TW200948875A - Inorganic nanoparticle-polymer composite and method for producing the same - Google Patents

Inorganic nanoparticle-polymer composite and method for producing the same Download PDF

Info

Publication number
TW200948875A
TW200948875A TW098103120A TW98103120A TW200948875A TW 200948875 A TW200948875 A TW 200948875A TW 098103120 A TW098103120 A TW 098103120A TW 98103120 A TW98103120 A TW 98103120A TW 200948875 A TW200948875 A TW 200948875A
Authority
TW
Taiwan
Prior art keywords
composite
polymer
nanoparticle
fiber
nanoparticles
Prior art date
Application number
TW098103120A
Other languages
Chinese (zh)
Inventor
Satoru Ohmori
Jin-Feng Chen
huan-you Wu
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Publication of TW200948875A publication Critical patent/TW200948875A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

Disclosed is an inorganic nanoparticle-polymer composite wherein aggregation of inorganic nanoparticles is suppressed, thereby enabling high dispersion of the inorganic nanoparticles. Also disclosed is a method for producing the inorganic nanoparticle-polymer composite. Specifically disclosed is an inorganic nanoparticle-polymer composite, which is a composite of inorganic nanoparticles and a polymer. The average dispersed particle diameter of the inorganic nanoparticles in the composite is not less than 0.5 nm but not more than 30 nm, and not less than 70% of the inorganic nanoparticles in the composite are dispersed therein in such a manner that the inorganic nanoparticles have a dispersed particle diameter of not more than 30 nm.

Description

200948875 六、發明說明 【發明所屬之技術領域】 本發明係關於無機奈米粒子-高分子複合體、及其製 造方法。更詳細之本發明爲藉由無機奈米粒子的凝集受到 抑制,可使無機奈米粒子高度下分散之無機奈米粒子-高 分子複合體、及其製造方法。 g 【先前技術】 有關無機奈米粒子之合成的硏究已達到耀眼之發展。 而近年來,具有優良單分散性,均勻形態所成之奈米粒子 的合成法已陸續地被揭示。 無機奈米粒子依據尺寸效果或量子效果等,化學性、 物理性、電氣性、磁性氣、光學特性與龐大材料相當不同 。呈現如此無機奈米粒子的顯著尺寸效果或量子效果,粒 徑爲非常小時,例如侷限於粒徑3 Onm以下的情況。然而 g ,粒徑非常小時,粒子表面能量因非常高,故粒子會自發 性彼此凝集,無法將各無機奈米粒子之優良特性作爲材料 特性而充分發揮。 因此,將無機奈米粒子於增強複合材料(matrix)中 均勻地分散,且控制該分散狀態’固定化技術之確立對於 無機奈米粒子之應用硏究係爲非常重要之課題。作爲使用 於分散無機奈米粒子之增強複合材料’由電氣絕緣性及成 型性等優良之觀點來看’使用高分子材料爲最佳。 例如於高分子中分散無機奈米粒子所成的無機奈米粒 -5- 200948875 子-高分子複合體(有機.無機奈米複合材料)於電子材 料、光學材料、磁性材料、觸媒材料、汽車材料等領域中 已被使用。又,無機奈米粒子一高分子複合體於電子材料 、光學材料、磁性材料、醫藥品、化妝品、顏料、環境材 料、機械材料、記憶元件材料、超磁性材料等多數領域下 ’有關該透明性、耐熱性'強度'導電性等種種特性受到 期待。 對於無機奈米粒子-高分子複合體之製造方法,已知 大槪分爲下述3種方法。 製造無機奈米粒子-尚分子複合材料的第1方法爲, 將無機奈米粒子於直接局分子材料進行分散之方法(直接 混練法)(參照專利文獻1及2)。又,製造無機奈米粒 子-高分子複合材料之第2方法爲,將有機單體與無機奈 米粒子配合,其後聚合有機單體之方法(in-situ聚合法) (參照專利文獻3〜7 )。 然而,這些第1及第2方法中,將無機奈米粒子均勻 地分散於高分子中爲極困難,大多情況爲無機奈米粒子於 高分子中凝集而存在。因此,即使使用小尺寸的無機奈米 粒子,僅能顯示作爲無機奈米粒子的凝集塊全體之特性, 無機奈米粒子所賦予的種種功能難以表現。 又,製造無機奈米粒子-高分子複合材料的第3方法 爲離子摻合還原法(參照專利文獻8)。該方法爲主要適 用於金屬奈米粒子之分散者,具體爲於高分子材料摻合金 屬離子或金屬錯合物後,藉由還原氣體中之過熱還原處理 -6 - 200948875 ,析出高分子材料中之金屬奈米粒子的方法。 所謂該離子摻合還原法,金屬奈米粒子之均勻分散可 實現至某程度,但難控制奈米粒子之粒徑與分散性,又, 未還原之殘留金屬離子所引起的材料特性之劣化亦會產生 。因此,即使藉由離子摻合還原法,亦難得到目標之無機 奈米粒子-高分子複合體。 〔專利文獻1〕特開2000-29444 1號公報 φ 〔專利文獻2〕特開2007-3 1 4667號公報 〔專利文獻3〕特開昭62- 84 1 5 5號公報 〔專利文獻4〕特開平1 0-725 5 2號公報 〔專利文獻5〕特開20 02-179931號公報 〔專利文獻6〕特開200 7-56115號公報 〔專利文獻7〕特開2007-23 9〇22號公報 〔專利文獻8〕特開2005- 1 3 943 8號公報 φ 【發明內容】 本發明爲有鑑於上述先前技術所成者,其目的爲提供 一種藉由抑制無機奈米粒子之凝集,無機奈米粒子高度分 散之無機奈米粒子-高分子複合體、及其製造方法。 有鑑於上述課題進行詳細硏究結果,本案發明者們, 發現進行含有對金屬奈米粒子顯示配位性的金屬配位性官 能基之高分子、與金屬奈米粒子之混合,將高分子中之奈 米粒子的分散狀態藉由該金屬配位性官能基來控制,可解 決上述課題,而完成本發明。 200948875 又,有鑑於上述課題之詳細硏究結果,本案發明者們 發現使用均勻分散無機奈米粒子的高分子溶液,由高分子 溶液以靜電紡絲法(Electro Spinning法)做成纖維集合 體時,可解決上述課題,而完成本發明。 即,本發明如下述所示者: 〈1〉一種無機奈米粒子與高分子之複合體,其特徵 爲上述複合體中之上述無機奈米粒子的平均分散粒徑爲 0.5nm以上30nm以下,且上述複合體中之上述無機奈米 ^ 粒子的70%以上係以分散粒徑30nm以下的形態進行分散 〇 〈2〉上述〈1〉項所記載之複合體,其中上述無機奈 米粒子之含有量對於複合體全體而言爲1〇質量%以上。 〈3〉上述〈1〉或〈2〉項所記載之複合體,其中上 述無機奈米粒子爲選自金屬奈米粒子、金屬氧化物奈米粒 子、金屬氮化物奈米粒子、碳化物奈米粒子、及硼化物奈 米粒子、以及彼等組合所成之群。 〇 〈4〉上述〈1〉〜〈3〉項中任一所記載之複合體, 其中上述無機奈米粒子的表面係由界面活性劑所被覆。 〈5〉上述〈1〉〜〈4〉項中任一所記載之複合體’ 其中上述無機奈米粒子爲金屬奈米粒子,且上述高分子具 有金屬配位性官能基。 &lt;6〉上述〈5&gt;項所記載之複合體,其中上述金屬配 位性官能基爲含有選自氧、氮、硫、及磷所成群的至少1 種元素之基。 -8 - 200948875 〈7〉上述〈6〉項所記載之複合體,其中上述金屬配 位性官能基爲胺基及/或硫醇基。 〈8〉上述〈5〉〜〈7〉中任一所記載之複合體,其 中具有上述金屬配位性官能基之高分子係爲,具有上述金 屬配位性官能基之矽烷偶合劑與具有羥基之高分子的反應 生成物。 〈9&gt; —種製造上述〈5&gt;〜〈8&gt;項中任一所記載之 φ 複合體的方法,其特徵爲含有於具有金屬配位性官能基之 高分子分散上述金屬奈米粒子者。 〈10〉上述〈9〉項所記載之方法,其中更含有將具 有金屬配位性官能基之矽烷偶合劑與具有羥基之高分子進 行反應,做成具有金屬配位性官能基之高分子。 〈11〉上述〈1〉〜&lt;8〉項中任一所記載之複合體, 其中上述複合體中之上述無機奈米粒子的平均分散粒徑爲 lnm以上20nm以下,且上述複合體中之上述無機奈米粒 φ 子的90%以上係以分散粒徑20nm以下的形態進行分散。 〈12&gt;上述〈1〉〜〈8〉及〈11〉項中任一所記載之 複合體,其中平均纖維徑爲5 0nm以上2μπι以下之纖維的 形態。 〈1 3 &gt; —種上述〈1 2〉項所記載之纖維的形態之複合 體的製造方法,其特徵爲含有調製含有無機奈米粒子與高 分子之纖維形成用組成物、及藉由以靜電紡絲法噴出上述 纖維形成用組成物,進行纖維之紡紗。 〈14〉上述〈1〉〜〈8〉及〈11〉項中任一所記載之 -9- 200948875 複合體的製造方法,其中含有將上述〈12〉項所記載之纖 維的形態之前述複合體,以維持前述無機奈米粒子的分散 狀態之條件下進行加壓並成形。 〈15〉上述〈14〉項所記載之方法,其中隨著環境氣 體的減壓進行上述加壓。 〈16〉上述〈1〉〜〈8〉及〈11〉項中任一所記載之 複合體,其爲龐大型態。 〈1 7〉上述〈1 6〉項所記載之複合體,其經成形。 ❹ 〔發明之效果〕 本發明的無機奈米粒子-高分子複合體中,藉由無機 奈米1^1子之凝集被抑制,高度地分散無機奈米粒子。 因此’所謂本發明之無機奈米粒子-高分子複合體, 可充分利用含有之奈米粒子的特有功能。所謂如此本發明 之無機奈米粒子-高分子複合體,奈米粒子特有之功能爲 必要之各種材料,例如可作爲電子材料、光學材料、磁性 材料、醫藥品、化妝品、顏料、環境材料、機械材料、觸 媒材料、汽車材料、記憶元件材料、超磁性材料等廣泛利 用’因此作爲新穎功能性材料,係爲非常有用。又,所謂 本發明之無機奈米粒子-高分子複合體,藉由無機奈米粒 子與高分子之組合、或複數無機奈米粒子之使用、2種以 上之高分子的使用等’配合要求特性可實現具有種種功能 的複合材料之完成。 又,進一步所謂本發明之無機奈米粒子-高分子複合 -10- 200948875 體,所含有之奈米粒子的特有功能以龐大型態下,特別爲 經成形之龐大型態下可被利用。且’有關本發明之「龐大 」係爲複合體具有三次元之擴大’藉此可忽略表面效果’ 且表示可發揮作爲具有特定形狀之材料的特性的狀態之複 合體。即,有關本發明之「龐大」係使用於與微細纖維、 微細粉末等爲相反意思的槪念。 Φ 〔實施發明之最佳形態〕 以下對本發明之詳細內容作說明。 〈〈無機奈米粒子-高分子複合體〉〉 本發明的無機奈米粒子-高分子複合體爲爲,無機奈 米粒子與高分子之複合體,複合體中之無機奈米粒子的平 均分散粒徑爲〇.5nm以上30nm以下,且複合體中之無機 奈米粒子的7 0 %以上係以分散粒徑3 0 nm以下的形態下進 ❿ 行分散。 (複合體中之無機奈米粒子的分散狀態(平均分散粒 徑)) 本發明的無機奈米粒子-高分子複合體中之無機奈米 粒子的平均分散粒徑爲’ 0.5 nm以上,例如ιηιη以上或 2nm以上,且30nm以下,例如20nm以下或i〇nm以下。 平均分散粒徑爲充分變小時,可有效地表現奈米粒子之特 有特性。 -11 - 200948875 且,本發明之無機奈米粒子-高分子複合體所含有之 無機奈米粒子的「平均分散粒徑」爲,使用透過型電子顯 微鏡(FEI公司製,商品名:TECNAI G2 ),於加速電壓 12 0kV下、或使用分析電子顯微鏡(AEM)(日本電子公 司製,商品名:JEM2010),於加速電壓200kV下,實施 無機奈米粒子-高分子複合體之觀察及攝影,其後、將取 得之影像,使用影像解析軟體(NEXUS NEW QUBE),對 於複合體中孤立分散的各凝集粒子或一次粒子,進行要求 影像上具有同一面積之圓徑的影像解析,得到該徑之平均 値之値。 (複合體中之無機奈米粒子的分散狀態(分散粒徑分 佈)) 本發明的無機奈米粒子-高分子複合體中,分散於複 合體中之無機奈米粒子的70%以上,例如90%以上爲分散 粒徑30nm以下,例如20nm以下或10nm以下之形態下分 散。又,特別爲本發明之無機奈米粒子一高分子複合體中 ,分散粒徑爲50nm以上之凝集粒子於實質上並不存在。 本發明的無機奈米粒子-高分子複合體中之無機奈米 粒子爲高度分散時,藉由抑制光散亂,對光學材料之應用 展開成爲可能。又,欲擴大奈米粒子之表面積,具有該奈 米粒子之功能特性可更明確地表現。且,無機奈米粒子爲 特高度下分散時,例如無機奈米粒子之70 %以上爲l〇nm 以下的形態下分散時,將奈米粒子之特有量子效果等爲準 -12- 200948875 的功能亦可表現於複合體上’可更擴充展開其應用。 且,所定分散粒徑(例如3 Onm )以下之形態下分散 之粒子(即’凝集粒子或一次粒子)的比率’如上述「平 均分散粒徑」之說明。以影像解析軟體(NEXUS NEW QUBE )所得之分散粒徑分佈爲基準,藉由下述式求得之 値: {以所定分散粒徑(例如3 Onm )以下之形態下分散的 Φ 粒子之數}/{全粒子之數}xl〇〇 ( % ) (無機奈米粒子之含有量) 本發明的無機奈米粒子-高分子複合體中之金屬奈米 粒子的含有量(塡充率)較佳爲對於複合體全體而言爲5 質量%以上、9質量%以上、1 〇質量%以上、1 5質量%以上 、20質量%以上或25質量%以上。又,本發明的無機奈米 粒子-高分子複合體中之無機奈米粒子的含有量(塡充率 〇 )較佳爲以體積分率對於複合體全體而言爲0.5體積%以 上、〇·8體積%以上、1.0體積%以上、1_5體積%以上、3 體積%以上、4體積%以上、5體積%以上、或8體積%以 上。含有量(塡充率)爲充分多時,奈米粒子的功能可充 分發揮,所得之複合體的應用可能性可更爲擴展。例如含 有量(塡充率)爲充分大時,高密度記錄媒體之記錄密度 等巨大材料特性可有效率地表現。 且’複合體中之無機奈米粒子的含有量(塡充率)’ 例如可藉由熱重量天秤(TGA )(理學電機公司製,商品 -13- 200948875 名:TGA8 120)進行測定之値。 (無機奈米粒子之一次粒徑) 且,本發明之無機奈米粒子一高分子複合體所使用的 無機奈米粒子爲,分散於無機奈米粒子一高分子複合體前 ,具有3 Onm以下,特佳20nm以下’更特佳爲1 0nm以下 之平均一次粒徑者爲佳。使平均一次粒徑充分小時’因可 有效果地表現奈米粒子所特有之特性’故可抑制光散亂’ 藉此,於可拓展對於光學材料之應用的觀點來看爲佳。 且,將無機奈米粒子分散於無機奈米粒子一高分子複 合體前之「平均一次粒徑」爲,乾燥無機奈米粒子之分散 液,將所得之乾燥物藉由透過電子顯微鏡(TEM )進行攝 影(34萬倍或75萬倍),對於取得之影像使用影像解析 軟體(NEXUS NEW QUBE),對於100個一次粒子,進行 要求影像上具有同一面積之圓徑的影像解析,得到該徑之 平均値。 (無機奈米粒子之材料) 本發明所使用的無機奈米粒子之材料,並無特別限定 。本發明中,可使用所謂之無機材料的奈米粒子,基於可 表現複合體之功能或特性,可適宜選擇並使用。 又’本發明中之無機奈米粒子可爲單獨1種、或亦可 同時使用複數種。且,本發明中之無機奈米粒子不僅爲單 獨無機材料之粒子,亦可爲具有複數無機材料部分的無機 -14- 200948875 奈米粒子(例如,一層以上之外殼及核心所成之核心-外 殼型無機奈米粒子)。即,例如本發明中之無機奈米粒子 可爲將金屬奈米粒子(具體爲合金奈米粒子)、或單獨金 屬或亦可爲將合金作爲相成分之複數金屬相所成之奈米粒 子(例如,由一層以上之外殼及核心所成之核心-外威型 金屬奈米粒子)。又,本發明中之無機奈米粒子並未限定 於球狀形狀,可爲中空型奈米粒子、或奈米柱。 且,本發明中之無機奈米粒子可爲單獨1種、或可複 數種同時使用。 (無機奈米粒子之材料(金屬奈米粒子)) 本發明所使用的無機奈米粒子,例如可爲金屬奈米粒 子。金屬奈米粒子爲,量產技術已確立,故功能表現有著 多數選擇肢,期待對較多領域之發展。 本發明所使用的金屬奈米粒子,雖無特別限定,例如 可舉出含有元素符號表所記載的Au、Ag、Cu、Pt、Pd、 Ni、Rh、Co、Ru、Fe、Mo等過渡金屬作爲至少i成分者 。本發明中,考慮到形成複合體後之安定性,特別由耐氧 化性之觀點來看,使用 Au、Ag、Pt、Pd爲佳,且由可得 到兼具低成本性與耐氧化性之材料來看,使用銀(A g )爲 特佳。 且本發明所使用的金屬奈米粒子可爲含有上述金屬中 2種類以上的合金(例如FePd' FePt等)、或亦可爲具有 核心外殼結構之奈米粒子。 -15- 200948875 (無機奈米粒子之材料(金屬奈米粒子以外)) 本發明所使用的無機奈米粒子’例如可爲金屬奈米粒 子以外之無機奈米粒子。如此無機奈米粒子爲ZnO、Sn〇2 、Fe203、Fe304、Ti02 等金屬氧化物、或 CdSe、CdS、 CdTe、ZnS、ZeSe、ZeTe、HgS、HgSe 等半導體奈米粒子 亦可。將二氧化矽、矽、陶瓷等作爲代表例之狹義無機奈 米粒子亦可。又’如此無機奈米粒子可爲含有金屬奈米粒 子所舉出的上述金屬之氮化物(例如FeN3)、碳化物、 或硼化物。 (無機奈米粒子之被覆) 本發明所使用的無機奈米粒子可直接爲無機奈米粒子 ,或該表面可藉由具有與無機奈米粒子之親和性、配位性 、及結合性等的表面修飾分子進行保護者爲佳。使用藉由 表面修飾分子所被覆之無機奈米粒子時’可抑制奈米粒子 彼此之凝集’於一次粒子狀態下可安定地存在。藉此’製 造無機奈米粒子-高分子複合體之本發明方法中,可形成 較高度之分散狀態。 作爲於無機奈米粒子表面可吸附的官能基,例如可舉 出含有有機系硫基(_S=〇、-SH)等硫之基、含有醯胺基 、胺基(-NH2 )等氮原子之基、羥基、羧基等。又,作爲 於無機奈米粒子表面可吸附的官能基,例如可舉出陽離子 性基(例如銨基(可藉由羥基及/或碳數1〜6之直鏈或分 -16- 200948875 支鏈狀烷基所取代)、吡啶鑰基及鱗基)、陰離子性基( 例如羧基、磺酸酯基、磺酸基、磷酸基及膦酸基及其氯化 合物)等。 且,以不損害本發明之效果下,表面修飾分子可爲只 使用一種或亦可爲2種類以上之配合物的使用。又,表面 修飾分子之量爲,比無機奈米粒子之表面全體被覆一層之 量更多之過剩量時爲佳。 0 作爲表面修飾分子,特別可使用如界面活性劑之有機 配位子。表面以界面活性劑被覆,特別爲本發明中所使用 的無機奈米粒子成爲逆膠粒型無機奈米粒子時,可抑制無 機奈米粒子之凝集,可直接以一次粒子的型式下均勻分散 於溶劑中。藉此,製造無機奈米粒子一高分子複合體之本 發明的方法中,藉由氫鍵、離子鍵、或電荷作用等,可形 成更高度之分散狀態。 被覆金屬奈米粒子之界面活性劑,僅爲可抑制複合化 φ 前的金屬奈米粒子之凝集者即可,並無特別限定,例如作 爲親水性基,可舉出含有選自胺基、硫醇基、羧基、及羥 基所成群之至少1種基的界面活性劑。彼等中’由與金屬 之相互作用較強的觀點來看,使用具有胺基或硫醇基之界 面活性劑爲佳,其中亦以可溶解多數高分子之觀點來看, 使用烷基胺爲最佳。 (高分子) 作爲構成本發明之無機奈米粒子一高分子複合體的高 -17- 200948875 分子,可使用任意材料,此爲使用本發明之無機奈米粒子 -高分子複合體的用途、可藉由與經分散之無機奈米粒子 的親和性等爲依據做決定。 〈〈無機奈米粒子一高分子複合體(第1樣式)&gt; &gt; 本發明的無機奈米粒子-高分子複合體之第1樣式中 ,高分子具有金屬配位性官能基。該第1樣式中,將具有 金屬配位性官能基之高分子中之金屬配位性官能基作爲配 0 位子(ligand ),使複合體中之金屬奈米粒子安定化,其 結果可防止金屬奈米粒子之凝集。以下對於本發明之無機 奈米粒子-高分子複合體的第1樣式做說明。 (具有金屬配位性官能基之高分子) 本發明的無機奈米粒子-高分子複合體之第1樣式所 使用的高分子爲,對於金屬奈米粒子具有吸附能之具有金 屬配位性官能基的高分子。 0 (具有金屬配位性官能基之高分子(金屬配位性官能 基)) 作爲具有高分子之金屬配位性官能基,僅爲對金屬奈 米粒子具有吸附能者即可,並無特別限定,含有選自氧、 氮、硫、及磷所成群之至少1種元素的基爲佳。僅爲選自 這些群之至少1種基即可,可容易配位於金屬上。 作爲含有選自氧、氮、硫、及磷所成群之至少1種元 -18- 200948875 素的基,例如可舉出羥基(-〇H )、羰3 胺基、胺基(-NH2 )、異氰酸酯(-CN ) 烷酮基、有機系磷酸基(-p=〇)、有书 、-SH)等。這些基可單獨1種、或存在 。彼等中,因與金屬奈米粒子之相互作用 基、有機系硫基、有機系磷酸基爲佳,且 子之相互作用最強之觀點來看,以有機系 Ο (具有金屬配位性官能基之高分子( 作爲具有如此金屬配位性官能基的高 解於奈米粒子之分散媒的溶劑者即可,並 如可舉出以下高分子。 作爲具有羥基(-OH )之高分子,可 PVA )、聚乙烯縮醛(PVB、PVF等)、 (TAC )、二乙醯基纖維素(DAC )、聚 φ 聚羥基乙基甲基丙烯酸酯(PHEMA)等。 作爲具有羯基(_C=〇)之高分子, 聚甲基甲基丙嫌酸酯(PMMA)、聚甲基 酯(PC)、聚乳酸、聚丙烯醯胺、聚苯胺 作爲具有異氰酸酯(-CN)之高分子 、聚丙烯腈(PAN )、聚乙烯吡啶、聚乙) 作爲具有有機系磷酸基(_P=0)、】 S = 0/-SH )之高分子,例如可舉出聚乙烯 醚楓(PES )等。 g ( -C = 0 )、醯 、吡啶基、吡咯 瓷系硫基(-S = 0 2種以上之狀態 丨比較強,故以胺 .由與金屬奈米粒 硫基爲最佳。 高分子骨架)) 分子,僅爲可溶 無特別限定,例 舉出聚乙烯醇( 三乙醯基纖維素 -4-羥基苯乙烯、 可舉出醯胺基、 丙烯酸、聚碳酸 等。 ,可舉出吡啶基 睹吡咯烷酮等。 或有機系硫基(_ 膦酸、聚颯、聚 -19- 200948875 (具有金屬配位性官能基之高分子(製造方法)) 本發明所使用的具有金屬配位性官能基之高分子爲, 具有金屬配位性官能基之矽烷偶合劑與具有羥基之高分子 進行反應所得者爲佳。藉由將具有金屬配位性官能基之矽 烷偶合劑與具有羥基之高分子進行反應,可容易作成金屬 配位性宫能基經導入之高分子。又,因使用矽烷偶合劑, 金屬奈米粒子與具有金屬配位性官能基之高分子的鍵結, 可於金屬配位性官能基以外之部分進行、或藉由於金屬配 位性官能基部分鍵結矽烷偶合劑,可得到較強金屬奈米粒 子,其結果可進一步提高金屬奈米粒子之分散性。 此所謂「具有金屬配位性官能基之矽烷偶合劑」爲, 具有上述金屬配位性官能基之1種或2種以上的矽烷偶合 劑。作爲矽烷偶合劑,僅爲具有烷氧基,將矽含於骨架之 化合物即可,並無特別限定。例如可舉出乙烯三乙氧基矽 烷、γ-甲基丙烯氧基丙基三甲氧基矽烷、γ-甲基丙烯氧基 丙基甲基二甲氧基矽烷、γ-甲基丙烯氧基丙基三甲氧基矽 烷、γ-胺丙基三甲氧基矽烷、γ-胺丙基三乙氧基矽烷、γ-(2-胺乙基)胺丙基三甲氧基矽烷、γ-( 2-胺乙基)胺丙 基甲基二甲氧基矽烷、2-氰基乙基三甲氧基矽烷、3-氰基 丙基三甲氧基矽烷、γ-氫硫基丙基三甲氧基矽烷、γ-氫硫 基丙基甲基二甲氧基矽烷等。 所謂該方法爲,與金屬之相互作用可使得較強基導入 於高分子。使用具有胺基、氫硫基之矽烷偶合劑者爲佳, -20- 200948875 且因與金屬奈米粒子之相互作用爲最強’故使用具有氫硫 基之矽烷偶合劑爲最佳。 又,此所謂「具有羥基之高分子」爲,成爲具有金屬 配位性官能基之高分子的骨架之高分子。而藉由成爲上述 「具有金屬配位性官能基之矽烷偶合劑」的偶合部分之烷 氧化物基與「具有羥基之高分子」進行反應,可於高分子 中導入金屬配位性官能基。 因此,作爲「具有羥基之高分子」,具有成爲最終的 所要得之「具有金屬配位性官能基之高分子」的骨架之高 分子骨架,且於該骨架存在羥基即可,並無特別限定。即 ,具備羥基者即可,並無特別限定。 (添加劑等) 又,僅不損害本發明之效果的範圍下,本發明之無機 奈米粒子-高分子複合體中,配合目的可含有添加劑等。 例如可含有抗氧化劑、抗凍結劑、pH調整劑、隱蔽劑、 著色劑、增塑劑、特殊功能劑等添加劑、或彈性體或樹脂 等。 任意添加劑等添加方法並無特別限定,添加於所使用 的金屬配位性高分子本身、或添加於金屬奈米粒子之分散 媒皆可。 〈〈無機奈米粒子-高分子複合體之製造方法(第1 樣式)〉〉 -21 - 200948875 以下對於本發明之複合體的製造方法作說明。本發明 的無機奈米粒子-高分子複合體之製造方法,並無特別限 定,例如可藉由含有作成具有金屬配位性官能基之高分子 的反應步驟、與於高分子分散金屬奈米粒子之分散步驟的 以下方法所製造。 (反應步驟) 所謂反應步驟爲,將具有金屬配位性官能基之矽烷偶 合劑與具有羥基之高分子進行反應,作成具有金屬配位性 官能基之高分子的步驟。該步驟中,例如於室溫下,將具 有金屬配位性官能基之矽烷偶合劑與具有羥基之高分子於 溶劑中溶解或分散後,該溶劑中反應彼等,得到具有金屬 配位性官能基之高分子。且,矽烷偶合劑與羥基之偶合反 應可由二次元1H-29Si HMBC光譜進行確認。 且,反應步驟所使用的溶劑爲,可溶解或分散具有金 屬配位性官能基之矽烷偶合劑與具有羥基之高分子的溶劑 即可’並無特別限定,例如可使用鹵素系、醚系等溶劑爲 佳。 (分散步驟) 所謂分散步驟爲,於上述反應步驟所得之具有金屬配 位性官能基之高分子上分散金屬奈米粒子之步驟。本發明 中’分散方法並無特別限定,例如將具有金屬配位性官能 基之高分子與金屬奈米粒子進行溶液摻合或溶融摻合的方 -22- 200948875 高分子複合體(第2樣式)〉〉 子-高分子複合體之第2樣式中 -高分子複合體爲,極細纖維形 5〇nm以上2μιη以下之纖維的形 無機奈米粒子一高分子複合體, 子均勻地分散的高分子溶液,由 形成。本發明之複合體的製造方 凝集抑制爲一次元極細纖維內, 子彼此間的靜電反發力,可有效 又,纖維之纖細部分,即使溶劑 粒子之均勻分散。即,本發明的 合體之第2樣式中,藉由控制奈 子材料中,可實現一次粒子之狀 性。 法。 較佳爲藉由溶液摻合 之高分子與金屬奈米粒子 合體分散液,將該分散液 佈、轉動塗佈、濺射、噴 上,其後,可藉由蒸發溶 屬奈米粒子而得到複合體 Φ 〈〈無機奈米粒子一 本發明的無機奈米粒 ,本發明的無機奈米粒子 態,特別爲平均纖維徑爲 育B 〇 VC*、 該極細纖維之形態的 如後記使用將無機奈米粒 Φ 該溶液藉由靜電紡絲法而 法中,一邊將奈米粒子的 藉由利用加電荷之奈米粒 地防止奈米粒子之凝集。 瞬間蒸發,亦可實現奈米 無機奈米粒子-高分子複 米粒子的凝集空間,高分 態下的奈米粒子之高分散 ,例如將具有金屬配位性官能基 溶解或分散於共通溶劑後得到複 於適當基板上藉由流延、或棒塗 霧等方法使該分散液塗佈於基板 劑,於高分子中可均勻地分散金 -23- 200948875 (高分子複合體之平均纖維徑) 本發明的無機奈米粒子-高分子複合體纖維之平均纖 維徑一般爲 50nm以上 2μιη以下或 4μιη以下,較佳爲 100nm以上1 μιη以下,更佳爲1 50nm以上500nm以下或 800nm以下之範圍。 僅使平均纖維徑充分縮小,會使纖維內分散之奈米粒 子的可凝集空間由三次元限定至一次元,其結果,與藉由 濺射法等所得之薄膜作比較,可物理性地防止奈米粒子之 凝集。又,隨著平均纖維徑變小,因纖維表面積會大幅度 增大,故藉由靜電紡絲法將纖維形成用組成物由噴嘴噴射 時,藉由高速延伸使的多數溶劑可瞬間蒸發,其結果,可 於奈米粒子進行凝集前,固定於極細纖維內。即,本發明 中,藉由彼等二者之相乘效果,高分子增強複合材料( matrix )中之奈米粒子的凝集確率會大幅度減低,可實現 將奈米粒子幾乎以一次粒子之狀態下高度分散。 另一方面,平均纖維徑過小時,難以安定下製造出含 有奈米粒子之纖維。又,藉由纖維之對長度方向的強烈延 伸力,恐怕會使奈米粒子之應力凝集。 當然所得之纖維的纖維徑中可具有偏差。然而,僅爲 上述平均纖維徑之範圍,對於分散於纖維之奈米粒子的分 散性並無太大影響。且,如此所謂「平均纖維徑」爲’由 將極細纖維之堆積物作爲取樣品之光學顯微鏡照片’隨機 所選出的25根纖維之直徑平均値。 由本發明的無機奈米粒子-高分子複合體所成之纖維 -24- 200948875 爲,藉由含有維持無機奈米粒子之分散狀態的條件下進行 加壓並成形之方法,可使其成爲龐大型態。於此,該成形 中,高溫過高時或所加之壓力過大時,高分子鏈之運動性 會變高,對於奈米粒子之保持力會降低,無法維持纖維中 之奈米粒子的分散狀態。另一方面,以適當溫度及壓力下 進行成形時,一邊保持奈米粒子下,一邊增加高分子鏈之 運動性而進行纖維間之融著,藉此維持纖維內之無機奈米 Φ 粒子的分散狀態下,可成形爲龐大功能性材料。即,維持 無機奈米粒子之分散狀態下,藉由加壓可成形之條件爲, 維持高分子爲無機奈米粒子之分散狀態,且高分子具有充 分成形性之條件。 如此條件爲,例如構成纖維狀無機奈米粒子-高分子 複合體之高分子爲單一非結晶性高分子時,如此纖維狀無 機奈米粒子-高分子複合體於高分子之玻璃轉移溫度附近 溫度,例如高分子之玻璃轉移溫度±10°C之範圍下,可經 〇 加壓而成形。又,例如構成纖維狀本發明之無機奈米粒子 一高分子複合體之高分子’由結晶性高分子實質構成時或 將結晶性高分子成分作爲主成分時,如此纖維狀無機奈米 粒子-高分子複合體於該軟化點附近之溫度,例如該軟化 點±l〇°C之範圍下,可加壓而成形。又進一步例如構成纖 維狀本發明之無機奈米粒子-高分子複合體之高分子爲結 晶性高分子成分與非結晶性高分子之摻合時,如此纖維狀 無機奈米粒子一高分子複合體於來自結晶性高分子之溶點 與高分子構成成分中之來自非結晶性高分子之玻璃轉移溫 -25- 200948875 度之間的適當溫度範圍下,可加壓而成形。於此,纖維狀 無機奈米粒子-高分子複合體之加壓可隨意或隨著環境氣 體之減壓而進行,可促進纖維間之空隙減少。且,纖維狀 無機奈米粒子-高分子複合體之成形,一般於比高分子之 熔點更低溫度下進行爲佳。此爲比高分子之熔點還高之溫 度下進行時,分散於高分子中之奈米粒子可能會再凝集。 因此,例如由本發明之無機奈米粒子-高分子複合體 所成之纖維,使用所得之纖維的堆積物,於表面施予塗佈 或藉由真空吸附而減少纖維間之空隙製得薄膜,將所得之 薄膜重疊,於所使用的高分子之玻璃轉移點(Tg)以下的 溫度下藉由熱壓,可展開龐大材料。此時將奈米粒子之功 能特性可作爲龐大材料特性表現。 (高分子) 本發明的無機奈米粒子-高分子複合體之第2樣式所 使用的高分子爲曳絲性之高分子即可,並無特別限定。 作爲曳絲性之觀點下較佳高分子材料,例如可舉出聚 乙烯氧化物、聚乙烯醇、聚乙烯縮醛、聚乙烯酯、聚乙烯 醚、聚乙烯吡啶、聚丙烯醯胺、醚纖維素、果膠、澱粉、 聚氯化乙烯、聚丙烯腈、聚乳酸、聚乙醇酸、聚乳酸-聚 乙醇酸共聚物、聚己內酯、聚丁烯琥珀酸酯、聚乙烯琥珀 酸酯、聚苯乙烯、聚碳酸酯、聚六伸甲基碳酸酯、聚芳酯 、聚乙烯異氰酸酯、聚丁基異氰酸酯、聚甲基甲基丙烯酸 酯' 聚乙基甲基丙烯酸酯、聚正聚正丙基甲基丙烯酸酯、 -26- 200948875 聚正丁基甲基丙烯酸酯、聚甲基丙烯酸酯、聚乙基丙烯酸 酯、聚丁基丙烯酸酯、聚對苯二甲酸乙二醇醋、聚對苯二 甲酸三甲醇醋、聚萘二酸乙二醇酯'聚對苯二甲醯對苯二 胺、聚對苯二甲醯對苯二胺_3,4,_氧基對苯二甲醯二苯 二胺共聚物、聚間苯二甲醯間苯二胺、纖維素二乙酸酯、 纖維素三乙酸酯、甲基纖維素、丙基纖維素、苯甲基纖維 素、絲蛋白、天然橡膠、聚乙烯乙酸酯、聚乙嫌甲酸、聚 0 乙烯乙醚、聚乙烯正丙醚 '聚乙烯異丙醚、聚乙烯正丁醚 、聚乙烯異丁醚、聚乙烯第三丁醚、聚偏氯乙烯、聚(N_ 乙烯吡咯烷酮)、聚(N -乙烯咔唑)、聚(4 _乙烯吡啶) 、聚乙烯甲酮、聚甲基異丙烯基酮、聚環氧丙烷、聚環戊 燦氧化物、聚苯乙燦碾、尼龍6、尼龍66、尼龍II、尼龍 12、尼龍610、尼龍612、及這些共聚物等。 本發明中’除曳絲性以外,使用具有無機奈米粒子配 位性之較高官能基的高分子材料時,可使無機奈米粒子更 φ 高度分散,故較佳。 (高分子(無機奈米粒子配位性官能基)) 作爲本發明所使用的高分子所具有的較佳無機奈米粒 子配位性官能基,僅對無機奈米粒子具有捕獲能者即可, 並無特別限定。本發明中,藉由所使用的無機奈米粒子的 種類,可選出較佳官能基。 作爲本發明所使用的高分子所具有之較佳官能基,例 如可舉出、羧酸基(亦含有酸酐、羧酸鹽)、胺基、亞胺 -27- 200948875 基、醯胺基、吡啶基、磷酸基、磺酸基、醇性羥基、硫醇 基、二硫化物基、腈基、異腈基、炔烴等。 作爲含有羧酸基之高分子,例如可舉出具有聚乳酸、 聚乙醇酸、聚丙烯酸、聚甲基丙烯酸、苯乙烯-馬來酸酐 共聚物、乙烯·馬來酸酐共聚物等不飽和羧酸或不飽和羧 酸酐之羧酸變性高分子等。 作爲含有胺基之高分子,例如可舉出聚伸烷基亞胺、 聚烯丙基胺、聚乙烯胺、二烷基胺烷基葡聚糖、聚賴胺酸 、聚鳥胺酸、聚組胺酸、聚精胺酸、氮丙啶(乙烯亞胺) 、核酸等。 作爲含有亞胺基之高分子,例如可舉出聚醯亞胺;作 爲含有醯胺基之高分子,例如可舉出聚醯胺(尼龍),·作 爲含有吡啶基及其衍生物之高分子,例如可舉出聚乙烯吡 啶、聚(4-乙烯吡啶):作爲含有磷酸基之高分子,例如 可舉出磷酸酯、聚芳基醚楓;作爲含有磺酸基之高分子, 例如可舉出颯化聚苯乙烯;作爲含有醇性羥基之高分子, 例如可舉出聚乙烯醇、纖維素及其衍生物;作爲含有腈基 之高分子,例如可舉出聚丙烯腈等。 本發明中經分散之粒子爲金屬奈米粒子時,特別可使 用於有關第1樣式之無機奈米粒子-高分子複合體中所說 明之具有金屬配位性官能基之高分子。 作爲將無機奈米粒子配位性官能基導入於高分子之方 法,雖無特別限定。例如可爲預先於編成單位導入後進行 共聚合而導入之方法、或形成高分子後藉由反應導入官能 -28- 200948875 基之方法。 作爲本發明中所使用的較佳之具有無機奈米粒子配位 性官能基的高分子,可舉出聚乙烯醇縮丁醛(PVB)。僅 爲聚乙烯醇縮丁醛,且將主鏈之乙烯結構、與側鏈之OH 基及縮醛基的2種類官能基之存在率控制於所定比率下, 可將奈米粒子之分散性控制於較高高度。 (高分子(分子量)) 所使用的高分子中,無庸置疑地具有曳絲性,若進一 步考慮到所得之極細纖維的自立性、機械強度、加工性等 時,以5萬〜1 0 0萬之範圍的分子量爲佳。如此以外,若 考慮到可更安定地分散無機奈米粒子時,將高分子之分子 量設定爲8萬〜50萬之範圍爲最佳。 (分散助劑) 本發明之無機奈米粒子-高分子複合體中’除上述無 機奈米粒子與高分子以外,欲防止無機奈米粒子之凝集’ 可含有可實現安定分散之分散助劑爲佳。使用分散助劑時 ,將無機奈米粒子與高分子之結合可於無機奈米粒子配位 性官能基以外的部分進行、或於官能基部分結合分散助劑 ,可成爲更強之粒子捕獲基,其結果可進一步提高無機奈 米粒子之分散性。 作爲分散助劑,可提高無機奈米粒子之分散性者即可 ,並無特別限定,於一端,於與高分子之親和性較佳的疏 -29 - 200948875 水基或於高分子具有親和性、配位性、結合性(交聯)官 能基,於另一端,具有與含有具有奈米粒子配位性之氮、 硫、磷等元素之官能基或奈米粒子的表面修飾分子進行反 應之官能基的兩親媒性化合物爲佳。 作爲分散助劑,例如可舉出碳數6〜22的羧酸、磺酸 、亞磺酸、膦酸等酸、或碳數6〜22的胺等鹼性有機化合 物等。本發明中,亦以使用具有烷氧基,將矽含於骨架的 矽烷偶合劑爲佳。特別爲,使用本發明中作爲無機奈米粒 子的金屬奈米粒子時,使用具有與胺基、氫硫基等金屬之 相互作用較強的基之矽烷偶合劑爲佳。 且,以不損害本發明之效果的限定下,分散助劑可僅 使用一種或合倂使用2種類以上。 (添加劑等) 又,僅不損害本發明之效果的範圍下,本發明之無機 奈米粒子-高分子複合體中,配合目的可含有添加劑等。 例如可含有抗氧化劑、抗凍結劑、pH調整劑、隱蔽劑、 著色劑、增塑劑、特殊功能劑等添加劑、或彈性體或樹脂 等。 任意添加劑等添加方法雖無特別限定,可添加於所使 用的高分子本身、或添加於無機奈米粒子之分散媒中、或 添加於纖維形成用組成物等之任一情況。 〈〈無機奈米粒子-高分子複合體之製造方法(第2 -30- 200948875 樣式)〉〉 以下對於本發明之無機奈米粒子-高分子複合體的製 造方法作說明。本發明的無機奈米粒子-高分子複合體爲 ,使用均勻分散無機奈米粒子之高分子溶液,由該溶液以 靜電紡絲法作成纖維集合體而得到。具體爲含有以下「纖 維形成用組成物調製步驟」與「紡絲步驟」者。 本發明中,將無機奈米粒子於高分子溶液中作預先高 度分散,藉由將該奈米粒子分散之高分子溶液使用於靜電 紡絲法,延伸具有曳絲性之高分子而形成超極細纖維。本 發明中,因形成纖維,其空間可自奈米粒子之凝集可能性 較高的三次元空間控制至一次元空間。其結果,可大幅度 減低奈米粒子之凝集機率。又,纖維若不細,表面積會極 端增大,故進行靜電紡絲時,大量溶劑會瞬間被蒸發,可 極力避開因溶劑蒸發所引起的奈米粒子之凝集。 (纖維形成用組成物調製步驟) 纖維形成用組成物調製步驟爲,調製含有將無機奈米 粒子與高分子作爲必須成分之纖維形成用組成物的步驟。 作爲所使用的高分子,如上述具有無機奈米粒子配位性官 能基者爲佳。又,纖維形成用組成物中含有上述分散助劑 爲佳。 具體爲,首先將無機奈米粒子於溶劑A中一邊攪拌下 一邊展開,繼續視必要添加表面修飾分子。作爲溶劑A, 僅爲可溶解表面修飾分子者即可,並無特別限定。可單— -31 - 200948875 溶劑、或複數溶劑所得之混合溶劑系。又,表面修飾分子 之添加量爲’與可將粒子表面全體一層被覆的量相比爲過 剩量爲佳。 繼續,將高分子溶解於溶劑B,視必要亦將分散助劑 同時展開。作爲溶劑B,即使於溶劑A之存在下亦可完全 溶解高分子,且可沈澱無機奈米粒子、或不使其凝集者即 可,並無特別限定。可單一溶劑、或複數溶劑所得之混合 溶劑系。 其次,混合調製之溶劑A與溶劑B,使用攪拌等公知 分散裝置,藉由於高分子分散無機奈米粒子,得到無機奈 米粒子-高分子複合體溶液。分散處理一般於室溫下,進 行0.5〜3小時程度,但視必要亦可進行加熱。且,欲實 現高濃度、高分散性時,於分散處理中可進行超音波照射 、或使用玻璃珠硏磨等分散補助裝置爲佳。 最後,將所得之無機奈米粒子-高分子複合體溶液, 使用適當溶劑,於靜電紡絲稀釋至適當濃度’最終得到纖 維形成用組成物。此時,若考慮到纖維形成用組成物的黏 度與含於該組成物之溶劑之瞬間蒸發條件’纖維形成用組 成物中之成爲纖維材料之成分的濃度以2〜30質量%之範 圍爲佳。且欲強化奈米粒子之分散性時’成爲纖維材料之 成分的濃度以4〜1 0質量%之範圍爲佳。 (纺絲步驟) 所請紡絲步驟爲,藉由靜電紡絲法噴出上述所得之纖 -32- 200948875 維形成用組成物,得到纖維之步驟。以下對於紡絲步驟中 之紡絲方法及紡絲裝置作說明。 其中’所謂「靜電坊絲法」或「Electro Spinning法 」爲,將含有纖維形成性之基質等的溶液或分散液,於電 極間所形成之靜電場中吐出,將溶液或分散液往電極方向 曳絲,形成纖維狀物質之方法。且,藉由紡絲所得之纖維 狀物質,一般爲層合於捕集基板之電極上。 φ 又,所形成之纖維狀物質,不僅含有含於纖維形成用 組成物之纖維形成性溶質或溶劑等完全餾去的狀態,亦含 有彼等含於纖維狀物質之直接殘留的狀態。 且,一般靜電紡絲可於室溫下進行,本發明中,溶劑 等揮發不充分時,視必要可控制紡絲環境氣體之溫度、或 可控制捕集基板之溫度。 圖5表不使用於靜電紡絲法之裝置一態樣圖。圖5所 示靜電紡絲裝置中,於注射器2的先端部設置以高電壓產 ❹ 生器4外加電壓的注射針狀噴出嘴1,將纖維形成用組成 物3導入至噴出嘴1的先端部。且,如圖5所示裝置中, 雖使用高電壓產生器4,但可使用適宜手段。 其次,將噴出嘴1之先端配置爲自纖維捕集電極5之 適切距離,將纖維形成用組成物3由噴出嘴1之先端部噴 出,於噴出嘴1之先端部分與纖維捕集電極5之間可形成 纖維狀物質。 欲形成靜電場之電極僅顯示導電性者即可,可爲金屬 、無機物、或有機物等任一種。又,亦可設置絕緣物上顯 200948875 示導電性的金屬、無機物、或有機物等薄膜。 又’靜電場爲一對或複數電極間所形成者,形成靜電 場之任一電極上可外加高電壓。此亦含有例如使用電壓値 相異的高電壓電極2個(例如15kV與1 OkV )、與1個通 地連接電極之合計3個電極之情況、或亦含有超過3個電 極的情況。 又,作爲將纖維形成用組成物於靜電場中吐出之方法 ,可採用任意方法,如圖5中,將纖維形成用組成物放置 於靜電場中適切位置,供給於噴嘴,自該噴嘴將纖維形成 用組成物藉由電界以曳絲方式進行纖維化的方法。 且欲將纖維形成用組成物噴出之噴嘴形狀爲,先端形 成銳角者爲佳。噴出嘴之先端形成銳角時,噴嘴先端中之 液滴形成的控制可變的容易。對於噴嘴之材質,並無特別 限定,一般以玻璃與金屬製者爲多。玻璃時,於噴嘴內固 定鉑等導線,將此作爲電極使用。 適切噴嘴的口徑依據所使用的纖維形成用組成物而不 同,較佳爲0.05〜lmm之範圍。噴嘴口徑過小時,奈米粒 子會於噴嘴內阻塞,噴射會有不連續之情況,難以安定下 製造纖維。另一方面,噴嘴口徑若過寬時,所製造之纖維 徑會過寬,故無法充分表現本發明的效果。考慮到纖維的 細度之確保與操作性,以0.1〜〇.5mm爲更佳。 噴出嘴與纖維捕集電極之距離,取決於帶電量、噴嘴 尺寸、纖維形成用組成物之自噴嘴的噴出量、纖維形成用 組成物之溶液濃度等,20kV程度時以10〜30cm的範圍爲 -34- 200948875 佳。距離過短時,溶劑不會完全蒸發,纖維彼 使瓦解形狀,又纖維內之殘留溶劑過多時,無 制奈米粒子之凝集。另一方面,距離過長時, 分延伸力,故曳絲性會惡化、或製造之纖維徑 大,又會產生纖維之回收率降低等問題。 又,外加之靜電氣電位以5〜3 OkV的範圍 電壓過高時,恐怕會引起異常放電,無法安定 0 。另一方面,外加電壓過低時,因未能達到充 ,故纖維徑變的較寬,其結果無法充分抑制奈 集。其中所望電位可藉由過去公知任意適切方 可〇 調整纖維形成用組成物之吐出量的注射器 精度以Ο.ΐμΐ/min程度爲佳。又,纖維形成用 出量依所使用的維形成用組成物而不_ 200μ1/πήη之範圍爲佳。 【實施方式】 〔實施例〕 〈〈實施例(第1樣式)〉〉 以下,將本發明經由實施例作進一步具胃 發明未受到這些實施例之任何限定。 〈測定方法〉 實施例A 1〜A 6及比較例A 1中,對於以 此爲融合而 法充分地抑 無法得到充 的偏差會過 爲佳。外加 下製造纖維 分靜電反發 米粒子之凝 法所製造即 幫浦之控制 組成物之吐 ,以 20〜 說明,但本 下項目,藉 -35- 200948875 由以下方法實施測定•評估。 (η複合體中之金屬奈米粒子的含有量(塡充率) 使用熱重量天秤(理學電機公司製,商品名: TGA8120),空氣氣流中進行900°C下的熱分析,由該殘 渣量進行評估。且,評估時採用取樣品3點之平均値。 (2) 複合體中之金屬奈米粒子的分散狀態(平均分 散粒徑) 將所製造之無機奈米粒子-高分子複合體使用 Microtome ( Lei ca 公司,商品名:ULTRACUT-S ),作爲 50〜lOOnm之薄切片,將該薄切片放置於銅製微電網( MICRO GRID),藉由透過型電子顯微鏡(FEI公司製, 商品名:TECNAI G2 ),以加速電壓120kV,實施TEM觀 察及攝影(75萬倍或150萬倍)。 將所得之TEM像中之120nmxl20nm的範圍所存在之 所有金屬奈米粒子作標識’使用影像解析軟體(NEXUS NEW QUBE),對於複合體中之孤立分散的各凝集粒子或 一次粒子,進行影像解析’求得平均分散粒徑。 (3) 複合體中之金屬奈米粒子的分散狀態(分散粒 徑分佈) 對於上述(2)所攝影之照片影像’由影像解析軟體 (NEXUS NEW QUBE)所得之分散粒徑分佈’求得{30nm 200948875 以下之形態進行分散的粒子數}/{全粒子數}\1〇〇(%)之 値。 〈實施例A 1〉 〔具有金屬配位性官能基之高分子溶液之調製〕 將聚乙烯醇縮丁醛(以下稱爲「PVB」)(和光公司 製,商品名:聚乙烯醇縮丁醛1,000,平均聚合度:900〜 0 H00) 1.5g完全溶解於二氯甲烷(以下稱爲「DCM」) 28.5g,得到PVB溶液。 〔分散步驟〕 於上述所得之PVB溶液,滴入作爲界面活性劑含有 烷基胺之Ag膠體溶液(戸田工業公司製,商品名:ΝΑΝΟ SILVER分散體,Ag奈米粒子含有量:53質量%,烷基胺 含有量:11質量% ’分散液:甲苯,Ag粒徑:6.0nm) φ 〇.3g,藉由2小時攪拌’得到複合體分散液。 〔複合體薄膜之作成〕 繼續,將所得之複合體分散液濺射於玻璃基板上,氮 環境氣體中將溶劑(DCM)進行自然蒸發,得到pvB-Ag 複合體薄膜。所得之複合體薄膜厚度爲6 0 μιη。 〔測定評估〕 所得之PVB-Ag複合體薄膜的透過型電子顯微鏡( -37- 200948875 TEM)照片(75萬倍)如圖1所示。又,所得之PVB-Ag 複合體薄膜中之Ag奈米粒子的塡充率(含有量)爲9.5 質量%,平均分散粒徑爲15.0nm,Ag粒子之90%以上爲 分散粒徑30nm以下狀態下分散。 〈實施例A2〉 〔反應步驟〕 與實施例A1同樣下,得到PVB溶液。繼續,滴入γ-氫硫基丙基三甲氧基矽烷(以下稱爲「MPTMS」)( chisso公司製,商品名:SalesS810) 0.06g,充分攪拌後 實施偶合反應,得到MPTMS偶合PVB (以下稱爲「 MPTMS-PVB」)溶液。 〔分散步驟·複合體薄膜之作成〕 於所得之MPTMS-PVB溶液中,與實施例A1同樣地 滴入Ag膠體溶液,得到複合體分散液。繼續,與實施例 A1同樣方法下’得到厚度6〇μηι之(MPTMS-PVB) -Ag複 合體薄膜。 〔測定評估〕 所得之(MPTMS-PVB) -Ag複合體薄膜的透過型電子 顯微鏡(TEM )照片(75萬倍)如圖2所示。又,所得之 (MPTMS-PVB) -Ag複合體薄膜中之Ag奈米粒子的塡充 率(含有量)爲10.9質量%,平均分散粒徑爲9 0nm, Ag 200948875 粒子之95 %以上係以分散粒徑30nm以下的狀態下分散。 〈實施例A3〉 〔反應步驟〕 與實施例A1同樣下,得到PVB溶液。繼續,滴入γ_ 胺丙基三甲氧基矽烷(以下稱爲「APTMS」)(東京化$ 公司製,商品名:3-胺丙基三甲氧基矽烷)0.06g,充分壇 φ 拌後實施偶合反應,得到APTMS偶合PVB (以下稱爲「 APTMS-PVB」)溶液。 〔分散步驟·複合體薄膜之作成〕 於所得之APTMS-PVB溶液中,與實施例A1同樣下 滴入Ag膠體溶液,得到複合體分散液。繼續,與實施例 A1同樣方法下,得到厚度60μιη之(APTMS-PVB ) -Ag複 合體薄膜。 〔測定評估〕 所得之PVB-Ag複合體薄膜的透過型電子顯微鏡( TEM )照片(75萬倍)如圖3所示。又,所得之PVB-Ag 複合體薄膜中之Ag奈米粒子之塡充率(含有量)爲9.0 質量%,平均分散粒徑爲9 · Onm,A g粒子之9 5 %以上係以 分散粒徑3 Onm以下的狀態下分散。 〈實施例A4 &gt; -39- 200948875 〔具有金屬配位性官能基之高分子溶液之調製〕 將聚乙稀formal (以下稱爲「PVF」)(關東化學公 司製,商品名:聚乙烯 formal ) 2.5g完全溶解於 DCM47.5g後得到PVF溶液。 〔分散步驟〕 於上述所得之PVF溶液中滴入含有作爲界面活性劑之 烷基胺的Ag膠體溶液(戸田工業公司製,商品名:ΝΑΝΟ SILVER分散體,Ag奈米粒子含有量:53質量%,Ag粒 徑:6 · Onm ) 1 g,藉由2小時攪拌,得到複合體分散液。 〔複合體薄膜之作成〕 繼續,與實施例A1同樣方法下,得到厚度60 μιη之 PVF-Ag複合體薄膜。 〔測定評估〕 所得之PVF-Ag複合體薄膜中之Ag奈米粒子之塡充 率(含有量)爲 15·8質量%,平均分散粒徑爲15.0nm, Ag粒子之80%以上係以分散粒徑30nm以下的狀態下分散 〈實施例A5〉 〔具有金屬配位性官能基之高分子溶液之調製〕 將二乙醯基纖維素(以下稱爲「DAC」)(和光公司 -40- 200948875 製’商品名:乙酸纖維素、醋化度·· 53〜56% ) 1 .5g完全 溶解於DCM與丙酮(28.5g/lg)後得到DAC溶液。 〔分散步驟·複合體薄膜之作成〕 所得之DAC溶液中,與實施例A1同樣下滴入Ag膠 體溶液,得到複合體分散液。繼續,與實施例A1同樣方 法下’得到厚度60μιη之DAC-Ag複合體薄膜。 e 〔測定評估〕 所得之DAC-Ag複合體薄膜中之Ag奈米粒子之塡充 率(含有量)爲9.7質量%,平均分散粒徑爲12.0nm,Ag 粒子之80%以上係以分散粒徑30nm以下的狀態下分散。 〈實施例A6〉 〔具有金屬配位性官能基之高分子溶液之調製〕 φ 將三乙醯基纖維素(以下稱爲「TAC」)(和光公司 製,商品名:三乙酸纖維素)1.5g完全溶解於D CM2 8.5 g 後得到TAC溶液。 〔分散步驟·複合體薄膜之作成〕 所得之TAC溶液中’與實施例A1同樣下滴入Ag膠 體溶液,得到複合體分散液。繼續,與實施例A1同樣方 法下,得到厚度60μιη之TAOAg複合體薄膜。 200948875 〔測定評估〕 所得之TAC-Ag複合體薄膜中之Ag奈米粒子之塡充 率(含有量)爲9.5質量%,平均分散粒徑爲1 5.0nm,Ag 粒子之80%以上係以分散粒徑30nm以下的狀態下分散。 〈比較例A 1〉 〔高分子溶液之調製〕 將聚苯乙烯(以下稱爲「PS」)(和光公司製’商品 名:苯乙烯高分子、平均聚合度:2,000 ) 5'2g於 DCM47.5g完全溶解後,得到PS溶液。 〔分散步驟·複合體薄膜之作成〕 於所得之PS溶液,與實施例A4同樣下滴入Ag聦體 溶液,得到複合體分散液。繼續,與實施例A1同樣方法 下,得到厚度60μπι之PS-Ag複合體薄膜。 〔測定評估〕 所得之PS-Ag複合體薄膜的透過型電子顯微鏡(TEM )照片(1萬倍)如圖4所示。又’所得之PS-Ag複合體 薄膜中之Ag奈米粒子之塡充率(含有量)爲8.4質量。/〇。 且,如圖4所示,Ag奈米粒子之多數凝集,成爲〇·1〜 2μηι程度之凝集體。 〈綜合實施例A 1〜Α6及比較例A 1〉 -42- 200948875 對於實施例A 1〜A6及比較例A 1中所使用之材料、 及所得之複合材料,各綜合於下述表1及2。 〔表1〕 高分5 F溶液 膠體溶液 高分子 溶劑 界面活性劑 粒子材料 粒徑 實施例A1 PVB DCM 烷胺 銀 6.0nm 實施例A2 MPTMS-PVS DCM 烷胺 銀 6.0nm 實施例A3 APTMS-PVB DCM 烷胺 銀 6.0nm 實施例A4 PVF DCM 烷胺 銀 6.0nm 實施例A5 DAC DCM+丙酮 烷胺 銀 6.0nm 實施例A6 TAC DCM 烷胺 銀 6.0nm 比較例A1 PS DCM 烷胺 銀 6.0nm 〔表2〕 複合材料(厚度60μπι之薄膜狀) 粒子含有率 分散狀態 實施例A1 9.5質量% (1.〇體積%) 平均分散粒徑 15.0nm 90%以上爲 分散粒徑30nm以下 實施例A2 10.9質量% (1.2體積%) 9.0nm 95%以上爲 分散粒徑30mn以下 實施例A3 9.0質量% (0.9體積%) 9.0nm 95%以上爲 分散粒徑30mn以下 實施例A4 15.8 質量0/〇 (1.8體積%) 15.0nm 80%以上爲 分散粒徑30nm以下 實施例A5 9.7質量% (1.0體積%) 12.0nm 80%以上爲 分散粒徑30nm以下 實施例A6 9.5質量% (1.0 mm%) 15.0nm 80%以上爲 分散粒徑30nm以下 比較例A1 8.4質量% (〇_87 體積 %) (多數粒子凝集至o.l〜2μιη程度) -43- 200948875 〈〈實施例(第2樣式)&gt;〉 以下,將本發明藉由實施例作更具體之說明,但本發 明未受到這些實施例之任何限定。且實施例B1〜B7及參 考例B1中,若無特別說明,所使用的溶劑爲無水試藥。 〈測定方法〉 對於以下實施例B1〜B7及參考例B1、以下項目,以 以下方法實施測定·評估。 (1) 纖維之平均纖維徑及纖維中之奈米粒子凝集體 的確認 採取極細纖維之堆積物,藉由DIGITALMICROSCOPY (KEYENCE製,商品名:VHX-200 ),攝影出透過照片 (5000倍)。由所得之照片,隨機下選出5個測定區域, 自1區域中隨機地抽取出5根纖維,對於總共25根之纖 維進行纖維徑測定。求得所得測定結果(η = 25 )之平均 値,將所得之値作爲纖維之平均纖維徑。 又,對於所得之透過照片(5000倍),有關奈米粒子 之凝集成爲200nm以上的集聚點之有無實施評估。 (2) 複合體纖維中之金屬奈米粒子之分散狀態(平 均分散粒徑) 採取極細纖維之堆積物,如圖6所示藉由倒立包埋法 -44 - 200948875 製造出透過型電子顯微鏡(ΤΕΜ )觀察用取樣品。且,於 圖6中,記號6表示纖維堆積體,記號7表示Pt,記號8 表示未硬化樹脂,記號9表示玻璃片,記號10表示硬化 樹脂。 繼續,使用 Microtome ( Raika公司製,商品名: ULTRACUT-S )作成90nm之薄片,藉由透過型電子顯微 鏡(FEI公司製,商品名:TECNAI G2 )以加速電壓 120kV下實施TEM觀察及攝影(75萬倍)。 將所得之TEM像進一步擴大4倍之照片中存在於 150nm&gt;&lt;150nm之區域之所有粒子作爲對象,以目視判斷藉 由對比差之粒子之區域並進行標識,並以電腦進行辨識。 繼續,使用解析軟體(NEXUS NEW QUBE) ’有關複合體 中孤立分散之各凝集粒子或一次粒子進行影像解析’求得 平均分散粒徑。 此時,TEM照片所觀察之粒子之形狀(平面狀)非圓 狀時,推測爲具有與所觀察之無機奈米粒子之面積的相同 面積之圓形,將推測之圓直徑作爲粒徑° 又,奈米粒子之獨立性無法由目視觀察時,藉由3D-TEM 觀察進行判斷。3D-TEM 觀察中’對於於 150nmxl50nm之區域中之粒子總數’將孤立分散之(平面 上無重疊)粒子之比率作爲奈米粒子之凝集度合的一指標 而評估。 且,使用於TEM觀察用取樣品之製造的包埋樹脂( 環氧樹脂:日新EM公司製)的具體配合比如以下所示。 -45- 200948875 主劑 • Quetol8 1 2 77.2 軟性硬化劑 :DDSA 60 硬性硬化劑 :MNA 35.6 聚合促進劑 :DMP-30 2.6 (3) 複合體纖維中之金屬奈米粒子之分散狀態(分 散粒徑分佈) 對於上述(2 )所攝影之照片影像,由影像解析軟體 (NEXUS NEW QUBE )所得之分散粒徑分佈,求得{以 20nm以下之形態下分散的粒子之數}/{全粒子之數}xl〇〇 ( % )之値。 (4) 纖維中之奈米粒子之含有量(塡充率評估) 使用熱重量天秤(理學電機公司製’商品名: TGA8120 ),空氣氣流中進行 900 °C中之熱分析,由該殘 渣量進行評估。且評估係採用取樣品3點之平均値。 〈實施例 B&quot; ( Ag30-PVB 1 000 ) 〔纖維形成用組成物調整步驟〕 70 °C中進行一週乾燥,將聚乙烯醇縮丁酵(以下稱爲 「PVB」)(和光公司製,商品名:聚乙烯醇縮丁醛一級 、平均聚合度:i〇00) ig於二氯甲烷(以下稱爲「DCM」 )1 9g完全溶解後’得到PVB溶液。 於上述所得之pvB溶液添加作爲分散助劑之γ_氫硫 -46 - 200948875 基丙基二甲氧基砂院(MPTMS ) ( chisso公司製1固形分 :100質量%) 0.06g(相當於Ag奈米粒子表面修飾劑之2 倍以上)’進行3 0分鐘攪拌後實施偶合反應’得到 MPTMS偶合PVB (以下稱爲「MPTMS-PVB」)溶液。 繼續,於所得之MPTMS-PVB溶液中添加含有作爲界 面活性劑之烷基胺的Ag奈米粒子之膠體溶液(戸田工業 公司製,商品名:NANO SILVER分散體、分散液:甲苯 ❿ 、Ag奈米粒子含有量:53質量%,Ag奈米粒子平均粒徑 :6〜8nm、烷基胺含有量·· 1 1質量% ) 〇. 6 g,經1小時攪 拌後得到Ag奈米粒子-(MPTMS-PVB)複合體溶液。 此時點下,於所得之 Ag奈米粒子-(MPTMS-PVB ) 複合體溶液,未確認出藉由Ag奈米粒子之凝集的色調變 化,又於玻璃容器壁上未確認到Ag奈米粒子之析出。 且,將所得之Ag奈米粒子-(MPTMS-PVB)複合體 溶液15g,使用DCM與氯仿(70質量%/30質量%)之混 Q 合溶劑,稀釋至靜電紡絲爲適切濃度而調製出纖維形成用 組成物。 〔紡絲步驟〕 使用上述所得之纖維形成用組成物(紡絲溶液),如 圖5所示藉由靜電紡絲裝置將纖維形成用組成物噴出,進 行連續紡絲而累積纖維,製造出纖維堆積物。 此時的噴出嘴1之內徑爲〇.4mm(注射針:23G)、 注射器2之容量爲l〇m卜電壓爲18 kV,自噴出嘴1至纖 -47- 200948875 維捕集電極5(不鏽鋼板)之距離爲2 5 cm。藉由注射器幫 浦(BioanalyticalS ystems Inc 公司製,商品名:MD-1020 )將纖維形成用組成物之吐出量控制於120ml/min下,噴 射纖維形成用組成物,堆積於貼有捕集電極之PET薄膜上 〔測定評估〕 採取所得之Ag奈米粒子- (MPTMS-PVB)複合體纖 _ 維之堆積物,以光學顯微鏡進行攝影之透過照片(5000倍 )如圖7所示,又藉由透過型電子顯微鏡(TEM )之照片 (觀察倍率3 6萬倍)如圖8所示。 所得之纖維的平均纖維徑爲1.52μηι,透過照片中之 5 0nm以上的Ag奈米粒子之凝集未被確認。又,Ag奈米 粒子之平均分散粒徑爲8.6nm,最大分散粒徑爲15.3nm ’ 所有粒子爲分散粒徑20nm以下之狀態下分散。且,Ag奈 米粒子之含有率爲22.8質量%。 ❹ 〈實施例 B2〉( Ag40-PVB70〇 ) 〔纖維形成用組成物調整步驟〕 進行70 °C中之一週乾燥,將PVB (和光公司製,商品 名:聚乙烯醇縮丁醛一級、平均聚合度:700) 1.2g於 DCM1 8.8g完全溶解後,得到PVB溶液。 於上述所得之PVB溶液’作爲分散助劑之MPTMS的 添加量變更爲 〇 · 1 g以外’與實施例 B 1同樣下得到 -48- 200948875 MPTMS偶合pvb溶液。 繼續’將Ag奈米粒子之膠體溶液的添加量變更爲 l-〇g以外,與實施例B1同樣下得到Ag奈米粒子-PVB複 合體溶液。 此時點下,於所得之Ag奈米粒子-(MPTMS-PVB ) 複合體溶液中,藉由Ag奈米粒子之凝集的色調變化未被 確認,又於玻璃容器壁之Ag奈米粒子之析出亦未被確認 e 且,使用所得之Ag奈米粒子-(MPTMS-PVB )複合 體溶液1 5 g,與實施例B1同樣下,調製出纖維形成用組 成物。 〔紡絲步驟〕 使用上述所得之纖維形成用組成物(紡絲溶液),將 電壓作爲20kV,藉由注射器幫浦將纖維形成用組成物的 φ 吐出量變更爲100ml/min以外,與實施例B1同樣下,藉 由圖5所示靜電紡絲裝置製造出纖維堆積物。 〔測定評估〕 所得之Ag奈米粒子-PVB複合體纖維之透過型電子顯 微鏡(TEM )所得之照片(觀察倍率3 6萬倍)如圖9所 示。 所得之纖維之平均纖維徑爲1.43 μπα,透過照片中之 5 0nm以上的Ag奈米粒子之凝集未被確認。又,Ag奈米 -49- 200948875 粒子之平均分散粒徑爲8.1 nm,最大分散粒徑爲15.6nm, 所有粒子以分散粒徑20nm以下的狀態下分散。且,Ag奈 米粒子之含有率爲30.4質量。/。。 〈實施例 B3〉 ( Ag25-PS/MAA 共聚物 18 ) 〔纖維形成用組成物調整步驟〕 將苯乙烯(St)與甲基甲基丙嫌酸(MAA)之共聚物 (大日本墨水公司製,商品名:RYU REXA-14、PS/MAA =約90/10(莫耳% ) 、Μη:約20萬)3.0g於呋喃四氫呋 喃(THF) 17.0g完全溶解後,得到PS-MAA溶液。 於上述所得之 PS/MAA溶液,作爲分散助劑之 MPTMS的添加量變更爲0.45g (相當於約60mol%MAA) 以外,與實施例B1同樣下,得到MPTMS偶合PS/MAA ( 以下稱爲「MPTMS-PS/MAA」)溶液。 繼續,將 Ag奈米粒子之膠體溶液的添加量變更爲 2.〇g,且以2小時攪拌以外,與實施例B1同樣下得到Ag 奈米粒子-(MPTMS-PS/MAA)複合體溶液。 此時點下,於所得之Ag奈米粒子-(MPTMS-PS/MAA )複合體溶液中,藉由Ag奈米粒子之凝集的色調變化未 被確認,又於玻璃容器壁之Ag奈米粒子之析出亦未被確 認。 且,將所得之Ag奈米粒子-(MPTMS-PS/MAA )複合 體溶液15g,使用DCM與THF ( 70質量%/30質量% )之 混合溶劑,藉由稀釋靜電紡絲至適切濃度’調製出纖維形 -50- 200948875 成用組成物。 〔紡絲步驟〕 使用上述所得之纖維形成用組成物(紡絲溶液),將 電壓設定爲20kV,藉由注射器幫浦將纖維形成用組成物 之吐出量變更爲60ml/min以外’與實施例B1同樣下,藉 由如圖5所示靜電紡絲裝置製造出纖維堆積物。 〔測定評估〕 所得之Ag奈米粒子-PS/MAA複合體纖維的透過型電 子顯微鏡(TEM )之照片(觀察倍率36萬倍)如圖1〇所 示。 所得之纖維的平均纖維徑爲〇.52μιη,透過照片中之 50nm以上的Ag奈米粒子之凝集未被確認。又,Ag奈米 粒子之平均分散粒徑爲1 1 .3nm,最大分散粒徑爲20.6nm ,99.7%的粒子以分散粒徑20nm以下的狀態下分散。且, Ag奈米粒子之含有率爲21.7質量%。 〈實施例 B4〉 ( AU30-PVB700 ) 〔纖維形成用組成物調整步驟〕 完全與實施例B 2之同一材料及同樣操作下,得到 PVB溶液。 於所得之PVB溶液中,將作爲分散助劑的MPTMS之 添加量變更爲〇.lg(相當於Au奈米粒子表面修飾劑之2 -51 - 200948875 倍以上)以外,與實施例B1同樣下,得到MPTMS偶合 PVB (以下稱爲「MPTMS-PVB」)溶液。 繼續,於所得之MPTMS-PVB溶液中添加Au奈米粒 子之膠體溶液(ULVAC Materials公司製,商品名:Au200948875 VI. Description of the Invention [Technical Field of the Invention] The present invention relates to an inorganic nanoparticle-polymer composite and a method for producing the same. More specifically, the present invention relates to an inorganic nanoparticle-high molecular composite capable of suppressing aggregation of inorganic nanoparticles by dispersing inorganic nanoparticles, and a method for producing the same. g [Prior Art] The research on the synthesis of inorganic nanoparticles has reached a dazzling development. In recent years, the synthesis of nanoparticles with excellent monodispersity and uniform morphology has been revealed. Inorganic nanoparticles are chemically, physically, electrically, magnetically, and optically different from bulk materials depending on size effects or quantum effects. The remarkable size effect or quantum effect of such inorganic nanoparticles is exhibited, and the particle diameter is very small, for example, limited to a particle diameter of 3 Onm or less. However, g has a very small particle size, and since the surface energy of the particles is very high, the particles spontaneously aggregate with each other, and the excellent properties of the inorganic nanoparticles are not sufficiently exhibited as material properties. Therefore, the inorganic nanoparticles are uniformly dispersed in the reinforced composite, and the dispersion state is controlled. The establishment of the immobilization technique is a very important issue for the application of inorganic nanoparticles. The reinforced composite material used for dispersing inorganic nanoparticles is preferably used from the viewpoint of excellent electrical insulation properties and moldability. For example, an inorganic nanoparticle--200948875 sub-polymer composite (organic/inorganic nanocomposite) obtained by dispersing inorganic nanoparticles in a polymer is used in electronic materials, optical materials, magnetic materials, catalytic materials, automobiles. It has been used in fields such as materials. In addition, inorganic nanoparticle-polymer composites are used in most fields such as electronic materials, optical materials, magnetic materials, pharmaceuticals, cosmetics, pigments, environmental materials, mechanical materials, memory device materials, and supermagnetic materials. Various properties such as heat resistance 'strength' conductivity are expected. The method for producing an inorganic nanoparticle-polymer composite is known to be classified into the following three methods. The first method of producing an inorganic nanoparticle-single molecular composite material is a method of dispersing inorganic nanoparticles in a direct molecular material (direct kneading method) (see Patent Documents 1 and 2). In addition, the second method of producing an inorganic nanoparticle-polymer composite material is a method of mixing an organic monomer with inorganic nanoparticles and then polymerizing the organic monomer (in-situ polymerization method) (refer to Patent Document 3 to 7). However, in these first and second methods, it is extremely difficult to uniformly disperse the inorganic nanoparticles in the polymer, and in many cases, the inorganic nanoparticles are aggregated in the polymer and exist. Therefore, even if small-sized inorganic nanoparticles are used, only the characteristics of the aggregate of the inorganic nanoparticles can be exhibited, and various functions imparted by the inorganic nanoparticles are difficult to express. Further, the third method for producing an inorganic nanoparticle-polymer composite material is an ion blending reduction method (see Patent Document 8). The method is mainly applicable to the disperser of the metal nanoparticle, specifically, after the polymer material is mixed with the metal ion or the metal complex, by the superheat reduction treatment in the reducing gas -6 - 200948875, the polymer material is precipitated. The method of metal nanoparticle. The ion blending reduction method, the uniform dispersion of the metal nanoparticle can be achieved to a certain extent, but it is difficult to control the particle size and dispersibility of the nanoparticle, and the deterioration of the material property caused by the unreduced residual metal ion is also Will produce. Therefore, even by the ion blending reduction method, it is difficult to obtain the intended inorganic nanoparticle-polymer composite. [Patent Document 1] JP-A-2000-29444 (Patent Document 2) Japanese Patent Publication No. 2007-3 1 4667 (Patent Document 3) JP-A-62-84 1 5 5 (Patent Document 4) Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. [Patent Document 8] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. 2005- 1 3 943 No. 2005. The present invention has been made in view of the above prior art, and an object thereof is to provide an inorganic nanoparticle by suppressing aggregation of inorganic nanoparticles. Inorganic nanoparticle-polymer composite in which particles are highly dispersed, and a method for producing the same. In view of the above-mentioned problems, the inventors of the present invention found that a polymer containing a metal coordinating functional group exhibiting coordination to metal nanoparticles and a metal nanoparticle are mixed in a polymer. The dispersion state of the nanoparticles is controlled by the metal coordinating functional group, and the above problems can be solved, and the present invention has been completed. 200948875 In view of the detailed results of the above-mentioned problems, the inventors of the present invention found that when a polymer solution in which inorganic nano particles are uniformly dispersed is used, when a polymer solution is formed into a fiber assembly by an electrospinning method (Electro Spinning method) The present invention can be accomplished by solving the above problems. In other words, the present invention is as follows: <1> A composite of inorganic nanoparticles and a polymer, characterized in that the inorganic nanoparticle in the composite has an average dispersed particle diameter of 0.5 nm or more and 30 nm or less. Further, 70% or more of the inorganic nanoparticles in the composite are dispersed in a form having a dispersed particle diameter of 30 nm or less. The composite according to the above item <1>, wherein the inorganic nanoparticle is contained. The amount is 1% by mass or more for the entire composite. <3> The composite according to the above item <1>, wherein the inorganic nanoparticle is selected from the group consisting of metal nanoparticles, metal oxide nanoparticles, metal nitride nanoparticles, and carbide nanoparticles. Particles, and boride nanoparticles, and combinations thereof. The composite according to any one of the items <1> to <3> wherein the surface of the inorganic nanoparticles is coated with a surfactant. <5> The composite according to any one of the above items <1> to <4> wherein the inorganic nanoparticles are metal nanoparticles, and the polymer has a metal coordinating functional group. The complex described in the above item <5>, wherein the metal ligand functional group is a group containing at least one element selected from the group consisting of oxygen, nitrogen, sulfur, and phosphorus. The complex described in the above item <6>, wherein the metal ligand functional group is an amine group and/or a thiol group. The composite according to any one of the above-mentioned <5> to <7> wherein the polymer having the metal coordinating functional group is a decane coupling agent having the metal coordinating functional group and having a hydroxyl group; The reaction product of the polymer. <9> A method of producing the φ composite according to any one of the items <5> to <8>, which is characterized in that the polymer having a metal-coordinating functional group is dispersed in the metal nanoparticle. <10> The method according to the above item <9>, which further comprises reacting a decane coupling agent having a metal coordinating functional group with a polymer having a hydroxyl group to form a polymer having a metal coordinating functional group. <11> The above <1>~ The composite according to any one of the above items, wherein the inorganic nanoparticle in the composite has an average dispersed particle diameter of 1 nm or more and 20 nm or less, and 90 of the inorganic nanoparticles φ in the composite. % or more is dispersed in a form having a dispersed particle diameter of 20 nm or less. <12> The composite according to any one of the above-mentioned items, wherein the average fiber diameter is 50 nm or more and 2 μm or less. The method for producing a composite of the form of the fiber described in the above item <1 2>, characterized in that the composition for forming a fiber containing inorganic nanoparticles and a polymer is prepared, and The fiber forming composition is discharged by an electrospinning method to perform fiber spinning. The manufacturing method of the -9-200948875 composite according to any one of the above-mentioned items <1> to <8>, wherein the composite of the form of the fiber described in the above item <12> is contained. The pressure is applied and maintained under the condition that the dispersion state of the inorganic nanoparticles is maintained. <15> The method according to the item <14>, wherein the pressurization is performed in accordance with a decompression of an environmental gas. <16> The composite according to any one of the above <1> to <8> and <11>, which is in a bulky form. <17> The composite according to the above item <16>, which is formed. [Effect of the Invention] In the inorganic nanoparticle-polymer composite of the present invention, the aggregation of the inorganic nanoparticles is suppressed, and the inorganic nanoparticles are highly dispersed. Therefore, the inorganic nanoparticle-polymer composite of the present invention can fully utilize the specific function of the nanoparticle contained therein. The inorganic nanoparticle-polymer composite of the present invention is a material which is unique to the nanoparticle, and can be used as an electronic material, an optical material, a magnetic material, a pharmaceutical, a cosmetic, a pigment, an environmental material, or a machine. Materials, catalyst materials, automotive materials, memory device materials, and supermagnetic materials are widely used. Therefore, they are very useful as novel functional materials. In addition, the inorganic nanoparticle-polymer composite of the present invention has a combination of inorganic nanoparticles and a polymer, or a plurality of inorganic nanoparticles, and the use of two or more polymers. The completion of composite materials with various functions can be achieved. Further, the inorganic nanoparticle-polymer composite-10-200948875 of the present invention further has a unique function of the nanoparticle contained therein, and can be utilized in a bulky form, particularly in a bulky form. Further, "the bulky" of the present invention is a composite in which the composite has a three-dimensional expansion "by negligible surface effect" and represents a state in which the properties of the material having a specific shape can be exhibited. That is, the "bulky" of the present invention is used in the opposite sense to the microfibers, fine powders, and the like. Φ [Best Mode for Carrying Out the Invention] The details of the present invention will be described below. <Inorganic Nanoparticle-Polymer Complex> The inorganic nanoparticle-polymer composite of the present invention is a composite of inorganic nanoparticles and a polymer, and an average dispersion of inorganic nanoparticles in the composite. The particle size is 〇. 5 nm or more and 30 nm or less, and 70% or more of the inorganic nanoparticles in the composite are dispersed in a form having a dispersed particle diameter of 30 nm or less. (Dispersion state of inorganic nanoparticles in the composite (average dispersed particle diameter)) The inorganic nanoparticles of the inorganic nanoparticle-polymer composite of the present invention have an average dispersed particle diameter of '0. 5 nm or more, for example, imMηη or more or 2 nm or more, and 30 nm or less, for example, 20 nm or less or i〇nm or less. When the average dispersed particle diameter is sufficiently small, the specific characteristics of the nanoparticles can be effectively exhibited. -11 - 200948875 The "average dispersed particle diameter" of the inorganic nanoparticles contained in the inorganic nanoparticle-polymer composite of the present invention is a transmission electron microscope (trade name: TECNAI G2, manufactured by FEI). The observation and photographing of the inorganic nanoparticle-polymer composite were carried out at an acceleration voltage of 120 kV at an acceleration voltage of 12 0 kV or using an analytical electron microscope (AEM) (trade name: JEM2010, manufactured by JEOL Ltd.). After the image to be acquired, the image analysis software (NEXUS NEW QUBE) is used to perform image analysis of the circular diameters of the same area on the image in each of the aggregated particles or primary particles dispersed in the composite, and the average of the diameters is obtained.値之値. (Dispersion state (dispersion particle size distribution) of the inorganic nanoparticle in the composite) In the inorganic nanoparticle-polymer composite of the present invention, 70% or more of the inorganic nanoparticles dispersed in the composite, for example, 90 % or more is dispersed in a form having a dispersed particle diameter of 30 nm or less, for example, 20 nm or less or 10 nm or less. Further, in the inorganic nanoparticle-polymer composite of the present invention, the aggregated particles having a dispersed particle diameter of 50 nm or more do not substantially exist. When the inorganic nanoparticles in the inorganic nanoparticle-polymer composite of the present invention are highly dispersed, the application of the optical material can be expanded by suppressing light scattering. Further, in order to expand the surface area of the nanoparticles, the functional properties of the nanoparticles can be more clearly expressed. Further, when the inorganic nanoparticles are dispersed at a specific height, for example, when 70% or more of the inorganic nanoparticles are dispersed in a form of 10 nm or less, the unique quantum effect of the nanoparticles is used as a function of the standard -12-200948875. It can also be expressed on the composite' to expand its application. Further, the ratio of particles (i.e., 'aggregated particles or primary particles) dispersed in a form having a predetermined dispersed particle diameter (e.g., 3 Onm) or less is as described above for "average dispersed particle diameter". Based on the dispersion particle size distribution obtained by NEXUS NEW QUBE, the following formula is obtained: {The number of Φ particles dispersed in a form of a predetermined dispersed particle diameter (for example, 3 Onm ) or less} / {number of all particles} xl 〇〇 (%) (content of inorganic nanoparticles) The content of the metal nanoparticles in the inorganic nanoparticle-polymer composite of the present invention (charge ratio) is preferably The content of the composite is 5% by mass or more, 9% by mass or more, 1% by mass or more, 15% by mass or more, 20% by mass or more, or 25% by mass or more. Further, the content of the inorganic nanoparticles (the charge ratio 〇) in the inorganic nanoparticle-polymer composite of the present invention is preferably 0. 5 vol% or more, 〇·8 vol% or more, 1. 0% by volume or more, 1_5% by volume or more, 3% by volume or more, 4% by volume or more, 5% by volume or more, or 8% by volume or more. When the content (charge ratio) is sufficiently large, the function of the nanoparticles can be fully exerted, and the application possibilities of the resulting composite can be further expanded. For example, when the content (charge rate) is sufficiently large, the material properties such as the recording density of the high-density recording medium can be expressed efficiently. Further, the content (charge ratio) of the inorganic nanoparticles in the composite is measured by, for example, a thermogravimetric scale (TGA) (manufactured by Rigaku Corporation, product - 13-200948875: TGA8 120). (Inner Particles of Inorganic Nanoparticles) The inorganic nanoparticles used in the inorganic nanoparticle-polymer composite of the present invention have a size of 3 Onm or less before being dispersed in the inorganic nanoparticle-polymer complex. It is preferable that the average primary particle diameter of 10 nm or less is more preferably 10 nm or less. When the average primary particle diameter is sufficiently small, "the characteristics characteristic of the nanoparticles can be effectively exhibited, so that light scattering can be suppressed", whereby it is preferable from the viewpoint of application to an optical material. Further, the "average primary particle diameter" before dispersing the inorganic nanoparticles in the inorganic nanoparticle-polymer composite is to dry the dispersion of the inorganic nanoparticles, and the obtained dried product is passed through a transmission electron microscope (TEM). Photographing (340,000 times or 750,000 times), using the image analysis software (NEXUS NEW QUBE) for the acquired image, and performing image analysis of the circular diameter of the same area on the image for 100 primary particles, and obtaining the path Average 値. (Material of Inorganic Nanoparticles) The material of the inorganic nanoparticles to be used in the present invention is not particularly limited. In the present invention, a nanoparticle of a so-called inorganic material can be used, and it can be suitably selected and used based on the function or characteristics of the expressable composite. Further, the inorganic nanoparticles in the present invention may be used singly or in combination of plural kinds. Moreover, the inorganic nanoparticle in the present invention is not only a particle of a single inorganic material, but also an inorganic-14-200948875 nanoparticle having a plurality of inorganic material portions (for example, a core of one or more shells and a core-shell) Type inorganic nanoparticles). That is, for example, the inorganic nanoparticle in the present invention may be a nanoparticle formed by using a metal nanoparticle (specifically, an alloy nanoparticle), or a single metal or a plurality of metal phases using the alloy as a phase component ( For example, a core-external metal nanoparticle composed of more than one layer of shell and core. Further, the inorganic nanoparticles in the present invention are not limited to a spherical shape, and may be hollow nanoparticles or nano columns. Further, the inorganic nanoparticles in the present invention may be used singly or in combination of plural kinds. (Material of Inorganic Nanoparticles (Metal Nanoparticles)) The inorganic nanoparticles used in the present invention may be, for example, metal nanoparticles. Metal nanoparticles have been established in mass production technology, so the functional performance has a large selection of limbs, and it is expected to develop in many fields. The metal nanoparticles to be used in the present invention are not particularly limited, and examples thereof include transition metals such as Au, Ag, Cu, Pt, Pd, Ni, Rh, Co, Ru, Fe, and Mo described in the element symbol table. As at least i component. In the present invention, in consideration of stability after formation of a composite, in particular, from the viewpoint of oxidation resistance, Au, Ag, Pt, and Pd are preferably used, and a material having both low cost and oxidation resistance can be obtained. In view of the fact, the use of silver (A g ) is particularly good. Further, the metal nanoparticles used in the present invention may be an alloy containing two or more kinds of the above metals (e.g., FePd'FePt), or may be a nanoparticle having a core outer shell structure. -15- 200948875 (Material of inorganic nanoparticles (other than metal nanoparticles)) The inorganic nanoparticles used in the present invention 'for example, may be inorganic nanoparticles other than metal nanoparticles. The inorganic nanoparticles may be metal oxides such as ZnO, Sn〇2, Fe203, Fe304, and TiO2, or semiconductor nanoparticles such as CdSe, CdS, CdTe, ZnS, ZeSe, ZeTe, HgS, and HgSe. Narrow-type inorganic nanoparticles which are representative examples of cerium oxide, cerium, ceramics, and the like may be used. Further, the inorganic nanoparticle may be a nitride (e.g., FeN3), a carbide, or a boride of the above metal as exemplified by the metal nanoparticle. (Cladding of Inorganic Nanoparticles) The inorganic nanoparticles used in the present invention may be directly inorganic nanoparticles, or the surface may have affinity, coordination, and bonding with inorganic nanoparticles. Surface modification molecules are preferred for protection. When the inorganic nanoparticles coated with the surface-modified molecules are used, the "aggregation of the nanoparticles can be suppressed" can be stably present in the state of the primary particles. In the method of the present invention for producing an inorganic nanoparticle-polymer composite, a highly dispersed state can be formed. Examples of the functional group that can be adsorbed on the surface of the inorganic nanoparticles include a sulfur group such as an organic sulfur group (—S=〇, —SH), and a nitrogen atom such as a mercapto group or an amine group (—NH 2 ). Base, hydroxyl, carboxyl, and the like. Further, examples of the functional group which can be adsorbed on the surface of the inorganic nanoparticles include a cationic group (for example, an ammonium group (a straight chain which may be represented by a hydroxyl group and/or a carbon number of 1 to 6 or a branch of -16-200948875) An alkyl group substituted with a pyridyl group and a fluorenyl group, an anionic group (for example, a carboxyl group, a sulfonate group, a sulfonic acid group, a phosphoric acid group, a phosphonic acid group or a chlorine compound thereof). Further, the surface-modifying molecules may be used alone or in combination of two or more kinds, without impairing the effects of the present invention. Further, it is preferred that the amount of the surface-modifying molecule is more than the excess amount of the surface of the inorganic nanoparticles. As the surface modifying molecule, an organic ligand such as a surfactant can be specifically used. The surface is coated with a surfactant, and in particular, when the inorganic nanoparticle used in the present invention is a reverse colloidal inorganic nanoparticle, the aggregation of the inorganic nanoparticle can be suppressed, and the dispersion can be directly dispersed in the primary particle form. In the solvent. Thereby, in the method of the present invention for producing an inorganic nanoparticle-polymer composite, a more highly dispersed state can be formed by hydrogen bonding, ionic bonding, charge action or the like. The surfactant to be coated with the metal nanoparticles is not particularly limited as long as it can suppress the aggregation of the metal nanoparticles before the composite φ. For example, the hydrophilic group may be selected from the group consisting of an amine group and sulfur. A surfactant having at least one group of an alcohol group, a carboxyl group, and a hydroxyl group. Among them, 'from the viewpoint of strong interaction with metals, it is preferred to use a surfactant having an amine group or a thiol group, and in view of dissolving a majority of the polymer, the alkylamine is used. optimal. (Polymer) As the high-17-200948875 molecule constituting the inorganic nanoparticle-polymer composite of the present invention, any material can be used, and the use of the inorganic nanoparticle-polymer composite of the present invention can be used. The determination is made based on the affinity with the dispersed inorganic nanoparticles. <Inorganic Nanoparticle-Polymer Composite (First Pattern)&gt; In the first aspect of the inorganic nanoparticle-polymer composite of the present invention, the polymer has a metal coordinating functional group. In the first aspect, the metal coordinating functional group in the polymer having a metal coordinating functional group is used as a ligand, and the metal nanoparticles in the composite are stabilized, and as a result, the metal can be prevented. Aggregation of nanoparticles. The first aspect of the inorganic nanoparticle-polymer composite of the present invention will be described below. (Polymer having a metal-coordinating functional group) The polymer used in the first aspect of the inorganic nanoparticle-polymer composite of the present invention has a metal-coordinating function having an adsorption energy for the metal nanoparticle. Base polymer. 0 (Polymer having a metal-coordinating functional group (metal-coordinating functional group)) As a metal-coordinating functional group having a polymer, it is only required to have an adsorption property to a metal nanoparticle, and there is no particular It is preferred to include a group containing at least one element selected from the group consisting of oxygen, nitrogen, sulfur, and phosphorus. It is only necessary to select at least one group selected from these groups, and it can be easily placed on a metal. Examples of the group containing at least one element-18-200948875 element selected from the group consisting of oxygen, nitrogen, sulfur, and phosphorus include a hydroxyl group (-〇H), a carbonyl 3 amine group, and an amine group (-NH2). , isocyanate (-CN) alkyl ketone group, organic phosphate group (-p = 〇), book, -SH). These groups may be used alone or in combination. Among them, organic ruthenium (having metal coordination functional groups) is preferred because it interacts with metal nanoparticles, organic thio groups, and organic phosphate groups, and the interaction between the two is strongest. The polymer (as a solvent having a metal-coordinating functional group which is highly soluble in the dispersion medium of the nanoparticles), and the following polymers may be mentioned. As the polymer having a hydroxyl group (-OH), PVA), polyvinyl acetal (PVB, PVF, etc.), (TAC), diethyl cyano cellulose (DAC), poly φ polyhydroxyethyl methacrylate (PHEMA), etc. as a thiol group (_C= 〇) polymer, polymethylmethyl propyl acrylate (PMMA), polymethyl ester (PC), polylactic acid, polyacrylamide, polyaniline as a polymer with isocyanate (-CN), polypropylene Nitrile (PAN), polyvinyl pyridine, and polyethylene B. Examples of the polymer having an organic phosphate group (_P = 0) and S = 0 / -SH are, for example, polyvinyl ether maple (PES). g (-C = 0), 醯, pyridyl, pyrrole-based sulfur-based (-S = 0 or more than 2 kinds of state 丨 is relatively strong, so the amine. It is best from the thio group with metal nanoparticles. The polymer skeleton)) is not particularly limited as long as it is soluble, and examples thereof include polyvinyl alcohol (triethylenesulfonyl cellulose-4-hydroxystyrene, decylamino group, acrylic acid, polycarbonate, etc.). A pyridylpyridyl pyrrolidone or the like. Or an organic sulfur group (phosphonic acid, polyfluorene, poly-19-200948875 (polymer having a metal complex functional group (manufacturing method)) The polymer having a functional group is preferably obtained by reacting a decane coupling agent having a metal coordinating functional group with a polymer having a hydroxyl group, by using a decane coupling agent having a metal coordinating functional group and having a hydroxyl group. The polymer is reacted to easily form a polymer into which a metal-coordinating uterine energy group is introduced. Further, by using a decane coupling agent, a bond of a metal nanoparticle to a polymer having a metal-coordinating functional group can be used. Strong metal nanoparticles can be obtained by carrying out a moiety other than the metal coordinating functional group or by binding a decane coupling agent to the metal coordinating functional group, and as a result, the metal nanoparticle can be further improved. The decane coupling agent having a metal coordinating functional group is one or two or more kinds of decane coupling agents having the above metal coordinating functional group. The alkoxy group is not particularly limited as long as it is contained in the skeleton, and examples thereof include ethylene triethoxy decane, γ-methyl propylene oxypropyl trimethoxy decane, and γ-methyl propylene oxide. Propyl propyl dimethoxy decane, γ-methyl propyloxypropyl trimethoxy decane, γ-aminopropyl trimethoxy decane, γ-aminopropyl triethoxy decane, γ-(2 -Aminoethyl)aminopropyltrimethoxydecane, γ-(2-aminoethyl)amine propylmethyldimethoxydecane, 2-cyanoethyltrimethoxydecane, 3-cyanopropyl Trimethoxy decane, γ-hydrothiopropyltrimethoxy decane, γ-hydrothiopropylmethyldimethoxydecane, etc. The method is such that interaction with a metal allows a strong group to be introduced into Polymer. It is better to use a decane coupling agent having an amine group or a thiol group, -20-200948875 and due to mutual interaction with metal nanoparticles It is preferable to use a decane coupling agent having a hydrogenthio group. The "polymer having a hydroxyl group" is a polymer which is a skeleton of a polymer having a metal-coordinating functional group. The alkoxide group which is a coupling portion of the above-mentioned "decane coupling agent having a metal coordinating functional group" is reacted with the "polymer having a hydroxyl group" to introduce a metal coordinating functional group into the polymer. The "polymer having a hydroxyl group" has a polymer skeleton which is a skeleton of the final "polymer having a metal-coordinating functional group", and a hydroxyl group is present in the skeleton, and is not particularly limited. In addition, the inorganic nanoparticle-polymer composite of the present invention may contain an additive or the like in the range of the inorganic nanoparticle-polymer composite of the present invention in a range that does not impair the effects of the present invention. For example, an additive such as an antioxidant, an antifreeze agent, a pH adjuster, a concealing agent, a coloring agent, a plasticizer, a special functional agent, or an elastomer or a resin may be contained. The method of adding an optional additive or the like is not particularly limited, and may be added to the metal complex polymer itself to be used or a dispersion medium to be added to the metal nanoparticles. <Manufacturing Method of Inorganic Nanoparticle-Polymer Composite (First Pattern)> -21 - 200948875 A method for producing the composite of the present invention will be described below. The method for producing the inorganic nanoparticle-polymer composite of the present invention is not particularly limited, and for example, a reaction step comprising a polymer having a metal complex functional group and a metal nanoparticle dispersed in the polymer can be used. The following method of the dispersion step is carried out. (Reaction step) The reaction step is a step of reacting a decane coupling agent having a metal coordinating functional group with a polymer having a hydroxyl group to form a polymer having a metal coordinating functional group. In this step, for example, a decane coupling agent having a metal coordinating functional group and a polymer having a hydroxyl group are dissolved or dispersed in a solvent at room temperature, and then reacted in the solvent to obtain a metal complexing function. Base polymer. Further, the coupling reaction of the decane coupling agent with the hydroxyl group can be confirmed by the secondary element 1H-29Si HMBC spectrum. In addition, the solvent used in the reaction step is not particularly limited as long as it can dissolve or disperse a decane coupling agent having a metal coordinating functional group and a polymer having a hydroxyl group, and for example, a halogen type or an ether type can be used. The solvent is preferred. (Dispersion step) The dispersion step is a step of dispersing metal nanoparticles on a polymer having a metal-functional functional group obtained in the above reaction step. In the present invention, the 'dispersion method is not particularly limited, and for example, a polymer having a metal-coordinating functional group and a metal nanoparticle are solution-blended or melt-blended in a square-22-200948875 polymer composite (second style) In the second aspect of the sub-polymer composite, the polymer composite is a high-fiber-shaped inorganic nanoparticle-polymer composite having a fiber diameter of 5 〇 nm or more and 2 μm or less. The molecular solution is formed by. In the production of the composite of the present invention, aggregation inhibition is suppressed in the primary microfiber, and the electrostatic reaction between the sub-electrons is effective, and the fine portion of the fiber is uniformly dispersed even in the solvent particles. That is, in the second aspect of the combination of the present invention, the shape of the primary particles can be realized by controlling the raw material. law. Preferably, the polymer and the metal nanoparticle-combined dispersion are mixed by a solution, and the dispersion is spin-coated, sputtered, sprayed, and then obtained by evaporating the dissolved nanoparticles. Complex Φ <Inorganic Nanoparticles - Inorganic nanoparticles of the present invention, the inorganic nanoparticle state of the present invention, in particular, the average fiber diameter is B 〇VC*, and the form of the ultrafine fibers is as follows. Rice Φ This solution prevents the aggregation of nanoparticle by the use of charged nanoparticle by the electrospinning method. Instantaneous evaporation can also achieve the agglomeration space of nano-inorganic nanoparticles-polymer multi-meter particles, high dispersion of nano-particles in high-segment, for example, after dissolving or dispersing a metal-coordinating functional group in a common solvent The dispersion is applied to a substrate by a method such as casting or mist coating on a suitable substrate to uniformly disperse gold-23-200948875 (average fiber diameter of the polymer composite) in the polymer. The average fiber diameter of the inorganic nanoparticle-polymer composite fiber of the present invention is generally 50 nm or more and 2 μm or less or 4 μm or less, preferably 100 nm or more and 1 μm or less, more preferably 1 50 nm or more and 500 nm or less or 800 nm or less. When the average fiber diameter is sufficiently narrowed, the aggregable space of the nanoparticle dispersed in the fiber is limited to a single element by a cubic element, and as a result, it can be physically prevented as compared with a film obtained by a sputtering method or the like. Aggregation of nanoparticles. Further, as the average fiber diameter is reduced, the surface area of the fiber is greatly increased. When the fiber forming composition is sprayed by the nozzle by the electrospinning method, most of the solvent which is extended at a high speed can be instantaneously evaporated. As a result, it can be fixed in the ultrafine fibers before the nanoparticles are aggregated. That is, in the present invention, by the multiplication effect of the two, the agglomeration accuracy of the nanoparticle in the polymer reinforced composite material is greatly reduced, and the nanoparticle can be almost in the state of primary particles. The bottom is highly dispersed. On the other hand, when the average fiber diameter is too small, it is difficult to stably produce a fiber containing nano particles. Moreover, the strong elongation of the fibers in the longitudinal direction may cause the stress of the nanoparticles to aggregate. Of course, the fiber obtained may have a deviation in the fiber diameter. However, only the range of the above average fiber diameter does not greatly affect the dispersibility of the nanoparticles dispersed in the fiber. Further, the "average fiber diameter" is such that the diameters of the 25 fibers randomly selected from the optical micrograph of the sample obtained by taking the ultrafine fiber as a sample are averaged. The fiber-24-200948875 made of the inorganic nanoparticle-polymer composite of the present invention can be made into a bulky type by a method of pressurizing and molding under the condition of maintaining the dispersed state of the inorganic nanoparticles. state. Here, in the molding, when the high temperature is too high or the applied pressure is too large, the mobility of the polymer chain is increased, the holding force for the nanoparticles is lowered, and the dispersion state of the nanoparticles in the fiber cannot be maintained. On the other hand, when molding at an appropriate temperature and pressure, while maintaining the mobility of the polymer chain while holding the nanoparticles, the fusion between the fibers is maintained, thereby maintaining the dispersion of the inorganic nano Φ particles in the fibers. In the state, it can be formed into a large functional material. In other words, under the condition that the inorganic nanoparticles are dispersed, the conditions under which pressure can be formed are such that the polymer is in a dispersed state of the inorganic nanoparticles, and the polymer has a condition of sufficient formability. In such a case, for example, when the polymer constituting the fibrous inorganic nanoparticle-polymer composite is a single amorphous polymer, the temperature of the fibrous inorganic nanoparticle-polymer composite in the vicinity of the glass transition temperature of the polymer For example, in the range of the glass transition temperature of the polymer of ±10 ° C, it can be formed by pressurization. Further, for example, when the polymer of the inorganic nanoparticle-polymer composite of the present invention is composed of a crystalline polymer or a crystalline polymer component as a main component, the fibrous inorganic nanoparticle is as described above. The polymer composite can be pressed and formed at a temperature in the vicinity of the softening point, for example, in the range of the softening point ± l ° ° C. Further, for example, when the polymer of the inorganic nanoparticle-polymer composite of the present invention is a blend of a crystalline polymer component and an amorphous polymer, the fibrous inorganic nanoparticle-polymer complex It can be press-formed at a suitable temperature range between the melting point of the crystalline polymer and the glass transition temperature of the non-crystalline polymer in the polymer component from -25 to 200948875 degrees. Here, the pressurization of the fibrous inorganic nanoparticle-polymer composite can be carried out at will or with the decompression of the ambient gas, and the void between the fibers can be reduced. Further, the formation of the fibrous inorganic nanoparticle-polymer composite is generally carried out at a temperature lower than the melting point of the polymer. When the temperature is higher than the melting point of the polymer, the nanoparticles dispersed in the polymer may reaggregate. Therefore, for example, the fiber formed by the inorganic nanoparticle-polymer composite of the present invention is obtained by applying a coating of the obtained fiber to the surface or by vacuum adsorption to reduce the gap between the fibers to obtain a film. The obtained film is superposed, and a bulky material can be developed by hot pressing at a temperature lower than the glass transition point (Tg) of the polymer to be used. At this time, the functional properties of the nanoparticle can be expressed as a large material property. (Polymer) The polymer used in the second aspect of the inorganic nanoparticle-polymer composite of the present invention is not particularly limited as long as it is a spinnable polymer. Preferred polymer materials from the viewpoint of the traceability include polyethylene oxide, polyvinyl alcohol, polyvinyl acetal, polyvinyl ester, polyvinyl ether, polyvinyl pyridine, polypropylene decylamine, and ether fiber. , pectin, starch, polyvinyl chloride, polyacrylonitrile, polylactic acid, polyglycolic acid, polylactic acid-polyglycolic acid copolymer, polycaprolactone, polybutylene succinate, polyethylene succinate, Polystyrene, polycarbonate, polyhexamethylene methyl carbonate, polyarylate, polyethylene isocyanate, polybutyl isocyanate, polymethyl methacrylate 'polyethyl methacrylate, poly-positive poly-n-propyl Methyl methacrylate, -26- 200948875 poly-n-butyl methacrylate, polymethacrylate, polyethyl acrylate, polybutyl acrylate, polyethylene terephthalate, polyterephthalic acid Trimethanol vinegar, polyethylene naphthalate 'poly(p-phenylene terephthalate) p-phenylenediamine, poly-p-phenylene terephthalate p-phenylenediamine _3,4, oxy-p-xylylenediphenyl diphenyl Amine copolymer, poly(m-xylylene phthalate), cellulose diacetate, cellulose III Acetate, methylcellulose, propylcellulose, benzylcellulose, silk protein, natural rubber, polyvinyl acetate, polyethyl bromide, poly(ethylene ether), polyethylene n-propyl ether Isopropyl ether, polyethylene n-butyl ether, polyethylene isobutyl ether, polyethylene tert-butyl ether, polyvinylidene chloride, poly(N-vinylpyrrolidone), poly(N-vinylcarbazole), poly(4-vinylpyridine) ), polyvinyl ketone, polymethyl isopropenyl ketone, polypropylene oxide, polycyclopentan oxide, polystyrene, nylon 6, nylon 66, nylon II, nylon 12, nylon 610, nylon 612 And these copolymers and the like. In the present invention, when a polymer material having a higher functional group having an inorganic nanoparticle-compatible property is used in addition to the traceability, the inorganic nanoparticle can be more highly dispersed in φ, which is preferable. (Polymer (Inorganic Nanoparticle Coordination Functional Group)) The preferred inorganic nanoparticle coordination functional group possessed by the polymer used in the present invention can be used only for the inorganic nanoparticle. , there is no special limit. In the present invention, a preferred functional group can be selected by the kind of the inorganic nanoparticle to be used. Preferred functional groups of the polymer used in the present invention include, for example, a carboxylic acid group (including an acid anhydride or a carboxylate), an amine group, an imine -27-200948875 group, a decylamino group, and a pyridine group. a base, a phosphate group, a sulfonic acid group, an alcoholic hydroxyl group, a thiol group, a disulfide group, a nitrile group, an isonitrile group, an alkyne or the like. Examples of the polymer containing a carboxylic acid group include unsaturated carboxylic acids such as polylactic acid, polyglycolic acid, polyacrylic acid, polymethacrylic acid, styrene-maleic anhydride copolymer, and ethylene/maleic anhydride copolymer. Or a carboxylic acid denatured polymer of an unsaturated carboxylic anhydride or the like. Examples of the polymer containing an amine group include a polyalkyleneimine, a polyallylamine, a polyvinylamine, a dialkylamine alkylglucan, a polylysine, a polyornosine, and a poly Histamine, polyarginine, aziridine (ethyleneimine), nucleic acid, and the like. Examples of the polymer containing an imine group include a polyimine. Examples of the polymer containing a guanamine group include polyamine (nylon), and a polymer containing a pyridyl group and a derivative thereof. For example, polyvinyl pyridine and poly(4-vinylpyridine) are mentioned. Examples of the polymer containing a phosphate group include a phosphate ester and a polyaryl ether maple. Examples of the polymer containing a sulfonic acid group include a polymer. Examples of the polymer containing an alcoholic hydroxyl group include polyvinyl alcohol, cellulose, and derivatives thereof. Examples of the polymer containing a nitrile group include polyacrylonitrile. In the case where the dispersed particles in the present invention are metal nanoparticles, the polymer having a metal-coordinating functional group as described in the inorganic nanoparticle-polymer composite of the first aspect can be used. The method of introducing the inorganic nanoparticle-coordinating functional group into the polymer is not particularly limited. For example, it may be a method of introducing a copolymer in advance after introduction into a unit, or a method of introducing a functional group by a reaction after forming a polymer. Preferred examples of the polymer having an inorganic nanoparticle-coordinating functional group used in the present invention include polyvinyl butyral (PVB). It is only polyvinyl butyral, and the dispersion of the nanoparticles can be controlled by controlling the ethylene structure of the main chain, the OH group of the side chain, and the existence of two kinds of functional groups of the acetal group at a predetermined ratio. At a higher altitude. (Polymer (molecular weight)) The polymer to be used has no traceability, and further considers the self-standing property, mechanical strength, workability, etc. of the obtained ultrafine fiber, and is 50,000 to 1,000,000. The molecular weight in the range is preferred. In addition, in consideration of the fact that the inorganic nanoparticles can be more stably dispersed, it is preferable to set the molecular weight of the polymer to a range of 80,000 to 500,000. (Dispersing Aid) In the inorganic nanoparticle-polymer composite of the present invention, "in addition to the above inorganic nanoparticles and a polymer, in order to prevent aggregation of inorganic nanoparticles", a dispersing aid capable of achieving stable dispersion may be contained. good. When a dispersing aid is used, the combination of the inorganic nanoparticle and the polymer can be carried out at a portion other than the coordination functional group of the inorganic nanoparticle or by binding a dispersing aid to the functional group, thereby becoming a stronger particle-trapping group. As a result, the dispersibility of the inorganic nanoparticles can be further improved. The dispersing aid is not particularly limited as long as it can improve the dispersibility of the inorganic nanoparticles. At one end, it has a good affinity with the polymer, and has affinity with the polymer. a coordinating, binding (crosslinking) functional group, and at the other end, reacting with a surface modifying molecule containing a functional group of a nitrogen, sulfur, phosphorus or the like having a coordination property of a nanoparticle or a nanoparticle. An amphiphilic compound having a functional group is preferred. The dispersing aid may, for example, be an organic acid such as a carboxylic acid having 6 to 22 carbon atoms, an acid such as sulfonic acid, sulfinic acid or phosphonic acid or an amine having 6 to 22 carbon atoms. In the present invention, it is also preferred to use a decane coupling agent having an alkoxy group and a ruthenium contained in the skeleton. In particular, in the case of using the metal nanoparticles as the inorganic nanoparticles in the present invention, a decane coupling agent having a group having a strong interaction with a metal such as an amine group or a thiol group is preferably used. Further, the dispersing aid may be used alone or in combination of two or more kinds, without impairing the effects of the present invention. (Additives, etc.) In addition, the inorganic nanoparticle-polymer composite of the present invention may contain an additive or the like for the purpose of blending, insofar as the effect of the present invention is not impaired. For example, an additive such as an antioxidant, an antifreeze agent, a pH adjuster, a concealing agent, a coloring agent, a plasticizer, a special functional agent, or an elastomer or a resin may be contained. The method of adding the additive or the like is not particularly limited, and may be added to the polymer itself to be used, or to the dispersion medium of the inorganic nanoparticles, or to the fiber-forming composition. <Manufacturing method of inorganic nanoparticle-polymer composite (No. 2-30-200948875 style)> The following is a description of the manufacturing method of the inorganic nanoparticle-polymer composite of the present invention. The inorganic nanoparticle-polymer composite of the present invention is obtained by using a polymer solution in which inorganic nanoparticles are uniformly dispersed, and the solution is formed into a fiber assembly by an electrospinning method. Specifically, it includes the following "modulation step for forming a fiber-forming composition" and "spinning step". In the present invention, the inorganic nanoparticles are highly dispersed in advance in the polymer solution, and the polymer solution in which the nanoparticles are dispersed is used in an electrospinning method to extend a polymer having a tracer property to form a superfine particle. fiber. In the present invention, since the fibers are formed, the space can be controlled from the three-dimensional space in which the aggregation of the nanoparticles is high to the primary space. As a result, the agglomeration probability of the nanoparticles can be greatly reduced. Further, if the fibers are not fine, the surface area is extremely increased. Therefore, when electrospinning is performed, a large amount of solvent is instantaneously evaporated, and the aggregation of the nanoparticles due to evaporation of the solvent can be avoided as much as possible. (Preparation step of the composition for forming a fiber) The step of preparing the composition for forming a fiber is a step of preparing a composition for forming a fiber containing inorganic nanoparticles and a polymer as essential components. As the polymer to be used, those having an inorganic nanoparticle-coordinating functional group as described above are preferred. Further, it is preferred that the composition for forming a fiber contains the above-mentioned dispersing aid. Specifically, first, the inorganic nanoparticles are expanded while stirring in the solvent A, and the surface-modifying molecules are continuously added as necessary. The solvent A is not particularly limited as long as it can dissolve the surface-modifying molecule. Can be used alone - -31 - 200948875 Solvent, or a mixed solvent obtained from a plurality of solvents. Further, it is preferable that the amount of the surface-modifying molecule added is 'the excess amount as compared with the amount which can cover the entire surface of the particle layer. Further, the polymer is dissolved in the solvent B, and the dispersing aid is simultaneously developed as necessary. The solvent B is not particularly limited as long as the polymer is completely dissolved in the presence of the solvent A, and the inorganic nanoparticles can be precipitated or not aggregated. A mixed solvent system which can be obtained from a single solvent or a plurality of solvents. Next, the solvent A and the solvent B prepared by mixing are mixed with a known dispersing device such as stirring, and an inorganic nanoparticle-polymer composite solution is obtained by dispersing the inorganic nanoparticles. The dispersion treatment is generally carried out at room temperature, 0. It is 5 to 3 hours, but it can be heated if necessary. Further, in order to achieve high concentration and high dispersibility, it is preferred to perform ultrasonic irradiation in the dispersion treatment or to use a dispersion aid such as glass bead honing. Finally, the obtained inorganic nanoparticle-polymer composite solution is diluted to a suitable concentration by electrospinning using a suitable solvent to finally obtain a fiber-forming composition. In this case, it is preferable that the concentration of the component which becomes a fiber material in the composition for forming a fiber in the composition for forming a fiber is in the range of 2 to 30% by mass in consideration of the viscosity of the composition for forming a fiber and the instantaneous evaporation condition of the solvent contained in the composition. . Further, when it is desired to enhance the dispersibility of the nanoparticles, the concentration of the component of the fiber material is preferably in the range of 4 to 10% by mass. (Spinning step) The spinning step is a step of ejecting the obtained fiber-32-200948875-dimensional composition by electrospinning to obtain a fiber. The spinning method and the spinning device in the spinning step will be described below. In the "electrostatic wire method" or the "Electro Spinning method", a solution or a dispersion containing a fiber-forming substrate or the like is ejected in an electrostatic field formed between electrodes, and the solution or dispersion is directed toward the electrode. A method of drawing a filament to form a fibrous substance. Further, the fibrous material obtained by spinning is generally laminated on the electrode of the trap substrate. Further, the fibrous material to be formed contains not only a state in which the fiber-forming solute or solvent contained in the fiber-forming composition is completely distilled off, but also a state in which it is directly left in the fibrous material. Further, in general, electrospinning can be carried out at room temperature. In the present invention, when the solvent or the like is not sufficiently volatilized, the temperature of the spinning environment gas or the temperature of the trapping substrate can be controlled as necessary. Figure 5 shows a state diagram of a device not used in the electrospinning process. In the electrospinning apparatus shown in Fig. 5, an injection needle-like discharge nozzle 1 for applying a voltage to the high-voltage generator 4 is provided at the tip end portion of the syringe 2, and the fiber-forming composition 3 is introduced into the tip end portion of the discharge nozzle 1. . Further, in the apparatus shown in Fig. 5, although the high voltage generator 4 is used, a suitable means can be used. Next, the tip end of the discharge nozzle 1 is disposed at a proper distance from the fiber collecting electrode 5, and the fiber forming composition 3 is ejected from the tip end portion of the ejection nozzle 1, at the tip end portion of the ejection nozzle 1 and the fiber collecting electrode 5 A fibrous substance can be formed therebetween. The electrode to be formed into an electrostatic field may be any one of a metal, an inorganic substance, or an organic substance, as long as it exhibits conductivity. Further, a film of a metal, an inorganic substance, or an organic substance exhibiting conductivity of 200948875 may be provided on the insulator. Further, the electrostatic field is formed between a pair of electrodes or a plurality of electrodes, and a high voltage can be applied to any of the electrodes forming the electrostatic field. This also includes, for example, the case where two high voltage electrodes (e.g., 15 kV and 1 OkV) having different voltages are used, and three electrodes connected to one ground connection electrode, or more than three electrodes. Further, as a method of discharging the fiber-forming composition in an electrostatic field, any method may be employed. As shown in Fig. 5, the fiber-forming composition is placed in an appropriate position in an electrostatic field, and is supplied to a nozzle from which fibers are placed. A method of forming a composition by means of a wire by means of a wire boundary. Further, it is preferable that the shape of the nozzle for ejecting the fiber-forming composition is such that the tip end is formed into an acute angle. When the tip end of the discharge nozzle forms an acute angle, the control of the formation of droplets in the tip end of the nozzle is variable. The material of the nozzle is not particularly limited, and is generally made of glass or metal. In the case of glass, a wire such as platinum is fixed in the nozzle, and this is used as an electrode. The diameter of the suitable nozzle is different depending on the composition for forming the fiber to be used, and is preferably 0. 05~lmm range. When the nozzle diameter is too small, the nanoparticles will be clogged in the nozzle, and the ejection will be discontinuous, making it difficult to stabilize the fibers. On the other hand, if the nozzle diameter is too wide, the fiber diameter to be produced is too wide, and the effect of the present invention cannot be sufficiently exhibited. Considering the fineness and operability of the fiber, 0. 1 ~ 〇. 5mm is better. The distance between the discharge nozzle and the fiber collecting electrode depends on the amount of charge, the size of the nozzle, the amount of discharge of the composition for forming the fiber from the nozzle, the concentration of the solution for forming the fiber, and the like, and the range of 10 to 30 cm at 20 kV is -34- 200948875 Excellent. When the distance is too short, the solvent does not completely evaporate, and the fibers disintegrate in shape, and when there is too much residual solvent in the fiber, no aggregation of the nanoparticle is carried out. On the other hand, when the distance is too long, the elongation force is divided, so that the stringiness is deteriorated, or the fiber diameter to be produced is large, and the recovery rate of the fiber is lowered. In addition, when the applied electrostatic potential is in the range of 5 to 3 OkV, the voltage may be abnormally discharged and may not be stabilized. On the other hand, when the applied voltage is too low, the fiber diameter is widened because the charging is not obtained, and as a result, the collection cannot be sufficiently suppressed. The potential of the desired one can be adjusted by any conventionally known method to adjust the precision of the discharge of the composition for forming a fiber. The degree of ΐμΐ/min is preferred. Further, the amount of fiber formation is preferably in the range of _200μ1/πήη depending on the composition for forming a dimension to be used. [Embodiment] [Embodiment] <Example (First Style)> Hereinafter, the present invention is further limited to these examples by the embodiment. <Measurement Method> In Examples A 1 to A 6 and Comparative Example A 1, it was preferable that the fusion was sufficiently performed without the charge. In addition, the manufacturing of the fiber is divided into the static electricity of the rice particles. The control of the pump is controlled by the pump. The composition of the spit is illustrated by 20~, but the following project, by -35- 200948875 is carried out by the following methods. (The content of the metal nanoparticles in the η complex (charge rate) The thermal analysis at 900 ° C was carried out in a stream of air using a thermogravimetric scale (trade name: TGA8120, manufactured by Rigaku Electric Co., Ltd.), and the amount of the residue was determined. The evaluation is performed, and the average enthalpy of taking the sample at 3 points is used in the evaluation. (2) Dispersion state of the metal nanoparticles in the composite (average dispersed particle diameter) The inorganic nanoparticle-polymer composite to be used is used. Microtome (Lee ca company, trade name: ULTRACUT-S), as a thin slice of 50~100 nm, placed on a copper microgrid (Micro GRID), by transmission electron microscope (FEI company, trade name: TECNAI G2), TEM observation and photography (75 million times or 1.5 million times) at an acceleration voltage of 120 kV. All metal nanoparticles present in the range of 120 nm x 20 nm in the obtained TEM image are identified as 'Using image analysis software' ( NEXUS NEW QUBE), for the isolated and dispersed aggregated particles or primary particles in the composite, image analysis 'determines the average dispersed particle size. (3) Dispersion of metal nanoparticles in the composite State (dispersion particle size distribution) The number of particles dispersed in the form of {30 nm 200948875 or less] obtained by the above-mentioned (2) photographed image "Density particle size distribution obtained by NEXUS NEW QUBE"}/{ <Example A1> [Preparation of a polymer solution having a metal-coordinating functional group] Polyvinyl butyral (hereinafter referred to as "PVB") (made by Wako Co., Ltd., trade name: polyvinyl butyral 1,000, average polymerization degree: 900~ 0 H00) 1. 5g is completely dissolved in methylene chloride (hereinafter referred to as "DCM"). 5 g, a PVB solution was obtained. [Dispersion step] Into the PVB solution obtained above, an Ag colloidal solution containing an alkylamine as a surfactant (manufactured by Sakata Industrial Co., Ltd., trade name: ΝΑΝΟSILVER dispersion, Ag content: 53% by mass, Alkylamine content: 11% by mass 'Dispersion: toluene, Ag particle size: 6. 0nm) φ 〇. 3 g, stirred for 2 hours to obtain a composite dispersion. [Preparation of composite film] Subsequently, the obtained composite dispersion was sputtered on a glass substrate, and the solvent (DCM) was naturally evaporated in a nitrogen atmosphere to obtain a pvB-Ag composite film. The resulting composite film had a thickness of 60 μm. [Measurement Evaluation] A transmission electron microscope (-37-200948875 TEM) photograph (75,000 times) of the obtained PVB-Ag composite film is shown in Fig. 1 . Further, the charge ratio (content) of the Ag nanoparticles in the obtained PVB-Ag composite film was 9. 5 mass%, the average dispersed particle size is 15. 0 nm, 90% or more of the Ag particles are dispersed in a state in which the dispersed particle diameter is 30 nm or less. <Example A2> [Reaction step] A PVB solution was obtained in the same manner as in Example A1. Continuing, γ-hydrothiopropyltrimethoxy decane (hereinafter referred to as "MPTMS") (manufactured by Chisso Co., Ltd., trade name: SalesS810) was added dropwise. After 06 g, the mixture was thoroughly stirred, and a coupling reaction was carried out to obtain a solution of MPTMS-coupled PVB (hereinafter referred to as "MPTMS-PVB"). [Dispersion step and preparation of composite film] In the obtained MPTMS-PVB solution, an Ag colloid solution was dropped in the same manner as in Example A1 to obtain a composite dispersion liquid. Further, a film of (MPTMS-PVB)-Ag composite having a thickness of 6 μm was obtained in the same manner as in Example A1. [Measurement evaluation] A transmission electron microscope (TEM) photograph (75 million times) of the (MPTMS-PVB)-Ag composite film obtained is shown in Fig. 2 . Further, the charge ratio (content) of the Ag nanoparticle in the obtained (MPTMS-PVB)-Ag composite film was 10. 9 mass%, the average dispersed particle diameter is 90 nm, and 95% or more of Ag 200948875 particles are dispersed in a state in which the dispersed particle diameter is 30 nm or less. <Example A3> [Reaction step] A PVB solution was obtained in the same manner as in Example A1. Continuing, γ-aminopropyltrimethoxydecane (hereinafter referred to as "APTMS") (Tokyo Chemical Co., Ltd., trade name: 3-aminopropyltrimethoxydecane) was added dropwise. 06 g, a sufficient altar φ was mixed and subjected to a coupling reaction to obtain an APTMS-coupled PVB (hereinafter referred to as "APTMS-PVB") solution. [Dispersion step and preparation of composite film] In the obtained APTMS-PVB solution, an Ag colloid solution was dropped in the same manner as in Example A1 to obtain a composite dispersion. Further, in the same manner as in Example A1, a (APTMS-PVB)-Ag composite film having a thickness of 60 μm was obtained. [Measurement Evaluation] A transmission electron microscope (TEM) photograph (75 million times) of the obtained PVB-Ag composite film is shown in Fig. 3 . Further, the charge ratio (content) of the Ag nanoparticle in the obtained PVB-Ag composite film was 9. 0% by mass, the average dispersed particle diameter is 9 · Onm, and 95% or more of the Ag particles are dispersed in a state in which the dispersed particle diameter is 3 Onm or less. <Example A4 &gt; -39- 200948875 [Preparation of a polymer solution having a metal-coordinating functional group] Polyethylene formal (hereinafter referred to as "PVF") (manufactured by Kanto Chemical Co., Ltd., trade name: polyethylene formal ) 2. 5g is completely dissolved in DCM47. A PVF solution was obtained after 5 g. [Dispersion step] An Ag colloidal solution containing an alkylamine as a surfactant was dropped into the PVF solution obtained as described above (manufactured by Sakata Industrial Co., Ltd., trade name: ΝΑΝΟSILVER dispersion, Ag nanoparticle content: 53% by mass) Ag particle size: 6 · Onm ) 1 g, and the mixture dispersion was obtained by stirring for 2 hours. [Preparation of composite film] Subsequently, a PVF-Ag composite film having a thickness of 60 μm was obtained in the same manner as in Example A1. [Measurement evaluation] The Ag content (content) of the Ag nanoparticles in the obtained PVF-Ag composite film was 15.8% by mass, and the average dispersed particle diameter was 15. 0 nm, 80% or more of the Ag particles are dispersed in a state in which the dispersed particle diameter is 30 nm or less. <Example A5> [Preparation of a polymer solution having a metal coordinating functional group] Diethyl fluorenyl cellulose (hereinafter referred to as "DAC") (waguang company-40-200948875 system 'commodity name: cellulose acetate, vinegar degree · 53~56%) 1 . 5g is completely dissolved in DCM and acetone (28. The DAC solution was obtained after 5 g/lg). [Dispersion step and preparation of composite film] In the obtained DAC solution, an Ag colloid solution was dropped in the same manner as in Example A1 to obtain a composite dispersion. Further, a DAC-Ag composite film having a thickness of 60 μm was obtained in the same manner as in Example A1. e [Measurement evaluation] The charge ratio (content) of the Ag nanoparticle in the obtained DAC-Ag composite film was 9. 7 mass%, the average dispersed particle size is 12. 0 nm, 80% or more of the Ag particles are dispersed in a state in which the dispersed particle diameter is 30 nm or less. <Example A6> [Preparation of a polymer solution having a metal-coordinating functional group] φ Triacetyl cellulose (hereinafter referred to as "TAC") (manufactured by Wako Co., Ltd., trade name: cellulose triacetate) 1 . 5g is completely dissolved in D CM2 8. A solution of TAC was obtained after 5 g. [Dispersion step and preparation of composite film] In the obtained TAC solution, the Ag colloidal solution was dropped into the same manner as in Example A1 to obtain a composite dispersion. Further, a TAOAg composite film having a thickness of 60 μm was obtained in the same manner as in Example A1. 200948875 [Measurement evaluation] The charge (content) of the Ag nanoparticle in the obtained TAC-Ag composite film was 9. 5 mass%, the average dispersed particle size is 1. 0 nm, 80% or more of the Ag particles are dispersed in a state in which the dispersed particle diameter is 30 nm or less. <Comparative Example A 1> [Preparation of Polymer Solution] Polystyrene (hereinafter referred to as "PS") (trade name: styrene polymer, average polymerization degree: 2,000) 5'2g in DCM47. After 5 g was completely dissolved, a PS solution was obtained. [Dispersion step and preparation of composite film] In the obtained PS solution, an Ag steroid solution was dropped in the same manner as in Example A4 to obtain a composite dispersion. Further, in the same manner as in Example A1, a PS-Ag composite film having a thickness of 60 μm was obtained. [Measurement Evaluation] A transmission electron microscope (TEM) photograph (10,000 times) of the obtained PS-Ag composite film is shown in Fig. 4 . Further, the charge ratio (content) of the Ag nanoparticle in the obtained PS-Ag composite film was 8. 4 quality. /〇. Further, as shown in Fig. 4, most of the Ag nanoparticles are agglomerated, and become aggregates of a degree of 〇·1 to 2 μη. <Comprehensive Examples A 1 to 6 and Comparative Example A 1> -42- 200948875 The materials used in Examples A 1 to A6 and Comparative Example A 1 and the obtained composite materials are collectively shown in Table 1 below. 2. [Table 1] High score 5 F solution Colloidal solution Polymer solvent Surfactant Particle material Particle size Example A1 PVB DCM alkylamine Silver 6. 0 nm Example A2 MPTMS-PVS DCM alkylamine Silver 6. 0 nm Example A3 APTMS-PVB DCM alkylamine Silver 6. 0 nm Example A4 PVF DCM alkylamine Silver 6. 0 nm Example A5 DAC DCM+acetone alkylamine silver 6. 0 nm Example A6 TAC DCM alkylamine Silver 6. 0 nm Comparative Example A1 PS DCM alkylamine Silver 6. 0 nm [Table 2] Composite material (film thickness of 60 μm) Particle content Dispersion state Example A1 9. 5 mass% (1. 〇% by volume) Average dispersed particle size 15. 0 nm 90% or more is a dispersed particle diameter of 30 nm or less. Example A2 10. 9% by mass (1. 2% by volume) 9. 0 nm 95% or more is a dispersed particle diameter of 30 nm or less. Example A3 9. 0% by mass (0. 9% by volume) 9. 0 nm 95% or more is a dispersed particle diameter of 30 nm or less. Example A4 15. 8 mass 0 / 〇 (1. 8% by volume) 15. 0 nm 80% or more is a dispersed particle diameter of 30 nm or less. Example A5 9. 7 mass% (1. 0% by volume) 12. 0 nm 80% or more is a dispersed particle diameter of 30 nm or less. Example A6 9. 5 mass% (1. 0 mm%) 15. 0 nm 80% or more is a dispersed particle diameter of 30 nm or less. Comparative Example A1 8. 4% by mass (〇_87 vol %) (most particles agglutinate to o. l~2μηη degree) -43- 200948875 <Example (Second Mode)&gt;> Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited by the examples. In the examples B1 to B7 and the reference example B1, unless otherwise specified, the solvent used was an anhydrous reagent. <Measurement Method> For the following Examples B1 to B7 and Reference Example B1, the following items were subjected to measurement and evaluation by the following methods. (1) The average fiber diameter of the fiber and the aggregation of the nanoparticle aggregates in the fiber. The photomicrograph (5000 times) was photographed by DIGITALMICROSCOPY (manufactured by KEYENCE, trade name: VHX-200). From the photographs obtained, five measurement regions were randomly selected, five fibers were randomly extracted from one region, and fiber diameters were measured for a total of 25 fibers. The average enthalpy of the obtained measurement results (η = 25) was obtained, and the obtained enthalpy was taken as the average fiber diameter of the fiber. Further, with respect to the obtained transmission photograph (5000 times), evaluation was made as to whether or not the aggregation of the nanoparticles was 200 nm or more. (2) Dispersion state of metal nanoparticles in composite fibers (average dispersed particle diameter) A deposit of extremely fine fibers is used, and as shown in Fig. 6, a transmission electron microscope is manufactured by inverted embedding method -44 - 200948875 ( ΤΕΜ) Observe the sample. Further, in Fig. 6, reference numeral 6 denotes a fiber deposit, reference numeral 7 denotes Pt, reference numeral 8 denotes an uncured resin, reference numeral 9 denotes a glass piece, and reference numeral 10 denotes a cured resin. Continuing to use a Microtome (manufactured by Raika Co., Ltd., trade name: ULTRACUT-S) to form a 90 nm sheet, and perform TEM observation and photographing at an acceleration voltage of 120 kV by a transmission electron microscope (trade name: TECNAI G2, manufactured by FEI Co., Ltd.). 10,000 times). The obtained TEM image is further expanded by 4 times in the photo present at 150 nm&gt;&lt;All particles in the region of 150 nm are used as objects, and the regions of the particles by contrast are visually judged and identified, and recognized by a computer. Continuing, the average dispersed particle size was determined by using the analytical software (NEXUS NEW QUBE) 'image analysis of each of the aggregated particles or primary particles dispersed in the composite. In this case, when the shape (planar shape) of the particles observed in the TEM photograph is not round, it is presumed that it has a circular shape having the same area as the area of the inorganic nanoparticle to be observed, and the estimated circle diameter is taken as the particle diameter °. When the independence of the nanoparticle cannot be visually observed, it is judged by 3D-TEM observation. In the 3D-TEM observation, the ratio of the number of isolated (planar non-overlapping) particles in the 'total number of particles in the region of 150 nm x 150 nm was evaluated as an index of the aggregation of the nanoparticles. Further, the specific blending of the embedding resin (epoxy resin: manufactured by Nisshin EM Co., Ltd.) used for the TEM observation sample preparation is as follows. -45- 200948875 Main agent • Quetol8 1 2 77.2 Soft hardener: DDSA 60 Hard hardener: MNA 35.6 Polymerization accelerator: DMP-30 2.6 (3) Dispersion state of metal nanoparticles in composite fiber (dispersion particle size) Distribution) For the photographic image taken in (2) above, the dispersion particle size distribution obtained by the image analysis software (NEXUS NEW QUBE) is used to obtain the number of particles dispersed in a form of 20 nm or less}/{the total number of particles Between }xl〇〇( % ). (4) The content of the nanoparticle in the fiber (evaluation of the charge rate) Using a thermograviity scale (trade name: TGA8120, manufactured by Rigaku Electric Co., Ltd.), thermal analysis at 900 °C was carried out in an air stream, and the amount of the residue was determined. to evaluate. And the evaluation system uses the average enthalpy of taking 3 points of the sample. <Example B&quot; (Ag30-PVB 1 000 ) [Fiber-forming composition adjustment step] Drying at 70 °C for one week, polyvinyl butyrate (hereinafter referred to as "PVB") (manufactured by Kokusai Co., Ltd.) Name: polyvinyl butyral first grade, average degree of polymerization: i 〇 00) ig in dichloromethane (hereinafter referred to as "DCM") 19 g completely dissolved, 'a PVB solution was obtained. The pvB solution obtained above was added as a dispersing aid to γ-hydrogen sulfur-46 - 200948875-propyl propyl dimethoxy sand (MPTMS) (1 solid fraction: 100% by chisso) 0.06 g (corresponding to Ag The solution of the MPTMS-coupled PVB (hereinafter referred to as "MPTMS-PVB") was obtained by performing a coupling reaction after stirring for 30 minutes. Further, a colloidal solution of Ag nanoparticles containing an alkylamine as a surfactant was added to the obtained MPTMS-PVB solution (manufactured by Sakata Industrial Co., Ltd., trade name: NANO SILVER dispersion, dispersion: toluene, Ag Nai Content of rice particles: 53% by mass, average particle diameter of Ag nanoparticles: 6 to 8 nm, content of alkylamine··1 1% by mass) 6. 6 g, Ag nanoparticle after stirring for 1 hour MPTMS-PVB) complex solution. At this time, in the Ag nanoparticle-(PVTMS-PVB) composite solution obtained, the change in color tone by aggregation of the Ag nanoparticles was not confirmed, and precipitation of Ag nanoparticles was not confirmed on the glass container wall. Further, 15 g of the obtained Ag nanoparticle-(MPTMS-PVB) composite solution was prepared by diluting to a suitable concentration of DCM and chloroform (70% by mass/30% by mass) to prepare a suitable concentration for electrospinning. A composition for forming a fiber. [Spinning step] Using the fiber-forming composition (spinning solution) obtained above, the fiber-forming composition is discharged by an electrospinning device as shown in Fig. 5, and the fibers are continuously spun to accumulate fibers to produce fibers. Deposits. At this time, the inner diameter of the ejection nozzle 1 is 〇.4 mm (injection needle: 23G), the capacity of the syringe 2 is l〇m, and the voltage is 18 kV, from the ejection nozzle 1 to the fiber-47-200948875-dimensional collecting electrode 5 ( The distance between the stainless steel plates is 2 5 cm. The discharge amount of the fiber-forming composition was controlled to 120 ml/min by a syringe pump (manufactured by Bioanalytical Systems Inc., trade name: MD-1020), and the fiber-forming composition was sprayed and deposited on the trapping electrode. PET film [measurement evaluation] Take the obtained Ag nanoparticle- (MPTMS-PVB) composite fiber _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A photograph of a transmission electron microscope (TEM) (observation magnification of 360,000 times) is shown in Fig. 8. The obtained fiber had an average fiber diameter of 1.52 μm, and aggregation of Ag nanoparticles passing through 50 nm or more in the photograph was not confirmed. Further, the Ag nanoparticles have an average dispersed particle diameter of 8.6 nm and a maximum dispersed particle diameter of 15.3 nm'. All the particles are dispersed in a state in which the dispersed particle diameter is 20 nm or less. Further, the content of the Ag nanoparticles was 22.8% by mass.实施 <Example B2> (Ag40-PVB70〇) [Fiber forming composition adjustment step] One week drying at 70 °C was carried out, and PVB (trade name: polyvinyl butyral first-grade, average polymerization) Degree: 700) After 1.2 g of DCM1 was completely dissolved, a PVB solution was obtained. The addition amount of the MPTMS as the dispersing aid obtained in the above-mentioned PVB solution was changed to 〇·1 g. The same as in Example B1, a -48-200948875 MPTMS coupling pvb solution was obtained. The Ag nanoparticle-PVB composite solution was obtained in the same manner as in Example B1 except that the amount of the colloidal solution of the Ag nanoparticle was changed to l-〇g. At this point, in the obtained Ag nanoparticle-(MPTMS-PVB) complex solution, the change in color tone by the aggregation of the Ag nanoparticle was not confirmed, and the precipitation of the Ag nanoparticle on the glass container wall was also observed. The composition for forming a fiber was prepared in the same manner as in Example B1 except that the obtained Ag nanoparticle-(MPTMS-PVB) complex solution was used in an amount of 15 g. [Spinning step] Using the fiber-forming composition (spinning solution) obtained above, the voltage was set to 20 kV, and the φ discharge amount of the fiber-forming composition was changed to 100 ml/min by a syringe pump, and Examples Similarly to B1, a fiber deposit was produced by the electrospinning apparatus shown in Fig. 5. [Measurement evaluation] A photograph (observation magnification of 360,000 times) of a transmission electron micromirror (TEM) of the obtained Ag nanoparticle-PVB composite fiber is shown in Fig. 9 . The obtained fiber had an average fiber diameter of 1.43 μπα, and aggregation of Ag nanoparticles passing through 50 nm or more in the photograph was not confirmed. Further, Ag nanoparticles -49 - 200948875 particles have an average dispersed particle diameter of 8.1 nm and a maximum dispersed particle diameter of 15.6 nm, and all the particles are dispersed in a state in which the dispersed particle diameter is 20 nm or less. Further, the content of the Ag nanoparticles was 30.4 by mass. /. . <Example B3> (Ag25-PS/MAA copolymer 18) [Fiber forming composition adjustment step] Copolymer of styrene (St) and methyl methacrylic acid (MAA) (manufactured by Dainippon Ink Co., Ltd.) , trade name: RYU REXA-14, PS/MAA = about 90/10 (mole %), Μη: about 200,000) 3.0 g in furan tetrahydrofuran (THF) 17.0 g was completely dissolved, and a PS-MAA solution was obtained. In the PS/MAA solution obtained above, the amount of MPTMS added as a dispersing aid was changed to 0.45 g (corresponding to about 60 mol% of MAA), and MPTMS coupled PS/MAA was obtained in the same manner as in Example B1 (hereinafter referred to as " MPTMS-PS/MAA") solution. The Ag nanoparticle-(MPTMS-PS/MAA) complex solution was obtained in the same manner as in Example B1 except that the amount of the colloidal solution of the Ag nanoparticles was changed to 2.〇g and the mixture was stirred for 2 hours. At this point, in the obtained Ag nanoparticle-(MPTMS-PS/MAA) complex solution, the change in color tone by agglomeration of the Ag nanoparticle was not confirmed, and the Ag nanoparticle of the glass container wall was The precipitation was also not confirmed. Further, 15 g of the obtained Ag nanoparticle-(MPTMS-PS/MAA) complex solution was prepared by diluting electrospin to a suitable concentration by using a mixed solvent of DCM and THF (70% by mass/30% by mass). Out of the fiber type -50-200948875 composition. [Spinning step] Using the fiber-forming composition (spinning solution) obtained above, the voltage was set to 20 kV, and the discharge amount of the fiber-forming composition was changed to 60 ml/min by the syringe pump. Similarly to B1, a fiber deposit was produced by an electrospinning apparatus as shown in Fig. 5. [Measurement evaluation] A photograph of a transmission electron microscope (TEM) of the obtained Ag nanoparticle-PS/MAA composite fiber (observation magnification: 360,000 times) is shown in Fig. 1A. The obtained fiber had an average fiber diameter of 〇.52 μm, and aggregation of Ag nanoparticles having a diameter of 50 nm or more in the photograph was not confirmed. Further, the Ag nanoparticles have an average dispersed particle diameter of 11.3 nm and a maximum dispersed particle diameter of 20.6 nm, and 99.7% of the particles are dispersed in a state in which the dispersed particle diameter is 20 nm or less. Further, the content of the Ag nanoparticles was 21.7% by mass. <Example B4> (AU30-PVB700) [Fiber forming composition adjustment step] A PVB solution was obtained in the same manner as in Example B 2 and in the same manner. In the PVB solution obtained, the amount of MPTMS added as a dispersing aid was changed to 〇.lg (corresponding to 2 to 51 - 200948875 times of the surface of the Au nanoparticle particles), and the same as in Example B1. A solution of MPTMS coupled PVB (hereinafter referred to as "MPTMS-PVB") was obtained. Continuing, a colloidal solution of Au nanoparticles was added to the obtained MPTMS-PVB solution (manufactured by ULVAC Materials, trade name: Au)

Nanometalink AulT'分散液:甲苯、Au奈米粒子含有量 :30質量%、au奈米粒子平均粒徑:4nm) 1.2g,藉由進 行1小時攪拌,得到Au奈米粒子-PVB複合體溶液。 此時點下,於所得之 Au奈米粒子-(MPTMS-PVB ) ▲ 複合體溶液,藉由 Au奈米粒子之凝集的色調變化未被確 認’又玻璃容器壁上之Au奈米粒子的析出亦未被確認。 且’將所得之 Au奈米粒子-(MPTMS-PVB )複合體 溶液1 5g,使用DCM與甲苯(70質量%/30質量% )之混 合溶劑,藉由稀釋靜電紡絲至適切濃度,調製出纖維形成 用組成物。 〔紡絲步驟〕 使用上述所得之纖維形成用組成物(紡絲溶液),將 藉由注射器幫浦之纖維形成用組成物的吐出量變更爲 5 0ml/min以外,與實施例B1同樣下,藉由如圖5所示靜 電紡絲裝置調製出纖維堆積物。 〔測定評估〕 所得之纖維的平均纖維徑爲1.45Hm ’透過照片中之 50nm以上的Au奈米粒子之凝集未被確5忍。又’ Au奈米 -52- 200948875 粒子之平均分散粒徑爲9.8nm,最大分散粒徑爲15.2 nm, 所有粒子以分散粒徑20nm以下的狀態下分散。且Au奈 米粒子之含有率爲23.1質量%。 〈參考例 Bl〉 ( Ag20-PVBl〇〇〇 ) 〔纖維形成用組成物調整步驟〕 完全與實施例B 1同一材料及同樣操作下得到PVB溶 液。 於所得之P VB溶液,作爲分散助劑之MPTMS的添加 量變更爲〇.〇4g (相當於實施例B1中之使用量的2/3 )以 外,與實施例B1同樣下,得到MPTMS偶合PVB (以下 稱爲「MPTMS-PVB」)溶液。 繼續,將 Ag奈米粒子之膠體溶液的添加量變更爲 〇.4g以外,與實施例B1同樣下得到 Ag奈米粒子-( MPTMS-PVB )複合體溶液。 此時點下,於所得之 Ag奈米粒子-(MPTMS-PVB ) 複合體溶液,藉由Ag奈米粒子之凝集的色調變化未被確 認,又於玻璃容器壁之Ag奈米粒子之析出亦未被確認。 〔濺射薄膜之作成〕 使用所得之Ag奈米粒子-PVB複合體溶液,於玻璃基 板上,藉由濺射法使乾燥後的薄膜厚度成約Ιμηι而製膜, 得到Ag奈米粒子-(MPTMS-PVB )複合體薄膜。 -53- 200948875 〔測定評估〕 所得之Ag奈米粒子-(MPTMS-PVB)複合體薄膜的 透過型電子顯微鏡(TEM )之照片(觀察倍率36萬倍) 如圖11所示。 又,藉由所得之Ag奈米粒子-(MPTMS-PVB )複合 體薄膜之TEM照片進行觀察時’即使將奈米粒子之含有 量(塡充率)減少至實施例B1的2/3,5 Onm以上之凝集 集聚點多數存在。又,粒子之最大分散粒徑超過20 nm ’ 孤立地分散之一次粒子之比率亦遙遙未達90% ’於目視水 準下亦可清楚明瞭。 〈實施例 B5〉PVB2400/Fe3〇4 ( 33.3 質量 %) 將於70。(:進行一週乾燥的聚乙烯醇縮丁醛(以下稱爲 「PVB」)(和光純藥製’商品名·聚乙嫌醇縮丁醒一級 、平均聚合度:2400) lg於DCM19g完全溶解後,得到 PVB溶液。 於所得之PVB溶液,添加含有作爲界面活性劑之烷 基胺的Fe3〇4奈米粒子之膠體溶液(戸田工業公司製,商 品名:磁性奈米粒子分散體、分散液:甲苯、Fe3〇4奈米 粒子含有量:16質量%、奈米粒子平均粒徑:15±3nm) 3.25g,以試管攪拌機進行15分鐘攪拌後,調製出Fe304 奈米粒子-PVB複合體溶液。 此時點下,於所得之Fe3 04奈米粒子-PVB複合體溶 液,藉由Fe3〇4奈米粒子之凝集的色調變化未被確認,又 -54- 200948875 ,於玻璃容器壁的Fe3〇4奈米粒子之析出未被確認。 且,將所得之Fe304奈米粒子-PVB複合體溶液10g 使用DCM與氯仿(70質量°/。/30質量% )的混合溶劑’藉 由稀釋靜電紡絲至適切濃度,調製出纖維形成用組成物。 使用上述所得之纖維形成用組成物(紡絲溶液)’藉 由如圖5所示靜電紡絲裝置噴出纖維形成用組成物’以連 續方式進行紡絲來累積纖維’製造出纖維堆積物。 此時的噴出嘴1之內徑爲〇.4mm(注射針:23G)、 注射器2之容量爲l〇ml,電壓爲16.5kV ’自噴出嘴1至 纖維捕集電極5 (不鏽鋼板)的距離爲2 〇cm。藉由注射器 幫浦(BioanalyticalSystemsInc 公司製,商品名:MD-1 020 )之纖維形成用組成物的吐出量控制於50μΙ/πιίη下, 噴射纖維形成用組成物,堆積於貼有捕集電極之PET薄膜 上。 採取所得之Fe304奈米粒子-PVB複合體纖維的堆積 物,以光學顯微鏡攝影之透過照片(3 000倍)如圖12所 示,又透過型電子顯微鏡(TEM )之照片(觀察倍率36 萬倍)如圖13所示。所得之纖維的平均纖維徑爲3.24μηι ,由ΤΕΜ觀察Fe304奈米粒子爲均勻地分散,50nm以上 之凝集未被確認。Fe304之塡充率由TGA測定下成爲30.7 質量%。 〈實施例B6 &gt; PVP/Fe304 (水分散,33.3質量% ) 將市販之聚乙烯吡咯烷酮(以下稱爲「PVP」, -55- 200948875Nanometalink AulT' dispersion: Toluene, Au nanoparticle content: 30% by mass, average particle diameter of au nanoparticle: 4 nm) 1.2 g, and an Au nanoparticle-PVB complex solution was obtained by stirring for 1 hour. At this point, in the obtained Au nanoparticle-(MPTMS-PVB) ▲ complex solution, the change in color tone by the agglomeration of the Au nanoparticle was not confirmed, and the precipitation of the Au nanoparticle on the wall of the glass container was also observed. Not confirmed. And '1 5 g of the obtained Au nanoparticle-(MPTMS-PVB) complex solution was prepared by diluting electrospinning to a suitable concentration using a mixed solvent of DCM and toluene (70% by mass/30% by mass). A composition for forming a fiber. [Spinning step] The same procedure as in Example B1 was carried out except that the fiber forming composition (spinning solution) obtained above was changed to a discharge amount of the fiber forming composition by the syringe pump to 50 ml/min. The fiber deposits were prepared by an electrospinning device as shown in FIG. [Measurement evaluation] The average fiber diameter of the obtained fiber was 1.45 Hm. The aggregation of the Au nanoparticles having a wavelength of 50 nm or more in the photograph was not confirmed. Further, the Au nano-52-200948875 particles had an average dispersed particle diameter of 9.8 nm and a maximum dispersed particle diameter of 15.2 nm, and all the particles were dispersed in a state in which the dispersed particle diameter was 20 nm or less. Further, the content of the Au nanoparticles was 23.1% by mass. <Reference Example Bl> (Ag20-PVB1〇〇〇) [Fiber forming composition adjustment step] The PVB solution was obtained in the same manner as in Example B1 and under the same operation. The MPTMS-coupled PVB was obtained in the same manner as in Example B1 except that the amount of the MPTMS added as the dispersing aid was changed to 〇. 4 g (corresponding to 2/3 of the amount used in Example B1). (hereinafter referred to as "MPTMS-PVB") solution. The Ag nanoparticle-(MPTMS-PVB) complex solution was obtained in the same manner as in Example B1 except that the amount of the colloidal solution of the Ag nanoparticles was changed to 0.4 g. At this point, in the obtained Ag nanoparticle-(MPTMS-PVB) complex solution, the change in color tone by agglomeration of the Ag nanoparticle was not confirmed, and the precipitation of the Ag nanoparticle on the glass container wall was not observed. be confirmed. [Preparation of Sputtered Film] The obtained Ag nanoparticle-PVB composite solution was used to form a film on a glass substrate by a sputtering method to a thickness of about Ιμηι after drying to obtain Ag nanoparticle-(MPTMS). -PVB) composite film. -53-200948875 [Measurement evaluation] A photograph of a transmission electron microscope (TEM) of the obtained Ag nanoparticle-(MPTMS-PVB) composite film (observation magnification: 360,000 times) is shown in Fig. 11 . Moreover, when observed by the TEM photograph of the obtained Ag nanoparticle-(MPTMS-PVB) composite film, even if the content of the nanoparticle (reduction rate) was reduced to 2/3 of the example B1, 5 Most of the agglomeration points above Onm exist. Moreover, the maximum dispersed particle size of the particles exceeds 20 nm. The ratio of the primary particles dispersed in isolation is also far less than 90%, which is clear under visual conditions. <Example B5> PVB2400/Fe3〇4 (33.3 mass%) will be 70. (: polyvinyl butyral (hereinafter referred to as "PVB") which is dried for one week (produced by Wako Pure Chemicals Co., Ltd., trade name, polyethyl alcohol, alcohol, condensed, first-order, average degree of polymerization: 2,400). lg is completely dissolved in DCM 19g. A PVB solution was obtained. A colloidal solution of Fe3〇4 nanoparticles containing an alkylamine as a surfactant was added to the obtained PVB solution (manufactured by Sakata Industrial Co., Ltd., trade name: magnetic nanoparticle dispersion, dispersion: Toluene, Fe3〇4 nanoparticle content: 16% by mass, nanoparticle average particle diameter: 15±3 nm) 3.25 g, and stirred in a test tube mixer for 15 minutes to prepare a Fe304 nanoparticle-PVB composite solution. At this point, in the obtained Fe3 04 nanoparticle-PVB complex solution, the change in color tone by agglomeration of Fe3〇4 nanoparticle was not confirmed, and -54-200948875, Fe3〇4奈 on the glass container wall The precipitation of the rice particles was not confirmed. Further, 10 g of the obtained Fe304 nanoparticle-PVB composite solution was electrospun by dilution with a mixed solvent of DCM and chloroform (70 mass%/./30 mass%). Concentration, modulation of fiber formation The fiber-forming composition (spinning solution) obtained by the above-described fiber forming composition by the electrospinning device shown in Fig. 5 is spun in a continuous manner to accumulate fibers to produce fibers. The inner diameter of the ejection nozzle 1 at this time is 〇.4 mm (injection needle: 23G), the capacity of the syringe 2 is l〇ml, and the voltage is 16.5 kV 'from the ejection nozzle 1 to the fiber collecting electrode 5 (stainless steel plate) The distance is 2 〇cm. The discharge amount of the fiber-forming composition of the syringe pump (product name: MD-1 020, manufactured by Bioanalytical Systems Inc.) is controlled at 50 μΙ/πιίη, and the fiber-forming composition is sprayed. On the PET film to which the trap electrode is attached. The resulting deposit of Fe304 nanoparticle-PVB composite fiber is photographed by optical microscopy (3 000 times) as shown in Fig. 12, and transmitted electron microscope. The photograph of (TEM) (observation magnification: 360,000 times) is shown in Fig. 13. The average fiber diameter of the obtained fiber was 3.24 μηι, and Fe304 nanoparticles were uniformly dispersed by ΤΕΜ, and aggregation of 50 nm or more was not observed. The charge rate of Fe304 was 30.7 mass% as measured by TGA. <Example B6 &gt; PVP/Fe304 (water dispersion, 33.3 mass%) Polyvinylpyrrolidone (hereinafter referred to as "PVP", -55-) 200948875

Aldrich製,Mw約1,300,000 ) 0.8g於乙醇與水之混合溶 劑(乙醇/純水=1 : 1 ) 9.2g中完全溶解後,得到pVp溶 液。 於所得之pvp溶液中添加粒子表面覆蓋陽離子表面修 飾劑的Fe304水分散膠體(ferrotec製,商品名EMG607, 平均粒徑約l〇nm,固體分約1〇質量%)48,以試管攪拌 機進行15分鐘攪拌後,調製出Fe304奈米粒子-PVP複合 體溶液。以奈米粒子之高塡充率的達成與分散性的提高作 爲目的時,分散奈米粒子前,有時預先添加陽離子性界面 活性劑(例如tetrabutylammonium chloride,以後簡稱爲 TBAc)或陽離子性高分子電解質(例如Polyethylenimine ,以後簡稱爲PEI)。 使用上述所得之纖維形成用組成物(紡絲溶液),藉 由如圖5所示靜電紡絲裝置噴出纖維形成用組成物,以連 續方式進行紡絲而累積纖維,製造出纖維堆積物。 此時的噴出嘴1之內徑爲〇.22mm (注射針:27G )、 注射器2之容量爲10ml、電壓爲14.5kV、自噴出嘴1至 纖維捕集電極5 (不鏽鋼板)的距離爲18 cm。藉由注射器 幫浦(BioanalyticalSystemsInc 公司製,商品名:MD-1 020 )的纖維形成用組成物之吐出量控制爲20μ1/ιηίη下, 噴射纖維形成用組成物,於貼有捕集電極之PET薄膜上進 行堆積。 採取所得之Fe304奈米粒子-PVB複合體纖維的堆積 物,以光學顯微鏡攝影之透過照片(3000倍)如圖14所 200948875 示,所得之纖維的平均纖維徑爲1.1 μιη,自透過型電子顯 微鏡(ΤΕΜ )觀察之Fe3〇4奈米粒子爲均勻地分散,且確 認無50nm以上之凝集。藉由TGA測定之Fe304的塡充率 爲2 9.8質量%。 〈實施例B7〉PE0/Fe304 (水分散,33.3質量% ) 將市販之聚乙烯氧化物(以下稱爲「PEO」,和光純 藥製’分子量300,000〜500,000 ) lg,於純水與乙醇(純 水/乙醇=1 : 1 )之混合溶劑19g中完全溶解,得到PEO 溶液。 於所得之PEO溶液,添加粒子表面覆蓋陽離子表面修 飾劑之Fe304水分散膠體(ferr〇tec製,商品名EMG607, 平均粒徑約l〇nm,固體分約10質量%)5§,於試管攪拌 機中進行15分鐘攪拌後調製出Fe304奈米粒子- PEO複合 體溶液。以奈米粒子之高塡充率的達成與分散性的提高作 爲目的時,分散奈米粒子前,有時預先添加陽離子性界面 活性劑(例如 tetrabutylammonium chloride,以下簡稱爲 TBAc)或陽離子性高分子電解質(例如Polyethylenimine ,以下簡稱爲PEI)。 使用上述所得之纖維形成用組成物(紡絲溶液),藉 由如圖5所示靜電紡絲裝置噴出纖維形成用組成物,以連 續方式進行紡絲而累積纖維,製造出纖維堆積物。 此時的噴出嘴1之內徑爲0.22mm (注射針:27G) ’ 注射器2之容量爲10ml ’電壓爲16. OkV,自噴出嘴1至 -57- 200948875 纖維捕集電極5(不鏽鋼板)之距離爲18cm。藉由注射器 幫浦(BioanalyticalSystemsInc 公司製,商品名:MD- 1 020 )的纖維形成用組成物之吐出量控制於ΙΟμΙ/min下, 噴射纖維形成用組成物,堆積於附有捕集電極之PET薄膜 上。 採取所得之Fe304奈米粒子-PEO複合體纖維的堆積物 ,以光學顯微鏡所攝影之透過照片(3 000倍)如圖1 5所 示。所得之纖維的平均纖維徑爲0.92 μη!,由透過型電子 顯微鏡(ΤΕΜ)觀察之Fe304奈米粒子爲均勻分散,且確 認無50nm以上之凝集。藉由TGA測定之Fe3 04的塡充率 爲2 9.2質量%。 〈綜合實施例B 1〜B 7及參考例B 1〉 對於實施例B 1〜B7及參考例B 1中所使用的材料、 及所得之複合材料,綜合如下述表3及4。 〔表3〕 高分子溶液 膠體溶液 高分子 溶劑 界面活性劑 粒子材料 粒徑 實施例B1 MPTMS-PVB DCM 烷胺 銀 6 〜8nm 實施例B2 MPTMS-PVB DCM 烷胺 銀 6 〜8nm 實施例B3 MPTMS-(PS/MAA) THF 烷胺 銀 6 〜8nm 實施例B4 MPTMS-PVB DCM (表面修飾) 金 4nm 參考例B1 MPTMS-PVB DCM 烷胺 銀 6 〜8nm 實施例B5 PVB DCM 烷胺 Fe3〇4 約 15nm 實施例B6 PVP 乙醇冰 (陽離子表面修飾劑) Fe3〇4 10nm 實施例B7 PEO 乙醇冰 (陽離子表面修飾劑) FC3〇4 lOnm -58- 200948875Manufactured by Aldrich, Mw about 1,300,000) 0.8 g of a solvent mixture of ethanol and water (ethanol/pure water = 1 : 1 ) was completely dissolved in 9.2 g, and a pVp solution was obtained. To the obtained pvp solution, Fe304 water-dispersed colloid (manufactured by Ferrotec, trade name: EMG607, average particle diameter: about 10 nm, solid content of about 1% by mass) 48 was added to the obtained pvp solution, and the mixture was subjected to a test tube mixer. After stirring for a minute, a Fe304 nanoparticle-PVP complex solution was prepared. In order to achieve the high enthalpy of the nanoparticle and the improvement of the dispersibility, a cationic surfactant (for example, tetrabutylammonium chloride, hereinafter referred to as TBAc) or a cationic polymer may be added in advance before dispersing the nanoparticles. Electrolytes (eg Polyethylenimine, hereinafter referred to as PEI). Using the fiber-forming composition (spinning solution) obtained above, the fiber-forming composition was ejected by an electrospinning apparatus as shown in Fig. 5, and the fibers were continuously spun to accumulate fibers to produce a fiber deposit. At this time, the inner diameter of the discharge nozzle 1 is 〇.22 mm (injection needle: 27G), the capacity of the syringe 2 is 10 ml, the voltage is 14.5 kV, and the distance from the ejection nozzle 1 to the fiber collecting electrode 5 (stainless steel plate) is 18 Cm. The discharge amount of the fiber-forming composition of the syringe pump (manufactured by Bioanalytical Systems Inc., trade name: MD-1 020) was controlled to 20 μl/ιηίη, and the fiber-forming composition was sprayed onto the PET film to which the trap electrode was attached. Stack up. The obtained Fe304 nanoparticle-PVB composite fiber deposit was photographed by optical microscopy (3000 times) as shown in Fig. 14, 200948875, and the obtained fiber had an average fiber diameter of 1.1 μm, self-transmission electron microscope. (ΤΕΜ) The observed Fe3〇4 nm particles were uniformly dispersed, and it was confirmed that there was no aggregation of 50 nm or more. The charge rate of Fe304 measured by TGA was 29.8 mass%. <Example B7> PE0/Fe304 (water dispersion, 33.3 mass%) Commercially available polyethylene oxide (hereinafter referred to as "PEO", and Wako Pure Chemicals' molecular weight 300,000~500,000) lg in pure water and ethanol (pure The mixed solvent of water/ethanol = 1 : 1 ) was completely dissolved in 19 g to obtain a PEO solution. To the obtained PEO solution, Fe304 water-dispersed colloid (manufactured by ferr〇tec, trade name EMG607, average particle diameter of about 10 nm, solid content of about 10% by mass) of the particle surface-coated cationic surface modifier was added to the test tube mixer. After stirring for 15 minutes, a Fe304 nanoparticle-PEO composite solution was prepared. In order to achieve the high enthalpy charge of the nanoparticle and the improvement of the dispersibility, a cationic surfactant (for example, tetrabutylammonium chloride, hereinafter referred to as TBAc) or a cationic polymer may be added in advance before dispersing the nanoparticles. Electrolyte (eg Polyethylenimine, hereinafter referred to as PEI). Using the fiber-forming composition (spinning solution) obtained above, the fiber-forming composition was ejected by an electrospinning apparatus as shown in Fig. 5, and the fibers were continuously spun to accumulate fibers to produce a fiber deposit. The inner diameter of the ejection nozzle 1 at this time is 0.22 mm (injection needle: 27 G) 'The capacity of the syringe 2 is 10 ml' The voltage is 16. OkV, from the ejection nozzle 1 to -57- 200948875 Fiber collecting electrode 5 (stainless steel plate) The distance is 18cm. The discharge amount of the fiber-forming composition of the syringe pump (manufactured by Bioanalytical Systems Inc., trade name: MD-1 020) was controlled at ΙΟμΙ/min, and the fiber-forming composition was sprayed and deposited on the PET with the trap electrode. On the film. A photograph of the obtained Fe304 nanoparticle-PEO composite fiber was photographed by an optical microscope (3,000 times) as shown in Fig. 15. The obtained fiber had an average fiber diameter of 0.92 μη!, and the Fe304 nanoparticles observed by a transmission electron microscope (ΤΕΜ) were uniformly dispersed, and it was confirmed that there was no aggregation of 50 nm or more. The charge ratio of Fe3 04 measured by TGA was 29.2 mass%. <Comprehensive Examples B 1 to B 7 and Reference Example B 1> The materials used in Examples B 1 to B7 and Reference Example B 1 and the obtained composite materials were collectively shown in Tables 3 and 4 below. [Table 3] Polymer solution colloid solution Polymer solvent surfactant Particle material particle size Example B1 MPTMS-PVB DCM Alkylamine silver 6 to 8 nm Example B2 MPTMS-PVB DCM Alkylamine silver 6 to 8 nm Example B3 MPTMS- (PS/MAA) THF alkylamine silver 6 to 8 nm Example B4 MPTMS-PVB DCM (surface modification) Gold 4 nm Reference Example B1 MPTMS-PVB DCM Alkylamine Silver 6 to 8 nm Example B5 PVB DCM Alkylamine Fe3〇4 About 15 nm Example B6 PVP Ethanol ice (cationic surface modifier) Fe3〇4 10 nm Example B7 PEO Ethanol ice (cationic surface modifier) FC3〇4 lOnm -58- 200948875

〔表4〕 實施例B1 複合材料(纖維狀) 纖維徑 1.52μιη 粒徑含有率 22.8質量% (3.1體積%) 分散狀態 平均分散粒徑 8.6nm 最大分散粒徑 15.3nm 所有分散粒徑爲 20nm以下 實施例B2 1.43 μχη 30.4質量% (4.8體積%) 8.1nm 15.6nm 所有分散粒徑爲 20mn以下 實施例B3 0·52μηι 21.7質量0/〇 (2.7體積%) 11.3nm 20.6nm 99.7%爲分散粒徑 20nm以下 實施例B4 1.45μπι 23.1質量% (1.8 體積0/〇) 9.8nm 15.2nm 所有分散粒徑爲 20nm以下 參考例B1 (厚度Ιμηι 的薄膜狀) 15.2質量% (1.8體積%) 超過20nm (50mn以上之凝集點 多數存在,一次粒子 的比率未達90%) 實施例B5 3.24μπι 30.7質量% (8.6體積%) — 一 (未有50nm以上的凝 集) 實施例B6 Ι.ίμιη 29_8 質量0/〇 (8.4體積%) — — (未有50nm以上的凝 集) 實施例B7 0.92μιη 29_2質量% (8.5體積%) — — (未有50nm以上的凝 集) 〈實施例B8〉PVB700/Ag ( 40質量% )(龐大) 將實施例B2所製造之Ag奈米粒子分散纖維堆積物進 行刮搔收集,於8(TC之烤箱中進行1小時熱處理後放入 IR測定錠劑製造用顆粒(SPECAC製,直徑13mm ),並 真空吸氣下,於3 00kg/cm2之壓力,進行15分鐘成型。 取出經成型之圓盤狀塊(直徑1 3 X 1〜2mm ),以光學顯微 鏡確認表面之纖維模樣,於80°Cx5 0kg/cm2的條件下,每 -59- 200948875 1分鐘進行5次熱壓。且,構成纖維堆積物之高分子( MPTMS-PVB )的玻璃轉移溫度(Tg)約70〜80 °C。 每一分鐘將取樣品表面以光學顯微鏡進行確認,纖維 模樣完全消失後,以不鏽鋼板夾住下直接於80°C之烤箱中 進行1小時熱處理,得到奈米粒子分散纖維堆積物所成之 龐大成型體取樣品。 將所製造之龐大成型體取樣品於環氧樹脂包埋’藉由 Microtome ( ULTRACUT-S,Raika 製)進行薄切,進行龐 大取樣品截面的TEM觀察。維持纖維中之奈米粒子的高 分散性下,確認無空隙亦無纖維模樣(如圖1 6所示)° 〈實施例 B9〉PVB2400/Fe3O4(33.3 質量 %)(龐大 ) 將實施例B5所製造之Fe304奈米粒子分散纖維堆積 物進行刮搔收集,以80 °C的烤箱中進行1小時熱處理後’ 放入IR測定錠劑製造用顆粒(SPACAC製,直徑13mm) ,並真空吸氣下,於300kg/cm2之壓力’進行15分鐘成 型。取出經成型之圓盤狀塊(直徑13x1〜2mm),以光學 顯微鏡確認表面之纖維模樣,於80°Cx50kg/cm2之條件下 ,每1分鐘進行5次熱壓。且,構成纖維堆積物之高分子 (PVB )的玻璃轉移溫度(Tg)爲70〜80 °C。 每一分鐘將取樣品表面以光學顯微鏡進行確認,纖維 模樣完全消失後,以不鏽鋼板夾住下直接於80°C之烤箱中 進行1小時熱處理,得到奈米粒子分散纖維堆積物所成之 -60- 200948875 龐大成型體取樣品。 將所製造之龐大成型體取樣品於環氧樹脂包埋’藉由 Microtome ( ULTRACUT-S,Raika 製)進行薄切,進行龐 大取樣品截面的TEM觀察。維持纖維中之奈米粒子的高 分散性下,確認無空隙亦無纖維模樣(如圖1 7所示)。 【圖式簡單說明】 A 〔圖1〕實施例1所得之PVB-Ag複合體薄膜的透過 〇 型電子顯微鏡(TEM)照片(75萬倍)。 〔圖2〕實施例2所得之PVB-Ag複合體薄膜的透過 型電子顯微鏡(TEM )照片(75萬倍)° 〔圖3〕實施例3所得之PVB-Ag複合體薄膜的透過 型電子顯微鏡(TEM )照片(75萬倍)。 〔圖4〕比較例1所得之PS-Ag複合體薄膜的透過型 電子顯微鏡(TEM )照片(1萬倍)° φ 〔圖5〕靜電紡絲法之影像。 (圖6〕藉由倒立包埋法之TEM觀察用取樣品製影像 〇 〔圖7〕實施例B1所得之Ag奈米粒子分散PVB纖 維,含有Ag奈米粒子之PVB (1〇〇〇)纖維的堆積物之光 學顯微鏡透過照片(5000倍)° 〔圖8〕實施例B1所得之Ag奈米粒子分散pVB纖 維之透過型電子顯微鏡(TEM)照片(觀察倍率36萬倍 -61 - 200948875 〔圖9〕實施例B2所得之Ag奈米粒子分散PVB纖 維之透過型電子顯微鏡(TEM )照片(觀察倍率36萬倍 )° 〔圖10〕實施例B3所得之Ag奈米粒子分散PS-MAA共聚物纖維之透過型電子顯微鏡(TEM )照片(観察 倍率3 6萬倍)。 〔圖1 1〕比較例1所得之Ag奈米粒子分散PVB薄膜 的透過型電子顯微鏡(TEM )照片(觀察倍率36萬倍) 〇 〔圖12〕實施例B5所得之Fe3〇4奈米粒子分散PVB 纖維之堆積物的光學顯微鏡照片(3〇〇〇倍)。[Table 4] Example B1 Composite material (fibrous) Fiber diameter 1.52 μιη Particle size content 22.8% by mass (3.1% by volume) Dispersed state Average dispersed particle diameter 8.6 nm Maximum dispersed particle diameter 15.3 nm All dispersed particle diameters were 20 nm or less Example B2 1.43 μχη 30.4% by mass (4.8% by volume) 8.1 nm 15.6 nm All dispersed particle diameters were 20 nm or less Example B3 0·52 μηι 21.7 mass 0/〇 (2.7% by volume) 11.3 nm 20.6 nm 99.7% was a dispersed particle diameter 20 nm or less Example B4 1.45 μm 23.1% by mass (1.8 volume 0/〇) 9.8 nm 15.2 nm All dispersed particle diameters are 20 nm or less Reference Example B1 (thickness Ιμηι film form) 15.2% by mass (1.8% by volume) More than 20 nm (50mn Most of the above agglutination points exist, and the ratio of primary particles is less than 90%. Example B5 3.24μπι 30.7 mass% (8.6% by volume) - one (no aggregation of 50 nm or more) Example B6 Ι.ίμιη 29_8 Mass 0/〇 (8.4% by volume) - (No aggregation of 50 nm or more) Example B7 0.92 μη 29 2% by mass (8.5 vol%) - (No aggregation of 50 nm or more) <Example B8> PVB700/Ag (40% by mass) ) The Ag nanoparticle dispersion fiber deposit produced in Example B2 was scraped and collected, and placed in an oven (1 TC oven for 1 hour, and then placed in an IR measurement tablet production pellet (SPECAC, diameter 13 mm) And under vacuum suction, molding at a pressure of 300 kg/cm2 for 15 minutes. Take out the formed disc-shaped block (diameter 1 3 X 1~2 mm), and confirm the fiber appearance of the surface with an optical microscope at 80°. Under the condition of Cx5 0 kg/cm2, hot pressing was performed 5 times per minute from -59 to 200948875, and the glass transition temperature (Tg) of the polymer (MPTMS-PVB) constituting the fiber deposit was about 70 to 80 °C. After one minute, the surface of the sample was taken out and confirmed by an optical microscope. After the fiber pattern completely disappeared, the glass was directly sandwiched in a stainless steel plate and heat-treated in an oven at 80 ° C for 1 hour to obtain a bulk molded product of nanoparticle dispersed fiber deposits. The sample was taken. The sample of the large molded body was taken and embedded in epoxy resin, and thinly cut by Microtome (ULTRACUT-S, manufactured by Raika) to carry out TEM observation of the bulk sample section. particle Under high dispersibility, it was confirmed that there was no void or fiber-like appearance (as shown in Fig. 16). <Example B9> PVB2400/Fe3O4 (33.3 mass%) (bulky) Fe304 nanoparticle dispersion fiber produced in Example B5 The deposits were scraped and collected, and heat-treated in an oven at 80 ° C for 1 hour. 'Into the IR pellets (SPACAC, diameter 13 mm), and under vacuum, at a pressure of 300 kg/cm 2 ' Molding was carried out for 15 minutes. The formed disc-shaped block (diameter: 13 x 1 to 2 mm) was taken out, and the fiber pattern of the surface was confirmed by an optical microscope, and hot pressing was performed 5 times per minute at 80 ° C x 50 kg / cm 2 . Further, the glass transition temperature (Tg) of the polymer (PVB) constituting the fiber deposit is 70 to 80 °C. The surface of the sample was taken every minute to confirm with an optical microscope. After the fiber pattern completely disappeared, it was heat-treated in a stainless steel plate and directly in an oven at 80 ° C for 1 hour to obtain a nanoparticle-dispersed fiber deposit. 60- 200948875 A large molded body takes samples. A sample of the produced large-sized molded body was embedded in an epoxy resin and thin-cut by Microtome (ULTRACUT-S, manufactured by Raika) to carry out TEM observation of the cross section of the sample. While maintaining the high dispersibility of the nanoparticles in the fiber, it was confirmed that there was no void or fiber appearance (as shown in Fig. 17). BRIEF DESCRIPTION OF THE DRAWINGS A (Fig. 1) A transmission electron microscope (TEM) photograph (750,000 times) of a PVB-Ag composite film obtained in Example 1. [Fig. 2] A transmission electron microscope (TEM) photograph (75 million times) of the PVB-Ag composite film obtained in Example 2 (Fig. 3) Transmission electron microscope of the PVB-Ag composite film obtained in Example 3. (TEM) photo (75 million times). [Fig. 4] A transmission electron microscope (TEM) photograph (10,000 times) of the PS-Ag composite film obtained in Comparative Example 1 (Fig. 5) Image of the electrospinning method. (Fig. 6) TEM observation by inverted embedding method. Sample preparation of image 〇 [Fig. 7] Ag nanoparticle-dispersed PVB fiber obtained in Example B1, PVB (1 〇〇〇) fiber containing Ag nanoparticle The optical microscope of the deposit was transmitted through a photograph (5000 times) ° [Fig. 8] a transmission electron microscope (TEM) photograph of the dispersed AgV particles obtained in Example B1 (observation magnification: 360,000 times -61 - 200948875 [Fig. 9] Transmission electron microscopy (TEM) photograph of the Ag nanoparticle-dispersed PVB fiber obtained in Example B2 (observation magnification: 360,000 times) ° [Fig. 10] Ag nanoparticle-dispersed PS-MAA copolymer obtained in Example B3 Transmission electron microscopy (TEM) photograph of the fiber (inspection magnification of 36,000 times). [Fig. 1 1] A transmission electron microscope (TEM) image of the Ag nanoparticle-dispersed PVB film obtained in Comparative Example 1 (observation magnification: 360,000)倍) Fig. 12 is an optical micrograph (3 〇〇〇) of a deposit of PV3 fibers dispersed in Fe3〇4 nanoparticles obtained in Example B5.

〔圖13〕實施例B6所得之FesO4奈米粒子分散PVB 纖維之堆積物的透過電子顯微鏡(TEM)照片(36萬倍) 〇 〔圖14〕實施例B7所得之水分散系Fe304奈米粒子 分散的PVP複合纖維之光學顯微鏡照片(3000倍)。 〔圖15〕將實施例B8所得之水分散系Fe304奈米粒 經分散之PEO複合纖維的光學顯微鏡照片(3000倍)。 〔圖16〕實施例B8所得之Ag奈米粒子分散PVB龐 大取樣品之透過電子顯微鏡照片。 〔圖17〕實施例B9所得之Fe304奈米粒子分散PVB 龐大取樣品之透過電子顯微鏡照片。 【主要元件符號說明】 -62- 200948875 1 :噴出嘴 2 :注射器 3 :纖維形成用組成物 4 :高電壓產生器 5 :纖維捕集電極 6 :纖維堆積體 7 : Pt 8 :未硬化樹脂 9 :玻璃片 1 〇 :硬化樹脂[Fig. 13] A transmission electron microscope (TEM) photograph of a deposit of FesO4 nanoparticle-dispersed PVB fibers obtained in Example B6 (360,000 times) 〇 [Fig. 14] Dispersion of water-dispersed Fe304 nanoparticles obtained in Example B7 Optical micrograph of the PVP composite fiber (3000 times). Fig. 15 is a photomicrograph (3000 magnifications) of the PEO composite fiber obtained by dispersing the water-dispersible Fe304 nanoparticle obtained in Example B8. [Fig. 16] A transmission electron micrograph of a sample obtained by dispersing PVB obtained by the Ag nanoparticle obtained in Example B8. [Fig. 17] A transmission electron micrograph of a sample obtained by dispersing PVB of the Fe304 nanoparticle obtained in Example B9. [Description of main component symbols] -62- 200948875 1 : Discharge nozzle 2 : Syringe 3 : Composition for forming fiber 4 : High voltage generator 5 : Fiber trapping electrode 6 : Fiber stack 7 : Pt 8 : Unhardened resin 9 : Glass sheet 1 〇: Hardened resin

-63-63

Claims (1)

200948875 七、申請專利範圍 1. 一種無機奈米粒子-高分子複合體,其爲無機奈 米粒子與高分子之複合體, 其特徵爲前述複合體中之前述無機奈米粒子的平均分 散粒徑爲〇.5nm以上30nm以下, 且前述複合體中之前述無機奈米粒子的7 0%以上以分 散粒徑30nrn以下之形態下分散。 2. 如申請專利範圍第1項之複合體’其中前述無機 奈米粒子的含有量對於複合體全體而言爲10質量。/°以上。 3. 如申請專利範圍第1項或第2項之複合體’其中 前述無機奈米粒子爲選自由金屬奈米粒子、金屬氧化物奈 米粒子、金屬氮化物奈米粒子、碳化物奈米粒子、及硼化 物奈米粒子、以及這些組合所成之群。 4. 如申請專利範圍第1項〜第3項中任一項之複合 體,其中前述無機奈米粒子的表面係以界面活性劑被覆。 5. 如申請專利範圍第1項〜第4項中任一項之複合 體,其中前述無機奈米粒子爲金屬奈米粒子’且前述筒分 子具有金屬配位性官能基。 6. 如申請專利範圍第5項之複合體,其中前述金屬 配位性官能基爲含有選自氧、氮、硫、及磷所成群之至少 1種元素的基。 7. 如申請專利範圍第6項之複合體’其中前述金屬 配位性官能基爲胺基及/或硫醇基。 8. 如申請專利範圍第5項〜第7項中任一項之複合 -64- 200948875 體’其中前述具有金屬配位性官能基之高分子爲,前述具 有金屬配位性官能基之矽烷偶合劑與具有羥基之高分子的 反應生成物。 9· 一種如申請專利範圍第5項〜第8項中任一項之 複合體的製造方法,其特徵爲含有於具有金屬配位性官能 基之高分子分散前述金屬奈米粒子者。 10.如申請專利範圍第9項之方法,其中更含有將具 有金屬配位性官能基之矽烷偶合劑與具有羥基之高分子進 行反應,作成具有金屬配位性官能基之高分子者。 1 1 ·如申請專利範圍第1項〜第8項中任一項之複合 體,其中前述複合體中之前述無機奈米粒子的平均分散粒 徑爲lnm以上20ηιη以下,且前述複合體中之前述無機奈 米粒子的90%以上係以分散粒徑20nm以下的形態下分散 〇 12.如申請專利範圍第1項〜第8項及第11項中任 一項之複合體,其中平均纖維徑爲50nm以上2μιη以下之 纖維的形態。 1 3 . —種如申請專利範圍第1 2項之纖維的形態之複 合體的製造方法,其特徵爲含有調製含有無機奈米粒子與 高分子之纖維形成用組成物、及藉由以靜電紡絲法噴出前 述纖維形成用組成物,使纖維進行紡絲者。 14. 一種如申請專利範圍第1項〜第8項及第Π項 中任一項之複合體的製造方法,其特徵爲含有將如申請專 利範圍第12項之纖維的形態之前述複合體’以維持前述 -65- 200948875 無機奈米粒子之分散狀態的條件下進行加壓並成形者。 15. 如申請專利範圍第14項之方法,其中於環境氣 體之減壓下進行前述加壓。 16. 如申請專利範圍第1項〜第8項及第1 1項中任 一項之複合體,其爲龐大型態。 1 7 .如申請專利範圍第1 6項之複合體,其經成形。 -66 - 200948875 四、指定代表圖: (一) 本案指定代表圖為:第(1)圖 (二) 本代表圖之元件符號簡單說明:無200948875 VII. Patent application scope 1. An inorganic nanoparticle-polymer composite, which is a composite of inorganic nanoparticle and a polymer, characterized by an average dispersed particle diameter of the inorganic nanoparticle in the composite It is 5 nm or more and 30 nm or less, and 70% or more of the above-mentioned inorganic nanoparticles in the composite is dispersed in a form having a dispersed particle diameter of 30 nm or less. 2. The composite according to claim 1 wherein the content of the inorganic nanoparticle is 10 masses for the entire composite. /° above. 3. The composite of claim 1 or 2 wherein the inorganic nanoparticle is selected from the group consisting of metal nanoparticles, metal oxide nanoparticles, metal nitride nanoparticles, and carbide nanoparticles. And boride nanoparticles, and groups of these combinations. 4. The composite according to any one of claims 1 to 3, wherein the surface of the inorganic nanoparticle is coated with a surfactant. 5. The composite according to any one of claims 1 to 4, wherein the inorganic nanoparticle is a metal nanoparticle&apos; and the tubular molecule has a metal coordinating functional group. 6. The composite according to claim 5, wherein the metal coordinating functional group is a group containing at least one element selected from the group consisting of oxygen, nitrogen, sulfur, and phosphorus. 7. The composite according to claim 6 wherein the aforementioned metal coordinating functional group is an amine group and/or a thiol group. 8. The composite of any one of the above-mentioned claims, wherein the polymer having a metal-coordinating functional group is the aforementioned decane having a metal-coordinating functional group. A reaction product of a mixture with a polymer having a hydroxyl group. A method for producing a composite according to any one of claims 5 to 8, which is characterized in that the polymer having a metal-coordinating functional group is dispersed in the metal nanoparticle. 10. The method of claim 9, which further comprises reacting a decane coupling agent having a metal coordinating functional group with a polymer having a hydroxyl group to form a polymer having a metal coordinating functional group. The composite of any one of the above-mentioned composites, wherein the inorganic nanoparticle in the composite has an average dispersed particle diameter of 1 nm or more and 20 ηηη or less, and is in the composite body. 90% or more of the above-mentioned inorganic nanoparticles are dispersed in a form having a dispersed particle diameter of 20 nm or less. The composite of any one of the first to eighth aspects of the invention, wherein the average fiber diameter is It is a form of a fiber of 50 nm or more and 2 μm or less. A method for producing a composite of the form of the fiber of the first aspect of the patent application, characterized in that it comprises a composition for forming a fiber containing inorganic nanoparticles and a polymer, and by electrospinning The fiber forming composition is discharged by a silk method to cause the fiber to be spun. A method for producing a composite according to any one of the first to eighth aspects of the invention, which is characterized in that the composite of the form of the fiber of the item of claim 12 is contained The person who pressurizes and molds under the condition that the dispersion state of the above-mentioned -65-200948875 inorganic nanoparticles is maintained. 15. The method of claim 14, wherein the aforesaid pressurization is carried out under reduced pressure of ambient gas. 16. A composite of any one of the scopes 1 to 8 and 11 of the patent application, which is in a bulky form. 17. The composite of claim 16 of the patent application, which is shaped. -66 - 200948875 IV. Designated representative map: (1) The representative representative of the case is: (1) Figure (2) The symbol of the representative figure is simple: no -3- 200948875 五 本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無 -4--3- 200948875 V If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: none -4-
TW098103120A 2008-02-01 2009-01-23 Inorganic nanoparticle-polymer composite and method for producing the same TW200948875A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008022193 2008-02-01
JP2008022192 2008-02-01

Publications (1)

Publication Number Publication Date
TW200948875A true TW200948875A (en) 2009-12-01

Family

ID=40912718

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098103120A TW200948875A (en) 2008-02-01 2009-01-23 Inorganic nanoparticle-polymer composite and method for producing the same

Country Status (3)

Country Link
JP (1) JPWO2009096365A1 (en)
TW (1) TW200948875A (en)
WO (1) WO2009096365A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102677202A (en) * 2011-03-11 2012-09-19 艾普特佩克股份有限公司 Fiber, fiber aggregate and adhesive having the same
CN103665697A (en) * 2013-11-11 2014-03-26 上海交通大学 Nanoparticle and polymer composite particle and application thereof
TWI461360B (en) * 2010-12-02 2014-11-21 Dexerials Corp Anisotropic conductive material and manufacturing method thereof
US9761354B2 (en) 2013-04-18 2017-09-12 Industrial Technology Research Institute Method of manufacturing a nano metal wire
TWI707923B (en) * 2017-05-19 2020-10-21 日商迪愛生股份有限公司 Metal Nanoparticle Water Dispersion

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010150348A (en) * 2008-12-24 2010-07-08 Teijin Ltd Polymer-metal nanoparticle complex and method for producing the same
US20110252970A1 (en) * 2009-11-19 2011-10-20 E. I. Du Pont De Nemours And Company Filtration Media for High Humidity Environments
JP5883301B2 (en) 2011-02-07 2016-03-15 日本バイリーン株式会社 Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell
JP6071694B2 (en) * 2013-03-27 2017-02-01 日本碍子株式会社 ORGANIC-INORGANIC COMPOSITE, STRUCTURE AND METHOD FOR PRODUCING ORGANIC-INORGANIC COMPOSITE
JP2015056187A (en) * 2013-09-10 2015-03-23 株式会社東芝 Method of forming fine pattern, peeling method, method of forming magnetic recording medium, magnetic recording medium and method of manufacturing stamper
JP6718687B2 (en) * 2015-01-19 2020-07-08 ユニチカ株式会社 Ferromagnetic metal nanowire
JP6539474B2 (en) * 2015-04-01 2019-07-03 株式会社日産アーク Method of observing a sample by a microscope using charged particles and composition used for the method
WO2018011904A1 (en) 2016-07-13 2018-01-18 三菱電機株式会社 Thermally curable resin composition, stator coil obtained using same, and dynamo-electric machine
KR101777975B1 (en) 2016-08-30 2017-09-26 고려대학교 산학협력단 Nanofiber-Nanowire Composite and The Manufacturing Method of The Same
US10692820B2 (en) * 2017-11-22 2020-06-23 Samsung Electronics Co., Ltd. Hybrid composite film, method of fabricating the same, and integrated circuit device including hybrid composite film
WO2022030014A1 (en) * 2020-08-07 2022-02-10 株式会社ダイセル Cellulose acetate resin composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD256721A1 (en) * 1986-01-29 1988-05-18 Akad Wissenschaften Ddr METHOD FOR ACTIVATING CELLULOSE-CONTAINING SOLID CARBON SURFACES
JPH06287355A (en) * 1993-04-02 1994-10-11 Asahi Chem Ind Co Ltd Molding containing ultrafine particle dispersed therein
JPH08302138A (en) * 1995-04-28 1996-11-19 Toray Ind Inc Transparent molding
JP3365752B2 (en) * 1999-10-21 2003-01-14 北川工業株式会社 Ultra fine particle dispersed resin material
JP2004151313A (en) * 2002-10-30 2004-05-27 Toppan Forms Co Ltd Color filter containing metal nano colloid particulate
JP2005082640A (en) * 2003-09-05 2005-03-31 Nissin Kogyo Co Ltd Carbon fiber composite material and method for producing the same, and carbon fiber composite molded product
JP3941111B2 (en) * 2003-12-19 2007-07-04 日本エクスラン工業株式会社 Antibacterial / antifungal polymer particles
JP4337681B2 (en) * 2004-05-25 2009-09-30 宇部興産株式会社 Method for producing metal fine particle-polymer composite

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI461360B (en) * 2010-12-02 2014-11-21 Dexerials Corp Anisotropic conductive material and manufacturing method thereof
CN102677202A (en) * 2011-03-11 2012-09-19 艾普特佩克股份有限公司 Fiber, fiber aggregate and adhesive having the same
US9761354B2 (en) 2013-04-18 2017-09-12 Industrial Technology Research Institute Method of manufacturing a nano metal wire
CN103665697A (en) * 2013-11-11 2014-03-26 上海交通大学 Nanoparticle and polymer composite particle and application thereof
TWI707923B (en) * 2017-05-19 2020-10-21 日商迪愛生股份有限公司 Metal Nanoparticle Water Dispersion

Also Published As

Publication number Publication date
WO2009096365A1 (en) 2009-08-06
JPWO2009096365A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
TW200948875A (en) Inorganic nanoparticle-polymer composite and method for producing the same
JP5247557B2 (en) INORGANIC NANOPARTICLE-MATRIX MATERIAL FIBER COMPOSITE AND PROCESS FOR PRODUCING THE SAME
Fan et al. Polymeric Janus nanoparticles: recent advances in synthetic strategies, materials properties, and applications
Safaie et al. Janus nanoparticle synthesis: Overview, recent developments, and applications
Perelaer et al. Inkjet-printed silver tracks: low temperature curing and thermal stability investigation
Yuan et al. One-dimensional organic–inorganic hybrid nanomaterials
Kong et al. One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization
US20090053512A1 (en) Multifunctional polymer coated magnetic nanocomposite materials
Li et al. Multifunctional and efficient air filtration: a natural nanofilter prepared with zein and polyvinyl alcohol
JP4573138B2 (en) Method for producing silver-containing powder, silver-containing powder and dispersion thereof
Borthakur et al. Preparation of core–shell latex particles by emulsion co-polymerization of styrene and butyl acrylate, and evaluation of their pigment properties in emulsion paints
TW201130930A (en) Conductive paste for screen printing
JP2007528942A (en) Metal-coated nanofiber
JP2010229563A (en) Method for producing particle-polymer fibrous composite
US20170120327A1 (en) Silver nanowires, and production method and dispersion of the same
Hong et al. Synthesis and self‐assembly of stimuli‐responsive amphiphilic block copolymers based on polyhedral oligomeric silsesquioxane
Zou et al. Preparation of Dimpled Polystyrene–Silica Colloidal Nanocomposite Particles
Cheng et al. Compatibilization behavior of double spherical TETA–SiO2@ PDVB Janus particles anchored at the phase interface of acrylic resin/epoxy resin (AR/EP) polymer blends
JP7248592B2 (en) Metal ink, method for producing metal ink, and method for producing substrate with metal pattern
Yao et al. Controlled preparation of Fe 3 O 4/PLA composites and their properties
Jaisankar et al. Single-electron transfer living radical copolymerization of SWCNT-g-PMMA via graft from approach
CN109836858A (en) A kind of release film, flexible device preparation method, release film and flexible device
Zhang et al. Thermally stable metallic nanoparticles prepared via core-cross-linked block copolymer micellar nanoreactors
KR101758961B1 (en) Method Pattenring silica particle and Pattenring silica particle by using thereof
CN112795040B (en) Film with nanoscale pore channels and preparation method and application thereof