1 多槽式電解水產生裝置200949017 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to an electrolyzed water generating apparatus, and more particularly to a multi-tank electrolyzed water generating apparatus. [Prior Art] A well-known diaphragm type electrolyzed water device is disclosed, for example, in National Patent Publication No. 477833. The ion penetrating membrane is disposed between the anode and the cathode in the electrolytic cell. The anode and the cathode are separated from each other by an ion penetrating membrane so that β is electrolyzed to generate acidic electrolyzed water on the anode side and alkaline electrolyzed water on the cathode side. Another known membraneless electrolyzed water apparatus is disclosed, for example, in National Patent Publication No. 436,468. Since no ion-permeable membrane is provided between the anode and the cathode in the electrolytic cell, electrolytic water having a neutral, weak acid or weak base can be produced by electrolysis in such an electrolytic cell having no ion-permeable membrane. SUMMARY OF THE INVENTION One object of the present invention is to provide a multi-tank electrolyzed water generating device that combines the advantages and functions of a diaphragm type and a diaphragmless electrolyzed water device. Another object of the present invention is to provide a multi-tank electrolyzed water generating apparatus for producing a strong acid, a strong base, a weak acid, a weak base, a salt-containing or a salt-free electrolyte water. It is still another object of the present invention to provide a multi-tank electrolyzed water generating apparatus 'for preparing functional electrolyzed water having functions such as sterilization, disinfection, cleaning, bleaching, oxidation or reduction. The above and other objects are attained by the multi-tank electrolyzed water generating apparatus defined in the independent application of the patent scope 200949017. Other advantageous forms are defined in each sub-item. The multi-tank electrolyzed water generating device of the present invention comprises a tank body and two partitioning devices. The tank system is divided into three tank units by a partitioning device. The partitioning device may be a watertight partition or an ion penetrating membrane. The separators are dependent on the separator used, and at least two of the three tank units are provided with an anode and/or a cathode. The apparatus of the present invention can elastically change the configuration of the separator and the electrode as needed to prepare electrolyzed water for various uses. © When the separator is a watertight partition, the anode and cathode are arranged in each tank unit. At this point, each cell unit acts as a diaphragmless cell, for example, for the preparation of weak acid, weak base or neutralized electrolyzed water. When one of the separators is a water-impermeable partition and the other partition is a separator containing an ion-permeable membrane, the anode and the cathode are respectively disposed in two separated by a separator containing an ion-permeable membrane. Slot unit. Further, the anode and the cathode are disposed in a cell unit away from the separator including the ion-permeable membrane and separated by the water-impermeable separator. In this case, the two cell units separated by the separator containing the ion penetrating membrane are used together to form a diaphragm type electrolytic cell, for example, for preparing acidic electrolyzed water on the anode side and alkaline electrolyzed water on the cathode side; Keep away from the cell unit of the separator containing the ion penetrating film, that is, the cell unit which is not in contact with or adjacent to the separator containing the ion penetrating film, in this case acts as a diaphragmless electrolyzer, for example, for preparing a weak acid , weak base or neutral water. When the separator includes a separator including an ion-permeable membrane, the anodes are disposed in one of the two groove units not adjacent to each other, and are disposed in the other of the two tank units not adjacent to each other 200949017 cathode. In other words, the cell unit which is simultaneously separated by the two separators containing the ion-permeable film is not provided with any electrode and is provided with a high concentration electrolyte solution, preferably a saturated concentration, more preferably a supersaturation concentration. In this case, unlike a diaphragmless electrolytic cell or a diaphragm type electrolytic cell, a cell unit which is separated by two separators containing an ion-permeable membrane (ie, a cell which is not provided with an electrode and is equipped with a high-concentration electrolyte solution) The unit) has a function similar to a salt bridge, and can prepare, for example, salt-free acidic and alkaline electrolytic water, respectively, on the tank unit on the anode side and the tank unit on the cathode side. The so-called salt-free electrolyzed water refers to an electrolyte component that is not used in the electrolyzed water. Advantageously, the partitioning means is replaceable to adjust the configuration of the baffles and electrodes as desired. Advantageously, the trough body includes a cover to prevent gas escape from the electrolysis process or to facilitate collection and/or further processing of the produced gas. Advantageously, a supply portion is provided on the tank body or on the closure for the injection of salts or compounds which can act as electrolytes and/or for the injection of electrolyte-containing solutions. Preferably, the supply portion may be provided in plurality or in correspondence with each of the groove units. Advantageously, an inlet for supplying unelectrolyzed liquid or raw water to the tank body and an outlet for discharging the electrolytically treated liquid or electrolyzed water from the tank body are respectively provided in the tank body. Preferably, the inlet and the outlet are each provided with one or a plurality of grooves corresponding to each of the grooves. It will be appreciated that liquid that has not been electrolytically treated may be supplied to the tank body via the supply. In contrast, a salt or a compound which can be used as an electrolyte or a solution containing a substance of 200949017 can also be supplied to the tank body via an inlet. According to the above disclosure, although a salt or a compound which can be used as an electrolyte, a solution containing an electrolyte, and a liquid system which is not subjected to electrolytic treatment are supplied to the tank body through respective inlets or supply portions, they may be supplied to the tank through a common supply portion or inlet. Slot body. In this way, the supply unit and the inlet need only be set one by one. The technical features of the present invention, as well as other objects and advantages, will be best understood from the description and appended claims. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. The illustrated embodiments are merely preferred examples and are not intended to limit the scope of the invention. Figs. 1 to 3 show a multi-tank electrolyzed water generating apparatus 1 according to the present invention. The multi-tank electrolyzed water generating device 1 comprises a tank body 10 and two partitioning devices 12, 14, wherein the tank body 10 is divided into three tank units by means of the partitioning means 12, 14 〇1, 1, 〇.2, 1 〇.3. Separator 12, 14 can be selected from a watertight partition or a partition containing an ion penetrating membrane. The configuration of the electrodes (anode and cathode) will vary depending on the separator used, and will be explained in more detail below. Fig. 1 shows one of the possible configurations of the electrodes and separators of the multi-tank electrolyzed water generating apparatus 1 according to the present invention, wherein the partitioning means 12, 14 are each selected as a watertight partition. The trough body 1 is separated into three trough units 10.1, 10.2, 10.3 by partitions 12, 14. The tank unit 10.1 is provided with an anode 16.1, a cathode 18.1, an inlet 20.1 and an outlet 22.1. The trough units 10.2, 200949017 10.3 have the same configuration as the trough unit lo.i, and are each provided with anodes 16.2, 16.3, cathodes 18.2, 18.3, inlets 20-2, 20.3 and outlets 22.2, 22.3. In this case, the 'per-cell unit 1〇1, ι〇2, and ι〇_3 act as a diaphragmless electrolytic cell. Figure 2 shows another possible configuration of the electrodes and separators of the multi-tank electrolyzed water generating apparatus 1 according to the present invention, wherein the partitioning means 12 is a watertight partition and the partitioning means 14 is provided with a partition containing an ion penetrating membrane. board. The trough body 10 is divided into three trough units lo.i, Ο 10·2, 10, 3 by means of partitions 12, 14. The difference from Fig. 1 is that only the cell unit 10.1 is simultaneously provided with the anode 16.1 and the cathode 18.1, the cell unit 10.2 is provided with the anode 16.2, and the cell unit 10.3 is provided with the cathode 18.3. Although not shown, it is still promising that the tank unit 10.2 is provided with a cathode and the tank unit 10.3 is provided with an anode. In this case, the cell unit 10.1 acts as a diaphragmless cell, and the cell units 10.2, 10.3 act together as a diaphragm cell. Fig. 3 shows still another possible configuration of the electrodes and separators of the multi-tank electrolyzed water generating apparatus 1 according to the present invention, wherein the partitioning means 12, 14 are each selected to use a separator containing an ion-permeable membrane. The trough body 10 is divided into three trough units 10.1, 10.2, 10.3 by means of partitions 12, 14. The trough unit 10.1 is provided with an anode 16.1, the trough unit 10.3 is provided with a cathode 18.3, and the trough unit 10.2 is not provided with any electrodes. Each trough body has its own inlet and outlet, except that the trough 10.2 does not require an outlet. In the case where the slot unit 10.2 has an outlet set in advance, it is preferable to close the outlet of the slot unit 10.2. Hereinafter, a hypochlorite solution having a bactericidal function will be prepared by the apparatus of the present invention by taking an electrolytic saline solution as an example. 200949017 Please refer back to the multi-tank electrolyzed water generator 1 shown in Fig. 1. During the electrolysis process, at the anode of each cell, water h2o releases electrons to produce oxygen 02 and hydrogen ions H+, and chloride ions (:1_ release electrons to produce chlorine Cl2. Chlorine Cl2 is dissolved in brine, thus Hydrochloric acid HC1, hypochlorous acid HC10 and sodium hypochlorite NaCIO are produced. At the cathode of each cell, water H2〇 receives electrons e_ produces hydrogen H2 and hydroxide ions H_. Hydrogen oxide ions H_ combines with sodium ion Na+ Sodium hydroxide NaOH is produced. The anode and cathode disposed in each cell are not separated by an ion penetrating membrane, that is, each cell unit acts as a diaphragmless cell, so that the cell is electrolytically treated. The brine is weak acid or weak base. The cell unit 10.1 in Fig. 2 also acts as a diaphragmless cell, and the electrolysis reaction performed here is also as described above. The cell unit 10.2 and the cell unit 10.3 in Fig. 2 The groove unit 10.2 and the groove unit 10.3 act together as a diaphragm type electrolytic cell by being partitioned by a separator including an ion penetrating film, wherein the cell unit 1〇_2 configured with the anode 16.2 is an anode side electrolytic cell. , configured with a slot for the cathode 18.3 Element 1〇·3 is the cathode side electrolytic cell. At the anode of the anode side electrolytic cell, water H20 releases electrons e·produces oxygen 〇 2 and hydrogen ions H+, and chloride ion Cl_ releases electrons e· generates chlorine gas Cl2. Chlorine Cl2 is dissolved in brine, thus producing hydrochloric acid HC1, hypochlorous acid HCIO and sodium hypochlorite NaCIO. At the cathode of the cathode side electrolytic cell 'water H20 receives electrons e· generates hydrogen H2 and hydroxide ions OH·. Η· Combined with sodium ion Na + to produce sodium hydroxide NaOH. Since HCI and sodium hydroxide NaO 盐酸 are separated from each other by ion penetrating membrane, the electrolytically treated brine in tank unit 10.2 will be strong acid. In the tank unit 10.3, the brine treated by -10-200949017 will be a strong alkali. In the case shown in Fig. 3, the separators 12 and 14 all use a separator containing an ion-permeable membrane. The tank unit 10.2 is not provided with Any electrode' is equipped with a high concentration of saline, preferably a saturated saline solution, more preferably a supersaturated saline solution. At this time, the groove unit 1〇_2 acts like a salt bridge for electrical connection grooves. Unit 1〇·1 and slot unit 10.3. The cell unit 10.1 of 16.1 is an anode side electrolysis cell and is equipped with a solution containing no sodium chloride NaCl (ie, no salt), water or pure water, and a cell unit 10.3 equipped with a cathode 18.3 is a cathode side electrolysis cell and is loaded.塡 There is no (salt) solution of sodium chloride NaCl, water or pure water. At the anode of the anode side electrolysis cell, water H20 releases electrons to produce oxygen 〇2 and hydrogen ion H+. The cell unit v 10.2 is liberated through the ion-permeable membrane to the cell unit 10.1, and then electrons are released at the anode to generate chlorine gas Cl2. The chlorine gas Cl2 is dissolved in a solution containing no sodium chloride NaCl, thereby producing hydrochloric acid HC1 and hypochlorous acid HCIO. Compared to the first and second figures, sodium hypochlorite NaCIO is not formed on the anode side. At the cathode of the cathode side electrolytic cell, water H20 receives electrons e-produces hydrogen H2 ® and hydroxide ions. The sodium ion Na+ is released from the cell 10.2 through the ion penetrating membrane to the cell 10.3, and combined with the hydroxide ion OH to produce sodium hydroxide NaOH. Compared with the ones shown in Fig. 1 and Fig. 2, the difference is that the raw water supplied to the anode side electrolytic cell and the cathode side electrolytic cell without electrolytic treatment itself does not contain sodium chloride NaCl, so the anode side can be used in the electrolytic cell and the cathode. The side electrolysis cell prepares salt-free electrolyzed water. In the case of this example, a sodium hydroxide-free NaOH solution containing no salt can be prepared in the cathode side electrolytic cell. By the present invention, it can be further applied to the preparation of high-purity sodium hydroxide NaO. 200949017 In the anode side electrolytic cell (tank unit 10·1) and the cathode side electrolytic cell (tank unit 10.3), since the liquid does not contain sodium chloride NaCl, it is preferable to arrange the anode or the cathode as close as possible to the ion penetrating membrane. To facilitate conduction. Alternatively, in the initial stage of electrolysis, depending on the electrolysis product of each tank unit, for example, hydrochloric acid HC1 may be added to the anode side electrolytic cell, and for example, sodium hydroxide NaOH may be added as an electrolyte in the cathode side electrolytic cell to facilitate conduction. The electrolyte for preparing sterilizing water containing hypochlorous acid, although sodium chloride NaCl is exemplified in the above embodiment, is not limited thereto. Other chlorine-based electrolytes, chlorine-containing compounds or salts, alkali metal chlorides or alkaline earth metal chlorides such as potassium chloride KC1, calcium chloride CaCl2, magnesium chloride MgCl2, sodium hypochlorite NaOCl or hydrochloric acid may also be used. HC1 and so on. The electrolyzed water prepared by the device according to the present invention may be used directly or further, if necessary, adding an organic acid and/or an alcohol and/or a surfactant to achieve a change in its characteristics, such as changing the acid or alkali hydrazine or improving sterilization and disinfection. , cleaning and other capabilities. Although the arrangement of the electrodes in the above embodiment depends on the category ® of the partitioning means, it is advantageous to arrange the two electrodes in advance in each of the tank units without distinction. Since the so-called anode or cathode system depends on the electrode connected to the positive electrode of the power source or to the negative electrode, it is only necessary to change the connection between the electrode wires and the power source from the outside to achieve a substantially equivalent configuration to the above embodiment. For example, the connection between the interrupting electrode and the power source is interrupted, so that the electrode is left idle, and it can be considered that there is no electrode disposed. Further, for example, selectively connecting the electrode to the positive or negative electrode of the power source allows the electrode to selectively act as an anode or a negative electrode. In this way, the arrangement of the anode and the cathode can be easily carried out outside the electrolyzed aquatic product. While the invention has been described with respect to the preferred embodiments of the present invention, it is understood that many changes and modifications may be made to those of ordinary skill in the art to which the invention pertains, without departing from the spirit and scope of the invention. . Therefore, the present invention is not limited to the disclosed embodiments, but is intended to be in accordance with the scope of the appended claims. Coverage. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing an arrangement of electrodes and separators of a multi-tank type electrolyzed water generating apparatus according to the present invention; and FIG. 2 is a view showing electrodes of a multi-tank type electrolyzed water generating apparatus according to the present invention. And another configuration of the separator; and Fig. 3 shows still another configuration of the electrodes and separators of the multi-tank electrolyzed water generating apparatus according to the present invention. [Main component symbol description] 1 Multi-tank electrolyzed water generating device

10 槽本體 槽單元 分隔裝置 陽極 陰極 入口 出口 10.1、10.2、10.3 12 ' 14 16.1' 16.2' 16.3 18.1' 18.2' 18.3 20.1 > 20.2 > 20.3 22.1 ' 22.2 ' 22.310 Slot body Slot unit Separator Anode Cathode Inlet Outlet 10.1, 10.2, 10.3 12 ' 14 16.1' 16.2' 16.3 18.1' 18.2' 18.3 20.1 > 20.2 > 20.3 22.1 ' 22.2 ' 22.3

Claims (1)

200949017 十、申請專利範圍: 1· 一種多槽式電解水產生裝置,其包含: —槽本體;及 兩個分隔裝置’該槽本體係藉由該等分隔裝置分隔成 三個槽單元; 其中’該等個分隔裝置係可選用不透水的隔板或包含 離子穿透膜的隔板, 依所選用的分隔裝置而定,該等槽單元之至少二者係 ® 配置有陽極及/或陰極。 2. 如申請專利範圍第丨項之多槽式電解水產生裝置,其中 當該兩個分隔裝置係選用不透水隔板時,於該等槽單元 每一者中同時配置陽極及陰極。 3. 如申請專利範圍第1項之多槽式電解水產生裝置,其中 當該兩個分隔裝置之一者係選用不透水隔板而另一分隔 裝置係選用包含離子穿透膜的隔板時,於由該包含離子 穿透膜的隔板所分隔之兩個槽單元之一者中配置陽極, ® 而於另一槽單元配置陰極, 於遠離由該包含離子穿透膜的隔板且由該不透水隔板 所分隔之槽單元.中同時配置陽極及陰極。 4 .如申請專利範圍第1項之多槽式電解水產生裝置,其中 當該兩個分隔裝置係選用包含離子穿透膜的隔板時,於 彼此不相鄰的兩個槽單元之一者中配置陽極,而於彼此 不相鄰的兩個槽單元之另一者中配置陰極。 5.如申請專利範圍第1至4項中任一項之多槽式電解水產 -14- 200949017 生裝置,其中該等分隔裝置係可抽換的。 6. 如申請專利範圍第2或3項之多槽式電解水產生裝置, 其中注入於每一槽單元的液體包含電解質。 7. 如申請專利範圍第6項之多槽式電解水產生裝置,其中 該電解質係含氯的鹽類。 8. 如申請專利範圍第6項之多槽式電解水產生裝置,其中 該電解質係鹼金屬氯化物或鹼土金屬氯化物。 9. 如申請專利範圍第4項之多槽式電解水產生裝置,其中 €&gt; 注入於未配置陽極及陰極的槽單元的液體包含電解質。 1〇·如申請專利範圍第4項之多槽式電解水產生裝置,其中 注入於未配置陽極及陰極的槽單元的液體包含高濃度的 電解質。 11. 如申請專利範圍第9項之多槽式電解水產生裝置,其中 該電解質係含氯的鹽類。 12. 如申請專利範圍第9項之多槽式電解水產生裝置,其中 該電解質係鹼金屬氯化物或鹼土金屬氯化物。 ® 13.如申請專利範圍第1至4項中任一項之多槽式電解水產 生裝置,其中該槽本體包含一封蓋,用以防止電解過程 產生的氣體散逸。 14.如申請專利範圍第13項之多槽式電解水產生裝置,其中 於該槽本體或於該封蓋上設置一供給部,用於投入含電 解質之鹽類或化合物及/或用於注入含電解質的溶液。 1 5 ·如申請專利範圍第1至4項中任一項之多槽式電解水產 生裝置,其中在該槽本體設置一用於將未經電解處理之 -15- 200949017 液體供應至該槽本體的入口及一用於將經電解處理之液 體自該槽本體排出的出口。200949017 X. Patent application scope: 1. A multi-tank electrolyzed water generating device, comprising: a tank body; and two partitioning devices, wherein the tank system is divided into three tank units by the partitioning device; The separators may be provided with a watertight separator or a separator comprising an ion penetrating membrane, depending on the separator used, at least two of which are provided with an anode and/or a cathode. 2. The multi-tank electrolyzed water generating apparatus according to claim </ RTI> wherein, when the two partitioning means selects a water-impermeable partition, the anode and the cathode are simultaneously disposed in each of the tank units. 3. The multi-tank electrolyzed water generating apparatus of claim 1, wherein when one of the two partitioning devices is a watertight partition and the other partitioning apparatus is a partition comprising an ion penetrating membrane, Configuring an anode in one of the two cell units separated by the separator containing the ion penetrating film, and disposing the cathode in the other cell unit away from the separator containing the ion penetrating film and The anode unit and the cathode are disposed in the tank unit separated by the watertight partition. 4. The multi-tank electrolyzed water generating device according to claim 1, wherein when the two separating devices are selected from a separator including an ion penetrating film, one of two groove units not adjacent to each other The anode is disposed in the middle, and the cathode is disposed in the other of the two tank units not adjacent to each other. 5. The multi-tank electrolyzed aquatic product of any one of claims 1 to 4, wherein the separating device is replaceable. 6. The multi-chamber electrolyzed water generating apparatus according to claim 2 or 3, wherein the liquid injected into each tank unit contains an electrolyte. 7. The multi-tank electrolyzed water generating apparatus of claim 6, wherein the electrolyte is a chlorine-containing salt. 8. The multi-tank electrolyzed water generating apparatus according to claim 6, wherein the electrolyte is an alkali metal chloride or an alkaline earth metal chloride. 9. The multi-tank electrolyzed water generating apparatus of claim 4, wherein the liquid injected into the tank unit in which the anode and the cathode are not disposed contains an electrolyte. 1. A multi-chamber electrolyzed water generating apparatus according to claim 4, wherein the liquid injected into the tank unit in which the anode and the cathode are not disposed contains a high concentration of electrolyte. 11. The multi-tank electrolyzed water generating apparatus according to claim 9, wherein the electrolyte is a chlorine-containing salt. 12. The multi-tank electrolyzed water generating apparatus of claim 9, wherein the electrolyte is an alkali metal chloride or an alkaline earth metal chloride. The multi-tank electrolyzed water generating apparatus according to any one of claims 1 to 4, wherein the tank body comprises a cover for preventing gas generated by the electrolysis process from being dissipated. 14. The multi-tank electrolyzed water generating device of claim 13, wherein a supply portion is provided on the tank body or on the cover for inputting an electrolyte-containing salt or compound and/or for injecting A solution containing an electrolyte. The multi-tank electrolyzed water generating apparatus according to any one of claims 1 to 4, wherein a tank body for supplying untreated -15-200949017 liquid to the tank body is provided in the tank body. The inlet and an outlet for discharging the electrolytically treated liquid from the tank body.
TW097119696A 2008-05-28 2008-05-28 Multi-tank electrolytic water generating apparatus TW200949017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097119696A TW200949017A (en) 2008-05-28 2008-05-28 Multi-tank electrolytic water generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097119696A TW200949017A (en) 2008-05-28 2008-05-28 Multi-tank electrolytic water generating apparatus

Publications (1)

Publication Number Publication Date
TW200949017A true TW200949017A (en) 2009-12-01

Family

ID=44870752

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097119696A TW200949017A (en) 2008-05-28 2008-05-28 Multi-tank electrolytic water generating apparatus

Country Status (1)

Country Link
TW (1) TW200949017A (en)

Similar Documents

Publication Publication Date Title
JP5688103B2 (en) Electrolyzed water production method and apparatus
US8262872B2 (en) Cleansing agent generator and dispenser
KR101118795B1 (en) High efficient sodium hypochlorite generator for decreasing by-product
US9611555B2 (en) Chemical systems and methods for operating an electrochemical cell with an acidic anolyte
EP2171783A1 (en) Cleansing agent generator and dispenser
MXPA03007923A (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water.
JP4751994B1 (en) Electrolyzed water production apparatus having a diaphragm electrolytic cell and a non-diaphragm electrolytic cell
US20150329385A1 (en) An electrolyzed water generating method and a generator
JP5789900B2 (en) Sterilized electrolyzed water production apparatus, and sterilized electrolyzed water production system and method including the same
KR20120114182A (en) A seawater electrolysi and fuel cell complex system
CN101643254A (en) Multi-tank electrolytic water generating device
KR101436139B1 (en) A electrolysis apparatus
KR101312879B1 (en) Three-Compartment-Cell and One-Port typed Electrolysis Apparatus
JP2008190040A (en) METHOD FOR ELECTROCHEMICAL DECHLORINATION OF ANODE SIDE BRINE OBTAINED FROM NaCl ELECTROLYSIS
JP2012007220A (en) Apparatus and method for producing electrolytic water
TW200949017A (en) Multi-tank electrolytic water generating apparatus
JP3746932B2 (en) Electrolyzed water generator
JP4685830B2 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
JP3568290B2 (en) Electrolyzed water generator
JP6675112B2 (en) Electrolysis raw water storage type electrolyzer
KR101054266B1 (en) A equipment of electrolytic sterilizing water, manufacturing system and method thereof
JP6215419B2 (en) Electrolyzed water generating device, electrode unit, and electrolyzed water generating method
JP2009006287A (en) Production apparatus of electrolytic water, production method of electrolytic water, and electrolytic water
JP2007059196A (en) Power generating system
WO2017138047A1 (en) Water treatment apparatus