TW200948759A - Process for producing isocyanate - Google Patents

Process for producing isocyanate Download PDF

Info

Publication number
TW200948759A
TW200948759A TW097118261A TW97118261A TW200948759A TW 200948759 A TW200948759 A TW 200948759A TW 097118261 A TW097118261 A TW 097118261A TW 97118261 A TW97118261 A TW 97118261A TW 200948759 A TW200948759 A TW 200948759A
Authority
TW
Taiwan
Prior art keywords
isomer
phenol
phenyl
reaction
carbonate
Prior art date
Application number
TW097118261A
Other languages
Chinese (zh)
Other versions
TWI496763B (en
Inventor
Masaaki Shinohata
Nobuhisa Miyake
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from TH801002438A external-priority patent/TH106752B/en
Priority claimed from PCT/JP2008/058952 external-priority patent/WO2009139062A1/en
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Publication of TW200948759A publication Critical patent/TW200948759A/en
Application granted granted Critical
Publication of TWI496763B publication Critical patent/TWI496763B/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A process for producing an isocyanate without using phosgene. The process has none of various problems encountered in prior art techniques and enables an isocyanate to be stably produced in high yield for long. The process is for producing an isocyanate by subjecting a carbamic acid ester to pyrolytic reaction. The process includes: a step in which low-boiling ingredients are recovered as a gas-phase ingredient from a pyrolysis reactor where the pyrolytic reaction is conducted; a step in which a liquid-phase ingredient containing the carbamic acid ester is recovered through a bottom part of the pyrolysis reactor; and a step in which part or all of the liquid-phase ingredient is supplied to an upper part of the pyrolysis reactor.

Description

200948759 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種異氰酸醋之製造方法。 【先前技術】 異氰酸酯廣泛用作聚胺基甲酸酯發泡體、塗料、接著劑 等之製造原料。異氰酸酯之主要工業製造法係使胺化合物 與光氣進行反應(光氣法),全世界之幾乎全部生產量係藉 由光氣法生產。然而’光氣法存在許多問題。 第1 ’大量使用光氣作為原料。光氣之毒性極強,為了 防止從業者接觸光氣’在其操作中需加以特別注意,亦需 要用以去除廢棄物之特別裝置。 第2 ’於光氣法中’大量副生作為副產物之腐蝕性強之 氣化氫,故需要用以去除該氣化氫之製程,而且所製造之 異氣酸S旨中大多含有水解性氣。因而於使用以光氣法所製 造的異氣酸醋之情形時’有時會對聚胺基曱酸酯產品之耐 候性、耐熱性帶來不良影響。 鑒於如此背景,業者期望一種不使用光氣之異氰酸酯化 合物之製造方法。作為不使用光氣之異氰酸酯化合物之製 造方法之一例’提出有利用胺基甲酸酯之熱分解之方法。 很早以來就已知藉由胺基曱酸酯之熱分解而獲得異氰酸酯 與羥基化合物(例如,參照非專利文獻。其基本反應由下 述式例示。 [化1] R(NHCOOR% -♦ _CO)a + a r.〇h 131506.doc 200948759 (式中,R表示a價之有機殘基, R’表示1價之有機殘基, a表示1以上之整數)。 面’胺基曱酸酯之熱分解反應中,易於同時發生 胺基甲酸g旨之不肖 民之熱改性反應、或藉由該熱分解而生成 異氰酸之縮合反應等各種不可逆副反應。作為副反 :"幻舉例如以下述式(2)所表示之形成脲鍵之反應, φ ., ()所表不之生成碳二醯亞胺類之反應,或 例如以下述式丨4+ __ )所表不之生成異氰酸酯類之反應(參照非 專利文獻1、2)。 [化2] 鲁200948759 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for producing isocyanic acid vinegar. [Prior Art] Isocyanate is widely used as a raw material for the production of a polyurethane foam, a coating material, an adhesive, and the like. The main industrial manufacturing process for isocyanates is to react an amine compound with phosgene (phosgene method), and almost all of the world's production is produced by the phosgene method. However, the phosgene method has many problems. The first 'large use of phosgene as a raw material. The phosgene is extremely toxic, and in order to prevent the practitioner from coming into contact with phosgenes, special care is required in its operation, and special equipment for removing waste is also required. In the second 'in the phosgene method', a large amount of by-products are used as a by-product of highly corrosive gasification hydrogen, so a process for removing the vaporized hydrogen is required, and the produced heterogas acid S is mostly hydrolyzed. gas. Therefore, in the case of using the isogastric acid vinegar produced by the phosgene method, the weather resistance and heat resistance of the polyamino phthalate product may be adversely affected. In view of such a background, a manufacturing method of an isocyanate compound which does not use phosgene is desired. As an example of a method for producing an isocyanate compound which does not use phosgene, a method of thermal decomposition using a urethane is proposed. It has been known for a long time that an isocyanate and a hydroxy compound are obtained by thermal decomposition of an amino phthalic acid ester (for example, refer to the non-patent literature. The basic reaction is exemplified by the following formula: [Chemical 1] R (NHCOOR% - ♦ _CO ) a + a r. 〇 h 131506.doc 200948759 (wherein R represents an organic residue of a valence, R' represents a monovalent organic residue, and a represents an integer of 1 or more.) In the thermal decomposition reaction, various irreversible side reactions such as a thermal modification reaction of the carbamic acid g or a condensation reaction of isocyanic acid by the thermal decomposition are easily caused at the same time. For example, a reaction for forming a urea bond represented by the following formula (2), φ., () represents a reaction for producing a carbodiimide or, for example, by the following formula 丨4+ __) The reaction of producing isocyanates (see Non-Patent Documents 1 and 2). [化2] Lu

P H H Ο R - kc-0 一 甿 + 卜 R—N=c=0 + 〇=ϊ〇=Ν—R __„R、VR R· R*—O—C—〇—R* ( 2〉 R—N«C=N—R+ c〇2 (3) R—N=c=〇PHH Ο R - kc-0 一氓 + 卜 R—N=c=0 + 〇=ϊ〇=Ν—R __„R, VR R· R*—O—C—〇—R* ( 2〉 R— N«C=N-R+ c〇2 (3) R—N=c=〇

R (4) 等 再者’上述式中之RAR,表示脂肪族炫基或芳香族院基 降該等副反應不僅導致目標異氣酸酿之產率或選擇率下 降,而且是特別於製造聚異氛酸醋時,存在析出聚= 固形物而使反應器閉塞等難以長期操作之情形。 為=:=:之方法來製造異氰一法,迄今 環 根據專利文獻1之揭示’脂肪族二胺基歹酸醋及/或脂 I31506.doc 200948759 式二胺基甲酸酯及/或脂肪族聚胺基曱酸酯及/或脂環式聚 胺基曱酸酯係藉由如下方式而獲得:於〇-烷基胺基甲酸g旨 及醇之存在下,以胺之NH2基:胺基甲酸酯:醇之比i : 〇·8〜10 : 0.25〜50,於160°C〜3 00°C下,於觸媒之存在下或 不存在下’使脂肪族一級二胺及/或脂環式一級二胺及/或 脂肪族一級聚胺及/或脂環式一級聚胺進行反應,且視需 要而去除所產生之氨。所產生之二胺基甲酸酯及/或聚胺 基甲酸醋視需要可轉換成相應之二異氰酸酯及/或高官能 價聚異氰酸酯。熱分解之詳細反應條件於該專利文獻中並 未揭示。 根據專利文獻2之揭示,芳香族二異氰酸酯及/或聚異氰 酸酯係經由以下2個步驟而製造。具體而言,第丨步驟中, 於觸媒之存在下或不存在下、以及脲及醇之存在下或不存 在下,使芳香族一級胺及/或芳香族一級聚胺與〇_烷基胺 基甲酸酯進行反應,生成芳基二胺基甲酸酯及/或芳基聚 _胺基甲酸醋,視需要去除所產生之氨。第2步驟中,藉由 芳基二胺基甲酸酯及/或芳基聚胺基曱酸酯之熱分解,而 獲得芳香族異氰酸酯及/或芳香族聚異氰酸酯。 於其他刊物中存在有關使用含幾基之化合物,例如,N_ 取代胺基甲酸醋及/或碳酸二貌基醋,或者單取代腺或二 取代脲、或者單取代聚脲或二取代聚脲的脲及/或二胺之 部分取代的揭示(參照專利文獻3、專利文獻4、專利文獻 專利文獻6、專利文獻7)。專利文獻8中,揭示有藉由 使(環式)脂肪族聚胺與脲及芳香族羥基化合物反應,而製 131506.doc 200948759 ^ 造脂肪族o-芳基胺基甲酸酯之方法。 藉由(環式)脂肪族以及特別是芳香族之單胺基曱酸酷及 二胺基曱酸酯之熱分解而生成相對應之異氰酸酯及醇^方 法已知有若干種,有於氣相中於高溫下實施之方法、或於 液相中於相對較低之溫度條件下實施之方法。然而,=該 等方法中,有時反應混合物例如會產生上述副反應,例如Λ 於反應器及回收裝置中形成沈殿物、聚合物狀物質及堵塞 * ’或者該物質於反應器壁面上形成固著物,因而在長時 間製造異氰酸酯之情形時,經濟效率較差。 因此,為了改善胺基甲酸醋熱分解中之產量,例如揭示 有化學方法,例如使用特殊觸媒(參照專利文獻9、專利文 獻10)或者使用與情性溶劑組合之觸媒(參照專利文獻⑴。 /體而言’於專利文獻12中,作為二異氰酸己二醋之製 造方法,揭示有如下方法:於用作溶劑之二节基甲苯的存 在下、以及含有甲苯續酸甲醋及二苯基二氯 秦 合物的存在下,使‘ # /、亞甲基一乙基胺基甲酸酯熱分解。然 而對於起始成分之製造、及離析、以及溶劑與觸媒混合 物之純化及任意之回收均未作任何詳細揭示 斷該方法之經濟效率。 .、' 根據專利文獻13 Φ M α 易不之方法,胺基甲酸酯可在不使用 觸媒之情況下於合 炭流化床中谷易地分解成異氰酸酯及 醇。又’根據專利文彪 酸醋,例如可揭不,六亞甲基二烧基胺基甲 、匕3碳、銅、黃銅、鋼、 鉻、鈷或石英之洛规* 赋 央之氣體透過性包裝材料之存在下或不存在 J3J506.doc 200948759 下,於超過3〇(TC之溫度下,於氣相中進行分解,而生成 一異氰酸己二醋。 根據專利文獻I4之揭示,該方法係於氣画化物及/或氣 函化物供體之存在下實施。然而,該方法無法達成90%以 上之二異氰酸己二_之產率4原因在於,分解生成物部 分地再鍵結而生成胺基甲酸酯鍵。因此, 蒸館進行二異氛酸己二醋之純化,常常會造成需:率= 增大。R (4) and the like, RAR in the above formula, indicating that the aliphatic succinyl group or the aromatic base group reduces such side reactions not only leads to a decrease in the yield or selectivity of the target isogastric acid, but also in the production of poly In the case of an anaerobic acid vinegar, it is difficult to carry out long-term operation such as precipitation of a solid substance and clogging of a reactor. The method of =:=: to produce an isocyanide method, which has heretofore been disclosed according to Patent Document 1 'aliphatic diamine phthalic acid vinegar and/or fat I31506.doc 200948759 formula urethane and/or fat The polyamino phthalic acid ester and/or the alicyclic polyamino phthalic acid ester are obtained by the following: in the presence of an oxime-alkylaminocarbamic acid g and an amine, an amine NH2 group: an amine Carbamate: alcohol ratio i: 〇·8~10: 0.25~50, at 160°C~3 00°C, in the presence or absence of a catalyst, the aliphatic primary diamine and/or Alternatively, the alicyclic primary diamine and/or the aliphatic primary polyamine and/or the alicyclic primary polyamine are reacted and the ammonia produced is removed as needed. The resulting diurethane and/or polycarbamic acid acetate can be converted to the corresponding diisocyanate and/or high functional polyisocyanate as needed. The detailed reaction conditions for thermal decomposition are not disclosed in this patent document. According to Patent Document 2, an aromatic diisocyanate and/or a polyisocyanate are produced through the following two steps. Specifically, in the second step, the aromatic primary amine and/or the aromatic primary amine and the oxime alkyl group are present in the presence or absence of a catalyst, and in the presence or absence of urea and an alcohol. The urethane is reacted to form an aryl dicarbamate and/or an aryl poly-amino carboxylic acid vinegar, and the ammonia produced is removed as needed. In the second step, an aromatic isocyanate and/or an aromatic polyisocyanate is obtained by thermal decomposition of an aryldicarbamate and/or an arylpolyamine phthalate. There are other publications relating to the use of compounds containing a few groups, for example, N-substituted amino carboxylic acid vinegar and/or diacetic acid vinegar, or monosubstituted or disubstituted urea, or monosubstituted polyurea or disubstituted polyurea. The disclosure of partial substitution of urea and/or diamine (see Patent Document 3, Patent Document 4, Patent Document Patent Document 6, and Patent Document 7). Patent Document 8 discloses a method of producing an aliphatic o-aryl urethane by reacting a (cyclo)aliphatic polyamine with urea and an aromatic hydroxy compound to produce 131506.doc 200948759. There are several known methods for the formation of corresponding isocyanates and alcohols by thermal decomposition of (cyclo)aliphatic and especially aromatic monoamine phthalic acid and diamine phthalic acid esters. A method carried out at a high temperature or a method carried out in a liquid phase at relatively low temperature conditions. However, in such methods, sometimes the reaction mixture may, for example, cause the above-mentioned side reactions, for example, formation of a sediment, a polymer-like substance, and clogging in the reactor and the recovery device or formation of a solid on the wall of the reactor. The object is therefore economically inefficient when the isocyanate is produced for a long period of time. Therefore, in order to improve the yield in the thermal decomposition of urethane carboxylic acid, for example, a chemical method such as the use of a special catalyst (refer to Patent Document 9, Patent Document 10) or a catalyst combined with an inert solvent (refer to Patent Document (1)) is disclosed. In the patent document 12, as a method for producing diisocyanate diacetate, there is disclosed a method of: in the presence of a dibasic toluene used as a solvent, and a toluene-reducing methyl vinegar and The thermal decomposition of '# /, methylene monoethyl carbamate in the presence of diphenyl dichloroheptyl complex. However, for the preparation of starting components, and for isolation, and purification of solvent and catalyst mixtures And any recycling does not disclose the economic efficiency of the method in detail. . . ' According to the method of Φ M α of Patent Document 13, the urethane can be used in the carbon stream without using a catalyst. In the chemical bed, the valley is easily decomposed into isocyanate and alcohol. According to the patent vinegar, for example, hexamethylene dialkylaminocarb, hydrazine 3 carbon, copper, brass, steel, chromium, cobalt Or quartz's Luo rules* In the presence of a gas permeable packaging material or in the absence of J3J506.doc 200948759, it is decomposed in the gas phase at a temperature of more than 3 Torr (TC) to form a diisocyanate hexane. According to Patent Document I4 The method is carried out in the presence of a gas image and/or a gas-form donor. However, the method cannot achieve a yield of more than 90% of diisocyanate. The reason is that the decomposition product is partially The bond is then ligated to form a urethane bond. Therefore, the purification of the diiso-acid hexamethylene vinegar by the steaming plant often causes the need to increase: rate = increase.

根據專利文獻15之揭示,揭示“下情況:於比 進而 較低之溫度下’於㈣地於減壓下’於觸媒及/或穩定劑 之存在下或不存在下’可不使用溶劑而以良好之產率使單 胺基甲酸醋分解。分解生成物(單異氰酸_及醇),係自沸 騰之反應混合物中藉由蒸館而去除,且藉由分別縮合而分 別捕集。以普通形態揭示有’為了去除於熱分解中所形成 之副產物而將反應混合物之一部分去除至系統外之方法。 因此’可自反應H底部去除副產物,但依然殘留針對上述 固著於反應||壁面之情形之課題,並未解料對長時間運 行之課題。又’對於所去除之(含大量有用成分)反應混合 物在工業上的使用亦無任何揭示。 根據專利文獻16之揭示,脂肪族、脂環式或芳香族聚胺 基甲酸酯之熱分解,係於150〜35〇。〇及〇 〇〇1〜2〇巴下於惰 性溶劑之存在下,於作為觸媒及助劑之氣化氫、有機酸氣 化物、烷基化劑或有機錫氣化物之存在下或不存在下實 施。所生成之副產物,例如可與反應溶液一起自反應器中 131506.doc 200948759 連續地去除,同時添加相應量之新溶劑或所回收之溶劑。 该方法之缺點在於,例如因使用回流之溶劑,故使聚異氣 酸酿之空時產量減少’而且,例如包括溶劑回收而需要大 量能量。進而’所使用之助劑於反應條件下有揮發性,可 污染分解生成物。又,相對於所生成之聚異氛酸醋之殘留 部分之量較多,於經濟效率及工業方法之可靠性方面存在 疑問。 根據專利文獻17之揭示,揭示有如下方法:於高沸點溶 劑之存在下,以液狀形態,使沿管狀反應器内面所供給之 胺基甲酸醋、例如脂環式二胺基甲酸醋5_(乙氧基幾基胺 基)-1-(乙氧基幾基胺基曱基甲基環己烷連續進行 熱分解。該方法具有製造(環式)脂肪族二異氰酸醋時之產 ‘率較低、選擇性較低之缺點。又,關於伴有經再鍵結或經 部分分解之胺基甲酸酯的回收之連續性方法,並未作任何 揭示,關於含有副產物及觸媒之溶劑之後處理亦未作任何 敛述。 根據專利文獻1 8之揭示,揭示有如下循環方法:藉由將 相應之二胺轉換成二胺基曱酸酯,且將該胺基甲酸酯熱分 解,而製造(環式)脂肪族二異氰酸酯。該方法藉由在與^ 反應後使來自胺基甲酸酯分解步驟之生成物再循環至胺基 甲酸醋化步驟,而使產率之減少達到最小。無法進行再循 環之副產物,係藉由對胺基甲酸酯化生成物之混合物進行 蒸餾將其分離而去除,於此情形時,無價值之殘留成分作 為底部生成物而產生,且包含二胺基甲酸酯之沸點比較低 131506.doc 200948759 之全部成分自管柱之塔頂部被去除。然而,該方法具有使 用大量能量之缺點。因此’其原因在於,必需使所有二胺 基甲酸酯於觸媒之存在下蒸發,而且必需使該二胺基甲酸 酯於胺基曱酸酯分解溫度之範圍内的某溫度水準下蒸發。 在有用之生成物中所形成之異氰酸酯基,經常與殘留成分 之胺基甲酸酯基反應,形成減少產率之分子量比較高之副 產物。 ❿ 馨 根據專利文獻19之揭示,揭示有於進行聚胺基曱酸酯之 熱分解之前,將無價值之副產物之一部分去除至系統外之 方法。該方法之缺點係導致一部分去除至系統外的副產物 中含有聚胺基甲酸酯,因此有時異氰酸酯之產率下降。 又’聚胺基甲酸酯之熱分解步驟中所獲得之含有未反應之 聚胺基甲酸酯、高沸點募聚物及其他可再使用之無價值之 副產物的反應混合物之未熱分解的成分被分離,自熱分解 裝置連續去除’且直接或視需要與醇反應後再循環至胺基 甲酸酿化步驟’試圖增加異氰酸酯之產率,但有時於該胺 基甲酸酯化步驟中再循環至系統中之高沸點募聚物於該胺 基甲酸酯化反應器中析出,緩慢積蓄於反應器壁面,而妨 礙長時間運轉。 又’根據專利文獻20之揭示’對包含胺基甲酸酯之反應 媒體進行加熱,以形成氣體容量多於5〇%之兩相混合物, 利用將氣體相自反應器連續排出、將液體相自反應器連續 排出之方法’藉由對胺基甲酸酯連續熱裂解分解而製造異 氰酸酯。該方法中,含有未反應之聚胺基甲酸酯、高沸點 131506.doc 200948759 募聚物及其他可再使用之無價值之副產物的反應混合物之 未熱分解的成分被分離,自熱分解裝置連續去除,且直接 或視需要與醇反應後,再循環至胺基曱酸酯化步驟,試圖 增加異氰酸Sa之產率,但與上述方法同樣,有時於該胺基 曱酸酯化步驟中再循環至系統中之高沸點寡聚物於該胺基 甲酸酯化反應器中析出,緩慢積蓄於反應器壁面,而妨礙 長時間運轉。 ❿ 專利文獻2 1揭示有如下方法:將於鹼性觸媒存在下使碳 酸二甲酯與胺反應而獲得之胺基甲酸甲酯蒸發,導入至熱 刀解反應器中,進行熱分解。該方法之缺點係胺基曱酸甲 醋蒸發時,未蒸發之成分自該蒸發器底部去除,但導致該 去除成分中含有胺基甲酸甲酯,因此異氰酸酯之產率下 降。又,於高溫下運送胺基甲酸甲酯之蒸氣,因此存在易 於產生胺基甲酸甲酯之熱改性反應的傾向。 [專利文獻1]美國專利第4497963號公報 參 [專利文獻2]美國專利第429〇97〇號公報 [專利文獻3]美國專利第4388238號公報 [專利文獻4]美國專利第44305 05號公報 [專利文獻5]美國專利第4480110號公報 [專利文獻6]美國專利第4596678號公報 [專利文獻7]美國專利第4596679號公報 [特午文獻8]歐州專利申請公開第〇32〇235號公報 [專利文獻9]美國專利第2692275號公報 [專利文獻10]美國專利第3734941號公報 131506.doc 200948759 [專利文獻11]美國專利第4081472號公報 [專利文獻12]美國專利第4388426號公報 [專利文獻13]美國專利第4482499號公報 [專利文獻14]美國專利第4613466號公報 [專利文獻15]美國專利第4386033號公報 [專利文獻16]美國專利第4388246號公報 [專利文獻17]美國專利第46925 50號公報 [專利文獻18]歐州專利申請第0355443號公報 ⑩ [專利文獻19]美國專利第5386053號公報 [專利文獻20]日本專利第3238201號公報 [專利文獻21]美國專利第5315034號公報 [非專利文獻 1 ] Berchte der Deutechen ChemischenAccording to the disclosure of Patent Document 15, it is disclosed that "the lower case: at a lower temperature and at a lower temperature" under the reduced pressure 'in the presence or absence of a catalyst and/or a stabilizer' may be used without solvent A good yield decomposes the monoaminoformic acid vinegar. The decomposition products (monoisocyanate and alcohol) are removed from the boiling reaction mixture by evaporation, and are separately captured by condensation. The general form reveals a method of removing a portion of the reaction mixture to the outside of the system in order to remove by-products formed in thermal decomposition. Therefore, the by-product can be removed from the bottom of the reaction H, but remains attached to the above-mentioned fixation reaction| The problem of the wall surface has not solved the problem of long-term operation. Moreover, there is no disclosure about the industrial use of the removed reaction mixture (containing a large amount of useful components). According to the disclosure of Patent Document 16, fat Thermal decomposition of a family, alicyclic or aromatic polyurethane, at 150~35〇. 〇 and 〇〇〇1~2〇bar in the presence of an inert solvent, as a catalyst and auxiliary Gas The by-product formed in the presence or absence of hydrogen, an organic acid vapor, an alkylating agent or an organotin vapor can be continuously removed from the reactor, for example, 131506.doc 200948759, together with the reaction solution, At the same time, a corresponding amount of the new solvent or the recovered solvent is added. The disadvantage of this method is that, for example, the use of a refluxing solvent reduces the space-time yield of the polyisophthalic acid brewing' and, for example, requires a large amount of energy including solvent recovery. Furthermore, the auxiliaries used are volatile under the reaction conditions and can contaminate the decomposition products. Moreover, the amount of the residual portion of the polyisocyanate formed is relatively high, and the reliability of the economic efficiency and industrial method is high. According to the disclosure of Patent Document 17, there is disclosed a method of supplying a urethane carboxylic acid, such as an alicyclic diamine group, supplied along the inner surface of a tubular reactor in a liquid form in the presence of a high boiling point solvent. Formic acid vinegar 5_(ethoxylamino)-1-(ethoxymethylaminoguanidinomethylcyclohexane) is continuously thermally decomposed. The method has the production of (cyclic) aliphatic The isocyanic acid has a low yield and low selectivity. In addition, there is no disclosure about the continuity of the recovery of urethane with re-bonded or partially decomposed. The subsequent treatment with a solvent containing by-products and a catalyst is not described. According to the disclosure of Patent Document 18, there is disclosed a recycling method by converting a corresponding diamine into a diamine phthalate, and The urethane is thermally decomposed to produce a (cyclo)aliphatic diisocyanate. The process recycles the product from the carbamate decomposition step to the urethane by reacting with the oxime. The step of reducing the yield is minimized. The by-product which cannot be recycled is removed by separating the mixture of the urethane formation product, in which case, the valueless residue The composition is produced as a bottom product, and the difluorocarbamate has a lower boiling point 131,506.doc 200948759. All components are removed from the top of the column. However, this method has the disadvantage of using a large amount of energy. Therefore, the reason is that it is necessary to evaporate all the dicarbamate in the presence of a catalyst, and it is necessary to evaporate the dicarbamate at a certain temperature within the range of the decomposition temperature of the amino phthalate. . The isocyanate group formed in the useful product is often reacted with the urethane group of the residual component to form a by-product having a relatively high molecular weight which reduces the yield. According to the disclosure of Patent Document 19, there is disclosed a method of partially removing a valuable by-product from the system before performing thermal decomposition of the polyamino phthalate. The disadvantage of this method is that a part of the by-product removed to the outside of the system contains a polyurethane, and thus the yield of the isocyanate is sometimes lowered. Also, the thermal decomposition of the reaction mixture containing unreacted polyurethane, high-boiling polymer and other reusable by-products obtained in the thermal decomposition step of the polyurethane is not thermally decomposed. The ingredients are separated, continuously removed from the thermal decomposition unit and recycled directly or as needed to react with the alcohol and recycled to the ureic acid brewing step 'attempting to increase the yield of isocyanate, but sometimes in the urethane step The high-boiling polymer that is recycled to the system is precipitated in the urethanization reactor and slowly accumulates on the wall of the reactor, preventing long-term operation. Further, according to the disclosure of Patent Document 20, the reaction medium containing the urethane is heated to form a two-phase mixture having a gas capacity of more than 5% by weight, and the gas phase is continuously discharged from the reactor, and the liquid is self-contained. The method of continuously discharging the reactor 'is produced by continuous thermal cracking of the urethane to produce an isocyanate. In this method, the unthermally decomposed components of the reaction mixture containing unreacted polyurethane, high boiling point 131506.doc 200948759 polymer and other reusable value-added by-products are separated and autothermally decomposed. The apparatus is continuously removed, and is directly or optionally reacted with an alcohol, and recycled to the amino phthalate esterification step in an attempt to increase the yield of isocyanate Sa, but similarly to the above method, sometimes the amino phthalate is used. The high-boiling oligomers recycled to the system in the crystallization step are precipitated in the urethanization reactor and slowly accumulate on the wall of the reactor, hindering long-term operation.专利 Patent Document 2 1 discloses a method in which methyl carbamate obtained by reacting dimethyl carbonate with an amine in the presence of a basic catalyst is evaporated, introduced into a hot knife reactor, and thermally decomposed. The disadvantage of this method is that the unvaporized component is removed from the bottom of the evaporator when the amino citrate is evaporated, but the methyl methacrylate is contained in the removed component, so that the yield of the isocyanate is lowered. Further, since the vapor of methyl carbazate is transported at a high temperature, there is a tendency to easily cause a thermal modification reaction of methyl carbazate. [Patent Document 1] U.S. Patent No. 4,497,963, the disclosure of which is incorporated herein by reference. [Patent Document 2] U.S. Patent No. 4,429, 197, [Patent Document 3] U.S. Patent No. 4,388,238 [Patent Document 4] U.S. Patent No. 44305 05 [Patent Document 5] U.S. Patent No. 4, 480, 811 [Patent Document 6] U.S. Patent No. 4, 596, 678 [Patent Document 7] U.S. Patent No. 4,596, 679 [Japanese Patent Application No. 8] European Patent Application Publication No. 32-235 Patent Document 9] US Pat. No. 2692275 [Patent Document 10] US Pat. No. 3,374,941, US Pat. No. 3, </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> </ RTI> [Patent Document 14] U.S. Patent No. 4,613,466 [Patent Document 15] U.S. Patent No. 4,384,033 [Patent Document 16] U.S. Patent No. 4,388,246 [Patent Document 17] U.S. Patent No. 46,925 [Patent Document 18] European Patent Application No. 0354443 (Patent Document 19) US Pat. No. 5,380, 605, [Patent Document 20] Japanese Patent No. 3238201 [Patent Document 21] U.S. Patent Application Publication No. 5315034 [Non-Patent Document 1] Berchte der Deutechen Chemischen

Gesellschaft ’ 第 3卷,653 頁,1870年 [非專利文獻2] Journal of American Chemical Society, 第81卷,2138頁,1959年 I 【發明内容】 ❷ [發明所欲解決之問題] 如上所述,對不使用劇毒光氣製造異氰酸酯之方法進行 種種研究。然而,現狀為,存在由於高沸點副產物之生成 或該高沸點副產物附著於反應器上而難以長時間連續製造 之課題’工業上幾乎未實施。 本發明之目的在於提供一種不使用光氣而製造異氰酸酯 時’並無先前技術中所發現之各種問題點,可長時間穩定 地製造異氰酸酯之方法。 131506.doc -13· 200948759 [解決問題之技術手段] 本發明者等人對上述課翻 θ欲 題進打努力研究,結果吃驚的 疋,發現使胺基甲酸酯進行埶a L焉的 _ ^ ^ 熱刀解反應而製造異氰酸酯夕 方法中,根據將自熱分解反席 认, 嗯器底濘所回收之液相成分供 ,.、α至熱分解反應器之上部# 、 G ^ m 方法不會導致副產物附著於 反應器或堵塞反應器,可長_ 、 明。 長時間連續運轉,從而完成本發 即’本發明提供, ⑴一種異減㈣之製造方法,其係使胺基甲義進行執 分解反應來製造異氰酸酿之方法,且包括如下步驟:’、、 自進订該熱分解反應之熱分解反應^將低沸點成分作為 氣相成分加以回收之步驟; 自該熱分解反應器之底部將含有胺基甲酸g旨之液相成分 加以回收之步驟;以及 將該液相成分之一部分或全部供給至該熱分解反應器之 上部的步驟。 [2] 如刖項[1]之製造方法,其中將胺基甲酸酯於⑼艽〜丨8〇 C之溫度範圍内,供給至熱分解反應器中。 [3] 如前項[1]或[2]之製造方法,其中將該胺基曱酸酯作 為液體供給至熱分解反應器中。 [4] 如前項[1]至[3]中任一項之製造方法,其中該胺基甲 酸S旨係使碳酸酯與胺化合物進行反應而製造之胺基甲酸 酯。 [5] 如前項[4]之製造方法,其中製造該胺基曱酸酯之反應 131506.doc -14- 200948759 器,與該熱分解反應器可相 J亦可不同’製造該胺基甲酸 Sa之反應盗及該熱分解反應器 命彳糸選自塔型反應器及槽塑反 應器所組成之群中的至少一種反應器。 [6]如前項[1]至[5]中任一 項之製造方法,其中該熱分解 反應盗係由選自蒸發罐、遠墙之&amp; + ”遷續多級蒸餾塔、填充塔、薄膜 蒸發器及降膜蒸發器所組成之雜 风(群中的至少一種反應器所構 成之反應器。Gesellschaft 'Volume 3, page 653, 1870 [Non-Patent Document 2] Journal of American Chemical Society, Vol. 81, p. 2138, 1959 I [Summary of the Invention] [Problems to be Solved by the Invention] As described above, Various studies have been carried out on the method of producing isocyanate without using toxic phosgene. However, the current situation is that there is a problem that it is difficult to continuously manufacture for a long period of time due to the formation of high-boiling by-products or the adhesion of the high-boiling by-products to the reactor, which has hardly been industrially implemented. SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing an isocyanate stably for a long period of time without any problems found in the prior art when an isocyanate is produced without using phosgene. 131506.doc -13· 200948759 [Technical means for solving the problem] The inventors of the present invention conducted an effort to study the above-mentioned trajectory of θ, and as a result, they were surprised to find that the urethane was subjected to 埶a L焉. ^ ^ In the method of producing a isocyanate by a hot knife solution, according to the self-heating decomposition, the liquid phase component recovered from the bottom of the reactor is supplied to the upper part of the thermal decomposition reactor #, G ^ m method. It does not cause the by-products to adhere to the reactor or block the reactor, and can be long and clear. Continuously operating for a long period of time, thereby completing the present invention, which is provided by the present invention, (1) a method for producing a hetero-subtraction (four), which is a method for producing an isocyanate by subjecting an amine to a decomposition reaction, and comprising the following steps: a step of recovering the thermal decomposition reaction of the thermal decomposition reaction and recovering the low-boiling component as a gas phase component; and recovering the liquid phase component containing the aminocarboxylic acid g from the bottom of the thermal decomposition reactor And a step of supplying a part or all of the liquid phase component to the upper portion of the thermal decomposition reactor. [2] The production method according to [1], wherein the urethane is supplied to the thermal decomposition reactor in a temperature range of (9) 艽 to 丨 8 〇 C. [3] The production method according to the above [1] or [2] wherein the amino phthalic acid ester is supplied as a liquid to the thermal decomposition reactor. [4] The production method according to any one of [1] to [3] wherein the amino acid S is an amino carboxylic acid ester produced by reacting a carbonate with an amine compound. [5] The production method according to the above [4], wherein the reaction for producing the amino phthalate ester is 131506.doc -14-200948759, and the thermal decomposition reactor may be different from the same. The reaction and the thermal decomposition reactor are selected from at least one reactor selected from the group consisting of a column reactor and a tank reactor. [6] The production method according to any one of [1] to [5] wherein the thermal decomposition reaction is carried out by a multi-stage distillation column selected from an evaporation can, a &lt;+&quot; A wind evaporator composed of a thin film evaporator and a falling film evaporator (a reactor composed of at least one reactor in the group).

[7]如前項[1]至[6]中任一項之製造方法 反應係以液相進行。 其中該熱分解 [8] 如前項[4]至[7]中任一項之製造方法,其中自使碳酸 酿與胺化合物輯反應而製造之含有絲甲㈣之混合物 中分離一部分或全部之羥基化合物及/或一部分或全部之 碳酸酯,將所得之混合物供給至熱分解反應裝置中。 [9] 如别項[8]之製造方法,其中該分離係藉由蒸館分離而 進行’該蒸餾分離係於18(TC以下進行。[7] The production method according to any one of [1] to [6], wherein the reaction is carried out in a liquid phase. The method of any one of the above [4] to [7], wherein a part or all of the hydroxyl group is separated from the mixture containing the silkworm (4) produced by reacting the carbonic acid and the amine compound. The compound and/or a part or all of the carbonate is supplied to the thermal decomposition reaction apparatus. [9] The production method according to the item [8], wherein the separation is carried out by steaming separation. The distillation separation is carried out at 18 (TC or less).

[10] 如前項[1]至[9]中任一項之製造方法,其中將自熱分 解反應器之底部回收之液相成分的一部分或全部於5〇£&gt;c〜 180C之溫度範圍内,供給至該熱分解反應器之上部。 Π1]如前項[4]至[10]中任一項之製造方法,其中相對於 構成胺化合物之胺,以化學計量比計,使用i倍以上之碳 酸酯。 Π2]如前項[丨]至[n]中任一項之製造方法,其中進一步 包括以酸清洗附著於該熱分解反應器之高沸點副產物的步 驟。 131506.doc -15- 200948759 [13] 如月j項[12]之製造方法,其中該酸係芳香族經基化合 物。 [14] 如刖項[4]至[13]中任一項之製造方法#中該碳酸 酯係以下述式(5)所表示之化合物, [化3] 〇 R1、人R1 (5&gt; (式中: _ Rl表不碳數為1〜12之脂肪族基或碳數為6〜12之芳香族 基)。 ' [15] 如前項[14]之製造方法,其中該碳酸@旨含有〇〇〇1 ppm〜10%之金屬原子。 [16] 如前項[15]之製造方法,其中該金屬原子係選自鐵、 錄、钻、鋅、錫、銅、鈦中所組成之群中的一種或複數種 金屬。 [17] 如前項[14]至[16]中任—項之製造方法,其巾該碳酸醋 ® 之尺1係碳數為5〜7之脂肪族基或碳數為6〜7之芳香族基。 [18] 如前項[4]至[17]中任一項之製造方法,其中該胺化合 物係以下述式(6)所表示之化合物, [化4][10] The production method according to any one of [1] to [9] wherein a part or all of the liquid phase component recovered from the bottom of the thermal decomposition reactor is in a temperature range of 5 & > c ~ 180 C Inside, it is supplied to the upper portion of the thermal decomposition reactor. The production method according to any one of the items [4] to [10] wherein, in comparison with the amine constituting the amine compound, i times or more of the carbonate is used in stoichiometric ratio. The production method according to any one of the preceding items, wherein the step of washing the high-boiling by-product attached to the thermal decomposition reactor with an acid is further included. [13] The method of producing the item [12], wherein the acid is an aromatic carbamide compound. [14] The compound represented by the following formula (5) in the production method # according to any one of the items [4] to [13], wherein the compound is represented by the following formula (5), 〇R1, and R1 (5&gt; Wherein: _ Rl represents an aliphatic group having a carbon number of 1 to 12 or an aromatic group having a carbon number of 6 to 12). [15] The method of producing the above [14], wherein the carbonic acid@ [16] The method of the present invention, wherein the metal atom is selected from the group consisting of iron, recorded, drilled, zinc, tin, copper, and titanium. [17] The method for producing a metal according to any one of [14] to [16], wherein the carbonated vinegar® has an aliphatic group or a carbon number of 5 to 7 carbon atoms. The method of any one of the above [4] to [17] wherein the amine compound is a compound represented by the following formula (6), [Chem. 4]

(6) (式中: 氧之原子的碳數為1~20之脂肪 R2表示選自包含選自碳、 131506.doc -16· 200948759 族基及碳數為6〜20之芳香族基所組成之群中的一個基,具 有與η相等之原子價, η為2〜1〇之整數)。 Π9]如前項間之製造方法,其中該胺化合物係以式⑹ 所表示之化合物中η為2之二胺化合物。 [2〇]如前項⑴至[19]中任一項之製造方法,纟中將藉由 熱分解反應而生成並作為氣相成分加以回收之低沸點成分 成分作為氣體成分供給至蒸餾塔,於該蒸餾塔中,自該低 沸點成分中將來自胺基曱酸酯之羥基化合物與來自胺基甲 酸酯之異氰酸酯分離。 [21] 如前項[1]至[20]中任一項之製造方法,其中自藉由 熱分解反應而生成並作為氣體成分加以回收之低沸點成分 中,自該薄膜蒸發器,分別回收來自胺基甲酸酯之羥基化 合物與來自胺基曱酸酯之異氰酸酯。 [22] 如前項[^至^丨]中任一項之製造方法,其中自該液 相成分將異氰酸酯藉由蒸餾分離而加以回收。 ❹ &amp; [23] 如前項[14]至[22]中任一項之製造方法,其中該碳酸 酿於式(5)中R1係碳數為丨〜丨2之脂肪族基,係利用包括下 述步驟(1)及步驟(2)之方法而製造, 步驟(1):使具有錫-氧·碳鍵之有機錫化合物與二氧化碳 進行反應而獲得含有碳酸二烷基酯之反應混合物的步驟; 步驟(2):將該反應混合物分離,獲得碳酸二烷基酯及 殘留液之步驟。 [24] 如前項[14]至[22]中任一項之製造方法,其中該碳酸 131506.doc 17 200948759 酉曰於式(5)中R1係碳數為6〜i2之芳香族基,係利用除了上 述步驟(1)及步驟(2)以夕卜,包括下述步驟(3)之方法而製 造, 步驟(3):將步驟(2)中所分離之碳酸二院基自旨與芳香族 羥基化合物A進行反應而獲得碳酸二芳酯,將副生之醇加 以回收之步驟。 [25]如前項[23]或[24]之製造方法,其中該碳酸醋係利用 除了步驟⑴及步驟(2)、或步驟⑴〜步驟(3)以外,包括下 述步驟(4)及步驟(5)之步驟製造之碳酸酯, ㈣…使步驟⑺中所獲得之殘留液與醇進行反應, 形成具有錫-氧-碳鍵之有機踢化合物與水,自反應系 該水之步驟; ” 步驟⑺:將步驟(4)中所獲得之具有踢·氧·碳鍵之有機锡 化合物作為步驟⑴之具有I氧碳鍵之有機锡化合物而再 利用之步驟。(6) (wherein: the fat R2 of the atom of oxygen having a carbon number of 1 to 20 is selected from the group consisting of an aromatic group selected from the group consisting of carbon, 131506.doc -16·200948759 and a carbon number of 6-20 One of the groups has an atomic valence equal to η, and η is an integer of 2 to 1 )). (9) The method for producing the above, wherein the amine compound is a diamine compound wherein η is 2 in the compound represented by the formula (6). [2] The production method according to any one of the items (1) to [19], wherein a low-boiling component which is produced by a thermal decomposition reaction and recovered as a gas phase component is supplied as a gas component to the distillation column. In the distillation column, a hydroxy compound derived from an amino phthalic acid ester is separated from an isocyanate derived from a urethane from the low boiling component. [21] The method according to any one of [1] to [20] wherein the low-boiling component formed by the thermal decomposition reaction and recovered as a gas component is separately recovered from the thin film evaporator. A hydroxy compound of a urethane and an isocyanate derived from an amino phthalate. [22] The production method according to any one of the preceding paragraph, wherein the isocyanate is separated from the liquid phase component by distillation. [23] The method of any one of [14] to [22] wherein the carbonic acid is enriched in the aliphatic group of the formula (5) wherein the carbon number of the R1 is 丨~丨2, Manufactured by the following steps (1) and (2), step (1): a step of reacting an organotin compound having a tin-oxygen-carbon bond with carbon dioxide to obtain a reaction mixture containing a dialkyl carbonate Step (2): The step of separating the reaction mixture to obtain a dialkyl carbonate and a residual liquid. [24] The production method according to any one of [14] to [22] wherein the carbonic acid 131506.doc 17 200948759 is an aromatic group having a carbon number of 6 to i2 in the formula (5). Using the method of the following step (3) in addition to the above steps (1) and (2), the step (3): separating the carbonic acid base and the fragrance separated in the step (2) The group hydroxy compound A is reacted to obtain a diaryl carbonate, and the by-produced alcohol is recovered. [25] The method according to the above [23] or [24] wherein the carbonated vinegar comprises the following steps (4) and steps in addition to the step (1) and the step (2), or the steps (1) to (3). (5) The step of producing a carbonate, (4) ... reacting the residual liquid obtained in the step (7) with an alcohol to form an organic kick compound having a tin-oxygen-carbon bond and water, and self-reacting the step of the water; Step (7): a step of recycling the organotin compound having a kicking oxygen-carbon bond obtained in the step (4) as an organotin compound having an Ioxycarbon bond in the step (1).

[26]如前項[25]之製造方法,其中將步驟⑺中所回收之 醇作為步驟(4)之醇而再利用。 U7]如前項[24]或[25]之製造方法,其中該經基化合物為 醇之情形時,作為步驟⑷之醇使用,㈣基化合物為芳香 族經基化合物之情形時,作為步驟(3)之芳香㈣基 A使用。 观 其中將所分 其中胺基甲 [28] 如前項[8]至[27]中任一項之製造方法 離之碳酸酯作為碳酸酯再利用。 [29] 如剛項[1]至[28]中任一項之製造方法 131506.doc -18- 200948759 酸酯之熱分解反應係於溶劑不存在下進行。 [3〇]如前項[4]至[29]中任一項之製造方法,其中將胺化 合物供給至使碳酸酿肖胺化合物進行反應之反應器時係 於液體狀態下進行。 叫如前項[4]至_中任—項之製造方法,《中將胺化 合物供、給至使碳酸醋與胺化合物進行反應之反應器時,係 作為與醇、水、或碳酸酯之混合物而進行。 [發明之效果] ❹ 根據本發明,可不使用光氣而製造異氰酸酯,且可長時 間地連續運轉。 【實施方式】 以下,就用以實施本發明之最佳形態(以下,稱為「本 實施形態」)加以詳細說明。再者,本發明並不限定於以 下之實施形態,在其要旨範圍内可加以各種變形而實施。 本實施形態之異氰酸酯之製造方法係於溶劑不存在下, Q 將使碳酸酯與胺化合物進行反應而製造之胺基甲酸酯進行 熱分解反應來製造異氰酸酯之方法,包括如下步驟:自進 行該熱分解反應之熱分解反應器將低沸點成分作為氣相成 分加以回收之步驟;自該熱分解反應器之底部將含有胺基 甲酸酯之液相成分加以回收之步驟;以及將該液相成分之 °!5分或全部供給至該熱分解反應器之上部之步驟。 &lt;胺基甲酸醋&gt; 作為本實施形態之異氰酸酯之製造方法中所使用之胺基 甲酸酯,並無特別限定,較好的是使用以下述式(7)所表示 131506.doc -19· 200948759 之胺基甲酸酯。 [化5] -Jh ? \ R3 彳 N-C-0—叫 \ /n (7) (式中,R3表示選自包含選自碳、氧所之原子之碳數為 1〜20之脂肪族基及碳數為6〜2G之芳香族基所組成之群中的 一個基’且具有與η相等之原子價, 瘳 R4表示包含選自碳、氧之原子之磁叙·*, ^ . 7 丁之碾數為1〜20之脂肪族 基、碳數為6〜20之芳香族基, η為1〜1〇之整數)。 上述式(7)中,η較好的是選自2以上之整數之數,且進 而較好的是η為2之聚胺基甲酸酯。 作為式(7)中之R3之例,可列舉:亞甲基、二亞甲基、 三亞甲基、四亞甲基、五亞甲基、六亞甲基、八亞曱基等 直鏈烴基;環戊烷、環己烷、環庚烷、環辛烷、雙(環己 ® 基)烷烴等未經取代之脂環式烴基;曱基環戊烷、乙基環 戊烧、甲基環己烧(各異構物)、乙基環己院(各異構物)、 丙基環己烷(各異構物)、丁基環己烷(各異構物)、戊基環 己烷(各異構物)、己基環己烷(各異構物)等烷基取代環己 院;二甲基環己烷(各異構物)、二乙基環己烷(各異構 物)、二丁基環己烷(各異構物)等二烷基取代環己院; 1,5,5-三甲基環己烷、u s三乙基環己烷、15 5三丙基 環己烧(各異構物)、1,5,5_三丁基環己烷(各異構物)等三烧 13t506.doc -20· 200948759 基取代環己烷;甲苯、乙基苯、丙基苯等單烷基取代苯; 二子苯、二乙基苯、二丙基苯等二烷基取代苯;二苯基烷 烴、笨等芳香族烴等。其中,較好地使用六亞甲基、伸苯 基、二苯基甲烷、甲苯、環己烷、二甲苯、甲基環己烷、 異佛爾酮及二環己基甲烷基。 作為上述式(7)申之R4,可例示:甲基、乙基、丙基(各 異構物)、丁基(各異構物)、戊基(各異構物)、己基(各異構 物)、庚基(各異構物)、辛基(各異構物)、壬基(各異構 物)、癸基(各異構物)、十一烷基(各異構物)、十二烷基(各 異構物)、十二烷基(各異構物)、十四烷基(各異構物)、十 五烷基(各異構物)、十六烷基(各異構物)、十七烷基(各異 構物)、十八烷基(各異構物)、十九烷基(各異構物卜二十 烷基(各異構物)等烷基;環戊基、環己基、環庚基、環辛 基、環壬基、環癸基等環烧基;甲氧基甲基、甲氧基乙基 (各異構物)、甲氧基丙基(各異構物)、曱氧基丁基(各異構 物)、甲氧基戊基(各異構物)、甲氧基己基(各異構物)、甲 氧基庚基(各異構物)、甲氧基辛基(各異構物)、甲氧基壬 基(各㈣物)、甲氧基癸基(各異構物)、甲氧基十一院基 (各異構物)、甲氧基十二烷基(各異構物)、甲氧基十三烷 基(各異構物)、甲氧基十四烷基(各異構物)、甲氧基十五 、元基(各異構物)、甲氧基十六烧基(各異構物)、甲氧基十 七院基(各異構物)、甲氧基十人烧基(各異構物)、甲氧基 十九焼基(各異構物)、乙氧基甲基、乙氧基乙基(各異構 物)、乙氧基丙基(各異構物)、乙氧基丁基(各異構物)、乙 131506.doc -21 - 200948759 氧基戊基異構物)、乙氧基己基α異構物卜 基(各異構物)、乙氧基辛基(各異構物)、乙氧基壬基(:異 構物)、乙氧基癸基(各異構物)、乙氧基十—院基(各異構 物)、乙氧基十二燒基(各異構物)、乙氧基十三烧基(各異 構物)、6氧基十四⑨基(各異構物)、〔氧基十五院基(各 異構物)、乙氧基十六烧基(各異構物)、乙氧基十七烧基 (各異構物)、乙氧基十八烷基(各異構物)、丙氧基甲基(各 異構物)、丙氧基乙基(各異構物)、丙氧基丙基(:異構 物)、丙氧基丁基(各異構物)、@氧基戊基(各異構物)、丙 氧基己基(各異構物)、丙氧基庚基(各異構物)、丙氧基辛 基(各異構物)、丙氧基壬基(各異構物)、丙氧基癸基(各異 構物)、丙氧基十一烷基(各異構物)、丙氧基十二烷基(各 異構物)、丙氧基十三烷基(各異構物)、丙氧基十四烷基 (各異構物)、丙氧基十五烷基(各異構物)、丙氧基十六烷 基(各異構物)、丙氧基十七烷基(各異構物)、丁氧基甲2 φ (各異構物)、丁氧基乙基(各異構物)、丁氧基丙基(各異構 物)、丁氧基丁基(各異構物)、丁氧基戊基(各異構物卜丁 氧基己基(各異構物)、丁氧基庚基(各異構物)、丁氧基辛 基(各異構物)、丁氧基壬基(各異構物)、丁氧基癸基(各異 構物)、丁氧基十一烷基(各異構物)、丁氧基十二烷基(各 異構物)、丁氧基十三烷基(各異構物)、丁氧基十四烷基 (各異構物)、丁氧基十五烷基(各異構物)、丁氧基十六烷 基(各異構物)、戊氧基甲基(各異構物)、戊氧基乙基(各異 構物)、戊氧基丙基(各異構物)、戊氧基丁基(各異構物)、 131506.doc •22- 200948759 戊氧基戊基(各異構物)、戊氧基己基(各異構物)、戊氧基 庚基(各異構物)、戊氧基辛基(各異構物)、戊氧基壬基(各 異構物)、戊氧基癸基(各異構物)、戊氧基十一烷基(各異 構物)、戊t基十二貌基(各異構物)、&amp;氧基十三烧基(各 異構物)戊氧基十四烷基(各異構物)、戊氧基十五烷基 (各異構物)己氧基甲基(各異構物)、己氧基乙基(各異構 物)、己氧基丙基(各異構物)、己氧基丁基(各異構物)、己 氧基戊基(各異構物)' 己氧基己基(各異構物)、己氧基庚 基(各異構物)、己氧基辛基(各異構物)、己氧基壬基(各異 構物)、己氧基癸基(各異構物)、己氧基十一院基(各異構 物)、己氧基十二⑥基(各異構物)、〔氧基十三烧基(各異 構物)、己氧基十四院基(各異構物)、庚氧基甲基、庚氧基 乙基(各異構物)、魏基丙基(各異構物)、庚氧基丁基(各 異構物)庚氧基戊基(各異構物)、庚氧基己基(各異構 物)、庚氧基庚基(各異構物)、庚氧基辛基(各異構物)、庚 φ 氧基壬基(各異構物)、庚氧基癸基(各異構物)、庚氧基十 一院基(各異構物)、庚氧基十二院基(各異構物)、庚氧基 十三烷基(各異構物)、辛氧基甲基、辛氧基乙基(各異構 物)、辛氧基丙基(各異構物)、辛氧基丁基(各異構物)、辛 氧基戊基(各異構物)、辛氧基己基(各異構物)、辛氧基庚 基(各異構物)、辛氧基辛基(各異構物)、+氧基壬基(各異 構物)、辛氧基癸基(各異構物)、辛氧基十一院基(各異構 物)、辛氧基十二烷基(各異構物)、壬氧基甲基(各異構 物)、壬氧基乙基(各異構物)、壬氧基丙基(各異構物)、壬 131506.doc •23· 200948759 ==異構物)、壬氧基戊基(各異構物)、壬氧基己 :各異構物)、壬氧基庚基(各異構物)、壬氧基辛基(各異 構物)、壬氧基壬基d里播私、 、 技 暴(各異構物)、壬氧基癸基(各異構物)、[26] The production method according to the above [25], wherein the alcohol recovered in the step (7) is reused as the alcohol of the step (4). U7. The production method according to the above [24] or [25] wherein, when the base compound is an alcohol, the alcohol is used as the alcohol of the step (4), and when the (4) group compound is an aromatic warp compound, as the step (3) ) Aroma (4) Base A is used. The method for producing the amine group according to any one of the above [8] to [27], wherein the carbonate is reused as a carbonate. [29] The production method according to any one of [1] to [28] 131506.doc -18- 200948759 The thermal decomposition reaction of the acid ester is carried out in the absence of a solvent. [3] The production method according to any one of [4] to [29] wherein the amine compound is supplied to the reactor for reacting the caproamine compound to be reacted in a liquid state. The manufacturing method of the above item [4] to _zhong--, "the intermediate amine compound is supplied to the reactor for reacting the carbonated acid with the amine compound, and is used as a mixture with an alcohol, water, or carbonate. And proceed. [Effects of the Invention] According to the present invention, isocyanate can be produced without using phosgene, and can be continuously operated for a long period of time. [Embodiment] Hereinafter, the best mode for carrying out the invention (hereinafter referred to as "this embodiment") will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the spirit and scope of the invention. The method for producing an isocyanate according to the present embodiment is a method for producing an isocyanate by thermally decomposing a urethane produced by reacting a carbonate with an amine compound in the absence of a solvent, and comprising the steps of: a thermal decomposition reaction thermal decomposition reactor for recovering a low boiling component as a gas phase component; a step of recovering a liquid phase component containing a urethane from a bottom of the thermal decomposition reactor; and the liquid phase The step of supplying 5 minutes or all of the components to the upper portion of the thermal decomposition reactor. &lt;Amino carboxylic acid vinegar&gt; The urethane used in the method for producing an isocyanate of the present embodiment is not particularly limited, and it is preferably used in the following formula (7): 131506.doc -19 · The urethane of 200948759. -Jh ? \ R3 彳NC-0 - is called \ /n (7) (wherein R3 represents an aliphatic group selected from carbon atoms containing 1 to 20 carbon atoms selected from carbon or oxygen; a group of a group consisting of an aromatic group having a carbon number of 6 to 2 G and having an atomic valence equal to η, and 瘳R4 representing a magnetic olefin containing an atom selected from carbon and oxygen, *. The aliphatic group having a rolling number of 1 to 20, an aromatic group having a carbon number of 6 to 20, and η is an integer of 1 to 1 Å). In the above formula (7), η is preferably a number selected from an integer of 2 or more, and more preferably a polycarbamate having η of 2. Examples of R3 in the formula (7) include a linear hydrocarbon group such as a methylene group, a dimethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group or an octadecyl group. Unsubstituted alicyclic hydrocarbon group such as cyclopentane, cyclohexane, cycloheptane, cyclooctane, bis(cyclohexyl)alkane; indenylcyclopentane, ethylcyclopentane, methyl ring Ether (each isomer), ethylcyclohexan (each isomer), propylcyclohexane (each isomer), butylcyclohexane (each isomer), pentylcyclohexane (each isomer), alkyl-substituted cyclohexyl or the like such as hexylcyclohexane (each isomer); dimethylcyclohexane (each isomer), diethylcyclohexane (each isomer) a dialkyl-substituted cyclohexanyl such as dibutylcyclohexane (each isomer); 1,5,5-trimethylcyclohexane, us triethylcyclohexane, 15 5 tripropylcyclohexane Burning (each isomer), 1,5,5-tributylcyclohexane (each isomer), etc., three-burning 13t506.doc -20· 200948759 base-substituted cyclohexane; toluene, ethylbenzene, propyl Monoalkyl substituted benzene such as benzene; diphenylene, diethylbenzene, dipropylbenzene, etc. A substituted phenyl group; diphenyl alkanes, and aromatic hydrocarbons such stupid. Among them, hexamethylene, phenylene, diphenylmethane, toluene, cyclohexane, xylene, methylcyclohexane, isophorone, and dicyclohexylmethylalkyl are preferably used. R4 which is represented by the above formula (7) may, for example, be methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (various) Structure), heptyl (each isomer), octyl (each isomer), thiol (each isomer), thiol (each isomer), undecyl (each isomer) , dodecyl (each isomer), dodecyl (each isomer), tetradecyl (each isomer), pentadecyl (each isomer), cetyl ( Each isomer), heptadecyl (each isomer), octadecyl (each isomer), pentadecyl (each isomer, eicosyl (each isomer), etc. a cycloalkyl group such as a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclodecyl group or a cyclodecyl group; a methoxymethyl group, a methoxyethyl group (each isomer), a methoxy group; Propyl (each isomer), decyloxybutyl (each isomer), methoxypentyl (each isomer), methoxyhexyl (each isomer), methoxyheptyl ( Each isomer), methoxyoctyl (each isomer), methoxy fluorenyl (each , methoxy fluorenyl (each isomer), methoxy eleven base (each isomer), methoxy dodecyl (each isomer), methoxy tridecyl (each isomer), methoxytetradecyl (each isomer), methoxy pentene, aryl group (each isomer), methoxy hexadecyl group (each isomer), Methoxy seventeen bases (each isomer), methoxy ten-membered base (each isomer), methoxy 19-mercapto (isomer), ethoxymethyl, ethoxy Ethyl ethyl (each isomer), ethoxy propyl (each isomer), ethoxybutyl (each isomer), B 131506.doc -21 - 200948759 oxypentyl isomer) Ethoxyhexyl alpha isomers (each isomer), ethoxyoctyl (each isomer), ethoxylated thiol (: isomer), ethoxylated thiol (variety) Structure), ethoxyl-homosystem (each isomer), ethoxydodecyl group (each isomer), ethoxylated tridecyl group (each isomer), 6-oxyl Tetrasyl 9 (each isomer), [oxyl fifteen (each isomer), ethoxy hexadecane (isoisomer) ), ethoxy heptadecyl (each isomer), ethoxy octadecyl (each isomer), propoxymethyl (each isomer), propoxyethyl (variety) Structure), propoxypropyl (: isomer), propoxy butyl (each isomer), @oxypentyl (each isomer), propoxyhexyl (isomer) , propoxyheptyl (each isomer), propoxyoctyl (each isomer), propoxy fluorenyl (each isomer), propoxy fluorenyl (each isomer), C Oledecyl (each isomer), propoxydodecyl (each isomer), propoxytridecyl (each isomer), propoxytetradecyl (each Isomer), propoxypentadecyl (each isomer), propoxy hexadecyl (each isomer), propoxy heptadecyl (each isomer), butoxy A 2 φ (each isomer), butoxyethyl (each isomer), butoxypropyl (each isomer), butoxy butyl (each isomer), butoxy pentane Base (each isomer, butyoxyhexyl (each isomer), butoxyheptyl (each isomer), butoxy (each isomer), butoxy thiol (each isomer), butoxy thiol (each isomer), butoxy undecyl (each isomer), butoxy 12 Alkyl (each isomer), butoxytridecyl (each isomer), butoxytetradecyl (each isomer), butoxypentadecyl (each isomer) , butoxy hexadecyl (each isomer), pentoxymethyl (each isomer), pentoxyethyl (each isomer), pentoxypropyl (each isomer) , pentyloxybutyl (each isomer), 131506.doc • 22- 200948759 pentyloxypentyl (each isomer), pentyloxyhexyl (each isomer), pentyloxyheptyl (each Isomers), pentoxyoctyl (each isomer), pentyloxy fluorenyl (each isomer), pentyloxy fluorenyl (each isomer), pentyl undecyl (each Isomer), pentyl t-dozenyl (each isomer), &amp;oxytridecyl (each isomer) pentyl octadecyl (each isomer), pentyloxy Pentadecyl (each isomer) hexyloxymethyl (each isomer), hexyloxyethyl (each Isomers), hexyloxypropyl (each isomer), hexyloxybutyl (each isomer), hexyloxypentyl (each isomer) 'hexyloxyhexyl (each isomer) ), hexyloxyheptyl (each isomer), hexyloxyoctyl (each isomer), hexyloxyindenyl (each isomer), hexyloxyindenyl (each isomer), Hexyloxy-11 (each isomer), hexyloxy 12-6 (each isomer), [oxytridecyl (each isomer), hexyloxy 14-yard ( Each isomer), heptyloxymethyl, heptyloxyethyl (each isomer), propylpropyl (each isomer), heptoxybutyl (isoisomer) heptoxypentane Base (each isomer), heptyloxyhexyl (each isomer), heptyloxyheptyl (each isomer), heptoxyoctyl (each isomer), heptyloxycarbonyl group ( Each isomer), heptyloxyindenyl (each isomer), heptyloxy eleven base (each isomer), heptyloxy-12 (iso isomer), heptyloxy Trialkyl (each isomer), octyloxymethyl, octyloxyethyl (each isomer), octyloxypropyl ( Each isomer), octyloxybutyl (each isomer), octyloxypentyl (each isomer), octyloxyhexyl (each isomer), octyloxyheptyl (isoisomer) , octyloxyoctyl (each isomer), +oxycarbonyl (each isomer), octyloxy thiol (each isomer), octyloxy eleven (isoamyl) , octyloxydodecyl (each isomer), decyloxymethyl (each isomer), decyloxyethyl (each isomer), methoxy propyl (isomeric) )131506.doc •23· 200948759 == isomer), decyloxypentyl (each isomer), decyloxy: each isomer), decyloxyheptyl (isomeric) , oxime octyl (each isomer), fluorenyl thiol d, private, technical storm (each isomer), decyloxy thiol (isomer),

壬減十一院基(各異構物)、癸氧基甲基(各異構物)、癸 軋基乙基(各異構物)' 錢基丙基(各異構物)、癸氧基丁 基(各異構物)、癸氧基戊基(各異構物)、癸氧基己基(各異 構二)、癸氧基庚基(各異構物)、癸氧基辛基(各異構物)、 ^氧基壬基(各異構物)、癸氧基癸基(各異構物)、十一烷 氧基甲基、十-烷氧基乙基(各異構物)、十一烷氧基丙基 (各異構物)、十一烷氧基丁基(各異構物)、十—烷氧基戊 基(各異構物)、十一烷氧基己基(各異構物)、十一烷氧基 庚基(各異構物)、十一烷氧基辛基(各異構物)、十一烷氧 基壬基(各異構物)、十二烷氧基甲基(各異構物)、十二烷 氧基乙基(各異構物)、十二烷氧基丙基(各異構物)、十二 烷氧基丁基(各異構物)、十二烷氧基戊基(各異構物)、十 二烷氧基己基(各異構物)、十二烷氧基庚基(各異構物)、 十二烷基癸氧基辛基(各異構物)、十三烷氧基甲基(各異構 物)、十三烷氧基乙基(各異構物)、十三烷氧基丙基(各異 構物)、十三烷氧基丁基(各異構物)、十三烷氧基戊基(各 異構物)、十二烧氧基己基(各異構物)、十三烧氧基庚基 (各異構物)、十四烷氧基甲基(各異構物)、十四烷氧基乙 基(各異構物)、十四烷氧基丙基(各異構物)、十四烷氧基 丁基(各異構物)、十四烷氧基戊基(各異構物)、十四烷氧 基己基(各異構物)、十五烷氧基甲基、十五烷氧基乙基(各 131506.doc -24· 200948759 (各異構物、氧基丙基(各異構物)、十五院氧基丁基 = =、/五燒氧基戊基(各異構物)、十六貌氧” =構物)、十六燒氧基乙基(各異構物)、十六燒氧基 =異構物)、十六貌氧基丁基(各異構物)、十七貌氧 2基、十七貌氧基乙基(各異構物)、十七燒氧基丙基(各 異構物)、十八院氧基甲基(各異構物)、十八烧氧基乙基 (各異構物)等燒氧基炫基’苯基、甲基_苯基(各異構物)、十一 十一 院 院 院 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Butyl (each isomer), decyloxypentyl (each isomer), decyloxyhexyl (isoisomer), decyloxyheptyl (each isomer), decyloxy (each isomer), ^oxyindenyl (each isomer), decyloxy group (each isomer), undecyloxymethyl, deca- alkoxyethyl (isomeric , undecyloxypropyl (each isomer), undecyloxybutyl (each isomer), deca- alkoxypentyl (each isomer), undecyloxy Hexyl (each isomer), undecyloxyheptyl (each isomer), undecyloxyoctyl (each isomer), undecyloxyindenyl (each isomer), Dodecyloxymethyl (each isomer), dodecyloxyethyl (each isomer), dodecyloxypropyl (each isomer), dodecyloxybutyl ( Each isomer), dodecyloxypentyl (each isomer), dodecyloxyhexyl (each isomer), dodecyloxy Heptyl (each isomer), dodecyloxyoctyl (each isomer), tridecyloxymethyl (each isomer), tridecyloxyethyl (isomeric , tridecyloxypropyl (each isomer), tridecyloxybutyl (each isomer), tridecyloxypentyl (each isomer), dodecyloxy Hexyl (each isomer), tridecanthoxyheptyl (each isomer), tetradecyloxymethyl (each isomer), tetradecyloxyethyl (each isomer), Tetradecanyloxypropyl (each isomer), tetradecyloxybutyl (each isomer), tetradecyloxypentyl (each isomer), tetradecyloxyhexyl (each Isomer), pentadecyloxymethyl, pentadecyloxyethyl (each 131506.doc -24· 200948759 (each isomer, oxypropyl (isomer), fifteen courtyard oxygen Phenyl butyl = =, / pentoxide pentyl (each isomer), hexadecane oxygen = structure, hexadecanoloxyethyl (isomer), hexadecane = Isomer), hexadecyloxybutyl (each isomer), 17-oxygen 2, and 17-oxide oxyethyl Structure), heptadecyloxypropyl (each isomer), octadecyloxymethyl (each isomer), octadecyloxyethyl (each isomer), etc. Base 'phenyl, methyl-phenyl (each isomer),

各異㈣苯基(各異構物)、丁基苯基 (各異構物)、戊基苯基(各異構物)、己基·苯基(各異構 物)、庚基-苯基(各異構物)、辛基·苯基(各異構物)、壬基· 苯基(各異構物)、癸基-苯基(各異構物)、十二烧基苯基 (各異構物)、苯基·苯基(各異構物)、苯氧基_苯基(各異構 物)、異丙苯基-苯基(各異構物)、二甲基_苯基(各異構 物)、二乙基•苯基(各異構物)、二丙基_苯基(各異構物)、 二丁基-笨基(各異構物)、二戍基-笨基(各異構物)、二己 基-苯基(各異構物)、二庚基-苯基(各異構物)、二苯基笨 基(各異構物)、二苯氧基-苯基(各異構物)、甲基_乙基_笨 基(各異性體)、曱基-丙基-苯基(各異構物)、曱基_丁基-笨 基(各異構物)、甲基_戊基-苯基(各異構物)、甲基_己基_笨 基(各異構物)、甲基-庚基-苯基(各異構物)、甲基_辛基笨 基(各異構物)、甲基-壬基-苯基(各異構物)、甲基_癸基-笨 基(各異構物)、曱基-十二烧基-苯基(各異構物)、甲基_笨 基·本基(各異構物)、曱基-苯氧基-苯基(各異構物)、甲基 異丙苯基-苯基(各異構物)、乙基-丙基-苯基(各異構物)、 13I506.doc •25- 200948759 乙基-丁基-苯基(各異構物)、乙基-戊基-苯基(各異構物)、 乙基-己基-苯基(各異構物)、乙基-庚基-苯基(各異構物)、 乙基-辛基-苯基(各異構物)、乙基-壬基-苯基(各異構物)、 乙基-癸基-本基(各異構物)、乙基-十二烧基-苯基(各異構 物)、乙基-苯基-苯基(各異構物)、乙基_苯氧基-苯基(各異 構物)、乙基-異丙苯基-苯基(各異構物)、丙基丁基苯基 (各異構物)、丙基-戊基-苯基(各異構物)、丙基-己基_苯基 (各異構物)、丙基-庚基-苯基(各異構物)、丙基_辛基苯基 ® (各異構物)、丙基-壬基-苯基(各異構物)、丙基—癸基_苯基 (各異構物)、丙基-苯基-苯基(各異構物)、丙基_苯氡基苯 基(各異構物)、丁基-戊基-苯基(各異構物)、丁基己基苯 基(各異構物)、丁基-庚基-苯基(各異構物)、丁基·辛基_苯 基(各異構物)、丁基-壬基-苯基(各異構物)、丁基癸基苯 基(各異構物)、丁基-苯基-苯基(各異構物)、丁基苯氧基_ 苯基(各異構物)、戊基-己基-苯基(各異構物)、戊基-庚基_ ❹=基(各異構物)、戊基-辛基-苯基(各異構物)、戊基-壬基. 苯基(各異構物)、戊基-苯基-苯基(各異構物)、戊基-苯氧 基-苯基(各異構物)、己基-庚基-苯基(各異構物)、己基辛 基-苯基(各異構物)、己基_苯基_苯基(各異構物)、己基苯 氧基-苯基(各異構物)、三曱基_苯基(各異構物)、三乙基_ 苯基(各異構物)、三丙基-苯基(各異構物)、三丁基-苯基 (各異構物)、二甲基-乙基.苯基(各異構物)、二甲基-丙基_ 苯基(各異構物)、二甲基.丁基_苯基(各異構物)、二甲基_ 戊基-苯基(各異構物)、二甲基-己基-苯基(各異構物)、二 131506.doc •26· 200948759 ❹ ❿ 甲基-庚基-苯基(各異構物)、二甲基_辛基-苯基(各異構 物)、一曱基-壬基_苯基(各異構物)、二甲基癸基苯基(各 異構物)、二甲基-十二烷基-笨基(各異構物)、二甲基-苯 基-苯基(各異構物)、二甲基-苯氧基-苯基(各異構物)、二 甲基-異丙苯基-苯基(各異構物)、:乙基甲基苯基(各異 構物)、一乙基-丙基-苯基(各異構物)、二乙基-丁基-苯基 (各異構物)、二乙基-戊基_苯基(各異構物)、二乙基己基_ 苯基(各異構物)、二乙基-庚基_苯基(各異構物)、二乙基_ 辛基-苯基(各異構物)、二乙基_壬基苯基(各異構物厂二 乙基-癸基-苯基(各異構物)、二乙基-苯基苯基(各異構 物)一乙基·笨氧基-苯基(各異構物)、二乙基_異丙苯基_ 苯基(各異構物)、二丙基-甲基-苯基(各異構物)、二丙基_ 乙基-苯基(各異構物)、二丙基·丁基苯基(各異構物广二 丙基-戊基-苯基(各異構物)、二丙基-己基·苯基(各異構 物)、一丙基-庚基-苯基(各異構物)、二丙基苯基苯基(各 異構物)、二丙基-苯氧基-苯基(各異構物)、二丁基曱基_ 苯基(各異構物)、二丁基-乙基-苯基(各異構物)、二丁基_ 丙基-苯基(各異構物)、二丁基_戊基苯基(各異構物)、二 丁基-己基-苯基(各異構物)、二丁基_苯基_苯基(各異構 物)、二丁基-苯氧基-苯基(各異構物)、二戊基_甲基-苯基 (各異構物)、二戊基-乙基-苯基(各異構物)、二戊基丙基_ 苯基(各異構物)、二戊基-丁基-苯基(各異構物)、二己基_ 甲基-苯基(各異構物)、二己基_乙基_苯基(各異構物卜甲 基-乙基-丙基-苯基(各異構物)、甲基_乙基丁基苯基(各 131506.doc 27- 200948759 ❹ ❹ 異構物)、甲基-乙基-戊基-苯基(各異構物)、曱基乙基己 基-苯基(各異構物)、曱基-乙基_庚基_笨基(各異構物)、曱 基-乙基-辛基-苯基(各異構物)、甲基_乙基_壬基苯基(各 異構物)、甲基-乙基-癸基-苯基(各異構物)、甲基_乙基-苯 氧基-苯基(各異構物)、甲基-乙基_異丙苯基-苯基(各異構 物)、甲基-丙基-丁基-苯基(各異構物)、甲基_丙基戍基_ 苯基(各異構物)、甲基·丙基-己基_苯基(各異構物)、甲基_ 丙基-庚基-苯基(各異構物)、甲基_丙基·辛基_苯基(各異構 物)、甲基-丙基·壬基-苯基(各異構物)、f基丙基癸基_ 苯基(各異構物)、甲基-丙基-苯氧基-苯基(各異構物)、甲 基-丙基-異丙苯基-苯基(各異構物)、甲基_丁基-戊基苯基 (各異構物)、甲基-丁基-己基-苯基(各異構物)、甲基-丁 基-庚基-苯基(各異構物)、甲基_丁基_辛基苯基(各異構 物)、甲基-丁基-苯氧基-苯基(各異構物)、甲基-丁基·異丙 苯基-苯基(各異構物)、甲基-戊基-己基_苯基(各異構物')、 甲基-戊基-庚基·苯基(各異構物)、甲基_戊基_辛基-苯基 (各異構物)甲基*戊基-本氧基-苯基(各異構物)、曱基_己 基-庚基-苯基(各異構物)、乙基-丙基_丁基_苯基(各異構 物)、乙基-丙基-戊基-苯基(各異構物)、乙基丙基己基_ 苯基(各異構物)、乙基-丙基-庚基·苯基(各異構物)、乙基_ 丙基-辛基-苯基(各異構物)、乙基-丙基_壬基_笨基(各異構 物)、乙基-丙基-苯氧基-苯基(各異構物)、乙基_丙基·異丙 苯基-苯基(各異構物)、乙基·丁基-戊基_苯基(各異構物)、 乙基-丁基·己基-苯基(各異構物)、乙基_丁基庚基苯基 I31506.doc -28 - 200948759 (各異構物)、乙基-丁基_辛基_苯基(各異構物)、乙基丁 基-苯氧基-苯基(各異構物)、乙基_戊基_己基·苯基(各異構 物)、乙基-戊基-庚基-苯基(各異構物)、乙基_戊基-苯氧 基-苯基(各異構物)、丙基_丁基_苯基(各異構物)、丙基·丁 基-戊基-苯基(各異構物)、丙基·丁基己基苯基(各異構 物)、丙基-丁基-庚基-苯基(各異構物)、丙基-丁基苯氧 基·苯基(各異構物)、丙基-戊基-己基-苯基(各異構物)、丙 _ 基-戊基-苯氧基-苯基(各異構物)等芳香族基。 遠等之中’較好的是構成該基之碳原子數係選自5〜ι2之 整數之數的烷基或構成該基之碳原子數係選自6〜12之整數 之數的芳基,更好地使用戊基(各異構物)、己基(各異構 物)、庚基(各異構物)、辛基(各異構物)之構成該基之碳原 子數係選自5〜7之整數之數的烷基,苯基、甲基苯基(各異 構物)等構成該基之碳原子數係選自5〜7之整數之數的芳 基 *厌原子數為4以下之烧基或芳基之情形時,有時胺基 ^ 曱酸S曰之’弗點不足夠兩’於下述胺基甲酸醋之熱分解反應 條件中,該胺基甲酸酯會以氣相餾出,而難以與該異氛酸 酿等分離。又’碳原子之數為8以上之烷基或芳基之情形 時’有時該熱分解反應中所生成之羥基化合物之沸點與異 氰酸酯之沸點之差變小,而阻礙分離。 作為如此之聚胺基甲酸烧基酯,例如可列舉:n,n,_己 二基•雙-胺基曱酸二戊酯(各異構物)、N,N,-己二基_雙_胺 基甲酸二己酯(各異構物)、Ν,Ν,-己二基•雙_胺基曱酸二庚 醋(各異構物)、二戊基-4,4'-亞曱基-二環己基胺基甲酸酿 131506.doc •29- 200948759 (各異構物)、二己基-4,4’-亞甲基-二環己基胺基甲酸酯(各 異構物)、二庚基_4,4'-亞甲基-二環己基胺基曱酸酯(各異 構物)、3-(戊氧基羰基胺基-曱基)_3,5,5_三曱基環己基胺基 甲酸戊酯(各異構物)、3-(己氧基羰基胺基-甲基)-3,5,5-三 甲基環己基胺基甲酸己酯(各異構物)、3-(庚氧基羰基胺 基-甲基)-3,5,5-三甲基環己基胺基甲酸庚酯(各異構物)、 曱苯-二胺基甲酸二戊酯(各異構物)、甲苯_二胺基甲酸二 己酯(各異構物)、甲苯-二胺基曱酸二庚酯(各異構物)、 ^ Ν,Ν'·(4,4'-亞曱基二苯基)-雙胺基曱酸二戊酯、N,N,-(4,4,- 亞甲基-二苯基)-雙胺基甲酸二己酯、N,N,-(4,4,-亞甲基-二 苯基)-雙胺基甲酸二庚酯等胺基曱酸烧基酯,N,N,-己二 基-雙-胺基曱酸二苯酯、N,N,-己二基-雙_胺基甲酸二(甲基 苯基)酯(各異構物)、二苯基-4,4·-亞甲基-二環己基胺基甲 酸酿、二(甲基苯基)-4,4··亞甲基-二環己基胺基甲酸酯(各 異構物)、3-(苯氧基幾基胺基-甲基)_3,5,5-三甲基環己基胺 _ 基甲酸苯酯(各異構物)、3-((甲基苯氧基)羰基胺基_曱基)_ 3,5,5-三甲基環己基胺基甲酸(甲基苯基)酯(各異構物)、甲 本-一胺基甲酸二苯δ旨(各異構物)、曱苯-二胺基甲酸二(甲 基苯基)酯(各異構物)、Ν,Ν'-(4,4’-亞甲基_二苯基)_雙胺基 甲酸二苯酯、Ν,Ν’-(4,4’-亞甲基·二苯基)_雙胺基甲酸二(甲 基苯基)酯等胺基甲酸芳酯等。 該等胺基曱酸醋可使用眾所周知之方法製造,例如可使 胺化合物與一氧化碳、氧、及脂肪族醇或芳香族羥基化合 物進行反應而製造胺基曱酸醋’又,亦可實施使胺化合 131506.doc • 30- 200948759 物、腺與脂肪族醇或芳香族經基化合物進行反應而製造胺 基甲酸醋之方法,亦可實施使碳酸醋與胺化合物進行反應 而製造胺基甲酸酿之方法,較好的是使碳酸醋與胺化合物 進行反應之製造方法。 作為碳酸酯可使用以下述式(8)所表示之碳酸酯。 [化6] 〇 R5、人R5⑻ φ (式中’ R5表示直鏈狀或支鏈狀之碳數為㈣之脂肪族基 或碳數為6〜20之芳香族基)。 作為R5之例,可例示:甲基、乙基、丙基(各異構物)、 丁基(各異構物)、$基(各異構物)、〔基(各異構物广庚基 (各異構物)、辛基(各異構物)、壬基(各異構物)、癸基(各 異構物)、十一烷基(各異構物)、十二烷基(各異構物)、十 三烷基(各異構物)、十四烷基(各異構物)、十五烷基(各異 構物)、十六烷基(各異構物)、十七烷基(各異構物)、十八 烷基(各異構物)、十九烷基(各異構物)、二十烷基(各異構 物)等烷基;環戊基、環己基、環庚基、環辛基、環壬 基、環癸基等環院基;甲氧基甲基、甲氧基乙基(各異構 物)、曱氧基丙基(各異構物)、甲氧基丁基(各異構物)、' 甲 氧基戊基(各異構物)、甲氧基己基(各異構物)、甲氧基庚 基(各異構物)、甲氧基辛基(各異構物)、甲氧基壬基(各異 構物)、甲氧基癸基(各異構物)、甲氧基十—烷基(各異構 物)、甲氧基十二烷基(各異構物)、曱氧基十三烷基(各異 131506.doc -31 · 200948759 構物)、甲氧基十四烷基(各異構物)、曱氧基十五烷基(各 異構物)、甲氧基十六烷基(各異構物)、甲氧基十七烷基 (各異構物)、甲氧基十八烷基(各異構物)、甲氧基十九烷 基(各異構物)、乙氧基甲基、乙氧基乙基(各異構物)、乙 氧基丙基(各異構物)、乙氧基丁基(各異構物)、乙氧基戊 基(各異構物)、乙氧基己基(各異構物)、乙氧基庚基(各異 構物)、乙氧基辛基(各異構物)、乙氧基壬基(各異構物)、 乙氡基癸基(各異構物)、乙氧基十一烷基(各異構物)、乙 氧基十二烷基(各異構物)、乙氧基十三烷基(各異構物)、 乙氧基十四烷基(各異構物)、乙氧基十五烷基(各異構 物)、乙氧基十六烷基(各異構物)、乙氧基十七烷基(各異 構物)乙氧基十八烷基(各異構物)、丙氧基甲基(各異構 物)、丙氧基乙基(各異構物)、丙氧基丙基(各異構物)、'丙 氧基丁基(各異構物)、丙氧基戊基(各異構物)、丙氧基己 基(各異構物)、丙氧基庚基(各異構物)、丙氧基辛基(各異 〇構物)、丙氧基壬基(各異構物)、丙氧基癸基(各異構物)、 丙氧基十一烷基(各異構物)、丙氧基十二烷基(各異構 物)、丙氧基十三⑥基(各異構物)、丙氧基十四院基(各里 構物)、丙氧基十五统基(各異構物)、丙氧基十六烧基(各 異構物)、丙氧基十七烷基(各異構物)、丁氧基甲基(各異 構物)、丁I基乙基(各異構物)、丁氧基丙基(各異構物广 丁氧基丁基(各異構物)、丁氧基戊基(各異構物)、丁氧基 己基(各異構物)、丁氧基庚基(各異構物)、丁氧基辛基(: 異構物)、丁氧基壬基(各異構物)、丁氧基癸基(各異構 I31506.doc •32- 200948759 物)、丁氧基十一炫基(各異構物)、丁氧基十二院基(各異 氧基十三统基(各異構物)、丁氧基十四貌基(各 r各異禮物、丁氧基十五貌基(各異構物)、丁氧基十六炫基 異1=、戊氧基甲基(各異構物)、戊氧基乙基(各異構 二、戍氧基丙基(各異構物)、戊氧基丁基(各異構物)、戍 土戊基(各異構物)、戊氧基己基(各異構物”戍氧基庚 基(各異構物)、戍氧基辛基(各異構物)、戊氧基壬基(各異 ❹:物基癸基(各異構物)、戊氧基十—院基(各異構 基十一炫基(各異構物)、4氧基十三烧基(各異 構物)、戊氧基十四燒基(各異構物)、戊氧基十五烧基(各 異構物)、己氧基甲基(各異構物)、已氧基乙基(各異構 物)、己氧基丙基(各異構物)、己氧基丁基(各異構物)、己 氧基戊基(各異構物)、己氧基己基(各異構物)、己氧基庚 基(各異構物)、己氧基辛基(各異構物)、己氧基壬基(各異 構物)、己氧基癸基(各異構物)、己氧基十一院基(各異構 ❹物)、己氧基十二貌基(各異構物)、己氧基十三烧基(各異 構物)、己氧基十四烧基(各異構物)、庚氧基曱基(各異構 2)、庚氧基乙基(各異構物)、庚氧基丙基(各異構物)、庚 氧基丁基(各異構物)、庚氧基戊基(各異構物)、庚氧基己 (各異構物)、庚氧基庚基(各異構物)、庚氧基辛基(各異 構物)、庚氧基壬基(各異構物)、庚氧基癸基(各異構物卜 庚氧基十一烷基(各異構物)、庚氧基十二烷基(各異構 )庚氧基十二烷基(各異構物)、辛氧基甲基(各異構 物)辛氧基乙基(各異構物)、辛氧基丙基(各異構物卜辛 131506.doc -33- 200948759 氧基丁基(各異構物)、辛氧基戊基(各異構物)、辛氧基已 基(各異構物)、辛氧基庚基(各異構物)、辛氧基辛基(各異 構物)、辛氧基壬基(各異構物)、辛氧基癸基(各異構物)、 辛氧基十一烷基(各異構物)、辛氧基十二烷基(各異構 物)、壬氧基甲基(各異構物)、壬氧基乙基(各異構物)、壬 氧基丙基(各異構物)、壬氧基丁基(各異構物)、壬氧基戊 基(各異構物)、壬氧基己基(各異構物)、壬氧基庚基(各異 構物)、壬氧基辛基(各異構物)、壬氧基壬基(各異構物卜 :氧基癸基(各異構物)、壬氧基十一烷基(各異構物)、癸 氧基甲基(各異構物)、癸氧基乙基(各異構物)、癸氧基丙 基(各異構物)、癸氧基丁基(各異構物)、癸氧基戊基(各異 構物)、癸氧基己基(各異構物)、癸氧基庚基(各異構物)、 癸氧基辛基(各異構物)、癸氧基壬基(各異構物)、癸氧基 癸基(各異構物)、十一烷氧基甲基、十一烷氧基乙基(各異 構物)十一烷氧基丙基(各異構物)、十一烷氧基丁基(各 異構物)、十一烷氧基戊基(各異構物)、十一烷氧基己基 (各異構物)、十一烷氧基庚基(各異構物)、十一烷氧基辛 基(各異構物)、十一烷氧基壬基(各異構物)、十二烷氧基 甲基十一烷氧基乙基(各異構物)、十二烷氧基丙基(各異 構物)、十二烷氧基丁基(各異構物)、十二烷氧基戊基(各 異構物)、十二烷氧基己基(各異構物)、十二烷氧基庚基 (各異構物)' 十二烷基癸氧基辛基(各異構物)、十三烷氧 基曱基(各異構物)、十三烷氧基乙基(各異構物)、十三氧 基丙基(各異構物)、十三烷氧基丁基(各異構物)、十三烷 131506.doc •34- 200948759 氧基戊基(各異構物)、十三烷氧基己基(各異構物)、十三 烷氧基庚基(各異構物)、十四烷氧基甲基(各異構物)、十 四烷氧基乙基(各異構物)、十四烷氧基丙基(各異構物广 十四烷氧基丁基(各異構物)、十四烷氧基戊基(各異構 物)十四烷氧基己基(各異構物)、十五烷氧基甲基(各里 構物)、十五坑氧基乙基(各異構物)、十五坑氣基丙=各 異構物)、十五烷氧基丁基(各異構物)、十五烷氧基戊基 ❹(各異構物)、十六烷氧基甲基、十六烷氧基乙基(各異構 物)、十六烷氧基丙基(各異構物)、十六烷氧基丁基(各異 構物)、十七烷氧基甲基(各異構物)、十七烷氧基乙基(各 異構物)十七烷氧基丙基(各異構物)、十八烷氧基甲基 (各異構物卜十^氧基乙基(各異構物)等炫氧基貌基, 苯基、甲基-苯基(各異構物)、乙基_苯基(各異構物)、丙 基-苯基(各異構物)、丁基·苯基(各異構物)、戊基-苯基(各 異構物)、己基-苯基(各異構物)、庚基_苯基(各異構物卜 e辛基-苯基(各異構物)、壬基-苯基(各異構物)、癸基-苯基 (各異構物)、十二烷基-苯基(各異構物)、苯基苯基(各異 構物)、苯氧基-苯基(各異構物)、異@苯基·苯基(各異構 物)、一甲基-苯基(各異構物)、二乙基_苯基(各異構物)、 二丙基·苯基(各異構物)、:丁基·苯基(各異構物)、二戊 基·苯基(各異構物)、二己基-苯基(各異構物)、二庚基苯 基(各異構物)、二苯基·苯基(各異構物)、二笨氧基苯基 (各異構物)、甲基-乙基-苯基(各異構物)、甲基-丙基-苯基 (各異構物)、甲基-丁基-苯基(各異構物)、甲基_戊基·苯基 131506.doc -35- 200948759 (各異構物)、甲基_己基-笨基(各異構物)、甲基庚基笨基 (各異構物)、曱基-辛基_苯基(各異構物)、甲基壬基笨基 (各異構物)、甲基-癸基-苯基(各異構物)、甲基十二烷基_ 苯基(各異構物)、甲基-苯基-苯基(各異構物)、甲基-笨氧 基-苯基(各異構物)、甲基-異丙苯基-苯基(各異構物)、乙 基-丙基·苯基(各異構物)、乙基-丁基苯基(各異構物)、乙 基-戊基-苯基(各異構物)、乙基_己基苯基(各異構物)、乙 基'庚基-苯基(各異構物)、乙基-辛基-苯基(各異構物)、乙 基-壬基-苯基(各異構物)、乙基_癸基_苯基(各異構物)、乙 基·十二烷基-苯基(各異構物)、乙基_苯基苯基(各異構 物)、乙基-苯氧基-苯基(各異構物)、乙基異丙苯基苯基 (各異構物)、丙基-丁基-苯基(各異構物)、丙基戊基苯基 (各異構物)、丙基-己基-苯基(各異構物)、丙基_庚基苯基 (各異構物)、丙基-辛基-苯基(各異構物)、丙基_壬基笨基 (各異構物)、丙基-癸基-苯基(各異構物)、丙基苯基苯基 Φ (各異構物)、丙基-苯氧基-苯基(各異構物)、丁基_戍基_苯 基(各異構物)、丁基-己基-苯基(各異構物)、丁基庚基苯 基(各異構物)、丁基-辛基-笨基(各異構物)、丁基_壬基·笨 基(各異構物)、丁基·•癸基-苯基(各異構物)、丁基苯基苯 基(各異構物)、丁基-苯氧基-苯基(各異構物)、戊基己基_ 苯基(各異構物)、戊基-庚基-苯基(各異構物)、戊基辛基_ 苯基(各異構物)、戊基-壬基-苯基(各異構物)、戊基苯基一 苯基(各異構物)、戊基-苯氧基-苯基(各異構物)、己基_庚 基-苯基(各異構物)、己基-辛基-苯基(各異構物)、己基_苯 131506.doc -36- 200948759Each (tetra)phenyl (each isomer), butylphenyl (each isomer), pentylphenyl (each isomer), hexyl phenyl (each isomer), heptyl-phenyl (each isomer), octyl phenyl (each isomer), decyl phenyl (each isomer), decyl-phenyl (each isomer), dodecyl phenyl ( Each isomer), phenyl·phenyl (each isomer), phenoxy-phenyl (each isomer), cumyl-phenyl (each isomer), dimethyl-benzene Base (each isomer), diethyl phenyl (each isomer), dipropyl phenyl (each isomer), dibutyl-styl (isomer), dimercapto - stupid (each isomer), dihexyl-phenyl (each isomer), diheptyl-phenyl (each isomer), diphenyl stupyl (each isomer), diphenyl oxygen Base-phenyl (each isomer), methyl-ethyl-phenyl (negative), mercapto-propyl-phenyl (each isomer), mercapto-butyl-styl (each Isomers), methyl-pentyl-phenyl (each isomer), methyl-hexyl-styl (each isomer), methyl-heptyl-phenyl ( Isomers), methyl-octyl stupyl (each isomer), methyl-mercapto-phenyl (each isomer), methyl-mercapto-styl (isomer), hydrazine Base-dodecanyl-phenyl (each isomer), methyl-phenyl group, base (each isomer), mercapto-phenoxy-phenyl (each isomer), methyl Propyl phenyl-phenyl (each isomer), ethyl-propyl-phenyl (each isomer), 13I506.doc •25- 200948759 ethyl-butyl-phenyl (isomers), Ethyl-pentyl-phenyl (each isomer), ethyl-hexyl-phenyl (each isomer), ethyl-heptyl-phenyl (each isomer), ethyl-octyl- Phenyl (each isomer), ethyl-mercapto-phenyl (each isomer), ethyl-fluorenyl-benton (each isomer), ethyl-dodecanyl-phenyl ( Each isomer), ethyl-phenyl-phenyl (each isomer), ethyl-phenoxy-phenyl (each isomer), ethyl-isopropylphenyl-phenyl (variety) Structure), propyl butyl phenyl (each isomer), propyl-pentyl-phenyl (each isomer), propyl-hexyl-phenyl (each isomer), propyl-g Base-benzene (each isomer), propyl-octylphenyl® (each isomer), propyl-mercapto-phenyl (each isomer), propyl-fluorenyl-phenyl (each isomer) ), propyl-phenyl-phenyl (each isomer), propyl-phenylphenylphenyl (each isomer), butyl-pentyl-phenyl (each isomer), butylhexyl Phenyl (each isomer), butyl-heptyl-phenyl (each isomer), butyl-octyl-phenyl (each isomer), butyl-mercapto-phenyl (variety) Structure), butyl nonylphenyl (each isomer), butyl-phenyl-phenyl (each isomer), butylphenoxy-phenyl (each isomer), pentyl- Hexyl-phenyl (each isomer), pentyl-heptyl ❹ ❹ = group (each isomer), pentyl-octyl-phenyl (each isomer), pentyl-fluorenyl. phenyl (each isomer), pentyl-phenyl-phenyl (each isomer), pentyl-phenoxy-phenyl (each isomer), hexyl-heptyl-phenyl (each isomer) ), hexyloctyl-phenyl (each isomer), hexyl-phenyl-phenyl (each isomer), hexylphenoxy-phenyl (each isomer), tridecyl-phenyl ( each Isomers), triethyl-phenyl (each isomer), tripropyl-phenyl (each isomer), tributyl-phenyl (each isomer), dimethyl-ethyl .Phenyl (each isomer), dimethyl-propyl-phenyl (each isomer), dimethyl.butyl-phenyl (each isomer), dimethyl-pentyl-benzene Base (each isomer), dimethyl-hexyl-phenyl (each isomer), two 131506.doc •26·200948759 ❹ 甲基 methyl-heptyl-phenyl (each isomer), dimethyl -O-octyl-phenyl (each isomer), monodecyl-fluorenyl-phenyl (each isomer), dimethyl nonylphenyl (each isomer), dimethyl-dome Alkyl-styl (each isomer), dimethyl-phenyl-phenyl (each isomer), dimethyl-phenoxy-phenyl (each isomer), dimethyl-iso Propyl-phenyl (each isomer), ethylmethylphenyl (each isomer), monoethyl-propyl-phenyl (each isomer), diethyl-butyl- Phenyl (each isomer), diethyl-pentyl-phenyl (each isomer), diethylhexyl-phenyl (each isomer), diethyl-heptyl-phenyl (each Isomers), diethyl-octyl-phenyl (each isomer), diethyl-nonylphenyl (each isomer of diethyl-mercapto-phenyl (each isomer) , diethyl-phenylphenyl (each isomer)-ethyl-p-oxy-phenyl (each isomer), diethyl-cumylphenyl-phenyl (each isomer), Dipropyl-methyl-phenyl (each isomer), dipropyl-ethyl-phenyl (each isomer), dipropyl-butylphenyl (each isomer) Pentyl-phenyl (each isomer), dipropyl-hexyl phenyl (each isomer), monopropyl-heptyl-phenyl (each isomer), dipropyl phenyl phenyl (each isomer), dipropyl-phenoxy-phenyl (each isomer), dibutylsulfonyl-phenyl (each isomer), dibutyl-ethyl-phenyl (each Isomers), dibutyl-propyl-phenyl (each isomer), dibutyl-pentylphenyl (each isomer), dibutyl-hexyl-phenyl (each isomer) , dibutyl-phenyl-phenyl (each isomer), dibutyl-phenoxy-phenyl (each isomer), dipentyl-methyl-phenyl (each isomer), two -ethyl-phenyl (each isomer), dipentylpropyl-phenyl (each isomer), dipentyl-butyl-phenyl (each isomer), dihexyl_methyl -phenyl (each isomer), dihexyl-ethyl-phenyl (each isomer, methyl-ethyl-propyl-phenyl (each isomer), methyl-ethylbutylphenyl ( Each 131506.doc 27- 200948759 ❹ 异构 isomer), methyl-ethyl-pentyl-phenyl (each isomer), mercaptoethylhexyl-phenyl (isomer), thiol- Ethyl-heptyl-styl (each isomer), mercapto-ethyl-octyl-phenyl (each isomer), methyl-ethyl-nonylphenyl (each isomer), Methyl-ethyl-fluorenyl-phenyl (each isomer), methyl-ethyl-phenoxy-phenyl (each isomer), methyl-ethyl-cumylphenyl-phenyl (each isomer), methyl-propyl-butyl-phenyl (each isomer), methyl-propyl fluorenyl _ phenyl (each isomer), methyl propyl-hexyl _ Phenyl (each isomer), methyl-propyl-heptyl-phenyl (each isomer), methyl-propyl-octyl-phenyl (each isomer), methyl-propyl ·Ren Base-phenyl (each isomer), f-propyl propyl sulfhydryl _ phenyl (each isomer), methyl-propyl-phenoxy-phenyl (each isomer), methyl-propyl -Phenylphenyl-phenyl (each isomer), methyl-butyl-pentylphenyl (each isomer), methyl-butyl-hexyl-phenyl (each isomer), Methyl-butyl-heptyl-phenyl (each isomer), methyl-butyl-octylphenyl (each isomer), methyl-butyl-phenoxy-phenyl (variety) Structure), methyl-butyl-cumenyl-phenyl (each isomer), methyl-pentyl-hexyl-phenyl (each isomer '), methyl-pentyl-heptyl Phenyl (each isomer), methyl-pentyl-octyl-phenyl (each isomer) methyl*pentyl-benyloxy-phenyl (each isomer), mercapto-hexyl -heptyl-phenyl (each isomer), ethyl-propyl-butyl-phenyl (each isomer), ethyl-propyl-pentyl-phenyl (each isomer), B Propylhexyl-phenyl (each isomer), ethyl-propyl-heptyl-phenyl (each isomer), ethyl-propyl-octyl-phenyl (each isomer), Ethyl-propyl-fluorenyl-stupyl , ethyl-propyl-phenoxy-phenyl (each isomer), ethyl-propyl cumene-phenyl (each isomer), ethyl butyl-pentyl _Phenyl (each isomer), ethyl-butylhexyl-phenyl (each isomer), ethyl-butylheptylphenyl I31506.doc -28 - 200948759 (each isomer), ethyl -butyl-octyl-phenyl (each isomer), ethylbutyl-phenoxy-phenyl (each isomer), ethyl-pentyl-hexyl-phenyl (each isomer) , ethyl-pentyl-heptyl-phenyl (each isomer), ethyl-pentyl-phenoxy-phenyl (each isomer), propyl-butyl-phenyl (isoisomer) , propyl butyl-pentyl-phenyl (each isomer), propyl butyl hexyl phenyl (each isomer), propyl-butyl-heptyl-phenyl (variety) Structure), propyl-butylphenoxy-phenyl (each isomer), propyl-pentyl-hexyl-phenyl (each isomer), propyl-pentyl-phenoxy- An aromatic group such as a phenyl group (each isomer). It is preferable that the alkyl group constituting the group is an alkyl group selected from the number of integers of 5 to ι 2 or an aryl group constituting the number of carbon atoms of the group selected from an integer of 6 to 12 More preferably, the pentyl group (each isomer), the hexyl group (each isomer), the heptyl group (each isomer), the octyl group (each isomer), the number of carbon atoms of the group is selected from An alkyl group having an integer number of 5 to 7, a phenyl group, a methylphenyl group (each isomer), or the like, and the number of carbon atoms of the group is selected from an integer of 5 to 7 and the number of anatom atoms is In the case of a base or an aryl group of 4 or less, sometimes the 'anthracene point of the amine group 曰 曰 不 is not enough to be in the thermal decomposition reaction conditions of the following amino carboxylic acid vinegar, the urethane will It is distilled off in the gas phase, and it is difficult to separate it from the odorous acid or the like. Further, when the number of carbon atoms is 8 or more, the difference between the boiling point of the hydroxy compound formed in the thermal decomposition reaction and the boiling point of the isocyanate is small, and separation is inhibited. As such a polyalkyl carbamic acid ester, for example, n, n, hexyldiyl bis-amino phthalic acid dipentyl ester (each isomer), N, N, - hexanediyl _ double _Dihexyl carbazate (each isomer), hydrazine, hydrazine, hexyldiyl bis-amino phthalic acid dihept vinegar (each isomer), dipentyl-4,4'-adenine Base-dicyclohexylaminocarboxylic acid brewing 131506.doc •29- 200948759 (each isomer), dihexyl-4,4′-methylene-dicyclohexylcarbamate (each isomer), Diheptyl_4,4'-methylene-dicyclohexylamino decanoate (each isomer), 3-(pentyloxycarbonylamino-indenyl)_3,5,5-trimethyl Ethyl cyclohexylaminocarbamate (each isomer), 3-(hexyloxycarbonylamino-methyl)-3,5,5-trimethylcyclohexylcarbamate hexyl ester (isomers) , 3-(heptyloxycarbonylamino-methyl)-3,5,5-trimethylcyclohexylcarbamic acid heptyl ester (each isomer), toluene-dicarbamic acid dipentyl ester (each Isomers), toluene-dihexyl dicarboxylate (each isomer), diheptyl toluene-diamine phthalate (each isomer), ^ Ν, Ν'·(4,4'- Yttrium diphenyl )-diamyldiamine decanoate, N,N,-(4,4,-methylene-diphenyl)-dicarbamic acid dihexyl ester, N,N,-(4,4,- Amino decanoic acid ester such as methylene-diphenyl)-diaminocarbamate, N,N,-hexanediyl-bis-amino phthalic acid diphenyl ester, N, N, - Dikis-bis-aminocarbamic acid di(methylphenyl) ester (each isomer), diphenyl-4,4·-methylene-dicyclohexylaminocarboxylic acid, bis(methylphenyl) -4,4··methylene-dicyclohexylcarbamate (each isomer), 3-(phenoxyaminoamino-methyl)_3,5,5-trimethylcyclo Hexylamine phenyl carbazate (each isomer), 3-((methylphenoxy)carbonylamino-indenyl)-3,5,5-trimethylcyclohexylaminocarboxylic acid (methylbenzene) Ester (each isomer), methyl-monocarbamic acid diphenyl δ (each isomer), toluene-diaminocarbamic acid di(methylphenyl) ester (each isomer), Ν,Ν'-(4,4'-methylene_diphenyl)-diphenyl diuret, hydrazine, Ν'-(4,4'-methylenediphenyl)-diamine An aryl carbamate such as bis(methylphenyl) carboxylate or the like. The amino phthalic acid vinegar can be produced by a well-known method, for example, by reacting an amine compound with carbon monoxide, oxygen, and an aliphatic alcohol or an aromatic hydroxy compound to produce an amine bismuth vinegar. Compound 131506.doc • 30- 200948759 A method for producing a urethane by reacting a substance, a gland with an aliphatic alcohol or an aromatic radical compound, or a method of reacting a carbonated acid with an amine compound to produce an aminocarboxylic acid. The method is preferably a production method in which a carbonated acetal is reacted with an amine compound. As the carbonate, a carbonate represented by the following formula (8) can be used. 〇 R5, human R5(8) φ (wherein R5 represents a linear or branched aliphatic group having (4) an aliphatic group or an aromatic group having a carbon number of 6 to 20). Examples of R5 include a methyl group, an ethyl group, a propyl group (each isomer), a butyl group (each isomer), a group (each isomer), and a group (each isomer) Base (each isomer), octyl (each isomer), thiol (each isomer), thiol (each isomer), undecyl (each isomer), dodecyl (each isomer), tridecyl (each isomer), tetradecyl (each isomer), pentadecyl (each isomer), hexadecyl (each isomer) , heptadecyl (each isomer), octadecyl (each isomer), nonadecyl (each isomer), eicosyl (each isomer) and the like alkyl; cyclopentane Ring, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl, cyclodecyl, etc.; methoxymethyl, methoxyethyl (each isomer), methoxypropyl (each Isomers), methoxybutyl (each isomer), 'methoxypentyl (each isomer), methoxyhexyl (each isomer), methoxyheptyl (isoisomer) , methoxyoctyl (each isomer), methoxy thiol (each isomer), Oxythiol (each isomer), methoxy deca-alkyl (each isomer), methoxydodecyl (each isomer), decyloxytridecyl (different 131506) .doc -31 · 200948759 Structure), methoxytetradecyl (each isomer), decylpentadecyl (each isomer), methoxy cetyl (each isomer) , methoxyheptadecyl (each isomer), methoxy octadecyl (each isomer), methoxy pentadecyl (each isomer), ethoxymethyl, Ethoxyethyl (each isomer), ethoxypropyl (each isomer), ethoxybutyl (each isomer), ethoxypentyl (each isomer), ethoxy Hexyl group (each isomer), ethoxyheptyl group (each isomer), ethoxyoctyl group (each isomer), ethoxylated thiol (each isomer), ethyl hydrazino group (each isomer), ethoxy undecyl (each isomer), ethoxy dodecyl (each isomer), ethoxylated trialkyl (isomer), B Oxytetradecyl (each isomer), ethoxypentadecyl (each isomer) Ethyl hexadecyl (each isomer), ethoxyheptadecyl (each isomer) ethoxy octadecyl (each isomer), propoxymethyl (variety) Structure), propoxyethyl (each isomer), propoxypropyl (each isomer), 'propoxybutyl (each isomer), propoxypentyl (isoisomer) , propoxyhexyl (each isomer), propoxyheptyl (each isomer), propoxyoctyl (isoindole), propoxy thiol (each isomer) , propoxy fluorenyl (each isomer), propoxy undecyl (each isomer), propoxydodecyl (each isomer), propoxy 13-6 (each Isomers), propoxyl-14 (each constitutive), propoxy pentylene (each isomer), propoxy hexadecane (each isomer), propoxy Heptadecyl (each isomer), butoxymethyl (each isomer), butyl I-ethyl (each isomer), butoxypropyl (iso-isobutyloxybutyrate) Base (each isomer), butoxypentyl (each isomer), butoxyhexyl (each isomer) , butoxyheptyl (each isomer), butoxyoctyl (: isomer), butoxy thiol (each isomer), butoxy thiol (isomeric I31506.doc • 32- 200948759), butoxy11-decyl (each isomer), butoxy 12-base (each iso-oxyl tridecyl (isomer), butoxy-tetradecyl (each r, different gifts, butoxy pentadyl groups (each isomer), butoxy hexyl hexyl iso- 1 =, pentoxymethyl (each isomer), pentoxy ethyl ( Each isomeric bis, methoxy propyl (each isomer), pentoxy butyl (each isomer), valeric amyl (each isomer), pentoxy hexyl (each isomer)戍oxyheptyl (each isomer), oxime octyl (each isomer), pentyloxy fluorenyl (isoindole: thiol (isoisomer), pentyloxy-- Affiliation (each isomeric eleven (each isomer), 4-oxytridecyl (each isomer), pentyloxytetradecyl (each isomer), pentyloxy Pentavalent (each isomer), hexyloxymethyl (each isomer), oxyethyl (each isomer), hexyloxypropyl (isomeric) ), hexyloxybutyl (each isomer), hexyloxypentyl (each isomer), hexyloxyhexyl (each isomer), hexyloxyheptyl (each isomer), Oxyoctyl (each isomer), hexyloxy fluorenyl (each isomer), hexyloxy fluorenyl (each isomer), hexyloxy 11-yard (each isomer), Hexyloxydodecyl (each isomer), hexyloxytridecyl (each isomer), hexyloxytetradecyl (each isomer), heptoxycarbonyl (variety) 2), heptyloxyethyl (each isomer), heptoxypropyl (each isomer), heptyloxybutyl (each isomer), heptyloxypentyl (each isomer) ), heptyloxyhexyl (each isomer), heptyloxyheptyl (each isomer), heptyloxyoctyl (each isomer), heptyloxycarbonyl (each isomer), g Oxycarbonyl group (each isomer: p-heptyloxy undecyl (each isomer), heptyldodecyl (isoisomer) heptyloxydodecyl (each isomer), Octyloxymethyl (each isomer) octyloxyethyl (each isomer), octyloxypropyl group (each isomer Buxin 1 31506.doc -33- 200948759 oxybutyl (each isomer), octyloxypentyl (each isomer), octyloxy group (each isomer), octyloxyheptyl (variety) Structure), octoxyoctyl (each isomer), octyloxy thiol (each isomer), octyloxy fluorenyl (each isomer), octyloxy undecyl (variety) Structure), octyloxydodecyl (each isomer), decyloxymethyl (each isomer), decyloxyethyl (each isomer), methoxypropyl (variety) Structure), oxiranyl butyl (each isomer), decyloxypentyl (each isomer), decyloxyhexyl (each isomer), decyloxyheptyl (each isomer) , oxime octyl (each isomer), decyloxy fluorenyl (each isomer: oxy fluorenyl (each isomer), decyl undecyl (each isomer),癸oxymethyl (each isomer), oxiranyl ethyl (each isomer), methoxy propyl (each isomer), decyloxy butyl (each isomer), oxime Pentyl (each isomer), nonyloxyhexyl (each isomer), nonyloxyheptyl (each isomer), helium Octyl (each isomer), decyloxy group (each isomer), decyloxy group (each isomer), undecyloxymethyl, undecyloxyethyl (each Isomers) undecyloxypropyl (each isomer), undecyloxybutyl (each isomer), undecyloxypentyl (each isomer), undecyloxy Hexyl group (each isomer), undecyloxyheptyl (each isomer), undecyloxyoctyl (each isomer), undecyloxyindenyl (each isomer) , dodecyloxymethylundecyloxyethyl (each isomer), dodecyloxypropyl (each isomer), dodecyloxybutyl (each isomer), Dodecyloxypentyl (each isomer), dodecyloxyhexyl (each isomer), dodecyloxyheptyl (each isomer) 'dodecyloxyloctyl (each isomer), tridecyloxyindenyl (each isomer), tridecyloxyethyl (each isomer), tridecyloxypropyl (each isomer), thirteen Alkoxybutyl (each isomer), tridecane 131506.doc •34- 200948759 oxypentyl (each isomer), tridecyloxyhexyl (each isomer), tridecyloxyheptyl (each isomer), tetradecyloxymethyl (each isomer), fourteen Alkoxyethyl (each isomer), tetradecyloxypropyl (each isomer, tetradecyloxybutyl (each isomer), tetradecyloxypentyl (isoisomer) Tetradecyloxyhexyl (each isomer), pentadecyloxymethyl (each constitutive), fifteen oxyethyl (each isomer), fifteen pit gas base C = Each isomer), pentadecyloxybutyl (each isomer), pentadecyloxypentylhydrazine (each isomer), hexadecyloxymethyl, hexadecanyloxyethyl (each isomer), hexadecanyloxypropyl (each isomer), hexadecanyloxybutyl (each isomer), heptadecyloxymethyl (each isomer), ten Heptadecyloxyethyl (each isomer) heptadecyloxypropyl (each isomer), octadecyloxymethyl (each isomer: oxime oxyethyl (each isomer) ), etc., phenyl, methyl-phenyl (isomeric), ethyl-phenyl (variety) , propyl-phenyl (each isomer), butyl-phenyl (each isomer), pentyl-phenyl (each isomer), hexyl-phenyl (each isomer), Heptyl-phenyl (each isomer: e-octyl-phenyl (each isomer), mercapto-phenyl (each isomer), mercapto-phenyl (each isomer), twelve Alkyl-phenyl (each isomer), phenylphenyl (each isomer), phenoxy-phenyl (each isomer), iso-phenylphenyl (each isomer), Monomethyl-phenyl (each isomer), diethyl-phenyl (each isomer), dipropyl phenyl (each isomer), butyl phenyl (each isomer) ), dipentyl phenyl (each isomer), dihexyl-phenyl (each isomer), diheptyl phenyl (each isomer), diphenyl phenyl (each isomer) ), diphenyloxyphenyl (each isomer), methyl-ethyl-phenyl (each isomer), methyl-propyl-phenyl (each isomer), methyl-butyl -phenyl (each isomer), methyl-pentyl-phenyl 131506.doc -35- 200948759 (each isomer), methyl-hexyl-styl (each isomer), Alkyl heptyl (each isomer), fluorenyl-octyl-phenyl (each isomer), methyl fluorenyl (each isomer), methyl-mercapto-phenyl (each Isomers), methyldodecyl-phenyl (each isomer), methyl-phenyl-phenyl (each isomer), methyl-p-oxy-phenyl (each isomer) ), methyl-cumyl-phenyl (each isomer), ethyl-propyl-phenyl (each isomer), ethyl-butylphenyl (each isomer), ethyl -pentyl-phenyl (each isomer), ethyl-hexylphenyl (each isomer), ethyl 'heptyl-phenyl (each isomer), ethyl-octyl-phenyl ( Each isomer), ethyl-mercapto-phenyl (each isomer), ethyl-fluorenyl-phenyl (each isomer), ethyl-dodecyl-phenyl (isoisomer) , ethyl-phenylphenyl (each isomer), ethyl-phenoxy-phenyl (each isomer), ethyl cumylphenyl (each isomer), propyl -butyl-phenyl (each isomer), propylpentylphenyl (each isomer), propyl-hexyl-phenyl (each isomer), propyl-heptylphenyl (variety) Structure , propyl-octyl-phenyl (each isomer), propyl-hydrazino group (each isomer), propyl-mercapto-phenyl (each isomer), propylphenylbenzene Base Φ (each isomer), propyl-phenoxy-phenyl (each isomer), butyl-fluorenyl-phenyl (each isomer), butyl-hexyl-phenyl (variety) Structure), butylheptylphenyl (each isomer), butyl-octyl-styl (each isomer), butyl-fluorenyl-styl (isomer), butyl·•癸Base-phenyl (each isomer), butylphenylphenyl (each isomer), butyl-phenoxy-phenyl (each isomer), amylhexyl-phenyl (isoisomer) , pentyl-heptyl-phenyl (each isomer), amyloctyl phenyl (each isomer), pentyl-fluorenyl-phenyl (each isomer), amyl benzene Base-phenyl (each isomer), pentyl-phenoxy-phenyl (each isomer), hexyl-heptyl-phenyl (each isomer), hexyl-octyl-phenyl (each Isomer), hexyl benzene benzene 131506.doc -36- 200948759

基-苯基(各異構物)、己基-苯氧基_苯基(各異構物)、三甲 基-苯基(各異構物)、三乙基·苯基(各異構物)、三丙基-苯 基(各異構物)、三丁基-苯基(各異構物)、二曱基_乙^_笨 基(各異構物)、二甲基-丙基-苯基(各異構物)、二曱= 基·苯基(各異構物)、二甲基-戊基_苯基(各異構物)、二曱 基-己基-苯基(各異構物)、二甲基-庚基_苯基(各異構物)、 二f基-辛基-苯基(各異構物)、二甲基_壬基-苯基(各異構 物)、二甲基·癸基-苯基(各異構物)、二甲基_十二烷基'笨 基(各異構物)、二甲基-苯基-苯基(各異構物)、二甲基笨 氧基-苯基(各異構物)、二甲基_異丙苯基_苯基(各異構 物)、二乙基-甲基-苯基(各異構物)、二乙基_丙基_苯基(各 異構物)、二乙基-丁基-苯基(各異構物)、二乙基戊基-苯 基(各異構物)、二乙基-己基-苯基(各異構物)、二乙基庚 基-苯基(各異構物)、二乙基_辛基_苯基(各異構物)、二乙 基-壬基·•苯基(各異構物)、二乙基_癸基_苯基(各異構物)、 二乙基-苯基-苯基(各異構物)、二乙基_苯氧基_苯基(各異 構物)、二乙基-異丙苯基-苯基(各異構物)、二丙基甲基_ 苯基(各異構物)、二丙基-乙基-苯基(各異構物)、二丙基_ 丁基-苯基(各異構物)、二丙基_戊基_苯基(各異構物)、二 丙基-己基-苯基(各異構物)、二丙基_庚基-苯基(各異構 物)、一丙基·苯基-苯基(各異構物)、二丙基苯氧基-苯基 (各異構物)、二丁基-曱基_苯基(各異構物)、二丁基乙基-苯基(各異構物)、二丁基-丙基··苯基(各異構物)、二丁基_ 戊基-苯基(各異構物)、二丁基-己基-苯基(各異構物)、二 131506.doc -37- 200948759 ❿ ❹ 丁基-苯基-苯基(各異構物)、=了基_苯氧基笨基(各異構 物)、二戊基·甲基-苯基(各異構物)、二戊基乙基笨基(各 異構物)、二戊基-丙基·苯基(各異構物)、二戊基_丁基苯 基(各異構物)、二己基·甲基·苯基(各異構物)、二己基乙 基苯基(各異構物)、甲基-乙基-丙基-苯基(各異構物)、甲 基-乙基-丁基-苯基墓(各異構物)、f基_乙基_戍基苯基 (各異構物)、甲基-乙基_己基苯基(各異構物)、甲基乙 基-庚基-苯基(各異構物)、甲基_乙基辛基苯基(各異構 物)、甲基-乙基-壬基_苯基(各異構物)、甲基-乙基-癸基_ 苯基(各異構物)、?基_乙基-苯氧基-苯基(各異構物)、甲 基-乙基-異丙苯基-苯基(各異構物)、?基丙基丁基苯基 (各異構物)、甲基.丙基-戊基·苯基(各異構物)、甲基.丙 基己基_苯基(各異構物)、甲基-丙基-庚基-苯基(各異構 物)、甲基-丙基-辛基-苯基(各異構物)、甲基-丙基壬基_ 苯基(各異構物)、甲基丙基-癸基-苯基(各異構物)、甲基-丙基-苯氧基·苯基(各異構物)、甲基_丙基_異丙苯基-苯基 (各異構物)、甲基-丁基·戊基_苯基(各異構物)、甲基-丁 基己基-苯基(各異構物)、甲基_丁基庚基苯基(各異構 )甲基丁基-辛基-笨基(各異構物)、甲基-丁基·苯氧 基-苯基(各異構物)、甲基_丁基-異丙苯基苯基(各異構 物)、甲基-戊基-己基·苯基(各異構物)、甲基-戊基·庚基· 苯基(各異構物)、甲基·戊基辛基·苯基(各異構物)、甲基_ 戊基_苯氧基L異構物)、甲基_己基-庚基_苯基(各異 ㈣卜&amp;基_丙基_丁基_苯基(各異構物)、乙基丙基戊 131506.doc -38- 200948759 基-苯基(各異構物)、乙基-丙基-己基-苯基(各異構物)、乙 基-丙基-庚基·苯基(各異構物)、乙基-丙基-辛基·苯基(各 異構物)、乙基-丙基-壬基_苯基(各異構物)、乙基丙基苯 氧基-苯基(各異構物)、乙基_丙基_異丙苯基_苯基(各異構 物)、乙基-丁基-戊基·苯基(各異構物)、乙基-丁基-己基_ 苯基(各異構物)、乙基-丁基_庚基_苯基(各異構物)、乙基_ 丁基-辛基-苯基(各異構物)、乙基·丁基_苯氧基-苯基(各異Base-phenyl (each isomer), hexyl-phenoxy-phenyl (each isomer), trimethyl-phenyl (each isomer), triethyl phenyl (each isomer) ), tripropyl-phenyl (each isomer), tributyl-phenyl (each isomer), dimercapto-yl-phenyl group (each isomer), dimethyl-propyl -phenyl (each isomer), dioxime = phenyl group (each isomer), dimethyl-pentyl-phenyl (each isomer), di-n-hexyl-phenyl (each Isomers), dimethyl-heptyl-phenyl (each isomer), bis-f-octyl-phenyl (each isomer), dimethyl-indenyl-phenyl (isoisomer) , dimethyl fluorenyl-phenyl (each isomer), dimethyl-dodecyl 'stupyl (each isomer), dimethyl-phenyl-phenyl (isomeric) , dimethyl phenyloxy-phenyl (each isomer), dimethyl-cumylphenyl-phenyl (each isomer), diethyl-methyl-phenyl (isomeric) , diethyl-propyl-phenyl (each isomer), diethyl-butyl-phenyl (each isomer), diethylpentyl-phenyl (each isomer), Diethyl-hexyl Base-phenyl (each isomer), diethylheptyl-phenyl (each isomer), diethyl-octyl-phenyl (each isomer), diethyl-indenyl · Phenyl (each isomer), diethyl-fluorenyl-phenyl (each isomer), diethyl-phenyl-phenyl (each isomer), diethyl-phenoxy-benzene Base (each isomer), diethyl-cumyl-phenyl (each isomer), dipropylmethyl-phenyl (each isomer), dipropyl-ethyl-phenyl (each isomer), dipropyl-butyl-phenyl (each isomer), dipropyl-pentyl-phenyl (each isomer), dipropyl-hexyl-phenyl (different Structure), dipropyl-heptyl-phenyl (each isomer), monopropyl phenyl-phenyl (each isomer), dipropylphenoxy-phenyl (each isomer) ), dibutyl-fluorenyl-phenyl (each isomer), dibutylethyl-phenyl (each isomer), dibutyl-propyl·phenyl (each isomer), Dibutyl-pentyl-phenyl (each isomer), dibutyl-hexyl-phenyl (each isomer), two 131506.doc -37- 200948759 ❿ 丁基 butyl-phenyl-phenyl ( each Structure), = phenyloxy stupyl (each isomer), dipentyl methyl-phenyl (each isomer), dipentylethyl stupyl (each isomer), Dipentyl-propyl·phenyl (each isomer), dipentyl-butylphenyl (each isomer), dihexylmethylphenyl (each isomer), dihexylethyl Phenyl (each isomer), methyl-ethyl-propyl-phenyl (each isomer), methyl-ethyl-butyl-phenyl tomb (each isomer), f-based Methyl-nonylphenyl (each isomer), methyl-ethyl-hexylphenyl (each isomer), methylethyl-heptyl-phenyl (each isomer), methyl-B P-octylphenyl (each isomer), methyl-ethyl-fluorenyl-phenyl (each isomer), methyl-ethyl-fluorenyl-phenyl (each isomer), ? —Ethyl-phenoxy-phenyl (each isomer), methyl-ethyl-isopropylphenyl-phenyl (each isomer), ? Propyl butyl phenyl (each isomer), methyl propyl-pentyl phenyl (each isomer), methyl propyl hexyl phenyl (each isomer), methyl -propyl-heptyl-phenyl (each isomer), methyl-propyl-octyl-phenyl (each isomer), methyl-propyldecyl-phenyl (each isomer) , methyl propyl-fluorenyl-phenyl (each isomer), methyl-propyl-phenoxy phenyl (each isomer), methyl-propyl-isopropylidene-phenyl (each isomer), methyl-butyl-pentyl-phenyl (each isomer), methyl-butylhexyl-phenyl (each isomer), methyl-butylheptylphenyl (each Isomerized) methylbutyl-octyl-styl (each isomer), methyl-butylphenoxy-phenyl (each isomer), methyl-butyl-cumylbenzene Base (each isomer), methyl-pentyl-hexyl phenyl (each isomer), methyl-pentylheptyl phenyl (each isomer), methyl pentyl octyl • Phenyl (each isomer), methyl-pentyl-phenoxy L isomer), methyl-hexyl-heptyl-phenyl (different (tetra) b &amp; propyl-butyl _ Phenyl group Ethylpropyl valyl 131506.doc -38- 200948759 base-phenyl (each isomer), ethyl-propyl-hexyl-phenyl (each isomer), ethyl-propyl-heptyl Phenyl (each isomer), ethyl-propyl-octyl·phenyl (each isomer), ethyl-propyl-fluorenyl-phenyl (each isomer), ethyl propylbenzene Oxy-phenyl (each isomer), ethyl-propyl-isopropylidene-phenyl (each isomer), ethyl-butyl-pentyl-phenyl (each isomer), Ethyl-butyl-hexyl-phenyl (each isomer), ethyl-butyl-heptyl-phenyl (each isomer), ethyl-butyl-octyl-phenyl (isoisomer) , ethyl butyl phenoxy-phenyl (variety)

構物)、乙基·戊基-己基_苯基(各異構物)、乙基戊基庚 基-苯基(各異構物)、乙基-戊基-苯氧基·苯基(各異構物)、 丙基-丁基-苯基(各異構物)、丙基_丁基戊基苯基(各異構 物)、丙基-丁基-己基-苯基(各異構物)、丙基_丁基_庚基_ 苯基(各異構物)、丙基-丁基·苯氧基_苯基(各異構物)、丙 基·戊基-己基-苯基(各異構物)、丙基_戊基_苯氧基苯基 (各異構物)等。該等之中’較好的是甲基、乙基、丙基(各 異構物)、丁基(各異構物)、戊基(各異構物)、己基(各異構 物)、庚基(各異構物)、辛基(各異構物)等構成該基之碳原 T數係選自1〜20之整數之數的烷基。該等之中,較好的是 碳數為1〜12之烷基或碳數為6〜12之芳香族基,更好的是碳 數為5〜7之烷基或碳數為5〜7之芳香族基。作為如此之碳酸 -曰可例不奴酸一戊酯(各異構物)、碳酸二己酯(各異構 物)、碳酸二庚醋(各異構物)、碳酸二苯醋、碳酸二(甲基 苯基)酯。 較好的是’該等碳酸S旨於較好的是0_ ppm〜i()%之範 圍,更好的是〇.〇〇1 ppm〜5k_,進而較好的是〇〇〇2 -39· 131 200948759 ppm〜3 /。之範圍内含有金屬原子。又,該金屬原子可作為 金屬離子而存在,亦可作為金屬原子單體而存在。作為金 屬原子,較好的是可取2價或4價原子價之金屬原子,其 中,更好的是選自鐵、鈷、鎳、鋅、錫、銅、鈦中之一種 或複數種金屬。本發明者等人吃驚的是,發現若使用以上 述範圍之濃度含有金屬原子之碳酸酯,則於碳酸酯與胺化 合物之反應中,發揮抑制所生成之胺基甲酸酯之改性反應 ❹的效果。對於發揮如此之效果之機理並不明瞭,但本發明 者等人推測,其原因可能是,該等金屬原子配位於該反應 中所生成之胺基甲酸酯之胺基甲酸酯鍵(_NHC〇〇_),使該 胺基甲酸酯鍵穩定化,從而抑制例如以上述式(2)、下述式 (9)等所表示之副反應。 [化7] O—R,Structure), ethyl·pentyl-hexyl-phenyl (each isomer), ethylpentylheptyl-phenyl (each isomer), ethyl-pentyl-phenoxy-phenyl ( Each isomer), propyl-butyl-phenyl (each isomer), propyl-butylpentylphenyl (each isomer), propyl-butyl-hexyl-phenyl (variety) Structure), propyl-butyl-heptyl-phenyl (each isomer), propyl-butyl-phenoxy-phenyl (each isomer), propyl-pentyl-hexyl-benzene A group (each isomer), a propyl-pentyl-phenoxyphenyl group (each isomer), and the like. Among these, 'preferably, methyl, ethyl, propyl (each isomer), butyl (each isomer), pentyl (each isomer), hexyl (each isomer), The number of carbon atoms T constituting the group such as heptyl group (each isomer) and octyl group (each isomer) is an alkyl group selected from the integer number of 1 to 20. Among these, an alkyl group having 1 to 12 carbon atoms or an aromatic group having 6 to 12 carbon atoms is preferred, and an alkyl group having 5 to 7 carbon atoms or a carbon number of 5 to 7 is more preferred. Aromatic group. As such a carbonic acid-hydrazine, it can be exemplified by monoethyl pentanoate (each isomer), dihexyl carbonate (each isomer), diheptin carbonate (each isomer), diphenyl vinegar, carbonic acid (methylphenyl) ester. Preferably, the carbonic acid S is preferably in the range of 0_ppm~i()%, more preferably 〇.〇〇1 ppm~5k_, and further preferably 〇〇〇2 -39· 131 200948759 ppm~3 /. The range contains metal atoms. Further, the metal atom may exist as a metal ion or as a metal atom. As the metal atom, a metal atom which may be a divalent or tetravalent atomic valence is preferable, and among them, one selected from the group consisting of iron, cobalt, nickel, zinc, tin, copper, and titanium or a plurality of metals is more preferable. The present inventors have surprisingly found that when a carbonate containing a metal atom in a concentration within the above range is used, the modification reaction of the resulting urethane is suppressed in the reaction between the carbonate and the amine compound. Effect. The mechanism for exerting such an effect is not clear, but the inventors have speculated that the reason may be that the metal atom is coordinated with the urethane bond of the urethane formed in the reaction (_NHC) 〇〇_), the urethane bond is stabilized, and a side reaction represented by the above formula (2), the following formula (9), or the like is suppressed, for example. [化7] O-R,

R及R'分別獨立表示烷基或芳香族基。) (9) (式中: ❹ 又,於運送下述含有胺基甲酸芳酿之反應㈣,亦斷定 金屬原子抑制胺基甲酸芳S旨之改性反應的效果,推測其機 理可能與上述相同。 原本期待將碳酸醋與胺化合物加以混合而製造混合物, 再於該混合物中以上述範圍添加上述例示之金屬原子亦 可獲得同樣之效果’但本發明者等人進行努力研究,結果 判明’僅於碳酸自旨與胺化合物之混合物中添加金屬原子, 131506.doc •40· 200948759 難以獲得上述效果。成為如此結果之理由並不明瞭,但本 發明者等人推測,其原因可能在於,於該碳酸醋中含有金 屬原子時,該碳酸酯配位於金屬原子,相對於此,於碳酸 醋與胺化合物之混合物中添加金屬原子時,較之金屬原子 與碳酸s曰之相互作用,金屬原子與胺化合物之相互作用較 大’因此金屬原子牢固地配位於胺化合物,而難以配位於 所生成之胺基甲酸酯之胺基甲酸酯鍵。 ❹ 本實施形慼中之碳酸酯較好的是利用下述方法製造,利 用該方法所製造之碳酸中,於上述較好範圍内含有如上例 示之金屬原子之情形時,可直接使用該碳酸醋。該碳酸醋 所含有之該金屬原子量少於上述範圍之情形時,可以其他 方式添加金屬原子,例如,作為乙酸鹽、環院酸鹽等有機 酸鹽’氣化物,乙醯丙酮錯合物而添加。X,多於上述範 圍之情形時’例如可藉由溶劑清洗、蒸顧純化、晶析、利 用離子交換樹月曰之去除、利用整合物樹脂之去除等方法, 將該金屬原子之量降低至上述範圍内而使用。 再者,對於碳酸醋中以上述範圍所含有之金屬原子而 言,基本斷;t其於碳酸_胺化合物之反應中不具_ 作用’因此,應與下述胺基甲酸醋製造用觸媒明確區分。、 該碳酸二芳S旨所含有之金屬原子量可利縣所周知之方 =行定量’例如可根據試料之形態或所含有之金屬成分 :董,而自原子吸光分析法、電感轉合 法、電感麵合型電聚質量分析法、勞光X射線分析法、析χ 射線光電子分光法、電子束微量分析儀、二次離子質量= I3I506.doc •41 · 200948759 析法等各種方法中選擇。 該碳酸酯’於該碳酸酯為碳酸二炫基酯之情形時’較好 的是利用下述步驟(1)及步驟(2)來製造,於該碳酸酯為碳 酸二芳酯之情形時,利用包括步驟(1)〜步驟(3)之方法來製 造0 步驟(1):(碳酸二烷基酯生成步驟)使具有錫-氧_碳鍵之 有機錫化合物與二氧化碳進行反應而獲得含有碳酸二燒基 醋之反應混合物的步驟;R and R' each independently represent an alkyl group or an aromatic group. (9) (In the formula: ❹ In addition, in the following reaction (IV) containing an aminocarboxylic acid aromatic condensate, it is also concluded that the metal atom inhibits the modification reaction of the amino carboxylic acid aryl sulfonate, and the mechanism may be the same as above. It is expected that the carbonated vinegar and the amine compound are mixed to produce a mixture, and the same effect can be obtained by adding the above-exemplified metal atom to the above-mentioned range in the above-mentioned range, but the inventors of the present invention conducted an effort and found that only Adding a metal atom to a mixture of carbonic acid and an amine compound, 131506.doc •40·200948759 It is difficult to obtain the above effects. The reason for such a result is not clear, but the inventors have speculated that the reason may be that When the carbonated vinegar contains a metal atom, the carbonate is coordinated to the metal atom. In contrast, when a metal atom is added to the mixture of the carbonated acid and the amine compound, the metal atom and the amine are compared with the interaction between the metal atom and the cesium carbonate. The interaction of the compounds is large' so the metal atoms are firmly coordinated to the amine compound, and it is difficult to equip the amine formed. The urethane bond of the carbamate. The carbonate of the present embodiment is preferably produced by the following method. The carbonic acid produced by the method contains the above-exemplified ones in the above preferred range. In the case of a metal atom, the carbonated vinegar may be used as it is. When the amount of the metal atom contained in the carbonated vinegar is less than the above range, the metal atom may be added in other manners, for example, as an organic acid such as an acetate or a cyclic acid salt. Salt 'gasification, acetonitrile acetone complex is added. X, when it is more than the above range', for example, solvent cleaning, steam purification, crystallization, removal by ion exchange tree, use of integrator A method of removing the resin or the like, and reducing the amount of the metal atom to the above range. Further, the metal atom contained in the above range in the carbonated acid is substantially broken; t is reacted with the carbonic acid-amine compound There is no _ role in the process. Therefore, it should be clearly distinguished from the following catalyst for the manufacture of amino carboxylic acid vinegar. The amount of metal atom contained in the bismuth carbonate is intended to be well known to the county. ' For example, according to the form of the sample or the metal component contained: Dong, and from the atomic absorption analysis method, the inductance conversion method, the inductance surface type electropolymer mass analysis method, the labor X-ray analysis method, the analytic ray photoelectron spectroscopy method , electron beam micro analyzer, secondary ion mass = I3I506.doc •41 · 200948759 Analytical method and other methods to choose. The carbonate 'in the case of the carbonate is dicaptanyl carbonate' is better to use It is produced by the following steps (1) and (2). When the carbonate is a diaryl carbonate, the method comprising the steps (1) to (3) is used to produce the 0 step (1): (carbonic acid) a dialkyl ester formation step) a step of reacting an organotin compound having a tin-oxygen-carbon bond with carbon dioxide to obtain a reaction mixture containing dialkyl acetonate;

步驟(2):(碳酸二烷基酯分離步驟)自該反應混合物將該 碳酸二烷基酯分離並且獲得殘留液之步驟; 步驟(3):(碳酸二芳酯製造步驟)使步驟(2)中所分離之碳 酸二烷基酯與芳香族羥基化合物A進行反應而獲得碳酸二 芳酯’將副生之醇加以回收的步驟。 又,除了該等步驟(1)及步驟(2)、或步驟(1)〜步驟(3)以 外’亦可進行以下步驟(4)及步驟(5)。 步驟(4厂(有機錫化合物再生步驟)使步驟(B)中所獲得 之該殘留液與醇進行反應,形成具有錫氡·碳鍵之有機錫 化合物與水,自反應系去除該水之步驟; 步驟⑺:(回收再利用步驟)將步驟(4)中所獲得之具有 錫-氧-碳鍵之該有機錫化合物作為步驟⑴之纟有踢-氧-碳 鍵之有機錫化合物而再利用的步驟。 較好的是使用 一個錫原子上 作為步驟(1)中所使用之有機錫化合物, 二烷基錫化合物。所謂二烷基錫化合物係指 鍵結有2個烷基之有機錫化合物。 131506.doc -42- 200948759 〜二燒基錫化合物之例,可列舉自選自以下述式 (10)所矣_ 不之二院基錫化合物及以下述式(11)所表示之四 土一踢氣烷化合物所組成之群中的至少一種化合物中選 擇之化合物。 [化8]Step (2): (dialkyl carbonate separation step) a step of separating the dialkyl carbonate from the reaction mixture and obtaining a residual liquid; Step (3): (diaryl carbonate production step) to make the step (2) The dialkyl carbonate separated in the reaction with the aromatic hydroxy compound A to obtain a diaryl carbonate, which is a step of recovering the by-produced alcohol. Further, the following steps (4) and (5) may be carried out in addition to the steps (1) and (2) or the steps (1) to (3). Step (4th plant (organic tin compound regeneration step), the residual liquid obtained in the step (B) is reacted with an alcohol to form an organotin compound having a tin antimony carbon bond and water, and the step of removing the water from the reaction system Step (7): (recycling and recycling step) The organotin compound having a tin-oxygen-carbon bond obtained in the step (4) is reused as an organotin compound having a kick-oxygen-carbon bond in the step (1). Preferably, a tin atom is used as the organotin compound used in the step (1), a dialkyl tin compound. The so-called dialkyl tin compound means an organotin compound bonded with two alkyl groups. 131506.doc -42- 200948759 The example of the di-tin-based tin compound is exemplified by a base tin compound selected from the group consisting of the following formula (10) and a four-soil compound represented by the following formula (11). a compound selected from at least one of the group consisting of a group of alkane compounds.

(10) R及汉分別獨立表示直鏈狀或支鏈狀之碳數為丨〜12之烷 基; X及X分別獨立表示選自烷氧基、醯氧基及鹵素原子所 組成之群令之至少一種取代基; a及b分別為〇〜2之整數,a+b=2 ; c及d分別為〇〜2之整數,c+d=2)。(10) R and Han respectively indicate that the linear or branched carbon number is an alkyl group of 丨~12; X and X each independently represent a group consisting of an alkoxy group, a decyloxy group and a halogen atom. At least one substituent; a and b are integers of 〇~2, respectively, a+b=2; c and d are integers of 〇~2, respectively, c+d=2).

[化9] X3 R10 I | 9 R8· Sn--〇-sn—R”h 。^ R9, X4 (式中: R、R、R1G及R&quot;分別獨立表示直鏈狀或支鏈狀之碳數 為1~12之烷基; X3及X4表示選自烷氧基、醯氧基及鹵素原子所組成之群 中的至少一種取代基; 131506.doc -43- 200948759 e、f、g、h分別為 〇〜2 之整數,e+f=2,g+h=2)。 作為以上述式(10)所表示之二烷基錫觸媒之…及汉7、以 及9以上述式(11)所表示之四烷基二錫氧烷化合物之r8、 R9Hrh之例,可列舉:甲基、乙基、丙基(各異構 物)、丁基(各異構物)、戊基(各異構物)、己基(各異構 物)、庚基(各異構物)、辛基(各異構物)、壬基(各異構 ^)、癸基(各異構物)、十二烷基(各異構物)等構成該基之 奴原子數為選自1〜12之整數之數的脂肪族烴基之烷基等。 更好的是構成該基之碳原子數為選自!〜8之整數之數的直 鏈狀或支鏈狀之烷基,亦可使用構成該基之碳原子數為以 上所示範圍以外之烧基的二院基錫化合物,但有時流動性 變差,或有損生產性。進而,若考慮到工業生產時獲取之 容易程度,進而較好的是正丁基、正辛基。 作為以上述式(10)所表示之二烷基錫化合物之χι及X2、 以及以式(11)所表示之四烷基二錫氧烷化合物之X3及X4, 0 表示選自烧氧基、醯氧基及鹵素原子所組成之群中的至少 種取代基’於該基為烧氧基及/或酿氧基之情形時,較 好的是構成該基之碳原子數係選自〇〜12之整數之數的基。 作為如此之例’例示甲氧基、乙氧基、丙氧基(各異構 物)、丁氧基(各異構物)、戊氧基(各異構物)、己氧基(各異 構物)、庚氧基(各異構物)、辛氧基(各異構物)、壬氧基(各 異構物)、癸氧基(各異構物)等由直鏈狀或支鏈狀之飽和烷 基與氧原子所構成之烷氧基,乙醯氧基、丙醯氧基、丁醯 氧基、戊醯氧基、十二醯氧基等由直鏈狀或支鏈狀之飽和 13l506.doc 200948759 ’氣基、溴基等鹵素 考慮到用作碳酸酯 係碳數為4〜8之院氧 烷基、羰基及氧原子所構成之醯氧基 原子。若考慮到流動性或溶解性,又 製造觸媒,則作為進而較好之例, 基0 作為以式(10)所表示之二炫基錫化合物之例, 二甲基-二曱氧基錫、二甲基-二乙氧基錫、美 基踢(各異構物)、二甲基-二丁氧基錫(各異構物一甲丙基乳 © 異構物)、二甲基-二己氧基锡(各異構物)、 二:基-二庚乳基錫(各異構物)、二甲基-二辛氧基錫(各異 冓物)、一甲基-二壬氧基錫(各異構物)、二甲基二癸氧美 錫(各異構物)、二丁基-二曱氧基錫(各異構物)、二丁基 乙氧基錫(各異構物)、二丁基二丙氧基錫(各異構物)土、^ 丁基-二丁氧基錫(各異構物)、二丁基·二戊氧基锡(各異構 物)、一丁基-一己軋基錫(各異構物)、二丁基·二庚氧基錫 (各異構物)、二丁基-二辛氧基錫(各異構物)、二丁基二壬 ❿氧基錫(各異構物)、二丁基_:癸氧基锡(各異#‘二 基-二甲氧基錫(各異構物)、二辛基·二乙氧基踢(各異構 物)、二辛基-二丙氧基錫(各異構物)、二辛基-二丁氧基錫 (各異構物)、二辛基-二戊氧基錫(各異構物)、二辛基二己 氧基錫(各異構物)' 二辛基-二庚氧基錫(各異構物)、二辛 基-二辛氧基錫(各異構物)、二辛基_二壬氧基锡(各異構 物)、二辛基-二癸氧基錫(各異構物)等二烷基_二烷氧基 錫,二曱基-二乙酿氧基錫、二甲基二丙酿氧基踢(各異構 物)、二甲基-二丁酿氧基錫(各異構物)、二甲基-戊醯氧基 131506.doc -45- 200948759 錫(各異構物)、二甲其一 丁甘 一(十二醯氧基)錫(各異構物)、二 基-二乙酿氧基錫(各 異構物)、二丁基-二丁疏! 丁基 氧錫(各 一丁醯氧基錫(各異構物)、二丁基·二戊 酿巩基錫(各異構物)、_ ., —丁基·二(十二醯氧基)錫(各異構X3 R10 I | 9 R8· Sn--〇-sn-R”h .^ R9, X4 (wherein R, R, R1G and R&quot; respectively represent linear or branched carbon An alkyl group of 1 to 12; X3 and X4 represent at least one substituent selected from the group consisting of an alkoxy group, a decyloxy group, and a halogen atom; 131506.doc -43- 200948759 e, f, g, h An integer of 〇~2, respectively, e+f=2, g+h=2). As the dialkyl tin catalyst represented by the above formula (10), and the following, the formula (11) Examples of the r8 and R9Hrh of the tetraalkyldistannoxane compound represented by the formula include methyl group, ethyl group, propyl group (each isomer), butyl group (each isomer), and pentyl group (each Isomers), hexyl (each isomer), heptyl (each isomer), octyl (each isomer), thiol (isomeric), thiol (each isomer), ten The number of the atomic atoms constituting the group such as a dialkyl group (each isomer) is an alkyl group of an aliphatic hydrocarbon group selected from the integer number of 1 to 12, etc. More preferably, the number of carbon atoms constituting the group is selected from the group consisting of A linear or branched alkyl group of an integer number of ~8 may also be used. Although the number of carbon atoms in the group is a secondary-base tin compound which is an alkyl group other than the above-described range, the fluidity may be deteriorated or the productivity may be impaired. Further, in consideration of the ease of acquisition in industrial production, Preferred are n-butyl group and n-octyl group. X3 as a dialkyltin compound represented by the above formula (10) and X3 as a tetraalkyldistannoxane compound represented by the formula (11) And X4, 0 represents at least one substituent selected from the group consisting of an alkoxy group, a decyloxy group and a halogen atom. When the group is an alkoxy group and/or a methoxy group, it is preferred to constitute The number of carbon atoms in the group is a group selected from the integer number of 〇~12. As an example of this, exemplified are methoxy, ethoxy, propoxy (iso areomer), butoxy (isoisomer) , pentyloxy (each isomer), hexyloxy (each isomer), heptyloxy (each isomer), octyloxy (each isomer), decyloxy (isomeric) Alkoxy group consisting of a linear or branched saturated alkyl group and an oxygen atom, an ethoxy group (each isomer), an ethoxy group, a propyl group醯oxy, butanoxy, pentyloxy, dodecyloxy, etc. are saturated by linear or branched chains. 13l506.doc 200948759 'halogen, bromine and the like are considered for use as carbonate carbons. The number of oxyalkyl groups composed of oxyalkyl groups, carbonyl groups and oxygen atoms in the range of 4 to 8 is considered to be a better example in consideration of fluidity or solubility, and base 0 is used as a formula. (10) Examples of the diterpenyl tin compound represented by dimethyl-dimethoxy tin, dimethyl-diethoxy tin, Meike kick (each isomer), dimethyl-dibutyl Oxytin (each isomer-monopropyl milk isomer), dimethyl-dihexyltin (each isomer), bis-yl-diheptyltin (each isomer) , dimethyl-dioctyl tin (all isoindoles), monomethyl-dimethoxy tin (each isomer), dimethyl dioxetane (each isomer), dibutyl Base-dimethoxytin (each isomer), dibutyl ethoxy tin (each isomer), dibutyldipropoxide (each isomer), ^ butyl-dibutyl Oxytin (each isomer), dibutyltin dipentoxide (each isomer) Monobutyl-monobutyltin (each isomer), dibutyl·diheptyltin (each isomer), dibutyl-dioctyl tin (each isomer), dibutyl Dimethoxytin (each isomer), dibutyl _: decyl tin oxide (different #'diyl-dimethoxy tin (each isomer), dioctyldiethoxy Kick (each isomer), dioctyl-dipropoxytin (each isomer), dioctyl-dibutoxytin (each isomer), dioctyl-dipentyloxytin ( Each isomer), dioctyldihexyltin (each isomer) 'dioctyl-diheptyl tin oxide (each isomer), dioctyl-dioctyl tin (isoisomer , dioctyl-dimethoxytin (each isomer), dioctyl-dimethoxytin (each isomer), etc., dialkyl-dialkyloxy tin, dimercapto-di Ethyl tin oxide, dimethyl dipropylene oxide kick (each isomer), dimethyl-dibutyloxy tin (each isomer), dimethyl-pentanyloxy 131506.doc -45- 200948759 Tin (each isomer), dimethylglycolate (dodecyloxy) tin (each isomer), diyl-diethyl oxytin ( Each isomer), dibutyl-dibutyl sulphide! Butyloxytin (each butyl tin hydride (each isomer), dibutyl dimethyl ketone tin (each isomer), _., butyl bis(dodecyloxy) tin (isomeric

其:酿氧基錫(各異構物)、二辛基二丙醯氧 二(各異構物)、二辛基_二丁酿氧基錫(各異構物)、二辛 戊酿氧基錫(各異構物)、二辛基-二(十二酿氧基)錫(各 異構物)等二炫基-二酿氧基錫,二甲基-二氯化錫、二甲 土一 /臭錫、一丁基·二氣化錫(各異構物广二丁基·二溴錫 (各異構物)、二辛基-二氣化錫(各異構物)、二辛基-二演錫 (各異構物)等二烷基-二自化錫等。 好該等之中,較好的是二甲基.二甲氧基錫、二甲基-二乙 氧基錫、一甲基·二丙氧基錫(各異構物)、二甲基-二丁氧 基錫(各異構物)、二甲基-二戊氧基錫(各異構物)、二曱基_ 一己氧基錫(各異構物)、二甲基_二庚氧基錫(各異構物)、 一甲基·二辛氧基錫(各異構物)、二甲基二壬氧基錫(各異 構物)、二曱基'二癸氧基錫(各異構物)、二丁基-二曱氧基 錫(各異構物)、二丁基-二乙氧基錫(各異構物)、二丁基-二 丙氧基錫(各異構物)、二丁基-二丁氧基錫(各異構物)、二 丁基-二戊氧基錫(各異構物)、二丁基-二己氧基錫(各異構 物)、二丁基-二庚氧基錫(各異構物)、二丁基-二辛氧基錫 (各異構物)、二丁基-二壬氧基錫(各異構物)、二丁基-二癸 氧基錫(各異構物)、二辛基-二曱氧基錫(各異構物)、二辛 基-二乙氧基錫(各異構物)、二辛基-二丙氧基錫(各異構 131506.doc -46- 200948759It is: tin oxytin (each isomer), dioctyldipropionyloxy (n-isomer), dioctyl-dibutyl oxytin (each isomer), dioctyl pentoxide Dixyl-di-oxo tin oxide, dimethyl-tin dichloride, dimethyl, etc., such as tin (each isomer), dioctyl-di(dodecanoxy)tin (each isomer) Soil I / stinky tin, monobutyl di-tin sulphide (polyisomers, dibutyl bromide (isoisomers), dioctyl-di-stannized tin (isomers), two Dialkyl-di-tin-tin such as octyl-di-tin (each isomer), etc. Among them, dimethyltin dimethoxide and dimethyl-diethoxy oxide are preferred. Base tin, monomethyl-dipropoxytin (each isomer), dimethyl-dibutoxytin (each isomer), dimethyl-dipentyloxytin (isomeric) , dimercapto _ hexyl hexoxide (each isomer), dimethyl-diheptyloxy tin (each isomer), monomethyl bis octyl tin (each isomer), dimethyl Di-n-stannyl tin (each isomer), di-n-yl 'dimethoxy tin (each isomer), dibutyl-dimethoxy tin (each isomer), dibutyl- Ethoxytin (each isomer), dibutyl-dipropoxytin (each isomer), dibutyl-dibutoxytin (each isomer), dibutyl-dipentoxide Base tin (each isomer), dibutyl-dihexyl tin (each isomer), dibutyl-diheptyloxy tin (each isomer), dibutyl-dioctyl tin (each isomer), dibutyl-dimethoxytin (each isomer), dibutyl-dimethoxytin (each isomer), dioctyl-dimethoxytin (each Isomers), dioctyl-diethoxytin (each isomer), dioctyl-dipropoxytin (isomeric 131506.doc -46- 200948759

物)、二辛基·二丁氧基錫(各異構物)、二辛基_二戊氧基錫 (各異構物)、二辛基-二己氧基錫(各異構物)、二辛基-二庚 氧基錫(各異構物)、二辛基_二辛氧基錫(各異構物)、二辛 基-二壬氧基錫(各異構物)、二辛基-二癸氧基錫(各異構物) 等二烷基-二烷氧基錫,其中更好的是二丁基-二丙氧基錫 (各異構物)、二丁基-二丁氧基錫(各異構物)、二丁基-二戊 氧基錫(各異構物)、二丁基-二己氧基錫(各異構物)、二丁 基-二庚氧基錫(各異構物)、二辛基-二丙氧基錫(各異構 物)、二辛基-二丁氧基錫(各異構物)、二辛基_二戊氧基錫 (各異構物)、二辛基-二己氧基錫(各異構物)、二辛基_二庚 氧基錫(各異構物)等二烷基_二烷氧基錫,進而較好的是二 丁基-二丁氧基錫(各異構物)、二丁基_二戊氧基錫(各異構 物)、二丁基-二己氧基鎖(各異構物)、三丁基_二庚氧基錫 (各異構物)、二丁基-二辛氧基錫(各異構物)、二辛基二丁 氧基錫(各異構物)、二辛基_二戊氧基錫(各異構物)、二辛 基-二己氧基錫(各異構物)、二辛基_二庚氧基錫(各異構 物)、二辛基-二辛氧基錫(各異構物)。 以上述式(ίο)所表示之二烷基錫化合物表現為單體結 構’但亦可為多聚體結構或締合物。 作為以式(11)所表示之四烷基二烷氧基二錫氧烷之例, 可列舉:1,1,3,3·四甲基_1,3-二甲氧基二錫氧烷、113 L 四甲基·1,3-二乙氧基二錫氧烷、ijj,%四甲基^3-二丙 氧基二錫氧烷(各異構物)、H33·四甲基_13_二丁氧基一 錫氧烷(各異構物)、1,1,3,3_四甲基_丨,3_二戊氧基二錫氧烷 131506.doc -47- 200948759 (各異構物)、1,1,3,3-四甲基-1,3-二己氧基二錫氧烷(各異 構物)、1,1,3,3-四曱基-1,3-二庚氧基二錫氧烷(各異構 物)、1,1,3,3-四曱基-1,3-二辛氧基二錫氧烷(各異構物)、 1,1,3,3-四甲基-1,3-二壬氧基二錫氧烷(各異構物)、 1,1,3,3-四甲基-1,3-二癸氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二甲氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二乙氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二丙氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二丁氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二戊氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二己氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二庚氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二辛氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二壬氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二癸氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二甲氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二乙氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基_1,3-二丙氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二丁氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二戊氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二己氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二庚氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二辛氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二壬氧基二錫氧烷(各異構物)、 131506.doc -48- 200948759 产基十3_二癸氧基二锡氧烧(各異構物)等 二乙醯氧基二踢氧烧、U,3,3,甲基十3•二 =貌(各異構物)、—甲基一酿氧基二: (各異構物)、U,3,3-四甲基十3_二戊醯氧基二錫氧产 (各異構物卜U,3,3·四甲基_U·二(十二醢氧基)二锡= ❹, dioctyldibutoxide (each isomer), dioctyl-dipentyloxytin (each isomer), dioctyl-dihexyloxytin (each isomer) , dioctyl-diheptyl tin oxide (each isomer), dioctyl-dioctyloxy tin (each isomer), dioctyl-dimethoxy tin (each isomer), two a dialkyl-dialkyloxy tin such as octyl-dimethoxytin (each isomer), more preferably dibutyl-dipropoxytin (each isomer), dibutyl- Dibutoxytin (each isomer), dibutyl-dipentyloxytin (each isomer), dibutyl-dihexyloxytin (each isomer), dibutyl-diheptane Oxytin (each isomer), dioctyl-dipropoxytin (each isomer), dioctyl-dibutoxytin (each isomer), dioctyl-dipentyloxy a dialkyl-dialkyloxy tin such as tin (each isomer), dioctyl-dihexyltin (each isomer), or dioctyl-diheptyloxytin (each isomer), Further preferred are dibutyl-dibutoxytin (each isomer), dibutyl-dipentyloxytin (each isomer), dibutyl-dihexyloxy lock Each isomer), tributyl-diheptyltin (each isomer), dibutyl-dioctyl tin (each isomer), dioctyldibutoxytin (isomeric) , dioctyl-dipentyloxytin (each isomer), dioctyl-dihexyltin (each isomer), dioctyl-diheptyloxy tin (isomeric) Dioctyl-dioctyl tin (each isomer). The dialkyltin compound represented by the above formula (ίο) behaves as a monomer structure' but may also be a multimeric structure or an associate. Examples of the tetraalkyldialkoxydistannoxane represented by the formula (11) include 1,1,3,3·tetramethyl-1,3-dimethoxydistannoxane. , 113 L tetramethyl 1,3-diethoxydistannoxane, ijj, % tetramethyl^3-dipropoxydistannoxane (each isomer), H33·tetramethyl _ 13_Dibutoxy-stannoxane (each isomer), 1,1,3,3-tetramethyl-oxime, 3-dipentyloxydistannoxane 131506.doc -47- 200948759 (each Isomer), 1,1,3,3-tetramethyl-1,3-dihexyloxystannane (each isomer), 1,1,3,3-tetradecyl-1, 3-diheptyloxydistannoxane (each isomer), 1,1,3,3-tetradecyl-1,3-dioctoxydistannoxane (each isomer), 1, 1,3,3-tetramethyl-1,3-dimethoxyoxystannane (each isomer), 1,1,3,3-tetramethyl-1,3-dioxyloxy Cyclooxane (each isomer), 1,1,3,3-tetrabutyl-1,3-dimethoxydistannoxane (each isomer), 1,1,3,3-tetra Butyl-1,3-diethoxydistannoxane (each isomer), 1,1,3,3-tetrabutyl-1,3-dipropoxydistannoxane (isomeric , 1,1,3,3-tetrabutyl-1,3-dibutoxydistannoxane (each isomer), 1,1,3,3-tetrabutyl-1,3- Dipentyl pentoxane (each isomer), 1,1,3,3-tetrabutyl-1,3-dihexyloxystannane (each isomer), 1,1, 3,3-tetrabutyl-1,3-diheptyloxydistannoxane (each isomer), 1,1,3,3-tetrabutyl-1,3-dioctyloxydithion Alkanes (each isomer), 1,1,3,3-tetrabutyl-1,3-dimethoxyoxystannane (each isomer), 1,1,3,3-tetrabutyl -1,3-dimethoxy distannoxane (each isomer), 1,1,3,3-tetraoctyl-1,3-dimethoxydistannoxane (each isomer) 1,1,3,3-tetraoctyl-1,3-diethoxydistannoxane (each isomer), 1,1,3,3-tetraoctyl-1,3-dipropane Oxydistanoxane (each isomer), 1,1,3,3-tetraoctyl-1,3-dibutoxydistannoxane (each isomer), 1,1,3, 3-tetraoctyl-1,3-dipentoxydistannoxane (each isomer), 1,1,3,3-tetraoctyl-1,3-dihexyloxydistannoxane ( Each isomer), 1,1,3,3-tetraoctyl-1,3-diheptyloxytin Oxane (each isomer), 1,1,3,3-tetraoctyl-1,3-dioctoxydistannoxane (each isomer), 1,1,3,3-tetraxin Base-1,3-dimethoxy distannoxane (each isomer), 131506.doc -48- 200948759 Dibasic tris- 3 dioxo-di-n-oxygen (each isomer) Oxime oxy-oxygen, U, 3,3, methyl 1,4-3 = two (isoforms), methyl ketone oxy 2: (isomers), U, 3, 3 -tetramethyl-tris-tris-dipentyloxy-di-tin-oxygen production (each isomer U,3,3·tetramethyl-U·bis(dodecyloxy)ditin=❹

G (各異構物)、U,3,3_四丁基_丨,3•二乙酿孰基二錫氧燒(各 異構物)、1,1,3,3·四丁基_1,3_二丙酿氧基二錫氡院(各異構 物)、1,1,3,3-四丁基二丁醯氧基二錫氧烷(各異構 物)、1,1,3,3-四丁基二戊醯氧基二錫氧烷(各異構 物)、1,1,3,3-四丁基二(十二醯氧基)二錫氧烷(各異構 物)、1,1,3,3-四辛基二乙醯氧基二錫氧烷(各異構 物)、1,1,3,3-四辛基-i,3_二丙醯氧基二錫氧烷(各異構 物)、1,1,3,3-四辛基_ι,3_二丁醯氧基二錫氧烷(各異構 物)、1,1,3,3-四辛基- i,3-二戊醯氧基二錫氧烷(各異構 物)、1,1,3,3-四辛基-i,3-二(十二醯氧基)二錫氧烷(各異構 物)等1,1,3,3·四烷基·1,3-二醯氧基二錫氧烷,^,允弘四甲 基-1,3-二氣二錫氧烷、ι,ι,3,3-四甲基- ΐ,3-二溴二錫氧 烷、1,1,3,3-四丁基-1,3-二氣二錫氧烷(各異構物)、 1,1,3,3 -四丁基-1,3 -—漠一錫氧院(各異構物)、ι,ι,3,3 -四 辛基-1,3 -一乳一錫乳院(各異構物)、l,i,3,3 -四辛基·1,3_二 溴二錫氧烧(各異構物)等1,1,3,3-四燒基_ι,3-二画化二錫氧 烷。 該等之中,更好的是1,1,3,3-四甲基_ι,3·二甲氧基二錫 131506.doc •49- 200948759 氧烷、1,1,3,3-四f基-1,3-二乙軋基二錫氧烷、^弘四 甲基-1,3-二丙氧基二錫氧烷(各異構物)、ΐ,ι,3,3·四甲基_ i’3 -二丁氧基二踢氧烧(各異構物)、1,1,3,3-四曱基_1,3_二 戊氧基二錫氧烧(各異構物)、1,1,3,3-四曱基_ι,3_二己氧基 二錫氧烷(各異構物)、1,1,3,3-四曱基-1,3-二庚氧基二錫氧 烷(各異構物)、i’1,3,3·四甲基-1,3-二辛氧基二錫氧烷(各 異構物)、1,1,3,3-四甲基_丨,3_二壬氧基二錫氧烷(各異 甲基-1,3-二癸氧基二 _1,3- 二 甲 氧 基 二 錫 _i,3- —* 乙 氧 基 二 錫 *1,3- — 丙 氧 基 二 錫 &quot;1,3- 二 丁 氧 基 二 錫 ~1,3- 二 戊 氧 基 二 錫 •1,3- 二 己 氧 基 二 錫 *1,3- 二 庚 氧 基 二 錫 Ί,3- 二 辛 氧 基 二 錫 Ί,3- 二 壬 氧 基 二 錫 •1,3- 二 癸 氧 基 二 錫 Ί,3- — 曱 氧 基 二 錫 1,3- 乙 氧 基 二 錫 &quot;1,3- -* 丙 氧 基 二 錫 •1,3- 丁 氧 基 二 錫 •1,3- 二 戊 氧 基 二 錫 •1,3- 己 氧 基 二 錫 物)、1,1,3,3-四 1,1,3,3-四丁基 1,1,3,3-四丁基 1,1,3,3-四丁基 1,1,3,3-四丁基 1,1,3,3-四丁基 1,1,3,3-四丁基 1,1,3,3-四丁基 1,1,3,3-四丁基 1,1,3,3-四丁基 1,1,3,3-四丁基 1,1,3,3-四辛基 1,1,3,3-四辛基 1,1,3,3_四辛基 1,1,3,3-四辛基 1,1,3,3-四辛基 1,1,3,3-四辛基 錫氧烷(各異構物)、 氧烷(各異構物)、 氧烷(各異構物)、 氧烧(各異構物)、 氧烷(各異構物)、 氧烷(各異構物)、 氧烷(各異構物)、 氧烷(各異構物)、 氧烷(各異構物)、 氧烷(各異構物)、 氧烷(各異構物)、 氧烷(各異構物)、 氧烷(各異構物)、 氧烷(各異構物)、 氧烷(各異構物)、 氧烷(各異構物)、 氧烷(各異構物)、 131506.doc -50· 200948759 1,1,3,3-四辛基-u-二庚氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基4,3-二辛氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基4,3-二壬氧基二錫氧烷(各異構物)、 1,1,3’3-四辛基-i,3-二癸氧基二錫氧烷(各異構物)等 1,1,3,3-四院基_ 1,3- 一烧氧基-一錫氧烧,其中進而較好的 是1,1,3,3_四丁基-1,3-二丁氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基_ι,3-二戊氧基二錫氧烷(各異構物)、 1,1’3,3·四丁基- i,3-二己氧基二錫氧烷(各異構物)、 1’1,3,3-四丁基_ι,3-二庚氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-i,3-二辛氧基二錫氧烷(各異構物)、 1,1,3,3·四辛基-!,3-二丁氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-i,3-二戊氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基_ι,3-二己氧基二錫氧烷(各異構物)、 1,1’3,3-四辛基_ι,3-二庚氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-〗,3-二辛氧基二錫氧烷(各異構物)。 以上述式(11)所表示之四烷基二烷氧基二錫氧烷表現為 單體結構,但亦可為多聚體結構或締合物。 已知’通常有機錫化合物易於形成締合結構,例如二院 基錫二烧氧基錫形成二聚物結構、或四烧基二烧氧基二錫 氧烷形成2分子或3分子締合而成之梯形結構而存在,即使 疋在如此之締合狀態產生變化之情況下,對業者而言以單 體結構表示化合物較為普通。 又,上述所示之一院基錫化合物既為單獨,亦可為2種 以上之混合物。 131506.doc 51 200948759 作為二烷基錫化合物之製造方法,可較好地利用已揭示 之製造方法(WO 2005/^^9等)。本步驟係由二烧基氧化 錫與醇製造二燒基錫化合物之步驟。 作為本實施形態中所使用之醇,係甲醇、乙醇、丙醇 (各異構物)、丁酵(各異構物)、戊醇(各異構物)、己醇(各 異構物)、庚醇(各異構物)、辛醇(各畏性體)、壬醇(各異構 物)、癸醇(各異構物)等醇,可較好地使用構成該醇之碳原 子數係選自1〜12之整數之數的醇。 烷基錫烷氧化物合成步驟中所使用之二烷基氧化係使用 以下式(12)所表示之二烧基氧化錫。 [化 10] /R12 \ ~rSn-θ']- V r13 / η (1 2) (式中: R12及R13分別獨立表示直鏈狀或分支狀之碳數為之 烧基)。 作為RU及R13之例,可列舉:甲基、乙基、两基(各異構 物)、丁基(各異構物)、戊基(各異構物)、己基(各異構 物)、庚基(各異構物)、辛基(各異構物)、壬基(各異構 物)、癸基(各異構物)、十一烷基(各異構物)、十二烷基(各 異構物)等碳數為1~12之脂肪族烴基即烷基等。更好的是 碳數為1〜8之直鏈狀或支鏈狀之飽和烷基,進而較好的是 正丁基、正辛基。 131506.doc -52· 200948759 使醇與二烷基氧化錫進行脫水反應’一邊將所生成之水 去除到系統外’一邊獲得四烷基二烷氧基二錫氧烷及/或 二院基錫二燒氧化物。實施該反應之溫度例如為8〇〜18(rc 之範圍,為將所生成之水蒸餾去除到系統外,反應溫度亦 取決於反應壓力,但較好的是10(rc〜18(rc,為提高反應 速度’反應溫度較好的是高溫,另一方面,亦具有於高溫 下引起分解等不良反應之情形,有時導致產率下降,因 此,反應溫度進而較好的是10(TC〜160°c之範圍。反應壓 力係可將所生成之水去除到系統外之壓力,亦取決於反應 溫度,於20〜1X106 Pa下進行。脫水反應之反應時間並無特 別限制,通常為0.001〜50小時,較好的是〇〇1〜1〇小時更 好的疋0 ’ 1 2小時。右獲传所需烧基錫烧氧化物組合物則 可結束反應。反應之進行可藉由測定排出至系統外之水量 而確認,亦可取樣反應液,以利用方法確 〇,u為於步驟(1)中製造本實施形態之混合物,於確認獲得 Φ 如下組合物即可結束反應,即,上述反應中所獲得之烷基 錫烷氧化物乡且合物中所含有之四烧基二烧氧基二锡氧烧與 一基錫一燒氧化物的莫耳比率,以合併兩者之莫耳% 計,為〇 : 100〜80 : 20之範圍,更好的是1〇 : 9〇〜7〇 : 3〇之 範圍的虹合物。所使用之醇可直接以共存之狀態使用,亦 可根據情況蒸館去除醇而使用。因具有可縮小其他步驟之 反應^的優點,故較好的是儘可能去除醇。去除之方法較 好的是利用眾所周知之利用蒸館之去除法,又,蒸館所使 用之蒸餘器可使用眾所周知之霧德設備。作為較好之蒸顧 131506.doc -53- 200948759 裝置,由於可於短時間去除,因此可較好地使用薄膜蒸餾 裝置。脫水反應之反應器之形式並無特別限制,可使用眾 所周知之槽狀、塔狀反應器β含水之低沸點反應混合物可 藉由蒸餾而以氣狀自反應器排出,且可將包含所製造之统 基錫烷氧化物或烷基錫烷氧化物混合物之高沸點反應混合 物自反應器下部以液狀排出。作為如此之反應器,例如可 採用使用包含攪拌槽、多段攪拌槽、蒸餾塔、多級蒸餾 塔、多管式反應器、連續多級蒸餾塔、填充塔、薄膜蒸發 态、内部具備支持體之反應器、強制循環反應器、降膜蒸 發器、落滴蒸發器、細流相反應器、氣泡塔甲的任一種之 反應器之方式,以及將該等加以組合之方式等眾所周知之 各種方法。就使平衡有效地偏向生成系側而言,較好的是 使用塔狀反應器,又,較好的是使所形成之水迅速轉移至 氣相之氣-液接觸面積較大的結構。亦可採用使用多管式 反應器、多級蒸館塔、填充有填充劑之填充塔之連續法, ❹但本步驟中所使用之二燒基氧化锡通常為固體狀,因此最 好的是首先於槽狀反應器中實施,繼而於塔型反應器中提 高二烷基錫二烷氧化物之含量的方法。若不造成不良影 響,則反應器及管路之材質可為眾所周知之任何材質,其 中SUS304或SUS316、SUS316L等較為廉價,故可較好地 使用視需要,可附加流量計、溫度計等測量儀器,再沸 器、泵、冷凝器等眾所周知之處理裝置;加熱可利用蒸 氣加,、.、器等眾所周知之方法,冷卻亦可使用自然冷卻、 冷卻水、鹽水等眾所周知之方法。 131506.doc •54· 200948759 步驟(1)係使藉由上述方法所製造之二烷基錫化合物與 氣狀二氧化碳進行反應,而製造碳酸酯之步驟❶該步驟較 好的是使用已揭示之碳酸酯之製造方法(WO 03/055840、 WO 04/014840 等)。 供給至本步驟之烷基錫化合物,有時於啟動時係由烷基 錫烷氧化物合成步驟而供給;有時於連續製造時係自下述 步驟(4)之二烷基錫化合物製造步驟經由步驟(5)而供給。 步驟(1)中,首先將上述二烷基錫烷氧化物及氣狀二氧 化碳加以吸收’使之進行化學反應,而獲得含有二烷基錫 烷氧化物之二氧化碳鍵結體之混合物。進行化學反應時, 使該二烷基錫烷氧化物呈液狀而進行反應。二烷基錫烷氧 化物為固體之情形時,為了使該二烷基錫烷氧化物成為液 狀,可較好地使用藉由加熱而成為液狀之方法。又,亦可 利用溶劑等使其成為液狀。反應壓力亦取決於反應之溫 度’較好的是常壓〜1 MPa之範圍,進而較好的是常壓〜0.6 MPa之範圍。該反應溫度亦取決於反應之壓力,但較好的 是-40°C〜80°C之範圍,若考慮運送時之流動性,則進而較 好的是〇°C〜80°C ’最好的範圍為常溫(例如2〇。(:)~80。(:。 反應時間為數秒〜100小時之範圍内實施,若考慮生產性 等,則較好的是數分鐘〜10小時。反應器可使用眾所周知 之槽型反應器、塔型反應器。又’亦可將複數個反應器組 合使用。因反應係二氧化碳氣體(氣體)與烷基錫烷氧化物 組合物(液體)之反應’故為了高效率地進行反應,較好的 是擴大氣液界面以擴大氣體與液體之接觸面積。如此之擴 131506.doc -55- 200948759 大氣液界面而#之/5庙* 、,. __G (each isomer), U, 3,3_tetrabutyl-indole, 3•diethyl decyl sulphide (each isomer), 1,1,3,3·tetrabutyl _ 1,3_dipropene oxydioxazolidine (each isomer), 1,1,3,3-tetrabutyldibutoxy dianoxane (each isomer), 1,1 , 3,3-tetrabutyldipentyloxydistannoxane (each isomer), 1,1,3,3-tetrabutylbis(dodecyloxy)distannoxane (various Structure), 1,1,3,3-tetraoctyldiethoxynonantaxane (each isomer), 1,1,3,3-tetraoctyl-i,3_dipropene Oxydistanoxane (each isomer), 1,1,3,3-tetraoctyl-ι, 3-dibutoxy dianoxane (each isomer), 1,1,3 ,3-tetraoctyl-i,3-dipentyloxydistannoxane (each isomer), 1,1,3,3-tetraoctyl-i,3-di(dodecyloxy) 1, 1,3,3,tetraalkyl-1,3-dimethoxyoxydistannoxane, etc., yunhong tetramethyl-1,3-di Gas distannoxane, ι,ι,3,3-tetramethyl-indole, 3-dibromodistannoxane, 1,1,3,3-tetrabutyl-1,3-dioxide, tin oxychloride Alkane ), 1,1,3,3 -tetrabutyl-1,3 -------------------------------------------------------- Tin, breast (each isomer), 1,1,3,3-tetraalkyl, etc., l,i,3,3-tetraoctyl-1,3-dibromodithioxanthine (each isomer) _ι,3-two paintings of distannoxane. Among these, 1,1,3,3-tetramethyl_ι,3·dimethoxyditin 131506.doc •49- 200948759 oxane, 1,1,3,3-four F-yl-1,3-diethyl fluorenyl stannane, smectic tetramethyl-1,3-dipropoxydistannoxane (each isomer), hydrazine, ι, 3, 3·4 Methyl _ i'3 - dibutoxy oxoxane (each isomer), 1,1,3,3-tetradecyl-1,3-dipentyloxydithionate (isomeric , 1,1,3,3-tetradecyl_ι,3-dihexyloxystannane (each isomer), 1,1,3,3-tetradecyl-1,3- Diheptyloxydistannoxane (each isomer), i'1,3,3·tetramethyl-1,3-dioctoxydistannoxane (each isomer), 1,1, 3,3-Tetramethyl-hydrazine, 3-dioxaoxydistannoxane (isomethyl-1,3-dimethoxyoxydi-1,3-dimethoxyditin-i, 3 - —* Ethoxyditin*1,3-propoxyditin&quot;1,3-Dibutoxyditin~1,3-dipentyloxyditin•1,3-dihexyloxy Di-tin-1,3-1,3-diheptyloxydishrazin, 3-dioctyloxyditin, 3-dimethoxydioxy-1,3-di Oxydixime, 3- methoxy di tin 1,3- ethoxydi tin &quot;1,3- -* propoxyditin • 1,3-butoxy bis tin • 1,3 - Dipentyloxytin•1,3-hexyloxyditin), 1,1,3,3-tetra-1,1,3,3-tetrabutyl 1,1,3,3-tetrabutyl 1,1,3,3-tetrabutyl 1,1,3,3-tetrabutyl 1,1,3,3-tetrabutyl 1,1,3,3-tetrabutyl 1,1,3 , 3-tetrabutyl 1,1,3,3-tetrabutyl 1,1,3,3-tetrabutyl 1,1,3,3-tetrabutyl 1,1,3,3-tetraoctyl 1,1,3,3-tetraoctyl 1,1,3,3_tetraoctyl 1,1,3,3-tetraoctyl 1,1,3,3-tetraoctyl 1,1,3, 3-tetraoctylstannane (each isomer), oxyalkylene (each isomer), oxyalkylene (each isomer), oxy-fired (each isomer), oxyalkylene (each isomer) , oxane (each isomer), oxyalkylene (each isomer), oxyalkylene (each isomer), oxyalkylene (each isomer), oxyalkylene (each isomer), oxyalkylene (each Isomers), oxane (each isomer), oxyalkylene (each isomer), oxyalkylene (each isomer), oxyalkylene (each isomer) , oxane (each isomer), oxane (each isomer), 131506.doc -50· 200948759 1,1,3,3-tetraoctyl-u-diheptyloxydistannoxane Isomer), 1,1,3,3-tetraoctyl 4,3-dioctoxydistannoxane (each isomer), 1,1,3,3-tetraoctyl 4,3- 1,1,3'3-tetraoctyl-i,3-dimethoxyoxystannane (each isomer), etc. 1,1, 3,3-four-yard base _ 1,3-alkaline-oxy-tin-oxygen, of which 1,1,3,3-tetrabutyl-1,3-dibutoxy-di-tin is further preferred. Oxane (each isomer), 1,1,3,3-tetrabutyl-I,3-dipentyloxydistannoxane (isomers), 1,1'3,3·tetradecene Base-i,3-dihexyloxystannane (each isomer), 1'1,3,3-tetrabutyl-I,3-diheptyloxydistannoxane (each isomer) , 1,1,3,3-tetrabutyl-i,3-dioctoxydistannoxane (each isomer), 1,1,3,3·tetraoctyl-!,3-di Butoxy-distannoxane (each isomer), 1,1,3,3-tetraoctyl-i,3-dipentyloxydistannoxane (isomers), 1,1,3 , 3-tetraoctyl _ι,3-dihexyloxystannane (each isomer), 1,1'3,3-tetraoctyl_ι,3-diheptyloxydistannoxane (each isomer), 1,1,3,3-tetraoctyl-, 3-dioctyloxydistannoxane (each isomer). The tetraalkyldialkoxydistannoxane represented by the above formula (11) exhibits a monomer structure, but may also be a multimeric structure or an associate. It is known that 'usually an organotin compound is liable to form an association structure, for example, a two-base tin-tin lanthanum oxytin to form a dimer structure, or a tetraalkyl-di- oxy-distannoxane to form a two- or three-molecular association. In the case of a trapezoidal structure, even if the state of the association changes, it is common for the manufacturer to express the compound in a monomer structure. Further, one of the above-mentioned base tin compounds may be used singly or in combination of two or more kinds. 131506.doc 51 200948759 As a method for producing a dialkyltin compound, the disclosed production method (WO 2005/^^9, etc.) can be preferably utilized. This step is a step of producing a bis-tin-based tin compound from a dialkyltin oxide and an alcohol. The alcohol used in the present embodiment is methanol, ethanol, propanol (each isomer), butyrate (each isomer), pentanol (each isomer), and hexanol (each isomer) An alcohol such as heptanol (each isomer), octanol (each phosgen), decyl alcohol (each isomer), or decyl alcohol (each isomer) can preferably use a carbon atom constituting the alcohol. The number is an alcohol selected from the number of integers from 1 to 12. The dialkyl oxide used in the alkyltin alkoxide synthesis step is a dialkyltin oxide represented by the following formula (12). /R12 \ ~rSn-θ']- V r13 / η (1 2) (wherein R12 and R13 each independently represent a linear or branched carbon number as a base). Examples of RU and R13 include a methyl group, an ethyl group, a two group (each isomer), a butyl group (each isomer), a pentyl group (each isomer), and a hexyl group (each isomer). , heptyl (each isomer), octyl (each isomer), thiol (each isomer), thiol (each isomer), undecyl (each isomer), twelve An alkyl group (each isomer) or the like, which is an aliphatic hydrocarbon group having 1 to 12 carbon atoms. More preferably, it is a linear or branched saturated alkyl group having 1 to 8 carbon atoms, and more preferably n-butyl group or n-octyl group. 131506.doc -52· 200948759 Dehydration of an alcohol with a dialkyltin oxide, while removing the formed water to the outside of the system, to obtain a tetraalkyldialkoxydistannoxane and/or a secondary compound tin Second burned oxide. The temperature at which the reaction is carried out is, for example, in the range of 8 Torr to 18 (rc), in order to distill off the generated water to the outside of the system, the reaction temperature also depends on the reaction pressure, but preferably 10 (rc~18 (rc, Increasing the reaction rate 'The reaction temperature is preferably a high temperature. On the other hand, it also causes an adverse reaction such as decomposition at a high temperature, which sometimes causes a decrease in yield. Therefore, the reaction temperature is preferably 10 (TC to 160). The range of °c. The reaction pressure can remove the generated water to the pressure outside the system, and also depends on the reaction temperature, and is carried out at 20~1×106 Pa. The reaction time of the dehydration reaction is not particularly limited, and is usually 0.001 to 50. In an hour, it is preferred that 〇〇1 to 1 〇h is better for '0 '1 2 hours. The reaction can be terminated by transferring the desired sulphur-based tin oxide composition to the right. The reaction can be carried out by measurement. It is confirmed by the amount of water outside the system, and the reaction liquid can also be sampled and confirmed by the method. u is the mixture of the present embodiment produced in the step (1), and it is confirmed that the following composition can be obtained to complete the reaction, that is, the above reaction. Alkane obtained in The molar ratio of the tetraalkyl oxydioxyn oxysulfide and the bismuth tin oxide to the oxide contained in the stannane oxide compound is 〇: 100 in terms of the molar % of the two. ~80:20 range, more preferably 1〇: 9〇~7〇: 3虹 range of the rainbow. The alcohol used can be used directly in the coexistence state, and the alcohol can be removed according to the situation. Use. Because it has the advantage of reducing the reaction of other steps, it is better to remove the alcohol as much as possible. The method of removing is preferably using the well-known removal method using steaming, and the steaming used in the steaming hall. The well-known fog device can be used. As a better steaming device 131506.doc -53- 200948759, since it can be removed in a short time, the thin film distillation device can be preferably used. The form of the dehydration reaction reactor is not It is particularly limited that a low-boiling reaction mixture containing a well-known trough-like, columnar reactor β water can be discharged from the reactor in a gas form by distillation, and may contain a tin-alkaxane or alkyl group produced. High boiling of tin alkoxide mixture The point reaction mixture is discharged from the lower part of the reactor as a liquid. As such a reactor, for example, a stirring tank, a multi-stage stirring tank, a distillation column, a multi-stage distillation column, a multi-tubular reactor, a continuous multi-stage distillation column, a method of filling a column, a thin film evaporation state, a reactor having a support inside, a forced circulation reactor, a falling film evaporator, a falling drop evaporator, a fine flow phase reactor, and a bubble column, and Various methods, such as a combination of methods, etc., in order to effectively balance the equilibrium toward the side of the formation, it is preferred to use a column reactor, and it is preferred to rapidly transfer the formed water to the gas phase. A structure in which the gas-liquid contact area is large. A continuous method using a multi-tubular reactor, a multi-stage steaming tower, and a packed column filled with a filler may be employed, but the second-burning tin oxide used in this step may be used. It is usually in the form of a solid, and therefore it is preferred to carry out the first step in a trough reactor, followed by a method of increasing the content of the dialkyltin dialkoxide in the column reactor. If the adverse effects are not caused, the materials of the reactor and the piping may be any known materials, and SUS304, SUS316, SUS316L, etc. are relatively inexpensive, so that it can be used as needed, and a measuring instrument such as a flow meter or a thermometer can be added. Well-known processing devices such as a reboiler, a pump, and a condenser; the heating can be performed by a well-known method such as steam addition, a device, or the like, and a well-known method such as natural cooling, cooling water, or brine can be used for cooling. 131506.doc •54· 200948759 Step (1) is a step of producing a carbonate by reacting a dialkyltin compound produced by the above method with gaseous carbon dioxide. This step preferably uses the disclosed carbonic acid. Process for the production of esters (WO 03/055840, WO 04/014840, etc.). The alkyl tin compound supplied to this step may be supplied by an alkyl stane alkoxide synthesis step at the time of startup; sometimes it may be a dialkyl tin compound production step from the following step (4) in continuous production. It is supplied via step (5). In the step (1), the above dialkyltin alkoxide and gaseous carbon dioxide are first absorbed to carry out a chemical reaction to obtain a mixture of a carbon dioxide bond containing a dialkyltin alkoxide. When the chemical reaction is carried out, the dialkylstannane oxide is reacted in a liquid state. When the dialkylstannoxide is a solid, in order to make the dialkylstan alkoxide liquid, a method of forming a liquid by heating can be preferably used. Further, it may be made into a liquid form by using a solvent or the like. The reaction pressure also depends on the temperature of the reaction, which is preferably in the range of normal pressure to 1 MPa, and more preferably in the range of normal pressure to 0.6 MPa. The reaction temperature also depends on the pressure of the reaction, but is preferably in the range of -40 ° C to 80 ° C. If the fluidity during transportation is considered, it is preferably 〇 ° C to 80 ° C. The range is normal temperature (for example, 2 〇. (:) ~ 80. (: The reaction time is in the range of several seconds to 100 hours, and if productivity is considered, it is preferably several minutes to 10 hours. The reactor can be used. A well-known tank reactor or a tower reactor is used. Further, a plurality of reactors can be used in combination. Since the reaction is a reaction between carbon dioxide gas (gas) and an alkyl tin alkoxide composition (liquid), Efficiently reacting, it is better to expand the gas-liquid interface to expand the contact area between gas and liquid. So expand 131506.doc -55- 200948759 atmospheric liquid interface and #/5 temple*,,. __

若利用塔型反應器,則較好的是利用If a tower reactor is used, it is better to utilize

爾環(Pall ring)、弧鞍形填料(Beri saddie)、矩輕環填料 (Intalox saddle)、狄克松填料(Dix〇n paeking)、網鞍填料 (McMahon Packing)、螺旋填料(Heli pack)、絲網波紋填料 (Sulzer Packing)、孔板波紋填料(MeUapak)等各種填充物 之填充塔方式等。若不造成不良影響,則反應器及管路之 材質可為眾所周知之任意材質,其中SUS304或SUS316、 SUS316L等較為廉價,故可較好地使用。視需要,亦可附 加流量計、溫度計等測量儀器,再沸器、泵、冷凝器等眾 所周知之處理裝置;加熱可利用蒸氣、加熱器等眾所周知 之方法,冷卻亦可使用自然冷卻、冷卻水、鹽水等眾所周 知之方法。反應通常為發熱反應,因此既可冷卻,或者亦 可利用反應器之放熱而進行冷卻β或者若需一併進行碳酸 酯化反應則可進行加熱。反應器之冷卻、加熱可採用利用 套管之方法、利用内部線圈之方法等眾所周知的方法。供 給至反應器之一氧化碳氣體與烧基錫貌氧化物組合物可分 別供給至反應器’亦可於供給至反應器前預先加以混合。 可自反應器之多個部位進行供給。反應結束例如可藉由 U9Sn-NMR分析而決定。 131506.doc •56· 200948759 其次,利用以下方法,由上述所獲得之二炫基錫院氧化 物之二氧化碳鍵結體,獲得包含碳酸鞄之反應液。 ❹ 反應條件係1HTC〜·。C之範圍’為了提高:應速度, 較好的是反應溫度為高溫,另一方面,亦存在高溫下引起 分解等不良反應之情形,有時會導致產率會下降,因此較 好的是12Gt〜18G°C之範圍,反應時間為Qi小時〜1〇小時 之範圍’反應壓力為M MPa〜2〇略,較好的是2〇 MPa〜H) MPa之範圍。可於反應器中生成所需的碳酸醋後 結束反應。反應之進行可利用如下方法等來確認:對反應 器内之反應㈣行取樣,以1Η·職或氣相層析法等方法 對所生成之碳酸醋進行分析。例如,相對於二烧基錫院氧 化物及/或二烷基錫烷氧化物之二氧化碳鍵結體中所含之 二院基錫院氧化物及/或二烧基㈣氧化物之二氧化碳鍵 結體的莫耳數’生成10%以上後便可結束反應,於欲增加 碳酸輯產量之情形時’反應持續至該值為觸以上後終 反應器可使用眾所周知之反應器,可較好地同時使用 塔型反應器、槽型及施 μ 反應窃。右不造成不良影響,則反應器 及目路之材f可為眾所周知之任意材質,其中剛04或 SUS316L等較為廉價,故可較好地使用。視需 a凝!:附加流量計、溫度計等測量儀器,再沸器、泵、 所周知之處理裝置;加熱可利用蒸氣、加熱器 等眾所周知之方 水等眾所心卻亦可使用自然冷卻、冷卻水、鹽 本實施形態中之步驟⑺係自上述步驟⑴中所獲得之包 131506.doc •57· 200948759 含炭酸知之反應液中將碳酸酯加以分離回收,並且獲得殘 留液之步驟。分離方法可適當地利用眾所周知之方法或裝 置。較好之方法係利用蒸館進行分離之方法。 =自上述步驟(1)中所運送出之反應液進行批式或半批 式或者連續式蒸餾,而獲得碳酸酯及殘留液。較好之蒸餾 方去係如下方法:將該反應液供給至蒸德器中,將碳酸醋 作為氣相成分自蒸館器上部分離至系統外,將殘留液作為 液狀成刀自蒸館器之底部排出。本步驟之溫度亦取決於該 碳酸醋f弗點或壓力負可^常溫⑼如抓卜細^之範 圍,有時於高溫下殘留液中之錫化合物會發生改性,或碳 酸s曰由於逆反應而減少,因此較好的是常溫(例如汕 C) 150C之範圍。壓力亦取決於碳酸醋之種類或實施反 應之皿度’通常是於常壓至減壓條件下進行反應,若考慮 生產性,則進而較好的是1〇〇 Pa〜8〇〖以之範圍最好的 是100 Pa〜50 KPa之範圍。時間可為0.01小時〜10小時之範 〇目下實施’若於高溫下長時間實施反應,則該反應液中所 含錫化合物會發生改性或碳酸醋由於逆反應而減少,因此 較好的是G.G1小時〜〇.5小時之範圍,最好的是小時 ,小時之範圍。蒸館器可使用眾所周知之蒸館器,亦可 較好地使用塔型蒸館器、槽型蒸餘器,亦可將複數個蒸館 器組,使用。進而較好的蒸館器係薄膜蒸發器、薄膜蒸傲 器’最好的是具備蒸館塔之薄膜蒸發器、薄膜蒸館器。若 不造成不良影響,則蒸館器及管路之材質可為眾所周知之 任意材質,其中SUS304或s酬6、_亂等較為廉 \3l506.doc -58- 200948759 價,故可較好地使用。視需要,可附加流量計、溫度計等 測量儀器,再沸器、泵、冷凝器等眾所周知之處理裝置; 加熱可利用蒸氣、加熱器等眾所周知之方法,冷卻亦可使 用自然冷卻、冷卻水、鹽水等眾所周知之方法。 步驟(3)係使步驟(2)中分離之碳酸二烷基酯與芳香族經 基化合物A進行反應,獲得碳酸二芳酯,將作為副產物而 生成之醇加以回收之步驟。此處所謂芳香族羥基化合物係 扣相當於化合物尺1〇11之化合物,該化合物係構成以 © 上述式(8)所表示之碳酸二芳酯之基Rl〇(Rl表示上述定義 之芳香族基’〇表示氧原子)中加成有氫原子者。具體而 言’作為較好地使用之芳香族羥基化合物A之例,可列 舉:苯酚、甲基苯酚(各異構物)、乙基苯酚(各異構物)、 丙基苯酚(各異構物)、丁基苯酚(各異構物)、戊基苯酚(各 異構物)、己基苯酚(各異構物)等單取代笨酚類,二曱基笨 紛(各異構物)、二乙基苯紛(各異構物)、二丙基苯盼(各異 〇 構物)、曱基乙基苯酚(各異構物)、甲基丙基苯酚(各異構 物)、甲基丁基苯酚(各異構物)、曱基戊基苯酚(各異構 物)、乙基丙基苯酚(各異構物)、乙基丁基苯酚(各異構物) 等二取代苯酚類,三甲基苯酚(各異構物)、三乙基苯酚(各 異構物)、二曱基乙基苯酚(各異構物)、二甲基丙基苯酚 (各異構物)、二甲基丁基苯酚(各異構物)等三取代苯酚 類,萘酚(各異構物)等。 本實施形態中之步驟(3)係使步驟(2)中分離之主要含有 碳酸酿之成分與芳香族羥基化合物A進行反應,獲得碳酸 131506.doc -59- 200948759 二芳醋之步驟。自碳酸二烧基醋及芳香族羥基化合物獲得 碳酸烷基芳酯、碳酸二芳酯之方法,迄今為止提出有夕 方案’本實施形態中,亦可較好地使用該等技術。 步驟(3)之反應包含碳酸酯與芳香族經基化合物之於 換反應’及藉由該酿交換反應而獲得之碳酸二燒武奸妒 不均化反應。 S旨交換反應係平衡反應,為有利地推進反應,較好的日 於酯交換反應中一邊排出脫附生成之醇,一邊進行反應 ® 於此情形時,較好的是,步驟(3)中所使用之芳香族羥基化 合物之沸點高於構成步驟(2)中所獲得之碳酸烷基酯之=基 醇的沸點。尤其是使步驟(1)〜步驟(3)之步驟重複—次2上 連續實施之情形時,較好的是烷基醇之沸點低於芳香族羥 基化合物之標準沸點,該沸點差較好的是2。〇,若考慮分 離之容易程度,則進而較好的是10 。 作為步驟(3)中所使用之碳酸二烷基酯之例,例如使用 •碳酸二甲醋、碳酸二乙醋、碳酸二丙醋(各異構物)、碳酸 二丁酯(各異構物)、碳酸二戊酯(各異構物)、碳酸二己酯 (各異構物)、碳酸二庚酯(各異構物)、碳酸二辛酯(各異構 物)、碳酸二壬醋(各異構物)、碳酸二癸酿(各異構物)、、碳 酸二環戊醋、碳酸二環己醋、碳酸二環庚醋(各異構物广 碳酸二节基醋、碳酸二苯乙基醋(各異構物)、碳酸二 丙基叫各異構物)、碳酸二(苯基丁基)醋(各異料)、二 酸一(氯节基)醋(各異構物)、碳酸二(甲氧基节基)醋(各異 構物)、碳酸二(甲氧基甲基)酿、碳酸二(甲氧基乙基)輯(各 I31506.doc 200948759 異構物)、碳酸二(氯乙基)醋(各異構物)、碳酸二(氰乙基) 醋(各異構物)、碳酸甲基乙基酿、碳酸甲基丙基醋(各異構 物)、碳酸甲基丁基醋(各異構物)、碳酸乙基丙基醋(各異 構物)、碳酸乙基丁基醋(各異構物)、碳酸乙烯酿、碳酸丙 烯酯等。所使用之碳酸酯可為一種,亦可為混合物。 該等碳酸二院基^旨中’本實施形態中較好使用的是構成 碳酸酯之醇之標準沸點高於水之標準沸點的醇,係具有碳 數為4〜12之院基之院基醇、具有直鏈狀或支鏈狀之碳數為 4〜12之烯基的烯基醇、環烷基醇、芳烷基醇。為了有利地 推進步驟(3)中進行之反應,若考慮去除藉由步驟(3)之反 應而生成之醇,則進而較好的是標準沸點低於步驟所使 用之芳香族羥基化合物之標準沸點的醇。即,較好的是由 標準沸點高於水、且標準沸點低於芳香族羥基化合物之醇 所構成的碳酸二烷基酯。 步驟(3)中所使用之芳香族經基化合物之量相對於在步 〇 驟(2)中分離、在步驟(3)中使用之碳酸二烷基酯之量,以 化學計量比計,可於O.i倍〜1〇〇〇〇倍之範圍内使用。步驟 (3)之反應主要係平衡反應,因此芳香族羥基化合物之量較 多較為有利,若增加使用量則反應器變大,其後之生成物 之分離亦需要較大之蒸餾塔等,因此較好的是相對於碳酸 二烷基酯為1〜1000倍之範圍,更好的是biOO倍之範圍。 供給至步驟(3)之化合物主要係碳酸二烷基酯、芳香族 說基化合物,視需要為觸媒,可混入對反應不造成特別不 良影響之雜質。 131506.doc -61 - 200948759 該等供給原料中可包含作為生成物夕# w 战物之醇、碳酸烷基芳 酯、及碳酸二芳酯等,本反應為可诵 1』延反應,因此該等生成 物之濃度過高之情形時,有時原料之反應率下㈣不良。 所供給之碳酸二院基醋與芳香族經基化合物之量比可根據 觸媒之種類及量、以及反應條件而改變,通常,較好的是 以相對於供給原料中之該碳酸二烷基酷”乂莫耳比為 0.01〜1000倍之範圍供給芳香族羥基化合物。 ❹Pall ring, Beri saddie, Intalox saddle, Dix〇n paeking, McMahon Packing, Heli pack Filler towers of various fillers such as Sulzer Packing and MeUapak. If the adverse effects are not caused, the materials of the reactor and the piping can be any known materials, and SUS304, SUS316, SUS316L, etc. are relatively inexpensive, so that they can be preferably used. If necessary, a measuring instrument such as a flow meter or a thermometer, a well-known processing device such as a reboiler, a pump, and a condenser may be added; the heating may be performed by a well-known method such as steam or a heater, and cooling may also use natural cooling and cooling water. A well-known method such as salt water. The reaction is usually an exothermic reaction, so that it can be cooled, or it can be cooled by the exotherm of the reactor or heated if it is required to be subjected to a carbonation reaction. A well-known method such as a method using a sleeve or a method using an internal coil can be employed for the cooling and heating of the reactor. One of the oxidized carbon gas and the sulphur-based tin oxide composition supplied to the reactor may be supplied to the reactor separately, or may be previously mixed before being supplied to the reactor. It can be supplied from multiple parts of the reactor. The end of the reaction can be determined, for example, by U9Sn-NMR analysis. 131506.doc • 56· 200948759 Next, a reaction liquid containing cesium carbonate was obtained from the carbon dioxide bonded body of the above-mentioned dioxide tin oxide obtained by the following method. ❹ The reaction conditions are 1HTC~·. The range of C is 'in order to improve: the speed is high, and the reaction temperature is preferably high temperature. On the other hand, there are cases where an adverse reaction such as decomposition occurs at a high temperature, and sometimes the yield is lowered, so 12 Gt is preferable. The range of ~18G °C, the reaction time is the range of Qi hour ~ 1 〇 hour 'reaction pressure is M MPa ~ 2 〇 slightly, preferably 2 〇 MPa ~ H) MPa range. The reaction can be terminated after the desired carbonated vinegar is formed in the reactor. The progress of the reaction can be confirmed by the following method: sampling of the reaction (4) in the reactor, and analyzing the produced carbonated vinegar by a method such as 1 Η or gas chromatography. For example, a carbon dioxide bond of a two-base tin-oxide oxide and/or a di-alkali (tetra) oxide contained in a carbon dioxide bond of a dialkyl tin oxide oxide and/or a dialkyl tin alkoxide. When the molar number of the body is generated by 10% or more, the reaction can be terminated. When the yield of the carbonic acid is increased, the reaction is continued until the value is above the contact. The reactor can be used with a well-known reactor, which can be preferably simultaneously. Use a tower reactor, tank type and reaction. If the right side does not cause adverse effects, the material of the reactor and the path can be any known material. Among them, just 04 or SUS316L is relatively inexpensive, so that it can be preferably used. As needed, a condensate! : Additional measuring instruments such as flow meters and thermometers, reboilers, pumps, and well-known processing devices; heating can use steam, heaters, etc., such as well-known water, but also natural cooling, cooling water, and salt. The step (7) in the embodiment is a step of separating and recovering the carbonate in the reaction solution containing the carbonic acid from the package 131506.doc • 57· 200948759 obtained in the above step (1), and obtaining a residual liquid. The separation method can suitably utilize a well-known method or apparatus. A preferred method is to use a steaming plant for separation. = The reaction solution carried out in the above step (1) is subjected to batch or semi-batch or continuous distillation to obtain a carbonate and a residual liquid. The preferred distillation method is as follows: the reaction liquid is supplied to a steamer, and the carbonated vinegar is separated as a gas phase component from the upper part of the steaming museum to the outside of the system, and the residual liquid is used as a liquid-formed self-steaming device. The bottom is discharged. The temperature of this step is also determined by the range of the carbonated vinegar f or the pressure negative ^ normal temperature (9) such as the size of the scratch, sometimes the tin compound in the residual liquid will be modified at high temperature, or the reverse reaction of the carbonic acid s 曰It is reduced, so it is better to have a range of room temperature (for example, 汕C) 150C. The pressure also depends on the type of carbonated vinegar or the degree of the reaction to carry out the reaction. The reaction is usually carried out under normal pressure to reduced pressure. If productivity is considered, it is preferably 1 〇〇 Pa 〜 8 〇 The best is the range of 100 Pa to 50 KPa. The time can be from 0.01 hours to 10 hours. If the reaction is carried out at a high temperature for a long period of time, the tin compound contained in the reaction solution may be modified or the carbonated vinegar may be reduced by a reverse reaction, so G is preferably G. .G1 hour ~ 〇. 5 hours range, the best is the range of hours, hours. The steaming hall can use the well-known steaming museum, and can also use the tower steaming device, the trough type steamer, or a plurality of steaming museum groups. Further, a preferred vaporizer-type thin film evaporator and a thin film vaporizer are preferably a thin film evaporator having a steaming tower and a thin film evaporation museum. If it does not cause adverse effects, the material of the steaming machine and the pipeline can be any well-known material, among which SUS304 or s remuneration 6, _ mess, etc. are relatively cheap \3l506.doc -58- 200948759, so it can be used well . If necessary, additional measuring instruments such as flow meters and thermometers, and well-known processing devices such as reboilers, pumps, and condensers can be added. Heating can be performed by well-known methods such as steam and heaters. Cooling can also use natural cooling, cooling water, and brine. And other well-known methods. The step (3) is a step of reacting the dialkyl carbonate separated in the step (2) with the aromatic trans group compound A to obtain a diaryl carbonate, and recovering the alcohol formed as a by-product. Here, the aromatic hydroxy compound is a compound corresponding to the compound ruler 1〇11, and the compound is a group of R1〇 (R1 represents the above-defined aromatic group) represented by the above formula (8). '〇 denotes an oxygen atom) is added to a hydrogen atom. Specifically, examples of the aromatic hydroxy compound A which is preferably used include phenol, methylphenol (each isomer), ethylphenol (each isomer), and propylphenol (isomeric). , monobutyl substituted phenols such as butyl phenol (each isomer), amyl phenol (each isomer), hexyl phenol (each isomer), diterpene (individually), Diethylbenzene (each isomer), dipropyl benzene (diterpene structure), mercaptoethyl phenol (each isomer), methyl propyl phenol (isomers), A Disubstituted phenols such as butyl phenol (each isomer), decylpentyl phenol (each isomer), ethyl propyl phenol (each isomer), ethyl butyl phenol (each isomer) , trimethyl phenol (each isomer), triethyl phenol (each isomer), dimercaptoethyl phenol (each isomer), dimethyl propyl phenol (isomers), Trisubstituted phenols such as dimethyl butyl phenol (each isomer), naphthol (each isomer), and the like. The step (3) in the present embodiment is a step of reacting a component mainly containing a carbonated sugar in the step (2) with an aromatic hydroxy compound A to obtain a carbonic acid 131506.doc-59-200948759 diaryl vinegar. A method of obtaining an alkyl aryl carbonate or a diaryl carbonate from a carbonic acid dialkyl vinegar and an aromatic hydroxy compound has been proposed in the prior art. In the present embodiment, these techniques can be preferably used. The reaction of the step (3) comprises a reaction between the carbonate and the aromatic radical compound and a heterogeneous reaction of the carbonic acid obtained by the brewing exchange reaction. The purpose of the exchange reaction is to balance the reaction, and to promote the reaction favorably, it is preferred to carry out the reaction while discharging the alcohol formed by desorption in the transesterification reaction. In this case, preferably, in the step (3) The aromatic hydroxy compound used has a boiling point higher than the boiling point of the alkyl group constituting the alkyl carbonate obtained in the step (2). In particular, when the steps of the steps (1) to (3) are repeated, and the second embodiment is continuously carried out, it is preferred that the boiling point of the alkyl alcohol is lower than the standard boiling point of the aromatic hydroxy compound, and the difference in boiling point is better. It is 2. Oh, if you consider the ease of separation, then it is better to 10 . As an example of the dialkyl carbonate used in the step (3), for example, dimethyl carbonate, diethyl carbonate, dipropylene carbonate (each isomer), dibutyl carbonate (each isomer) is used. ), diamyl carbonate (each isomer), dihexyl carbonate (each isomer), diheptyl carbonate (each isomer), dioctyl carbonate (each isomer), diterpene carbonate (each isomer), carbonic acid dimer (each isomer), dicyclopentanyl carbonate, dicyclohexanol carbonate, bicycloglycolic acid carbonate (each isomers wide carbonic acid two-base vinegar, carbonic acid two Phenylethyl vinegar (each isomer), dipropyl carbonate is called isomer), bis(phenylbutyl) vinegar (different), diacid-(chlorobenzyl) vinegar (isomeric) , bis(methoxy) vinegar (each isomer), bis(methoxymethyl) carbonate, bis(methoxyethyl) carbonate (each I31506.doc 200948759 isomer) ), bis(chloroethyl) vinegar (each isomer), di(cyanoethyl) carbonate (each isomer), methyl ethyl carbonate, methyl propyl carbonate (isomeric) ), Vinegar, methylbutyl carbonate (including isomers), ethylpropyl carbonate vinegar (different structure thereof), ethyl butyl acetate (including isomers), ethylene carbonate stuffed, propylene carbonate and the like. The carbonate used may be one type or a mixture. In the present embodiment, it is preferable to use an alcohol having a standard boiling point of a carbonate-constituting alcohol higher than a standard boiling point of water, and a hospital base having a carbon number of 4 to 12. An alcohol, an alkenyl alcohol having a linear or branched alkenyl group having 4 to 12 carbon atoms, a cycloalkyl alcohol, or an aralkyl alcohol. In order to advantageously advance the reaction carried out in the step (3), if it is considered to remove the alcohol formed by the reaction of the step (3), it is further preferred that the standard boiling point is lower than the standard boiling point of the aromatic hydroxy compound used in the step. Alcohol. Namely, a dialkyl carbonate composed of an alcohol having a standard boiling point higher than water and having a lower boiling point than the aromatic hydroxy compound is preferred. The amount of the aromatic mercapto compound used in the step (3) is stoichiometrically relative to the amount of the dialkyl carbonate separated in the step (2) and used in the step (3). Use within the range of Oi times ~ 1〇〇〇〇. The reaction in the step (3) is mainly an equilibrium reaction, so that the amount of the aromatic hydroxy compound is more favorable, and if the amount of use is increased, the reactor becomes large, and thereafter the separation of the product requires a larger distillation column or the like. It is preferably in the range of 1 to 1000 times, more preferably in the range of 200 times, with respect to the dialkyl carbonate. The compound to be supplied to the step (3) is mainly a dialkyl carbonate or an aromatic compound, and if necessary, a catalyst, and impurities which do not particularly adversely affect the reaction can be mixed. 131506.doc -61 - 200948759 These feed materials may include alcohols, alkyl aryl carbonates, and diaryl carbonates as products, and the reaction is a reaction. When the concentration of the product is too high, the reaction rate of the raw material may be poor (four). The ratio of the amount of the carbonated acetal to the aromatic mercapto compound to be supplied may vary depending on the kind and amount of the catalyst, and the reaction conditions. Usually, it is preferably the dialkyl carbonate relative to the feedstock. The aromatic 羟基 molar ratio is 0.01 to 1000 times the range to supply the aromatic hydroxy compound.

步驟(3)之醋交換反應之反應時間亦根據反應條件或反 應器之種類或内部結構而不同,通常為0 001〜50小時較 好的是0.(Π〜1()小時,更好的小時。反應溫度係反應 器内之溫度’根據所使用之原料化合物即碳酸二烷基酯及 芳香族羥基化合物之種類而不同,通常於5〇t〜35(rc,較 好的是Hxrc〜2贼之範圍内進行β χ,反應壓力根據所 使用之原料化合物之種類或反應溫度等而不同可為減 麼、常壓、加麼之任-種,通常於1G pa〜2G他之範圍内 進行。 A本實施形態中,並非必須使用溶劑,以使反應操作容易 等為目的’可使用適當之惰性溶劑,例如醚類、脂肪族烴 類、芳香族烴類、南化脂肪族烴類、齒化芳香族烴類等作 為反應;谷齊J X,可使作為對反應為惰性之物質之氮氣、 氦氣氬氣等惰性氣體共存於反應系統中,亦以加速淘去 所生成之低4點副產物為目的,自連續多級蒸館塔之下 4將Jl述惰性氣體或對反應為惰性之低焰點有機化合 以氣狀導入。 13I506.doc -62- 200948759 、實施步驟(3)之S旨交換反應時,可添加觸媒。如上所 ^ ’藉由Sl交換由碳酸S旨獲得碳酸院基芳S旨及碳酸二芳 a曰°亥知父換反應之平衡偏向反應系且反應速度較慢,因 此利用該方法製造碳酸二芳酯時,為改良該等,提出有幾 種方案’本實施形態令亦可較好地使用眾所周知之方法。 本實施形態中所使用之觸媒量根據所使用之觸媒的種 類、反應器之種類、碳酸醋及芳香族經基化合物之種類或 其量比、反應溫度、反應壓力等反應條件之不同而不同, 以相對於作為供給原料之碳義及料族㈣化合物的合 計重量之比例表示,通常,於0 0001〜50重量%使用。又, 使用固體觸媒之情形時,相對於反應器之空塔容積,較好 地使用0.01〜75體積%之觸媒量。 作為與用以加快反應速度之觸媒相關的提出方案,已知 眾多之含金屬觸媒。本實施形態中亦可使用眾所周知之酯 交換反應觸媒。使碳酸酯與芳香族羥基化合物進行反應, 來製造包含碳酸烷基芳酯及/或碳酸烷基芳酯及碳酸二芳 酯之混合物的方法中,作為如此之觸媒,例如提出有過渡 金屬齒化物等路易斯酸或使路易斯酸純化之化合物類,有 機錫烷氧化物或有機錫氧化物類等錫化合物,鹼金屬或鹼 土類金屬之鹽類及烧氧化物類,錯化合物類,銅、鐵、錯 等金屬錯合物類,鈦酸酯類,路易斯酸與質子酸之混合 物’ Sc、Mo、Mn、Bi、Te等之化合物,乙酸鐵等。碳酸 一芳酿之生成可僅於醋父換反應中產生,亦可利用酯交換 反應所生成之碳酸烧基芳酯之不均化反應而生成。此處所 131506.doc -63 - 200948759 明不均化反應係指由2個分子之碳酸烷基芳酯生成碳酸二 烷基酯及碳酸二芳酯之反應。碳酸烷基芳酯進一步與芳香 族羥基化合物進行反應,亦引起成為碳酸二芳酯之反應, 不均化反應較快,因此欲獲得碳酸二芳酯之情形時,使碳 酸烷基芳酯不均化而獲得碳酸二芳酯。任一反應均為平衡 反應。製造碳酸烷基芳酯之酯交換反應中,一邊排出烷基 醇邊進行反應,不均化步驟中,一邊排出碳酸二烷基酯 邊進行反應較為有利。因此,各階段中較好之反應條件 不同。連續進行反應之情形時,必需分成2個階段進行反 應,以批次式進行之情形時,亦可於相同反應器内逐次進 行。 因此,可與上述酯交換觸媒一起,使催化不均化反應之 觸媒/、存。亦可提出較多如此之觸媒之例。作為如此之觸 媒,例如提出路易斯酸及可產生路易斯酸之過渡金屬化合 物、聚合物性錫化合物 '以通SR X(=〇)〇H (式中,χ選自 ❹ Μ* ΤΙ,R選自1價烴基)所表示之化合物、路易斯酸與質 子酸之混合物、鉛觸媒、鈦或锆化合物、錫化合物、Sc、 Μο、Μη、Bi、Te等化合物等。 不均化步驟係將酯交換步驟中所獲得之碳酸烷基芳酯不 句化,而獲得碳酸二烷基酯及碳酸二芳酯之步驟。如上所 述,實施酯交換反應時可添加不均化觸媒使酯交換反應與 不均化反應同時實施,亦可使酯交換反應與不均化反應分 J連續或批次式進行。又,使酯交換反應與不均化反應分 别進行之情形的酯交換反應中,有時與碳酸烷基芳酯同時 I31506.doc •64· 200948759 獲得碳酸二芳酯,該情形時亦可直接實施不均化反應。不 均化反應亦如上所示,係藉由碳酸二烷基酯與芳香族羥基 化合物之酯交換反應而獲得碳酸烷基芳酯之步驟,且為了 有利地促進該平衡反應,一邊排出醇一邊進行反應之二法 較為有利。不均化反應亦受到平衡之限制,因此為了有利 地進行,將藉由不均化反應而生成之碳酸二烷基酯及碳酸 二芳酯中之其中一者一邊排出到系統外一邊進行反應之方 法較為有利。本實施形態中,較好的是,生成物中,分別 選擇烷氧基、芳基,以使碳酸二烷基酯之沸點低於碳酸二 芳酯’而一邊將碳酸二烷基酯排出到系統外一邊進行不均 化反應。所排出之碳酸二烷基酯可返回至不均化反應以前 之步驟使用。若欲增加碳酸二芳酯之生產量,則較好的是 使所排出之碳酸二烷基酯返回至酯交換步驟使用。 不均化步驟中,可使用催化不均化反應之觸媒。亦提出 較多如此之觸媒之例。作為如此之觸媒,例如提出有路易 ❹ 斯酸及可產生路易斯酸之過渡金屬化合物、聚合物性錫化 合物、以通式R-X(=0)0H(式中,X選自Sn及Ti,r選自Hf 烴基)所表示之化合物、路易斯酸與質子酸之混合物、錯 觸媒、欽或錯·化合物、錫化合物、Sc、Mo、Mn、Bi、Te 等化合物等。 作為本實施形態之不均化反應觸媒,可使用與醋交換步 驟中所使用之酯交換反應觸媒相同之觸媒。 不均化步驟中所使用之碳酸烷基芳酯係碳酸烷基芳酯。 作為碳酸烷基芳酯之例,可列舉:碳酸甲基苯酯、碳酸乙 131506,doc -65· 200948759 基苯酯、碳酸丙基苯酯(各異構物)、碳酸丁基苯酯(各異構 物)、碳酸烯丙基苯酯(各異構物)、碳酸戊基苯酯(各異構 物)、碳酸己基苯酯(各異構物)、碳酸庚基苯酯(各異構 物)、碳酸辛基曱苯酯(各異構物)、碳酸壬基(乙基苯基)酿 (各異構物)、碳酸癸基(丁基苯基)酯(各異構物)、碳酸甲基 甲本醋(各異構物)、碳酸乙基甲苯醋(各異構物)、碳酸丙 基甲苯酯(各異構物)、碳酸丁基曱苯酯(各異構物)、碳酸 稀丙基甲苯酷(各異構物)、碳酸甲基二曱苯醋(各異構 ® 物)、碳酸甲基(三甲基苯基)酯(各異構物)、碳酸甲基(氣苯 基)酯(各異構物)、碳酸甲基(硝基苯基)酯(各異構物)、碳 酸甲基(甲氧基苯基)酯(各異構物)、碳酸甲基(吼啶基)醋 (各異構物)、碳酸乙基異丙苯酯(各異構物)、碳酸甲基(苯 曱醯基苯基)酯(各異構物)、碳酸乙基二甲苯酯(各異構 物)、碳酸苄基二甲苯酯(各異構物)等。該等碳酸烷基芳酯 可為1種,亦可為2種以上之混合物。 φ 該等碳酸烧基芳酯中,本實施形態中較好地使用的是, 構成碳酸院基芳酯之醇的沸點高於水之醇,從下述醇中選 擇:構成碳酸烷基芳酯之醇的沸點低於構成碳酸烷基芳g旨 之芳香族羥基化合物的沸點’例如具有直鏈狀或支鏈狀之 奴數為4〜12之烧基的烧基醇,具有直鏈狀或支鏈狀之碳數 為4〜12之烯基的烯基醇、環烷基醇、芳烷基醇;為有利地 推進不均化反應,若考慮去除藉由不均化反應而生成之碳 酸一烷基酯’則較好的是沸點低於藉由不均化反應而獲得 之碳酸二芳酯的碳酸二烷基酯。作為如此之最佳組合,可 131506.doc -66· 200948759 列舉:醇、相當於以上述式(9)及式(1〇)所表示之具有金 屬-碳-氧鍵之金屬化合物之烷氧基的醇、構成碳酸二烷基 6盲之醇係選自戊醇(各異構物)、己醇(各異構物)、庚醇(各 異構物)之群中的醇’芳香族羥基化合物係選自苯酚、甲 盼之芳香族經基化合物。 供給至不均化步驟之化合物主要係碳酸烷基芳酯,視需 要為觸媒’可混入對反應不造成特別不良影響之雜質。 於本實施形態中使用觸媒之情形之觸媒量根據所使用之 ® 觸媒的種類、反應器之種類、碳酸烷基芳酯之種類或其 量、反應溫度以及反應壓力等反應條件等而不同,以相對 於作為供給原料之碳酸烧基芳醋之重量的比例表示,通常 以0.0001〜50重量%使用。又,使用固體觸媒之情形時,相 對於反應器之空塔容積,較好地使用〇.〇1〜75艎積%之觸媒 量。 該等供給原料中可包含醇、芳香族羥基化合物及碳酸二 芳酯等,本反應係可逆反應,因此該等成分中,濃度過高 ϋ 之情形時,亦有時會使原料之反應率下降,而不佳。 不均化反應之反應時間根據反應條件或反應器之種類或 内部結構而不同’通常為0.001〜50小時,較好的是〇.〇1〜1〇 小時’更好的是0.05〜5小時。反應溫度根據所使用之碳酸 院基芳酯之種類而不同,通常於50 °C〜350 °C,更好的是於 100°C〜280°C之溫度範圍内進行。又,反應壓力根據所使 用之原料化合物之種類或反應溫度等而不同,可為減壓、 常壓、加壓之任一種’通常於10 Pa〜20 MPa之範圍内進 131506.doc -67- 200948759 行。 本實施形態中之不均化步 -^ ^ γ,並非必須使用溶劑,以 使反應插作容易等為目的, 使用適當之惰性溶劑,例 如醚類、脂肪族烴類、芳香族炮_占 ^類、鹵化脂肪族烴類、 i化方香族烴類等作 ,,^ ^ ^ 則。又’可使作為對反應為 =之物質之氮氣、氣氣、氯氣等惰性氣體共存於反應系 、以加相去所生成之低沸點副產物為目的,自連續 ❹ 多級蒸顧塔之下部,將上述惰 f性氣體或對反應為惰性之低 熔點有機化合物作為氣狀導入。 1不均化反應結束後’以眾所周知之方法將觸媒、碳酸院 基方醋、芳香族經基化合物、醇加以分離,獲得碳酸二芳 酯。 醋交換步驟及不均化步驟中所❹之反應器之形式並益 特別限制,採用使用撲拌槽方式、多段授拌槽方式、多級 蒸餾塔之方式、及將該等加以組合之方式等眾所周知的各 種方法。該等反應器亦可使用批式、連續式之任一種。於 使平衡有效偏向生成㈣方面,較好的是使用多級蒸餘塔 之方法,尤其好的是使用多級蒸館塔之連續法。多級蒸館 塔係指具有蒸餾之理論板數為2段以上的多段之蒸餾塔, 若係能夠進行連續蒸館者則可為任意I。作為如此之多級 蒸餾塔,例如若係使用泡罩板、多孔塔板、浮閥塔板、逆 流塔板等塔板之層板塔方式,或填充有拉西環、勒辛環、 鮑爾環、弧鞍形填料、矩鞍環填料、狄克松填料、網鞍填 料、螺旋填料、絲網波紋填料、孔板波紋填料等各種填充 131506.doc -68- 200948759 Ο ❹ 物之填充塔方式等通常作為多級蒸餾塔使用者,則可使用 任意者。進而’亦較好的是使層板部分與填充有填充物的 部分加以合併之層板-填充混合塔方式者。使用多級蒸德 塔實施連續法之情形時,將起始物質與反應物質連續供給 至連續多級蒸餾塔内,於該蒸镏塔内於含金屬觸媒之存在 下,以液相或氣-液相進行兩物質間之酯交換反應、及/或 不均化反應’同時’將所製造之包含碳酸烷基芳醋及/或 碳酸二芳酯之高沸點反應混合物自該蒸餾塔之下部以液狀 排出,另一方面’將包含所生成之副產物之低沸點反應混 合物藉由蒸餾自該蒸餾塔之上部以氣狀連續排出,製造碳 酸二芳酯。 以上’表示使用二烧基錫化合物之碳酸二芳_的製造 例’除了上述步驟(1)〜步驟(3)以外,可進行以下步驟(4)及 步驟(5)。 步驟(4):使步驟(2)中所獲得之殘留液與醇反應,形成 具有錫-氧-碳鍵之有機錫化合物與水’自反應系統去除該 水之步驟。 步驟(5):將步驟(4)中所獲得之具有錫_氧·碳鍵之有機錫 化合物再用作步驟(1)之具有錫-氧-碳鍵之有機錫化合物的 步驟。 步驟(4)使步驟(2)中所獲得之殘留液與醇反應,使二烷 基錫化合物再生之步驟。 作為本步驟所使用之醇,係曱醇、乙醇、丙醇(各異構 物)、丁醇(各異構物)、戊醇(各異構物)、己醇(各異構 131506.doc -69- 200948759 物)、庚醇(各異構物)、辛醇(各異構物)、壬醇(各異構 物)、癸醇(各異構物)等醇,可較好地使用構成該醇之碳原 子數係選自1〜12之整數之數的醇,更好的是使用與上述烷 基錫烷氧化物合成步驟中所使用之醇相同的醇。 較好的是’脫水反應亦於與上述烷基錫烷氧化物合成步 驟同樣之條件下實施。若獲得所需烷基錫烷氧化物組合物 則結束反應。反應之進行可藉由測定排出至系統外之水量 而確認’亦可取樣反應液,以利用n9Sn-NMR之方法確 認。為於步驟(1)中製造本實施形態之混合物,而於確認獲 得如下組合物即可結束反應,即,上述反應所獲得之烷基 錫烷氧化物組合物中所含有之四烷基二烷氧基二錫氧烷與 二烷基錫二烷氧化物之莫耳比率,以合併兩者之莫耳❶/〇表 示’為0 : 100〜80 : 20之範圍’更好的是1〇 : 90〜70 : 30之 範圍的組合物。所使用之醇可直接於共存狀態下使用,亦 可根據情況蒸餾去除醇而使用。具有可縮小其他步驟之反 φ 應器之優點,因此較好的是儘可能去除醇。去除之方法較 好的是利用眾所周知之蒸餾的去除,又,蒸餾所使用之蒸 館器可使用眾所周知之蒸館設備。作為較好之蒸德裝置, 因可於短時間内去除,因此可較好地使用薄膜蒸餾裝置。 本步驟中,與烷基錫烷氧化物之合成步驟不同,通常不使 用作為固體之二烧基氧化錫,因此反應器之限制較少。 即,脫水反應之反應器之形式並無特別限制,可使用眾所 周知之槽狀、塔狀反應器。包含水之低沸點反應混合物以 氣狀藉由瘵餾自反應器排出,所製造之包含烷基錫烷氧化 13 15〇6,(J〇q -70- 200948759 物或烧基錫⑯氧化物混合物之高沸點反應混合物自反應器 下部以液狀排出。作為如此之反應器,例如採用使用包含 授拌槽、多段授拌槽、蒸傲塔、多級蒸館塔、多管式反應 器、連續多級蒸館塔、填充塔、薄膜蒸發器、内部具備支 持體之反應器、強制循環反應器、降膜蒸發器 '落滴蒸發 器、細流相反應器、氣泡塔之任一種的反應器之方式,及 將該等加以組合之方式等眾所周知的各種方法。於使平衡 有效偏向生成系側之方面’較好的是使用塔狀反應器, 又較好的疋所形成之水迅速轉移至氣相之氣_液接觸面 積較大的結構。尤其好的是使用多管式反應器、多級蒸餾 填充有填充劑之填充塔的連續法。若不造成不良影 響,則反應器及管路之材質可為眾所周知之任意材質,苴 中SUS304或SUS3 !6、SUS3】此等較為廉價,故可較好地 使用。視需要’可附加流量計、溫度計等測量儀器,再沸 器果、冷凝器等眾所周知之處理裝置;加熱可利用基 氣、加熱器等眾所周知之方法進行,冷卻亦可使用自然冷 卻、冷卻水、鹽水等眾所周知之方法。 以上之步驟(4)中所製造之二烷基錫化合物藉由步驟 (人)(再利用步驟而再用作步驟⑴中所使用之二烧基锡化 0物,步驟5係將步驟(4)中所獲得之具有錫_氧_碳鍵之該 有機錫化合物再用作步驟⑴之具有錫-氧-碳鍵之有機锡化 合物之步驟。 作為本實施形態中之製造方法中所使用之胺化合物,使 用以下述式(13)所表示之胺化合物。 131506.doc 200948759 [化 ίο] R14(nh2) η (13) (式中,π表示選自包含選自碳、氧之原子之碳數為㈣ 之脂肪族基及碳數為6〜20之芳香族基所組成之群中的一個 基’且具有與η相等之原子價, η為1〜10之整數)。 使用上述式(13)中較好的是11為1〜3、進好的的是η為2之 〇 聚胺化合物。 作為如此之聚胺化合物之例,可列舉:己二胺、亞 甲基雙(環己基胺)(各異構物)、環己烷二胺(各異構物)、3_ 胺基甲基-3,5,5·三甲基ί裏己基胺(各異構物)等脂肪族二 胺,伸苯基二胺(各異構物)、甲笨二胺(各異構物)、4,4,_ 亞甲基二苯胺等芳香族二胺。其中較好地使用己二胺、 4,4 -亞甲基雙(環己基胺)(各異構物)、環己烷二胺(各異構 物)、3-胺基甲基-3,5,5-三曱基環己基胺(各異構物)等脂肪 族一胺,其中進而較好地使用己二胺、4,4,_亞甲基雙(環 己基胺)、3-胺基甲基_3,5,5_三甲基環己基胺。 胺化合物較好的是以液艎狀態供給至製造胺基甲酸酯之 反應器中。一般而言,以上例示之胺化合物於常溫下(例 如20C)下較多為固體,如此情形時,亦可將該胺化合物 加熱至溶點以上’以液體之狀態供給,但若於過高之溫度 下供給胺化合物,則有時會因加熱而產生熱改性反應等副 反應’因此較好的是,將該胺化合物作為與醇、水或碳酸 I31506.doc • 72· 200948759 酯之混合物,於比較低之溫度下,以液體之狀態供給。 Ο ❿ 反應條件根據反應之化合物而不同,相對於該胺化合物 之胺基,以化學計量比計,使該碳酸酯在倍之範 圍内,為提高反應速度,使反應早點完成,較好的是碳酸 酯相對於胺化合物之胺基為過剩量,若考慮到反應器之大 小,較好的是2〜100倍之範圍,進而較好的是25〜3〇倍之 範圍。反應溫度通常為常溫(2(rc )〜2〇(rc之範圍,為提高 反應速度較好的是高溫,另一方面,有時於高溫下亦引起 不良反應,因此較好的是5(rc〜15(rc之範圍。為固定反應 溫度,可於上述反應器中設置眾所周知之冷卻裝置、加熱 裝置。又,反應壓力根據所使用之化合物之種類或反應溫 度,不同,可為減壓、常壓、加壓之任一種,通常Μ2〇〜ΐχ 1〇6 Pa之範圍内進行。對反應時間(連續法之情形時為滯留 時間)並無特別限制,通常為0.001〜50小時,較好的是 〇.〇1 ίο小時’更好的是G1〜5小時。又亦可採取反應 液,例如以液相層析法確認生成所需量之胺基甲酸芳酯, 而結束反應。本實施形態中’視需要可使用觸媒,例如可 錫釓、鋼、鈦等有機金屬化合物或無機金屬化合 物、驗金屬、驗土類金屬之醇鹽,鐘、納、卸、約、銷之 , 乙醇鹽丁醇鹽(各異構物)等驗性觸媒等。本實 7態巾’並非必須使用反應溶劑,以使反應操作容易等 異I:&quot;7使用適當之溶劑’例如己烷(各異構物)、庚烷(各 物)等燒異:冓物”壬燒(各異構物),(各異構 甲本、二甲笨(各異構物)、乙基苯、二 131506.doc -73- 200948759 =丙基本(各異構物)、二丁基苯(各異構物 煙及貌基取代芳香族烴類;f醇、乙醇、丙醇tr:族 物)、丁醇(各異權物、, 醇(各異構 丁醇(各異構物)、切(各異構物) 物)、庚醇(各異構物)、辛醇 (各異構 等醇類.Μ * (各異構物)、壬醇(各異構物) 等醇類’氯本、二氣苯(各異構物)、溴苯 ’ 物)、氯萘、漠萘、硝基苯、 臭本(各異構 力基萘等由鹵素或硝基取代 t 化合物類;聯苯、取代聯苯、二苯基甲烧、聯三The reaction time of the vinegar exchange reaction in the step (3) also varies depending on the reaction conditions or the type or internal structure of the reactor, and is usually 0 001 to 50 hours, preferably 0. (Π~1 () hour, better The reaction temperature is the temperature in the reactor, which varies depending on the type of the raw material compound used, that is, the dialkyl carbonate and the aromatic hydroxy compound, and is usually 5 〇 t to 35 (rc, preferably Hxrc 〜 2). β χ is carried out within the range of the thief, and the reaction pressure may be reduced according to the type of the raw material compound used or the reaction temperature, etc., and may be reduced, normal pressure, or added, usually in the range of 1 G pa to 2 G. In the present embodiment, it is not necessary to use a solvent for the purpose of facilitating the reaction operation, etc., and an appropriate inert solvent such as an ether, an aliphatic hydrocarbon, an aromatic hydrocarbon, a southern aliphatic hydrocarbon, or a tooth may be used. Aromatic hydrocarbons and the like are used as a reaction; and the Qiqi JX can coexist an inert gas such as nitrogen or helium argon as a substance inert to the reaction in the reaction system, and also accelerates the formation of the low 4 points. Product for the purpose, self-connected Continued under the multi-stage steaming tower 4, the organic gas of the inert gas or the low flame point inert to the reaction is introduced into the gas. 13I506.doc -62- 200948759, when the reaction of the step (3) is carried out, A catalyst can be added. As described above, by S1, it is possible to obtain a balanced bias reaction system for the reaction of carbonic acid by the carbonic acid, and the reaction rate is slow. When the method of producing a diaryl carbonate, in order to improve the above, several proposals have been made. This embodiment makes it possible to preferably use a well-known method. The amount of the catalyst used in the present embodiment depends on the catalyst used. The type of the reactor, the type of the reactor, the type of the carbonated carboxylic acid and the aromatic radical compound or the reaction ratio thereof, the reaction temperature, the reaction pressure, and the like are different from those of the carbon compound and the compound (4) as the raw material for the feed. The ratio of the total weight is usually used at 0 0001 to 50% by weight. Further, in the case of using a solid catalyst, a catalyst amount of 0.01 to 75 vol% is preferably used with respect to the volume of the reactor of the reactor. As A plurality of metal-containing catalysts are known in connection with a catalyst for accelerating the reaction rate. In the present embodiment, a well-known transesterification catalyst can also be used. The carbonate and the aromatic hydroxy compound are reacted. In the method of producing a mixture comprising an alkyl aryl carbonate and/or an alkyl aryl carbonate and a diaryl carbonate, as such a catalyst, for example, a Lewis acid such as a transition metal dentate or a compound which purifies a Lewis acid is proposed. a tin compound such as an organotin alkoxide or an organotin oxide, a salt of an alkali metal or an alkaline earth metal, a burned oxide, a wrong compound, a metal complex such as copper, iron, or the like, and a titanate. a compound of a mixture of a Lewis acid and a protic acid, a compound of Sc, Mo, Mn, Bi, Te, etc., iron acetate or the like. The formation of the carbonic acid aroma can be produced only in the reaction of the vinegar and can be produced by the heterogeneous reaction of the alkyl aryl carbonate formed by the transesterification reaction. Here, 131506.doc -63 - 200948759 A non-homogeneous reaction means a reaction of forming a dialkyl carbonate and a diaryl carbonate from an alkyl aryl carbonate of two molecules. The alkyl aryl carbonate further reacts with the aromatic hydroxy compound, and also causes the reaction to become a diaryl carbonate, and the heterogeneous reaction is faster. Therefore, when the diaryl carbonate is obtained, the alkyl aryl carbonate is uneven. The diaryl carbonate was obtained. Either reaction is an equilibrium reaction. In the transesterification reaction for producing an alkyl aryl carbonate, the reaction is carried out while discharging the alkyl alcohol, and in the unevenness step, it is advantageous to carry out the reaction while discharging the dialkyl carbonate. Therefore, the preferred reaction conditions are different in each stage. In the case of continuous reaction, it is necessary to carry out the reaction in two stages, and in the case of batchwise, it may be carried out successively in the same reactor. Therefore, the catalyst for catalyzing the heterogeneous reaction can be stored together with the above-mentioned transesterification catalyst. More examples of such catalysts can also be proposed. As such a catalyst, for example, a Lewis acid and a transition metal compound capable of generating a Lewis acid, a polymer tin compound 'to pass SR X (=〇) 〇H (wherein χ is selected from ❹ Μ* ΤΙ, R is selected from the group consisting of a compound represented by a monovalent hydrocarbon group, a mixture of a Lewis acid and a protonic acid, a lead catalyst, a titanium or zirconium compound, a tin compound, a compound such as Sc, Μ, Μ, Bi, and Te. The step of unevenness is a step of obtaining a dialkyl carbonate and a diaryl carbonate by synthesizing the alkyl aryl carbonate obtained in the transesterification step. As described above, when the transesterification reaction is carried out, a heterogeneous catalyst may be added to carry out the transesterification reaction simultaneously with the heterogeneous reaction, and the transesterification reaction and the heterogeneous reaction may be carried out continuously or in batches. Further, in the transesterification reaction in which the transesterification reaction and the heterogeneous reaction are respectively carried out, a diaryl carbonate may be obtained simultaneously with the alkyl aryl carbonate I31506.doc • 64· 200948759, and in this case, it may be directly implemented. Uneven reaction. The heterogeneous reaction is also a step of obtaining an alkyl aryl carbonate by transesterification of a dialkyl carbonate with an aromatic hydroxy compound as described above, and in order to favorably promote the equilibrium reaction, while discharging the alcohol The second method of reaction is more advantageous. The heterogeneous reaction is also limited by the balance. Therefore, in order to proceed favorably, one of the dialkyl carbonate and the diaryl carbonate formed by the heterogeneous reaction is discharged to the outside of the system for reaction. The method is more advantageous. In the present embodiment, it is preferred that the alkoxy group or the aryl group be selected so that the boiling point of the dialkyl carbonate is lower than that of the diaryl carbonate, and the dialkyl carbonate is discharged to the system. The outer side is subjected to an uneven reaction. The discharged dialkyl carbonate can be used in the step before returning to the heterogeneous reaction. If it is desired to increase the production amount of the diaryl carbonate, it is preferred to return the discharged dialkyl carbonate to the transesterification step. In the unevenness step, a catalyst for catalyzing the heterogeneous reaction can be used. There are also many examples of such catalysts. As such a catalyst, for example, a Lewis metal acid and a transition metal compound capable of generating a Lewis acid, a polymer tin compound, and a formula RX(=0)0H (wherein X is selected from Sn and Ti, r is proposed) a compound represented by Hf hydrocarbon group, a mixture of a Lewis acid and a protonic acid, a wrong catalyst, a compound of a chin or a wrong compound, a tin compound, a compound such as Sc, Mo, Mn, Bi, or Te. As the heterogeneous reaction catalyst of the present embodiment, the same catalyst as the transesterification catalyst used in the vinegar exchange step can be used. The alkyl aryl carbonate alkyl aryl carbonate used in the heterogeneization step. Examples of the alkyl aryl carbonate include methylphenyl carbonate, ethylene carbonate 131506, doc-65·200948759 phenyl phenyl ester, propyl phenyl carbonate (each isomer), and butyl phenyl carbonate (each Isomers), allyl phenyl carbonate (each isomer), amyl phenyl carbonate (each isomer), hexyl phenyl carbonate (each isomer), heptyl phenyl carbonate (isomeric , octyl phenyl phenyl carbonate (each isomer), decyl carbonate (ethyl phenyl) (each isomer), decyl phenyl (butyl phenyl) ester (each isomer), Methyl acetal carbonate (each isomer), ethyl toluene acetonate (each isomer), propyl cresyl carbonate (each isomer), butyl phenyl phenyl carbonate (each isomer), Benzyl carbonate toluene (each isomer), methyl phthalic acid carbonate (isomeric products), methyl (trimethylphenyl) carbonate (each isomer), methyl carbonate ( Gas phenyl) ester (each isomer), methyl (nitrophenyl) carbonate (each isomer), methyl (methoxyphenyl) carbonate (each isomer), carbonic acid (acridinyl) vinegar (each isomer), ethyl cumyl carbonate (each isomer), methyl (phenylnonylphenyl) carbonate (each isomer), ethyl carbonate Toluene ester (each isomer), benzyl cresyl carbonate (each isomer), and the like. These alkyl aryl carbonates may be used alone or in combination of two or more. φ In the above-mentioned carbonic acid aryl esters, in the present embodiment, the alcohol constituting the aryl aryl carbonate has a boiling point higher than that of water, and is selected from the following alcohols: constituting an alkyl aryl carbonate The boiling point of the alcohol is lower than the boiling point of the aromatic hydroxy compound constituting the alkyl aryl carbonate. For example, the alkyl alcohol having a linear or branched number of alkyl groups of 4 to 12 has a linear chain or a branched alkenyl alcohol having 4 to 12 alkenyl groups, a cycloalkyl alcohol, or an aralkyl alcohol; in order to favorably promote the heterogeneous reaction, it is considered to remove the carbonic acid formed by the heterogeneous reaction. The monoalkyl ester is preferably a dialkyl carbonate having a boiling point lower than that of the diaryl carbonate obtained by the heterogeneous reaction. As such an optimum combination, 131506.doc -66· 200948759 exemplifies an alcohol, an alkoxy group corresponding to a metal compound having a metal-carbon-oxygen bond represented by the above formula (9) and formula (1). The alcohol and the dialkyl carbonate 6-blind alcohol are selected from the group consisting of pentanol (each isomer), hexanol (each isomer), and heptanol (each isomer). The compound is selected from the group consisting of phenol and carbamide. The compound supplied to the unevenness step is mainly an alkyl aryl carbonate, and if necessary, the catalyst can be mixed with impurities which do not particularly adversely affect the reaction. In the case where the catalyst is used in the present embodiment, the amount of the catalyst depends on the type of the catalyst to be used, the type of the reactor, the type or amount of the alkyl aryl carbonate, the reaction temperature, the reaction temperature, and the like. The ratio is usually 0.0001 to 50% by weight, based on the weight of the carbonated aromatic vinegar as a raw material to be supplied. Further, in the case of using a solid catalyst, it is preferable to use a catalyst amount of 〇1〇75% by volume relative to the empty column volume of the reactor. These feedstocks may contain alcohols, aromatic hydroxy compounds, diaryl carbonates, etc., and the reaction is reversible. Therefore, when the concentration is too high, the reaction rate of the raw materials may be lowered. Not good. The reaction time of the heterogeneous reaction varies depending on the reaction conditions or the type or internal structure of the reactor, and is usually 0.001 to 50 hours, preferably 〇1 to 1 Torr, more preferably 0.05 to 5 hours. The reaction temperature varies depending on the type of the aryl carbonate to be used, and it is usually carried out at a temperature of from 50 ° C to 350 ° C, more preferably from 100 ° C to 280 ° C. Further, the reaction pressure varies depending on the type of the raw material compound to be used, the reaction temperature, etc., and may be any of reduced pressure, normal pressure, and pressurization 'usually in the range of 10 Pa to 20 MPa, and 131506.doc -67- Line 200948759. In the present embodiment, the unevenness step -^^ γ does not require the use of a solvent for the purpose of facilitating the reaction, and an appropriate inert solvent such as an ether, an aliphatic hydrocarbon or an aromatic gun is used. Classes, halogenated aliphatic hydrocarbons, i-chemical aromatic hydrocarbons, etc., ^ ^ ^. Further, it is possible to coexist an inert gas such as nitrogen gas, gas gas or chlorine gas as a substance having a reaction amount of = in the reaction system, and to produce a low-boiling by-product formed by phase addition, from the continuous ❹ multistage steaming tower below, The above-mentioned inert gas or a low-melting organic compound inert to the reaction is introduced as a gas. After the completion of the heterogeneous reaction, the catalyst, the carbonated vinegar, the aromatic sulfhydryl compound, and the alcohol are separated by a well-known method to obtain a diaryl carbonate. The form of the reactor to be exchanged in the vinegar exchange step and the unevenness step is particularly limited, and the method of using a buffer tank, a multi-stage tank, a multi-stage distillation tower, and the like, and the like are used. Various methods are well known. These reactors can also be used in either batch or continuous mode. In order to effectively balance the equilibrium (4), it is preferred to use a multi-stage steaming tower, and it is particularly preferable to use a continuous method of a multi-stage steaming tower. The multi-stage steaming tower refers to a distillation column having a plurality of stages in which the number of theoretical plates of distillation is two or more, and may be any I if it is capable of continuous steaming. As such a multi-stage distillation column, for example, a slab type of a blister sheet, a perforated tray, a valve tray, a countercurrent tray, or the like, or a Lacy ring, a Lexin ring, and a ball are used. Ring, arc saddle packing, saddle ring packing, Dickson packing, net saddle packing, spiral packing, wire mesh corrugated packing, orifice corrugated packing, etc. 131506.doc -68- 200948759 Ο 填充 之 之 填充 填充 方式Any one can be used as a user of a multi-stage distillation column. Further, it is also preferable that the laminate portion and the filler-filled portion are combined to form a laminate-filled mixing tower. When a continuous process is carried out using a multi-stage steaming tower, the starting material and the reaction material are continuously supplied to a continuous multi-stage distillation column in which the liquid phase or gas is present in the presence of a metal-containing catalyst. - a liquid phase undergoes a transesterification reaction between two substances, and/or a heterogeneous reaction 'at the same time' from the manufacture of a high boiling reaction mixture comprising an alkyl aryl vinegar and/or a diaryl carbonate from the lower part of the distillation column The liquid is discharged, and on the other hand, a low-boiling reaction mixture containing the by-product formed is continuously discharged in a gaseous form by distillation from the upper portion of the distillation column to produce a diaryl carbonate. The above description shows the production example of the diaryl carbonate using the dialkyltin compound. In addition to the above steps (1) to (3), the following steps (4) and (5) can be carried out. Step (4): a step of reacting the residual liquid obtained in the step (2) with an alcohol to form an organotin compound having a tin-oxygen-carbon bond and water 'removing the water from the reaction system. Step (5): The organotin compound having a tin-oxygen-carbon bond obtained in the step (4) is reused as the step of the organotin compound having a tin-oxygen-carbon bond in the step (1). Step (4) A step of reacting the residual liquid obtained in the step (2) with an alcohol to regenerate the dialkyltin compound. The alcohol used in this step is decyl alcohol, ethanol, propanol (each isomer), butanol (each isomer), pentanol (each isomer), hexanol (isomeric 131506.doc -69-200948759), heptanol (each isomer), octanol (each isomer), decyl alcohol (each isomer), sterol (each isomer) and other alcohols, can be preferably used The number of carbon atoms constituting the alcohol is selected from the group consisting of an integer of 1 to 12, and more preferably the same alcohol as used in the alkyltin alkoxide synthesis step described above. It is preferred that the dehydration reaction is also carried out under the same conditions as in the above alkyl tin alkoxide synthesis step. The reaction is terminated if the desired alkyl tin alkoxide composition is obtained. The progress of the reaction can be confirmed by measuring the amount of water discharged to the outside of the system. The reaction solution can also be sampled and confirmed by the method of n9Sn-NMR. In order to produce the mixture of the present embodiment in the step (1), it is confirmed that the following composition is obtained, that is, the tetraalkyldane contained in the alkyl tin alkoxide composition obtained by the above reaction is completed. The molar ratio of oxydistannoxane to dialkyltin dialkoxide, in combination with the moir/❶ of the two, is '0: 100 to 80: 20', and more preferably 1 〇: A composition ranging from 90 to 70:30. The alcohol to be used may be used as it is in a coexistence state, or may be used by distilling off the alcohol depending on the case. It has the advantage of reducing the inverse φ of the other steps, so it is better to remove the alcohol as much as possible. The removal method preferably uses the well-known distillation removal, and the steaming station used for the distillation can use the well-known steaming equipment. As a preferred steaming device, since it can be removed in a short time, a thin film distillation apparatus can be preferably used. In this step, unlike the alkyltin alkoxide synthesis step, the dialkyltin oxide as a solid is usually not used, so the reactor is less restrictive. Namely, the form of the reactor for the dehydration reaction is not particularly limited, and a well-known groove-like or column-shaped reactor can be used. The low-boiling reaction mixture containing water is discharged from the reactor by gas distillation, and the alkyl stannate is oxidized by 13 15 〇6, (J〇q -70-200948759 or sulphur tin 16 oxide mixture) The high-boiling reaction mixture is discharged from the lower part of the reactor as a liquid. As such a reactor, for example, a mixing tank, a multi-stage mixing tank, a steaming tower, a multi-stage steaming tower, a multi-tubular reactor, continuous Multi-stage steaming tower, packed tower, thin film evaporator, reactor with support inside, forced circulation reactor, falling film evaporator 'drop drop evaporator, fine flow phase reactor, bubble column reactor Various methods, such as a method of combining these methods, etc., in which the balance is effectively biased toward the side of the formation system, it is preferable to use a tower reactor, and the water formed by the better crucible is rapidly transferred to the gas. A structure in which the gas-liquid contact area is large. Particularly preferred is a continuous method in which a multi-tubular reactor and a multi-stage distillation packed column with a filler are used. If no adverse effects are caused, the reactor and the piping are material It can be any known material, such as SUS304 or SUS3!6, SUS3]. It is cheaper, so it can be used well. It can be attached with measuring instruments such as flow meters and thermometers, reboiler, condenser, etc. A well-known treatment device; heating can be carried out by a well-known method such as a base gas or a heater, and a well-known method such as natural cooling, cooling water, or brine can be used for cooling. The dialkyl tin compound produced in the above step (4) By the step (human) (reusing the step and then using the bismuth tin oxide used in the step (1), the step 5 is the organic compound having the tin-oxygen-carbon bond obtained in the step (4). The tin compound is further used as the organotin compound having a tin-oxygen-carbon bond in the step (1). As the amine compound used in the production method of the present embodiment, an amine compound represented by the following formula (13) is used. Rs(nh2) η (13) (wherein π represents an aliphatic group selected from the group consisting of carbons and oxygen atoms (4) and an aromatic group having a carbon number of 6 to 20 Group of people One base 'and has an atomic valence equal to η, and η is an integer from 1 to 10.) It is preferable that 11 is 1 to 3 in the above formula (13), and a good η is 2 An amine compound. Examples of such a polyamine compound include hexamethylenediamine, methylene bis(cyclohexylamine) (each isomer), cyclohexanediamine (each isomer), and 3-amino group. Aliphatic diamines such as methyl-3,5,5·trimethyl lutyl hexylamine (each isomer), phenyldiamine (each isomer), and methylidene diamine (isomeric) An aromatic diamine such as 4,4,_methylenediphenylamine. Among them, hexamethylenediamine, 4,4-methylenebis(cyclohexylamine) (each isomer), cyclohexane II are preferably used. An aliphatic monoamine such as an amine (each isomer) or 3-aminomethyl-3,5,5-trimethylcyclohexylamine (each isomer), wherein hexamethylenediamine, 4 is further preferably used. 4,-methylenebis(cyclohexylamine), 3-aminomethyl-3,5,5-trimethylcyclohexylamine. The amine compound is preferably supplied to the reactor for producing the urethane in a liquid helium state. In general, the amine compound exemplified above is mostly solid at normal temperature (for example, 20 C). In this case, the amine compound may be heated to a melting point or higher to be supplied as a liquid, but if it is too high When an amine compound is supplied at a temperature, a side reaction such as a heat modification reaction may be generated by heating. Therefore, it is preferred to use the amine compound as a mixture with an alcohol, water or a carbonate of I31506.doc • 72·200948759. It is supplied in a liquid state at a relatively low temperature. Ο ❿ The reaction conditions vary depending on the compound of the reaction, and the ratio of the amine group of the amine compound is in the stoichiometric ratio so as to increase the reaction rate, so that the reaction is completed earlier, preferably The amount of the carbonate relative to the amine group of the amine compound is an excess amount, and in view of the size of the reactor, it is preferably in the range of 2 to 100 times, and more preferably in the range of 25 to 3 times. The reaction temperature is usually normal temperature (2 (rc) to 2 〇 (the range of rc, in order to increase the reaction rate, it is preferably a high temperature, and on the other hand, it may cause an adverse reaction at a high temperature, and therefore it is preferably 5 (rc). ~15 (the range of rc. For the fixed reaction temperature, a well-known cooling device and heating device may be provided in the above reactor. Further, the reaction pressure may be reduced or decreased depending on the kind of the compound to be used or the reaction temperature. Any of pressure and pressure is usually carried out in the range of 〇2〇~ΐχ 1〇6 Pa. There is no particular limitation on the reaction time (the residence time in the case of the continuous method), and it is usually 0.001 to 50 hours, preferably It is 〇.〇1 ίο小时' is more preferably G1~5 hours. It is also possible to use a reaction liquid, for example, to confirm the formation of a desired amount of aryl carbamate by liquid chromatography, and to terminate the reaction. In the 'optional use of catalysts, such as tin, antimony, steel, titanium and other organometallic compounds or inorganic metal compounds, metallurgical, soil-based metal alkoxides, clock, nano, unloading, about, pin, ethanolate Butanolate (each isomer) Initiative catalysts, etc. The actual 7-state towel 'does not have to use a reaction solvent to make the reaction operation easy to be different. I: &quot;7 use a suitable solvent' such as hexane (each isomer), heptane (each substance) ), etc.: 冓 壬 壬 壬 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 各 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Each isomer), dibutylbenzene (each isomer smoke and topographical substituted aromatic hydrocarbons; f alcohol, ethanol, propanol tr: family), butanol (different, alcohol, Isobutanol (each isomer), cut (each isomer), heptanol (each isomer), octanol (alcohols such as isomers. Μ * (each isomer), 壬Alcohols (each isomer) and other alcohols such as 'chlorine, di-benzene (each isomer), bromobenzene'), chloronaphthalene, naphthalene, nitrobenzene, and odor (isophthalene naphthalene, etc.) Substituting t compounds by halogen or nitro; biphenyl, substituted biphenyl, diphenyl methyl, three

本、蒽、二节基甲苯(各異構物)等多環烴化合物類;笨 齡、甲基苯紛(各異構物)、乙基苯齡(各異構物)、丁基苯 酚(各異構物)、戊基苯酚(各異構物)、二甲基苯酚(各異構 物)、二乙基苯盼(各異構物)、二丁基苯盼(各異構物):二 戊基苯紛(各異構物)等芳香族經基化合物類;環己烷、環 戊院、環辛院、乙基環己院等脂肪族烴類;環己醇、環戊 醇、環辛醇等脂環族醇類;甲基乙基_、苯乙酮等綱類; 鄰苯二甲酸二丁酯、鄰苯二甲酸二辛酯、鄰苯二甲酸苄基 丁酯等酯類;二苯醚、二苯硫醚等醚類及硫醚類;二曱基 亞砜、二苯基亞砜等亞砜類等作為反應溶劑。該等溶劑可 單獨使用,亦可作為2種以上之混合物使用。又,相對於 胺化合物之胺基而過量使用之碳酸二烷基酯,亦適合作為 該反應之溶劑使用。 實施該反應時所使用之反應裝置並無特別限制,可使用 眾所周知之反應器。例如,可將攪拌槽、加壓式攪拌槽、 減麼式授拌槽、塔型反應器、蒸餾塔、填充塔、薄膜蒸餾 器等先前眾所周知之反應器適當組合使用。反應器之材質 131506.doc 74- 200948759 亦無特別限制,可借用贫 眾所周知之材質。例如,亦可使用 玻璃製、不鏽鋼製、碳 &amp; + &amp;人人 厌綱製、赫史特合金(HasteHoy)製、 或於基材上施加破璃翻有心 规裏者、或進行鐵氟綸(註冊商標)塗 佈者。 &lt;羥基化合物之去除&gt; 以上例不之含有藉由碳酸醋與胺化合物之反應而獲得之 胺基甲酸S旨之反應液可直接供給至進行胺基甲酸自旨之熱分Polycyclic hydrocarbon compounds such as ruthenium, osmium, and bis-phenylene (each isomer); cumbersome, methyl benzene (each isomer), ethyl benzene (each isomer), butyl phenol ( Each isomer), amyl phenol (each isomer), dimethyl phenol (each isomer), diethyl benzene (each isomer), dibutyl benzene (each isomer) : an aromatic hydrocarbyl compound such as dipentylbenzene (each isomer); an aliphatic hydrocarbon such as cyclohexane, cyclopenta, cycloxinine or ethylcyclohexan; cyclohexanol, cyclopentanol And cycloaliphatic alcohols such as cyclooctanol; methyl ethyl ketone, acetophenone, etc.; dibutyl phthalate, dioctyl phthalate, benzyl butyl phthalate, etc. Examples; ethers such as diphenyl ether and diphenyl sulfide; and thioethers; sulfoxides such as dimercaptosulfoxide and diphenyl sulfoxide are used as reaction solvents. These solvents may be used singly or as a mixture of two or more. Further, a dialkyl carbonate which is used in excess with respect to the amine group of the amine compound is also suitably used as a solvent for the reaction. The reaction apparatus used in carrying out the reaction is not particularly limited, and a well-known reactor can be used. For example, a previously known reactor such as a stirred tank, a pressurized agitation tank, a reduced-type stirring tank, a column type reactor, a distillation column, a packed column, and a thin film still can be suitably used in combination. The material of the reactor 131506.doc 74- 200948759 There are also no special restrictions, you can borrow poorly known materials. For example, it is also possible to use glass, stainless steel, carbon &amp; + &amp; everyone, HasteHoy, or apply a glass to the substrate, or to carry out iron fluoride. Lun (registered trademark) coated. &lt;Removal of hydroxy compound&gt; The above example does not contain a reaction liquid obtained by a reaction of a carbonated acetal with an amine compound, and the reaction liquid can be directly supplied to the heat of the carbamic acid.

解的反應器(以下,稱為熱分解反應器)中,亦可自該反應 液使胺基甲㈣純化後供給至熱分解反應器中1而藉 由違胺基^酸g旨之熱分解反應而生成之異氰酸自旨會與經基 化。物(醇及/或芳香族經基化合物)反應生成胺基甲酸醋, 因此為提⑥該熱分解反應之反應效率,較料是於進行該 熱分解反應前,預先自該反應液去除經基化合物(醇及/或 芳香族羥基化合物)。 本實施形態中,可利用如下方法對胺基甲酸酯進行純 化’供、給至該熱分解反應器中,該$方法為:自該反應液 藉由蒸餾而於使用羥基化合物及/或碳酸酯及/或反應溶劑 之情形時將該反應溶劑等低沸點成分餾去之方法,或利用 對於胺基甲酸酯為惰性、且對胺基甲酸酯之溶解度較低之 溶劑進行清洗之方法,或利用晶析進行純化等眾所周知之 方法。該等方法之中’若考慮到操作之容易程度等,則較 好的是實施藉由蒸餾而於使用羥基化合物及/或碳酸酯及/ 或反應溶劑之情形時將該反應溶劑等低沸點成分餾去之方 法0 131506.doc •75- 200948759 作為自該反應液藉由蒸餾而分離羥基化合物或碳酸酯之 裝置,可使用眾所周知之蒸餾裝置。例如,採用利用蒸餾 塔、多級蒸餾塔、多管式反應器、連續多級蒸餾塔、填充 塔、薄膜蒸發器、降膜蒸發器、落滴蒸發器塔之裝置之方 法、及將該等加以組合之方法等。進行該蒸餾分離之條件 亦取決於該反應液所含有之化合物的種類,較好的是常溫 (20 C)〜180°C之範圍,有時於高溫下引起不良反應,因此 較好的是5(TC〜15(TC之範圍。為固定反應溫度,可於上述 反應器中設置眾所周知之冷卻裝置、加熱裝置。又,壓力 根據該反應液所含有之化合物之種類或反應溫度而不同, 可為減壓、常壓、加壓之任一種,通常於2〇〜1χ1〇6以之範 圍内進行。尤其是於該蒸餾分離時,於高溫下進行長時間 操作之情形時’有時會產生該反應液所含有之胺基曱酸酯 之熱改性反應,而使胺基曱酸酯之產量下降,因此較好的 是使壓力在儘可能接近該蒸餾裝置可達到之減壓度之減壓 條件下’溫度範圍係對於欲從該反應液去除之化合物以氣 相餾出而言充分之溫度範圍,在該胺基曱酸酯、或蒸餾分 離後之含有該胺基甲酸酯之混合物可作為液體存在之溫度 範圍中’選擇儘可能低之溫度。該蒸顧操作之主要目的在 於從該反應液中分離經基化合物(醇及/或芳香族經基化合 物)’較好的是使用該反應液中所含有之碳酸酯及反應溶 劑之情形時亦分離該反應溶劑。其原因在於,若於含有碳 酸酯及/或反應溶劑之狀態下’進行下述熱分解反應,則 有時必需與所生成之異氰酸酯或羥基化合物分離之步驟, 131506.doc -76- 200948759 使操作變得複雜。 該反應中分離回收之羥基化合物及/或碳酸酯、該反應 液含有溶劑之情形時,較好的是分別再利用該溶劑。經基 化口物作為碳酸酯製造步驟中之羥基化合物(醇及/或芳香 族經基化合物)再利用,碳酸醋作為製造胺基甲酸g旨之碳 酸酯而再利用’溶劑作為製造胺基甲酸酯之溶劑而再利 用0 製造胺基甲酸酯時使用觸媒’該反應液中含有觸媒或觸 媒殘產之情形時,可將該反應液或胺基甲酸醋所含有之觸 媒直接作為熱刀解反應之觸媒而使用,或可自該反應液或 胺基曱酸醋去除觸媒。尤其是使用驗性觸媒之情形時,有 時會於熱分解反應時引起來自該觸媒之反應,而使產率下 降,因此如此情形時,較好的是去除觸媒後實施熱分解反 應。去除觸媒可使用眾所周知之方法M乍為較好之方法, 係藉由於均勻相或不均勻相下以有機酸或無機酸進行處理 ❹巾中和之方法。去除觸媒較好的是使用單及二幾酸、院基 或芳基磺酸及磷酸、離子交換樹脂、活性碳等◊去除該觸 媒有時於低溫下胺基甲酸酿會固化,亦有時於但溫下產生 熱改性反應,因此於常溫(⑽卜副^之範圍内實施。較 好的是於實施製造胺基甲酸酿之步驟後,在維持自該胺基 甲酸酿製造步驟之反應液所生成之胺基甲酸醋不會析出二 溫度下繼續實施。自該胺基甲酸醋製造步驟之反應液中分 離溶劑及/或羥基化合物及/或碳酸酯之情形時,較好的是 自該反應液去除觸媒後,進行上述分離操作。 疋 131506.doc -77 200948759 &lt;胺基甲酸酯之運送&gt; 藉由碳酸酯與胺化合物之反應而獲得之含有胺基曱酸酯 之反應物(以下’稱為反應物)或自該反應液利用上述方法 去除經基化合物之含有胺基甲酸酯之混合物(以下,稱為 殘留物)供給至熱分解反應器。 胺基甲酸酯藉由構成胺基曱酸酯之酯基而易於在分子間 形成氯鍵’因此大多具有較高熔點。運送具有較高熔點之 ©胺基甲酸醋時,例如可運送進行將固體胺基曱酸酯加以粉 碎或加工成顆粒狀等之賦形化處理者,或將胺基曱酸酯加 熱至兩於熔點之溫度而將該胺基曱酸酯以液體狀運送。然 而’於運送經賦形化處理之固體胺基曱酸芳酯之情形時, 經常會導致運送管路堵塞,或者當胺基甲酸酯之形狀不均 較多時為了穩定地運送一定量之胺基甲酸酯而需要複雜的 裝置’或者需要將該胺基甲酸酯之形狀控制於某範圍之步 驟°因此’該反應物或該殘留物較好的是以液狀運送。 ❿ 將該反應物或該殘留物以液體狀運送之情形時,若考慮 到運送中之固化’則較好的是加熱至較高溫度,但若於過 高溫度下運送’則常常產生該反應液或該殘留物所含有之 該胺基甲酸酯之熱改性反應’因此較好的是於3 〇〇c〜2〇〇乞 之溫度範圍、更好的是50 °C〜180。〇、進而較好的是80 °C 〜150°C之溫度範圍運送。 &lt;胺基甲酸酯之熱分解反應&gt; 其次,對利用胺基甲酸酯之熱分解反應來製造異氰酸酯 進行說明。 131506.doc -78- 200948759 本實施形態中之熱分解反應係由胺基曱酸酯生成所對應 之異氰酸酯及羥基化合物(醇或芳香族羥基化合物)之反 應。 反應溫度通常為loot〜35(rc之範圍,為提高反應速 度,較好的是高溫,另一方面,有時於高溫下下會由於胺 基甲酸酯及/或作為生成物之異氰酸酯而引起如上所述之 副反應,因此較好的是15(TC〜3〇〇t之範圍。為了固定反 應溫度,可於上述反應器中設置眾所周知之冷卻裝置、加 ® 熱裝置。X,反應壓力根據所使用之化合物之種類或反應 溫度而不同,可為減壓、常壓、加壓之任一種通常於 20〜lxlO6 Pa之範圍内進行。反應時間(連續法之情形時為 滞留時間)並無特別限制,通常為〇.〇〇1〜1〇〇小時,較好的 是0.005~50小時,更好的是〇.〇1〜小時。 將胺基甲酸酯於尚溫下長時間保持之情形時,有時會產 生如上所述之副反應。又,利用熱分解反應而生成之異氰 ❹酸酿有時會引起如上所述之副反應。因此,將該胺基曱酸 酯及該異氰酸酯於岗溫下保持之時間較好的是儘可能短之 時間,該熱分解反應較好的是以連續法進行。所謂連續法 係指將含有該胺基甲酸酯之混合物連續供給至反應器,使 之進行熱分解反應,將所生成之異氰酸酯及羥基化合物自 該熱分解反應器連續排出之方法。該連續法中藉由胺臭甲 酸醋之熱分解反應而生成之低沸點成分較好的是作為氣相 成分而自該熱分解反應器之上部加以回收,殘留者作為液 相成分自該熱分解反應器之底部加以回收。亦可將熱分解 131506.doc •79· 200948759 反應器中存在之所有化合物作為氣相成分加以回收,藉由 使液相成分存在於該熱分解反應器中,而將藉由胺基甲酸 醋及/或異氰酸酯引起之副反應所生成之聚合物狀化合物 溶解’具有防止該聚合物狀化合物附著、積蓄於該熱分解 反應器之效果。利用胺基甲酸酯之熱分解反應,生成異氰 酸酯及經基化合物’將該等化合物中之至少其中一種化合 物作為氣相成分加以回收。將哪種化合物作為氣相成分加 以回收取決於熱分解反應條件。 此處,本實施形態中所使用之用語「藉由胺基甲酸酯之 熱分解反應而生成之低沸點成分」相當於藉由該胺基甲酸 醋之熱分解反應而生成之羥基化合物及/或異氰酸醋,尤 其是係指於實施該熱分解反應之條件下,可作為氣體存在 之化合物。 可採用將藉由熱分解反應而生成之異氰酸酯及羥基化合 物作為氣相成分加以回收、將含有胺基甲酸酯及/或碳酸 酯之液相成分加以回收之方法。該方法中’可利用熱分解 反應器將異氰酸酯及羥基化合物分別回收。所回收之含有 異氰酸酯之氣相成分較好的是以氣相供給至用以純化分離 該異氣酸自旨之_裝置。將其巾含有胺基旨及/或碳 酸酯之液相成分自熱分解反應器底部加以回收,將該液相 成分之一部分或全部供給至該熱分解反應器之上部使該 胺基甲酸θ旨再:欠進行熱分解反應、。此處所謂之熱分解反應 器之上部,例如於該熱分解反應器為蒸餾塔之情形時係 指以理論板數計自塔底往上數第2段以上 干又,該熱分 131506.doc -80· 200948759 解反應器為薄膜蒸餾器之情形時,係指傳熱部分以上之部 分。將該液相成分之一部分或全部供給至熱分解反應器之 上部時,將該液相成分保持為較好的是50°c〜1 80°c、更好 的是7〇°(:~17〇°0:、進而較好的是1〇〇。匚〜150。(3而運送。該 液相成分含有碳酸酯之情形時’可自該液相成分將碳酸酯 分離回收後,將該液相成分供給至熱分解反應器中。所分 離回收之該碳酸酯可較好地再利用。 如上所述’較好的是該熱分解反應中’將液相成分自該 ® 熱分解反應器之底部加以回收。其原因在於,可藉由使液 相成分存在於該熱分解反應器中,而將藉由胺基甲酸酯及/ 或異氰酸醋所引起之副反應而生成之聚合物狀副產物溶 解,作為液相成分自熱分解反應器中排出,藉此具有減少 該聚合物狀化合物附著、積蓄於該熱分解反應器上之效 果。 將該液相成分之一部分或全部供給至該熱分解反應器之 Q 上部,使該胺基曱酸酯再次進行熱分解反應,若重複該步 驟,則有時液相成分中積蓄有聚合物狀副產物。於此情形 時,可將該液相成分之-部分或全部自反應系統中去除, 減少聚合物狀副產物之積蓄,或保持成固定之濃度。 以上之熱分解反應中所獲得之氣相成分及/或液相成分 所含有之羥基化合物及/或碳酸酯可分別分離回收而再利 用具體而5,經基化合物可作為製造碳酸醋之步驟⑺的 I基化D物而再利用’碳酸酯可作為製造胺基曱酸酯之原 料而再利用。 131506.doc 200948759 該熱分解反應器之形式並i特 …、将別限制,為高效率地回收In the reactor to be decomposed (hereinafter referred to as a thermal decomposition reactor), the amino group (tetra) may be purified from the reaction liquid and supplied to the thermal decomposition reactor 1 to be thermally decomposed by the amino group The isocyanate formed by the reaction will be subjected to radicalization. The reaction of the alcohol (and the alcohol-based compound) to form the amino formate vinegar is to increase the reaction efficiency of the thermal decomposition reaction. It is preferred to remove the radical from the reaction solution before the thermal decomposition reaction. Compound (alcohol and/or aromatic hydroxy compound). In the present embodiment, the urethane may be purified and supplied to the thermal decomposition reactor by the following method: using the hydroxy compound and/or carbonic acid from the reaction solution by distillation a method of distilling a low-boiling component such as a reaction solvent in the case of an ester and/or a reaction solvent, or a method of purifying a solvent which is inert to a urethane and has a low solubility to a urethane Or a well-known method such as purification by crystallization. Among these methods, 'if it is easy to handle the operation, etc., it is preferred to carry out the low-boiling component such as the reaction solvent when the hydroxy compound and/or the carbonate and/or the reaction solvent are used by distillation. Method for Distillation 0 131506.doc • 75- 200948759 As a device for separating a hydroxy compound or a carbonate from the reaction liquid by distillation, a well-known distillation apparatus can be used. For example, a method using a distillation column, a multi-stage distillation column, a multi-tubular reactor, a continuous multi-stage distillation column, a packed column, a thin film evaporator, a falling film evaporator, a falling-drop evaporator column, and the like a method of combining, and the like. The conditions for carrying out the distillation separation also depend on the kind of the compound contained in the reaction liquid, and it is preferably in the range of normal temperature (20 C) to 180 ° C, and sometimes causes an adverse reaction at a high temperature, so it is preferably 5 (TC to 15 (the range of TC) is a fixed reaction temperature, and a well-known cooling device and a heating device can be provided in the above reactor. Further, the pressure varies depending on the kind of the compound contained in the reaction liquid or the reaction temperature, and may be Any of decompression, normal pressure, and pressurization is usually carried out in the range of 2 〇 to 1 χ 1 〇 6. Especially in the case of this distillation separation, when it is operated at a high temperature for a long period of time, 'this sometimes occurs. The thermal modification reaction of the amino phthalate contained in the reaction liquid lowers the yield of the amino phthalate, so it is preferred to reduce the pressure as close as possible to the degree of decompression that can be achieved by the distillation apparatus. The temperature range is a temperature range sufficient for vapor phase distillation of the compound to be removed from the reaction liquid, and the amino phthalate or the mixture containing the urethane after distillation separation may be used. As a liquid In the temperature range that exists, 'select the temperature as low as possible. The main purpose of the steaming operation is to separate the radical compound (alcohol and/or aromatic warp group compound) from the reaction liquid. It is preferred to use the reaction liquid. In the case of the carbonate and the reaction solvent contained in the solvent, the reaction solvent is also separated because the following thermal decomposition reaction is carried out in the state containing the carbonate and/or the reaction solvent, and it is sometimes necessary to generate The step of separating the isocyanate or the hydroxy compound, 131506.doc -76- 200948759 complicates the operation. When the hydroxy compound and/or carbonate are separated and recovered in the reaction, and the reaction solution contains a solvent, it is preferred to separately The solvent is reused, and the base material is reused as a hydroxy compound (alcohol and/or aromatic warp compound) in the carbonate production step, and the carbonated vinegar is used as a carbonate for the production of urethane, and the solvent is reused. When a urethane is used as a solvent for producing a urethane and a urethane is used for the production of a urethane, when the catalyst contains a catalyst or a catalyst residue, The catalyst contained in the reaction liquid or the amino carboxylic acid vinegar is used as a catalyst for the hot knife reaction, or the catalyst can be removed from the reaction liquid or the amine phthalic acid vinegar, especially using an organic catalyst. In some cases, the reaction from the catalyst may be caused during the thermal decomposition reaction, and the yield may be lowered. Therefore, in this case, it is preferred to carry out the thermal decomposition reaction after removing the catalyst. The method M is a better method, which is a method of neutralizing the towel by an organic acid or a mineral acid in a homogeneous phase or a heterogeneous phase. The catalyst is preferably a mono- and di-acid, a hospital base. Or aryl sulfonic acid and phosphoric acid, ion exchange resin, activated carbon, etc., the catalyst is removed, and the amino acid is solidified at a low temperature, and sometimes a thermal modification reaction occurs at a temperature, so at room temperature ((10) It is preferably carried out within the scope of the preparation of the urethane. It is preferred to continue after the step of producing the amide formic acid, while maintaining the temperature at which the amino carboxylic acid vinegar formed from the reaction solution of the amide formic acid is not precipitated. Implementation. In the case where the solvent and/or the hydroxy compound and/or the carbonate are separated from the reaction liquid in the step of producing the amino carboxylic acid vinegar, it is preferred to carry out the above separation operation after removing the catalyst from the reaction liquid.疋131506.doc -77 200948759 &lt;Transportation of carbamate&gt; Amino phthalate-containing reactant obtained by reaction of a carbonate with an amine compound (hereinafter referred to as "reactant") or from The reaction solution is supplied to the thermal decomposition reactor by removing the urethane-containing mixture (hereinafter referred to as a residue) of the base compound by the above method. The urethane is liable to form a chlorine bond between molecules by constituting an ester group of an amino phthalate, and thus mostly has a relatively high melting point. When transporting a melamine carboxylic acid having a higher melting point, for example, it may be transported to a deformer for pulverizing or processing the solid amide phthalate, or to heat the urethane to two. The amino phthalate is transported in a liquid form at the temperature of the melting point. However, in the case of transporting the shaped aryl aryl phthalate, it often causes clogging of the transport line, or in order to stably transport a certain amount when the shape of the urethane is uneven. A urethane requires a complicated device 'or a step of controlling the shape of the urethane to a certain range. Therefore, the reactant or the residue is preferably transported in a liquid state.时 When the reactant or the residue is transported in a liquid state, it is preferable to heat to a higher temperature in consideration of solidification during transportation, but the reaction is often generated if it is transported at an excessively high temperature. The thermal modification reaction of the urethane contained in the liquid or the residue is therefore preferably in the range of 3 〇〇 c 2 to 2 Torr, more preferably 50 ° C to 180 °. It is preferably transported at a temperature ranging from 80 ° C to 150 ° C. &lt;Thermal decomposition reaction of urethane&gt; Next, the production of isocyanate by thermal decomposition reaction of urethane is described. 131506.doc -78- 200948759 The thermal decomposition reaction in the present embodiment is a reaction between an isocyanate and a hydroxy compound (alcohol or an aromatic hydroxy compound) corresponding to the formation of an amino phthalate. The reaction temperature is usually in the range of loot to 35 (rc), in order to increase the reaction rate, preferably high temperature, and on the other hand, sometimes at a high temperature, it may be caused by a urethane and/or an isocyanate as a product. The side reaction as described above is therefore preferably in the range of 15 (TC to 3 〇〇t. In order to fix the reaction temperature, a well-known cooling device and a heat treatment device can be provided in the above reactor. X, the reaction pressure is based on The type of the compound to be used or the reaction temperature may be any of a pressure reduction, a normal pressure, and a pressurization, and it is usually carried out in the range of 20 to 1×10 6 Pa. The reaction time (the residence time in the case of the continuous method) is not The limit is usually 〇.〇〇1~1〇〇, preferably 0.005~50 hours, more preferably 〇.〇1~hour. Keep the urethane at a temperature for a long time. In some cases, a side reaction as described above may occur. Further, the isocyanuric acid produced by the thermal decomposition reaction sometimes causes a side reaction as described above. Therefore, the amino phthalate and the The time the isocyanate is kept at the station temperature Preferably, the thermal decomposition reaction is preferably carried out in a continuous process as short as possible. The continuous process means that the mixture containing the urethane is continuously supplied to the reactor for thermal decomposition reaction. a method of continuously discharging the produced isocyanate and hydroxy compound from the thermal decomposition reactor. The low-boiling component formed by the thermal decomposition reaction of the amine odorous formic acid vine in the continuous method is preferably used as a gas phase component. The upper part of the thermal decomposition reactor is recovered, and the residue is recovered as a liquid phase component from the bottom of the thermal decomposition reactor. All the compounds present in the thermal decomposition 131506.doc •79·200948759 reactor can also be used as gas phase components. Recycling, by dissolving the liquid phase component in the thermal decomposition reactor, and dissolving the polymer compound formed by the side reaction caused by the amino carboxylic acid vinegar and/or the isocyanate to prevent the adhesion of the polymer compound And the effect of accumulating in the thermal decomposition reactor. The thermal decomposition reaction of the urethane produces an isocyanate and a trans-base compound At least one of the compounds is recovered as a gas phase component. The recovery of which compound as a gas phase component depends on the thermal decomposition reaction conditions. Here, the phrase "by urethane" is used in the present embodiment. The low-boiling component formed by the thermal decomposition reaction corresponds to a hydroxy compound and/or isocyanate produced by the thermal decomposition reaction of the amino carboxylic acid vinegar, especially in the case of performing the thermal decomposition reaction. A compound which can be used as a gas. A method of recovering a liquid phase component containing a urethane and/or a carbonate by recovering an isocyanate and a hydroxy compound formed by a thermal decomposition reaction as a gas phase component In the method, the isocyanate and the hydroxy compound can be separately recovered by using a thermal decomposition reactor. The recovered gas phase component containing isocyanate is preferably supplied in a gas phase to a device for purifying and separating the isogastric acid. . The liquid phase component containing the amine group and/or the carbonate is recovered from the bottom of the thermal decomposition reactor, and part or all of the liquid phase component is supplied to the upper portion of the thermal decomposition reactor to make the aminocarboxylic acid Again: owing to thermal decomposition reaction. Here, the upper part of the thermal decomposition reactor, for example, when the thermal decomposition reactor is a distillation column, refers to the number of theoretical plates from the bottom of the tower to the second and above, and the heat is 131506.doc. -80· 200948759 When the reactor is a thin film distiller, it means the part above the heat transfer part. When a part or all of the liquid phase component is supplied to the upper portion of the thermal decomposition reactor, the liquid phase component is preferably kept at 50 ° C to 180 ° C, more preferably 7 ° ° (: ~ 17). 〇°0:, more preferably 1〇〇.匚~150. (3. Transportation. When the liquid phase component contains a carbonate, the carbonate can be separated and recovered from the liquid phase component, and the solution is The phase component is supplied to the thermal decomposition reactor. The carbonate recovered and recovered can be preferably reused. As described above, it is preferred that the liquid phase component is from the thermal decomposition reactor in the thermal decomposition reaction. The bottom is recovered because the polymer formed by the side reaction caused by the urethane and/or isocyanate can be obtained by allowing the liquid phase component to be present in the thermal decomposition reactor. The by-product is dissolved and discharged as a liquid phase component from the thermal decomposition reactor, thereby reducing the adhesion of the polymer-like compound and accumulating in the thermal decomposition reactor. Part or all of the liquid phase component is supplied to The upper part of the Q of the thermal decomposition reactor, the amino phthalate The thermal decomposition reaction is carried out once, and if this step is repeated, a polymer-form by-product may be accumulated in the liquid phase component. In this case, part or all of the liquid phase component may be removed from the reaction system to reduce polymerization. The accumulation of the by-products of the material or the concentration is maintained at a fixed concentration. The hydroxy compounds and/or carbonates contained in the gas phase component and/or the liquid phase component obtained in the above thermal decomposition reaction can be separately separated and recovered and reused. And 5, the trans-base compound can be reused as the I-based D of the step (7) for producing carbonated vinegar, and the 'carbonate can be reused as a raw material for producing the amino phthalate. 131506.doc 200948759 The thermal decomposition reactor Form and i special..., will be restricted, for efficient recycling

乳相成分,較好的是使用眾所周知之蒸餾裝置。例如,扩 用使用包含蒸餾塔、多級蒸餾塔、多管式反應器: 級蒸餾塔、填充塔、薄膜蒸發器、内部具備支持體之反: 器、強制循環反應器、降膜蒸發器、落滴蒸發器之任一: 之反應器的方式,及將該等加以組合之方式等眾所周知的 各種方法。自將低沸點成分迅速自反應系統中去除之觀點 考慮,較好的是使用管狀反應器之方法,更好的是使用管 狀薄膜蒸發器、管狀降膜蒸發器等反應器之方法,較好= 是使所生成之低沸點成分迅速轉移至氣相之氣-液接觸面 積較大的結構。 若不對該胺基甲酸酯或作為生成物之羥基化合物、異氛 酸醋等造成不良影響,則熱分解反應器及管路之材質可為The milk phase component is preferably a well-known distillation apparatus. For example, the expansion includes a distillation column, a multi-stage distillation column, and a multi-tubular reactor: a distillation column, a packed column, a thin film evaporator, a counter having a support inside, a forced circulation reactor, a falling film evaporator, Any of the well-known methods, such as the manner of the reactor, and the manner in which the reactors are combined. From the viewpoint of rapidly removing low-boiling components from the reaction system, it is preferred to use a tubular reactor, and more preferably a tubular thin film evaporator, a tubular falling film evaporator or the like, preferably = It is a structure in which the generated low-boiling component is rapidly transferred to the gas phase with a large gas-liquid contact area. If the urethane or the hydroxy compound as a product, the sulphuric acid vinegar or the like is not adversely affected, the material of the thermal decomposition reactor and the piping may be

眾所周知之任意材質,其中SUS304或SUS316、SUS316L 等較為廉價,故可較好地使用。 &lt;熱分解反應器之清洗&gt; 本實施形態中,伴隨該胺基曱酸酯之熱分解反應,例 如,生成來自以上述式(2)、式(3)、式(4)等所表示之副反 應之聚合物副產物等,該熱分解反應所生成之副產物藉由 上述方法進行熱分解反應之情形時,在長時間運轉時,有 時會附著於該熱分解反應器。該等附著於熱分解反應器之 化合物若積蓄到某種程度,則常常會妨礙該熱分解反應器 之運轉,難以長時間運轉,因此需要分解該熱反應器而加 以清掃等之作業。 131506.doc -82- 200948759 本發明者等人吃驚地發現,附著於該熱分解反應器之化 合物易於溶解於酸。以該知識為基礎,考慮如下方法:該 熱分解反應^上附著有高沸物之情形時,以酸清洗該熱分 解反應^之壁面,溶解料高㈣,自該齡解反應器^ 除,藉此清洗該熱分解反應器内(尤其是壁面),從而完 成。利用該方法,可不解體該熱分解反應器進行清掃,: 清洗該熱分解反應器之壁面,因此可大幅縮短該熱分解反 應器之運轉停止時間,異氰酸酯之生產效率較高。 作為清洗溶劑之酸,若為溶解該聚合物狀副產物者則 無特別限定,可使用有機酸、無機酸之任一種,較好的是 使用有機酸。作為有機酸,可例示:羧酸、磺酸、亞磺 酸、酚類、烯醇類、硫酚類、醯亞胺類、肟類、芳香族磺 醯胺類等’較好的是使用羧酸、苯酚類。作為如此之化= 物’可列舉:曱酸、乙酸、丙酸、正丁酸、異丁酸、戊 酸、異戊酸、2-曱基丁酸、特戊酸、己酸、異己酸、2_乙 基丁酸、2,2-二甲基丁酸、庚酸(各異構物)、辛酸(各異構 物)、壬酸(各異構物)、癸酸(各異構物)、十一酸(各異構 物)、十二酸(各異構物)、十四酸(各異構物)、十六酸(各異Any material known in the art, among which SUS304 or SUS316, SUS316L, etc. are relatively inexpensive, can be preferably used. &lt;Cleaning of Thermal Decomposition Reactor&gt; In the present embodiment, the thermal decomposition reaction of the amino phthalic acid ester is, for example, represented by the above formula (2), formula (3), formula (4), and the like. When a by-product of the side reaction, such as a by-product of the thermal decomposition reaction, is thermally decomposed by the above method, it may adhere to the thermal decomposition reactor during long-term operation. When these compounds adhering to the thermal decomposition reactor are accumulated to some extent, the operation of the thermal decomposition reactor is often hindered, and it is difficult to operate for a long period of time. Therefore, it is necessary to decompose the thermal reactor to perform cleaning or the like. The present inventors have surprisingly found that the compound attached to the thermal decomposition reactor is easily dissolved in an acid. Based on this knowledge, consider the following method: when the high-boiling substance adheres to the thermal decomposition reaction, the wall of the thermal decomposition reaction is cleaned with acid, and the dissolved material is high (four), and the reactor is removed from the age. This completes the cleaning of the thermal decomposition reactor (especially the wall surface). According to this method, the thermal decomposition reactor can be cleaned without disintegration, and the wall surface of the thermal decomposition reactor can be cleaned, so that the operation stop time of the thermal decomposition reactor can be greatly shortened, and the isocyanate production efficiency is high. The acid to be used as the cleaning solvent is not particularly limited as long as it dissolves the polymer-form by-product, and any of an organic acid and an inorganic acid can be used, and an organic acid is preferably used. The organic acid may, for example, be a carboxylic acid, a sulfonic acid, a sulfinic acid, a phenol, an enol, a thiophenol, a quinone, an anthracene or an aromatic sulfonamide. Acid, phenols. Examples of such a chemical substance include: citric acid, acetic acid, propionic acid, n-butyric acid, isobutyric acid, valeric acid, isovaleric acid, 2-mercaptobutyric acid, pivalic acid, caproic acid, isohexanoic acid, 2-ethylbutyric acid, 2,2-dimethylbutyric acid, heptanoic acid (each isomer), octanoic acid (each isomer), citric acid (each isomer), citric acid (each isomer) ), undecanoic acid (each isomer), dodecanoic acid (each isomer), tetradecanoic acid (each isomer), hexadecanoic acid (variety)

構物)、丙烯酸、丁烯酸、異丁烯酸、乙烯乙酸、曱基丙 烯酸、當歸酸、順至酸、浠丙基乙酸、十一烯酸(二構 物)等飽和或不飽和脂肪族單羧酸化合物,草酸、丙二 酸、丁二酸、戊二酸、己二酸、庚二酸(各異構物)、辛二 酸(各異構物)、壬二酸(各異構物)、癸二酸(各異構物)、順 丁烯二酸、反丁烯二酸、甲基順丁烯二酸、甲基反丁烯二 131506.doc -83· 200948759 酸、戊烯二酸(各異構物)、伊康酸、烯丙基丙二酸等飽和 或不飽和脂肪族二羧酸,i,2,3·丙三羧酸、丨,2,3_丙烯三羧 酸、2,3·二曱基丁貌],2,3-三竣酸等飽和或不飽和脂肪族 二羧酸化合物,苯曱酸、苯甲酸甲酯(各異構物)、苯甲酸 乙酯(各異構物)、苯甲酸丙酯(各異構物)、苯甲酸二曱酯 (各異構物)、苯曱酸三甲酯(各異構物)等芳香族單羧酸化 合物,鄰苯二甲酸、間苯二甲酸、對苯二甲酸、甲基間苯 二甲酸(各異構物)等芳香族二羧酸化合物,1,2,3-苯三曱 ® 酸、1,2,4—苯三甲酸、13,5-苯三甲酸等芳香族三羧酸化合 物,苯酚、甲基·苯酚(各異構物)、乙基_苯酚(各異構物)、 丙基-苯酚(各異構物)、丁基_苯酚(各異構物)、戊基-苯酚 (各異構物)、己基-笨酚(各異構物)、庚基_苯酚(各異構 物)、辛基-苯酚(各異構物)、壬基_苯酚(各異構物)、癸基_ 苯酚(各異構物)、十二烷基_苯酚(各異構物)、苯基苯酚 (各異構物)、苯氧基苯酚(各異構物)、異丙苯基_苯酚(各異 ❹構物)等單取代苯酚類,二甲基苯酚(各異構物)、二乙基_ 苯盼(各異構物)、二丙基_苯盼(各異構物)、二丁基-苯盼 (各異構物)、二戊基-苯酚(各異構物)、二己基_苯酚(各異 構物)、二庚基-苯酚(各異構物)、二辛基·苯酚(各異構 物)、二壬基-苯酚(各異構物)、二癸基_苯酚(各異構物)、 二(十二烷基)-苯酚(各異構物)、二苯基_苯酚(各異構物)、 二苯氧基苯酚(各異構物)、二異丙苯基-苯酚(各異構物)、 甲基·乙基-苯酚(各異構物)、甲基-丙基-苯酚(各異構物)、 曱基-丁基-苯酚(各異構物)、甲基·戊基-苯酚(各異構物)、 131506.doc 84· 200948759 曱基-己基-苯酚(各異構物)、甲基-庚基_苯酚(各異構物)、 甲基-辛基-苯酚(各異構物)、甲基_壬基-苯酚(各異構物)、 曱基-癸基-笨酚(各異構物)、甲基-十二烷基_笨酚(各異構 物)、甲基-苯基-苯酚(各異構物)、甲基_苯氧基苯酚(各異 構物)、甲基-異丙苯基-苯酚(各異構物)、乙基-丙基-苯酚 (各異構物)、乙基-丁基·苯酚(各異構物)、乙基_戊基苯酚 (各異構物)、乙基-己基-苯酚(各異構物)、乙基庚基苯酚 (各異構物)、乙基-辛基·苯酚(各異構物)、乙基-壬基-苯酚 (各異構物)、乙基-癸基·苯酚(各異構物)、乙基_十二烷基_ 苯酚(各異構物)、乙基-苯基-苯酚(各異構物)、乙基苯氧 基苯酚(各異構物)、乙基-異丙苯基-苯酚(各異構物)、丙 基-丁基-苯酚(各異構物)、丙基-戊基_苯酚(各異構物)、丙 基-己基-苯酚(各異構物)、丙基_庚基_苯酚(各異構物)、丙 基-辛基·苯酚(各異構物)、丙基-壬基-苯酚(各異構物)、丙 基-癸基-笨酚(各異構物)、丙基-十二烷基苯酚(各異構 Q 物)、丙基-苯基-苯酚(各異構物)、丙基-苯氧基苯酚(各異 構物)、丙基-異丙苯基-苯酚(各異構物)、丁基-戊基苯酚 (各異構物)、丁基-己基-苯酚(各異構物)、丁基-庚基-苯酚 (各異構物)、丁基-辛基-苯酚(各異構物)、丁基-壬基-苯酚 (各異構物)、丁基-癸基-苯酚(各異構物)、丁基_十二烷基_ 苯酚(各異構物)、丁基·苯基-苯酚(各異構物)、丁基-苯氧 基苯酚(各異構物)、丁基-異丙苯基-苯酚(各異構物)、戊 基-己基·苯酚(各異構物)、戊基-庚基_笨酚(各異構物)、戊 基-辛基-苯酚(各異構物)、戊基_壬基_苯酚(各異構物)、戊 131506.doc -85 - 200948759 基·癸基-苯酚(各異構物)、戊基-十二烷基-苯酚(各異構 物)、戊基-苯基·苯酚(各異構物)、戊基-苯氧基苯酚(各異 構物)、戊基-異丙苯基-苯酚(各異構物)、己基·庚基·苯酚 (各異構物)、己基-辛基-苯酚(各異構物)、己基_壬基-苯酚 (各異構物)、己基-癸基-苯酚(各異構物)、己基_十二烷基_ 苯酚(各異構物)、己基-苯基-苯酚(各異構物)、己基_苯氧 基苯紛(各異構物)、己基-異丙苯基-苯酚(各異構物)、庚 基-辛基-苯酚(各異構物)、庚基-壬基_苯酚(各異構物)、庚 ® 基-癸基-苯酚(各異構物)、庚基-十二烷基-苯酚(各異構 物)、庚基-苯基-苯酚(各異構物)、庚基-苯氧基苯酚(各異 構物)、庚基-異丙苯基-苯紛(各異構物)、辛基-壬基-苯紛 (各異構物)、辛基-癸基-苯酚(各異構物)、辛基_十二烷基_ 苯酚(各異構物)、辛基-苯基-苯酚(各異構物)、辛基_苯氧 基苯酚(各異構物)、辛基-異丙苯基-苯酚(各異構物)、壬 基-癸基-苯盼(各異構物)、壬基·十二烧基-笨酚(各異構 〇 物)、壬基-苯基-苯酚(各異構物)、壬基-苯氧基苯酚(各異 構物)、壬基-異丙苯基-苯紛(各異構物)、十二院基-苯基_ 苯酚(各異構物)、十二烷基-苯氧基苯酚(各異構物)、十二 烧基-異丙苯基-苯齡(各異構物)等二取代苯紛類,三甲基_ 本盼(各異構物)、三乙基-苯盼(各異構物)、三丙基-苯紛 (各異構物)、三丁基-苯酚(各異構物)、三戊基-苯酚(各異 構物)、三己基-苯酚(各異構物)、三庚基-苯酚(各異構 物)、二辛基-苯盼(各異構物)、三壬基-苯紛(各異構物)、 十三烧基-苯酚(各異構物)、三(十二烷基)·苯酚(各異構 131506.doc -86 - 200948759 物)、三苯基-苯酚(各異構物)、三苯氧基苯酚(各異構物)、 三異丙苯基-苯酚(各異構物)、二甲基·乙基-苯酚(各異構 物)、二曱基-丙基-苯酚(各異構物)、二甲基-丁基-笨盼(各 異構物)、二曱基-戊基-苯齡(各異構物)、二甲基-己基苯 盼(各異構物)、二甲基-庚基-苯酚(各異構物)、二甲基_辛 基-苯酚(各異構物)、二甲基-壬基-苯酚(各異構物)、二甲 基-癸基·苯酚(各異構物)、二甲基-十二烷基_苯酚(各異構 物)、二甲基-苯基-苯酚(各異構物)、二甲基-苯氧基苯紛 ® (各異構物)、二甲基··異丙苯基-苯酚(各異構物)、二乙基_ 甲基-苯酚(各異構物)、二乙基·丙基-苯酚(各異構物)、二 乙基-丁基-苯酚(各異構物)、二乙基-戊基-苯酚(各異構 物)、二乙基-己基-苯酚(各異構物)、二乙基_庚基·苯酚(各 異構物)、二乙基·辛基-苯酚(各異構物)、二乙基_壬基_苯 盼(各異構物)、二乙基-癸基-苯盼(各異構物)、二乙基十 二烷基·苯酚(各異構物)、二乙基-苯基_苯酚(各異構物)、 Φ 二乙基-苯氧基苯酚(各異構物)、二乙基-異丙苯基-苯酚(各 異構物)、二丙基-曱基-苯紛(各異構物)、二丙基-乙基笨 酚(各異構物)、二丙基-丁基-苯酚(各異構物)、二丙基戊 基-苯酚(各異構物)、二丙基_己基_苯酚(各異構物)、二丙 基-庚基-苯盼(各異構物)、二丙基-辛基_苯紛(各異構物)、 二丙基-壬基-笨酚(各異構物)、二丙基_癸基苯酚(各異構 物)、二丙基-十二烷基·苯酚(各異構物)、二丙基-苯基_苯 酚(各異構物)、二丙基-苯氧基苯酚(各異構物)、二丙基-異 丙笨基-苯酚(各異構物)、二丁基·甲基_苯酚(各異構物)、 131506.doc -87 - 200948759 二丁基-乙基-苯酚(各異構物)、二丁基-丙基-苯酚(各異構 物)、二丁基-戊基-苯酌(各異構物)、二丁基·己基_苯酚(各 異構物)、二丁基-庚基-苯紛(各異構物)、二丁基辛基苯 酚(各異構物)、二丁基-壬基-苯酚(各異構物)、二丁基_癸 基-苯酚(各異構物)、二丁基_十二烷基_苯酚(各異構物)、 二丁基-苯基-苯酚(各異構物)、二丁基_苯氧基苯酚(各異構 物)、二丁基-異丙苯基-苯酚(各異構物)、二戊基-甲基_苯 酚(各異構物)、二戊基-乙基-苯酚(各異構物)、二戊基··丙 基-苯酚(各異構物)、二戊基-丁基_苯酚(各異構物)、二戊 基-己基胃苯酚(各異構物)、二戊基_庚基-苯酚(各異構物)、 二戊基-辛基-苯酚(各異構物)、二戊基_壬基_苯酚(各異構 物)、二戊基-癸基-苯酚(各異構物)、二戊基_十二烷基_苯 酚(各異構物)、二戊基·苯基-苯酚(各異構物)、二戊基_笨 氧基苯酚(各異構物)、二戊基_異丙苯基-苯酚(各異構物)、 二己基-曱基-苯酚(各異構物)、二己基-乙基_苯酚(各異構 Φ 物)、二己基-丙基-苯酚(各異構物)、二己基-丁基-苯酚(各 異構物)、二己基-戊基_苯酚(各異構物)、二己基_庚基·苯 酚(各異構物)、二己基-辛基·苯酚(各異構物)、二己基_壬 基-苯酚(各異構物)、二己基_癸基_苯酚(各異構物)、二己 基-十二烷基-苯酚(各異構物)、二己基_苯基_苯酚(各異構 物)、二己基-苯氧基苯酚(各異構物)、二己基_異丙苯基_笨 酚(各異構物)、二庚基-曱基_苯酚(各異構物)、二庚基-乙 基-苯酚(各異構物)、二庚基_丙基苯酚(各異構物)、二庚 基-丁基-苯酚(各異構物)、二庚基_戊基苯酚(各異構物)、 131506.doc -88- 200948759 二 Ο Ο 庚基·己基-苯紛(各異構物)、二庚基_辛基_苯紛(各異構 物)、二庚基-壬基-苯酚(各異構物)、二庚基癸基笨酚(各 異構物)、二庚基_十二烷基_苯酚(各異構物)、二庚基苯 基-苯酚(各異構物)、二庚基-苯氧基苯酚(各異構物)、二庚 基-異丙苯基苯酚(各異構物)、=辛基_甲基_苯酚(各異構 物)、二辛基-乙基-苯盼(各異構物)、二辛基-丙基-苯盼(各 異構物)、二辛基-丁基-苯酚(各異構物)、二辛基戊基-苯 酚(各異構物)、二辛基-己基-苯酚(各異構物)、二辛基-庚 基-苯酚(各異構物)、二辛基_壬基_苯酚(各異構物)、二辛 基-癸基-苯酚(各異構物)、二辛基_十二烷基苯酚(各異構 物)、二辛基-苯基·苯酚(各異構物)、二辛基_苯氧基苯酚 (各異構物)、二辛基-異丙苯基·苯酚(各異構物)、二壬基_ 甲基-苯酚(各異構物)、二壬基-乙基-笨酚(各異構物)、二 壬基-丙基-苯酚(各異構物)、二壬基·丁基_苯酚(各異構 物)、二壬基·戊基-苯酚(各異構物)、二壬基_己基苯酚(各 異構物)、二壬基·庚基-苯酚(各異構物)、二壬基—辛基苯 酚(各異構物)、二壬基-癸基-苯酚(各異構物)、二壬基_十 一烷基-苯酚(各異構物)、二壬基_苯基_苯酚(各異構物)、 —壬基-苯氧基苯酚(各異構物)、二壬基_異丙苯基-苯酚(各 異構物)、二癸基-甲基-苯酚(各異構物)、二癸基-乙基-苯 酚(各異構物)、二癸基-丙基-苯盼(各異構物)、二癸基_丁 基-本盼(各異構物)、二癸基-戊基-苯盼(各異構物)、二癸 基-己基-本盼(各異構物)、二癸基-庚基_苯紛(各異構物)、 二癸基-辛基·苯酚(各異構物)、二癸基-壬基_苯酚(各異構 J 3 ] 506.doc -89- 200948759 物)、二癸基-十二烷基-苯酚(各異構物)、二癸基苯基苯 酚(各異構物)、二癸基-苯氧基苯酚(各異構物)、二癸基_異 丙苯基-苯酚(各異構物)、二(十二烷基)_甲基_苯酚(各異構 物)、二(十二烷基)_乙基·苯酚(各異構物)、二(十二烷基 丙基-苯酚(各異構物)、二(十二烷基)_丁基苯酚(各異構 物)、二(十二烷基)_戊基-苯酚(各異構物)、二(十二烷基&gt; 己基-苯酚(各異構物)、二(十二烷基)_庚基苯酚(各異構 物)、二(十二烷基)·辛基-苯酚(各異構物)、二(十二烷基)_ 壬基-苯酚(各異構物)、二(十二烷基)_癸基苯酚(各異構 物)、一(十二烧基)-十二炫基-苯齡(各異構物)、二(十二烧 基)-苯基-苯酚(各異構物)、二(十二烷基苯氧基苯酚(各 異構物)、二(十二烷基)_異丙苯基-苯酚(各異構物)、二苯 基-曱基-苯酚(各異構物)、二苯基·乙基-苯酚(各異構物)、 二苯基-丙基-苯酚(各異構物)、二苯基_丁基-笨酚(各異構 物)、二苯基-戊基-苯酚(各異構物)、二苯基-己基_笨酚(各 _ 異構物)、二苯基-庚基-苯酚(各異構物)、二苯基_辛基-苯 酚(各異構物)、二苯基-壬基-苯酚(各異構物)、二苯基_癸 基-苯酚(各異構物)、二苯基-十二烷基-苯酚(各異構物)、 二苯基-苯氧基苯酚(各異構物)、二苯基_異丙苯基_苯酚(各 異構物)、二苯氧基甲基-苯酚(各異構物)、二苯氧基乙基_ 苯酚(各異構物)、二苯氧基丙基-苯酚(各異構物)、二苯氧 基丁基-苯酚(各異構物)、二苯氧基戊基_苯酚(各異構物)、 二苯氧基己基-苯酚(各異構物)、二苯氧基庚基-苯酚(各異 構物)、二苯氧基辛基-苯酚(各異構物)、二苯氧基壬基_苯 131506.doc -90- 200948759 酚(各異構物)、二笨氧基癸基-苯酚(各異構物)、二苯氧基 十二烷基-苯酚(各異構物)、二苯氧基笨基-苯酚(各異構 物)、二苯氧基異丙苯基-苯酚(各異構物)、二異丙苯基’甲 基··苯酚(各異構物)、二異丙苯基乙基_苯酚(各異構物)、 二異丙苯基-丙基-苯酚(各異構物)、二異丙苯基_丁基_苯酚 (各異構物)、二異丙苯基-戊基_苯酚(各異構物)、二異丙苯 基-己基-苯酚(各異構物)、二異丙苯基_庚基_苯酚(各異構 物)、二異丙苯基-辛基-苯酚(各異構物)、二異丙苯基-壬 ® 基-苯酚(各異構物)、二異丙苯基-癸基-苯酚(各異構物)、 二異丙苯基-十二烷基-苯酚(各異構物)、二異丙苯基_苯基_ 苯酚(各異構物)、二異丙苯基-苯氧基苯酚(各異構物)、甲 基-乙基-丙基-苯酚(各異構物)、甲基-乙基-丁基苯酚(各 異構物)、甲基-乙基-戊基·苯酚(各異構物)、甲基·乙基_己 基-苯酚(各異構物)、甲基-乙基_庚基_苯酚(各異構物)、甲 基-乙基-辛基-笨酚(各異構物)、曱基_乙基_壬基-苯酚(各 ^ 異構物)、甲基·乙基-癸基-苯酚(各異構物)、甲基·乙基-十 二烷基-苯酚(各異構物)、曱基_乙基-苯基-苯酚(各異構 物)、曱基-乙基-苯氧基笨酚(各異構物)、曱基-乙基_異丙 苯基-苯酚(各異構物)、曱基-丙基-甲基-丙基-丁基·笨酚 (各異構物)、曱基-丙基-戊基_苯酚(各異構物)、甲基·丙 基-己基-苯酚(各異構物)、曱基_丙基_庚基-笨酚(各異構 物)、甲基-丙基·辛基-苯酚(各異構物)、曱基-丙基_壬基_ 苯酚(各異構物)、曱基··丙基-癸基_苯酚(各異構物)、曱基· 丙基-十二烷基-苯酚(各異構物)、甲基-丙基-苯基-笨酚(各 131506.doc -91 · 200948759 異構物)、甲基-丙基-苯氧基苯酚(各異構物)、甲基_丙基_ 異丙本基-苯酌·(各異構物)、甲基-丁基-戍基-苯盼(各異構 物)、曱基-丁基-己基-苯酚(各異構物)、甲基-丁基_庚基-苯酚(各異構物)、甲基-丁基-辛基·苯酚(各異構物)、甲基· 丁基-壬基-本紛(各異構物)、曱基·丁基-癸基_苯紛(各異構 物)、曱基-丁基-十二烷基-苯酚(各異構物)、曱基_丁基_笨 基-苯酚(各異構物)、甲基-丁基-苯氧基苯酚(各異構物)、 甲基-丁基-異丙苯基-苯酚(各異構物)、甲基_戊基_己基_ 酚(各異構物)、曱基-戊基·庚基-苯酚(各異構物)、曱基_戊 基-辛基-本盼(各異構物)、曱基-戊基-壬基-苯盼(各異構 物)、甲基-戊基-癸基-苯酚(各異構物)、甲基-戊基-十二烷 基-苯酚(各異構物)、曱基_戊基_苯基_苯酚(各異構物)、甲 基-戊基-苯氧基苯酚(各異構物)、甲基_戊基_異丙苯基笨 酚(各異構物)、曱基-己基-庚基-苯酚(各異構物)、甲基_己 基-辛基-笨酚(各異構物)、曱基-己基-壬基_苯酚(各異構 ❹ 物)、甲基-己基·癸基-苯酚(各異構物)、甲基-己基十二烷 基-苯酚(各異構物)、甲基_己基_苯基_苯酚(各異構物)、甲 基-己基-苯氧基苯酚(各異構物)、甲基-己基異丙笨基-笨 酚(各異構物)、乙基-丙基-丁基-苯酚(各異構物)、乙基-丙 基-戊基-苯酚(各異構物)、乙基_丙基_己基-笨酚(各異構 物)、乙基-丙基-庚基-苯酚(各異構物)、乙基丙基_辛基_ 本酚(各異構物)、乙基·丙基-壬基_苯酚(各異構物)、乙基-丙基-癸基-苯酚(各異構物)、乙基_丙基_十二烷基·苯酚(各 異構物)、乙基-丙基-笨基·苯酚(各異構物)、乙基_丙基·笨 131506.doc •92- 200948759 氧基苯盼(各異構物)、乙基-丙基-異丙苯基-苯酚(各異構 物)、乙基-丁基-苯酚(各異構物)、乙基-丁基-戊基-苯酚 (各異構物)、乙基·丁基-己基-苯酚(各異構物)、乙基-丁 基-庚基-苯盼(各異構物)、乙基-丁基-辛基-苯酚(各異構 物)、乙基·丁基-壬基-苯酚(各異構物)、乙基-丁基_癸基_ 苯酚(各異構物)、乙基_丁基·十二烷基_苯酚(各異構物)、 乙基-丁基·苯基-苯酚(各異構物)、乙基_丁基_苯氧基苯酚 (各異構物)、乙基·丁基-異丙苯基-苯酚(各異構物)、乙基-戍基-己基-苯盼(各異構物)、乙基_戊基_庚基_苯酚(各異構 物)、乙基-戊基-辛基-苯酚(各異構物)、乙基_戊基_壬基_ 苯酚(各異構物)、乙基_戊基_癸基_苯酚(各異構物)、乙基_ 戊基-十二炫基-苯酚(各異構物)、乙基_戊基_苯基_苯酚(各 異構物)、乙基-戊基-苯氧基苯酚(各異構物)、乙基-戊基_ 異丙苯基-苯酚(各異構物)、乙基·己基_庚基_苯酚(各異構 物)、乙基-己基-辛基-苯酚(各異構物)、乙基-己基-壬基_ Φ 苯酚(各異構物)、乙基-己基-癸基-苯酚(各異構物)、乙基-己基-十二烷基-苯酚(各異構物)、乙基-己基-苯基-苯酚(各 異構物)、乙基-己基-苯氧基苯酚(各異構物)、乙基-己基· 異丙苯基·•苯酚(各異構物)、乙基_庚基_辛基-苯酚(各異構 物)、乙基-庚基·壬基-苯酚(各異構物)、乙基-庚基_癸基_ 苯酚(各異構物)、乙基-庚基·十二烧基-苯酚(各異構物)、 乙基-庚基-苯基-笨酚(各異構物)、乙基·庚基-苯氧基苯酚 (各異構物)、乙基-庚基-異丙苯基-苯酚(各異構物)、乙基_ 辛基-苯酚(各異構物)、乙基-辛基-壬基-苯酚(各異構物)、 131506.doc -93- 200948759 ❹ ❹ 乙基-辛基-癸基-苯紛(各異構物)、乙基.辛基_十二炫基-苯 紛(各異構物)、乙基辛基_苯基初(各異構物)、乙基-辛 基_苯氧基㈣(各異構物)、乙基.辛基_異丙苯基.苯紛(各 異構物)、乙基-壬基癸基-苯酚(各異構物)、乙基_壬基-十 二烷基-苯酚(各異構物)、乙基_壬基·苯基-苯酚(各異構 物)、乙基-壬基-苯氧基苯酚(各異構物)、乙基·壬基異丙 苯基苯酚(各異構物)、乙基_癸基·十二烷基-苯酚(各異構 =)、乙基-癸基-苯基·苯酚(各異構物)、乙基_癸基_苯氧基 苯酚(各異構物)、乙基·癸基_異丙苯基·苯酚(各異構物)、 乙基-十二烷基-苯基-苯酚(各異構物)、乙基十二烷基_苯 氧基苯酚(各異構物)、乙基_十二烷基_異丙苯基-苯酚(各異 構物)、乙基-苯基-苯氧基苯酚(各異構物)、乙基_苯基異 丙苯基-苯酚(各異構物)、丙基_丁基_苯酚(各異構物)、丙 基-丁基-戊基-苯酚(各異構物)、丙基-丁基-己基-苯酚(各 異構物)、丙基-丁基-庚基-苯酚(各異構物)、丙基丁基辛 基·苯酚(各異構物)、丙基-丁基-壬基-苯酚(各異構物)、丙 基-丁基-癸基·苯酚(各異構物)、丙基_丁基_十二烷基_苯酚 (各異構物)、丙基-丁基-苯基-苯酚(各異構物)、丙基丁 基-苯氧基苯酚(各異構物)、丙基-丁基-異丙苯基_苯酚(各 異構物)、丙基-戊基-笨酚(各異構物)、丙基_戊基-己基_苯 酚(各異構物)、丙基-戊基-庚基-苯酚(各異構物)、丙基_戊 基-辛基-苯酚(各異構物)、丙基-戊基·壬基_苯酚(各異構 物)' 丙基_戊基-癸基-苯酚(各異構物)、丙基-戊基_十二烷 基-苯盼(各異構物)、丙基-戊基-苯基-苯酚(各異構物)、丙 131506.doc -94- 200948759 〇 ❹ 基-戊基-苯氧基苯酚(各異構物)、丙基-戊基-異丙苯基-苯 盼(各異構物)、丙基-己基·苯齡(各異構物)、丙基-己基·庚 基·苯酚(各異構物)、丙基-己基-辛基·苯酚(各異構物)、丙 基-己基-壬基-苯酚(各異構物)、丙基-己基-癸基-苯酚(各 異構物)、丙基-己基-十二烷基-苯酚(各異構物)、丙基-己 基-苯基·苯酚(各異構物)、丙基-己基-苯氧基苯酚(各異構 物)、丙基-己基-異丙苯基-苯酚(各異構物)、丙基_庚基_辛 基-苯酚(各異構物)、丙基·庚基-壬基-苯酚(各異構物)、丙 基-庚基-癸基-苯酚(各異構物)、丙基_庚基_十二烷基-苯酚 (各異構物)、丙基-庚基-苯基-苯酚(各異構物)、丙基庚 基-苯氧基苯酚(各異構物)、丙基-庚基-異丙苯基·苯酚(各 異構物)、丙基-辛基-壬基·苯酚(各異構物)、丙基辛基癸 基-苯酚(各異構物)、丙基-辛基-十二烷基-苯酚(各異構 物)、丙基-辛基-苯基·苯酚(各異構物)、丙基_辛基苯氧基 苯酚(各異構物)、丙基-辛基-異丙苯基·苯酚(各異構物)、 丙基-壬基-癸基-苯酚(各異構物)、丙基-壬基_十二烷基苯 酚(各異構物)、丙基-壬基-苯基_苯酚(各異構物)、丙基壬 基-苯氧基苯酚(各異構物)、丙基_壬基_異丙苯基-苯酚(各 異構物)、丙基·癸基-十二烷基_苯酚(各異構物)、丙基-癸 基-苯基-苯酚(各異構物)、丙基_癸基_苯氧基苯酚(各異構 物)、丙基-癸基-異丙苯基-苯酚(各異構物)、丙基-十二烷 基-苯基-苯盼(各異構物)、@基-十二院基-苯氧基苯齡(各 異構物)、丙基-十二烷基_異丙苯基-苯酚(各異構物广甲 基·苯盼(各異構物)、乙基·苯齡(各異構物)、丙基-苯盼(各 131506.doc •95- 200948759 異構物)、丁基-苯酚(各異構物)、戊基-苯酚(各異構物)、 己基-苯酚(各異構物)、庚基-苯酚(各異構物)、辛基苯酚 (各異構物)、壬基-苯酚(各異構物)、癸基苯酚(各異構 物)、十二烷基-苯酚(各異構物)、苯基-苯酚(各異構物)、 苯氧基苯酚(各異構物)、異丙苯基-苯酚(各異構物)' 丙基_ 苯基-苯氧基苯酚(各異構物)、丙基-苯基-異丙苯基苯酚 (各異構物)、丙基-苯氧基_異丙苯基-苯酚(各異構物)、丙 ^ 基-丁基-戊基-苯酚(各異構物)、丙基-丁基-己基-苯酚(各 異構物)、丙基-丁基-庚基-苯酚(各異構物)、丙基_丁基_辛 基-苯酚(各異構物)、丙基-丁基_壬基_苯酚(各異構物)、丙 基·丁基-癸基-苯酚(各異構物)、丙基-丁基_十二烷基_苯酚 (各異構物)、丙基-丁基-苯基-苯酚(各異構物)、丙基·丁 基·苯氧基苯酚(各異構物)、丙基-丁基-異丙苯基-苯酚(各 異構物)、丙基-戊基-苯酚(各異構物)、丙基_戊基-己基_苯 酚(各異構物)、丙基·戊基·庚基-苯酚(各異構物)、丙基_戊 Φ 基·辛基_苯酚(各異構物)、丙基-戊基-壬基-苯酚(各異構 物)、丙基·•戊基·癸基-苯酚(各異構物)、丙基_戊基_十二烷 基-苯盼(各異構物)、丙基-戊基-苯基-苯酚(各異構物)、丙 基-戊基-苯氧基苯酚(各異構物)、丙基_戊基_異丙苯基-苯 酚(各異構物)、丙基-己基-庚基_苯酚(各異構物)、丙基_己 基-辛基-苯盼(各異構物)、丙基-己基壬基-苯酚(各異構 物)、丙基-己基-癸基-苯酚(各異構物)、丙基-己基_十二烷 基-苯酚(各異構物)、丙基-己基_苯基_苯酚(各異構物)、丙 基-己基-苯氧基苯酚(各異構物)、丙基-己基_異丙苯基_苯 •96- 200948759 酚(各異構物)、丙基-庚基-辛基-苯酚(各異構物)、丙基-庚 基-壬基-苯酚(各異構物)、丙基-庚基-癸基-苯酚(各異構 物)、丙基-庚基-十二烧基-苯酚(各異構物)、丙基_庚基_笨 基-苯酚(各異構物)、丙基-庚基-苯氧基苯酚(各異構物)、 丙基-庚基-異丙苯基-苯酚(各異構物)、丙基-辛基-壬基-苯 酚(各異構物)、丙基-辛基-癸基-苯酚(各異構物)、丙基_辛 基-十二烷基-苯酚(各異構物)、丙基-辛基-苯基-苯盼(各異 構物)、丙基-辛基-苯氧基苯酚(各異構物)、丙基_辛基異 ❹ 丙苯基·苯紛(各異構物)、丙基-壬基-癸基-苯酌·(各異構 物)、丙基-壬基-十二烷基-苯酚(各異構物)、丙基-壬基_苯 基-苯酚(各異構物)、丙基-壬基-苯氧基苯酚(各異構物)、 丙基-壬基-異丙苯基-苯酚(各異構物)、丙基-癸基_十二院 基-苯酚(各異構物)、丙基-癸基-苯基-苯酚(各異構物)、丙 基-癸基-苯氧基苯盼(各異構物)、丙基-癸基-異丙苯基-苯 紛(各異構物)、丙基-十二烧基-苯基-苯紛(各異構物)、丙 ❽ 基-十二烧基-苯氧基苯酌·(各異構物)、異丙苯基-苯紛(各異 構物)、丙基-苯基-苯氧基苯酚(各異構物)、丙基-苯基-異 丙苯基-苯酚(各異構物)、丁基-戊基-己基·苯酚(各異構 物)、丁基-戊基-庚基-苯酚(各異構物)、丁基-戊基-辛基_ 苯酚(各異構物)、丁基-戊基-壬基-苯酚(各異構物)、丁基_ 戊基-癸基-苯酚(各異構物)、丁基-戊基-十二烧基-苯酚(各 異構物)、丁基-戊基-苯基-苯酚(各異構物)、丁基-戊基-苯 氧基苯酚(各異構物)、丁基-戊基-異丙苯基-苯酚(各異構 物)、丁基-己基-庚基-苯酚(各異構物)' 丁基-己基-辛基- 131506.doc -97- 200948759 苯酚(各異構物)、丁基-己基-壬基-苯酚(各異構物)、丁基_ 己基-癸基-苯酚(各異構物)、丁基-己基_十二烷基_苯酚(各 異構物)、丁基-己基-苯基-苯酚(各異構物)、丁基-己基·苯 氧基苯酚(各異構物)、丁基-己基·異丙苯基-苯酚(各異構 物)、丁基-庚基-辛基-苯酚(各異構物)、丁基·庚基-壬基_ 苯酚(各異構物)、丁基-庚基-癸基-苯酚(各異構物)、丁基_ 庚基-十二院基-苯盼(各異構物)、丁基-庚基-苯基·苯紛(各 異構物)、丁基-庚基-苯氧基苯酚(各異構物)、丁基_庚基_ ® 異丙苯基-苯酚(各異構物)、丁基-辛基-壬基-苯酚(各異構 物)、丁基-辛基-癸基-苯酚(各異構物)、丁基-辛基_十二烷 基-本盼(各異構物)、丁基-辛基·苯基-苯盼(各異構物)、丁 基-辛基-笨氧基苯酚(各異構物)、丁基-辛基·異丙苯基-笨 酚(各異構物)、丁基-壬基-癸基-苯酚(各異構物)、丁基_壬 基-十二烧基-苯紛(各異構物)、丁基-壬基-笨基-苯盼(各異 構物)、丁基-壬基-苯氧基苯盼(各異構物)、丁基_壬基_異 丙笨基-苯紛(各異構物)、丁基-癸基-十二院基-苯盼(各異 Ο 構物)、丁基-癸基-苯基-苯酚(各異構物)、丁基-癸基-苯氧 基苯盼(各異構物)、丁基-癸基-異丙苯基-苯紛(各異構 物)、丁基-十二烷基-苯酚(各異構物)、丁基_十二烷基_苯 基-苯盼(各異構物)、丁基-十二烧基-苯氧基苯盼(各異構 物)、丁基-十二烧基-異丙苯基-苯盼(各異構物)、丁基_笨 基-苯酚(各異構物)、丁基-苯基-苯氧基苯酚(各異構物)、 丁基-苯基-異丙苯基-苯酚(各異構物)、戊基-己基·庚基_苯 盼(各異構物)、戍基-己基·辛基-苯紛(各異構物)、戊基_己 131506.doc -98- 200948759 基-壬基-本盼(各異構物)、戊基-己基-癸基-苯紛(各異構 物)、戊基·己基-十二烷基-苯酚(各異構物)、戊基_己基笨 基-本紛(各異構物)、戍基-己基-苯氧基苯盼(各異構物)、 戊基-己基-異丙苯基-苯盼(各異構物)、戊基_庚基-辛基-苯 酚(各異構物)、戊基-庚基-壬基·苯酚(各異構物)、戊基庚 基-癸基-苯酚(各異構物)、戊基-庚基·十二烷基_苯盼(各異 構物)、戊基-庚基-苯基·苯酚(各異構物)、戊基_庚基_苯氧 基笨酚(各異構物)、戊基-庚基-異丙苯基-苯酚(各異構 ® 物)、戊基-辛基-壬基-苯酚(各異構物)、戊基-辛基_癸基_ 笨紛(各異構物)、戊基-辛基-十二院基-苯盼(各異構物)、 戊基-辛基-苯基-苯酚(各異構物)、戊基-辛基_苯氧基苯酚 (各異構物)、戊基-辛基··異丙苯基-苯酚(各異構物)、戊基胃 壬基·癸基-苯酚(各異構物)、戊基-壬基·十二烷基·苯盼(各 異構物)、戊基-壬基-苯基-苯酚(各異構物)、戊基_壬基苯 乳基本紛(各異構物)、戊基-壬基-異丙苯基-苯盼(各異構 ^ 物)、戊基-癸基-十二烷基-苯酚(各異構物)、戊基-癸基-苯 基-笨盼(各異構物)、戊基-癸基-苯氧基苯紛(各異構物)、 戊基-癸基-異丙苯基-苯酚(各異構物)、戊基-癸基_十二烧 基-苯酚(各異構物)、戊基-癸基_苯基_苯酚(各異構物)、戊 基-癸基-本乳基本酌·(各異構物)、戊基_癸基_異丙苯基苯 酚(各異構物)、戊基-十二烷基-苯基_苯酚(各異構物)、戊 基-十二烷基-苯氧基苯酚(各異構物)、戊基_十二烷基_異丙 苯基-苯盼(各異構物)、戊基·苯基-苯氧基苯酚(各異構 物)、戊基-苯基-異丙苯基-笨齡(各異構物)、己基-庚基-辛 131506.doc 99- 200948759 Ο Ο 基-苯酚(各異構物)、己基-庚基-壬基-苯酚(各異構物)、己 基-庚基-癸基-苯紛(各異構物)、己基-庚基-十二烧基-苯紛 (各異構物)、己基-庚基-苯基-苯酚(各異構物)、己基-庚 基-苯氧基苯酚(各異構物)、己基-庚基·異丙苯基·苯酚(各 異構物)、己基·辛基-壬基-苯酚(各異構物)、己基_辛基_癸 基-苯盼(各異構物)、己基-辛基-十二院基-苯酚(各異構 物)、己基-辛基·苯基·苯酚(各異構物)、己基-辛基-苯氧基 苯紛(各異構物)、己基-辛基-異丙苯基_苯酚(各異構物)、 己基-壬基-癸基-本酌·(各異構物)、己基_壬基·十二院基-苯 酚(各異構物)、己基-壬基·苯基_苯酚(各異構物)、己基壬 基-苯氧基己基·癸基·十二烷基-苯酚(各異構物)、己基-癸 基-苯基-苯酚(各異構物)、己基-癸基_苯氧基苯酚(各異構 物)、己基-癸基-異丙苯基-苯酚(各異構物)、己基十二烷 基·苯基-苯酚(各異構物)、己基-十二烷基_苯氧基苯酚(各 異構物)、己基-十二烷基-異丙苯基_苯酚(各異構物)' 己 基-苯基·苯氧基苯酚(各異構物)、己基苯基異丙苯基苯 酚(各異構物)、庚基-辛基-壬基-苯酚(各異構物)、庚基-辛 基-癸基-苯酚(各異構物)、庚基_辛基-十二烷基_苯酚(各異 構物)、庚基-辛基-苯基-苯酚(各異構物)、庚基-辛基-苯氧 基笨酚(各異構物)、庚基-辛基-異丙苯基-苯酚(各異構 物)、庚基-壬基癸基-苯酚(各異構物)、庚基_壬基-十二烷 基'笨紛(各異構物)、庚基·壬基·苯基-苯酴(各異構物)、庚 基-壬基_苯氧基苯紛(各異構物)、庚基-壬m苯基苯 w各異構物)、錄-癸基·十二统基_苯紛(各異構物)、庚 I315〇6.d〇c •100· 200948759 基·癸基-苯基-苯酚(各異構物)、庚基-癸基_苯氧基苯酚(各 異構物)、庚基-癸基-異丙苯基_苯酚(各異構物)、庚基-十 二烷基-苯基-苯酚(各異構物)、庚基_十二烷基_苯氧基苯酚 (各異構物)、庚基-十二烷基_異丙苯基_苯酚(各異構物)、 庚基-苯基-苯氧基苯酚(各異構物)、庚基_苯基異丙苯基 苯酚(各異構物)、辛基-壬基_癸基·苯酚(各異構物)、辛基Structure), acrylic acid, crotonic acid, methacrylic acid, ethylene acetic acid, mercaptoacrylic acid, angelic acid, cis acid, decyl acetic acid, undecylenic acid (di-structure), etc., saturated or unsaturated aliphatic monocarboxylic acid Acid compounds, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid (each isomer), suberic acid (each isomer), azelaic acid (each isomer) , azelaic acid (each isomer), maleic acid, fumaric acid, methyl maleic acid, methyl antibutene II 131506. Doc -83· 200948759 A saturated or unsaturated aliphatic dicarboxylic acid such as acid, glutaconic acid (isomer), itaconic acid or allylmalonic acid, i,2,3·propanetricarboxylic acid, a saturated or unsaturated aliphatic dicarboxylic acid compound such as hydrazine, 2,3-propene tricarboxylic acid, 2,3·didecyl butyl hydride, 2,3-tridecanoic acid, benzoic acid, methyl benzoate ( Each isomer), ethyl benzoate (each isomer), propyl benzoate (each isomer), dinonyl benzoate (each isomer), trimethyl benzoate (isomeric) An aromatic monocarboxylic acid compound such as phthalic acid, isophthalic acid, terephthalic acid or methyl isophthalic acid (each isomer), 1, 2, 3 -Aromatic tricarboxylic acid compounds such as benzotriazole® acid, 1,2,4-benzenetricarboxylic acid, 13,5-benzenetricarboxylic acid, phenol, methyl phenol (each isomer), ethyl phenol ( Each isomer), propyl-phenol (each isomer), butyl-phenol (each isomer), pentyl-phenol (each isomer), hexyl-p-phenol (each isomer), Heptyl-phenol (each isomer), octyl-phenol ( Isomers), mercapto-phenol (each isomer), mercapto-phenol (each isomer), dodecyl-phenol (each isomer), phenylphenol (each isomer), Monosubstituted phenols such as phenoxyphenol (each isomer), cumyl-phenol (each isomer), dimethylphenol (each isomer), diethyl benzene (different) Structure), dipropyl-benzoin (each isomer), dibutyl-benzoin (each isomer), dipentyl-phenol (each isomer), dihexyl-phenol (isomeric) , diheptyl-phenol (each isomer), dioctyl-phenol (each isomer), dimercapto-phenol (each isomer), dimercapto-phenol (each isomer) , di(dodecyl)-phenol (each isomer), diphenyl-phenol (each isomer), diphenoxyphenol (each isomer), dicumyl-phenol (each Isomers), methyl ethyl phenol (each isomer), methyl-propyl-phenol (each isomer), mercapto-butyl-phenol (each isomer), methyl Pentyl-phenol (each isomer), 131506. Doc 84· 200948759 Mercapto-hexyl-phenol (each isomer), methyl-heptyl-phenol (each isomer), methyl-octyl-phenol (each isomer), methyl-mercapto - phenol (each isomer), mercapto-mercapto-p-phenol (each isomer), methyl-dodecyl-p-phenol (each isomer), methyl-phenyl-phenol (each Isomers), methyl-phenoxyphenol (each isomer), methyl-isopropylphenyl-phenol (each isomer), ethyl-propyl-phenol (each isomer), B Base-butyl phenol (each isomer), ethyl-pentyl phenol (each isomer), ethyl-hexyl-phenol (each isomer), ethyl heptyl phenol (each isomer) , ethyl-octyl phenol (each isomer), ethyl-mercapto-phenol (each isomer), ethyl-mercapto-phenol (each isomer), ethyl-dodecyl _Phenol (each isomer), ethyl-phenyl-phenol (each isomer), ethylphenoxyphenol (each isomer), ethyl-cumylphenol-phenol (each isomer) ), propyl-butyl-phenol (each isomer), propyl-pentyl-phenol (each isomer), propyl- Hexyl-phenol (each isomer), propyl-heptyl-phenol (each isomer), propyl-octylphenol (each isomer), propyl-mercapto-phenol (each isomer) ), propyl-mercapto-p-phenol (each isomer), propyl-dodecylphenol (isomeric Q), propyl-phenyl-phenol (each isomer), propyl- Phenoxyphenol (each isomer), propyl-isopropylphenyl-phenol (each isomer), butyl-pentylphenol (each isomer), butyl-hexyl-phenol (isomeric , butyl-heptyl-phenol (each isomer), butyl-octyl-phenol (each isomer), butyl-mercapto-phenol (each isomer), butyl-fluorenyl - phenol (each isomer), butyl-dodecyl-phenol (each isomer), butyl-phenyl-phenol (each isomer), butyl-phenoxyphenol (isomeric , butyl-cumyl-phenol (each isomer), pentyl-hexyl phenol (each isomer), pentyl-heptyl-phenol (iso-isomer), pentyl- Octyl-phenol (each isomer), amyl-mercapto-phenol (each isomer), pentane 131506. Doc -85 - 200948759 thiol-phenol (each isomer), pentyl-dodecyl-phenol (each isomer), pentyl-phenyl phenol (each isomer), pentyl -phenoxyphenol (each isomer), pentyl-cumyl-phenol (each isomer), hexylheptyl-phenol (each isomer), hexyl-octyl-phenol (variety) Structure), hexyl-mercapto-phenol (each isomer), hexyl-mercapto-phenol (each isomer), hexyl-dodecyl-phenol (each isomer), hexyl-phenyl- Phenol (each isomer), hexyl-phenoxybenzene (each isomer), hexyl-cumyl-phenol (each isomer), heptyl-octyl-phenol (each isomer) , heptyl-fluorenyl-phenol (each isomer), heptyl-mercapto-phenol (each isomer), heptyl-dodecyl-phenol (each isomer), heptyl-benzene Base-phenol (each isomer), heptyl-phenoxyphenol (each isomer), heptyl-isopropylphenyl-benzene (each isomer), octyl-fluorenyl-benzene Each isomer), octyl-decyl-phenol (each isomer), octyl-dodecyl-phenol (each isomer), octyl-phenyl-phenol (each isomer), octyl-phenoxyphenol (each isomer), octyl-isopropylphenyl-phenol (each isomer) , fluorenyl-fluorenyl-benzone (each isomer), decyl-dodecyl-p-phenol (isomeric saccharide), mercapto-phenyl-phenol (isomer), sulfhydryl -phenoxyphenol (each isomer), mercapto-isopropylphenyl-benzene (each isomer), twelfth-phenyl-phenol (each isomer), dodecyl- Disubstituted benzenes such as phenoxyphenol (each isomer), dodecamidyl-cumyl-benzene age (each isomer), trimethyl _ _ _ (isomer), three Ethyl-benzophenone (each isomer), tripropyl-benzene (each isomer), tributyl-phenol (each isomer), tripentyl-phenol (each isomer), three Hexyl-phenol (each isomer), triheptyl-phenol (each isomer), dioctyl-benzene (each isomer), tridecyl-benzene (iso-isomer), thirteen Pyridyl-phenol (each isomer), tris(dodecyl)-phenol (isomeric 131506. Doc -86 - 200948759 ), triphenyl-phenol (each isomer), triphenyloxyphenol (each isomer), triisopropylphenyl-phenol (each isomer), dimethyl Ethyl-phenol (each isomer), dimercapto-propyl-phenol (each isomer), dimethyl-butyl-poly(individual isomer), dimercapto-pentyl-benzene Age (each isomer), dimethyl-hexylbenzene (each isomer), dimethyl-heptyl-phenol (each isomer), dimethyl-octyl-phenol (each isomer) ), dimethyl-indenyl-phenol (each isomer), dimethyl-indenyl phenol (each isomer), dimethyl-dodecyl-phenol (each isomer), two Methyl-phenyl-phenol (each isomer), dimethyl-phenoxybenzene® (each isomer), dimethyl··cumyl-phenol (each isomer), two Ethyl-methyl-phenol (each isomer), diethyl propyl-phenol (each isomer), diethyl-butyl-phenol (each isomer), diethyl-pentyl - phenol (each isomer), diethyl-hexyl-phenol (each isomer), diethyl-heptyl-phenol ( Isomers), diethyl octyl-phenol (each isomer), diethyl-mercapto-phenylene (each isomer), diethyl-mercapto-benzene (each isomer) ), diethyl dodecyl phenol (each isomer), diethyl-phenyl phenol (each isomer), Φ diethyl phenoxy phenol (each isomer), two Ethyl-cumyl-phenol (each isomer), dipropyl-fluorenyl-benzoic acid (each isomer), dipropyl-ethyl phenol (each isomer), dipropyl - butyl-phenol (each isomer), dipropylpentyl-phenol (each isomer), dipropyl-hexyl-phenol (each isomer), dipropyl-heptyl-benzene ( Each isomer), dipropyl-octyl-benzene (each isomer), dipropyl-fluorenyl-phenol (each isomer), dipropyl-nonylphenol (each isomer) ), dipropyl-dodecylphenol (each isomer), dipropyl-phenyl-phenol (each isomer), dipropyl-phenoxyphenol (each isomer), two Propyl-isopropylphenyl-phenol (each isomer), dibutylmethyl-phenol (each isomer), 131506. Doc -87 - 200948759 Dibutyl-ethyl-phenol (each isomer), dibutyl-propyl-phenol (each isomer), dibutyl-pentyl-benzene (each isomer) , dibutyl·hexyl-phenol (each isomer), dibutyl-heptyl-benzene (each isomer), dibutyloctylphenol (each isomer), dibutyl-fluorenyl - phenol (each isomer), dibutyl-mercapto-phenol (each isomer), dibutyl-dodecyl-phenol (each isomer), dibutyl-phenyl-phenol ( Each isomer), dibutyl-phenoxyphenol (each isomer), dibutyl-cumyl-phenol (each isomer), dipentyl-methyl-phenol (isomeric , dipentyl-ethyl-phenol (each isomer), dipentyl propyl-phenol (each isomer), dipentyl-butyl-phenol (each isomer), two Pentyl-hexyl gastric phenol (each isomer), dipentyl-heptyl-phenol (each isomer), dipentyl-octyl-phenol (each isomer), dipentyl-indenyl group _ Phenol (each isomer), dipentyl-indenyl-phenol (each isomer), dipentyl-dodecyl-benzene (each isomer), dipentyl phenyl-phenol (each isomer), dipentyl-p-oxyphenol (each isomer), dipentyl-cumyl-phenol (variety) Structure), dihexyl-fluorenyl-phenol (each isomer), dihexyl-ethyl-phenol (each isomeric Φ), dihexyl-propyl-phenol (each isomer), dihexyl- Butyl-phenol (each isomer), dihexyl-pentyl-phenol (each isomer), dihexyl-heptyl-phenol (each isomer), dihexyl-octyl·phenol (isomeric) , dihexyl-fluorenyl-phenol (each isomer), dihexyl-fluorenyl-phenol (each isomer), dihexyl-dodecyl-phenol (each isomer), dihexyl _ Phenyl-phenol (each isomer), dihexyl-phenoxyphenol (each isomer), dihexyl-isopropylidene-p-phenol (each isomer), diheptyl-fluorenyl-phenol (each isomer), diheptyl-ethyl-phenol (each isomer), diheptyl-propylphenol (each isomer), diheptyl-butyl-phenol (each isomer) , diheptyl-pentylphenol (each isomer), 131506. Doc -88- 200948759 Diterpene 庚 Heptyl·Hexyl-Benzene (each isomer), Diheptyl-octyl-Benzene (each isomer), Diheptyl-decyl-phenol (isomeric , diheptyldecylphenol (each isomer), diheptyl-dodecyl-phenol (each isomer), diheptylphenyl-phenol (each isomer), diheptan -Phenoxyphenol (each isomer), diheptyl-cumylphenol (each isomer), = octyl-methyl-phenol (each isomer), dioctyl-ethyl - Benzine (each isomer), dioctyl-propyl-benzene (each isomer), dioctyl-butyl-phenol (each isomer), dioctylpentyl-phenol (each Isomers), dioctyl-hexyl-phenol (each isomer), dioctyl-heptyl-phenol (each isomer), dioctyl-fluorenyl-phenol (each isomer), two Octyl-fluorenyl-phenol (each isomer), dioctyl-dodecylphenol (each isomer), dioctyl-phenyl-phenol (each isomer), dioctyl-benzene Oxyphenol (each isomer), dioctyl-isopropylphenyl·phenol (each isomer), dimercapto-methyl-phenol (each Structure), dimercapto-ethyl-p-phenol (each isomer), dimercapto-propyl-phenol (each isomer), dimercapto-butyl-phenol (each isomer), Dimercapto-pentyl-phenol (each isomer), dimercapto-hexylphenol (each isomer), dimercapto-heptyl-phenol (each isomer), dimercapto-octylphenol (each isomer), dimercapto-fluorenyl-phenol (each isomer), didecyl-undecyl-phenol (each isomer), dimercapto-phenyl-phenol (variety) Structure), fluorenyl-phenoxyphenol (each isomer), dimercapto-isopropylidene-phenol (each isomer), dimercapto-methyl-phenol (each isomer) , dimercapto-ethyl-phenol (each isomer), dimercapto-propyl-benzoin (each isomer), dimercapto-butyl-benzine (each isomer), diterpenes Benzyl-pentyl-benzine (iso-isomer), dimercapto-hexyl-benzine (each isomer), dimercapto-heptyl-benzene (iso-isomer), dimercapto-octyl Phenol (each isomer), dimercapto-indenyl-phenol (isomeric J 3 ) 506. Doc-89- 200948759), Dimercapto-dodecyl-phenol (each isomer), Dimercaptophenylphenol (each isomer), Dimercapto-phenoxyphenol (isomeric , dimercapto-isopropylidene-phenol (each isomer), di(dodecyl)-methyl-phenol (each isomer), di(dodecyl)-ethyl Phenol (each isomer), di(dodecylpropyl-phenol (each isomer), di(dodecyl)-butylphenol (each isomer), di(dodecyl) _Pentyl-phenol (each isomer), di(dodecyl) hexyl-phenol (each isomer), di(dodecyl)-heptylphenol (each isomer), two ( Dodecyl)-octyl-phenol (each isomer), di(dodecyl)-decyl-phenol (each isomer), di(dodecyl)-nonylphenol (variety) Structure), one (dodecyl)-tidedocyl-benzene age (each isomer), bis(dodecyl)-phenyl-phenol (each isomer), di(dodecane) Phenoxyphenol (each isomer), di(dodecyl)-isopropylphenyl-phenol (each Structure), diphenyl-mercapto-phenol (each isomer), diphenylethyl-phenol (each isomer), diphenyl-propyl-phenol (each isomer), two Phenyl-butyl-p-phenol (each isomer), diphenyl-pentyl-phenol (each isomer), diphenyl-hexyl-phenol (each isomer), diphenyl- Heptyl-phenol (each isomer), diphenyl-octyl-phenol (each isomer), diphenyl-mercapto-phenol (each isomer), diphenyl-fluorenyl-phenol ( Each isomer), diphenyl-dodecyl-phenol (each isomer), diphenyl-phenoxyphenol (each isomer), diphenyl-cumylphenyl-phenol (each Isomers), diphenoxymethyl-phenol (each isomer), diphenoxyethyl-phenol (each isomer), diphenoxypropyl-phenol (each isomer), Diphenoxybutyl-phenol (each isomer), diphenoxypentyl-phenol (each isomer), diphenoxyhexyl-phenol (each isomer), diphenoxyheptyl - phenol (each isomer), diphenoxyoctyl-phenol (each isomer), diphenoxyanthracene _ Benzene 131,506. Doc -90- 200948759 Phenol (each isomer), diphenyloxyindenyl-phenol (each isomer), diphenoxydodecyl-phenol (each isomer), diphenoxy -Phenol (each isomer), diphenoxyisopropyl phenyl-phenol (each isomer), diisopropylphenyl 'methyl · phenol (each isomer), dicumyl Ethyl-phenol (each isomer), dicumyl-propyl-phenol (each isomer), dicumyl-butyl-phenol (each isomer), dicumyl -pentyl-phenol (each isomer), dicumyl-hexyl-phenol (each isomer), diisopropylphenyl-heptyl-phenol (each isomer), diisopropylphenyl -octyl-phenol (each isomer), diisopropylphenyl-fluorene-based phenol (each isomer), diisopropylphenyl-fluorenyl-phenol (each isomer), diisopropyl Phenyl-dodecyl-phenol (each isomer), diisopropylphenyl-phenyl-phenol (each isomer), diisopropylphenyl-phenoxyphenol (each isomer), Methyl-ethyl-propyl-phenol (each isomer), methyl-ethyl-butylphenol (isomeric , methyl-ethyl-pentyl phenol (each isomer), methyl ethyl-hexyl-phenol (each isomer), methyl-ethyl-heptyl-phenol (isomeric) , methyl-ethyl-octyl-p-phenol (each isomer), mercapto-ethyl-mercapto-phenol (each isomer), methyl ethyl-mercapto-phenol ( Each isomer), methyl ethyl-dodecyl-phenol (each isomer), mercapto-ethyl-phenyl-phenol (each isomer), mercapto-ethyl-phenoxy Phenol (each isomer), mercapto-ethyl-cumenyl-phenol (each isomer), mercapto-propyl-methyl-propyl-butyl-p-phenol (isomeric , mercapto-propyl-pentyl-phenol (each isomer), methyl propyl-hexyl-phenol (each isomer), mercapto-propyl-heptyl-phenol (variety) Structure), methyl-propyl-octyl-phenol (each isomer), mercapto-propyl-fluorenyl-phenol (each isomer), mercapto-propyl-mercapto-phenol ( Each isomer), mercapto-propyl-dodecyl-phenol (each isomer), methyl-propyl-phenyl-p-phenol (131506. Doc -91 · 200948759 Isomers), methyl-propyl-phenoxyphenol (each isomer), methyl-propyl-isopropyl-benzyl-benzene (each isomer), methyl -butyl-mercapto-phenazine (each isomer), mercapto-butyl-hexyl-phenol (each isomer), methyl-butyl-heptyl-phenol (each isomer), A Benzyl-octyl-phenol (each isomer), methyl butyl-mercapto-iso-(iso isomer), mercapto-butyl-fluorenyl-benzene (iso-isomers) ), mercapto-butyl-dodecyl-phenol (each isomer), mercapto-butyl-phenyl-phenol (each isomer), methyl-butyl-phenoxyphenol (each Isomers), methyl-butyl-isopropylphenyl-phenol (each isomer), methyl-pentyl-hexyl-phenol (each isomer), mercapto-pentylheptyl-phenol (each isomer), fluorenyl-pentyl-octyl-benzine (each isomer), fluorenyl-pentyl-fluorenyl-benzidine (each isomer), methyl-pentyl-oxime -Phenol (each isomer), methyl-pentyl-dodecyl-phenol (each isomer), mercapto-pentyl-phenyl-phenol (each isomer), methyl-pentyl -Phenoxyphenol (each isomer), methyl-pentyl-cumylphenol (each isomer), mercapto-hexyl-heptyl-phenol (each isomer), methyl _Hexyl-octyl-p-phenol (each isomer), mercapto-hexyl-fluorenyl-phenol (isomeric oxime), methyl-hexyl decyl-phenol (each isomer), methyl -hexyldodecyl-phenol (each isomer), methyl-hexyl-phenyl-phenol (each isomer), methyl-hexyl-phenoxyphenol (each isomer), methyl- Hexylisopropyl-p-phenol (each isomer), ethyl-propyl-butyl-phenol (each isomer), ethyl-propyl-pentyl-phenol (each isomer), B - propyl-hexyl- phenol (each isomer), ethyl-propyl-heptyl-phenol (each isomer), ethyl propyl-octyl _ phenol (isomeric), Ethyl propyl-fluorenyl-phenol (each isomer), ethyl-propyl-indenyl-phenol (each isomer), ethyl-propyl-dodecylphenol (isoisomer) ), ethyl-propyl-phenyl group phenol (each isomer), ethyl propyl group stupid 131506. Doc •92- 200948759 oxybenz (each isomer), ethyl-propyl-isopropylphenyl-phenol (each isomer), ethyl-butyl-phenol (each isomer), B Base-butyl-pentyl-phenol (each isomer), ethyl butyl-hexyl-phenol (each isomer), ethyl-butyl-heptyl-benzone (isomers), Ethyl-butyl-octyl-phenol (each isomer), ethyl butyl-mercapto-phenol (each isomer), ethyl-butyl-fluorenyl-phenol (each isomer) , ethyl-butyl-dodecyl-phenol (each isomer), ethyl-butyl-phenyl-phenol (each isomer), ethyl-butyl-phenoxyphenol (variety) Structure), ethyl·butyl-cumyl-phenol (each isomer), ethyl-mercapto-hexyl-benzone (each isomer), ethyl-pentyl-heptyl-phenol (each isomer), ethyl-pentyl-octyl-phenol (each isomer), ethyl-pentyl-mercapto-phenol (each isomer), ethyl-pentyl-fluorenyl Phenol (each isomer), ethyl-pentyl-dodedocthyl-phenol (each isomer), ethyl-pentyl-phenyl-phenol (each isomer), B Base-pentyl-phenoxyphenol (each isomer), ethyl-pentyl-cumenyl-phenol (each isomer), ethylhexyl-heptyl-phenol (each isomer) , ethyl-hexyl-octyl-phenol (each isomer), ethyl-hexyl-fluorenyl _ Φ phenol (each isomer), ethyl-hexyl-decyl-phenol (each isomer), Ethyl-hexyl-dodecyl-phenol (each isomer), ethyl-hexyl-phenyl-phenol (each isomer), ethyl-hexyl-phenoxyphenol (each isomer), Ethyl-hexyl-cumenyl phenol (each isomer), ethyl-heptyl-octyl-phenol (each isomer), ethyl-heptyl-decyl-phenol (isomeric) , ethyl-heptyl-fluorenyl-phenol (each isomer), ethyl-heptyl-dodecyl-phenol (each isomer), ethyl-heptyl-phenyl-phenol (each isomer), ethylheptyl-phenoxyphenol (each isomer), ethyl-heptyl-isopropylphenyl-phenol (each isomer), ethyl-octyl-phenol (each isomer), ethyl-octyl-fluorenyl-phenol (each isomer), 131506. Doc -93- 200948759 ❹ 乙基 Ethyl-octyl-fluorenyl-benzoic acid (each isomer), ethyl. Octyl-12-decyl-benzene (each isomer), ethyloctyl-phenyl (individual isomer), ethyl-octyl-phenoxy (tetra) (isomeric), B base. Octyl cumene. Benzene (each isomer), ethyl-mercaptodecyl-phenol (each isomer), ethyl-mercapto-dodecyl-phenol (each isomer), ethyl-mercapto group Phenyl-phenol (each isomer), ethyl-mercapto-phenoxyphenol (each isomer), ethyl decyl cumyl phenol (each isomer), ethyl fluorenyl · Dodecyl-phenol (isomeric =), ethyl-mercapto-phenyl-phenol (each isomer), ethyl-fluorenyl-phenoxyphenol (each isomer), ethyl · mercapto _ cumyl phenol (each isomer), ethyl-dodecyl-phenyl-phenol (each isomer), ethyl dodecyl phenoxy phenol (different Structure), ethyl-dodecyl-cumylphenol-phenol (each isomer), ethyl-phenyl-phenoxyphenol (each isomer), ethyl-phenyl cumene -Phenol (each isomer), propyl-butyl-phenol (each isomer), propyl-butyl-pentyl-phenol (each isomer), propyl-butyl-hexyl-phenol (each isomer), propyl-butyl-heptyl-phenol (each isomer), propylbutyloctyl-phenol (each isomer), -butyl-mercapto-phenol (each isomer), propyl-butyl-mercapto-phenol (each isomer), propyl-butyl-dodecyl-phenol (each isomer) ), propyl-butyl-phenyl-phenol (each isomer), propylbutyl-phenoxyphenol (each isomer), propyl-butyl-isopropylphenyl-phenol (variety) Structure), propyl-pentyl-polyphenol (each isomer), propyl-pentyl-hexyl-phenol (each isomer), propyl-pentyl-heptyl-phenol (each isomer) , propyl-pentyl-octyl-phenol (each isomer), propyl-pentyl-mercapto-phenol (each isomer)' propyl-pentyl-indolyl-phenol (isomeric , propyl-pentyl-dodecyl-benzene (each isomer), propyl-pentyl-phenyl-phenol (each isomer), C 131506. Doc -94- 200948759 〇❹-pentyl-phenoxyphenol (each isomer), propyl-pentyl-cumyl-benzophenone (each isomer), propyl-hexyl-benzoate (each isomer), propyl-hexylheptyl phenol (each isomer), propyl-hexyl-octyl phenol (each isomer), propyl-hexyl-decyl-phenol (each Isomers), propyl-hexyl-fluorenyl-phenol (each isomer), propyl-hexyl-dodecyl-phenol (each isomer), propyl-hexyl-phenyl-phenol (each Isomers), propyl-hexyl-phenoxyphenol (each isomer), propyl-hexyl-cumyl-phenol (each isomer), propyl-heptyl-octyl-phenol ( Each isomer), propylheptyl-decyl-phenol (each isomer), propyl-heptyl-fluorenyl-phenol (each isomer), propyl-heptyl-dodecyl - phenol (each isomer), propyl-heptyl-phenyl-phenol (each isomer), propylheptyl-phenoxyphenol (each isomer), propyl-heptyl-isopropyl Phenyl phenol (each isomer), propyl-octyl-fluorenyl phenol (each isomer), propyl octyl fluorenyl - phenol (each isomer), propyl-octyl-dodecyl-phenol (each isomer), propyl-octyl-phenyl-phenol (each isomer), propyl-octyl Phenoxyphenol (each isomer), propyl-octyl-isopropylphenyl·phenol (each isomer), propyl-indenyl-fluorenyl-phenol (each isomer), propyl- Mercapto-dodecylphenol (each isomer), propyl-mercapto-phenyl-phenol (each isomer), propylsulfonyl-phenoxyphenol (each isomer), propyl _ fluorenyl cumene-phenol (each isomer), propyl decyl-dodecyl phenol (each isomer), propyl-mercapto-phenyl-phenol (isomeric , propyl-fluorenyl-phenoxyphenol (each isomer), propyl-mercapto-isopropylphenyl-phenol (each isomer), propyl-dodecyl-phenyl- Benzene (each isomer), @基-12-院-phenoxyphene (each isomer), propyl-dodecyl-cumylphenol-phenol (each isomer Base benzophenone (each isomer), ethyl benzene age (each isomer), propyl-benzene hope (each 131506. Doc •95- 200948759 isomers), butyl-phenol (each isomer), pentyl-phenol (each isomer), hexyl-phenol (each isomer), heptyl-phenol (isomeric) , octylphenol (each isomer), mercapto-phenol (each isomer), nonylphenol (each isomer), dodecyl-phenol (each isomer), phenyl- Phenol (each isomer), phenoxyphenol (each isomer), cumene-phenol (each isomer) 'propyl phenyl-phenoxyphenol (each isomer), C Base-phenyl-cumylphenol (each isomer), propyl-phenoxy-cumenyl-phenol (each isomer), propyl-butyl-pentyl-phenol (each Isomers), propyl-butyl-hexyl-phenol (each isomer), propyl-butyl-heptyl-phenol (each isomer), propyl-butyl-octyl-phenol (each Isomers), propyl-butyl-fluorenyl-phenol (each isomer), propyl-butyl-mercapto-phenol (each isomer), propyl-butyl-dodecyl_ Phenol (each isomer), propyl-butyl-phenyl-phenol (each isomer), propyl·butyl·benzene Phenol (each isomer), propyl-butyl-isopropylphenyl-phenol (each isomer), propyl-pentyl-phenol (each isomer), propyl-pentyl-hexyl_ Phenol (each isomer), propyl pentanylheptyl-phenol (each isomer), propyl-pentyl-pyryllyl-octyl-phenol (each isomer), propyl-pentyl-oxime -Phenol (each isomer), propyl··pentyl-decyl-phenol (each isomer), propyl-pentyl-dodecyl-benzene (each isomer), propyl -pentyl-phenyl-phenol (each isomer), propyl-pentyl-phenoxyphenol (each isomer), propyl-pentyl-cumyl-phenol (each isomer) , propyl-hexyl-heptyl-phenol (each isomer), propyl-hexyl-octyl-benzone (each isomer), propyl-hexyldecyl-phenol (each isomer), C -hexyl-fluorenyl-phenol (each isomer), propyl-hexyl-dodecyl-phenol (each isomer), propyl-hexyl-phenyl-phenol (each isomer), C Hexyl-phenoxyphenol (each isomer), propyl-hexyl cumene phenyl benzene 96- 200948759 phenol (variety , propyl-heptyl-octyl-phenol (each isomer), propyl-heptyl-fluorenyl-phenol (each isomer), propyl-heptyl-decyl-phenol (variety) Structure), propyl-heptyl-dodecyl-phenol (each isomer), propyl-heptyl-p-styl-phenol (each isomer), propyl-heptyl-phenoxyphenol (each isomer), propyl-heptyl-isopropylphenyl-phenol (each isomer), propyl-octyl-fluorenyl-phenol (each isomer), propyl-octyl-oxime -Phenol (each isomer), propyl-octyl-dodecyl-phenol (each isomer), propyl-octyl-phenyl-benzone (each isomer), propyl- Octyl-phenoxyphenol (each isomer), propyl-octylisoindole, propylphenyl-benzene (iso-isomer), propyl-mercapto-mercapto-benzene-based , propyl-decyl-dodecyl-phenol (each isomer), propyl-mercapto-phenyl-phenol (each isomer), propyl-mercapto-phenoxyphenol ( Each isomer), propyl-mercapto-cumyl-phenol (each isomer), propyl-indenyl-t-cylylene-phenol (each isomer), propyl-hydrazine -Phenyl-phenol (each isomer), propyl-mercapto-phenoxybenz (each isomer), propyl-mercapto-isopropylphenyl-benzene (each isomer), Propyl-dodecyl-phenyl-benzene (each isomer), propionyl-dodecyl-phenoxybenzene (each isomer), cumene-benzene ( Each isomer), propyl-phenyl-phenoxyphenol (each isomer), propyl-phenyl-isopropylphenyl-phenol (each isomer), butyl-pentyl-hexyl Phenol (each isomer), butyl-pentyl-heptyl-phenol (each isomer), butyl-pentyl-octyl-phenol (each isomer), butyl-pentyl-fluorenyl - phenol (each isomer), butyl-pentyl-decyl-phenol (each isomer), butyl-pentyl-dodecanyl-phenol (each isomer), butyl-pentyl -Phenyl-phenol (each isomer), butyl-pentyl-phenoxyphenol (each isomer), butyl-pentyl-cumyl-phenol (each isomer), butyl -hexyl-heptyl-phenol (each isomer) 'butyl-hexyl-octyl-131506. Doc-97- 200948759 Phenol (each isomer), butyl-hexyl-decyl-phenol (each isomer), butyl-hexyl-fluorenyl-phenol (each isomer), butyl-hexyl_ Dodecyl-phenol (each isomer), butyl-hexyl-phenyl-phenol (each isomer), butyl-hexylphenoxyphenol (each isomer), butyl-hexyl Cumyl-phenol (each isomer), butyl-heptyl-octyl-phenol (each isomer), butyl heptyl-fluorenyl-phenol (each isomer), butyl- Heptyl-fluorenyl-phenol (each isomer), butyl-heptyl-tetradecyl-benazine (each isomer), butyl-heptyl-phenyl-benzene (iso-isomers) ), butyl-heptyl-phenoxyphenol (each isomer), butyl-heptyl_ ® cumyl-phenol (each isomer), butyl-octyl-decyl-phenol ( Each isomer), butyl-octyl-fluorenyl-phenol (each isomer), butyl-octyl-dodecyl-benzine (each isomer), butyl-octylbenzene -Benzene (each isomer), butyl-octyl-p-oxyphenol (each isomer), butyl-octyl-cumenyl-phenol (each isomer), butyl-mercapto-fluorenyl-phenol (each isomer), butyl-fluorenyl-dodecyl-benzene (iso-isomer), butyl-fluorenyl- Stupid-benzoin (each isomer), butyl-mercapto-phenoxybenz (each isomer), butyl-fluorenyl-isopropyl-p-phenylene (iso-isomer), Butyl-fluorenyl-tetradecyl-benzone (different oxime), butyl-mercapto-phenyl-phenol (each isomer), butyl-mercapto-phenoxybenzene ( Each isomer), butyl-mercapto-isopropylphenyl-benzene (each isomer), butyl-dodecyl-phenol (each isomer), butyl-dodecyl group Phenyl-benzoin (each isomer), butyl-dodecyl-phenoxybenz (each isomer), butyl-dodecyl-isopropylidene-benzene (variety) Structure), butyl-styl-phenol (each isomer), butyl-phenyl-phenoxyphenol (each isomer), butyl-phenyl-cumyl-phenol (variety) Structure), amyl-hexylheptyl-phenanthrene (each isomer), mercapto-hexyl-octyl-benzene (each isomer), pentyl-hexyl 131506. Doc -98- 200948759 base-fluorenyl-benzine (each isomer), amyl-hexyl-fluorenyl-benzoic acid (each isomer), pentyl-hexyl-dodecyl-phenol (variety) Structure), pentyl-hexyl-based-isolated (isomeric), mercapto-hexyl-phenoxybenz (each isomer), amyl-hexyl-isopropylphenyl-benzene ( Each isomer), amyl-heptyl-octyl-phenol (each isomer), pentyl-heptyl-fluorenyl-phenol (each isomer), amylheptyl-decyl-phenol ( Each isomer), pentyl-heptyl-dodecyl-benzene (each isomer), pentyl-heptyl-phenyl-phenol (each isomer), pentyl-heptyl-benzene Oxygen phenol (each isomer), pentyl-heptyl-isopropylphenyl-phenol (isomeric product), amyl-octyl-fluorenyl-phenol (each isomer), pentyl - 辛基_癸基_ idiot (each isomer), pentyl-octyl-tetradecyl-benazine (each isomer), pentyl-octyl-phenyl-phenol (isomeric , pentyl-octyl-phenoxyphenol (each isomer), amyl-octyl·cumyl-phenol (each isomer), amyl sulphate -Phenol (each isomer), pentyl-fluorenyl-dodecyl benzene (each isomer), pentyl-fluorenyl-phenyl-phenol (each isomer), pentyl _ Mercaptobenzene emulsions are basically (each isomer), amyl-decyl-cumyl-benzophenone (isomeric), amyl-decyl-dodecyl-phenol (isomeric) , pentyl-fluorenyl-phenyl-phenyl-(individually), pentyl-indolyl-phenoxybenzene (each isomer), pentyl-fluorenyl-isopropyl- Phenol (each isomer), amyl-fluorenyl-dodecyl-phenol (each isomer), pentyl-fluorenyl-phenyl-phenol (each isomer), pentyl-fluorenyl- This milk is basically as appropriate (each isomer), amyl sulfhydryl cumene phenol (each isomer), pentyl-dodecyl-phenyl phenol (each isomer), pent -dodecyl-phenoxyphenol (each isomer), amyl-dodecyl-isopropylidene-benzene (each isomer), pentyl-phenyl-phenoxyphenol (each isomer), pentyl-phenyl-isopropylphenyl-stupid (each isomer), hexyl-heptyl-octane 131506. Doc 99- 200948759 Ο --phenol (each isomer), hexyl-heptyl-decyl-phenol (each isomer), hexyl-heptyl-fluorenyl-benzoic acid (isomer), hexyl -heptyl-dodecyl-benzene (each isomer), hexyl-heptyl-phenyl-phenol (each isomer), hexyl-heptyl-phenoxyphenol (each isomer), Hexyl-heptyl-cumenyl phenol (each isomer), hexyl-octyl-fluorenyl-phenol (each isomer), hexyl-octyl-mercapto-phenyl- (pan) , hexyl-octyl-tetradecyl-phenol (each isomer), hexyl-octyl phenyl phenol (each isomer), hexyl-octyl-phenoxybenzene (each isomer) ), hexyl-octyl-cumyl phenyl-phenol (each isomer), hexyl-fluorenyl-fluorenyl----(iso-isomer), hexyl-fluorenyl-t-cylylene-phenol Each isomer), hexyl-fluorenyl phenyl-phenol (each isomer), hexyldecyl-phenoxyhexyl fluorenyl dodecyl-phenol (each isomer), hexyl-fluorene -Phenyl-phenol (each isomer), hexyl-fluorenyl-phenoxyphenol (each isomer) , hexyl-decyl-isopropylidene-phenol (each isomer), hexyldodecyl-phenyl-phenol (each isomer), hexyl-dodecyl-phenoxyphenol (variety) Structure), hexyl-dodecyl-cumylphenyl-phenol (each isomer) 'hexyl-phenylphenoxyphenol (each isomer), hexylphenyl cumylphenol (each Isomers), heptyl-octyl-fluorenyl-phenol (each isomer), heptyl-octyl-fluorenyl-phenol (each isomer), heptyl-octyl-dodecyl group Phenol (each isomer), heptyl-octyl-phenyl-phenol (each isomer), heptyl-octyl-phenoxy phenol (each isomer), heptyl-octyl-iso Propyl phenyl-phenol (each isomer), heptyl-fluorenyl decyl-phenol (each isomer), heptyl-fluorenyl-dodecyl group idiot (each isomer), heptyl · mercapto-phenyl-benzoquinone (each isomer), heptyl-fluorenyl-phenoxybenzene (each isomer), heptyl-壬mphenylbenzene w isomer), recorded - 癸基·十二统基_Benzene (each isomer), Geng I315〇6. D〇c •100· 200948759 thiol-phenyl-phenol (each isomer), heptyl-fluorenyl-phenoxyphenol (each isomer), heptyl-decyl-isopropyl -phenol (each isomer), heptyl-dodecyl-phenyl-phenol (each isomer), heptyl-dodecyl-phenoxyphenol (each isomer), heptyl- Dodecyl-cumylphenyl-phenol (each isomer), heptyl-phenyl-phenoxyphenol (each isomer), heptyl-phenyl cumylphenol (each isomer) ), octyl-fluorenyl-mercapto-phenol (iso-isomer), octyl

壬基-十二烷基-苯酚(各異構物)、辛基·壬基-苯基-苯酚(各 異構物)、辛基-壬基·苯氧基苯酚(各異構物)、辛基-壬基· 異丙苯基-苯酚(各異構物)、辛基_癸基-十二烷基_笨酚(各 異構物)、辛基·癸基-苯基-苯酚(各異構物)、辛基癸基-苯 氧基苯酚(各異構物)、辛基·癸基-異丙苯基-苯酚(各異構 物)、辛基-十二烷基-笨基-苯酚(各異構物)、辛基_十二烷 基-苯氧基苯酚(各異構物)、辛基_十二烷基_異丙苯基_苯酚 (各異構物)、辛基-十二烷基_笨基_苯酚(各異構物)、辛基_ 十二烷基-苯氧基苯酚(各異構物)、辛基_十二烷基_異丙苯 基-苯酚(各異構物)、辛基·苯基-苯氧基苯酚(各異構物)、 辛基·苯基-異丙苯基-苯酚(各異構物)、壬基-癸基十二烷 基-苯盼(各㈣物)、壬基-癸基-苯基-苯盼(各異構物)、壬 基-癸基-苯氧基苯齡(各異構物)、壬基癸基異6苯基苯 酚(各異構物)、壬基-十二烷基-苯基-笨酚(各異構物)、壬 基·十n苯氧基苯盼(各異構物)、壬基-十二燒基-異丙 苯基苯紛(各異構物)、〗基·苯基_苯氧基苯盼(各異構 物)、壬基-本基-異丙苯基_笨酚(各異構物)、癸基十二烷 基·苯基-苯盼(各異構物)、彡基_十二燒基苯氧基苯紛(各 131506.doc • 101 · 200948759 異構物)、癸基-十二烷基-異丙苯基-苯酚(各異構物)、癸 基-苯基-苯氧基苯酚(各異構物)、癸基-笨基-異丙苯基苯 酚(各異構物)、十二烷基-苯基-苯氧基苯酚(各異構物)、十 二烷基-苯基-異丙苯基-苯酚(各異構物)、苯基_苯氧基異丙 本基-苯盼(各異構物)等三取代苯紛類等。該等有機酸之 中’考慮到殘留於熱分解反應器之情形時與於該熱分解反 應中所生成之異氰酸酯分離,較好的是選擇與該異氰酸酯 之標準沸點之沸點差為lot以上的有機酸。 作為使用上述清洗溶劑清洗該熱分解反應器之方法,可 使用:自該熱分解反應器上部導入清洗溶劑而清洗該熱分 解反應器之方法;將清洗溶劑導入至該熱分解反應器之底 部,將該清洗溶劑於該熱分解反應器内煮沸而清洗内部之 方法等各種方法。 s亥清洗操作無須於每次實施該熱分解反應時每次都實 施,可根據所使用之化合物、運轉速度等而任意決定,較 好的是以運轉時間每i小時〜2〇〇〇〇小時進次更好的是 運轉時間每1天〜1年進行丨次、進而較好的是運轉時間每J 個月〜1年進行1次之頻率實施清洗操作。該熱分解反應器 可於该熱分解反應器中具備導入清洗溶劑之管路。 又以β洗該熱分解反應器為目的,進行胺基甲酸芳酯 之熱分解反應時’亦可於該熱分解反應之條件下使上述清 洗'合劑共存。其與先前技術(例如,參照美國專利第 4081472號公報)之惰性溶劑不同。例如,根據該專利文 獻,惰性溶劑係指與藉由胺基甲酸酿之熱分解而生成之異 131506.doc 200948759 氰酸酯不反應之化合物,相對於此,例如,於文獻 (Journal of the American Chemical Society &gt; 第 64卷,2229 頁’ 1942年)中記述有藉由芳香族羥基化合物與異氰酸苯 酯之反應而生成胺基甲酸酯,芳香族經基化合物可與異氰 酸酯反應。該芳香族羥基化合物可於將藉由碳酸酯與胺化 合物進行反應而獲得之反應混合物、或自該反應混合物分 離出經基化合物及/或碳酸醋及/或反應溶劑之殘留物運送 至熱分解反應器中時,既可混合於該反應混合物或該殘留 ® 物中而供給至熱分解反應器中,亦可與供給該反應混合物 之管路分開,另外設置供給該芳香族經基化合物之管路而 供給。 以本實施形態中之製造方法而獲得之異氰酸酯可較好地 用作聚胺基甲酸酯發泡體、塗料、接著劑等之製造原料。 又,利用本實施形態中之製造方法,可不使用劇毒之光氣 而高產率地製造異氰酸酯,因此本發明在產業上極為重 要0 ❹ # [實施例] 以下,根據實施例具體說明本發明,但本發明之範圍並 不限定於該等實施例。 &lt;分析方法&gt; 1) NMR分析方法 裝置:日本,日本電子股份有限公司製造之jnm_a4〇〇 FT-NMR系統 (1) 及13C-NMR分析樣品之製備 131506.doc Ί03- 200948759 稱量出約0.3 g樣品溶液,向溶液 A . 向,合液中添加約0.7 g氘化氣仿 (美國 ’ Aldrich公司製接·,00 co/、Ώ Λ ,99篇)及0.05 g作為内部標 質之四甲基錫(日本,和#妯蘊τι \ 和光純樂工業公司製造,和光一 級),均勻混合’將所得溶液作為NMR分析樣品。 (2)定量分析法 以對各標準物質實施分析而製成之校正曲線為基準,實 施分析樣品溶液之定量分析。Mercapto-dodecyl-phenol (each isomer), octyl-decyl-phenyl-phenol (each isomer), octyl-fluorenylphenoxyphenol (each isomer), Octyl-decyl-cumenyl-phenol (each isomer), octyl-decyl-dodecyl-phenol (each isomer), octyl-decyl-phenyl-phenol ( Each isomer), octyldecyl-phenoxyphenol (each isomer), octyl-decyl-isopropylphenyl-phenol (each isomer), octyl-dodecyl-stupid -Phenol (each isomer), octyl-dodecyl-phenoxyphenol (each isomer), octyl-dodecyl-cumylphenyl-phenol (each isomer), Octyl-dodecyl-styl-phenol (each isomer), octyl-dodecyl-phenoxyphenol (each isomer), octyl-dodecyl-isopropyl - phenol (each isomer), octyl phenyl-phenoxy phenol (each isomer), octyl phenyl-isopropylphenyl-phenol (each isomer), fluorenyl-fluorenyl Dodecyl-benzone (each (tetra)), fluorenyl-fluorenyl-phenyl-benzene (each isomer), fluorenyl-fluorenyl-phenoxybenzene age (each Structure), mercaptopurinyl 6-phenylphenol (each isomer), mercapto-dodecyl-phenyl-p-phenol (each isomer), mercapto·ten n-phenoxybenzene (each isomer), decyl-dodecyl-pyridylbenzene (each isomer), benzyl phenyloxyphene (each isomer), thiol-ben -Phenylphenyl- phenol (each isomer), decyldodecyl phenyl-benzene (each isomer), fluorenyl-dodecyl phenoxybenzene (131506 each) .doc • 101 · 200948759 Isomers), mercapto-dodecyl-cumyl-phenol (each isomer), mercapto-phenyl-phenoxyphenol (isomers), hydrazine Base-stupyl-cumylphenol (each isomer), dodecyl-phenyl-phenoxyphenol (each isomer), dodecyl-phenyl-isopropylphenyl-phenol (all isomers), triphenyl-substituted benzenes such as phenyl-phenoxyisopropyl-p-benzophenone (each isomer). Among these organic acids, it is preferable to separate from the isocyanate formed in the thermal decomposition reaction in consideration of residual in the thermal decomposition reactor, and it is preferred to select an organic group having a boiling point difference from the standard boiling point of the isocyanate to be at least acid. As a method of washing the thermal decomposition reactor by using the above-described cleaning solvent, a method of washing the thermal decomposition reactor by introducing a cleaning solvent from an upper portion of the thermal decomposition reactor; and introducing a cleaning solvent to the bottom of the thermal decomposition reactor may be used. Various methods such as a method in which the cleaning solvent is boiled in the thermal decomposition reactor to clean the inside. The shai cleaning operation is not required to be carried out every time the thermal decomposition reaction is carried out, and can be arbitrarily determined depending on the compound to be used, the operation speed, etc., preferably, the operation time is every 2 hours to 2 hours. It is preferable that the operation time is performed every one day to one year, and it is more preferable that the operation time is performed once every J months to one year. The thermal decomposition reactor may be provided with a piping for introducing a cleaning solvent in the thermal decomposition reactor. Further, when the thermal decomposition reaction of the aryl carbamate is carried out for the purpose of the β-washing of the thermal decomposition reactor, the above-mentioned cleaning mixture can be coexisted under the conditions of the thermal decomposition reaction. It is different from the inert solvent of the prior art (for example, see U.S. Patent No. 4,081,472). For example, according to this patent document, an inert solvent refers to a compound which does not react with a cyanate ester which is formed by thermal decomposition of aminocarboxylic acid, and is, for example, in the literature (Journal of the American) Chemical Society &gt; Vol. 64, p. 2229, 1942, describes the reaction of an aromatic hydroxy compound with phenyl isocyanate to form a urethane, and the aromatic trans group compound can be reacted with an isocyanate. The aromatic hydroxy compound can be transported to the thermal decomposition by a reaction mixture obtained by reacting a carbonate with an amine compound or by separating a residue of the base compound and/or a carbonated acid and/or a reaction solvent from the reaction mixture. In the reactor, it may be mixed into the reaction mixture or the residual product to be supplied to the thermal decomposition reactor, or may be separated from the pipeline for supplying the reaction mixture, and a tube for supplying the aromatic mercapto compound may be separately provided. Supply by the road. The isocyanate obtained by the production method of the present embodiment can be preferably used as a raw material for producing a polyurethane foam, a coating material, an adhesive or the like. Further, according to the production method of the present embodiment, the isocyanate can be produced at a high yield without using highly toxic phosgene. Therefore, the present invention is extremely important in the industry. [Examples] Hereinafter, the present invention will be specifically described based on examples, but The scope of the invention is not limited to the embodiments. &lt;Analytical method&gt; 1) NMR analysis method device: Jnm_a4〇〇FT-NMR system (1) manufactured by Japan Electronics Co., Ltd. and preparation of 13C-NMR analysis sample 131506.doc Ί03- 200948759 Weighing 0.3 g sample solution, to solution A. Add about 0.7 g of deuterated gas to the mixture (American 'Aldrich Co., Ltd., 00 co/, Ώ Λ, 99) and 0.05 g as the internal standard Methyl tin (Japan, and #妯蕴τι \ and Wako Pure Chemical Industries, Inc., and light grade), uniformly mixed 'The obtained solution was analyzed as a sample by NMR. (2) Quantitative analysis method A quantitative analysis of the analysis sample solution is carried out based on a calibration curve prepared by performing analysis on each standard substance.

2) 液相層析法分析方法 =置:日本,島津公司製造之LC-10AT系統 管柱:曰本,T〇soh公司製造之Siliea6〇管柱以艮 連接 展開溶劑:己烷/四氫呋喃=8〇/2〇(體積比)之混合液 溶劑流量:2 mL/分鐘 管柱溫度:35。(: 檢測器:R.I.(折射率計) U)液相層析法分析樣品 稱$出約〇· 1 g樣品,向其中添加約i呂四氫呋喃(曰本, 和光純藥工業公司製造,脫水)及約0.02 g作為内部標準物 質之雙酚A(日本’和光純藥工業公司製造,一級),均勻 混合’將所得溶液作為液相層析*分析之樣品。 (2)定量分析法 以對各標準物質實施分析而製成之校正曲線為基準,實 施分析樣品溶液之定量分析。 3)氣相層析法分析方法 131506.doc 200948759 裝置:日本,島津公司製造之GC-2010 官柱.美國 ’ Agilent Technologies 司製造之DB-i2) Liquid Chromatography Analysis Method = Placement: LC-10AT system column manufactured by Shimadzu Corporation, Japan: Sakamoto, Siliea 6〇 column manufactured by T〇soh Co., Ltd. with 艮 linkage developing solvent: hexane/tetrahydrofuran = 8 〇/2〇 (volume ratio) mixture solvent flow rate: 2 mL / min column temperature: 35. (: Detector: RI (refractive index meter) U) A sample of a sample of about 〇·1 g was analyzed by liquid chromatography, and about i-tetrahydrofuran (Sakamoto, manufactured by Wako Pure Chemical Industries, Ltd., dehydrated) was added thereto. And about 0.02 g of bisphenol A (manufactured by Japan's Wako Pure Chemical Industries, Ltd., first grade) as an internal standard substance, and uniformly mixed 'the obtained solution as a sample for liquid chromatography* analysis. (2) Quantitative analysis method A quantitative analysis of the analysis sample solution is carried out based on a calibration curve prepared by performing analysis on each standard substance. 3) Gas Chromatography Analysis Method 131506.doc 200948759 Device: GC-2010 official column manufactured by Shimadzu Corporation, Japan. DB-i manufactured by Agilent Technologies, USA

長度為30 m、内徑為0.250 mm、膜厚為υο μιη 管柱溫度:於50°C下保持5分鐘後,以升溫速度為丨〇°c / 分鐘升溫至200°CThe length is 30 m, the inner diameter is 0.250 mm, and the film thickness is υο μιη. Column temperature: after 5 minutes at 50 ° C, the temperature is raised to 200 ° C at a heating rate of 丨〇 ° c / min.

於200°C下保持5分鐘後,以升溫速度為^·^/ 分鐘升溫至300°C 檢測器:FID (1) 氣相層析法分析樣品 稱量出約0.05 g樣品,向其中添加約1 g丙酮(日本,和 光純藥工業公司製造’脫水)及約0.02 g作為内部標準物質 之甲苯(日本,和光純藥工業公司製造,脫水),均勻混 合’將所得溶液作為液相層析法分析之樣品。 (2) 定量分析法 以對各標準物質實施分析而製成之校正曲線為基準,實 φ 施分析樣品溶液之定量分析。 4)電感耦合型電漿質量分析法 裳置:日本,精工電子公司製造,SPQ_8〇〇〇 (0電感耦合型電漿質量分析樣品 以稀硫酸使約〇. 15 g試料灰化後,溶解於稀硝酸中。 (2)定量分析法 以對各標準物質實施分析而製成之校正曲線為基準,實 施分析樣品溶液之定量分析。 [參考例1]碳酸雙(3-甲基丁基)酯之製造 ^315〇6.(j〇c 200948759 .步驟(i-i):二烷基錫觸媒之製造 向容積為5000 mL之莊型燒瓶中,加入625 g(2 7 m〇1)二 正丁基氧化錫(日本,三共有機合成公司製造)及2〇2〇 g (22·7 mol) 3-甲基-ΐ·丁醇(日本,和光純藥工業公司製造)。 將該燒瓶安裝於蒸發器(日本,柴田公司製造,r_144)上, 該蒸發器上it接有附有③度調節器之油浴(日本,增田理 化工業公司製造,OBH_24)與真空泵(日本,ulvac公司 製造,G-5〇A)與真空控制器(日本,岡野製作所公司製 造’ VC- 10S)。蒸發器之通氣閥出口與於常壓下流動之氮 氣體管路相連接。關閉蒸發器之通氣閥,進行系統内之減 壓後,緩慢打開通氣閥,使氮氣流入系統内,恢復至常 壓。將油浴溫度設定為約145〇c,將該燒瓶浸潰於該油浴 中’開始蒸發器之旋轉。於開放蒸發器之通氣閥之狀態下 於大氣壓下加熱約40分鐘後,開始包含水之3_甲基_丨_丁醇 之蒸餾。將該狀態保持7小時後,關閉通氣閥,對系統内 φ 進行緩慢減壓,於系統内壓力為74〜35 kPa之狀態下對過 剩之3-甲基-1-丁醇進行蒸餾。待餾分消失後,將該燒瓶自 油浴中取出。將該燒瓶冷卻至室溫(25〇c )附近後,將該燒 瓶自油浴中取出,緩慢打開通氣閥,使系統内之壓力恢復 至大氣壓。於該燒瓶中獲得886 g反應液。根據ii9Sn、 H、13C-NMR之分析結果確認,相對於二正丁基氧化錫, 以產率99%獲得1,1,3,3-四-正丁基甲基丁氧基)_ —錫氧烷。重複12次同樣之操作,獲得合計1〇635 §之 1,1,3,3-四-正丁基-1,3-雙(3-甲基丁氧基)_二錫氧烷。 131506.doc -106- 200948759 .步驟(1-2):碳酸雙(3_曱基丁基)酯之製造 於如圖1所示之連續製造裝置中,製造碳酸雙(3_甲基丁 基)酯。自管路4,以4388 g/hr,將上述製造之;!山3,3_四_ 丁基1,3-雙(3-甲基丁乳基)二錫氧炫供給至填充有填充 物 Metal Gauze CY(瑞士,Sulzer Chemtech Ltd.製造)之内 考二為151 mm、有效長度為5040 mm之塔型反應器1〇2中, 自管路2以14953 g/hr供給連續多級蒸餾塔1〇1中所純化之 3_甲基-1·丁醇。利用加熱器以及再沸器112對該反應器102 進行調整,以使液體溫度達到16〇。〇,利用壓力調節閥進 行調整以使壓力達到約120 kPa_G。該反應器内之滯留時 間約為17分鐘。自反應器上部經由管路6以15〇37 g/hr將包 含水之3-甲基-1-丁醇、及經由管路岁心將弘甲基-丁醇輸送至填充有填充物Metal Gauze CY且具備再沸器 111及冷凝器121之連續多級蒸餾塔101中,進行蒸餾純 化。於該蒸餾塔101之上部,將含有高濃度水之餾分利用 ❹冷凝器121加以冷凝,自管路3加以回收。經由位於連續多 級蒸餾塔101之下部之管路2,將經純化之3_甲基_丨_丁醇輸 送至塔型反應器102中。自塔型反應器1〇2之下部獲得包含 一正丁基-雙(3-甲基丁氧基)錫及丨,1,3,3_四_正丁基_ι,3_雙 (3-甲基丁氧基)二錫氧烷之烷基錫烷氧化物觸媒組合物, 經由管路5供給至薄膜蒸餾裝置1〇3(日本,K〇be丨c〇 ec〇_ solutions公司製造)。於薄臈蒸餾裝置1〇3中餾去3甲基-丁醇,經由冷凝器123、管路8及管路4返回至塔型反應器 1〇2中。自薄臈蒸餾裝置1〇3之下部經由管路7輸送烷基錫 131506.doc -107- 200948759 烷氧化物觸媒組合物,將二-正丁基_雙(3_甲基丁氧基)錫 與M,3,3-四-正丁基qj·雙(3-甲基丁氧基)·二錫氧烷之流 量調節成約5130 g/hr,供給至高壓蒼104中。自管路9以 973 g/hr將二氧化碳供給至高壓釜1〇4中,將高壓爸1〇4内 壓維持為4 MPa-G。將高壓釜104中之溫度設定為12〇。(:, 將滞留時間調整成約4小時,進行二氧化碳與烷基錫烷氧 化物觸媒組合物之反應,獲得含有碳酸雙(3_甲基丁基)酯 之反應液。經由管路10及調節閥將該反應液運送至除碳槽 ® 1〇5中,去除殘留之二氧化碳,自管路11將二氧化碳加以 回收。其後’將該反應液經由管路12運送至設為約142 C、約0.5 kPa之薄膜蒸餾裝置1〇6(日本,Kobelco eco-solutions公司製造)中,將ΐ,ι,3,3-四-正丁基-ΐ,3·雙(3-曱基 丁氧基)-二錫氧烧之流量調節為約4388 g/hr進行供給,獲 得包含碳酸雙(3-甲基丁基)酯之餾分,另一方面,將 1,1,3,3-四丁基_ι,3-雙(3-甲基丁氧基)-二錫氧院之流量調 ❹ 節成約4388 g/hr,使蒸發殘渣經由管路13及管路4循環至 塔型反應器102。將包含碳酸雙(3-曱基丁基)酯之餾分,經 由冷凝器126及運送管路14,以959 g/hr供給至填充有填充 物Metal Gauze CY且具備再沸器117及冷凝器127之連續多 級蒸館塔107中,進行蒸館純化後,由回收管路15以944 g/hr獲得99wt%之碳酸雙(3-甲基丁基)酯。利用ll9Sn、丨H、 13C-NMR對運送管路13之烷基錫烷氧化物觸媒組合物進行 分析,結果含有1,1,3,3-四-正丁基-1,3-雙(3-甲基丁氧基) 二錫氧烷,不含有二-正丁基-雙(3-甲基丁氧基)錫。進行 131506.doc •108· 200948759 上述連續運轉約240小時後,由排出管路16以18 *排出 烷基錫烷氧化物觸媒組合物,另一方面,自管㈣以以 g/hr供給上述方法中所製造之1133四正丁基13雙 甲基丁氧基)一錫氧烷。所獲得之碳酸雙(3_甲基丁基)酯含 有23 ppm作為金屬原子之鐵。 [參考例2]碳酸二丁酯之製造 .步驟(IM):二烷基錫觸媒之製造 向容積為3000 mL之茄型燒瓶中加入692 g(2.78 mol)二 正丁基氧化錫及2001 g(27 mol) ι_ 丁醇(日本,和光純藥工 業公司製造)°將加入白色漿料狀該混合物之燒瓶安裝於 蒸發器上,該蒸發器上連接有附有溫度調節器之油浴、真 空泵與真空控制器。蒸發器之通氣閥出口與於常壓下流動 之氮氣體管路相連接。關閉蒸發器之通氣閥,進行系統内 減壓後,緩慢打開通氣閥,使氮氣流入系統内,恢復至常 壓°將油浴溫度設定為126。(:,將該燒瓶浸潰於該油浴 φ 中’開始蒸發器之旋轉。於開放蒸發器之通氣閥之狀態下 於常壓下旋轉攪拌並加熱約3〇分鐘後,混合液沸騰,開始 低彿成分之蒸餾。將該狀態保持8小時後,關閉通氣閥, 對系統内進行緩慢減壓,於系統内壓力為76〜54 kpa之狀 態下對殘留低沸成分進行蒸餾。待低沸成分消失後,將該 燒版自油浴中取出。反應液成為透明之液體。其後,將該 燒瓶·自油浴中取出’緩慢打開通氣閥,使系統内之壓力恢 復至常壓。於該燒瓶中獲得847 g反應液。根據&quot;9Sn、 4、13C-NMR之分析結果確認,以二正丁基氧化錫為基 131506.doc •109· 200948759 準,以產率99%獲得生成物四-正丁基·13_二(正丁 氧基)-二錫氧烷》重複12次同樣之操作,獲得合計1〇18〇 g 之1,1,3,3-四-正丁基- i,3 ·二(正丁氧基)_二錫氧院。 ’步驟(II-2):碳酸二丁酯之製造 於如圖1所示之連續製造裝置中,製造碳酸酯。由供給 管路4’以42〇l g/hr將步驟(π-l)中所製造之1133_四_正 丁基-1,3-二(正丁氧基)_二錫氧烷供給至填充有填充物After holding at 200 ° C for 5 minutes, the temperature was raised to 300 ° C at a temperature increase rate. Detector: FID (1) Gas chromatographic analysis of the sample Weighed about 0.05 g of the sample, and added thereto. 1 g of acetone (manufactured by Wako Pure Chemical Industries, Ltd., 'dehydration) and about 0.02 g of toluene as an internal standard substance (manufactured by Wako Pure Chemical Industries, Ltd., dehydrated), uniformly mixed 'the solution obtained as liquid chromatography Analytical samples. (2) Quantitative analysis method Based on the calibration curve prepared by analyzing each standard substance, the quantitative analysis of the sample solution is performed. 4) Inductively coupled plasma mass spectrometry method: Made in Japan, Seiko Electronics Co., Ltd., SPQ_8〇〇〇 (0 inductively coupled plasma mass analysis sample is diluted with dilute sulfuric acid. 15 g sample is ashed, dissolved in (2) Quantitative analysis The quantitative analysis of the sample solution is carried out based on the calibration curve prepared by analyzing each standard substance. [Reference Example 1] Bis(3-methylbutyl) carbonate Manufactured ^315〇6.(j〇c 200948759 .Step (ii): Manufacture of dialkyltin catalyst to a volume of 5000 mL in a flask, 625 g (2 7 m〇1) of di-n-butyl Base tin oxide (manufactured by Sankyo Organic Synthesis Co., Ltd.) and 2〇2〇g (22·7 mol) 3-methyl-indole butanol (manufactured by Wako Pure Chemical Industries, Ltd.). On the evaporator (manufactured by Japan, Shibata Co., Ltd., r_144), the evaporator is connected to an oil bath (made by Japan, Masuda Chemical Industry Co., Ltd., OBH_24) and a vacuum pump (made by Japan, ulvac, Japan). G-5〇A) and vacuum controller (made in Japan, manufactured by Okano Manufacturing Co., Ltd. 'VC-10S). Steaming The vent valve outlet of the generator is connected with the nitrogen gas pipeline flowing under normal pressure. The vent valve of the evaporator is closed, and after decompression in the system, the vent valve is slowly opened to allow nitrogen to flow into the system and return to normal pressure. The oil bath temperature was set to about 145 〇c, and the flask was immersed in the oil bath to start the rotation of the evaporator. After heating at atmospheric pressure for about 40 minutes in the state of the vent valve of the open evaporator, the inclusion was started. Distillation of 3_methyl_丨-butanol in water. After maintaining this state for 7 hours, the vent valve is closed, and the φ in the system is slowly decompressed, and the excess pressure is in the state where the pressure in the system is 74 to 35 kPa. Distillation of 3-methyl-1-butanol was carried out. After the fraction disappeared, the flask was taken out from the oil bath. After cooling the flask to near room temperature (25 〇c), the flask was taken out from the oil bath. The vent valve was slowly opened to return the pressure in the system to atmospheric pressure. 886 g of the reaction liquid was obtained in the flask. It was confirmed by the analysis of ii9Sn, H, 13C-NMR that the yield was 99 with respect to di-n-butyltin oxide. % obtained 1,1,3,3-tetra-n-butylmethylbutoxy )__Snoxane. Repeat the same operation 12 times to obtain a total of 1,635,§1,1,3,3-tetra-n-butyl-1,3-bis(3-methylbutoxy)_ Dioxetane. 131506.doc -106- 200948759. Step (1-2): Production of bis(3-hydrylbutyl)carbonate in a continuous manufacturing apparatus as shown in Fig. 1 to produce carbonic acid double (3) _Methylbutyl) ester. From line 4, to 4388 g / hr, the above-made; mountain 3,3_tetra-butyl 1,3-bis(3-methylbutyl lactyl) tin Oxygen was supplied to a column reactor 1〇2 with a filling of Metal Gauze CY (Switzerland, manufactured by Sulzer Chemtech Ltd.) of 151 mm and an effective length of 5040 mm, from line 2 to 14953 g /hr is supplied to 3-methyl-1·butanol purified in the continuous multi-stage distillation column 1〇1. The reactor 102 was conditioned using a heater and reboiler 112 to bring the liquid temperature to 16 Torr. 〇, use a pressure regulator to adjust to a pressure of approximately 120 kPa_G. The residence time in the reactor was about 17 minutes. From the upper part of the reactor, 3-methyl-1-butanol containing water was supplied via line 6 at 15〇37 g/hr, and the methyl-butanol was transferred to the filled metal Gauze CY via the pipeline. Further, in the continuous multi-stage distillation column 101 including the reboiler 111 and the condenser 121, distillation purification is performed. In the upper portion of the distillation column 101, a fraction containing a high concentration of water is condensed by a helium condenser 121 and recovered from the line 3. The purified 3-methyl-hydrazine-butanol is sent to the column reactor 102 via line 2 located below the continuous multi-stage distillation column 101. From the lower part of the column reactor 1〇2, it was obtained to contain n-butyl-bis(3-methylbutoxy)tin and ruthenium, 1,3,3_tetra-n-butyl_ι, 3_double (3) -Methylbutoxy)distannoxane alkyl tin alkoxide catalyst composition, supplied to thin film distillation apparatus 1〇3 via line 5 (manufactured by K〇be丨c〇ec〇_solutions, Japan) ). The 3-methyl-butanol was distilled off in a thin distillation apparatus 1〇3, and returned to the column reactor 1〇2 via the condenser 123, the line 8 and the line 4. The alkyl tin 131506.doc -107- 200948759 alkoxide catalyst composition is transferred from the lower portion of the thin distillation apparatus 1〇3 via line 7 to di-n-butyl-bis(3-methylbutoxy). The flow rate of tin and M,3,3-tetra-n-butyl qj.bis(3-methylbutoxy)-distannoxane was adjusted to about 5130 g/hr and supplied to the high pressure Cang 104. Carbon dioxide was supplied from the line 9 to the autoclave 1〇4 at 973 g/hr, and the internal pressure of the high pressure dad 1〇4 was maintained at 4 MPa-G. The temperature in the autoclave 104 was set to 12 Torr. (:, the residence time was adjusted to about 4 hours, and the reaction of carbon dioxide with the alkyl tin alkoxide catalyst composition was carried out to obtain a reaction liquid containing bis(3-methylbutyl) carbonate. The valve transports the reaction liquid to the carbon removal tank® 1〇5, removes residual carbon dioxide, and recovers carbon dioxide from the line 11. Thereafter, the reaction liquid is transported via the line 12 to about 142 C, approximately 0.5 kPa thin film distillation apparatus 1〇6 (manufactured by Kobelco eco-solutions, Japan), ΐ, ι, 3,3-tetra-n-butyl-indole, 3·bis(3-mercaptobutoxy) - the flow rate of distannic oxygen is adjusted to about 4388 g / hr to obtain a fraction containing bis(3-methylbutyl) carbonate, and on the other hand, 1,1,3,3-tetrabutyl _ The flow rate of the i,3-bis(3-methylbutoxy)-dixetane was adjusted to about 4388 g/hr, and the evaporation residue was circulated to the column reactor 102 via line 13 and line 4. A fraction comprising bis(3-mercaptobutyl)carbonate is supplied via a condenser 126 and a transfer line 14 to the filled metal Gauze CY at 959 g/hr. In the continuous multi-stage steaming tower 107 of the reboiler 117 and the condenser 127, after steaming purification, 99 wt% of bis(3-methylbutyl) carbonate was obtained from the recovery line 15 at 944 g/hr. The alkyltin alkoxide catalyst composition of the transport line 13 was analyzed by ll9Sn, 丨H, 13C-NMR, and the result contained 1,1,3,3-tetra-n-butyl-1,3-double (3-methylbutoxy) distannoxane, containing no di-n-butyl-bis(3-methylbutyloxy) tin. Performed 131506.doc •108· 200948759 After about 240 hours of continuous operation as described above, The alkylstan alkoxide catalyst composition is discharged from the discharge line 16 at 18*, and on the other hand, from the tube (4), 1133 tetra-n-butyl 13 dimethylbutoxide produced in the above method is supplied in g/hr. Base) a stannoxane. The obtained bis(3-methylbutyl) carbonate contained 23 ppm of iron as a metal atom. [Reference Example 2] Production of dibutyl carbonate. Step (IM): Production of dialkyltin catalyst To a flask having a volume of 3000 mL, 692 g (2.78 mol) of di-n-butyltin oxide and 2001 were added. g (27 mol) ι-butanol (manufactured by Wako Pure Chemical Industries, Ltd.). A flask in which the mixture was added in the form of a white slurry was attached to an evaporator having an oil bath with a temperature regulator attached thereto. Vacuum pump and vacuum controller. The vent valve outlet of the evaporator is connected to a nitrogen gas line flowing under normal pressure. Close the vent valve of the evaporator, and after decompressing the system, slowly open the vent valve to allow nitrogen to flow into the system and return to normal pressure. Set the oil bath temperature to 126. (:, the flask is immersed in the oil bath φ 'to start the rotation of the evaporator. Rotating and stirring under normal pressure in a state of opening the vent valve of the evaporator and heating for about 3 minutes, the mixture boils and starts Distillation of low Buddha component. After maintaining this state for 8 hours, the vent valve was closed, the system was slowly decompressed, and the residual low boiling component was distilled under the pressure of 76 to 54 kpa in the system. After disappearing, the burned plate was taken out from the oil bath. The reaction liquid became a transparent liquid. Thereafter, the flask was taken out from the oil bath, and the vent valve was slowly opened to restore the pressure in the system to normal pressure. 847 g of the reaction liquid was obtained in the flask. According to the analysis results of &quot;9Sn, 4, 13C-NMR, it was confirmed that di-n-butyltin oxide was used as the base 131506.doc •109·200948759, and the product was obtained in a yield of 99%. - n-Butyl 13-di(n-butoxy)-distannoxane was repeated 12 times in the same manner to obtain a total of 1 118 〇g of 1,1,3,3-tetra-n-butyl-i , 3 · bis (n-butoxy) _ disodium oxide. 'Step (II-2): the manufacture of dibutyl carbonate In the continuous manufacturing apparatus shown in Fig. 1, a carbonate is produced. 1133_tetra-n-butyl-1,3-di which is produced in the step (π-1) by the supply line 4' at 42 〇 lg / hr (n-butoxy)-distannoxane supplied to the filler

Mellapak 750Y(瑞士,Sulzer Chemtech Ltd.公司製造)之内 徑為151 mm、有效長度為5040 mm之塔型反應器中,自管 路2,以24717 g/hr將以連續多級蒸餾塔1〇1純化之卜丁醇 供給至塔型反應器1〇2中。該反應器内藉由加熱器及再彿 器Π2進行調整以使液體溫度達到16(rc,利用壓力調節閥 進行調整以使壓力達到約12〇 kPa_G。該反應器内之滯留 時間約為10分鐘。自反應器上部經由管路6以24715 g/hr將 包含水之1-丁醇、以及經由供給管路1以824 ^^將丨丁醇 輸送至填充有填充物Metal Gauze CY(瑞士,Sulzer Chemtech Ltd.公司製造)且具備再沸器111及冷凝器121之 連續夕級蒸餾塔10 1中,進行蒸餾純化。於連續多級蒸餾 塔101之上部,將含有高濃度水之餾分利用冷凝器121加以 冷凝後由運送管路3加以回收。經由位於連續多級蒸餾塔 之下。卩之管路2輸送經純化之ι_ 丁醇。自塔型反應器 1〇2之下部,獲得包含二正丁基錫二正丁氧化物及1,1,3,3-正丁基-1,3-二(正丁氧基)_二錫氧烧之烧基錫烧氧化物 觸媒組合物,經由管路5供給至薄膜蒸餾裝置1〇3(日本, 131506.doc •110· 200948759 —―公司製造)。於薄臈蒸餾裝置⑻中, 顧去1-丁醇,經由冷凝器123、運送管路8及運送管路4返Mellapak 750Y (Switzerland, manufactured by Sulzer Chemtech Ltd.) in a column reactor with an inner diameter of 151 mm and an effective length of 5040 mm, from line 2, with a continuous multistage distillation column of 24517 g/hr. 1 Purified butanol is supplied to the column reactor 1〇2. The reactor was adjusted by the heater and the turret 2 to bring the liquid temperature to 16 (rc, adjusted by a pressure regulating valve to bring the pressure to about 12 kPa kPa - G. The residence time in the reactor was about 10 minutes. From the upper part of the reactor, 1-butanol containing water was supplied via line 6 at 24715 g/hr, and butbutanol was fed via a supply line 1 at 824^^ to a filled metallurgy CY (Sulzer, Switzerland) Distillation purification is carried out in a continuous distillation column 10 1 having a reboiler 111 and a condenser 121, and a fraction containing a high concentration of water is used in a condenser above the continuous multi-stage distillation column 101. After being condensed, 121 is recovered by the transport line 3. The purified i-butanol is transported through a line 2 below the continuous multi-stage distillation column. From the lower part of the column reactor 1〇2, the second positive is obtained. Butyltin di-n-butoxide and 1,1,3,3-n-butyl-1,3-bis(n-butoxy)-ditin oxide calcined tin-sinter oxide catalyst composition via a pipeline 5 supplied to the thin film distillation unit 1〇3 (Japan, 131506.doc •110· 200948759 -. Co., Ltd.) in a distillation apparatus ⑻ in thin Ge, Gu to 1-butanol, via condenser 123, line 8 and transported back to the transport pipe 4

回至塔型反應器102中。自薄膜蒸館裝置1〇3之下部經由管 路7輸送烷基錫烷氧化物觸媒組合物,將二正丁基錫二正 丁氧化物與UW正丁基十3·二(正丁氧基二錫氧烷 之活性成分之流量調節成約4812 g/hr,供給至高屢爸刚 中。經由管路9以973 g/hr將二氧化碳供給至高壓釜中,將 高廢爸内壓維持為4MPa_G。將高壓釜中之溫度設定為12〇 °C ’將滞留時間調整成約4小時,進行二氧化碳與院基錫 烷氧化物觸媒組合物之反應,獲得含碳酸二丁酯之反應 液。經由管路10及調節閥將該反應液運送至除碳槽1〇5 中,去除殘留的二氧化碳,自管路&quot;將二氧化碳加以回 收。其後,將該反應液經由管路12運送至設為約14〇&lt;t、 約1.4 kPa之薄膜蒸發裝置1〇6(日本,K〇beic〇 ec〇 s〇luti〇ns 公司製造)中,將1,1,3,3_四·正丁基_13_二(正丁氧基)二錫 氧烷的流量調節為約4201 g/hr進行供給,獲得包含碳酸二 丁酯之餾分,另一方面,將113,3_四_正丁基_13二(正丁 氧基)-二錫氧烷流量調節成約42〇丨g/hr,使蒸發殘渣經由 管路13及管路4循環至塔型反應器1〇2。將包含碳酸二丁酯 之顧分’經由冷凝器126及管路14,以830 g/hr供給至填充 有填充物 Metal Gauze CY(瑞士,Sulzer Chemtech Ltd.公司 製造)且具備再沸器117及冷凝器127之蒸餾塔107中,進行 蒸餾純化後’自管路15以814 g/hr獲得99wt%之碳酸二丁 酯。利用119Sn、、丨3C-NMR對管路13之烷基錫烷氧化物 131506.doc 200948759 觸媒組合物進行分析,結果含有113 3_四-正丁基_丨,3_二 (正丁氧基)-二錫氧烷,不含有二正丁基錫二正丁氧化物。 進行上述連續運轉約600小時後,由排出管路16以16 g/hr 供給院基錫院氧化物觸媒組合物,另一方面,自管路17以 16 g/hr供給步驟(Π-1)中所製造之^^四-正丁基-丨,3_二 (正丁氧基)-二錫氧烷。所獲得之碳酸二丁酯含有 0.3 ppm 作為金屬原子之鐵。 [參考例3]碳酸雙(2-乙基丁基)酯之製造 •步驟(III-1):二烷基錫觸媒之製造 向容積為5000 mL之茄型燒瓶中加入893 g(2.48 mol)二 正辛基氧化錫(曰本,三共有機合成公司製造)及24〇3 g(23.6 mol) 2-乙基-1-丁醇。將該燒瓶安裝於蒸發器上,該 蒸發器上連接有附有溫度調節器之油浴、真空泵與真空控 制器。蒸發器之通氣閥出口與於常壓下流動之氮氣體管路 相連接。關閉蒸發器之通氣閥,進行系統内減壓後,緩慢 打開通氣閥’使氮氣流入系統内,恢復至常壓。將油浴溫 度δ又疋為約1 6 5 °C,將該燒瓶浸潰於該油浴中,開始蒸發 器之旋轉。於開放蒸發器之通氣閥之狀態下於大氣壓氮氣 下加熱約40分鐘後,開始包含水之2-乙基-1-丁醇之蒸館。 將該狀態保持7小時後,關閉通氣閥,對系統内進行緩慢 減塵’於系統内壓力為74〜25 kPa之狀態下對過剩之2_乙 基-1-丁醇進行蒸餾。待低沸成分消失後,將該燒瓶自油浴 中取出。將該燒瓶冷卻至室溫(25。〇附近後,將該燒瓶自 油浴中取出,緩慢打開通氣閥,使系統内之壓力恢復至大 131506.doc •112· 200948759 氣壓。於該燒瓶中獲得1125 g反應液。根據1 &gt;9Sn、ιΗ、 13C-NMR之分析結果確認’相對於二正丁基氧化錫,以產 率99%獲得1,1,3,3-四-辛基·L3-雙(2_乙基丁氧基)_二錫氧 烧。重複12次同樣之操作’獲得合計13510 g之1,1,3,3-四_ 正辛基-1,3-雙(2-乙基丁氧基)-二錫氧烧。 •步驟(III-2):碳酸酯之製造及二烷基錫觸媒之失活體組合 物的回收 於如圖1所示之連續製造裝置中,製造碳酸酯。自管路 ^ 4,以6074 g/hr,將上述製造之1,1,3,3-四-正辛基-丨义雙 (2-乙基丁氧基)-二錫氧烷供給至填充有填充物Metal Gauze CY之内徑為151 mm、有效長度為5040 mm之塔型反應器 102中’自管路2以12260 g/hr供給以連續多級蒸餾塔101純 化之2-乙基-1-丁醇。利用加熱器以及再沸器112對該反應 器102進行調整’以使液體溫度達到1 60。(:,利用壓力調節 閥進行調整以使壓力達到約12〇 kPa_G。該反應器内之滯 φ 留時間約為17分鐘。自反應器上部經由管路6以12344 g/hr 將包含水之2-乙基_ι_丁醇、以及經由管路1以958 §/1111將2_ 乙基-1-丁醇輸送至填充有填充物Metal Gauze CY且具備再 沸器111及冷凝器121之連續多級蒸餾塔1〇1中,進行蒸餾 純化。於連續多級蒸餾塔101之上部,將含有高濃度水之 餾分利用冷凝器121加以冷凝後由回收管路3加以回收。經 由位於連續多級蒸餾塔101之下部之管路2,將經純化之2· 乙基-1_丁醇輸送至塔型反應器102。自塔型反應器1〇2之下 部’獲彳于包含二-正辛基_雙(2_乙基丁氧基)錫及丨,丨,^%四- 131506.doc •113· 200948759 正辛基-1,3·雙(2-乙基丁氧基)二錫氧烷之烷基錫烷氧化物 觸媒組合物,經由管路5供給至薄膜蒸餾裝置1〇3中。於薄 膜蒸餾裝置103中餾去2-乙基-1-丁醇,經由冷凝器123、管 路8及管路4返回至塔型反應器1〇2中。自薄膜蒸餾裝置1〇3 之下部經由管路7輸送烷基錫烷氧化物觸媒組合物,將二_ 正辛基-雙(2-乙基丁氧基)錫與丨,^,%四_正辛基 乙基丁氧基)二錫氧烷之流量調節為約6945 g/hr,供給至 高壓蒼104中。自管路9以973 g/hr將二氧化碳供給至高壓 釜中’將高壓釜内壓維持為4 MPa-G。將高壓釜中之温度 设定為120 C,將滯留時間調整成約4小時,進行二氧化碳 與烷基錫烷氧化物觸媒組合物之反應,獲得含有碳酸雙(2_ 乙基丁基)酿之反應液。經由管路1〇及調節閥將該反應液 運送至除碳槽105中,去除殘留的二氧化碳,自管路丨丨將 二氧化碳加以回收。其後,將該反應液經由管路12運送至 設為約142。(:、約0.5 kPa之薄膜蒸餾裝置ι〇6中,將 φ M,3,3-四-正辛基],3-雙(2-乙基丁氧基)二錫氧烷之流量 調節為約6074 g/hr進行供給,獲得包含有碳酸雙(2_乙基丁 基)酯之館分,另一方面’將1,1,3,3-四-正辛基_ι,3-雙(2-乙基丁氧基)一錫氧院之流量調節成約6〇74 g/hr,使蒸發 殘渣經由管路13及管路4循環至塔型反應器1〇2。將包含碳 酸雙(2-乙基丁基)酯之餾分經由冷凝器126及管路丨4,以 959 g/hr供給至填充有填充物Metal Gauze CY且具備再沸 器117及冷凝器127之蒸餾塔107中,進行蒸餾純化後,由 回收管路15以1 075 g/hr獲得99wt%之碳酸雙(2-乙基丁基) 131506.doc •114· 200948759 酿。利用U、nC.R對管路i3之貌基錫燒氧化物 觸媒組合物進行分析,結果含有u,3,3_四-正辛基],3雙 (2-乙基丁氧基)二錫氧烷,不含有二_正辛基-雙乙基丁 氧基)錫。進行上述連續運轉約22〇小時後,由排出管路b 以18 g/hr供給烷基錫烷氧化物觸媒組合物,另一方面,由 供給管路17以18 g/hr供給上述方法製造之u,3,3_w •正辛 基-1,3-雙(2-乙基丁氧基)二錫氧炫,由排出管路16排出刚 g之i’1,3,3-®·正辛基-1,3·雙(2-乙基T氧基)二錫氧院的失 〇 活體組合物。所獲得之碳酸雙(2-乙基丁基)含有4.8 ppm作 為金屬原子之鐵。 [參考例4]碳酸二庚酯之製造 .步驟(IV-1):二烷基錫觸媒之製造 向容積為3000 mL之茄型燒瓶中加入692 g(2 78 m〇i)二 正丁基氡化錫及3137 g(27 mol) 1-庚醇(日本,和光純藥工 業公司製造)。將加入白色漿料狀該混合物之燒瓶安裝於 @ 蒸發器上,該蒸發器上連接有附有溫度調節器之油浴、真 空泵與真空控制器。蒸發器之通氣閥出口與於常壓下流動 之氮氣體管路相連接。關閉蒸發器之通氣閥,進行系統内 減壓後’緩慢打開通氣閥,使氮氣流入系統内,使系統内 為39 kPa。將油浴溫度設定為15〇»c,將該燒瓶浸潰於該 油浴中’開始蒸發器之旋轉。於開放蒸發器之通氣閥之狀 態下於常壓下旋轉攪拌並加熱約3〇分鐘後,混合液沸騰, 開始低沸成分之蒸餾。將該狀態保持8小時後,關閉通氣 閥,對系統内進行緩慢減壓,於系統内壓力為39〜10 kPa 131506.doc -115- 200948759 之狀1、下對殘留低彿成分進行蒸館。待低滞成分消失後, 將該燒瓶自油浴巾取出。反應液成為透明之㈣。其後, 將該燒瓶自油浴中取出,緩慢打開通氣閥,使系統内之壓 ^恢復至常麼。於該燒瓶中獲得952 g反應液。根據 H9Sn、咕、i3c_NMR之分析結果確認,以二正丁基氧化錫 為基準,以產率99%獲得生成物u,3,3四_正丁基+3-二 庚氧基-二錫氧烷。重複12次同樣之操作,獲得合計ιΐ43ι g之1,1,3,3-四-正丁基·丨,%二庚氧基·二錫氧烷。 •步驟(IV-2):碳酸二庚酯之製造 於如圖1所示之連續製造裝置t,製造碳酸酯。自管路4 以4757 g/hr將步驟(ν·ι)製造之u,3,3四_正丁基_丨,3二_ 正庚氧基-二錫氧烷供給至填充有填充物MeUapak 75〇γ(瑞 士,Sulzer Chemtech Ltd•公司製造)之内徑為i5i 、有 效長度為5040 mm之塔型反應器中,自管路2,以^外了 g/hr將以連續多級蒸餾塔丨〇丨純化之丨_ 丁醇供給至塔型反應 器1〇2中。該反應器内藉由加熱器及再沸器112進行調整以 使液體溫度達到170t,利用壓力調節閥進行調整,以使 壓力達到約120 kPa-G。該反應器内之滞留時間約為1〇分 鐘。自反應器上部經由管路6以14051 g/hr將包含水之丨_庚 醇、及經由管路1以1086 g/hr將1-庚醇輸送至填充有填充 物Metal Gauze CY(瑞士 ’ Sulzer Chemtech Ltd.公司製造) 且具備再沸器111及冷凝器121之連續多級蒸餾塔1〇ι中, 進行蒸餾純化。於該蒸餾塔101之上部,將包含高濃度水 之餘分於冷凝器121中冷凝’自管路3加以回收。經由蒸德 131506.doc -116- 200948759 塔HH之下部之運送管路2輸送經純化之】·庚醇。自塔型反 應器1〇2之下部獲得包含二正丁基錫二正庚氧化物與 , 丁基_1,3-一-正庚氧基·二錫氧烷之烷基錫烷Returning to the column reactor 102. The alkyl tin alkoxide catalyst composition is transported from the lower portion of the thin film evaporation unit 1〇3 via line 7 to di-n-butyltin di-n-butyl oxide and UW-n-butyl 1,3-bis(n-butoxy) The flow rate of the active ingredient of the stannoxane was adjusted to about 4812 g/hr, and was supplied to the high-duty father. The carbon dioxide was supplied to the autoclave at 973 g/hr via the line 9, and the internal pressure of the high waste dad was maintained at 4 MPa_G. The temperature in the autoclave was set to 12 〇 ° C. The residence time was adjusted to about 4 hours, and the reaction of carbon dioxide with the yard-based stannous oxide catalyst composition was carried out to obtain a reaction solution containing dibutyl carbonate. And the regulating valve transports the reaction liquid to the carbon removal tank 1〇5 to remove residual carbon dioxide, and recovers the carbon dioxide from the pipeline. Thereafter, the reaction liquid is transported through the pipeline 12 to be set to about 14 〇. &lt;t, a thin film evaporation apparatus of about 1.4 kPa 1〇6 (manufactured by K〇beic〇ec〇s〇luti〇ns, Japan), 1,1,3,3_tetra-n-butyl_13_ The flow rate of di(n-butoxy)distannoxane is adjusted to about 4201 g/hr for supply, and the obtained carbonic acid is obtained. The ester fraction, on the other hand, the flow rate of 113,3_tetra-n-butyl- 13 bis(n-butoxy)-distannoxane is adjusted to about 42 〇丨g/hr, and the evaporation residue is passed through the line 13 and Line 4 is recycled to the column reactor 1〇2. The portion containing the dibutyl carbonate is supplied via condenser 126 and line 14 at 830 g/hr to the filled Metal Gauze CY (Sulzer, Switzerland) In a distillation column 107 equipped with a reboiler 117 and a condenser 127, after purification by distillation, 99 wt% of dibutyl carbonate was obtained from the line 15 at 814 g/hr. Using 119Sn, 丨3C-NMR analysis of the alkyl tin alkoxide 131506.doc 200948759 catalyst composition of line 13 resulted in 113 3_tetra-n-butyl-indole, 3-di(n-butoxy)-di-tin Oxygenane, which does not contain di-n-butyltin di-n-butyl oxide. After the above continuous operation for about 600 hours, the discharge line 16 is supplied to the courtyard tin oxide oxide catalyst composition at 16 g/hr, on the other hand, Line 17 was supplied at 16 g/hr of tetra-n-butyl-indole, 3-di(n-butoxy)-distannoxane produced in the step (Π-1). Dibutyl acrylate contains 0.3 ppm of iron as a metal atom. [Reference Example 3] Production of bis(2-ethylbutyl) carbonate • Step (III-1): Production of dialkyl tin catalyst to volume A 5000 mL eggplant flask was charged with 893 g (2.48 mol) of di-n-octyltin oxide (Sakamoto, manufactured by Sankyo Organic Synthesis Co., Ltd.) and 24 g of 3 g (23.6 mol) of 2-ethyl-1-butanol. The flask was mounted on an evaporator to which an oil bath, a vacuum pump and a vacuum controller with a temperature regulator were attached. The vent valve outlet of the evaporator is connected to a nitrogen gas line flowing under normal pressure. Close the vent valve of the evaporator, and after decompressing the system, slowly open the vent valve to allow nitrogen to flow into the system and return to normal pressure. The oil bath temperature δ was again reduced to about 165 ° C, and the flask was immersed in the oil bath to start the rotation of the evaporator. After heating under atmospheric pressure of nitrogen for about 40 minutes in the state of a venting valve of an open evaporator, a steaming station containing 2-ethyl-1-butanol of water was started. After maintaining this state for 7 hours, the vent valve was closed, and the excess 2 - ethyl-1-butanol was distilled while the system was subjected to slow dust reduction in a system pressure of 74 to 25 kPa. After the low boiling component disappeared, the flask was taken out of the oil bath. After cooling the flask to room temperature (25., near the crucible, the flask was taken out of the oil bath, and the vent valve was slowly opened to restore the pressure in the system to a large 131506.doc • 112·200948759 atmosphere. Obtained in the flask. 1125 g of the reaction liquid. According to the analysis results of 1 &gt;9Sn, ι, and 13C-NMR, it was confirmed that 1,1,3,3-tetra-octyl·L3 was obtained in a yield of 99% with respect to di-n-butyltin oxide. - bis(2_ethylbutoxy)-ditin oxide. Repeat the same operation 12 times to obtain a total of 13510 g of 1,1,3,3-tetra-n-octyl-1,3-d (2 -ethylbutoxy)-ditin oxide. Step (III-2): Production of carbonate and recovery of inactivated body composition of dialkyltin catalyst in a continuous manufacturing apparatus as shown in FIG. In the manufacture of carbonates, the 1,1,3,3-tetra-n-octyl-deutero(2-ethylbutoxy)-di which was produced as described above from 60 4 g/hr. The stannoxane is supplied to a column reactor 102 filled with a filler Metal ze CY having an inner diameter of 151 mm and an effective length of 5040 mm. 'Supply from line 2 at 12260 g/hr to be purified by continuous multistage distillation column 101 2-ethyl-1-butanol. The heat exchanger and reboiler 112 adjust the reactor 102 to bring the liquid temperature to 1600. (:, adjust with a pressure regulating valve to bring the pressure to about 12 kPa kPa - G. The hysteresis φ retention time in the reactor It is about 17 minutes. From the upper part of the reactor, 2-ethyl_ι-butanol containing water is fed via line 6 at 12344 g/hr, and 2_ethyl-1-butane is passed through line 1 at 958 §/1111. The alcohol is sent to a continuous multi-stage distillation column 1〇1 filled with a filler Metal Gauze CY and equipped with a reboiler 111 and a condenser 121, and is subjected to distillation purification. In the upper part of the continuous multi-stage distillation column 101, high-concentration water is contained. The fraction is condensed by the condenser 121 and recovered by the recovery line 3. The purified 2·ethyl-1-butanol is sent to the column type reaction via the line 2 located below the continuous multi-stage distillation column 101. 102. From the lower part of the column reactor 1〇2, it is obtained by containing di-n-octyl-bis(2-ethylbutoxy)tin and ruthenium, osmium, ^% four-131506.doc • 113· 200948759 An alkyl stannate catalyst composition of n-octyl-1,3.bis(2-ethylbutoxy)distannoxane via a pipeline 5 is supplied to the thin film distillation apparatus 1〇3. 2-Ethyl-1-butanol is distilled off in the thin film distillation apparatus 103, and returned to the column reactor 1〇2 via the condenser 123, the line 8 and the line 4. Transferring the alkyltin alkoxide catalyst composition from the lower portion of the thin film distillation apparatus 1〇3 via the line 7, and di-n-octyl-bis(2-ethylbutyloxy) tin and ruthenium, The flow rate of % tetra-n-octylethylbutoxy)distannoxane was adjusted to about 6945 g/hr and supplied to the high pressure Cang 104. The carbon dioxide was supplied from the line 9 to the autoclave at 973 g/hr, and the internal pressure of the autoclave was maintained at 4 MPa-G. The temperature in the autoclave was set to 120 C, and the residence time was adjusted to about 4 hours, and the reaction of carbon dioxide with the alkyl tin alkoxide catalyst composition was carried out to obtain a reaction containing bis(2-ethylbutyl carbonate). liquid. The reaction liquid is transported to the carbon removal tank 105 via a line 1 and a regulating valve to remove residual carbon dioxide, and carbon dioxide is recovered from the line. Thereafter, the reaction liquid was transported through the line 12 to be set to about 142. (:, in a thin film distillation apparatus ι〇6 of about 0.5 kPa, the flow rate of φ M,3,3-tetra-n-octyl],3-bis(2-ethylbutoxy)distannoxane was adjusted to Approximately 6074 g/hr was supplied to obtain a column containing bis(2-ethylbutyl) carbonate, and on the other hand '1,1,3,3-tetra-n-octyl_ι,3-double The flow rate of (2-ethylbutoxy)-xanoxide was adjusted to about 6 〇 74 g/hr, and the evaporation residue was circulated through line 13 and line 4 to the column reactor 1 〇 2. The fraction of 2-ethylbutyl) ester was supplied to the distillation column 107 filled with the filler Metal Gauze CY and equipped with the reboiler 117 and the condenser 127 at 959 g/hr through the condenser 126 and the line 丨4. After distillation purification, 99 wt% of bis(2-ethylbutyl) 131506.doc • 114· 200948759 was obtained from the recovery line 15 at 1 075 g/hr. U, nC.R was used for the pipe i3. Analysis of the surface-based tin oxide oxide catalyst composition, the result contains u,3,3_tetra-n-octyl], 3 bis(2-ethylbutoxy)distannoxane, does not contain di-n-octane Base-diethylbutyloxy) tin. After the continuous operation for about 22 hours, the alkyl tin alkoxide catalyst composition was supplied from the discharge line b at 18 g/hr, and on the other hand, the supply line 17 was supplied at 18 g/hr. u,3,3_w • n-octyl-1,3-bis(2-ethylbutoxy)dithion oxide, which is discharged from the discharge line 16 by i'1,3,3-®· An in vivo living composition of octyl-1,3.bis(2-ethyl-oxy) bisoxane. The obtained bis(2-ethylbutyl carbonate) contained 4.8 ppm of iron as a metal atom. [Reference Example 4] Production of diheptyl carbonate. Step (IV-1): Production of dialkyltin catalyst 692 g (2 78 m〇i) of di-n-butyl is added to an eggplant type flask having a volume of 3000 mL. Base tin and 3137 g (27 mol) 1-heptanol (manufactured by Wako Pure Chemical Industries, Ltd., Japan). A flask to which the mixture was added in the form of a white slurry was attached to an @ evaporator equipped with an oil bath equipped with a temperature regulator, a vacuum pump and a vacuum controller. The vent valve outlet of the evaporator is connected to a nitrogen gas line flowing under normal pressure. Close the evaporator vent valve and depressurize the system. Slowly open the vent valve to allow nitrogen to flow into the system, making the system 39 kPa. The oil bath temperature was set to 15 〇»c, and the flask was immersed in the oil bath to start the rotation of the evaporator. After rotating and stirring at normal pressure for about 3 minutes in the state of the vent valve of the open evaporator, the mixture boiled and distillation of the low boiling component was started. After maintaining this state for 8 hours, the vent valve was closed, and the inside of the system was slowly decompressed, and the residual low-fond component was vaporized in the system under the pressure of 39 to 10 kPa 131506.doc -115-200948759. After the low lag component disappeared, the flask was taken out of the oil bath towel. The reaction solution became transparent (4). Thereafter, the flask was taken out of the oil bath, and the vent valve was slowly opened to restore the pressure in the system to normal. 952 g of the reaction liquid was obtained in the flask. According to the analysis results of H9Sn, 咕, i3c_NMR, it was confirmed that the product u, 3,3 tetra-n-butyl+3-diheptyloxy-ditin oxide was obtained in a yield of 99% based on di-n-butyltin oxide. alkyl. The same operation was repeated 12 times to obtain a total of 1,1,3,3-tetra-n-butyl-indole, % bis-heptyloxy-distannoxane. • Step (IV-2): Production of diheptyl carbonate The carbonate was produced in a continuous production apparatus t as shown in FIG. From line 4, the step (ν·ι) manufactured u, 3, 3 tetra-n-butyl 丨, 3 bis-n-heptyloxy-distannoxane was supplied to the filled filled material MeUapak at 4757 g/hr. 75〇γ (Switzerland, manufactured by Sulzer Chemtech Ltd.) in a column reactor with an inner diameter of i5i and an effective length of 5040 mm. From line 2, g/hr will be used as a continuous multi-stage distillation column.丨〇丨 Purified 丨_butanol is supplied to the column reactor 1〇2. The reactor was adjusted by a heater and reboiler 112 to bring the liquid temperature to 170 t, and was adjusted by a pressure regulating valve to bring the pressure to about 120 kPa-G. The residence time in the reactor is about 1 〇 minutes. The upper part of the reactor was passed via line 6 at 14051 g/hr of helium-heptanol containing water, and via line 1 to 1-heptanol at 1086 g/hr to a filled metallurgy CY (Switzerland ' Sulzer It is produced by Chemtech Ltd., and is equipped with a continuous multi-stage distillation column 1 of a reboiler 111 and a condenser 121, and is subjected to distillation purification. In the upper portion of the distillation column 101, a portion containing a high concentration of water is condensed in the condenser 121 and recovered from the line 3. The purified heptanol was delivered via a transfer line 2 below the tower HH of Steamer 131506.doc -116- 200948759. An alkylstannane containing di-n-butyltin di-n-heptane oxide and butyl-1,3-1,3-n-heptyloxy-distannoxane is obtained from the lower portion of the column reactor 1〇2.

氧化物觸媒組合物’經由管路5供給至薄膜蒸餾裝置 103(日本,Kobelco eco_s〇lmi〇ns公司製造)中。於薄膜蒸 餾裝置1〇3中餾去卜庚醇’經由冷凝器123、管路8及管路4 返回至塔型反應器102。自薄膜蒸館裝置103之下部經由管 路7輸送烷基錫烷氧化物觸媒組合物,將二正丁基錫二正 庚氧化物與1’1,3,3·四-正丁基·正庚氧基_二錫氧烷 之活性成分之流量調節成約5764 g/hr,供給至高壓釜1〇4 中。經由管路9,以973 g/hr將二氧化碳供給至高壓釜中, 將高壓爸内壓維持為4 MPa_G。將高壓爸之溫度設定為12〇 °C,使滯留時間調整成約4小時,進行二氧化碳與烷基錫 烷氧化物觸媒組合物之反應,獲得包含碳酸二庚酯之反應 液《經由管路1〇及調節閥將該反應液運送至徐碳槽ι〇5 中,去除殘留之二氧化碳,自管路丨丨將二氧化碳加以回 收。其後,將該反應液經由管路12輸送至設為14(rc、約 1.4kPa之薄膜蒸餾裝置 106(日本,Kobeleo ec〇_s〇luti〇ns公 司製造),將1,1,3,3-四-正丁基-l,3_二-正庚氧基_二錫氧烷 之流量調節成約4757 g/hr並供給’獲得含有碳酸二丁酿之 餾分。另一方面’將1,1,3,3-四-正丁基_ι,3-二-正庚氧基· 一錫氧烧流量調節成約5 764 g/hr ’使蒸發殘潰經由管路;[3 及管路4循環至塔型反應器1〇2中。包含碳酸二丁酯之德分 經由冷凝器126及管路14,以1223 g/hr供給至填充有填充 131506.doc -117- 200948759 物 Metal Gauze CY(瑞士 ’ Sulzer Chemtech Ltd.公司製造) 且具備再沸器117及冷凝器127之蒸餾塔i〇7中,進行蒸德 純化後’自管路15獲得1208 g/hr之99wt%之碳酸二庚醋。 利用119Sn、iH、nC_NMR對管路13之烷基錫烷氧化物觸媒 組合物進行分析,結果含有^^,弘四-正丁基-^-二正庚 氧基二錫氧烷,不含有二正丁基錫二正庚氧化物。進行 上述連續運轉約600小時後,由排出管路丨6以22 g/hr排出 烧基錫院氧化物觸媒組合物,另一方面,由進料管路17以 © 22 g/hr供給步驟dv-i)中製造iM,3,3_四-正丁基],3_二_ 正庚氧基-二錫氧烷。所獲得之碳酸二庚酯含有26卯爪作 為金屬原子之鐵。 [參考例5]碳酸雙(2-乙基己基)酯之製造 •步驟(V-1):二烷基錫觸媒之製造 向容積為3000 mL之茄型燒瓶中加入692 g(2 78 m〇1)二 正丁基氧化錫及3516 g(27 mol) 2-乙基-1-己醇(日本,和光 φ 純藥工業公司製造)。將加入白色漿料狀該混合物之燒瓶 安裝於蒸發器上,該蒸發器上連接有附有溫度調節器之油 洛、真空泵與真空控制器。蒸發器之通氣閥出口與於常壓 下流動之氮氣體管路相連接。關閉蒸發器之通氣閥,進行 系統内之減壓後,緩慢打開通氣閥,使氮氣流入系統内, 使系統内約為26 kPa。將油浴溫度設定為i 5〇。〇,將該燒 瓶浸潰於該油浴中開始蒸發器之旋轉。於開放蒸發器之通 氣閥之狀態下於常壓下旋轉攪拌並加熱約3〇分鐘後,混合 液沸騰,開始低沸成分之蒸餾。將該狀態保持8小時後, 13l506.doc -118- 200948759 關閉通氣閥,對系統内進行緩慢減壓,於系統内壓力為 26〜10 kPa之狀態下對殘留低沸成分進行蒸餾。待低沸成 分消失後,將該燒瓶自油浴中取出。反應液成為透明之液 體。其後,將該燒瓶自油浴中取出,緩慢打開通氣閥,使 系統内之壓力恢復至常壓。於該燒瓶中獲得99〇 g反應 液。根據119Sn、〗H、”C-NMR之分析結果確認,以二正丁 基氧化錫為基準,以產率99%獲得生成物113,3四-正丁 基-1,3-雙(2-乙基己氧基)_二錫氧烷。重複12次同樣之操 作’獲得合計1 1880 g之1,1,3,3-四-正丁基_ι,3_雙(2-乙基己 氧基)-二錫氧烷。 .步驟(V-2):碳酸雙(2-乙基己基)酯之製造 於如圖1所示之連續製造裝置中,製造碳酸酯。自管路 4,以4943 g/hr將步驟OM)中製造之四-正丁基· 1,3-雙(2-乙基己氧基)·二錫氧院、以及自管路2以ι5653 g/hr將以連續多級蒸餾塔1〇1純化之2-乙基-1·己醇,供給 ❹至填充有填充物 Mellapak 750Y(瑞士,Sulzer Chemtech Ltd·公司製造)之内徑為151 mm、有效長度為5〇4〇爪爪之塔 型反應器102中《該反應器内藉由加熱器及再沸器112進行 調整以使液體溫度達到17〇t,利用壓力調節閥進行調整 以使壓力約為12〇 kPa-G。該反應器内之滯留時間約為1〇 分鐘。自反應器上部經由管路6以15737 g/hr將包含水之2_ 乙基-1-己醇、及經由管路1以1217 g/hr將2-乙基·ι_己醇輸 送至填充有填充物 Metal Gauze CY(瑞士,Sulzer ChemtechThe oxide catalyst composition ' is supplied via a line 5 to a thin film distillation apparatus 103 (manufactured by Kobelco eco_s〇lmi〇ns Co., Ltd., Japan). The p-heptanol was distilled off in the thin film distillation apparatus 1〇3, and returned to the column reactor 102 via the condenser 123, the line 8 and the line 4. The alkyl tin alkoxide catalyst composition is transported from the lower portion of the film evaporation chamber 103 via line 7 to di-n-butyltin di-n-heptane oxide and 1'1,3,3·tetra-n-butyl-n-glycol The flow rate of the active ingredient of oxy-distannoxane was adjusted to about 5764 g/hr and supplied to the autoclave 1〇4. Carbon dioxide was supplied to the autoclave at 973 g/hr via line 9, and the high pressure dad internal pressure was maintained at 4 MPa_G. The temperature of the high pressure dad is set to 12 〇 ° C, the residence time is adjusted to about 4 hours, and the reaction of carbon dioxide with the alkyl tin alkoxide catalyst composition is carried out to obtain a reaction liquid containing diheptyl carbonate. The reaction vessel is transported to the carbon tank ι〇5 to remove residual carbon dioxide, and the carbon dioxide is recovered from the pipeline. Thereafter, the reaction liquid was transported through a line 12 to a thin film distillation apparatus 106 (manufactured by Kobeleo ec〇_s〇luti〇ns Co., Ltd., which is 14 (rc, about 1.4 kPa), and 1, 1, 3, The flow rate of 3-tetra-n-butyl-l,3-di-n-heptyloxy-distannoxane was adjusted to about 4757 g/hr and supplied to obtain a fraction containing dibutyl carbonate. On the other hand, '1' 1,3,3-tetra-n-butyl_ι,3-di-n-heptyloxy·one tin-oxygen gas flow rate adjusted to about 5 764 g / hr 'to make evaporation residue through the pipeline; [3 and pipeline 4 It is recycled to the column reactor 1〇2. The deionate containing dibutyl carbonate is supplied via a condenser 126 and a line 14 at 1223 g/hr to a metal Gauze CY filled with a filling 131506.doc-117-200948759 ( In the distillation column i〇7 of the reboiler 117 and the condenser 127, which was equipped with a reboiler 117 and a condenser 127 in Switzerland, after steam purification, 1208 g/hr of 99 wt% of diheptahydrate was obtained from the line 15. The alkyltin alkoxide catalyst composition of the pipeline 13 was analyzed by 119Sn, iH, nC_NMR, and the result contained ^^, Hongsi-n-butyl-^-di-n-heptyloxydistannoxane, no Containing di-n-butyl Base tin di-n-heptane oxide. After the above continuous operation for about 600 hours, the burnt-base tin oxide catalyst composition is discharged from the discharge line 丨6 at 22 g/hr, and on the other hand, the feed line 17 iM, 3,3_tetra-n-butyl], 3_di-n-heptyloxy-distannoxane was produced in step dv-i) at 22 g/hr. The obtained diheptyl carbonate contains 26 paws as iron of a metal atom. [Reference Example 5] Production of bis(2-ethylhexyl) carbonate; Step (V-1): Production of dialkyltin catalyst 692 g (2 78 m) was added to an eggplant type flask having a volume of 3000 mL. 〇1) Di-n-butyltin oxide and 3516 g (27 mol) of 2-ethyl-1-hexanol (manufactured by Nippon & Co., Ltd.). A flask in which the mixture was added in the form of a white slurry was attached to an evaporator to which was connected a plug with a temperature regulator, a vacuum pump, and a vacuum controller. The vent valve outlet of the evaporator is connected to a nitrogen gas line flowing under normal pressure. Close the venting valve of the evaporator, and after decompressing the system, slowly open the venting valve to allow nitrogen to flow into the system, so that the system is about 26 kPa. The oil bath temperature was set to i 5 〇. Thereafter, the flask was immersed in the oil bath to start the rotation of the evaporator. After the mixture was rotated and stirred under normal pressure for about 3 minutes in the state of the open air valve of the evaporator, the mixture boiled and distillation of the low boiling component was started. After maintaining this state for 8 hours, 13l506.doc -118- 200948759 closed the vent valve, slowly depressurizing the system, and distilling the residual low boiling component under the pressure of 26 to 10 kPa in the system. After the low boiling component disappeared, the flask was taken out of the oil bath. The reaction solution became a transparent liquid. Thereafter, the flask was taken out of the oil bath, and the vent valve was slowly opened to restore the pressure in the system to normal pressure. 99 〇 g of the reaction solution was obtained in the flask. According to the analysis results of 119Sn, H, and C-NMR, it was confirmed that the product 113,3 tetra-n-butyl-1,3-bis(2-) was obtained in a yield of 99% based on di-n-butyltin oxide. Ethylhexyloxy)-distannoxane. Repeat the same operation 12 times to obtain a total of 1 1880 g of 1,1,3,3-tetra-n-butyl_ι, 3_bis (2-ethylhexyl) Oxy)-distannoxane. Step (V-2): bis(2-ethylhexyl) carbonate is produced in a continuous manufacturing apparatus as shown in Fig. 1 to produce a carbonate. The tetra-n-butyl-1,3-bis(2-ethylhexyloxy)-di-n-oxide plant manufactured in step OM) at 4943 g/hr, and from line 2 at ι 5565 g/hr Continuous multi-stage distillation column 1〇1 purified 2-ethyl-1·hexanol, supplied to a filled Mellapak 750Y (Switzerland, manufactured by Sulzer Chemtech Ltd.) with an inner diameter of 151 mm and an effective length of 5 In the column reactor 102 of the crucible, the reactor is adjusted by the heater and the reboiler 112 to bring the liquid temperature to 17 Torr, and the pressure regulating valve is used to adjust the pressure to about 12 Torr. kPa-G. The residence time in the reactor is about 1 Minutes. From the upper part of the reactor, 2_ethyl-1-hexanol containing water was fed via line 6 at 15737 g/hr, and 2-ethyl·ι-hexanol was conveyed via line 1 at 1217 g/hr. Filled with filler Metal Gauze CY (Switzerland, Sulzer Chemtech)

Ltd,公司製造)且具備再沸器丨丨丨及冷凝器i21之連續多級蒸 131506.doc •119- 200948759 餾塔101中,進行蒸餾純化。於該蒸餾塔1〇1之上部,將包 含高濃度水之餾分於冷凝器121中冷凝自管路3加以回收。 經由位於蒸餾塔101之下部之管路2輸送經純化之2_乙基· 己醇。自塔型反應器102之下部獲得含有二_正丁基錫-雙 (2-乙基己氧化物)與^弘四.正丁基_13雙(2乙基己氧 基)_ 一錫氧娱•之炫*基錫烧氧化物觸媒組合物,經由管路5供 給至薄膜蒸餾裝置103(日本,K〇belc〇 ec〇 s〇luti〇ns公司製 造)。於薄膜蒸餾裝置103中,餾去2-乙基-1-己醇,經由冷 ® 凝器123、管路8及管路4,返回至塔型反應器1〇2中。自薄 膜蒸餾裝置103之下部經由管路7輸送烷基錫烷氧化物觸媒 組合物,將二-正丁基錫-雙(2-己基己氧化物)與1,1,3,3四_ 正丁基-1,3-雙(2-乙基己氧基)·二錫氧烷之活性成分的流量 調節成約6083 g/hr,供給至高壓釜1 〇4中。經由管路9以 973 g/hr將二氧化碳供給至高壓釜中,將高壓釜内壓維持 為4 MPa-G。將高壓釜之溫度設定為12(rc,滯留時間調整 ◎ 成約4小時’進行二氧化碳與烷基錫烷氧化物觸媒組合物 之反應’獲得包含碳酸雙(2_乙基己基)酯之反應液。經由 管路10及調節閥將該反應液運送至除碳槽1〇5中,去除殘 留之二氧化碳’自管路Π將二氧化碳加以回收。其後,將 該反應液經由管路12,輸送至設為1401、約1.4 kPa之薄 膜蒸销裝置1〇6(日本,Kobelco eco-solutions公司製造), 將1,1,3,3·四-正丁基-丨’3·雙(2_乙基己氧基)_二錫氧烷之流 量調節成約4943 g/hr,並供給獲得包含碳酸二丁酯之館 分,另一方面,將1,1,3,3-四-正丁基-1,3-雙(2-乙基己氧 131506.doc -120- 200948759 基)-一錫氧燒流量調節成約4943 g/hr,使蒸發殘渣經由運 送管路13及運送管路4循環至塔型反應器1〇2。包含碳酸二 丁醋之傲分經由冷凝器126及管路14,以1354 g/hr供給至 填充有填充物 Metal Gauze CY(瑞士,Sulzer Chemtech Ltd. 公司製造)且具備再沸器117及冷凝器127之蒸餾塔1〇7中, 進行蒸餾純化後,自管路15獲得丨339 g/hr之99wt%的碳酸 雙(2-乙基己基)酯。利用丨i9Sn、iH、!3c_nmr對管路13之 烧基錫烷氧化物觸媒組合物進行分析,結果含有 四-正丁基-1,3-雙(2-乙基己氧基)-二錫氧烷,不含有二·正 丁基錫-雙-(2-乙基己氧化物)^進行上述連續運轉約600小 時後’由排出管路16以23 g/hr排出烷基錫烷氧化物觸媒組 合物’另一方面,由進料管路17以23 g/hr供給步驟(V-1) 中製造之1,1,3,3-四-正丁基-1,3-雙(2-乙基己氧基)-二錫氧 垸。所獲得之碳酸雙(2-乙基己基)酯含有30 ppm作為金屬 原子之鐵。 [參考例6]碳酸二苯酯之製造 使用參考例2中所獲得之碳酸二丁酯製造碳酸二苯酯。 •步驟(VI-1):芳香族碳酸酯之製造 [觸媒之製備] 將79 g苯酚及32 g—氧化鉛於18〇它下加熱10小時’將所 生成之水與苯酚一起餾去。以丨〇小時排出約2.5 g水。其 後’自反應器上部館去苯朌,製備觸媒。 [芳香族瑗酸醋之製造] 使用如圖2所示之裝置。 131506.doc -121- 200948759 向填充有狄克松填料(6 mm幻之内徑約為5 cm、塔長為2 m之連續多級蒸德塔202之中段,經由預熱器2〇ι,自管路 21以約270 g/hr,以液狀連續進料包含步驟(1_2)中所獲得 之碳酸二丁酯、苯酚、及上述製備之觸媒之混合液(混合 液中之碳酸二丁酯與苯酚之重量比製備成約為65/35,鉛 濃度製備成約1重量%),進行反應。反應及蒸餾所需之熱 量係藉由使塔下部之液體經由管路23及再沸器204#環而 供給。連續多級蒸餾塔202之塔底部之液體溫度為238&lt;&gt;c, ❹ 塔頂壓力約為250 kPa,回流比約為2。將自連續多級蒸德 塔202之塔頂餾出之氣體自管路22排出,經由冷凝器2〇3, 自管路24以約67 g/hr連續排出至貯槽2〇5中。自塔底經由 管路23以約204 g/hr連續排出至貯槽2〇6中。 自管路24排出之液體之組成中’丨_ 丁醇約為33重量%, 苯酚約為65重量%,碳酸二丁酯約為2重量%。排出至貯槽 206之液體組成中,苯酚約為丨丨重量%,碳酸二丁酯約為 φ 60重量%,碳酸丁基苯酯約為26重量°/〇 ,碳酸二苯酯約為 1.6重量%,鉛濃度約為1重量%。 其次’使用如圖3所示之裝置。 向填充有狄克松填料(6 ππηφ)之内徑為5 cm、塔長為2m 之連續多級蒸餾塔302之中段,經由預熱器3〇1,自管路3 i 以約203 g/hr以液狀連續進料排出至貯槽2〇6中之液體。反 應及蒸餾所需之熱量係藉由使塔下部之液體經由管路33及 再彿器304循環而供給。連續多級蒸餾塔3〇2之塔底部之液 體溫度為240°C,塔頂壓力約為27 kPa,回流比約為2。使 131506.doc -122· 200948759 自連續夕級蒸傲塔302之塔頂德出之氣體經由管路μ於冷 凝器303令冷凝,自管路34以約i65 g/hr連續排出至貯槽 305中。自塔底經由管路33以約39 g/hr連續排出至貯槽3〇6 中〇 自管路34排出之液體之組成中,丨_丁醇約為5〇〇 ppm, 苯酚約為13重量% ’碳酸二丁酯約為85重量%,碳酸丁基 苯酯約為2重量%。排出至貯槽306之液體之組成中,碳酸 二丁酯約為〇·3重量%,碳酸丁基苯酯約為32重量%,碳酸 ® 二苯酯約為61重量%,鉛濃度約為7重量〇/0。 [醇之回收再利用] 使用如圖4所示之裝置’進行醇之回收再利用。 向填充有狄克松填料(6 ιηπιφ)之内徑約為5 、塔長為2 m之連續多級蒸餾塔402的距離塔最下部約〇7 111處,自管 路41經由預熱器401,以約201 g/hr連續進料上述步驟中連 續排出至貯槽205之液體’進行蒸餾分離。蒸餾分離所需 ❹ 之熱量係藉由使塔下部之液體經由管路43及再沸器404循 環而供給。連續多級蒸餾塔402之塔底部之液體溫度為145 °C ’塔頂壓力約為13 kPa ’回流比約為0.3。使自連續多級 蒸餾塔402餾出之氣體經由管路42於冷凝器4〇3中冷凝,自 管路44以約68 g/hr排出至貯槽405。自塔底經由管路43以 約I33 g/hr連續排出至貯槽406。 自管路44排出之液體之組成中,卜丁醇約為99重量%, 苯酚約為100 ppm。排出至貯槽4〇6之液體之組成中,碳酸 二丁酯約為2重量%,苯酚約為98重量%。 131506.doc -123 - 200948759 [碳酸二芳酯之純化] 使用如圖5、6所示之裝置,進行碳酸二芳酯之純化。 向填充有狄克松填料(6 ππηφ)之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔502之中段,自管路51,經由預熱器 501,以約195 g/hr連續進料排出至貯槽3〇6之液體。蒸餾 分離所需之熱量係藉由使塔下部之液體經由管路53及再沸 器504循環而供給。連續多級蒸餾塔5〇2之塔底部之液體溫 度為210 C,塔頂壓力約為1.5 kPa,回流比約為【。使自連 〇 續多級蒸餾塔502之塔頂餾出之氣體經由管路52於冷凝器 503中冷凝,自管路54連續排出。自塔底經由管路53以約 14 g/hr排出至貯槽506。 自管路54排出之液體之組成中,碳酸二丁酯約為〇.3重 量0/〇 ’碳酸丁基苯酯約為34重量%,碳酸二苯酯約為66重 量% 0 向填充有狄克松填料(6 ιηιηφ)之内徑約為5 cm、塔長為2 ❹ m之連續多級蒸餾塔602之中段,自管路61,經由預熱器 601 ’以約181 g/hr連續進料自管路54排出之液體。蒸餾分 離所需之熱量係藉由使塔下部之液趙經由管路63及再彿器 604循環而供給。連續多級蒸餾塔602之塔底部之液體溫度 為232°C,塔頂壓力約為15 kPa,回流比約為2。使自連續 多級蒸餾塔602之塔頂餾出之氣體經由管路62於冷凝器603 中冷凝,自管路64連續排出。自塔底經由管路63以約119 g/hr排出至貯槽606。 自管路64排出之液體之組成中,碳酸二丁酯約為〇 6重 131506.doc -124- 200948759 量% ’碳酸丁基苯酯約為99重量%,碳酸二苯酯約為0.4重 量%。排出至貯槽606之液體之組成中,碳酸丁基苯酯為 0.1重量%,碳酸二苯酯約為99.9重量%。該碳酸二苯酯中 含有作為金屬成分之8.2 ppm鐵。 [實施例1] .步驟(1-1) : N,N'-己二基-雙-胺基甲酸雙(3-甲基丁基)酯之 製造 使用如圖2所示之裝置進行反應。 於關閉管路24之狀態下,自貯槽2〇1經由管路21將3333 g(16.5 mol)參考例1之碳酸雙(3_甲基丁基)酯供給至内容積 為5 L之附有播板之SUS製反應容器204中,自貯槽202經由 管路22,將383.5 g(3.3 mol)己二胺(美國,Aldrich公司製 ΐ&amp;)供給至該反應器204内。將該反應器204内之液體溫度 調整成約80°C ’自貯槽203經由管路23,將6.4 g甲醇納(日 本’和光純藥工業公司製造,28%甲醇溶液)供給至該sus 製反應器204中,進行反應。 以液相層析法對反應後之溶液進行分析,結果以產率 99.7%生成队;^,_己二基_雙_胺基曱酸雙(3_甲基丁基)酯。 打開管路24,將該反應液供給至收容有去除水分而經調 整之酸性離子交換樹脂(AmberlySt-15(球狀):R〇HM &amp; HAAS公司製造)且利用外部套管保溫為8〇&lt;t之管柱 中,進行曱醇鈉之中和。將該溶液經由管路25運送至貯 206 〇 •步驟(1·2):低沸成分之餾去 131506.doc -125- 200948759 使用如圖3所示之裝置,進行醇之館去。 向填充有狄克松填料(6 ππηφ)之内徑為5cm、塔長為2111 之連續多級蒸餾塔302之中段,將回收至貯槽2〇6之混合物 ,、-i由預熱器301,自管路3 1以約280 g/hr以液狀連續進料。 蒸館所需之熱量係藉由使塔下部之液體經由管路3 3及再沸 器304循環而供給。連續多級蒸餾塔3〇2之塔底部之液體溫 度為160°C,塔頂壓力約為7〇 kPae使自連續多級蒸餾塔 302之塔頂餾出之氣體經由管路32於冷凝器3〇3中冷凝,自 ❹管路34以約43 g/hr連續排出至貯槽305。自塔底經由管路 33以約237 g/hr連續排出至貯槽3〇6。 使用圖4所示之裝置,進行碳酸酯之餾去。 向填充有狄克松填料(6 ηιηιφ)之内徑為5cm、塔長為2〇1 之連續多級蒸餾塔4〇2之中段,將回收至貯槽3〇6之混合物 、.’垦由預熱器40 1,自管路41以約23 7 g/hr以液狀連續進料。 蒸餾所需之熱量係藉由使塔下部之液體經由管路43及再沸 ◎ 器404循環而供給。連續多級蒸餾塔4〇2之塔底部之液體溫 度為160 C,塔頂壓力約為2.6 kPa。使自連續多級蒸館塔 4〇2之塔頂餾出之氣體經由管路42於冷凝器4〇3中冷凝,自 管路44以約15〇 g/hr連續排出至貯槽4〇5。自塔底經由管路 43以約87 g/hr連續排出至貯槽4〇6。 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約98,2重量。/〇之Ν,Νι_己二基_雙_胺基甲酸雙 (3-甲基丁基)醋。 .步驟(1-3):利用N,N’-己二基_雙·胺基甲酸雙(3_甲基丁基) 131506.doc •126- 200948759 酯之熱分解來製造異氰酸酯 使用如圖5所示之裝置進行反應。 ❹ ❹ 將傳熱面積為0.1 m2之薄膜蒸餾裝置5〇1(日本,Kobelc〇 eco-solutions公司製造)加熱至270°C,使内部壓力約為13 kPa。將步驟(1-2)中回收至貯槽40之混合物加熱至i6〇〇c, 經由管路50以約280 g/hr供給至薄膜蒸發器501之上部。 又,自管路51以約25.2 g/hr進料二月桂酸二丁基錫(日本, 和光純藥工業公司製造)。自薄膜蒸餾裝置5〇1之底部,自 管路53排出液相成分,使之經由管路54循環至薄膜蒸餾裝 置501之上部。將氣相成分自管路52排出。 向填充有狄克松填料(6 ηίΓηφ)之内徑約為5 cm、塔長為2 Μ連續多級蒸料观之中段,將自薄膜㈣裝置5〇1經 由管路52排出之氣相成分連續進料,進行該氣相成分之蒸 館分離。蒸德分離所需之熱量係藉由使塔下部之液體瘦由 管路56及再沸器504循環而供給。連續多級蒸館塔5〇2之塔 底部之液體溫度為150。(:,塔頂壓力約為5〇心。使自連 續多級蒸顧塔5G2之塔頂㈣之氣㈣由管路55於冷 5〇3中冷凝,自管路57連續排 F K目運續多級蒸餾塔502之 低於管路52之位置的管路59排出液相成分。 向填充有狄克松填料(6m吨之内徑約為5邮、 m之連續多級蒸餾塔505之中 。长為2 液相点八η〆 連續進枓自管路59排出之 液相成…订該氣相成分之蒸館分離。 熱量传藉由梓技@所需之 熱重係藉由使塔下部之液體經由管路6 而供給。連續多級蒸館塔5〇5 弗器507循環 塔底。卩之液體溫度為150 131506.doc •127- 200948759 °c,塔頂壓力約為1&gt;5 kPa〇使自連續多級蒸餾塔5〇5之塔 頂镏出之氣體經由管路60於冷凝器506中冷凝,經由管路 62連續排出至貯槽509。定常狀態之排出量約為丨3〇 g/hr。 運轉40小時後,將液相成分自管路64以約丨丨g/hr排出至 貯槽510。 自管路62排出之液體係含有約99.8重量%之二異氰酸己 二醋之溶液。相對於己二胺之產率為96 7〇/〇。 進行10天連續運轉’結果未發現於薄膜蒸餾裝置5〇1之 〇 壁面上積蓄有附著物。 [實施例2] .步驟(2-1) : 3-((3-甲基丁氧基)羰基胺基-曱基_3,5,5_三甲 基環己基胺基甲酸(3-曱基丁基)酯之製造 除供給3394 g(l6.8 mol)之參考例1之碳酸雙(3_甲基丁 基)酯、596 g(3.5 mol)之代替己二胺之3-胺基甲基_3,5,5_三 甲基環己基胺(美國’ Aldrich公司製造)、6.8 g之曱醇納 ^ (28%甲醇溶液)而進行反應之外,實施與實施例1之步驟(1- 1)同樣之方法。以液相層析法對反應後之溶液進行分析, 結果以產率99.5〇/〇生成3-((3-曱基丁氧基)幾基胺基-曱基· 3,5,5 -二甲基環己基胺基甲酸(3_甲基丁基)酯。將反應液供 給至收容有除去水分而經調整之酸性離子交換樹脂 (Amberlyst-15(球狀):ROHM &amp; HAAS公司製造)且利用外 部套管保溫為80C之管柱205中,進行曱醇納之中和。將 該溶液經由管路25運送至貯槽206中。 •步驟(2-2):低沸成分之餾去 131506.doc -128- 200948759 使用如圖3所示之裝置,進行醇之館去。 向填充有狄克松填料(6 ηιηιφ)之内徑為5cm、塔長為2〇] 之連續多級蒸餾塔302的中段,經由預熱器3〇1,自管路3 i 以約280 g/hr以液狀連續進料回收至貯槽2〇6之混合物蒸 餾所需之熱量係藉由使塔下部之液體經由管路3 3及再沸器 304循環而供給。連續多級蒸餾塔3〇2之塔底部之液體溫度 為160°C,塔頂壓力約為70 kPa。使自連績多級蒸餾塔3〇2 之塔頂餾出之氣體經由管路32於冷凝器3〇3中冷凝,自管 〇 路34以約43 ^以連續排出至貯槽305。自塔底經由管路33 以約23 7 g/hr連續排出至貯槽306。 使用如圖4所示之裝置’進行碳酸酯之餾去。 向填充有狄克松填料(6 ιηηιφ)之内徑為5cm、塔長為之出 之連續多級蒸餾塔402的中段,經由預熱器4〇1 ’自管路“ 以約237 g/hr以液狀連續進料回收至貯槽3〇6之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路43及再沸器 〇 404循環而供給。連續多級蒸餾塔4〇2之塔底部之液體溫度 為160°C,塔頂壓力約為2.6 kPa。使自連續多級蒸餾塔4〇2 之塔頂餾出之氣體經由管路42於冷凝器4〇3中冷凝,自管 路44以約138 g/hr連續排出至貯槽4〇5。自塔底經由管路 43 ’以約98 g/hr連續排出至貯槽4〇6。 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約99_〇重量%之3_((3_甲基丁氧基)羰基胺基_ 甲基-3,5,5-三甲基環己基胺基甲酸(3_甲基丁基)酯。 ,步驟(2-3):利用3_((3_甲基丁氧基飧基胺基甲基_3,5,5_ 131506.doc •129- 200948759 三甲基環己基胺基甲酸(3_甲基丁基)酯之熱分解來製造異 氟酸醋 使用如圖5所示之裝置進行反應。 將傳熱面積為〇·1 m2之薄膜蒸餾裝置5〇1加熱至27〇β(:, 使内部壓力約為13 kPa。將步驟(2-2)中回收至貯槽406之 混口物加熱至17〇 c,經由管路50以約2〇〇 g/hr供給至薄膜 蒸發器501之上部。又,自管路51以約25 2经/心進料二月 桂酸二丁基錫(日本,和光純藥工業公司製造)。自薄膜蒸 餾裝置501之底部,將液相成分自管路53排出,使之經由 管路54循環至薄膜蒸餾裝置5〇1之上部。將氣相成分自管 路52排出。 向填充有狄克松填料(6 ηπηφ)之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔5〇2的中段,連續進料自薄膜蒸餾裝置 501經由管路52排出之氣相成分,進行該氣相成分之蒸餾 分離。蒸餾分離所需之熱量係藉由使塔下部之液體經由管 0 路56及再沸器504循環而供給。連續多級蒸餾塔5〇2之塔底 部之液體溫度為150°C,塔頂壓力約為50 kPa。使自連續 多級蒸餾塔5 02之塔頂餾出之氣體經由管路55於冷凝器 中冷凝,自管路57連續排出❶自連續多級蒸餾塔5〇2之低 於管路52之位置的管路59排出液相成分。 向填充有狄克松填料(6 ηιιηφ)之内徑約為5 cm、炫長為2 m之連續多級蒸餾塔505的中段,連續進料自管路59排出之 液相成分,進行該氣相成分之蒸餾分離。蒸餾分離所需之 熱量係藉由使塔下部之液體經由管路61及再沸器5〇7循淨 131506.doc -130- 200948759 而供給。連續多級蒸餾塔505之塔底部之液體溫度為15〇 °C,塔頂壓力約為i.5 kPa。使自連續多級蒸餘塔5〇5之塔 頂餾出之氣體經由管路60於冷凝器506中冷凝,經由管路 62連續排出至貯槽509。定常狀態之排出量約為1〇7 g/hr。 運轉40小時後’將液相成分自管路64以約9 g/hr排出至 貯槽5 10。 自管路62排出之液體係含有約99.8重量%之異佛爾酮二 異氰酸酯之溶液》相對於己二胺之產率為96.5%。 進行10天連續運轉,未發現於薄膜蒸館裝置5〇1之壁面 上積蓄有附著物。 [實施例3] 步驟(3-1) ’ N,N'-(4,4'-亞甲基-二苯基)-雙胺基甲酸雙(3_ 甲基丁基)酯之製造 向參考例1之碳酸雙(3-曱基丁基)S旨中添加乙醯丙酮鐵 (II) ’製備含有7.4%之作為金屬原子之鐵之碳酸雙(3-曱基 丁基)酯。除供給2917 g(l 4.4 mol)該碳酸雙(3-曱基丁基) 醋、代替己二胺之753 g(3.8 mol) 4,4'-亞甲基二胺(美國, Aldrich製造)、7.3 g甲醇鈉(28%曱醇溶液)而進行反應之 外,實施與實施例1之步驟(1_1}同樣之方法。以液相層析 法對反應後之溶液進行分析,結果以產率99丨%生成N,n,_ (4,4·-亞甲基_二苯基)_雙胺基甲酸雙(3_甲基丁基)酯。將反 應液供給至收容有去除水分而經調整之酸性離子交換樹脂 (Amberlyst-15(球狀):r〇HNI &amp; HAAS公司製造)且利用外 套管保溫為80 C之管柱205中,進行甲酵納之中和。將 131506.doc 131 - 200948759 該溶液經由管路25運送至貯槽2〇6。 ’步驟(3·2):低沸成分之館去 使用如圖3所示之裝置,進行醇之館去。 向填充有狄克松填料(6 之内徑為5cm、塔長為2爪 之連續多級蒸餾塔302的中段,經由預熱器3〇1,自管路31 以約270 g/hr以液狀連續進料回收至貯槽2〇6之混合物。蒸 餾所需之熱1係藉由使塔下部之液體經由管路33及再沸器 304循環而供給。連續多級蒸餾塔302之塔底部之液體溫度 為160 C,塔頂壓力約為70 kPa。使自連續多級蒸館塔3〇2 之塔頂餾出之氣體經由管路32於冷凝器3〇3中冷凝,自管 路34以約48 g/hr連續排出至貯槽3〇5。自塔底經由管路 33,以約222 g/hr連績排出至貯槽3〇6。 使用如圖4所示之裝置,進行碳酸酯之餾去。 向填充有狄克松填料(6 ηιηιφ)之内徑為5cm、塔長為2m 之連續多級蒸餾塔402的中段,經由預熱器4〇!,自管路4 i ❿以約237 g/hr以液狀連續進料回收至貯槽3〇6之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路43及再沸器 404循環而供給。連續多級蒸餾塔4〇2之塔底部之液體溫度 為160 C ’塔頂壓力約為2.6 kPa。使自連續多級蒸餾塔4〇2 之塔頂餾出之氣體經由管路42於冷凝器403中冷凝,自管 路44以約102 g/hr連續排出至貯槽405。自塔底經由管路43 以約120 g/hr連續排出至貯槽406。 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約98.5重量%2Ν,Ν’-(4,4,-亞甲基-二苯基)_雙 I3I506.doc 132- 200948759 胺基甲酸雙(3-甲基丁基)酯。 酸雙l驟甲Ο其3).利用Ν’Ν,·(4’4,_亞甲基_二苯基)_雙胺基甲 酸雙(-甲基丁基)酯之熱分解來製造異氰酸酯 使用如圖6所示之裝置進行反應。Ltd., manufactured by the company, and equipped with continuous multi-stage steaming of reboiler crucible and condenser i21. 131506.doc • 119- 200948759 Distillate 101 is subjected to distillation purification. On the upper portion of the distillation column 1〇1, a fraction containing a high concentration of water is condensed in the condenser 121 and recovered from the line 3. Purified 2-ethylhexanol is delivered via line 2 located below the distillation column 101. Obtained from the lower part of the column reactor 102 containing bis-n-butyltin-bis(2-ethylhexoxide) and ^Hong IV. n-butyl _13 bis(2-ethylhexyloxy)_ oxime oxygen entertainment The xanthene-based oxide catalyst composition is supplied to a thin film distillation apparatus 103 (manufactured by K〇belc〇ec〇s〇luti〇ns Co., Ltd.) via a line 5. In the thin film distillation apparatus 103, 2-ethyl-1-hexanol was distilled off, and returned to the column reactor 1〇2 via the cold condenser 123, the line 8 and the line 4. The alkyl tin alkoxide catalyst composition is transported from the lower portion of the thin film distillation apparatus 103 via line 7 to di-n-butyltin-bis(2-hexylhexoxide) and 1,1,3,3 tetra-n-butyl The flow rate of the active ingredient of the base-1,3-bis(2-ethylhexyloxy)-distannoxane was adjusted to about 6083 g/hr, and it was supplied to the autoclave 1 〇4. Carbon dioxide was supplied to the autoclave via line 9 at 973 g/hr, and the internal pressure of the autoclave was maintained at 4 MPa-G. The temperature of the autoclave was set to 12 (rc, the residence time was adjusted to ◎ about 4 hours to carry out the reaction of carbon dioxide with the alkyl tin alkoxide catalyst composition) to obtain a reaction liquid containing bis(2-ethylhexyl) carbonate. The reaction liquid is transported to the carbon removal tank 1〇5 via the line 10 and the regulating valve to remove residual carbon dioxide. The carbon dioxide is recovered from the line 。. Thereafter, the reaction liquid is sent to the pipeline 12 through the line 12 A film purifying device 1〇6 (made by Kobelco eco-solutions, Japan) of 1401 and 1.4 kPa, 1,1,3,3·tetra-n-butyl-丨'3·double (2_B) The flow rate of hexyloxy)-distannoxane is adjusted to about 4943 g/hr, and is supplied to obtain a fraction containing dibutyl carbonate, and on the other hand, 1,1,3,3-tetra-n-butyl- 1,3-bis(2-ethylhexyloxy 131506.doc -120- 200948759 base)-mono- tin-oxygen gas flow rate is adjusted to about 4943 g/hr, and the evaporation residue is circulated to the tower via the conveying line 13 and the conveying line 4. Type reactor 1〇2. The arsenic containing dibutyl sulphate was supplied via condenser 126 and line 14 at 1354 g/hr to the filled metal. Gauze CY (Switzerland, manufactured by Sulzer Chemtech Ltd.) and a distillation column 1〇7 equipped with a reboiler 117 and a condenser 127, after purification by distillation, obtained 丨339 g/hr of 99 wt% of carbonic acid from the line 15. Bis(2-ethylhexyl) ester. The pyrithion tin alkoxide catalyst composition of line 13 was analyzed using 丨i9Sn, iH, !3c_nmr, and the result contained tetra-n-butyl-1,3-bis ( 2-ethylhexyloxy)-distannoxane, which does not contain di-n-butyltin-bis-(2-ethylhexoxide) ^ After the above continuous operation for about 600 hours, 'from the discharge line 16 to 23 g /hr discharging the alkyltin alkoxide catalyst composition', on the other hand, the 1,1,3,3-tetra-positive produced in the step (V-1) by the feed line 17 at 23 g/hr Butyl-1,3-bis(2-ethylhexyloxy)-distannoxol. The obtained bis(2-ethylhexyl) carbonate contains 30 ppm of iron as a metal atom. [Reference Example 6] Production of diphenyl carbonate The diphenyl carbonate was obtained by using dibutyl carbonate obtained in Reference Example 2. • Step (VI-1): Production of aromatic carbonate [Preparation of catalyst] 79 g of phenol and 32 G—lead oxide on 18 It is heated for 10 hours. The water formed is distilled off together with phenol. About 2.5 g of water is discharged in an hour. Then, the catalyst is prepared from the upper part of the reactor to prepare a catalyst. [Aromatic vinegar Manufacture] Use the device shown in Figure 2. 131506.doc -121- 200948759 Continuous multi-stage steaming tower 202 filled with Dixon packing (6 mm phantom with an inner diameter of about 5 cm and a tower length of 2 m) In the middle stage, the dibutyl carbonate, the phenol obtained in the step (1_2), the phenol, and the catalyst prepared above are continuously fed in a liquid form from the line 21 at a temperature of about 270 g/hr via a preheater 2 〇. The mixed liquid (the weight ratio of dibutyl carbonate to phenol in the mixed liquid was prepared to be about 65/35, and the lead concentration was prepared to be about 1% by weight) was reacted. The heat required for the reaction and distillation is supplied by passing the liquid in the lower portion of the column through the line 23 and the reboiler 204#. The liquid temperature at the bottom of the column of the continuous multi-stage distillation column 202 is 238 &lt;&gt;, the top pressure of the crucible is about 250 kPa, and the reflux ratio is about 2. The gas distilled from the top of the continuous multi-stage steaming tower 202 was discharged from the line 22, and continuously discharged from the line 24 to the storage tank 2〇5 at about 67 g/hr via the condenser 2〇3. From the bottom of the column, it was continuously discharged into the storage tank 2〇6 via the line 23 at about 204 g/hr. The composition of the liquid discharged from the line 24 is about 33% by weight of 丨-butanol, about 65% by weight of phenol, and about 2% by weight of dibutyl carbonate. The liquid composition discharged to the storage tank 206 has a phenol content of about 丨丨% by weight, a dibutyl carbonate of about φ 60% by weight, a butyl phenyl carbonate of about 26% by weight, and a diphenyl carbonate of about 1.6% by weight. The lead concentration is about 1% by weight. Next, use the device shown in Figure 3. To the middle of the continuous multi-stage distillation column 302 filled with Dixon packing (6 ππηφ) having an inner diameter of 5 cm and a column length of 2 m, via a preheater 3〇1, from the line 3 i to about 203 g/ The hr is continuously discharged into the liquid in the storage tank 2〇6 in a liquid form. The heat required for the reaction and distillation is supplied by circulating the liquid in the lower portion of the column through the line 33 and the refill unit 304. The liquid temperature at the bottom of the continuous multi-stage distillation column 3〇2 was 240 ° C, the overhead pressure was about 27 kPa, and the reflux ratio was about 2. 131050.doc -122· 200948759 The gas from the top of the continuous steaming tower 302 is condensed via the line μ in the condenser 303, and continuously discharged from the line 34 to the storage tank 305 at about i65 g/hr. . From the bottom of the column, it is continuously discharged to the composition of the liquid discharged from the line 34 in the storage tank 3〇6 via the line 33 at about 39 g/hr, 丨-butanol is about 5 〇〇 ppm, and phenol is about 13% by weight. 'Dibutyl carbonate is about 85% by weight, and butyl phenyl carbonate is about 2% by weight. The composition of the liquid discharged to the storage tank 306 is about 3% by weight of dibutyl carbonate, about 32% by weight of butyl phenyl carbonate, about 61% by weight of diphenyl carbonate, and about 7 weight by weight. 〇/0. [Recycling and Recycling of Alcohol] The alcohol was recovered and reused using the apparatus shown in Fig. 4 . The continuous multi-stage distillation column 402 filled with a Dixon packing (6 ηηπιφ) having an inner diameter of about 5 and a column length of 2 m is about 7 111 at the lowermost portion of the distance from the line, and is passed through the preheater 401 from the line 41. The liquid which was continuously discharged to the storage tank 205 in the above step was continuously fed at about 201 g/hr for distillation separation. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line 43 and the reboiler 404. The liquid temperature at the bottom of the continuous multi-stage distillation column 402 is 145 ° C. The top pressure is about 13 kPa. The reflux ratio is about 0.3. The gas distilled from the continuous multi-stage distillation column 402 was condensed in the condenser 4〇3 via the line 42 and discharged to the storage tank 405 from the line 44 at about 68 g/hr. From the bottom of the column, it is continuously discharged to the storage tank 406 via the line 43 at about I33 g/hr. Of the composition of the liquid discharged from the line 44, the butanol is about 99% by weight and the phenol is about 100 ppm. The composition of the liquid discharged to the storage tank 4〇6 was about 2% by weight of dibutyl carbonate and about 98% by weight of phenol. 131506.doc -123 - 200948759 [Purification of diaryl carbonate] Purification of diaryl carbonate was carried out using a device as shown in Figs. To the middle of a continuous multi-stage distillation column 502 filled with a Dixon packing (6 ππηφ) having an inner diameter of about 5 cm and a column length of 2 m, from the line 51, via the preheater 501, to about 195 g/ The hr is continuously fed to the liquid in the storage tank 3〇6. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line 53 and the reboiler 504. The liquid temperature at the bottom of the continuous multi-stage distillation column 5〇2 is 210 C, the pressure at the top of the column is about 1.5 kPa, and the reflux ratio is about [. The gas distilled from the top of the continuous multi-stage distillation column 502 is condensed in the condenser 503 via the line 52, and continuously discharged from the line 54. From the bottom of the column, it is discharged to the sump 506 via line 53 at about 14 g/hr. In the composition of the liquid discharged from the line 54, the dibutyl carbonate is about 0.3% by weight, the butyl phenyl carbonate is about 34% by weight, and the diphenyl carbonate is about 66% by weight. The middle portion of the continuous multi-stage distillation column 602 having an inner diameter of about 5 cm and a column length of 2 ❹ m, from the line 61, is continuously fed through the preheater 601 ' at about 181 g/hr. The liquid discharged from the line 54 is discharged. The heat required for the distillation separation is supplied by circulating the liquid Zhao at the lower portion of the column through the line 63 and the refill unit 604. The liquid temperature at the bottom of the continuous multi-stage distillation column 602 was 232 ° C, the top pressure was about 15 kPa, and the reflux ratio was about 2. The gas distilled from the top of the continuous multi-stage distillation column 602 is condensed in the condenser 603 via the line 62, and continuously discharged from the line 64. From the bottom of the column, it is discharged to the sump 606 via line 63 at about 119 g/hr. In the composition of the liquid discharged from the line 64, dibutyl carbonate is about 〇6 weight 131506.doc -124- 200948759% by volume 'about butyl phenyl carbonate is about 99% by weight, and diphenyl carbonate is about 0.4% by weight. . The composition of the liquid discharged to the storage tank 606 was 0.1% by weight of butyl phenyl carbonate and about 99.9% by weight of diphenyl carbonate. The diphenyl carbonate contained 8.2 ppm of iron as a metal component. [Example 1] Step (1-1): Production of N,N'-hexanediyl-bis-aminocarbamic acid bis(3-methylbutyl) ester The reaction was carried out using an apparatus as shown in Fig. 2. In the state where the line 24 is closed, 3333 g (16.5 mol) of bis(3-methylbutyl) carbonate of Reference Example 1 is supplied from the storage tank 2〇1 via the line 21 to an internal volume of 5 L. In the SUS reaction vessel 204 of the board, 383.5 g (3.3 mol) of hexamethylenediamine (manufactured by Aldrich Co., Ltd., USA) was supplied from the storage tank 202 to the reactor 204 via a line 22. The temperature of the liquid in the reactor 204 was adjusted to about 80 ° C. From the storage tank 203 via line 23, 6.4 g of methanol (manufactured by Wako Pure Chemical Industries, Ltd., 28% methanol solution) was supplied to the sus reactor. In 204, the reaction is carried out. The solution after the reaction was analyzed by liquid chromatography, and the product was formed in a yield of 99.7%; ^, hexane-diyl-bis-amino bis(3-methylbutyl) phthalate. The line 24 was opened, and the reaction liquid was supplied to an acidic ion exchange resin (Amberly St-15 (spherical): R〇HM &amp; HAAS), which was adjusted to remove moisture, and was insulated by an external casing to 8 Torr. In the column of &lt;t, neutralization of sodium decoxide was carried out. The solution was transported via line 25 to storage 206. • Step (1·2): Distillation of low boiling components 131506.doc -125- 200948759 The apparatus shown in Figure 3 was used to carry out the alcohol store. The intermediate portion of the continuous multi-stage distillation column 302 having an inner diameter of 5 cm and a column length of 2111 filled with a Dixon packing (6 ππηφ) is recovered to a mixture of the storage tank 2〇6, and -i is supplied from the preheater 301, Continuously fed in liquid form from line 31 at about 280 g/hr. The heat required for the steaming station is supplied by circulating the liquid in the lower portion of the column through the line 3 3 and the reboiler 304. The liquid temperature at the bottom of the continuous multi-stage distillation column 3〇2 is 160 ° C, and the pressure at the top of the column is about 7 kPa. The gas distilled from the top of the continuous multi-stage distillation column 302 is passed through the line 32 to the condenser 3. The crucible 3 was condensed and the autogenous helium line 34 was continuously discharged to the storage tank 305 at about 43 g/hr. From the bottom of the column, it was continuously discharged to the storage tank 3〇6 via line 33 at about 237 g/hr. The carbonate was distilled off using the apparatus shown in FIG. The middle portion of the continuous multi-stage distillation column 4〇2 filled with Dickson packing (6 ηιηιφ) having an inner diameter of 5 cm and a column length of 2〇1 is recovered into a mixture of the storage tank 3〇6, The heat exchanger 40 1, is continuously fed in liquid form from the line 41 at about 23 7 g/hr. The heat required for the distillation is supplied by circulating the liquid in the lower portion of the column through the line 43 and the reboiler 404. The liquid temperature at the bottom of the continuous multi-stage distillation column 4〇2 was 160 C, and the pressure at the top of the column was about 2.6 kPa. The gas distilled from the top of the continuous multi-stage steaming tower 4〇2 was condensed in the condenser 4〇3 via the line 42 and continuously discharged to the storage tank 4〇5 from the line 44 at about 15 〇 g/hr. From the bottom of the column, it was continuously discharged to the storage tank 4〇6 via line 43 at about 87 g/hr. The mixture discharged to the storage tank 406 was subjected to liquid chromatography analysis, and as a result, the mixture contained about 98,2 by weight. /〇之Ν,Νι_hexanediyl_bis-aminocarbamic acid bis(3-methylbutyl) vinegar. Step (1-3): Using N,N'-hexanediyl-bis-aminocarbamic acid bis(3-methylbutyl) 131506.doc • 126- 200948759 The thermal decomposition of the ester to produce isocyanate is shown in Figure 5. The device shown is reacted. ❹ 薄膜 A thin film distillation apparatus 5〇1 (manufactured by Kobelc〇 eco-solutions, Japan) with a heat transfer area of 0.1 m2 was heated to 270 ° C to have an internal pressure of about 13 kPa. The mixture recovered in the storage tank 40 in the step (1-2) was heated to i6〇〇c, and supplied to the upper portion of the thin film evaporator 501 via the line 50 at about 280 g/hr. Further, dibutyltin dilaurate (manufactured by Wako Pure Chemical Industries, Ltd., Japan) was fed from the line 51 at about 25.2 g/hr. From the bottom of the thin film distillation apparatus 5〇1, the liquid phase component is discharged from the line 53 and circulated to the upper portion of the thin film distillation apparatus 501 via the line 54. The gas phase components are discharged from line 52. The gas phase component discharged from the membrane (4) device 5〇1 through the line 52 to the middle portion of the continuous multi-stage steaming material filled with Dixon packing (6 ηίΓηφ) and having an inner diameter of about 5 cm and a length of 2 Μ. Continuous feeding, steam separation of the gas phase components is carried out. The heat required for the vapor separation is supplied by circulating the liquid at the lower portion of the column by the line 56 and the reboiler 504. The temperature of the liquid at the bottom of the continuous multi-stage steaming tower 5〇2 is 150. (: The pressure at the top of the tower is about 5 。. The gas (4) from the top (4) of the continuous multi-stage steaming tower 5G2 is condensed by the line 55 in the cold 5〇3, and the continuous flow of FK from the line 57 is continued. The line 59 of the multi-stage distillation column 502 below the line 52 discharges the liquid phase component. To the continuous multi-stage distillation column 505 filled with Dixon packing (6 m ton having an inner diameter of about 5 Å, m) The length of the liquid phase is 8 η 〆 continuous into the liquid phase discharged from the pipeline 59. The steam phase separation of the gas phase component is set. The heat is transferred by the technique required by the technique The liquid in the lower part is supplied via the line 6. The continuous multi-stage steaming tower 5〇5 is the bottom of the 507 circulation tower. The liquid temperature of the crucible is 150 131506.doc •127- 200948759 °c, the top pressure is about 1&gt;5 The kPa is condensed from the top of the continuous multi-stage distillation column 5〇5 through the line 60 in the condenser 506, and continuously discharged to the storage tank 509 via the line 62. The discharge amount in the steady state is about 丨3〇. g/hr After 40 hours of operation, the liquid phase component is discharged from line 64 at about g/hr to storage tank 510. The liquid system discharged from line 62 contains about 99.8% by weight. A solution of hexamethylene diisocyanate having a yield of 96 7 Torr/〇 with respect to hexamethylenediamine was continuously operated for 10 days. As a result, no deposit was accumulated on the wall surface of the thin film distillation apparatus 5〇1. Example 2]. Step (2-1): 3-((3-methylbutoxy)carbonylamino-indenyl_3,5,5-trimethylcyclohexylaminocarboxylic acid (3-indenyl) Preparation of butyl) ester In addition to 3394 g (16.8 mol) of bis(3-methylbutyl) carbonate of Reference Example 1, 596 g (3.5 mol) of 3-aminomethyl substituted hexamethylenediamine The reaction was carried out in the same manner as in Example 1 except that the reaction was carried out by reacting _3,5,5-trimethylcyclohexylamine (manufactured by Aldrich, USA, 6.8 g of sodium hydride (28% methanol solution). - 1) The same method. The solution after the reaction was analyzed by liquid chromatography, and the result was a yield of 99.5 〇 / 3- to give 3-((3-fluorenylbutoxy) amide-yl group. 3,5,5-Dimethylcyclohexylaminocarbamic acid (3-methylbutyl) ester. The reaction solution is supplied to an acidic ion exchange resin (Amberlyst-15 (spherical)) which is adjusted to remove moisture. ROHM &amp; HAAS company) and protected by external casing Neutralization of sodium sterol is carried out in column 205 of 80 C. The solution is transported via line 25 to storage tank 206. • Step (2-2): Distillation of low boiling components 131506.doc -128- 200948759 The middle portion of the continuous multi-stage distillation column 302 filled with a Dixon packing (6 ηιηιφ) having an inner diameter of 5 cm and a column length of 2 〇] was passed through the apparatus shown in Fig. 3. Heater 3〇1, the heat required for the distillation of the mixture from the line 3 i in a liquid continuous feed to the storage tank 2〇6 is carried out by passing the liquid in the lower part of the column through the line 3 3 and The reboiler 304 is circulated and supplied. The liquid temperature at the bottom of the continuous multi-stage distillation column 3〇2 was 160 ° C, and the pressure at the top of the column was about 70 kPa. The gas distilled from the top of the continuous multi-stage distillation column 3〇2 was condensed in the condenser 3〇3 via the line 32, and was continuously discharged from the tube 34 to the storage tank 305 at about 43 μ. From the bottom of the column, it is continuously discharged to the storage tank 306 via line 33 at about 23 7 g/hr. The carbonate was distilled off using the apparatus shown in Fig. 4. The middle section of the continuous multi-stage distillation column 402 filled with Dickson packing (6 ηηηιφ) having an inner diameter of 5 cm and the length of the column was passed through a preheater 4〇1 'from the line " at about 237 g/hr. The mixture is recovered in a continuous liquid feed to a mixture of tanks 3 and 6. The heat required for the distillation is supplied by circulating the liquid in the lower portion of the column via line 43 and reboiler crucible 404. Continuous multi-stage distillation column 4〇2 The liquid temperature at the bottom of the column is 160 ° C, and the pressure at the top of the column is about 2.6 kPa. The gas distilled from the top of the continuous multi-stage distillation column 4 〇 2 is condensed in the condenser 4 〇 3 via line 42. The line 44 is continuously discharged to the storage tank 4〇5 at about 138 g/hr. From the bottom of the column, it is continuously discharged to the storage tank 4〇6 via the line 43' at about 98 g/hr. The liquid phase of the mixture discharged to the storage tank 406 is carried out. Analysis by analytical analysis revealed that the mixture contained about 99% by weight of 3-((3-methylbutoxy)carbonylamino-methyl-3,5,5-trimethylcyclohexylaminocarboxylic acid (3_). Methyl butyl) ester, step (2-3): using 3_((3_methylbutoxydecylaminomethyl-3,5,5-131506.doc •129- 200948759 trimethylcyclohexyl) Aminocarboxylic acid (3_ The thermal decomposition of butyl butyl ester to produce isofluoric acid vinegar is carried out by using the apparatus shown in Fig. 5. The thin film distillation apparatus 5〇1 having a heat transfer area of 〇·1 m2 is heated to 27 〇β (:, The internal pressure is about 13 kPa. The mixture recovered in the storage tank 406 in the step (2-2) is heated to 17 〇c, and supplied to the upper portion of the thin film evaporator 501 via the line 50 at about 2 〇〇g/hr. Further, dibutyltin dilaurate (manufactured by Wako Pure Chemical Industries, Ltd.) was fed from the line 51 at a rate of about 25 2 /. From the bottom of the thin film distillation apparatus 501, the liquid phase component was discharged from the line 53 so that It is circulated to the upper portion of the thin film distillation apparatus 5〇1 via the line 54. The gas phase component is discharged from the line 52. The inner diameter of the Dixon packing (6 ηπηφ) is about 5 cm and the length of the tower is 2 m. In the middle section of the continuous multi-stage distillation column 5〇2, the gas phase component discharged from the thin film distillation apparatus 501 via the line 52 is continuously fed, and the vapor phase component is subjected to distillation separation. The heat required for the distillation separation is made by the tower. The lower liquid is supplied through the tube 0 path 56 and the reboiler 504. The continuous multi-stage distillation column 5〇2 tower The liquid temperature at the bottom is 150 ° C and the pressure at the top of the column is about 50 kPa. The gas distilled from the top of the continuous multi-stage distillation column 502 is condensed in the condenser via line 55 and continuously discharged from the line 57. The liquid phase component is discharged from the line 59 of the continuous multi-stage distillation column 5〇2 below the line 52. The inner diameter of the filled Dixon packing (6 ηιιηφ) is about 5 cm, and the length is 2 m. In the middle of the continuous multi-stage distillation column 505, the liquid phase component discharged from the line 59 is continuously fed, and the vapor phase component is subjected to distillation separation. The heat required for the distillation separation is supplied by passing the liquid in the lower portion of the column through the line 61 and the reboiler 5 〇 7 by illuminating 131506.doc - 130 - 200948759. The liquid temperature at the bottom of the column of the continuous multi-stage distillation column 505 is 15 ° C, and the pressure at the top of the column is about 1.5 kPa. The gas distilled from the overhead of the continuous multi-stage distillation column 5〇5 is condensed in the condenser 506 via the line 60, and continuously discharged to the storage tank 509 via the line 62. The steady state discharge is about 1〇7 g/hr. After 40 hours of operation, the liquid phase component was discharged from the line 64 to the storage tank 5 10 at about 9 g/hr. The liquid system discharged from line 62 contained about 99.8% by weight of a solution of isophorone diisocyanate. The yield relative to hexamethylenediamine was 96.5%. The continuous operation was carried out for 10 days, and no deposit was accumulated on the wall surface of the film vaporizing apparatus 5〇1. [Example 3] Step (3-1) 'Manufacture of N,N'-(4,4'-methylene-diphenyl)-bis-aminocarbamic acid bis(3-methylbutyl) ester To a reference example The bis(3-mercaptobutyl)carbonate of 1 is added with iron (II) acetonitrile. 'Preparation of bis(3-mercaptobutyl)carbonate containing 7.4% of iron as a metal atom. In addition to 2917 g (l 4.4 mol) of bis(3-mercaptobutyl) vinegar, 753 g (3.8 mol) of 4,4'-methylenediamine (manufactured by Aldrich, USA) in place of hexamethylenediamine, The reaction was carried out in the same manner as in the step (1_1} of Example 1 except that 7.3 g of sodium methoxide (28% decyl alcohol solution) was reacted. The solution after the reaction was analyzed by liquid chromatography, and the yield was 99.丨% produces N,n,_(4,4·-methylene-diphenyl)-bis(3-methylbutyl) dimethyl carbamate. The reaction solution is supplied to contain moisture and is adjusted. An acidic ion exchange resin (Amberlyst-15 (spherical): r〇HNI &amp; manufactured by HAAS) was used in the column 205 which was insulated with an outer sleeve of 80 C to carry out the neutralization of the collagen. 131506.doc 131 - 200948759 This solution is transported via line 25 to storage tank 2〇6. 'Step (3·2): Low-boiling ingredients to use the device shown in Figure 3 to go to the alcohol hall. The middle portion of the continuous multi-stage distillation column 302 having a packing inner diameter of 5 cm and a column length of 2 claws was continuously fed from the line 31 at a flow rate of about 270 g/hr in a liquid form via a preheater 3〇1. The mixture to the storage tank 2〇6. The heat required for the distillation is supplied by circulating the liquid in the lower portion of the column through the line 33 and the reboiler 304. The liquid temperature at the bottom of the continuous multi-stage distillation column 302 is 160 C. The top pressure is about 70 kPa. The gas distilled from the top of the continuous multi-stage steaming tower 3〇2 is condensed in the condenser 3〇3 via line 32, from line 34 at about 48 g/hr. It is continuously discharged to the storage tank 3〇5. From the bottom of the tower, it is discharged to the storage tank 3〇6 through the line 33 at a rate of about 222 g/hr. The carbonate is distilled off using the apparatus shown in Fig. 4. The middle section of the Dixon packing (6 ηιηιφ) having an inner diameter of 5 cm and a column length of 2 m is passed through a preheater 4 〇!, and a liquid of about 237 g/hr from the line 4 i ❿ The continuous feed is recovered to the mixture of storage tanks 3. The heat required for the distillation is supplied by circulating the liquid in the lower portion of the column via line 43 and reboiler 404. The bottom of the continuous multi-stage distillation column 4〇2 The liquid temperature is 160 C 'the top pressure is about 2.6 kPa. The gas distilled from the top of the continuous multi-stage distillation column 4〇2 is passed through the line 42 to the condenser 4 The condensation in 03 was continuously discharged from the line 44 to the storage tank 405 at about 102 g/hr. From the bottom of the column, it was continuously discharged to the storage tank 406 via the line 43 at about 120 g/hr. The liquid phase of the mixture discharged to the storage tank 406 was carried out. Analysis by analytical analysis revealed that the mixture contained about 98.5% by weight of 2Ν,Ν'-(4,4,-methylene-diphenyl)_double I3I506.doc 132- 200948759 bis(3-methylbutyl)carbamate )ester. Acid double l 骤 Ο 3 3). Use of thermal decomposition of Ν 'Ν, · (4'4, _ methylene _ diphenyl) bis bis bis carbamic acid ester to produce isocyanate The reaction was carried out using a device as shown in FIG.

將傳熱面積為(M W之薄臈蒸㈣置m加熱至27代, 使内部壓力約紅3心。將步驟㈣中回收至貯槽4〇6之 混合物加熱至mt’經由管路7〇,以約19〇咖供給至薄 膜蒸發器7〇1之上部。又,自管㈣以約i4 g/hr進料二月 桂酸二丁基錫。自薄臈蒸餾裝置7〇1之底部,將液相成分 自管路73排出,使之經由管路74循環至薄膜蒸餾裝請 之上部。將氣相成分自管路72排出。 向填充有狄克松填料(6 之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔702中段,連續進料自薄膜蒸餾裝置 701經由管路72排出之氣相成分,進行該氣相成分之蒸餾 分離。蒸餾分離所需之熱量係藉由使塔下部之液體經由管 路76及再沸器704循環而供給。連續多級蒸餾塔7〇2之塔底 部之液體溫度為200C,塔頂壓力為60 kPa。使自連續多 級蒸餾塔702之塔頂餾出之氣體經由管路75於冷凝器7〇3中 冷凝,自管路77連續排出》自管路78排出液相成分。 向填充有狄克松填料(6 ηιπιφ)之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔705的中段’連續進料自管路78排出之 液相成分,進行該液相成分之蒸餾分離。蒸餾分離所需之 熱量係藉由使塔下部之液體經由管路81及再沸器707循環 而供給。連續多級蒸餾塔705之塔底部之液體溫度為21〇 131506.doc •133· 200948759 C,塔頂壓力約為2·5 kPa。使自連續多級蒸餾塔7〇5之塔 頂餾出之氣體經由管路80於冷凝器706中冷凝,經由管路 82連續排出。自管路84排出液相成分。 向填充有狄克松填料(6 ππηφ)之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔708的中段,連續進料自管路84排出之 液相成分,進行該液相成分之蒸餾分離。蒸餾分離所需之 熱量係藉由使塔下部之液體經由管路86及再沸器71〇循環 而供給。連續多級蒸餾塔7〇8之塔底部之液體溫度為22〇 C,塔頂壓力約為〇.5 kPa。使自連續多級蒸餾塔7〇8之塔 頂餾出之氣體經由管路85於冷凝器709中冷凝,經由管路 87,以約1〇5 g/hr連續排出。自管路87排出之液體含有約 99.9重量%之4,4-二苯基甲烷二異氰酸酯。相對於44,亞甲 基一苯胺之產率為95.3%。進行10天連續運轉,未發現於 薄膜蒸餾裝置701之壁面上積蓄有附著物。 [實施例4] 〇 .步驟(4·1):雙(3_甲基丁基)-4,4,-亞曱基-二環己基胺基甲 酸酯之製造 除供給3〇64 g(l5·2 mol)參考例1之碳酸雙(3_甲基丁基) 酯、778 g(3_7 mol)代替己二胺之4,4,-亞曱基雙(環己基 胺)(美國,Aldrich公司製造)、7.1 g甲醇鈉(28。/〇甲醇溶液) 而進行反應之外’實施與實施例1之步驟(1_1}同樣的方 法。以液相層析法對反應後之溶液進行分析,結果以產率 99.0%生成雙(3-甲基丁基)·4,4'·亞甲基-二環己基胺基曱酸 西曰。將反應液供給至收容有去除水分而經調整之酸性離子 131506.doc -134- 200948759 交換樹脂(Amberlyst-15(球狀):R0HM &amp; HAAS公司製造) 且利用外部套管保溫為80〇c之管柱2〇5中,進行甲醇鈉之 中和。將該溶液經由管路25運送至貯槽2〇6。 •步驟(4-2):低沸成分之餾去 使用如圖3所示之裝置,進行醇之德去。 向填充有狄克松填料(6 ιηπιφ)之内徑為5 cm、塔長為2 m 之連續多級蒸餾塔302的中段,經由預熱器3(H,自管路3 i 以約270 g/hr以液狀連續進料回收至貯槽2〇6之混合物。蒸 ® 館所需之熱量係藉由使塔下部之液體經由管路33及再沸器 304循環而供給。連續多級蒸餾塔3〇2之塔底部之液體溫度 為160 C ’塔頂壓力約為70 kPa。使自連續多級蒸餾塔3〇2 之塔頂餾出之氣體經由管路32於冷凝器303中冷凝,自管 路34以約45 g/hr連續排出至貯槽3〇5。自塔底經由管路33 以約225 g/hr連續排出至貯槽3〇6。 使用如圖4所示之裝置,進行碳酸酯之餾去。 0 向填充有狄克松填料(6 ππηφ)之内徑為5 cm、塔長為2 m 之連續多級蒸餾塔402的中段,經由預熱器4〇 1,自管路4 1 以約225 g/hr以液狀連續進料回收至貯槽3〇6之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路43及再沸器 404循環而供給《連續多級蒸餾塔4〇2之塔底部之液體溫度 為160°C,塔頂壓力約為2.6 kPa。使自連續多級蒸餾塔402 之塔頂餾出之氣體經由管路42於冷凝器403中冷凝,自管 路44以約111 g/hr連續排出至貯槽405。自塔底經由管路 43,以約114 g/hr連續排出至貯槽406。 131506.doc -135- 200948759 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約99.!重量%之雙(3_甲基丁基M4,亞甲基_ 環己基胺基甲酸醋。 .步驟(4_3):利用Ν,Ν,·(4,4,_亞甲基_二苯基)_雙胺基甲酸雙 (3-甲基丁基)酯之熱分解來製造異氰酸酯 使用如圖6所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸餾裝置7〇1加熱至27〇它, 使内部壓力約為U心。將步驟(4·2)中回收至貯槽4〇6之 混合物加熱至’經由管路70,以約2〇〇 g/hr供給至薄 ㈣發器701之上部。又’自管路71以約l4 g/hr進料二月 桂酸二丁基錫。自薄膜蒸館裝置7〇1之底部將液相成分自 管路73排出’使之經由管路74循環至薄膜蒸傑裝置7〇1之 上部。將氣相成分自管路72排出。 向填充有狄克松填料(6 ηιιηφ)之内徑約為5 cm、塔長為2 m之連續多級蒸飽塔702中段,連續進料自薄膜蒸德裝置 ❹701經由管路72排出之氣相成分’進行該氣相成分之蒸餾 分離。蒸傑分離所需之熱量係藉由使塔下部之液體經由管 路76及再沸器704循環而供給。連續多級蒸餾塔7〇2之塔底 部之液體溫度為20(TC,塔頂壓力為6〇 kpa。使自連續多 級蒸餾塔702之塔頂餾出之氣體經由管路”於冷凝器7〇3中 冷凝,自管路77連續排出。自管路78排出液相成分。 向填充有狄克松填料(6 ηιηιφ)之内徑約為5 cm、塔長為2 m之連續多級蒸顧塔7〇5的中段’連續進料自管路冗所排出 之液相成分’進行該液相成分之蒸餾分離。蒸餾分離所需 131506.doc •136- 200948759 之熱量係藉由使塔下部之液體經由管路81及再沸器7〇7循 環而供給。連續多級蒸餾塔705之塔底部之液體溫度為21〇 C,塔頂壓力約為2.5 kPa。使自連續多級蒸餾塔7〇5之塔 頂餾出之氣體經由管路8〇於冷凝器7〇6中冷凝,經由管路 82連續排出。自管路84排出液相成分。The heat transfer area is (MW 臈 thin steaming (four) m is heated to 27 generations, the internal pressure is about red 3 hearts. The mixture recovered in step (4) to the storage tank 4〇6 is heated to mt' via the pipeline 7〇, About 19 coffee is supplied to the upper portion of the thin film evaporator 7〇1. Further, dibutyltin dilaurate is fed from the tube (4) at about i4 g/hr. From the bottom of the thin tantalum distillation unit 7〇1, the liquid phase is self-contained. The line 73 is discharged and circulated to the upper portion of the thin film distillation unit via the line 74. The gas phase component is discharged from the line 72. The inside is filled with a Dixon packing (the inner diameter of 6 is about 5 cm, and the length of the column is In the middle of the continuous multi-stage distillation column 702 of 2 m, the gas phase component discharged from the thin film distillation apparatus 701 via the line 72 is continuously fed, and the vapor phase component is subjected to distillation separation. The heat required for the distillation separation is made by lowering the lower portion of the column. The liquid is supplied by circulating through the line 76 and the reboiler 704. The temperature of the liquid at the bottom of the column of the continuous multi-stage distillation column 7〇2 is 200 C, and the pressure at the top of the column is 60 kPa. The top of the continuous multi-stage distillation column 702 is made. The distillate gas is condensed in the condenser 7〇3 via the line 75, and continuously discharged from the line 77. 78. The liquid phase component is discharged. The liquid is discharged continuously from the pipe 78 to the middle section of the continuous multi-stage distillation column 705 filled with Dickson packing (6 ηιπιφ) having an inner diameter of about 5 cm and a column length of 2 m. The phase component performs distillation separation of the liquid phase component. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line 81 and the reboiler 707. The liquid at the bottom of the column of the continuous multi-stage distillation column 705 The temperature is 21〇131506.doc •133· 200948759 C, the overhead pressure is about 2.5 kPa. The gas distilled from the top of the continuous multi-stage distillation column 7〇5 is condensed in the condenser 706 via line 80. The liquid phase component is continuously discharged through the line 82. The middle portion of the continuous multi-stage distillation column 708 having an inner diameter of about 5 cm and a column length of 2 m filled with a Dixon packing (6 ππηφ) The liquid phase component discharged from the line 84 is continuously fed to perform distillation separation of the liquid phase component. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column through the line 86 and the reboiler 71. The liquid temperature at the bottom of the continuous multi-stage distillation column 7〇8 is 22〇C, the top of the tower The force is about 55 kPa. The gas distilled from the top of the continuous multi-stage distillation column 7〇8 is condensed in the condenser 709 via line 85, and is continuously continuous at about 1〇5 g/hr via line 87. The liquid discharged from the line 87 contains about 99.9% by weight of 4,4-diphenylmethane diisocyanate. The yield of methylene monoaniline is 95.3% with respect to 44. The continuous operation for 10 days is not found. Attachment was accumulated on the wall surface of the thin film distillation apparatus 701. [Example 4] 步骤. Step (4·1): bis(3-methylbutyl)-4,4,-fluorenylene-dicyclohexylamine The manufacture of the urethane is carried out in addition to 3 〇 64 g (1·5 mol) of bis(3-methylbutyl) carbonate of Reference Example 1, 778 g (3-7 mol) instead of hexanediamine 4, 4,- Yttrium bis(cyclohexylamine) (manufactured by Aldrich, USA), 7.1 g of sodium methoxide (28. The reaction was carried out in the same manner as in the step (1_1) of Example 1. The solution after the reaction was analyzed by liquid chromatography, and a double (3-) was produced in a yield of 99.0%. Methyl butyl)·4,4′·methylene-dicyclohexylamine bismuth citrate. The reaction solution is supplied to an acid ion that is adjusted to contain moisture and is adjusted. 131506.doc -134- 200948759 exchange resin ( Amberlyst-15 (spherical): manufactured by R0HM &amp; HAAS) and neutralized with sodium methoxide using an external casing held at 80 ° C. The solution is transported via line 25 to a storage tank. 2〇6. • Step (4-2): Distillation of the low-boiling component is carried out using the apparatus shown in Figure 3 to remove the alcohol. The inner diameter of the filled Dixon filler (6 ιηπιφ) is 5 cm. The middle section of the continuous multi-stage distillation column 302 having a column length of 2 m was recovered into a mixture of the storage tanks 2 to 6 via a preheater 3 (H, continuously fed from the line 3 i in a liquid form at about 270 g/hr. The heat required for the steaming plant is supplied by circulating the liquid in the lower portion of the column through the line 33 and the reboiler 304. The continuous multi-stage distillation column 3〇2 The liquid temperature at the bottom is 160 C 'the top pressure is about 70 kPa. The gas distilled from the top of the continuous multi-stage distillation column 3〇2 is condensed in the condenser 303 via line 32, from the line 34 45 g/hr was continuously discharged to the storage tank 3〇5. From the bottom of the column, it was continuously discharged to the storage tank 3〇6 via the line 33 at about 225 g/hr. The carbonate was distilled off using the apparatus shown in Fig. 4. The middle section of the continuous multi-stage distillation column 402 filled with Dixon packing (6 ππηφ) having an inner diameter of 5 cm and a column length of 2 m, via the preheater 4〇1, from the line 4 1 to about 225 g /hr is recovered as a mixture of tanks 3〇6 in a continuous liquid feed. The heat required for distillation is supplied to the continuous multi-stage distillation column by circulating the liquid in the lower portion of the column via line 43 and reboiler 404. The liquid temperature at the bottom of the column 2 is 160 ° C and the overhead pressure is about 2.6 kPa. The gas distilled from the top of the continuous multi-stage distillation column 402 is condensed in the condenser 403 via line 42 from the line 44. It was continuously discharged to the storage tank 405 at about 111 g/hr. From the bottom of the column, it was continuously discharged to the storage tank 406 via the line 43 at about 114 g/hr. 131506.doc -135- 200948759 The mixture discharged to the storage tank 406 was subjected to liquid chromatography analysis, and as a result, the mixture contained about 99. wt% of bis (3-methylbutyl M4, methylene-cyclohexylamino formate vinegar. 4_3): The isocyanate is produced by thermal decomposition of ruthenium, osmium, (4,4,_methylene-diphenyl)-bis(3-methylbutyl) biscarbamate, as shown in FIG. The device is reacted. The thin film distillation apparatus 7〇1 having a heat transfer area of 0.1 m2 was heated to 27 Torr to make the internal pressure approximately U core. The mixture recovered in the step (4.2) to the storage tank 4〇6 is heated to &apos; via line 70 and supplied to the upper portion of the thin (four) generator 701 at about 2 〇〇 g/hr. Further, dibutyltin dilaurate was fed from line 71 at about 14 g/hr. From the bottom of the film evaporation chamber 7〇1, the liquid phase component is discharged from the line 73, and is circulated through the line 74 to the upper portion of the film evaporation device 7〇1. The gas phase components are discharged from line 72. The middle portion of the continuous multi-stage steaming tower 702 filled with the Dixon packing (6 ηιιηφ) having an inner diameter of about 5 cm and a tower length of 2 m is continuously fed from the membrane steaming unit 701 through the line 72. The phase component 'distills the vapor phase component. The heat required for the steam separation is supplied by circulating the liquid in the lower portion of the column through the line 76 and the reboiler 704. The liquid temperature at the bottom of the continuous multi-stage distillation column 7〇2 is 20 (TC, the column top pressure is 6 〇kpa. The gas distilled from the top of the continuous multi-stage distillation column 702 is passed through the line) to the condenser 7 Condensation in 〇3, continuous discharge from line 77. Liquid phase component is discharged from line 78. Continuous multi-stage steaming with an inner diameter of about 5 cm and a length of 2 m filled with a Dixon packing (6 ηιηιφ) The middle section of Guta 7〇5 'continuously feeding the liquid phase component discharged from the pipeline redundantly' performs the distillation separation of the liquid phase component. The heat required for the distillation separation is 131506.doc • 136- 200948759 by the lower part of the tower The liquid is supplied by circulating through the line 81 and the reboiler 7 〇 7. The liquid temperature at the bottom of the column of the continuous multi-stage distillation column 705 is 21 〇 C, and the pressure at the top of the column is about 2.5 kPa. The gas distilled from the top of the crucible 5 is condensed in the condenser 7〇6 via the line 8 and continuously discharged through the line 82. The liquid phase component is discharged from the line 84.

向填充有狄克松填料(6 ηπηφ)之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔708的中段,連續進料自管路84排出之 液相成分,進行該液相成分之蒸餾分離。蒸餾分離所需之 熱量係藉由使塔下部之液體經由管路86及再滞器71〇循環 而供給。連續多級蒸餾塔708之塔底部之液體溫度為22〇 °C,塔頂壓力約為0.5 kPa。使自連續多級蒸餾塔7〇8之塔 頂顧出之氣體經由管路85於冷凝器709中冷凝,經由管路 87以約1〇5 g/hr連續排出。自管路87排出之液體含有約 99.8重量%之4,4··亞甲基雙(環己基異氰酸酯)。相對於4,4,_ 亞甲基雙(環己基胺)之產率為93.2%。進行1〇天連續運 轉’結果未發現於薄膜蒸餾裝置701之壁面上積蓄有附著 物。進行30天連續運轉’結果未發現於薄膜蒸館裝置 之壁面上積蓄有附著物。 [實施例5] •步驟(5-1):甲苯-2,4-二胺基曱酸雙(2-乙基丁基)酯之製造 將參考例3之碳酸雙(2-乙基丁基)酷放入内容積為l之 搞型燒瓶中’於該茄型燒瓶上安裝三通旋塞、與填充有螺 旋填料Νο·3之蒸館柱及顧液接受器相連接之附有回流冷卻 器的分餾塔、及溫度計,將系統内進行真空_氮氣置換, 131506.doc -137· 200948759 蒸餾純化碳酸雙(2-乙基丁基)酯。對該蒸餾純化物進行lH_ NMR測定,結果含有約99.9重量%之碳酸雙(2-乙基丁基) 醋。又,含有0.003 ppm作為金屬原子之鐵。 除供給3589 g( 15_6 mol)代替碳酸雙(3-曱基丁基)g旨之上 述碳酸雙(2-乙基丁基)酯、464 g(3·8 mol)代替己二胺之 2,4-甲苯二胺(美國’ Aldrich公司製造)、7.3 g曱醇鈉(2 8% 曱醇溶液)而進行反應之外,實施與實施例1之步驟(^)同 樣的方法。以液相層析法對反應後之溶液進行分析,結果 ® 以產率98.5%生成曱苯-2,4-二胺基甲酸雙(2-乙基丁基)醋。 將反應液供給至收容有去除水分而經調整之酸性離子交換 樹脂(Amberlyst-15(球狀):ROHM &amp; HAAS公司製造)且利 用外部套管保溫為80 °C之管柱205中,進行甲醇鈉之中 和。將該溶液經由管路25運送至貯槽206中。 •步驟(5-2):低沸成分之餾去 使用如圖3所示之裝置,進行醇之餾去。 向填充有狄克松填料(6 ηιιηφ)之内徑為5 cm、塔長為2m 之連續多級蒸餾塔302的中段,經由預熱器301,自管路31 以約300 g/hr以液狀連續進料回收至貯槽206之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路33及再沸器 304循環而供給。連續多級蒸德塔3 02之塔底部之液體溫度 為160°C,塔頂壓力約為60 kPa。使自連續多級蒸德塔302 之塔頂餾出之氣體經由管路32於冷凝器303中冷凝,自管 路34以約56 g/hr連續排出至貯槽305。自塔底經由管路 33,以約244 g/hr連續排出至貯槽306。 131506.doc -138- 200948759 使用如圖4所示之裝置,進行碳酸酯之餾去。 向填充有狄克松填料(6 之内徑為5 cm、塔長為2⑺ 之連續多級蒸餾塔402的中段,經由預熱器4〇1,自管路“ 以約244 g/hr,以液狀連續進料回收至貯槽3〇6之混合物。 蒸顧所需之熱量係藉由使塔下部之液體經由管路43及再彿 器4〇4循環而供給。連續多級蒸顧塔402之塔底部之液體溫 度為1 60 C ’塔頂壓力約為〇 7 kpa。使自連續多級蒸條塔 402之塔頂餾出之氣體經由管路42於冷凝器403中冷凝,自 ❹管路44以約138 g/hr連續排出至貯槽彻。自塔底,經由管 路43,以約1〇6 g/hr連續排出至貯槽4〇6。 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約98.9重量%之甲笨·2,4_二胺基甲酸雙(2-乙 基丁基)酯。 •步驟(5·3):利用甲苯_2,4-二胺基甲酸雙(2乙基丁基)醋之 熱分解來製造異氰酸酯 @ 使用如圖5所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸餾裝置5〇1加熱至27〇χ:, 使内部壓力約為13 kPa。將步驟(5_2)中回收至貯槽4〇6之 混合物加熱至170。〇,經由管路5〇以約19〇 g/hr供給至薄膜 蒸發器501之上部。又,自管路51以約15 7岁以進料二月 桂酸二丁基錫。自薄膜蒸餾裝置5〇1之底部,將液相成分 自官路53排出,使之經由管路54循環至薄臈蒸餾裝置5〇1 之上部。將氣相成分自管路52排出。 向填充有狄克松填料(6 ππηφ)之内徑約為5 em、塔長為2 131506.doc _ 139· 200948759 m之連續多級蒸餾塔5〇中 501姆以攸w 甲又4續進料自薄膜蒸館裝置 5〇1經由官路52排出之氣相成分, 八雜^ ^ 退仃该軋相成分之蒸餾 蒸館刀離所需之熱量係藉由使塔下部之液體經由使 管^及再彿器5〇4循環而供給。連續多級蒸館塔⑽之塔 底部之液體溫度為160。。’塔頂壓力約為5〇 I使自連 續多級蒸餾塔502之塔頂餾出之氣體經由管路”於冷凝器 ❹The liquid phase component discharged from the line 84 is continuously fed to a middle portion of a continuous multi-stage distillation column 708 filled with a Dixon packing (6 ηπηφ) having an inner diameter of about 5 cm and a column length of 2 m, and the liquid is discharged. Distillation separation of phase components. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line 86 and the re-reservator 71. The liquid temperature at the bottom of the continuous multi-stage distillation column 708 is 22 Torr and the top pressure is about 0.5 kPa. The gas taken from the tower of the continuous multi-stage distillation column 7〇8 was condensed in the condenser 709 via the line 85, and continuously discharged via the line 87 at about 1 〇 5 g/hr. The liquid discharged from the line 87 contains about 99.8% by weight of 4,4··methylene bis(cyclohexyl isocyanate). The yield relative to 4,4,_methylene bis(cyclohexylamine) was 93.2%. The continuous operation was carried out for 1 day. As a result, no deposit was accumulated on the wall surface of the thin film distillation apparatus 701. The continuous operation was carried out for 30 days. As a result, no deposit was accumulated on the wall surface of the film vaporizing apparatus. [Example 5] • Step (5-1): Production of toluene-2,4-diaminodecanoic acid bis(2-ethylbutyl) ester The bis(2-ethylbutyl carbonate) of Reference Example 3 was used. Cool into the flask with the inner volume of l. Install a three-way cock on the eggplant flask, and connect the reflow cooler to the steam column and the liquid receiver filled with the spiral packing Νο·3. The fractionation column and the thermometer were subjected to vacuum-nitrogen replacement in the system, and the purified bis(2-ethylbutyl) carbonate was distilled by 131506.doc -137· 200948759. The distilled purified product was subjected to 1H_NMR measurement, and as a result, it contained about 99.9% by weight of bis(2-ethylbutyl) carbonate. Further, it contains 0.003 ppm of iron as a metal atom. In addition to supplying 3589 g (15_6 mol) instead of the above bis(2-ethylbutyl) carbonate, 464 g (3·8 mol) instead of hexanediamine 2, The same procedure as in the step (1) of Example 1 was carried out, except that 4-toluenediamine (manufactured by Aldrich Co., Ltd.) and 7.3 g of sodium decoxide (28% decyl alcohol solution) were reacted. The solution after the reaction was analyzed by liquid chromatography, and the result was a yield of 98.5% of acetonyl-2,4-dicarbamic acid bis(2-ethylbutyl) vinegar. The reaction liquid was supplied to a column 205 in which an acid ion exchange resin (Amberlyst-15 (spherical): ROHM &amp; HAAS), which was adjusted to remove moisture, and which was kept at 80 ° C by an external sleeve, was used. Neutralization with sodium methoxide. This solution is transported via line 25 to storage tank 206. • Step (5-2): Distillation of low-boiling components The distillation of the alcohol was carried out using the apparatus shown in Fig. 3. The middle portion of the continuous multi-stage distillation column 302 filled with Dixon packing (6 ηιηηφ) having an inner diameter of 5 cm and a column length of 2 m was passed through the preheater 301 from the line 31 at about 300 g/hr. The continuous feed is recovered to the mixture of storage tanks 206. The heat required for the distillation is supplied by circulating the liquid in the lower portion of the column through the line 33 and the reboiler 304. The liquid temperature at the bottom of the continuous multi-stage steaming tower 3 02 is 160 ° C and the top pressure is about 60 kPa. The gas distilled from the top of the continuous multi-stage steaming tower 302 was condensed in the condenser 303 via line 32, and continuously discharged from the line 34 to the storage tank 305 at about 56 g/hr. From the bottom of the column, through line 33, it was continuously discharged to the storage tank 306 at about 244 g/hr. 131506.doc -138- 200948759 The carbonate is distilled off using the apparatus shown in FIG. To the middle section of a continuous multi-stage distillation column 402 filled with a Dixon packing (6 having an inner diameter of 5 cm and a column length of 2 (7), via a preheater 4〇1, from the line "at about 244 g/hr, The liquid continuous feed is recovered to the mixture of the storage tanks 3 to 6. The heat required for steaming is supplied by circulating the liquid in the lower portion of the tower via the line 43 and the refilling unit 4〇4. The continuous multi-stage steaming tower 402 The liquid temperature at the bottom of the column is 1 60 C 'the top pressure is about k7 kpa. The gas distilled from the top of the continuous multi-stage steam column 402 is condensed in the condenser 403 via line 42 from the manifold. The passage 44 is continuously discharged to the storage tank at about 138 g/hr. From the bottom of the column, it is continuously discharged to the storage tank 4〇6 via the line 43 at about 1〇6 g/hr. The liquid phase of the mixture discharged to the storage tank 406 is carried out. Analysis by analytical analysis revealed that the mixture contained about 98.9 wt% of bis(2-ethylbutyl) 2,4-diaminocarbamate. Step (5·3): using toluene-2,4- Thermal decomposition of bis(2-ethylbutyl) acetate to produce isocyanate @ The reaction was carried out using the apparatus shown in Figure 5. Thin film distillation with a heat transfer area of 0.1 m2 5 〇 1 was heated to 27 〇χ:, the internal pressure was about 13 kPa. The mixture recovered in step (5-2) to the storage tank 4〇6 was heated to 170. 〇, via line 5 〇 about 19 〇 g / The hr is supplied to the upper portion of the thin film evaporator 501. Further, dibutyltin dilaurate is fed from the line 51 at about 15 years old. From the bottom of the thin film distillation apparatus 5〇1, the liquid phase component is discharged from the official line 53. This is circulated to the upper portion of the thin distillation apparatus 5〇1 via the line 54. The gas phase component is discharged from the line 52. The inner diameter filled with the Dixon packing (6 ππηφ) is about 5 em, and the length of the column is 2 131506.doc _ 139· 200948759 m continuous multi-stage distillation tower 5 〇 501 501 又 又 4 续 续 续 续 续 续 续 续 续 续 续 续 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 薄膜 气相 气相^ The heat required to remove the distillation component from the distillation phase is supplied by circulating the liquid in the lower part of the column through the tube and the re-circulating device 5. The bottom of the continuous multi-stage steaming tower (10) The liquid temperature is 160. The overhead pressure is about 5 〇 I to allow the gas distilled from the top of the continuous multi-stage distillation column 502 to pass through the line. ❹

5〇3中冷凝,自管路57連續排出。自連續多級蒸餘塔如之 低於管路52之位置的管路59排出液相成分。 向填充有狄克松填料(6 之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔5〇5的中段,連續進料自管路5^排出'’之 液相成分,進行該氣相成分之蒸餾分離。蒸餾分離所需之 熱量係藉由使塔下部之液體經由管路61及再沸器5〇7循環 而供給。連續多級蒸餾塔505之塔底部之液體溫度為16〇 °C,塔頂壓力約為1,5 kPa。使自連續多級蒸餾塔5〇5之塔 頂顧出之氣體經由管路60於冷凝器506中冷凝,經由管路 62連續排出至貯槽509。定常狀態之排出量約為83 g/hr。 運轉40小時後,自管路64以約16 g/hr將液相成分排出至 貯槽510。 自管路62排出之液體係含有約99.8重量%之2,4-曱笨二 異氰酸酯之溶液。相對於2,4-曱苯二胺之產率為94.7%。 進行10天連續運轉,未發現於薄膜蒸餾裝置501之壁面 上積蓄有附著物。 [實施例6] .步驟(6-1) : N,N’-己二基·雙-胺基甲酸雙(2-乙基丁基)酯之 131506.doc -140- 200948759 製造 除供給3483 g(15.1 mol)代替碳酸雙(2-甲基丁基)酯之參 考例3之碳酸雙(2_乙基丁基)g旨、418 g(3.6 mol)代替已二 胺之己二胺與368 g(3.8 mol)2-乙基-1-丁醇之混合液、69 g甲醇鈉(28%曱醇溶液)而進行反應之外,實施與實施例i 之步驟(1-1)同樣之方法。以液相層析法對反應後之溶液進 行分析’結果以產率99.5%生成N,N,-己二基_雙-胺基甲酸 雙(2-乙基丁基)酯。將反應液供給至收容有去除水分而經 ® 調整之酸性離子交換樹脂(Amberlyst-1 5(球狀):ROHM &amp; HAAS公司製造)且利用外部套管保溫為8〇〇c之管柱2〇5 中,進行曱醇鈉之中和。將該溶液經由管路25運送至貯槽 206 ° •步驟(6-2):低沸成分之餾去 使用如圖3所示之裝置,進行醇之餾去。 向填充有狄克松填料(6 ππηφ)之内徑為5 cm、塔長為2m 之連續多級蒸餾塔302的中段,經由預熱器301,自管路31 以約270 g/hr以液狀連續進料回收至貯槽2〇6之混合物。蒸 德所需之熱量係藉由使塔下部之液體經由管路33及再沸器 304循環而供給。連續多級蒸餾塔3〇2之塔底部之液體溫度 為160 C ’塔頂壓力約為60 kPa。使自連續多級蒸顧塔302 之塔頂餾出之氣體經由管路32於冷凝器303中冷凝,自管 路34以約69 g/hr連續排出至貯槽305。自塔底經由管路 33 ’以約201 g/hr連續排出至貯槽306。 使用如圖4所示之裝置,進行碳酸酯之餾去。 131506.doc -141 - 200948759 向填充有狄克松填料(6 ιηηιφ)之内徑為5 cm、塔長為2 m 之連續多級蒸餾塔402的中段,經由預熱器401,自管路41 以約201 g/hr以液狀連續進料回收至貯槽3〇6之混合物。蒸 館所需之熱量係藉由使塔下部之液體經由管路43及再沸器 404循環而供給。連續多級蒸餾塔4〇2之塔底部之液體溫度 為160°C,塔頂壓力約為〇.7 kPa。使自連續多級蒸餾塔4〇2 之塔頂德出之氣體經由管路42於冷凝器403中冷凝,自管 路44以約115 g/hr連續排出至貯槽405。自塔底經由管路 43,以約86 g/hr連續排出至貯槽4〇6。 對排出至貯槽406之混合物進行液相層析法分析結果 該混合物含有約98·3重量❶/。之N,N,_己二基_雙_胺基曱酸雙 (2-乙基丁基)g旨。 .步驟(6-3广利用N,N'-己二基-雙-胺基曱酸雙(2_乙基丁基) 酯之熱分解來製造異氰酸酯 使用如圖5所示之裝置進行反應。 ❹ 將傳熱面積為m2之薄臈蒸餾裝置5〇1加熱至27〇(&gt;c, 使内部壓力約為13 kPa。將步驟(6_2)中回收至貯槽楊之 混合物加熱至赋’經由管路5〇以約27〇 *供給至薄膜 蒸發器5〇1之上部。又,自管路51以約22 7 g/hr進料二月 桂酸二丁基錫。自薄膜蒸館裝置5〇1之底部,將液相成分 自管路53排出,使之經由管賴循環至薄臈蒸館裝置5〇1 之上部。將氣相成分自管路52排出。 向填充有狄克松填料(6職Φ)之内徑約為5 cm、塔長為2 m之連續多級蒸潑塔5〇2的中段,連續進料自薄媒蒸顧裝置 131506.doc •142· 200948759 501紅由管路52排出之氣相成分,進行該氣相成分之蒸備 分離。蒸餘分離所需之熱量係藉由使塔下部之液體經由管 路56及再沸器504循環而供給。連續多級蒸餾塔5〇2之塔底 部之液體溫度為16(TC,塔頂壓力約為5〇 kpa。使自連續 多級蒸傲塔502之塔頂館出之氣體經由管路55於冷凝器5〇3 中冷凝,自管路57連續排出。自連續多級蒸傲塔5〇2之低 於管路52之位置的管路59排出液相成分。 向填充有狄克松填料(6 ηπηφ)之内徑約為5 em、塔長為2 m之連續多級蒸餾塔5〇5的中段,連續進料自管路59排出之 液相成分,進行該氣相成分之蒸餾分離。蒸餾分離所需之 熱量係藉由使塔下部之液體經由管路61及再沸器5〇7循環 而供給。連續多級蒸餾塔505之塔底部之液體溫度為16〇 °c,塔頂壓力約為丨.5 kPae使自連續多級蒸餾塔5〇5之塔 頂餾出之氣體經由管路60於冷凝器506中冷凝,經由管路 62連續排出至貯槽509。定常狀態之排出量約為ii6g/hr。 〇 運轉40小時後,自管路64以約U g/hr將液相成分排出至 貯槽510。 自管路62排出之液體係含有約99.8重量%二異氰酸己二 酯之溶液。相對於己二胺之產率為95 5%。 進行ίο天連續運轉,未發現於薄膜蒸餾裝置5〇1之壁面 上積蓄有附著物。 [實施例7] .步驟(7-1) : 3-(苯氧基羰基胺基-甲基)_3,5,5-三甲基環己 基胺基甲酸笨酯之製造 131506.doc •143- 200948759 使用如圖7所示之裝置進行反應。 於關閉管路A4之狀態下,自貯槽721經由管路A1,將 ^92 g(9.3 mol)參考例6之碳酸二苯酯供給至内容積為5 L 之附有擋板之SUS製反應容器724,自貯槽722經由管路 A2 ’將1311 g( 14.0 mol)苯酚供給至該SUS製反應器中。將 該反應器724内之液體溫度調整成約50t,自貯槽723經由 管路 A3,以約 250 g/hr 將 528 g(3.1 mol) 3_胺基甲基-3,5,5- 三甲基環己基胺供給至該反應器724中。 以液相層析法對反應後之溶液進行分析,結果以產率 99_3°/〇生成3-(苯氧基羰基胺基-甲基)_3,5,5_三甲基環己基 胺基甲酸苯醋。 打開管路Α4,將該反應液經由管路Α4運送至貯槽725 中0 •步驟(7-2):低沸成分之餾去 使用如圖3所示之裝置,進行笨酚之餾去。 向填充有狄克松填料(6 mm多)之内徑為5 cm、塔長為2m 之連續多級蒸餾塔302的中段,經由預熱器301,自管路31 以約300 g/hr以液狀連續進料回收至貯槽2〇6之混合物。蒸 德所需之熱量係藉由使塔下部之液體經由管路33及再彿器 3 04循環而供給。連續多級蒸餾塔3〇2之塔底部之液體溫度 為160°C,塔頂壓力約為60 kPa。使自連續多級蒸餾塔3〇2 之塔頂餾出之氣體經由管路32於冷凝器303中冷凝,自管 路34以約155 g/hr連續排出至貯槽305。自塔底經由管路 33,以約145 g/hr連續排出至貯槽306。 131506.doc 200948759 使用如圖4所示之裝置,進行碳酸酯之餾去。 向填充有狄克松填料(6 mm幻之内徑為5 cm、塔長為2 m 之連續多級蒸餾塔402的中段,經由預熱器401,自管路41 以約145 g/hr以液狀連續進料回收至貯槽306之混合物。蒸 館所需之熱量係藉由使塔下部之液體經由管路43及再沸器 4〇4循環而供給。連續多級蒸餾塔4〇2之塔底部之液體溫度 為160°C,塔頂壓力約為〇,4 kPa。使自連續多級蒸餾塔4〇2 之塔項餾出之氣體經由管路42於冷凝器403中冷凝,自管 〇 路44以約55 g/hr連續排出至貯槽405。自塔底經由管路 43 ’以約90 g/hr連續排出至貯槽406 〇 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約99.1重量%之3-(苯氧基羰基胺基-甲基)_ 3,5,5-三曱基環己基胺基曱酸苯酯。 .步驟(7-3):利用3·(苯氧基羰基胺基-甲基)·3,5,5_三曱基 環己基胺基甲酸苯酯之熱分解來製造異氰酸醋 使用如圖5所示之裝置進行反應。 〇 將傳熱面積為0.1 m2之薄膜蒸餾裝置5〇1加熱至22〇t&gt;c, 使内σ卩壓力約為13 kPa。將步驟(5-2)中回收至貯槽406之 混合物加熱至170°C ’經由管路50,以約3〇〇 g/hr供給至薄 膜蒸發器501之上部。自薄膜蒸餾裝置5〇1之底部,自管路 53排出液相成分,使之經由管路54循環至薄膜蒸餾裝置 5〇1之上部。將氣相成分自管路52排出。 向填充有狄克松填料(6 πιιηφ)之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔5〇2的中段,連續進料自薄膜蒸餾裝置 131506.doc -145· 200948759 ΜΗ經由管路52排出之氣相成分,進行該氣相成分之蒸顧 刀離。蒸傲分離$需之熱量係藉由使塔下部之液體經由管 路56及再,弗器504循ί裒而供、給。連續多級蒸儲塔5〇2之塔底 部之液體溫度為15〇。(:,塔頂壓力約為15 kpa。使自連續 多級蒸餾塔502之塔頂餾出之氣體經由管路乃於冷凝器5〇3 中冷凝,自管路57連續排出。自連續多級蒸館塔5〇2之低 於管路52之位置的管路59排出液相成分。 向填充有狄克松填料(6 之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔505的中段,連續進料自管路59排出之 液相成分,進行該氣相成分之蒸餾分離。蒸餾分離所需之 熱量係藉由使塔下部之液體經由管路61及再沸器5〇7循環 而供給。連續多級蒸餾塔5〇5之塔底部之液體溫度為15〇 °C,塔頂壓力約為丨.3 kPa。使自連續多級蒸餾塔5〇5之塔 頂德出之氣體經由管路60於冷凝器506中冷凝,經由管路 62以約135 g/hr連續排出至貯槽509。 自管路92排出之液體係含有約99.8重量%異佛爾_二異 氰酸酯之溶液。相對於3_胺基甲基_3,5,5_三甲基環己基胺 之產率為95.3%。進行100天連續運轉,未發現於薄臈蒸餾 裝置501之壁面上積蓄有附著物。 [實施例8] •步驟(8-1) : N,N’-己二基-雙-胺基甲酸二(正庚基)酯之製造 除供給3445 g(13.3 mol)代替碳酸雙(2-曱基丁基)醋之參 考例4之碳酸二庚酯、36〇 g(3Λ mol)己二胺、6 〇 g甲醇鋼 (28°/。曱醇溶液)而進行反應之外,實施與實施例1之步驟〇 131506.doc •146- 200948759 i)同樣的方法。以液相層析法對反應後之溶液進行分析, 結果以產率98.9%生成N,N,_己二基_雙-胺基甲酸二(正庚 基)酯。將反應液供給至收容有去除水分而經調整之酸性 離子交換樹脂(AmberlySt_15(球狀):R〇HM &amp; Haas&amp;司 製造)且利用外部套管保溫為8〇&lt;t之管柱2〇5中進行甲醇 鈉之中和。將該溶液經由管路25運送至貯槽2〇6。 •步驟(8-2):低沸成分之餾去 使用如圖3所不之裝置,進行醇之館去。 向填充有狄克松填料(6 πιιηφ)之内徑為5 cm、塔長為2m 之連續多級蒸餾塔302的中段,經由預熱器3〇1,自管路31 以約280 g/hr以液狀連續進料回收至貯槽2〇6之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路33及再沸器 3 04循環而供給。連續多級蒸餾塔3〇2之塔底部之液體溫度 為160°C,塔頂壓力約為13 kPa。使自連續多級蒸餾塔3〇2 之塔頂餾出之氣體經由管路32於冷凝器303中冷凝,自管 路34以約52 g/hr連續排出至貯槽305。自塔底經由管路 33,以約228 g/hr連續排出至貯槽3〇6。 使用如圖4所示之裝置,進行碳酸酯之館去。 向填充有狄克松填料(6 ιηιηφ)之内徑為5 cm、塔長為2m 之連續多級蒸餾塔402的中段,經由預熱器4〇 1,自管路41 以約228 g/hr以液狀連續進料回收至貯槽3〇6之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路43及再沸器 404循環而供給。連續多級蒸餾塔4〇2之塔底部之液體溫度 為170 C ’塔頂壓力約為〇· 13 kPa。使自連續多級蒸館塔 131506.doc •147- 200948759 利2之塔頂餾出之氣體經由管路芯於冷凝器4〇3中冷凝,自 管路44以約136 g/hr連續排出至貯槽4〇5。自塔底,經由管 路43 ’以約92 g/hr連續排出至貯槽4〇6。 對排出至貯槽之混合物進行液相層析法分析,結果 該混合物含有約98_6重量算己二基冬胺基甲酸二 (正庚基)酯。 .步驟⑹利用N,N,-己二基·雙·胺基甲酸二(正庚基)酿 之熱分解來製造異氰酸酯 使用如圖5所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸餾襞置5〇1加埶至27〇(&gt;c, 使内部之磨力約為13 kPa。將步驟㈣中回收至貯槽4〇6 之混合物加熱至17〇。(: ’經由管路5〇1約27〇 g/hr供給至 薄膜蒸發器5(H之上部自管路51以約19 6咖進料 二月桂酸二丁基錫。自薄膜蒸餾裝置5〇1之底部,將液相 成分自管路53排出,使之經由管路“循環至薄膜蒸顧裝置 501之上部。將氣相成分自管路52排出。 向填充有狄克松填料(6 之内徑約為5⑽、塔長為2 m之連續多級蒸餾塔502的中段’連續進料自薄膜蒸餾裝置 5〇1經由管路52排出之氣相成分,進行該氣相成分之蒸德 分離。蒸顧分離所需之熱量係藉由使塔下部之液體經由管 路56及再沸器504循環而供給。連續多級蒸餾塔5〇2之塔底 部之液體溫度為160。(:,塔頂壓力約為5〇 kpa。使自連續 多級蒸館塔502之塔㈣^氣體經由管路辦冷凝器5〇3 中冷凝,自管路57連續排出。自連續多級蒸顧塔5〇2之低 131506.doc 200948759 於管路52之位置的管路59排出液相成分。 向填充有狄克松填料(6 之内徑約為5 cm、塔長為2 :之連續多級蒸館塔5G5的中段,連續進料自管路%排出之 氣相成分,進行該氣相成分之蒸館分離。蒸館分離所需之 熱量係藉由使塔下部之液體經由管路61及再沸器斯循環 。而供給。連續多級蒸餾塔505之塔底部之液體溫度為⑽ C,塔頂壓力約為1.5 kPa。使自連續多級蒸館塔5〇5之塔 頂館出之氣體經由管路60於冷凝器5〇6中冷凝,經由管路 62連續排出至貯槽5〇9。定常狀態之排出量約為ι〇7岁心。 運轉40小時後,自管路64以約21咖將液相成分排出至 貯槽510。 自管路62排出之液體係含有約99.8重量%之二異氰酸己 二酯之溶液。相對於己二胺之產率為94 9%。 進仃10天連續運轉,未發現於薄膜蒸餾裝置5〇1之壁面 上積蓄有附著物。 [實施例9] 步驟(9-1) . N,N’-己二基-雙-胺基甲酸雙(3_甲基丁基)酯之 製造 除供給2ό87 g(l3·3 mol)參考例1之碳酸雙(3_甲基丁基) S曰、407 g(3.5 mol)己二胺、6.8 g甲醇鈉(28%甲醇溶液)而 進行反應之外,實施與實施例丨之步驟G — 丨)同樣的方法。 以液相層析法對反應後之溶液進行分析,結果以產率 99.5 %生成Ν,Ν·-己二基-雙·胺基甲酸雙(3甲基丁基)酯。 打開管路24,將該反應液供給至收容有去除水分而經調 131506.doc -149- 200948759 整之酸性離子交換樹腊(Amberlyst-15(球狀):R〇hm &amp; HAAS公司製造)且利用外部套管保溫為8〇 〇c之管柱2〇5 中’進行甲醇鈉之中和。將該溶液經由管路25運送至貯槽 206 ° .步驟(9-2):低沸成分之餾去 向連續多級蒸餾塔302之中段,經由預熱器301,自管路 31以約300 g/hr以液狀連續進料回收至貯槽2〇6之混合物, 自塔底將液相成分經由管路33以約241 g/hr連續排出至貯 © 槽3〇6 ’向連續多級蒸餾塔4〇2之中段,經由預熱器4〇1, 自管路41以約241 g/hr以液狀連續進料回收至貯槽3〇6之混 合物,除此之外,實施與實施例丨之步驟(1_2)同樣之方 法。使自連續多級蒸餾塔402之塔頂餾出之氣體經由管路 42於冷凝器403中冷凝,自管路44以約123 g/hr連續排出至 貯槽405。自塔底經由管路43,以約118 g/hr連續排出至貯 槽 406。 ❹ 對排出至貯槽4〇6之混合物進行液相層析法分析,結果 該混合物含有約98.5重量己二基-雙-胺基曱酸雙 (3-曱基丁基)s旨。 .步驟(9-3):利用N,N’-己二基-雙-胺基曱酸雙(3·甲基丁基) 酯之熱分解來製造異氰酸酯 使用如圖5所示之裝置進行反應。 將傳熱面積為〇,1 m2之薄臈蒸餾裝置5〇1(日本,K〇bel⑶ eco-solutions公司製造)加熱至27CTC,使内部壓力約為13 kPa。將步驟(9-2)中回收至貯槽406之混合物加熱至2〇〇 131506.doc -150- 200948759 °C,經由管路50,以約280 g/hr供給至薄膜蒸發器501之上 部,自管路51以約25.3 g/hr進料二月桂酸二丁基錫,除此 之外,實施與實施例1之步驟(1-3)同樣之方法。經由管路 62,以約107 g/hr連續將液體排出至貯槽5〇9。 運轉40小時後,自管路64以約82 g/hr將液相成分排出至 貯槽510。 自管路62排出之液體係含有約99.8重量%之六亞曱基二 異氰酸酯之溶液》相對於己二胺之產率為79 6〇/〇。 進行10天連續運轉’未發現於薄膜蒸餾裝置501之壁面 上積蓄有附著物。 [實施例10] .步驟(10-1):雙(3-曱基丁基)_4,4,-亞甲基_二環己基胺基 曱酸酯之製造 除供給3272 g(16.2 mol)參考例1之碳酸雙(3_曱基丁基) 酯、757 g(3.6 mol) 4,4,-亞曱基雙(環己基胺)代替己二胺、 6.9 g甲醇鈉(28%曱醇溶液)而進行反應之外,實施與實施 例1之步驟(1-1)同樣之方法。以液相層析法對反應後之溶 液進行分析,結果以產率98,9%生成雙(3_甲基丁基)44,_ 亞甲基-二環己基胺基曱酸酯。將反應液供給至收容有去 除水分而經調整之酸性離子交換樹脂(Amberlyst_15(球 狀ROHM &amp; HAAS公司製造)且利用外部套管保溫為⑼ C之管柱205中,進行甲醇鈉之中和。將該溶液經由管路 25運送至貯槽206。 .步驟(10-2):低沸成分之餾去 131506.doc -151- 200948759 使用如圖3所示之裝置,進行醇之銷去。 向填充有狄克松填料(6 πΐΓπφ)之内徑為5 Cm、塔長為2 m 之連續多級蒸餾塔3 02的中段,經由預熱器3〇1,自管路31 以約280 g/hr以液狀連續進料回收至貯槽2〇6之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路33及再沸器 304循環而供給。連續多級蒸餾塔3〇2之塔底部之液體溫度 為160 C,塔頂壓力約為70 kPa。使自連續多級蒸餾塔3〇2 之塔頂餾出之氣體經由管路32於冷凝器3〇3中冷凝,自管 ❹路34,約44 g/hr連續排出至貯槽305。自塔底經由管路 33 ’以約236 g/hr連續排出至貯槽3〇6。 使用如圖4所示之裝置,進行碳酸酯之餾去。 向填充有狄克松填料(6 之内徑為5 em、塔長為2111 之連續多級蒸餾塔402的中段,經由預熱器4〇1,自管路41 以約236 g/hr以液狀連續進料回收至貯槽3〇6之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路43及再沸器 〇 404循環而供給。連續多級蒸餾塔4〇2之塔底部之液體溫度 為160 C ’塔頂壓力約為2.6 kPa。使自連續多級蒸條塔4〇2 之塔頂餾出之氣體經由管路42於冷凝器4〇3中冷凝,自管 路44以約127 g/hr連續排出至貯槽4〇5。自塔底經由管路 43 ’以約1 〇9 g/hr連續排出至貯槽4〇6。 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約99.0重量%之雙(3_甲基丁基)4 4,亞甲基_ 一環己基胺基甲酸醋。 .步驟(10-3):制雙(3_甲基丁基)_4,4|_亞甲基_二環己 131506.doc 152· 200948759 基胺基甲酸酯之熱分解來製造異氰酸酯 使用如圖8所示之裝置進行反應。 向填充有狄克松填料(6 ππηφ)之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔801的中段’將步驟(1〇-2)中回收至貯 槽406之混合物加熱至170°C ’經由管路B0,以約220 g/hr 進料,同時自管路B1以15.7 g/hr進料二月桂酸二丁基錫, 進行熱分解反應。熱分解反應所需之熱量係藉由使塔下部 之液體經由管路B3及再沸器803循環而供給。連續多級蒸 餾塔801之塔底部之液體溫度為280°C,塔頂壓力約為15 kPa。使自連續多級蒸餾塔801之塔頂餾出之氣體經由管路 B2於冷凝器802中冷凝,自管路B4連續排出。自連續多級 蒸餾塔801之底部,將液相成分經由管路B3加以回收。 向填充有狄克松填料(6 ππηφ)之内徑約為5 cm、塔長為2 m之連續多級蒸顧塔8〇4的中段,連續進料經自管路B6排 出之液相成分’進行該液相成分之蒸餾分離。蒸餾分離所 需之熱量係藉由使塔下部之液體經由管路則及再沸器8〇6 循環而供給。連續多級蒸顧塔804之塔底部之液體溫度為 220 C,塔頂壓力約為5.2 kPa。使自連續多級蒸德塔8〇4之 塔頂餾出之氣體經由管路B7於冷凝器805中冷凝,自管路 B9連續排出。自連續多級蒸餾塔804之底部,經由管路B8 及管路B 11將液相成分加以回收。 向填充有狄克松填料(6 ηιιηφ)之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔807的中段,連續進料自管路B8排出 之液相成分,進行該液相成分之蒸餾分離。蒸餾分離所需 131506.doc • 153· 200948759 …係藉由使塔下部之液體經由管路及再沸器辦循 環而,給。連續多級蒸館塔807之嫁底部之液體溫度為220 C ’ ^頂廢力約為〇.4〇 kPa。使自連續多級蒸顧塔謝之塔 頂餾出之氣體經由管路B12於冷凝器8〇8中冷凝,經由管路 B13連續排出。^常狀態之排出量約為⑽咖。 自管路B13排出之液艎係含有約99 8重量%之4,4,亞甲 基雙(環己基異氰酸酯)之溶液。相對於4,4,亞甲基雙(環 己基胺)之產率為82.2%。進行10天連續運轉,結果發現於 ® 連續多級蒸餾塔801之内部積蓄有附著物。 [實施例11] .步驟(11-1) : N,N'-己二基-雙-胺基曱酸雙(2_乙基丁基)酯 之製造 除供給3547 g(15.4 mol)代替碳酸雙(2-甲基丁基)酯之參 考例3之碳酸雙(2-乙基丁基)酯、407 g(3.5 mol)己二胺、 6.8 g曱醇鈉(28%曱醇溶液)而進行反應之外,實施與實施 例1之步驟(1-1)同樣之方法。以液相層析法對反應後之溶 ❹ 液進行分析,結果以產率99.1°/◦生成Ν,Ν'-己二基-雙-胺基 曱酸雙(2-乙基丁基)酯。將反應液供給至收容有去除水分 而經調整之酸性離子交換樹脂(Amberlyst-15(球狀): ROHM &amp; HAAS公司製造)且利用外部套管保溫為80t之管 柱205中,進行甲醇鈉之中和。將該溶液經由管路25運送 至貯槽206。 .步驟(11-2):利用N,N'-己二基-雙-胺基甲酸雙(2-乙基丁 基)酯之熱分解來製造異氰酸酯 131506.doc -154- 200948759 使用如圖5所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸餾裝置5〇1加熱至27(rc, 使内部壓力約為13 kPa。將步驟中回收至貯槽2〇6之 混合物加熱至1 70。(:,經由管路50以約790 g/hr供給至薄膜 蒸發器501之上部。又,自管路51以約21 9 §/1^進料二月 桂酸二丁基錫。自薄膜蒸餾裝置5〇1之底部,將液相成分 自管路53排出,使之經由管路54循環至薄膜蒸餾裝置5〇ι 之上部。將氣相成分自管路52排出。Condensation in 5〇3, continuous discharge from line 57. The liquid phase component is withdrawn from the continuous stage multi-stage steaming column such as line 59 below the line 52. The middle portion of the continuous multi-stage distillation column 5〇5 filled with a Dixon packing (6 having an inner diameter of about 5 cm and a column length of 2 m) is continuously fed from the line 5 to discharge the liquid component of the liquid phase. Distillation separation of the gas phase component is carried out. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line 61 and the reboiler 5 〇 7. The liquid temperature at the bottom of the column of the continuous multi-stage distillation column 505 At 16 ° C, the overhead pressure is about 1,5 kPa. The gas taken from the top of the continuous multi-stage distillation column 5〇5 is condensed in the condenser 506 via line 60, and continuously discharged through line 62. The discharge amount to the storage tank 509 is about 83 g/hr. After 40 hours of operation, the liquid phase component is discharged from the line 64 at about 16 g/hr to the storage tank 510. The liquid system discharged from the line 62 contains about 99.8% by weight of a solution of 2,4-indole diisocyanate. The yield relative to 2,4-nonylphenylenediamine was 94.7%. After 10 days of continuous operation, no accumulation was found on the wall of the thin film distillation apparatus 501. Attachment. [Example 6] .Step (6-1) : N,N'-hexanediyl-bis-aminocarbamic acid bis(2-ethylbutyl) ester 131506.do C -140- 200948759 Manufacture of 3,83 g (3.6 mol) of bis(2-ethylbutyl) carbonate in Reference Example 3 in addition to 3843 g (15.1 mol) instead of bis(2-methylbutyl) carbonate The reaction was carried out in place of the reaction of the diamine-containing hexamethylenediamine with 368 g (3.8 mol) of 2-ethyl-1-butanol and 69 g of sodium methoxide (28% decyl alcohol solution). The same method as in the step (1-1). The solution after the reaction was analyzed by liquid chromatography. The result was N,N,-hexanediyl-bis-aminocarbamic acid bis (2- in a yield of 99.5%). Ethyl butyl acrylate. The reaction solution was supplied to an acidic ion exchange resin (Amberlyst-1 5 (spherical): ROHM &amp; HAAS) containing the moisture removed and adjusted by an external casing to 8 In the column 2〇5 of 〇〇c, sodium sterol is neutralized. The solution is transported to the storage tank 206° via line 25. • Step (6-2): distillation of the low boiling component is used as shown in Fig. 3. The apparatus shown is subjected to distillation of alcohol. The middle section of the continuous multi-stage distillation column 302 having an inner diameter of 5 cm and a column length of 2 m filled with a Dixon packing (6 ππηφ) is self-managed via the preheater 301. 31 is continuously fed in a liquid form at about 270 g/hr to a mixture of tanks 2 and 6. The heat required for steaming is supplied by circulating the liquid in the lower portion of the column via line 33 and reboiler 304. The liquid temperature at the bottom of the column of the multi-stage distillation column 3〇2 is 160 C 'the column top pressure is about 60 kPa. The gas distilled from the top of the continuous multi-stage distillation column 302 is passed through the line 32 in the condenser 303. Condensation is continuously discharged from line 34 to storage tank 305 at about 69 g/hr. From the bottom of the column, it was continuously discharged to the storage tank 306 at about 201 g/hr via the line 33'. The carbonate was distilled off using a device as shown in FIG. 131506.doc -141 - 200948759 The middle section of the continuous multi-stage distillation column 402 filled with Dixon packing (6 ιηηιφ) having an inner diameter of 5 cm and a column length of 2 m, via the preheater 401, from the line 41 The mixture was continuously recovered in liquid form at about 201 g/hr to a mixture of tanks 3〇6. The heat required for the steaming is supplied by circulating the liquid in the lower portion of the column through the line 43 and the reboiler 404. The liquid temperature at the bottom of the continuous multi-stage distillation column 4〇2 was 160 ° C, and the pressure at the top of the column was about 77 kPa. The gas from the top of the continuous multi-stage distillation column 4〇2 was condensed in the condenser 403 via line 42, and continuously discharged from the line 44 to the storage tank 405 at about 115 g/hr. From the bottom of the column, it was continuously discharged to the storage tank 4〇6 via the line 43, at about 86 g/hr. The result of liquid chromatography analysis of the mixture discharged to the storage tank 406 was that the mixture contained about 98·3 weight ❶/. N,N,-hexanediyl-bis-amino phthalic acid bis(2-ethylbutyl)g. Step (6-3) The isocyanate was produced by thermal decomposition of N,N'-hexanediyl-bis-aminobisruthenate bis(2-ethylbutyl) ester using a device as shown in Fig. 5.加热 Heat the thin tantalum distillation unit 5〇1 with a heat transfer area of m2 to 27〇 (&gt;c, and let the internal pressure be about 13 kPa. Heat the mixture recovered in step (6_2) to the storage tank to heat. The road 5〇 is supplied to the upper portion of the thin film evaporator 5〇1 at about 27 〇*. Further, dibutyltin dilaurate is fed from the line 51 at about 22 7 g/hr. From the bottom of the film evaporation chamber 5〇1 The liquid phase component is discharged from the line 53 and circulated to the upper portion of the thin steaming chamber device 5〇1 via the pipe. The gas phase component is discharged from the pipe 52. The filling is filled with Dixon packing (6 jobs Φ The middle section of the continuous multi-stage steaming tower 5〇2 with an inner diameter of about 5 cm and a tower length of 2 m, continuous feeding from the thin medium steaming device 131506.doc • 142· 200948759 501 red discharged by the line 52 The gas phase component is subjected to vapor separation of the gas phase component. The heat required for the vaporization separation is supplied by circulating the liquid in the lower portion of the column via the line 56 and the reboiler 504. The liquid temperature at the bottom of the continuous multi-stage distillation column 5〇2 is 16 (TC, the top pressure is about 5 〇kpa. The gas from the tower of the continuous multi-stage steaming tower 502 is condensed via the line 55. Condensed in the vessel 5〇3 and continuously discharged from the line 57. The liquid phase component is discharged from the line 59 of the continuous multistage steaming tower 5〇2 below the line 52. The filling is filled with a Dixon packing (6) Ηπηφ) is a middle portion of a continuous multi-stage distillation column 5〇5 having an inner diameter of about 5 em and a column length of 2 m, continuously feeding a liquid phase component discharged from the line 59, and performing distillation separation of the gas phase component. The heat required for the separation is supplied by circulating the liquid in the lower portion of the column via the line 61 and the reboiler 5 〇 7. The liquid temperature at the bottom of the column of the continuous multi-stage distillation column 505 is 16 〇 ° C, and the pressure at the top of the column is about The gas distilled from the top of the continuous multi-stage distillation column 5〇5 is condensed in the condenser 506 via the line 60, and is continuously discharged to the storage tank 509 via the line 62. The discharge amount in the steady state is about 55 kPae. Ii6g/hr. After 40 hours of operation, the liquid phase component is discharged from the line 64 to the storage tank 510 at about U g/hr. The liquid system contained a solution of about 99.8% by weight of hexamethylene diisocyanate. The yield relative to hexamethylenediamine was 95 5%. The continuous operation of ίο天 was not found on the wall of the thin film distillation apparatus 5〇1. Attachment. [Example 7] . Step (7-1): Production of 3-(phenoxycarbonylamino-methyl)-3,5,5-trimethylcyclohexylaminocarboxylic acid stearyl ester 131506.doc • 143- 200948759 The reaction was carried out using the apparatus shown in Fig. 7. In the state where the line A4 was closed, ^92 g (9.3 mol) of diphenyl carbonate of Reference Example 6 was supplied from the storage tank 721 via the line A1. The internal volume of 5 L of the SUS reaction vessel 724 with a baffle was supplied from the storage tank 722 through the line A2' to 1311 g (14.0 mol) of phenol to the reactor made of SUS. The temperature of the liquid in the reactor 724 was adjusted to about 50 t, and from the storage tank 723 via line A3, 528 g (3.1 mol) of 3-aminomethyl-3,5,5-trimethyl was added at about 250 g/hr. Cyclohexylamine is supplied to the reactor 724. The solution after the reaction was analyzed by liquid chromatography to give 3-(phenoxycarbonylamino-methyl)_3,5,5-trimethylcyclohexylaminocarboxylic acid in a yield of 99_3 ° / hydrazine. Benzene vinegar. The line Α4 is opened, and the reaction liquid is transported to the storage tank 725 via the line Α4. • Step (7-2): Distillation of the low-boiling component The apparatus shown in Fig. 3 is used to carry out the distillation of the phenol. The middle section of the continuous multi-stage distillation column 302 filled with Dixon packing (6 mm or more) having an inner diameter of 5 cm and a column length of 2 m was passed through the preheater 301 from the line 31 at about 300 g/hr. The liquid continuous feed is recovered to a mixture of tanks 2〇6. The heat required for steaming is supplied by circulating the liquid in the lower portion of the column through the line 33 and the refill unit 34. The liquid temperature at the bottom of the continuous multi-stage distillation column 3〇2 was 160 ° C, and the top pressure was about 60 kPa. The gas distilled from the top of the continuous multi-stage distillation column 3〇2 was condensed in the condenser 303 via line 32, and continuously discharged from the line 34 to the storage tank 305 at about 155 g/hr. From the bottom of the column, through line 33, it is continuously discharged to the storage tank 306 at about 145 g/hr. 131506.doc 200948759 The carbonate is distilled off using the apparatus shown in FIG. The middle section of a continuous multi-stage distillation column 402 filled with a Dixon packing (6 mm phantom inner diameter of 5 cm and a column length of 2 m) was passed through the preheater 401 from the line 41 at about 145 g/hr. The liquid continuous feed is recovered to the mixture of the storage tank 306. The heat required for the steaming is supplied by circulating the liquid in the lower portion of the column via the line 43 and the reboiler 4〇4. The continuous multi-stage distillation column 4〇2 The liquid temperature at the bottom of the column is 160 ° C, and the pressure at the top of the column is about 〇, 4 kPa. The gas distilled from the column of the continuous multi-stage distillation column 4 〇 2 is condensed in the condenser 403 via the line 42 The manifold 44 is continuously discharged to the storage tank 405 at about 55 g/hr. The mixture is continuously discharged to the storage tank 406 at a rate of about 90 g/hr from the bottom of the column via a line 43', and the mixture discharged to the storage tank 406 is subjected to liquid chromatography analysis. As a result, the mixture contained about 99.1% by weight of 3-(phenoxycarbonylamino-methyl)- 3,5,5-trimethylcyclohexylaminodecanoic acid phenyl ester. Step (7-3): Utilization 3·(Phenoxycarbonylamino-methyl)·3,5,5-tridecylcyclohexylcarbamic acid phenyl ester was thermally decomposed to produce isocyanate vinegar using a device as shown in FIG.The thin film distillation apparatus 5〇1 having a heat transfer area of 0.1 m2 is heated to 22〇t&gt;c such that the internal σ卩 pressure is about 13 kPa. The mixture recovered in the step (5-2) to the storage tank 406 is heated to 170°. C' is supplied to the upper portion of the thin film evaporator 501 via line 50 at about 3 〇〇g/hr. From the bottom of the thin film distillation apparatus 5〇1, the liquid phase component is discharged from the line 53 to be circulated through the line 54. To the upper part of the thin film distillation apparatus 5〇1, the gas phase component is discharged from the line 52. The continuous multi-stage distillation tower having an inner diameter of about 5 cm and a column length of 2 m filled with a Dixon packing (6 πιηηφ) The middle section of 5〇2 is continuously fed from the thin film distillation apparatus 131506.doc -145· 200948759. The gas phase component discharged through the pipeline 52 is used to carry out the vaporization of the vapor phase component. The liquid in the lower part of the tower is supplied and supplied via the line 56 and the vortex 504. The liquid temperature at the bottom of the tower of the continuous multi-stage steam storage tower 5〇2 is 15 〇. (:, the top pressure Approximately 15 kpa. The gas distilled from the top of the continuous multi-stage distillation column 502 is condensed in the condenser 5〇3 via a line. The line 57 is continuously discharged. The liquid phase component is discharged from the line 59 of the continuous multi-stage steaming tower 5〇2 below the line 52. The inner diameter is filled with a Dixon packing (6 is about 5 cm, The middle section of the continuous multi-stage distillation column 505 having a column length of 2 m continuously feeds the liquid phase component discharged from the line 59 to carry out distillation separation of the gas phase component. The heat required for the distillation separation is made by lowering the lower portion of the column. The liquid is supplied through the line 61 and the reboiler 5〇7. The liquid temperature at the bottom of the continuous multi-stage distillation column 5〇5 is 15 〇 ° C, and the pressure at the top of the column is about 丨.3 kPa. The gas from the top of the continuous multi-stage distillation column 5〇5 was condensed in the condenser 506 via the line 60, and continuously discharged to the storage tank 509 via the line 62 at about 135 g/hr. The liquid system discharged from line 92 contained a solution of about 99.8% by weight of isophoric-diisocyanate. The yield based on 3-aminomethyl-3,5,5-trimethylcyclohexylamine was 95.3%. The continuous operation was carried out for 100 days, and no deposit was accumulated on the wall surface of the thin tandem distillation apparatus 501. [Example 8] • Step (8-1): Production of N,N'-hexanediyl-bis-aminocarbamic acid di(n-heptyl) ester In addition to supplying 3445 g (13.3 mol) instead of carbonic acid double (2- In addition to the reaction of dinonheptyl carbonate, 36 〇g (3 Λ mol) hexamethylenediamine, and 6 〇g methanol steel (28°/. sterol solution) of thiobutyl butyl vinegar, the implementation and implementation were carried out. Step 1 of Example 1 〇131506.doc •146- 200948759 i) The same method. The solution after the reaction was analyzed by liquid chromatography, and as a result, N,N,-hexanediyl-bis-aminocarbamic acid di(n-heptyl) ester was obtained in a yield of 98.9%. The reaction liquid was supplied to an acid ion exchange resin (Amberly St_15 (spherical): R〇HM &amp; Haas &amp; s) which was subjected to removal of moisture and was insulated by an external sleeve to 8 〇&lt;t. Sodium methoxide was neutralized in 〇5. This solution is transported via line 25 to storage tank 2〇6. • Step (8-2): Distillation of low-boiling components. Use the device as shown in Figure 3 to carry out the alcohol hall. The middle section of the continuous multi-stage distillation column 302 filled with Dixon packing (6 πιιηφ) having an inner diameter of 5 cm and a column length of 2 m was passed through the preheater 3〇1 from the line 31 at about 280 g/hr. The mixture was recovered as a mixture of tanks 2〇6 in a continuous liquid feed. The heat required for the distillation is supplied by circulating the liquid in the lower portion of the column through the line 33 and the reboiler 34. The liquid temperature at the bottom of the continuous multi-stage distillation column 3〇2 was 160 ° C, and the top pressure was about 13 kPa. The gas distilled from the top of the continuous multi-stage distillation column 3〇2 was condensed in the condenser 303 via the line 32, and continuously discharged from the line 34 to the storage tank 305 at about 52 g/hr. From the bottom of the column, through line 33, it was continuously discharged to the storage tank 3〇6 at about 228 g/hr. Using the apparatus shown in Figure 4, the carbonate pavilion was removed. The middle section of the continuous multi-stage distillation column 402 filled with Dixon packing (6 ιηιηφ) having an inner diameter of 5 cm and a column length of 2 m was passed through the preheater 4〇1 from the line 41 at about 228 g/hr. The mixture was recovered as a mixture of tanks 3〇6 in a continuous liquid feed. The heat required for the distillation is supplied by circulating the liquid in the lower portion of the column through the line 43 and the reboiler 404. The liquid temperature at the bottom of the continuous multi-stage distillation column 4〇2 is 170 C 'the top pressure is about 〇·13 kPa. The gas distilled from the continuous multi-stage steaming tower 131506.doc • 147- 200948759 2 was condensed in the condenser 4〇3 via the line core, and continuously discharged from the line 44 at about 136 g/hr. Storage tank 4〇5. From the bottom of the column, it is continuously discharged to the storage tank 4〇6 via the pipe 43' at about 92 g/hr. The mixture discharged to the storage tank was subjected to liquid chromatography analysis, and as a result, the mixture contained about 98-6 weight of bis(n-heptyl) hexamethylenedicarbamate. Step (6) Production of Isocyanate by Thermal Decomposition of N,N,-hexanediyl-bis-aminocarbamic acid Di(n-heptyl) Brewing The reaction was carried out using a apparatus as shown in Fig. 5. The thin film distillation crucible having a heat transfer area of 0.1 m2 was placed at 5 〇 1 to 27 〇 (&gt;c, and the internal friction was about 13 kPa. The mixture recovered in the step (4) to the storage tank 4〇6 was heated to 17 :. (: 'Approximately 27 〇g/hr via line 5〇1 is supplied to the thin film evaporator 5 (H above the pipe from the line 51 to about 19 6 coffee feed dibutyl tin dilaurate. From the thin film distillation unit 5〇 At the bottom of 1, the liquid phase component is discharged from the line 53 and "circulated to the upper portion of the film evaporation device 501 via the line. The gas phase component is discharged from the line 52. The filling is filled with a Dixon packing (6 The middle section of the continuous multi-stage distillation column 502 having an inner diameter of about 5 (10) and a column length of 2 m is continuously fed from the vapor phase component discharged from the thin film distillation apparatus 5〇1 via the line 52, and the vapor phase separation of the gas phase component is performed. The heat required for the vaporization separation is supplied by circulating the liquid in the lower portion of the column via the line 56 and the reboiler 504. The temperature of the liquid at the bottom of the column of the continuous multi-stage distillation column 5〇2 is 160. (:, Tower The top pressure is about 5〇kpa, so that the gas from the continuous multi-stage steaming tower 502 (four) ^ gas is condensed through the pipeline condenser 5〇3, self-management The passage 57 is continuously discharged. The liquid phase component is discharged from the line 59 at the position of the line 52 from the low level of the continuous multi-stage steaming tower 5〇2, 506.doc 200948759. The inner diameter is filled with the Dixon packing (6) 5 cm, the length of the tower is 2: the middle section of the continuous multi-stage steaming tower 5G5, continuously feeding the gas phase component discharged from the pipeline %, and performing the steaming separation of the gas phase component. The liquid in the lower portion of the column is supplied by circulating the line 61 and the reboiler. The liquid temperature at the bottom of the column of the continuous multi-stage distillation column 505 is (10) C, and the pressure at the top of the column is about 1.5 kPa. The gas from the tower top of the steaming tower 5〇5 is condensed in the condenser 5〇6 via the line 60, and continuously discharged to the storage tank 5〇9 via the line 62. The discharge amount in the steady state is about 〇7 years old. After 40 hours of operation, the liquid phase component was discharged from the line 64 to the storage tank 510 at about 21 coffee. The liquid system discharged from the line 62 contained a solution of about 99.8% by weight of hexamethylene diisocyanate. The yield of the diamine was 94 9%. The continuous operation was carried out for 10 days, and no accumulation was found on the wall of the thin film distillation apparatus 5〇1. Attachment. [Example 9] Step (9-1) . Production of N,N'-hexanediyl-bis-aminocarbamic acid bis(3-methylbutyl) ester except 2 ό 87 g (l3·3 mol) In addition to the reaction of the bis(3-methylbutyl)S曰 carbonate, 407 g (3.5 mol) hexamethylenediamine, and 6.8 g of sodium methoxide (28% methanol solution) of Reference Example 1, the examples and the examples were carried out. Step G - 丨) The same method. The solution after the reaction was analyzed by liquid chromatography, and as a result, ruthenium, Ν·-hexanediyl-bis-aminocarbamic acid bis(3 methyl butyl) was formed in a yield of 99.5%. Base) ester. The line 24 was opened, and the reaction liquid was supplied to an acid ion exchange tree wax (Amberlyst-15 (spherical): R〇hm &amp; HAAS company) which was subjected to the removal of moisture and adjusted to 131506.doc -149-200948759. And using an external casing to keep 8 〇〇c of the column 2〇5 in the middle of sodium methoxide neutralization. The solution is conveyed via line 25 to a storage tank 206°. Step (9-2): the low boiling component is distilled to the middle of the continuous multi-stage distillation column 302, via the preheater 301, from the line 31 at about 300 g/ The hr is continuously fed to the mixture of the storage tank 2〇6 in a liquid form, and the liquid phase component is continuously discharged from the bottom of the column to the storage tank 3〇6' to the continuous multi-stage distillation column 4 via the line 33 at about 241 g/hr. In the middle section of 〇2, the mixture of the tanks 3〇6 is continuously fed from the line 41 at a flow rate of about 241 g/hr through the preheater 4〇1, and the steps of the embodiment are carried out. (1_2) The same method. The gas distilled from the top of the continuous multi-stage distillation column 402 was condensed in the condenser 403 via the line 42, and continuously discharged from the line 44 to the storage tank 405 at about 123 g/hr. From the bottom of the column, via line 43, it is continuously discharged to the sump 406 at about 118 g/hr.液相 The mixture discharged to the storage tank 4〇6 was subjected to liquid chromatography analysis, and as a result, the mixture contained about 98.5 wt% of bis(3-mercaptobutyl) hexyldiyl-bis-amino phthalate. Step (9-3): Production of isocyanate by thermal decomposition of N,N'-hexanediyl-bis-amino bis(3.methylbutyl) phthalate using a device as shown in FIG. . A thin tantalum distillation apparatus 5〇1 (manufactured by K〇bel (3) eco-solutions, Japan) having a heat transfer area of 〇 was heated to 27 CTC so that the internal pressure was about 13 kPa. The mixture recovered in the step (9-2) to the storage tank 406 is heated to 2〇〇131506.doc -150-200948759 °C, and supplied to the upper portion of the thin film evaporator 501 via the line 50 at about 280 g/hr. The same procedure as in the step (1-3) of Example 1 was carried out except that the line 51 was fed with dibutyltin dilaurate at about 25.3 g/hr. The liquid was continuously discharged to the storage tank 5〇9 via line 62 at about 107 g/hr. After 40 hours of operation, the liquid phase component was discharged from the line 64 to the storage tank 510 at about 82 g/hr. The liquid system discharged from line 62 contained a solution of about 99.8% by weight of hexamethylene diisocyanate. The yield relative to hexamethylenediamine was 79 〇/〇. The continuous operation was carried out for 10 days. The deposit was not found on the wall surface of the thin film distillation apparatus 501. [Example 10] Step (10-1): Production of bis(3-mercaptobutyl)-4,4,-methylene-dicyclohexylamino phthalate except for supply of 3272 g (16.2 mol) Example 1, bis(3-mercaptobutyl)carbonate, 757 g (3.6 mol) 4,4,-decylene bis(cyclohexylamine) in place of hexamethylenediamine, 6.9 g sodium methoxide (28% decyl alcohol solution) In addition to the reaction, the same procedure as in the step (1-1) of Example 1 was carried out. The solution after the reaction was analyzed by liquid chromatography, and bis(3-methylbutyl) 44,-methylene-dicyclohexylamino phthalate was obtained in a yield of 98,9%. The reaction solution was supplied to a column 205 in which an acidic ion exchange resin (Amberlyst_15 (spheroidal ROHM &amp; HAAS)) containing moisture was removed and held in an outer sleeve by (9) C, and sodium methoxide was neutralized. The solution is transported via line 25 to storage tank 206. Step (10-2): Distillation of low boiling components 131506.doc -151- 200948759 Using the apparatus shown in Figure 3, the alcohol is sold. The middle section of a continuous multi-stage distillation column 312 filled with a Dixon packing (6 π ΐΓ πφ) having an inner diameter of 5 cm and a column length of 2 m, via a preheater 3〇1, from the line 31 at about 280 g/ The hr is continuously fed in liquid form to the mixture of the storage tanks 2 to 6. The heat required for the distillation is supplied by circulating the liquid in the lower portion of the column via the line 33 and the reboiler 304. The continuous multi-stage distillation column 3〇2 The liquid temperature at the bottom of the tower is 160 C, and the pressure at the top of the column is about 70 kPa. The gas distilled from the top of the continuous multi-stage distillation column 3〇2 is condensed in the condenser 3〇3 via line 32, and self-management The weir 34, about 44 g/hr, is continuously discharged to the sump 305. It is continuously discharged from the bottom of the tower via the line 33' at about 236 g/hr. Exit to the storage tank 3〇6. Distillation of the carbonate is carried out using a device as shown in Fig. 4. The continuous multi-stage distillation column 402 is filled with a Dixon packing (6 having an inner diameter of 5 em and a column length of 2111). The middle section, through the preheater 4〇1, is continuously fed from the line 41 at about 236 g/hr in liquid form to the mixture of the storage tanks 3〇6. The heat required for the distillation is obtained by passing the liquid in the lower part of the tower. The line 43 and the reboiler 〇 404 are circulated and supplied. The liquid temperature at the bottom of the continuous multi-stage distillation column 4〇2 is 160 C 'the top pressure is about 2.6 kPa. The self-continuous multi-stage steaming tower 4〇2 The overhead gas is condensed in condenser 4〇3 via line 42 and continuously discharged from line 44 to storage tank 4〇5 at about 127 g/hr. From the bottom of the column via line 43' to about 1 〇 9 g/hr was continuously discharged to the storage tank 4〇6. The mixture discharged to the storage tank 406 was subjected to liquid chromatography analysis, and as a result, the mixture contained about 99.0% by weight of bis(3-methylbutyl)4 4, a Base _-cyclohexylamino formate vinegar. Step (10-3): Preparation of bis(3-methylbutyl)-4,4|_methylene-dicyclohexyl 131506.doc 152· 200948759 amide group A The thermal decomposition of the acid ester to produce an isocyanate is carried out by using a device as shown in Fig. 8. The continuous multi-stage distillation column 801 having an inner diameter of about 5 cm and a column length of 2 m filled with a Dixon packing (6 ππηφ) Middle section 'The mixture recovered in step (1〇-2) to storage tank 406 is heated to 170 ° C. 'Feed at about 220 g/hr via line B0, while feeding from line B1 at 15.7 g/hr Dibutyltin dilaurate is subjected to thermal decomposition reaction. The heat required for the thermal decomposition reaction is supplied by circulating the liquid in the lower portion of the column through the line B3 and the reboiler 803. The liquid temperature at the bottom of the column of the continuous multi-stage distillation column 801 was 280 ° C, and the pressure at the top of the column was about 15 kPa. The gas distilled from the top of the continuous multi-stage distillation column 801 is condensed in the condenser 802 via the line B2, and continuously discharged from the line B4. From the bottom of the continuous multi-stage distillation column 801, the liquid phase component is recovered via line B3. The middle portion of the continuous multi-stage steaming tower 8〇4 filled with the Dixon packing (6 ππηφ) having an inner diameter of about 5 cm and a column length of 2 m is continuously fed through the liquid phase component discharged from the pipe B6. 'Distillation separation of the liquid phase components. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column through the line and the reboiler 8〇6. The liquid temperature at the bottom of the continuous multi-stage steaming tower 804 is 220 C, and the top pressure is about 5.2 kPa. The gas distilled from the top of the continuous multi-stage steaming tower 8〇4 was condensed in the condenser 805 via the line B7, and continuously discharged from the line B9. From the bottom of the continuous multi-stage distillation column 804, the liquid phase components are recovered via line B8 and line B11. The liquid phase component discharged from the pipe B8 is continuously fed to the middle portion of the continuous multi-stage distillation column 807 filled with the Dixon packing (6 ηιιηφ) having an inner diameter of about 5 cm and a column length of 2 m, and the liquid is continuously supplied. Distillation separation of phase components. Distillation separation required 131506.doc • 153· 200948759 ... is given by circulating the liquid in the lower part of the tower through the pipeline and the reboiler. The liquid temperature at the bottom of the continuous multi-stage steaming tower 807 is 220 C ′ ^ The top waste force is about 〇.4〇 kPa. The gas distilled from the continuous multi-stage steaming tower is condensed in the condenser 8A through the line B12, and continuously discharged through the line B13. ^ The discharge of the normal state is about (10) coffee. The liquid helium discharged from the line B13 contains a solution of about 99% by weight of 4,4,methylenebis(cyclohexyl isocyanate). The yield of methylene bis(cyclohexylamine) was 82.2% with respect to 4,4. After continuous operation for 10 days, it was found that deposits were accumulated in the inside of the continuous multi-stage distillation column 801. [Example 11] Step (11-1): Production of N,N'-hexanediyl-bis-amino bismuthanoate bis(2-ethylbutyl) ester In addition to supplying 3547 g (15.4 mol) instead of carbonic acid Bis(2-methylbutyl) ester of bis(2-ethylbutyl) carbonate of Reference Example 3, 407 g (3.5 mol) of hexamethylenediamine, 6.8 g of sodium decoxide (28% decyl alcohol solution) The same procedure as in the step (1-1) of Example 1 was carried out, except that the reaction was carried out. The reaction solution was analyzed by liquid chromatography to give yttrium, Ν'-hexanediyl-bis-amino bis(2-ethylbutyl) phthalate at a yield of 99.1 ° / ◦. . The reaction solution was supplied to a column 205 containing an acidic ion exchange resin (Amberlyst-15 (spherical): ROHM &amp; HAAS), which was adjusted to remove moisture, and kept at 80 t by an external sleeve, to carry out sodium methoxide. Neutral. This solution is transported via line 25 to storage tank 206. Step (11-2): Thermal decomposition of N,N'-hexanediyl-bis-carbamic acid bis(2-ethylbutyl) ester to produce isocyanate 131506.doc -154- 200948759 The device shown is reacted. The thin film distillation apparatus 5〇1 having a heat transfer area of 0.1 m2 was heated to 27 (rc, and the internal pressure was about 13 kPa. The mixture recovered in the step to the storage tank 2〇6 was heated to 1 70. (:, via the piping 50 is supplied to the upper portion of the thin film evaporator 501 at about 790 g/hr. Further, dibutyltin dilaurate is fed from the line 51 at about 21 9 §/1^. From the bottom of the thin film distillation apparatus 5〇1, the liquid is supplied. The phase component is discharged from line 53 and circulated to the upper portion of the thin film distillation apparatus 5〇 via line 54. The gas phase component is discharged from line 52.

向填充有狄克松填料(6 πιηιφ)之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔5〇2的中段,連續進料自薄膜蒸餾裝置 501經由管路52排出之氣相成分,進行該氣相成分之蒸餾 分離。蒸餾分離所需之熱量係藉由使塔下部之液體經由管 路56及再沸器504循環而供給。連續多級蒸餾塔5〇2之塔底 部之液體溫度為160。(:,塔頂壓力約為5〇 kpa,使自連續 多級蒸顧塔502之塔頂館出之氣體經由管路55於冷凝器5〇3 中冷凝’自管路57連續排丨。自連續多級蒸館塔5〇2之低 於管路52之位置的管路59排出液相成分。 向填充有狄克松填料(6 之内徑約為5加、试長為2 m之連續多級蒸館塔505的中段,連續進料自管路Μ排出之 液相成分,進行該氣相成分之蒸餾分離。蒸餾分離所需之 熱量係藉由使塔下部之液體經由管路61及再沸器507循環 而供給。連續多級蒸顧塔5〇5之塔底部之液體溫度為⑽ C ’塔頂壓力約為h5 kPa°使自連續多級蒸销塔505之技 頂德出之氣體經由管㈣於冷凝㈣6中冷凝經由管路 131506.doc •155· 200948759 62連續排出至貯槽509。定常狀態之排出量約為112 g/hr。 運轉40小時後,自管路64以約182 g/hr將液相成分排出 至貯槽510。 自管路62排出之液體係含有約99.8重量%之二異氰酸已 二醋之溶液。相對於己二胺之產率為88 2〇/〇。 進行10天連續運轉,未發現於薄臈蒸餾裝置501之壁面 上積蓄有附著物。 [實施例12] ^ .步驟(12-1) : 3-((3_甲基丁氧基)羰基胺基_甲基_3,5,5_三甲 基環己基胺基甲酸(3-甲基丁基)酯之製造 除供給3224 g(l6.〇 mol)參考例1之碳酸雙(3-曱基丁基) 酯、647 g(3.8 mol)代替己二胺之3_胺基甲基·3 3 5_三甲基 環己基胺、7.3 g曱醇鈉(28%甲醇溶液)而進行反應之外, 實施與實施例1之步驟(1 —丨)同樣之方法。以液相層析法對 反應後之溶液進行分析,結果以產率98 8%生成3_((3•曱基 ^ 丁氧基)羰基胺基-甲基_3,5,5_三甲基環己基胺基曱酸(3_甲 基丁基)酯。將反應液供給至收容有去除水分而經調整之The middle portion of the continuous multi-stage distillation column 5〇2 filled with a Dixon packing (6 πιηιφ) having an inner diameter of about 5 cm and a column length of 2 m is continuously fed from the thin film distillation apparatus 501 through the line 52. The gas phase component is subjected to distillation separation of the gas phase component. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column through the line 56 and the reboiler 504. The liquid temperature at the bottom of the continuous multi-stage distillation column 5〇2 was 160. (:, the top pressure is about 5 〇 kpa, so that the gas from the tower top of the continuous multi-stage steaming tower 502 is condensed in the condenser 5〇3 via the line 55. The liquid phase component is discharged from the line 59 of the continuous multi-stage steaming tower 5〇2 below the line 52. The filling is filled with a Dixon packing (the inner diameter of 6 is about 5 plus, and the test length is 2 m continuous). The middle section of the multi-stage steaming tower 505 continuously feeds the liquid phase component discharged from the pipeline to carry out the distillation separation of the gas phase component. The heat required for the distillation separation is performed by passing the liquid in the lower portion of the tower through the pipeline 61 and The reboiler 507 is circulated and supplied. The temperature of the liquid at the bottom of the continuous multi-stage steaming tower 5〇5 is (10) C 'the top pressure is about h5 kPa°, so that the technology from the continuous multi-stage steaming tower 505 is The gas is condensed in the condensation (4) 6 via the tube (4) and continuously discharged to the storage tank 509 via the line 131506.doc • 155· 200948759 62. The discharge amount in the steady state is about 112 g/hr. After 40 hours of operation, about 182 from the line 64 The liquid phase component is discharged to the storage tank 510 by g/hr. The liquid system discharged from the line 62 contains about 99.8% by weight of diisocyanate. The solution was 88 2 Torr/〇 with respect to hexamethylenediamine. The continuous operation was carried out for 10 days, and no deposit was found on the wall surface of the thin distillation apparatus 501. [Example 12] ^. Step (12 -1) : Production of 3-((3-methylbutoxy)carbonylaminomethyl_methyl_3,5,5-trimethylcyclohexylaminocarbamic acid (3-methylbutyl) ester 3224 g (l6. 〇mol) of bis(3-mercaptobutyl)carbonate of Reference Example 1, 647 g (3.8 mol) of 3-aminomethyl·3 3 5_trimethyl ring instead of hexamethylenediamine The reaction was carried out in the same manner as in the step (1 - hydrazine) of Example 1 except that hexylamine and 7.3 g of sodium decoxide (28% methanol solution) were reacted. The solution after the reaction was analyzed by liquid chromatography. As a result, 3-((3•indenyl)butoxy)carbonylamino-methyl-3,5,5-trimethylcyclohexylaminodecanoic acid (3-methylbutyl) was produced in a yield of 98 8%. Ester. The reaction solution is supplied to the container for removal of moisture and adjusted.

酸性離子交換樹脂(Amberlyst-15(球狀):r〇hm &amp; HAAS 公司製造)且利用外部套管保溫為80»c之管柱205中,進行 曱醇納之中和。將該溶液經由管路25運送至貯槽2〇6。 •步驟(12-2):低沸成分之館去 使用如圖3所示之裝置,進行醇之销去。 向填充有狄克松填料(6 ππηφ)之内徑為5 cm、塔長為2m 之連續多級蒸餾塔302的中段’經由預熱器3〇1,自管路31 131506.doc -156- 200948759 以約280 g/hr以液狀連續進料回收至貯槽2〇6之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路33及再沸器 304循環而供給。連績多級蒸餾塔3〇2之塔底部之液體溫度 為160°C,塔頂壓力約為7〇 kpa。將由連績多級蒸餾塔3〇2 之塔頂餾出之氣體經由管路32,於冷凝器3〇3中冷凝,自 管路34以約48 g/hr連續排出至貯槽3〇5。自塔底經由管路 33以約232 g/hr連續排出至貯槽3〇6。 使用如圖4所示之裝置,進行碳酸酯之餾去。 向填充有狄克松填料(6 ιηηιφ)之内徑為5 cm、塔長為2 m 之連續多級蒸餾塔402的中段,經由預熱器4〇 i,自管路4 j 以約237 g/hr以液狀連續進料回收至貯槽3〇6之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路43及再沸器 404循環而供給。連續多級蒸餾塔4〇2之塔底部之液溫度為 200 C,塔頂壓力約為7.9 kPa。使自連續多級蒸餾塔402之 塔頂館出之氣體經由管路42於冷凝器403中冷凝,自管路 44以約123 g/hr連續排出至貯槽4〇5。自塔底經由管路43, 以約109 g/hr連續排出至貯槽406。 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約84.0重量❹/。之3-((3-甲基丁氧基)羰基胺基· 曱基-3,5,5-三甲基環己基胺基甲酸(3_曱基丁基)酯。 •步驟(12-3):利用3-((3_甲基丁氧基)羰基胺基-甲基_3,5,5_ 二甲基環己基胺基曱酸(3-曱基丁基)酯之熱分解來製造異 氰酸酯 使用如圖5所示之裝置進行反應。 131506.doc -157- 200948759 將傳熱面積為G] m2之薄膜蒸館裝置训加熱至27代, θ内P壓力約為131 Pa。將步驟(2-2)中回收至貯槽406之 * 口物加熱至170 C ’經由管路50以約200 g/hr供給至薄膜 1發器501之上部。又,自管路51以約2 g/h進料二月 桂酸一 丁基錫(曰本’和光純藥工業公司製造)。自薄膜蒸 傲裝置5〇1之底部,將液相成分自管路53排出,使之經由 管路54循%至薄膜蒸餾裝置5〇1之上#。將氣相成分自管 路5 2排出。 ❹An acidic ion exchange resin (Amberlyst-15 (spherical): r〇hm &amp; manufactured by HAAS) was used and the inner column was immersed in a column 205 of 80»c to carry out sodium hydride neutralization. This solution is transported via line 25 to storage tank 2〇6. • Step (12-2): Go to the low-boiling ingredients. Use the device shown in Figure 3 to carry out the alcohol. The middle section of the continuous multi-stage distillation column 302 filled with Dixon packing (6 ππηφ) having an inner diameter of 5 cm and a column length of 2 m passes through the preheater 3〇1, from the line 31 131506.doc -156- 200948759 A mixture of tanks 2〇6 was recovered as a continuous feed in liquid form at about 280 g/hr. The heat required for the distillation is supplied by circulating the liquid in the lower portion of the column through the line 33 and the reboiler 304. The liquid temperature at the bottom of the tower of the continuous multi-stage distillation column 3〇2 is 160 ° C, and the pressure at the top of the tower is about 7 〇 kpa. The gas distilled from the top of the continuous multi-stage distillation column 3〇2 was condensed in the condenser 3〇3 via the line 32, and continuously discharged to the storage tank 3〇5 from the line 34 at about 48 g/hr. From the bottom of the column, it was continuously discharged to the storage tank 3〇6 via line 33 at about 232 g/hr. The carbonate was distilled off using a device as shown in FIG. The middle section of the continuous multi-stage distillation column 402 filled with Dixon packing (6 ηηηιφ) having an inner diameter of 5 cm and a column length of 2 m, via the preheater 4〇i, from the line 4j to about 237 g /hr is recovered as a mixture of tanks 3〇6 in a continuous liquid feed. The heat required for the distillation is supplied by circulating the liquid in the lower portion of the column through the line 43 and the reboiler 404. The liquid temperature at the bottom of the continuous multi-stage distillation column 4〇2 was 200 C, and the pressure at the top of the column was about 7.9 kPa. The gas from the top of the continuous multi-stage distillation column 402 was condensed in the condenser 403 via line 42, and continuously discharged from the line 44 to the storage tank 4〇5 at about 123 g/hr. From the bottom of the column, through line 43, it is continuously discharged to the storage tank 406 at about 109 g/hr. The mixture discharged to the storage tank 406 was subjected to liquid chromatography analysis, and as a result, the mixture contained about 84.0% by weight. 3-((3-methylbutoxy)carbonylamino]indolyl-3,5,5-trimethylcyclohexylaminocarbamic acid (3-decylbutyl) ester. Step (12-3) Manufactured by thermal decomposition of 3-((3-methylbutoxy)carbonylamino-methyl-3,5,5-dimethylcyclohexylaminodecanoic acid (3-mercaptobutyl) ester The isocyanate was reacted using a device as shown in Figure 5. 131506.doc -157- 200948759 The film vaporizing device with a heat transfer area of G] m2 was heated to 27 generations, and the P pressure in θ was about 131 Pa. The 2*) recovered to the sump 406 is heated to 170 C' and supplied to the upper portion of the film 501 via the line 50 at about 200 g/hr. Again, about 2 g/h from the line 51. Feeding monobutyltin dilaurate (manufactured by Sakamoto's Wako Pure Chemical Industries, Ltd.). From the bottom of the membrane smelting apparatus 5〇1, the liquid phase component is discharged from the line 53 and passed through the line 54 to the film. The distillation apparatus 5〇1 is above #. The gas phase component is discharged from the line 5 2 .

向填充有狄克松填料(6叫)之内徑約為5⑽、塔長為2 之連績夕級蒸館塔502的中段,連續進料自薄膜蒸館裝置 =1 &amp;由s路52排出之氣相成分’進行該氣相成分之蒸德 刀離蒸館5離所需之熱量係藉由使塔 ㈣及再沸㈣4循環而供給。連續多級蒸料5Q2之= 部之液體溫度為150。(: ’塔頂壓力約為5〇心。使自連續 夕級蒸館塔502之塔頂館出之氣體經由管路55於冷凝器如 中冷凝’自管路57連續排出。自連續多級蒸顧塔5〇2之低 於管路52之位置的管路59排出氣相成分。 向填充有狄克松填料(6 之内徑約為5 cm、塔長為2 m之連續多級蒸館塔5G5的中段,連續進料自管路59排出之 氣相成分,進行該氣相成分之蒸餾分離。蒸餾分離所需之 熱量係藉由使塔下部之液體經由㈣61及再㈣5〇7循環 而供給,多級蒸館塔505之塔底部之液體溫度為&quot;Ο °c ’塔㈣力約為1&gt;5 kPa。使自連續多級蒸館塔5〇5之塔 頂餾出之氣體經由管路60於冷凝器5〇6中冷凝,經由管路 I31506.doc -158- 200948759 62連續排出至貯槽509。定常狀態之排出量約為90.0 g/hr 〇 運轉40小時後,自管路64,以約44 g/hr將液相成分排出 至貯槽510。 自管路62排出之液體係含有約99.8重量。/〇之異佛爾綱二 異氰酸酯之溶液。相對於己二胺之產率為8 1.5%。 進行10天連續運轉,未發現於薄膜蒸餾裝置501之壁面 上積蓄有附著物。 [實施例13] .步驟(13-1) : N,N’-己二基-雙-胺基甲酸雙(2_乙基己基)酯 之製造 除供給3609 g(12,6 mol)代替碳酸雙(2-甲基丁基)酯之參 考例5之碳酸雙(2-乙基己基)酯、349 g(3.0 mol)己二胺、 5·8 g曱醇納(28%曱醇溶液)而進行反應之外,實施與實施 例1之步驟(1-1)同樣之方法。以液相層析法對反應後之溶 液進行分析,結果以產率98.5%生成N,N,·己二基_雙_胺基 甲酸雙(2-乙基己基)酯。將反應液供給至收容有去除水分 而經調整之酸性離子交換樹脂(AmbeHyst_15(球狀): ROHM &amp; HAAS公司製造)且利用外部套管保溫為8〇(&gt;c之管 柱205中,進行曱醇鈉之中和。將該溶液經由管路運送 至貯槽206。 •步驟(13 -2):低沸成分之德去 使用如圖3所示之裝置’進行醇之館去。 向填充有狄克松填料(6叫)之内徑為5⑽、塔長為2 m 131506.doc -159- 200948759 之連續多級蒸餾塔302的中段,經由預熱器301,自管路31 以約300 g/hr以液狀連續進料回收至貯槽206之混合物。蒸 傲所需之熱量係藉由使塔下部之液體經由管路33及再沸器 304循環而供給。連續多級蒸餾塔3〇2之塔底部之液體溫度 為160 C ’塔頂壓力約為13 kPa。使自連續多級蒸餾塔302 之塔頂餾出之氣體經由管路32於冷凝器303中冷凝,自管 路34以約58 g/hr連續排出至貯槽305。自塔底經由管路 33 ’以約242 g/hr連續排出至貯槽3〇6。 使用如圖4所示之裝置,進行碳酸酯之餾去。 向填充有狄克松填料(6 ιηιηφ)之内徑為5cm、塔長為2m 之連續多級蒸餾塔402的中段,經由預熱器4〇 i,自管路4 i 以約219 g/hr以液狀連續進料回收至貯槽3 〇6之混合物。蒸 德所需之熱量係藉由使塔下部之液體經由管路Μ及再沸器 404循環而供給。連續多級蒸餾塔4〇2之塔底部之液體溫度 為210C ^^頂壓力約為0.13 kPa。使自連續多級蒸館塔 402之塔頂餾出之氣體經由管路42於冷凝器4〇3中冷凝,自 管路44以約145 g/hr連續排出至貯槽4〇5。自塔底經由管路 43 ’以約98 g/hr連續排出至貯槽4〇6。 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約73.9重量%&lt;Ν,Ν,-己二基_雙_胺基甲酸雙 (2-乙基己基)酯》 •步驟(U-3):利用N,N,_己二基冬胺基甲酸雙(2·乙基己 基)酯之熱分解來製造異氰酸酯 使用如圖5所示之裝置進行反應。 13I506.doc .160- 200948759 將傳熱面積為0.1 m2之薄膜蒸餾裝置5〇1加熱至27〇&lt;t, 使内㈣力約為13 kPa。將步驟(13_2)中回收至貯槽4〇6之 混合物加熱至17(TC,經由管路50,以約27〇 g/hH^給至薄 膜蒸發器5(Π之上部。又’自管路51以約22 7 g/hr進料二 月桂酸二丁基錫。自薄膜蒸餾裝置501之底部,將液相成 分自管路53排出,使之經由管路54循環至薄膜蒸餾裝置 501之上部。將氣相成分自管路52排出。 ❹The middle section of the continuous steaming tower 502 filled with Dixon packing (6) having an inner diameter of about 5 (10) and a length of 2 is continuously fed from the thin film steaming device = 1 &amp; s road 52 The gas phase component that is discharged is supplied with the heat required to separate the vapor phase component from the vaporization column 5 by circulating the column (four) and reboiling (four) four cycles. The liquid temperature of the continuous multi-stage steaming material 5Q2 is 150. (: 'The top pressure is about 5 。. The gas from the tower top of the continuous steaming tower 502 is condensed in the condenser via line 55, and is continuously discharged from the line 57. Since continuous continuous multi-stage The gas phase component is discharged from the line 59 of the steam tower 5〇2 below the line 52. The continuous multi-stage steaming is filled with a Dixon packing (6 having an inner diameter of about 5 cm and a tower length of 2 m). In the middle section of the tower 5G5, the gas phase component discharged from the pipeline 59 is continuously fed to perform distillation separation of the gas phase component. The heat required for the distillation separation is performed by circulating the liquid in the lower portion of the tower via (4) 61 and then (4) 5〇7. However, the liquid temperature at the bottom of the tower of the multi-stage steaming tower 505 is &quot;Ο °c 'the tower (four) force is about 1 &gt; 5 kPa. The gas distilled from the top of the continuous multi-stage steaming tower 5〇5 It is condensed in the condenser 5〇6 via the line 60, and continuously discharged to the storage tank 509 via the pipeline I31506.doc-158-200948759 62. The discharge amount in the steady state is about 90.0 g/hr, and after the operation for 40 hours, the self-pipeline 64. The liquid phase component is discharged to the storage tank 510 at about 44 g/hr. The liquid system discharged from the line 62 contains about 99.8 weights. The solution of diisocyanate was 8 1.5% based on the yield of hexamethylenediamine. The continuous operation was carried out for 10 days, and no deposit was accumulated on the wall surface of the thin film distillation apparatus 501. [Example 13] Step (13-1) : Preparation of N,N'-hexanediyl-bis-aminocarbamic acid bis(2-ethylhexyl) ester except for the supply of 3609 g (12,6 mol) instead of bis(2-methylbutyl) carbonate The reaction was carried out in the same manner as in Example 5 except that bis(2-ethylhexyl) carbonate, 349 g (3.0 mol) of hexamethylenediamine, and 5.8 g of sodium decanoate (28% decyl alcohol solution) were reacted. The same procedure as in the step (1-1). The solution after the reaction was analyzed by liquid chromatography, and the result was N,N,·hexanediyl-bis-aminocarbamic acid bis(2- in a yield of 98.5%). Ethylhexyl) ester. The reaction solution was supplied to an acidic ion exchange resin (AmbeHyst_15 (spherical): ROHM & HAAS), which was adjusted to remove moisture, and was kept at 8 Torr by an external sleeve (&gt;c In the column 205, neutralization of sodium decoxide is carried out. The solution is transported to the storage tank 206 via a pipeline. • Step (13-2): the low boiling component is used as shown in Fig. 3. The device shown is 'worked in the middle of the continuous multi-stage distillation column 302 filled with Dixon packing (6) with an inner diameter of 5 (10) and a length of 2 m 131506.doc -159-200948759. The preheater 301 is continuously fed from the line 31 at a rate of about 300 g/hr in a liquid to the mixture of the storage tank 206. The heat required for steaming is performed by passing the liquid in the lower portion of the column through the line 33 and the reboiler. 304 cycles to supply. The liquid temperature at the bottom of the continuous multi-stage distillation column 3〇2 is 160 C 'top pressure of about 13 kPa. The gas distilled from the top of the continuous multi-stage distillation column 302 was condensed in the condenser 303 via line 32, and continuously discharged from the line 34 to the storage tank 305 at about 58 g/hr. From the bottom of the column, it was continuously discharged to the storage tank 3〇6 via the line 33' at about 242 g/hr. The carbonate was distilled off using a device as shown in FIG. The middle section of the continuous multi-stage distillation column 402 filled with Dixon packing (6 ιηιηφ) having an inner diameter of 5 cm and a column length of 2 m was passed through the preheater 4〇i from the line 4 i at about 219 g/hr. The mixture was recovered as a mixture of tanks 3 and 6 in a continuous liquid feed. The heat required for steaming is supplied by circulating the liquid in the lower portion of the column through the line crucible and the reboiler 404. The liquid temperature at the bottom of the continuous multi-stage distillation column 4〇2 is 210 C ^ ^ top pressure is about 0.13 kPa. The gas distilled from the top of the continuous multi-stage steaming tower 402 was condensed in the condenser 4〇3 via the line 42 and continuously discharged to the storage tank 4〇5 from the line 44 at about 145 g/hr. From the bottom of the column, it was continuously discharged to the storage tank 4〇6 via a line 43' at about 98 g/hr. The mixture discharged to the storage tank 406 was subjected to liquid chromatography analysis, and as a result, the mixture contained about 73.9% by weight of &lt;Ν,Ν,-hexanediyl-bis-aminocarbamic acid bis(2-ethylhexyl) ester. Step (U-3): The isocyanate was produced by thermal decomposition of N,N,-hexanediaminocarbamic acid bis(2.ethylhexyl) ester using a device as shown in FIG. 13I506.doc .160- 200948759 A thin film distillation apparatus 5〇1 having a heat transfer area of 0.1 m2 is heated to 27 〇&lt;t, so that the inner (four) force is about 13 kPa. The mixture recovered in the step (13_2) to the storage tank 4〇6 is heated to 17 (TC, via line 50, to the thin film evaporator 5 at about 27 〇g/hH^ (the upper part of the crucible. Again 'from the line 51 Dibutyltin dilaurate was fed at about 22 g/hr. From the bottom of the thin film distillation apparatus 501, the liquid phase component was discharged from the line 53 and circulated through the line 54 to the upper portion of the thin film distillation apparatus 501. The phase components are discharged from line 52.

向填充有狄克松填料(6 mm&lt;)&gt;)之内徑約為5 cm、塔長為2 m之連續多級蒸館塔5。2的中段,連續進料自薄膜蒸館裝置 01,’屋由g路52排出之氣相成分,進行該氣相成分之蒸餾 分離。蒸餾分離所需之熱量係藉由使塔下部之液體經由管 路56及再沸器504循環而供給。連續多級蒸餾塔5〇2之塔底 部之液體溫度為160°C,塔頂壓力約為5〇 kpa。使自連續 多級蒸餾塔502之塔頂餾出之氣體經由管路乃於冷凝器 中冷凝’自管路57連續排出。自連續多級蒸館塔5〇2°之低 於管路52之位置的管路59排出液相成分。 cm、塔長為2 向填充有狄克松填料(6 ππηφ)之内徑約為5 m之連續多級蒸餾塔505的中段,連續進料自管路59排出之 液相成分,進行該氣相成分之蒸餾分離。蒸餾分離所需之 熱量係藉由使塔下部之液體經由管路61及再沸器5〇7循環 而供給。連續多級蒸餾塔505之塔底部之液體溫度為16〇 ’塔頂壓力約為μ kPae使自連續多級蒸館塔5〇5之塔 頂餾出之氣體經由管路60於冷凝器506中冷凝,經由管路 62連續排出至貯槽509。定常狀態之排出量約為I〗^ 131506.doc -161 · 200948759 g/hr。 運轉40小時後,自管路64以約82 g/hr將液相成分排出至 貯槽510。 自管路62排出之液體係含有約99·8重量%之二異氰酸己 二酯之溶液。相對於己二胺之產率為70.9%。 進行10天連續運轉,未發現於薄膜蒸餾裝置501之壁面 上積蓄有附著物。 [實施例14] .步驟(14-1) : Ν,Ν’-己二基·雙-胺基甲酸二丁基酯之製造 除供給3293 g(l8.9 m〇l)代替碳酸雙(2_曱基丁基)酯之參 考例2之碳酸二丁酯、523 g(4.5 m〇1)己二胺、8 7 g甲醇鈉 (28%甲醇溶液)而進行反應之外,實施與實施例1之步驟(1 1)同樣之方法。以液相層析法對反應後之溶液分析,結果 以產率98.8%生成ν,Ν·-己二基-雙-胺基甲酸二(正丁某) 酯。將反應液供給至收容有去除水分而經調整之酸性離子 交換樹脂(Amberlyst-15(球狀):ROHM &amp; HAAS公司製造) 且利用外部套管而保溫為80〇c之管柱2〇5中,進行甲醇鈉 之中和。將該溶液經由管路25運送至貯槽206。 •步驟(14-2):低沸成分之館去 使用如圖3所示之裝置,進行醇之餾去。 向填充有狄克松填料(6 πιπιφ)之内徑為5 cm、塔長為2 m 之連續多級蒸餾塔302的中段,經由預熱器3〇1,自管路” 以約290 g/hr以液狀連續進料回收至貯槽2〇6之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路33及再沸器 131506.doc -162- 200948759 304循環而供給。連續多級蒸餾塔3〇2之塔底部之液體溫度 為150°C,塔頂壓力約為70 kPa。使自連續多級蒸餾塔3〇2 之塔頂館出之氣體經由管路32於冷凝器3〇3中冷凝,自管 路34以約50 g/hr連續排出至貯槽305。自塔底經由管路 33,以約240 g/hr連續排出至貯槽306。 使用如圖4所示之裝置,進行碳酸酯之餾去。 向填充有狄克松填料(6 ηπηφ)之内徑為5 cm、塔長為2 m 之連續多級蒸餾塔402的中段,經由預熱器4〇1,自管路41 ❹ 以約240 g/hr以液狀連續進料回收至貯槽306之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路43及再沸器 404循環而供給。連續多級蒸餾塔4〇2之塔底部之液體溫度 為15〇°C,塔頂壓力約為K3 kPae使自連續多級蒸餾塔4〇2 之塔頂餾出之氣體經由管路42於冷凝4〇3中冷凝,自管路 44以約132 g/hr連續排出至貯槽4〇5。自塔底經由管路43, 以約108 g/hr連續排出至貯槽4〇6。 • 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約98.5重量%iN,N,_已二基_雙_胺基甲酸二 (正丁基)酯。 .步驟(14-3):利用N,N,_己二基_雙_胺基甲酸二(正丁基)西旨 之熱分解來製造異氰酸酯 使用如圖5所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸餾裝置5〇1加熱至27〇(&gt;c, 使内部壓力約為13 kPa。將步驟〇4_2)中回收至貯槽4〇6之 混合物加熱至17(TC,經由管路5〇,以約26〇以心供給至薄 131506.doc -163- 200948759 膜蒸發器501之上部。又,自管路51以約25 6 g/hr進料二 月桂酸二丁基錫。自薄膜蒸餾裝置501之底部,將液相成 分自管路53排出,使之經由管路54循環至薄膜蒸餾裝置 501之上部。將氣相成分自管路52排出。 向填充有狄克松填料(6 之内徑約為5 、塔長為2 ❹ ❹ m之連續多級蒸館塔5G2的中段,連續進料自薄膜蒸飽裝置 501經由g路52排出之氣相成分,進行該氣相成分之蒸餾 分離。蒸餾分離所需之熱量係藉由使塔下部之液體經由管 路56及再沸器504循環而供給。連續多級蒸餾塔5〇2之塔底 部之液體溫度為16(TC,塔頂壓力約為5〇 kpa。使自連續 多級蒸館塔502之塔頂館出之氣體經由管路55於冷凝器5〇3 中V凝自t路57連續排出。自連續多級蒸館塔5〇2之低 於管路52之位置的管路59排出氣相成分。 向填充有狄克松填料(6 之内徑約為5⑽、塔長為2 ^之連續多級蒸館塔5G5的中段,連續進料自管路Μ排出之 氣成刀進行該氣相成分之蒸顧分離。蒸館分離所需之 熱量係藉由使塔下部之液體經由管路61及再沸器507循環 而供給。連續多級蒸館塔5G5之塔底之液體溫度為⑽。c, 塔頂壓力約為U kPa。使自連續多級蒸館塔5〇5之塔頂館 出之氣體經由管路6G於冷凝器则中冷凝,經由管路^連 續排出至貯槽509。定常狀態之排出量約為75.1 g/hr。 運轉40小時後,將液相成分自管路64以約1 至貯槽510。 Λ 自官路62排出之液體係含有約99.8重量%之二異氰酸己 131506.doc -164 - 200948759 二酯之溶液。相對於己二胺之產率為75.1 %。 進行48小時連續運轉’結果發現於薄膜蒸餾裝置5〇1内 之上部及側部之壁面上積蓄有附著物。 [實施例15] .步驟(15-1): N,N'-己二基-雙-胺基甲酸雙(3_甲基丁基)酯 之製造 使用如圖10所示之裝置。 關閉管路D4,自貯槽1001經由管路m,將639 g(5 5 © m〇l)己二胺與64 g水之混合液供給至内容積為5 L之附有擒 板之SUS製反應谷|§ 1004。將該反應器1〇〇4内之液溫調整 成約80°C ’使該反應器1004内減壓至30 kPa,館去水。水 於冷凝器1007中冷凝,經由管路D6排出。 將3333 g(16.5 mol)參考例1之碳酸雙(3_曱基丁基)酯自 貯槽1002經由管路D2供給至該反應器1004,使該反應器 1004内之液體溫度調整成約8(rC。將6 4 g甲醇鈉(日本, ^ 和光純藥工業公司製造,28%甲醇溶液)自貯槽1〇〇3經由管 路D3供給至該SUS製反應器1004中,進行反應。 以液相層析法對反應後之溶液進行分析,結果以產率 99.7%生成N,N,_己二基·雙·胺基甲酸雙(3_曱基丁基)酯。 關閉管路D4,將該反應液供給至收容有去除水分而經調 整之酸性離子交換樹脂(Amberlyst-15(球狀):R0HM &amp; HAAS公司製造)且利用外部套管保溫為肋它之管柱1〇〇5 中,進行甲醇鈉之中和。將該溶液經由管路D5運送至貯槽 1006 〇 131506.doc -165- 200948759 •步驟(1 5-2):低沸成分之顧去 使用如圖3所示之裝置,進行醇之餾去。 向填充有狄克松填料(6 ιηπιφ)之内徑為5 cm、塔長為2111 之連續多級蒸餾塔302的中段,經由預熱器3〇1,自管路31 以約280 g/hr以液狀連續進料回收至貯槽丨〇〇6之混合物。 蒸館所需之熱置係藉由使塔下部之液體經由管路3 3及再沸 器304循環而供給。連續多級蒸餾塔3〇2之塔底部之液體溫 度為160°C,塔頂壓力約為70 kPa。使自連續多級蒸餾塔 〇 3 02之塔頂餾出之氣體經由管路32於冷凝器3 〇3中冷凝,自 管路34以約67 g/hr連續排出至貯槽3〇5。自塔底經由管路 33,以約213 g/hr連續排出至貯槽3〇6。 使用如圖4所示之裝置,進行碳酸酯之餾去。 向填充有狄克松填料(6 ππηφ)之内徑為5 cm、塔長為2 m 之連續多級蒸館塔402的中段,經由預熱器1,自管路41 以約213 g/hr以液狀連續進料回收至貯槽3〇6之混合物。蒸 ^ 顧所需之熱量係藉由使塔下部之液體經由管路43及再沸器 404循環而供給。連續多級蒸餾塔4〇2之塔底部之液體溫度 為160°C ’塔頂壓力約為2.6 kPa。使自連續多級蒸餾塔4〇2 之塔頂餾出之氣體經由管路42於冷凝器403中冷凝,自管 路44以約78 g/hr連續排出至貯槽405。自塔底經由管路 43,以約135 g/hr連續排出至貯槽406。 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約98.2重量%2Ν,Ν,-己二基·雙_胺基甲酸雙 (3 -甲基丁基)醋。 131506.doc -166- 200948759 .步驟(15-3):利用N,N’-己二基·雙-胺基甲酸雙(3_甲基丁 基)酯之熱分解來製造異氰酸酯 使用如圖5所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸餾裝置5〇1(日本,K〇bek〇 eco-solutions公司製造)加熱至27(rc,使内部壓力約為^ kPa ^將步驟(15-2)中回收至貯槽406之混合物加熱至16〇 。(:,經由管路50,以約280 g/hr供給至薄膜蒸發器5〇1之上 部。又,自管路51以約25.2 g/hr進料二月桂酸二丁基錫(日 © 本,和光純藥工業公司製造)。自薄膜蒸餾裝置5〇丨之底 部,將液相成分自管路53排出,使之經由管路54循環至薄 膜蒸餘裝置501之上部。將氣相成分自管路52排出。 向填充有狄克松填料(6 ιηπιφ)之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔502的中段,連續進料自薄臈蒸餾裝置 501經由管路52排出之氣相成分,進行該氣相成分之蒸餾 分離。蒸餾分離所需之熱量係藉由使塔下部之液體經由管 路56及再濟器504循環而供給。連續多級蒸館塔5()2之试底 部之液體溫度為15〇1,塔頂壓力約為5〇 kpa。使自連續 多級蒸德塔502之塔頂館出之氣體經由管路伽冷凝器5〇3 中冷凝自管路57連續排出。自連續多級蒸館塔5〇2之低於 管路52之位置的管路59排出液相成分。 向填充有狄克松填料(6 ππηφ)之内徑約為5 、塔長為2 m之連續多級蒸麟5G5的中段,連續進料自管路π排出之 液相成分,進行該氣相成分之蒸館分離。蒸館分離所需之 熱量係藉由使塔下部之液體經由管路61及再沸器 131506.doc -167· 200948759 而供給。連續多級蒸餾塔505之塔底部之液體溫度為15〇 C ’塔頂麼力約為1.5 kPa。使自連續多級蒸館塔505之塔 頂餾出之氣體經由管路60於冷凝器506中冷凝,經由管路 62連續排出至貯槽509。定常狀態之排出量約為^ g/hr。 運轉40小時後,將液相成分自管路64以約^ g/hr排出至 貯槽510。 自管路62排出之液體係含有約99.8重量%之二異氛酸己 二酯之溶液。相對於己二胺之產率為97.2%。 進行10天連續運轉,未發現於薄膜蒸餾裝置5〇1之壁面 上積蓄有附著物。 [實施例16] •步驟(16-1) : N,N’-己二基-雙-胺基曱酸雙(3_甲基丁基)酯 之製造 將參考例1之碳酸雙(3-曱基丁基)酯放入内容積為1〇 L之 莊型燒瓶中,於該茄型燒瓶上安裝三通旋塞、與填充有螺 旋填料No· 3之蒸餾柱及餾液接受器相連接之附有回流冷卻 器的分餾塔、及溫度計,使系統内進行真空·氮氣置換, 蒸餾純化碳酸雙(3-曱基丁基)酯。於獲得加入量之約3分之 2的餾出物時,使該燒瓶冷卻,結束蒸餾純化。對餾出物 進行1H-NMR測定,結果該餾出物含有約99 9重量%之碳酸 雙(3 -甲基丁基)酯。又,該餾出物中所含有之金屬原子就 鐵、鈷、鎳、鋅、錫、銅、鈦而言,係最低偵測極限 (0.001 ppm)以下。 除供給作為餾出物加以回收之3535 g〇75 m〇i)碳酸雙 131506.doc -168- 200948759 (3-甲基丁基)酯、407 g(3,5 mol)己二胺、6.8 g 甲醇鈉(28% 甲醇溶液)而進行反應之外,實施與實施例1之步驟(丨同 樣之方法❺以液相層析法對反應後之溶液進行分析,、纟士果 以產率94.0%生成N,N'-己二基-雙-胺基曱酸雙(3_甲基丁基) 酉旨。 打開管路24,將該反應液供給至收容有去除水分而經調 整之酸性離子交換樹脂(Amberlyst-15(球狀):&amp; HAAS公司製造)且利用外部套管保溫為8〇 t之管柱 ^ 中,進行甲醇鈉之中和。將該溶液經由管路25運送至貯_ 206。 Τ θ •步驟(16-2):低沸成分之餾去 向連續多級蒸餾塔302之中段,經由預熱器3〇1,自管路The middle section of a continuous multi-stage steaming tower 5.2 filled with Dixon packing (6 mm &lt;)&gt; with an inner diameter of about 5 cm and a tower length of 2 m is continuously fed from the thin film steaming device 01 The gas phase component discharged from the g channel 52 is subjected to distillation separation of the gas phase component. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column through the line 56 and the reboiler 504. The liquid temperature at the bottom of the continuous multi-stage distillation column 5〇2 is 160 ° C, and the pressure at the top of the column is about 5 〇 kpa. The gas distilled from the top of the continuous multi-stage distillation column 502 is condensed in the condenser via a line and continuously discharged from the line 57. The liquid phase component is discharged from the line 59 at a position lower than the line 52 of the continuous multi-stage steaming tower 5 〇 2 °. The middle section of the continuous multi-stage distillation column 505 having an inner diameter of about 5 m filled with a Dixon packing (6 ππηφ) in a 2 direction, and continuously feeding the liquid phase component discharged from the line 59 to carry out the gas. Distillation separation of phase components. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column through the line 61 and the reboiler 5?7. The liquid temperature at the bottom of the column of the continuous multi-stage distillation column 505 is 16 〇 'the top pressure is about μ kPae. The gas distilled from the top of the continuous multi-stage steaming tower 5 〇 5 is passed through the line 60 in the condenser 506. The condensation is continuously discharged to the storage tank 509 via the line 62. The discharge amount in the steady state is about I>^131506.doc -161 · 200948759 g/hr. After 40 hours of operation, the liquid phase component was discharged from the line 64 to the storage tank 510 at about 82 g/hr. The liquid system discharged from line 62 contains a solution of about 99.8% by weight of hexamethylene diisocyanate. The yield based on hexamethylenediamine was 70.9%. The continuous operation was carried out for 10 days, and no deposit was accumulated on the wall surface of the thin film distillation apparatus 501. [Example 14] Step (14-1): Preparation of hydrazine, Ν'-hexanediyl bis-carbamic acid dibutyl ester, except for supplying 3293 g (l8.9 m〇l) instead of carbonic acid double (2) In addition to the reaction of dibutyl carbonate, 523 g (4.5 m〇1) hexamethylenediamine, and 87 g of sodium methoxide (28% methanol solution) of Reference Example 2, the reaction and the examples were carried out. Step 1 (1) The same method. The solution after the reaction was analyzed by liquid chromatography, and as a result, ν, Ν·-hexanediyl-bis-aminocarbamic acid di(n-butyl) ester was obtained in a yield of 98.8%. The reaction liquid was supplied to an acid ion exchange resin (Amberlyst-15 (spherical): manufactured by ROHM &amp; HAAS), which was adjusted to remove moisture, and was kept at 80 〇c by an external sleeve. In the middle, sodium methoxide is neutralized. This solution is transported via line 25 to storage tank 206. • Step (14-2): Low-boiling ingredients are used to distill off the alcohol using the apparatus shown in Figure 3. The middle section of the continuous multi-stage distillation column 302 filled with Dixon packing (6 πιπιφ) having an inner diameter of 5 cm and a column length of 2 m was passed through the preheater 3〇1 from the line "about 290 g/ The hr is continuously fed in liquid form to the mixture of the storage tanks 2 to 6. The heat required for the distillation is supplied by circulating the liquid in the lower portion of the column via the line 33 and the reboiler 131506.doc-162-200948759 304. The liquid temperature at the bottom of the multi-stage distillation column 3〇2 is 150 ° C, and the pressure at the top of the column is about 70 kPa. The gas from the top of the continuous multi-stage distillation column 3〇2 is passed through the line 32 to the condenser. The condensation in 3〇3 was continuously discharged from the line 34 to the storage tank 305 at about 50 g/hr. From the bottom of the column, it was continuously discharged to the storage tank 306 at about 240 g/hr via the line 33. The apparatus shown in Fig. 4 was used. The middle portion of the continuous multi-stage distillation column 402 having an inner diameter of 5 cm and a column length of 2 m filled with a Dixon packing (6 ηπηφ) is passed through a preheater 4〇1, Line 41 回收 is continuously fed in liquid form at about 240 g/hr to the mixture in tank 306. The heat required for distillation is obtained by passing the liquid in the lower portion of the column through the tube. The road 43 and the reboiler 404 are circulated and supplied. The liquid temperature at the bottom of the continuous multi-stage distillation column 4〇2 is 15 〇 ° C, and the pressure at the top of the column is about K3 kPae to make the column from the continuous multi-stage distillation column 4〇2 The top distillate gas is condensed in condenser 4〇3 via line 42 and continuously discharged from line 44 to storage tank 4〇5 at about 132 g/hr. From the bottom of the column via line 43, it is continuous at about 108 g/hr. It is discharged to the storage tank 4〇6. • The mixture discharged to the storage tank 406 is subjected to liquid chromatography analysis, and as a result, the mixture contains about 98.5% by weight of iN,N,-dihexyl-bis-aminocarbamic acid di(n-butyl). Ester. Step (14-3): The isocyanate is produced by thermal decomposition of N,N,-hexanediyl-bis-aminocarbamic acid di(n-butyl), and the reaction is carried out using a device as shown in FIG. The thin film distillation apparatus 5〇1 having a heat transfer area of 0.1 m2 is heated to 27 〇 (&gt;c, the internal pressure is about 13 kPa. The mixture recovered in step 〇4_2) to the storage tank 4〇6 is heated to 17 ( The TC is supplied to the upper portion of the film evaporator 501 via a line 5 以 at about 26 〇. Further, it is fed from the line 51 at about 25 6 g/hr. Dibutyltin laurate. From the bottom of the thin film distillation apparatus 501, the liquid phase component is discharged from the line 53 and circulated to the upper portion of the thin film distillation apparatus 501 via the line 54. The gas phase component is discharged from the line 52. The middle portion of a continuous multi-stage steaming tower 5G2 having a Dixon packing (6 having an inner diameter of about 5 and a tower length of 2 ❹ ❹ m), and a gas phase component continuously discharged from the film suffocating device 501 via the g path 52 Distillation separation of the gas phase component is carried out. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column through the line 56 and the reboiler 504. The liquid temperature at the bottom of the continuous multi-stage distillation column 5〇2 is 16 (TC, the top pressure is about 5 〇kpa. The gas from the tower top of the continuous multi-stage steaming tower 502 is condensed via the line 55. In the 5〇3, the V condensation is continuously discharged from the t-way 57. The gas phase component is discharged from the line 59 of the continuous multi-stage steaming tower 5〇2 which is lower than the line 52. The filling is filled with the Dixon packing (6) The middle section of the continuous multi-stage steaming tower 5G5 having an inner diameter of about 5 (10) and a length of 2 ^, the continuous feeding of the gas discharged from the pipeline to form a steaming separation of the gas phase components. The heat is supplied by circulating the liquid in the lower portion of the column through the line 61 and the reboiler 507. The liquid temperature at the bottom of the continuous multi-stage steaming tower 5G5 is (10). c, the pressure at the top of the column is about U kPa. The gas from the tower top of the continuous multi-stage steaming tower 5〇5 is condensed in the condenser via the line 6G, and continuously discharged to the storage tank 509 via the line ^. The discharge amount in the steady state is about 75.1 g/hr. After 40 hours of operation, the liquid phase component is from about 1 to the storage tank 510 from the line 64. The liquid system discharged from the official road 62 contains about 99.8% by weight of diisocyanide. 131506.doc -164 - 200948759 The solution of the diester was 75.1% based on the yield of hexamethylenediamine. The continuous operation was carried out for 48 hours. The result was found to be accumulated on the wall of the upper part and the side part of the thin film distillation apparatus 5〇1. [Example 15]. Step (15-1): The production of N,N'-hexanediyl-bis-aminocarbamic acid bis(3-methylbutyl) ester was used as shown in FIG. The pipe D4 is closed, and a mixture of 639 g (5 5 © m〇l) hexamethylenediamine and 64 g of water is supplied from the storage tank 1001 through the pipe m to a SUS with a stack of 5 L. Reaction Valley | § 1004. The liquid temperature in the reactor 1〇〇4 was adjusted to about 80 ° C. The pressure in the reactor 1004 was reduced to 30 kPa, and the water was removed from the condenser. The water was condensed in the condenser 1007. The pipe D6 is discharged. 3333 g (16.5 mol) of bis(3-hydrylbutyl) carbonate of Reference Example 1 is supplied from the storage tank 1002 to the reactor 1004 via the line D2 to set the liquid temperature in the reactor 1004. Adjusted to about 8 (rC. 6 4 g of sodium methoxide (manufactured by Wako Pure Chemical Industries, Ltd., 28% methanol solution) was supplied from the storage tank 1〇〇3 to the SUS reaction via the line D3. In 1004, the reaction was carried out. The solution after the reaction was analyzed by liquid chromatography, and N,N,-hexanediylcarbamic acid bis(3-fluorenylbutyl) was produced in a yield of 99.7%. The tube D4 was closed, and the reaction solution was supplied to an acidic ion exchange resin (Amberlyst-15 (spherical): manufactured by ROHM &amp; HAAS) containing moisture removal and insulated by an external sleeve. In the column 1〇〇5, sodium methoxide was neutralized. The solution was transferred to a storage tank 1006 via line D5. 〇 131506.doc -165- 200948759 • Step (1 5-2): Low boiling component removal The alcohol was distilled off using the apparatus shown in FIG. The middle section of the continuous multi-stage distillation column 302 filled with Dixon packing (6 ηηπιφ) having an inner diameter of 5 cm and a column length of 2111 was passed through the preheater 3〇1 from the line 31 at about 280 g/hr. The mixture is recovered as a continuous feed to the tank 6 in liquid form. The heat required for the steaming station is supplied by circulating the liquid in the lower portion of the column through the line 3 3 and the reboiler 304. The liquid temperature at the bottom of the continuous multi-stage distillation column 3〇2 was 160 ° C, and the pressure at the top of the column was about 70 kPa. The gas distilled from the top of the continuous multi-stage distillation column 〇 3 02 was condensed in the condenser 3 〇 3 via line 32, and continuously discharged from the line 34 to the sump 3 〇 5 at about 67 g/hr. From the bottom of the column, through line 33, it was continuously discharged to the storage tank 3〇6 at about 213 g/hr. The carbonate was distilled off using a device as shown in FIG. The middle section of the continuous multi-stage steaming tower 402 filled with Dixon packing (6 ππηφ) having an inner diameter of 5 cm and a tower length of 2 m was passed through the preheater 1 from the line 41 at about 213 g/hr. The mixture was recovered as a mixture of tanks 3〇6 in a continuous liquid feed. The heat required for steaming is supplied by circulating the liquid in the lower portion of the column through the line 43 and the reboiler 404. The liquid temperature at the bottom of the continuous multi-stage distillation column 4〇2 was 160 ° C. The top pressure was about 2.6 kPa. The gas distilled from the top of the continuous multi-stage distillation column 4〇2 was condensed in the condenser 403 via the line 42 and continuously discharged from the line 44 to the storage tank 405 at about 78 g/hr. From the bottom of the column, it is continuously discharged to the storage tank 406 at a flow rate of about 135 g/hr. The mixture discharged to the storage tank 406 was subjected to liquid chromatography analysis, and as a result, the mixture contained about 98.2% by weight of bismuth, hexanediyl bis-aminocarbamic acid bis(3-methylbutyl) vinegar. 131506.doc -166- 200948759 .Step (15-3): The thermal decomposition of N,N'-hexanediyl-bis-aminocarbamic acid bis(3-methylbutyl) ester is used to produce isocyanate. The device shown is reacted. The thin film distillation apparatus 5〇1 (manufactured by K〇bek〇eco-solutions Co., Ltd., Japan) having a heat transfer area of 0.1 m2 was heated to 27 (rc, and the internal pressure was about kPa). The step (15-2) was recovered. The mixture to tank 406 was heated to 16 Torr. (:, supplied to the upper portion of thin film evaporator 5〇1 via line 50 at about 280 g/hr. Again, feed from line 51 at about 25.2 g/hr. Dibutyltin laurate (manufactured by Wako Pure Chemical Industries, Ltd.). From the bottom of the thin film distillation apparatus 5, the liquid phase component is discharged from the line 53 and circulated to the thin film evaporation device 501 via the line 54. The gas phase component is discharged from the line 52. The continuous feeding is carried out to the middle section of the continuous multi-stage distillation column 502 filled with a Dixon packing (6 ηηπιφ) having an inner diameter of about 5 cm and a column length of 2 m. The gas phase component discharged from the thin helium distillation apparatus 501 via the line 52 is subjected to distillation separation of the gas phase component. The heat required for the distillation separation is performed by circulating the liquid in the lower portion of the column through the line 56 and the resolver 504. Supply. The liquid temperature of the test bottom of the continuous multi-stage steaming tower 5 () 2 is 15〇1, and the pressure at the top of the tower is about 5〇kpa. The gas from the tower top of the continuous multi-stage steaming tower 502 is continuously discharged from the pipeline 57 via the pipeline condensing condenser 5〇3. Since the continuous multi-stage steaming tower 5〇2 The liquid phase component is discharged from the line 59 at the position of the line 52. The middle section of the continuous multi-stage steaming 5G5 having an inner diameter of about 5 and a length of 2 m filled with a Dixon packing (6 ππηφ) is continuously advanced. The liquid phase component discharged from the pipeline π is subjected to steam separation of the gas phase component. The heat required for the steaming chamber separation is obtained by passing the liquid in the lower portion of the tower through the line 61 and the reboiler 131506.doc-167· The supply of the liquid at the bottom of the continuous multi-stage distillation column 505 is 15 〇 C 'the top force is about 1.5 kPa. The gas distilled from the top of the continuous multi-stage steaming tower 505 is passed through the line 60. It is condensed in the condenser 506 and continuously discharged to the storage tank 509 via the line 62. The discharge amount in the steady state is about g/hr. After 40 hours of operation, the liquid phase component is discharged from the line 64 at about g/hr to Sump 510. The liquid system discharged from line 62 contains about 99.8% by weight of a solution of diisohexyl hexamethylene diester relative to hexamethylenediamine. The yield was 97.2%. The continuous operation was carried out for 10 days, and no deposit was found on the wall surface of the thin film distillation apparatus 5〇1. [Example 16] • Step (16-1): N,N'-hexanediyl -Production of bis-amino bis(3-methylbutyl) phthalate The bis(3-mercaptobutyl) carbonate of Reference Example 1 was placed in a 1 L-shaped flask. The eggplant type flask is equipped with a three-way cock, a fractionation tower with a reflux condenser connected to a distillation column filled with a spiral packing No. 3 and a distillate receiver, and a thermometer to perform vacuum/nitrogen replacement in the system. The bis(3-mercaptobutyl)carbonate was purified by distillation. When a distillate of about 2/3 of the amount added was obtained, the flask was cooled to complete distillation purification. The distillate was subjected to 1H-NMR measurement, and as a result, the distillate contained about 99% by weight of bis(3-methylbutyl) carbonate. Further, the metal atoms contained in the distillate are below the minimum detection limit (0.001 ppm) in terms of iron, cobalt, nickel, zinc, tin, copper, and titanium. In addition to being supplied as a distillate for recovery, 3535 g 〇 75 m〇i) carbonic acid bis 131506.doc -168- 200948759 (3-methylbutyl) ester, 407 g (3,5 mol) hexamethylenediamine, 6.8 g The reaction was carried out in the same manner as in Example 1 except that the sodium methoxide (28% methanol solution) was reacted. The solution after the reaction was analyzed by liquid chromatography, and the yield was 94.0%. N,N'-hexanediyl-bis-amino decanoic acid bis(3-methylbutyl) is formed. The line 24 is opened, and the reaction liquid is supplied to the acid ion exchange which is adjusted to contain moisture. Resin (Amberlyst-15 (spheroidal): &amp; manufactured by HAAS) and neutralized with sodium methoxide by an external casing held in a column of 8 〇t. The solution was transported to the storage via line 25. 206. Τ θ • Step (16-2): distillation of the low boiling component to the middle of the continuous multi-stage distillation column 302, via the preheater 3〇1, from the pipeline

31以約280 g/hr以液狀連續進料回收至貯槽2〇6之混合物。 自塔底將液相成分經由管路33,以約239 g/hr連續排出至 貯槽306,向連續多級蒸餾塔402之中段,經由預熱器 401,自管路4丨以約239 g/hr以液狀連續進料回收至‘貯槽 3〇6之混合物,除此之外,實施與實施例丨之步驟(1_2)同樣 之方法。使自連續多級蒸餾塔402之塔頂餾出之氣體經由 管路42於冷凝器403中冷凝,自管路44以的/u ^ ^ s崎今4以約157 g/hr連續排 出至貯槽405。自塔底經由管路43,以的,, . _ M約82 g/hr連續排出 至貯槽406。 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約98.4重量%2N,N,_己二基雙胺基甲酸雙 (3-甲基丁基)酯。 131506.doc -169· 200948759 .步驟(16-3):利用N,N'-己二基_雙_胺基曱酸雙(3_曱基丁 基)酯之熱分解來製造異氰酸酯 使用如圖5所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸餾裝置501(日本,K〇bele〇 eco-solutions公司製造)加熱至270°C,使内部壓力約為13 kPa。將步驟(16-2)中回收至貯槽406之混合物加熱至2〇〇 °C ’經由管路5〇以約280 g/hr供給至薄膜蒸發器5〇1之上 部’自管路51以25.3 g/hr進料二月桂酸二丁基錫,除此之 外,實施與實施例1之步驟(1-3)同樣之方法。經由管路 62,以約131 g/hr將液體連續排出至貯槽509。 運轉40小時後,將液相成分自管路64以約77 g/hr排出至 貯槽510。 自管路62排出之液體係含有約99.8重量%二異氰酸己二 酯之溶液。相對於己二胺之產率為91.7%。 進行10天連續運轉’未發現於薄膜蒸餾裝置501之壁面 上積蓄有附著物。 [實施例17] •步驟(17-1) : Ν,Ν·-己二基-雙-胺基曱酸雙(3-甲基丁基)酯 之製造 向參考例1之碳酸雙(3-甲基丁基)酯中添加乙醯丙酮鐵 (Π) ’製備含有11%之作為金屬原子之鐵之碳酸雙(3_曱基 丁基)酯。除供給3434 g(17.0 mol)該碳酸雙(3-甲基丁基) 酯、395 g(3.5 mol)己二胺、6.6 g曱醇鈉(28%甲醇溶液)而 進行反應之外,實施與實施例1之步驟(〗_〗)同樣之方法。 131506.doc -170- 200948759 以液相層析法對反應後之溶液進行分析,結果以產率 92.0%生成N’N,_己二基_雙_胺基甲酸雙(3甲基丁基)酯。 打開管路24,將該反應液供給至收容有去除水分而經調 整之酸性離子交換樹脂(Amberlyst-1 5(球狀):r〇hm &amp; HAAS公司製造)且利用外部套管保溫為8〇 t之管柱2〇5 中’進行甲醇鈉之中和。將該溶液經由管路25運送至貯槽 206 〇 •步驟(17-2):低沸成分之餾去 向連續多級蒸餾塔302之中段,經由預熱器301,自管路 31以約280 g/hr以液狀連續進料回收至貯槽2〇6之混合物, 自塔底將液相成分經由管路33,以約240 g/hr連續排出至 貯槽306 ’向連續多級蒸餾塔4〇2之中段,經由預熱器 4〇1,自管路41以約240 g/hr以液狀連續進料回收至貯槽 306之混合物,除此之外,實施與實施例丨之步驟(1_2)同樣 之方法。使自連續多級蒸餾塔402之塔頂餾出之氣體經由 管路42於冷凝器403中冷凝,自管路44以約160 g/hr連續排 出至貯槽405。自塔底經由管路43,以約80 g/hr連續排出 至貯槽406。31 was continuously fed in liquid form at about 280 g/hr to a mixture of tanks 2〇6. The liquid phase component is continuously discharged from the bottom of the column to the storage tank 306 via line 33 at about 239 g/hr, to the middle of the continuous multi-stage distillation column 402, via the preheater 401, from the line 4 to about 239 g/ The same procedure as in the step (1-2) of Example 实施 was carried out except that the mixture was continuously recovered in a liquid form and returned to the mixture of the storage tank 3〇6. The gas distilled from the top of the continuous multi-stage distillation column 402 is condensed in the condenser 403 via the line 42, and is continuously discharged from the line 44 at / 157 g/hr to the storage tank at about 157 g/hr. 405. From the bottom of the column, via line 43, _ M is continuously discharged to the sump 406 at about 82 g/hr. The mixture discharged to the storage tank 406 was subjected to liquid chromatography analysis, and as a result, the mixture contained about 98.4% by weight of bis(3-methylbutyl) N, hexamethylenediamine. 131506.doc -169· 200948759 .Step (16-3): Preparation of isocyanate by thermal decomposition of N,N'-hexanediyl-bis-amino bis(3-decylbutyl) phthalate The device shown in Figure 5 reacts. A thin film distillation apparatus 501 (manufactured by K〇bele〇 eco-solutions, Japan) having a heat transfer area of 0.1 m2 was heated to 270 ° C to have an internal pressure of about 13 kPa. The mixture recovered in the step (16-2) to the storage tank 406 is heated to 2 ° C. 'Approximately 280 g/hr is supplied via line 5 to the upper portion of the thin film evaporator 5〇1' from the line 51 to 25.3 The same procedure as in the step (1-3) of Example 1 was carried out, except that dibutyltin dilaurate was fed in g/hr. The liquid was continuously discharged to the storage tank 509 via line 62 at about 131 g/hr. After 40 hours of operation, the liquid phase components were discharged from line 64 to storage tank 510 at about 77 g/hr. The liquid system discharged from line 62 contained a solution of about 99.8% by weight of hexamethylene diisocyanate. The yield relative to hexamethylenediamine was 91.7%. The continuous operation was carried out for 10 days. The deposit was not found on the wall surface of the thin film distillation apparatus 501. [Example 17] • Step (17-1): Ν, Ν·-hexanediyl-bis-amino bis(3-methylbutyl) phthalate was produced to the carbonic acid double (3- Ethyl acetonate iron (ruthenium) was added to methyl butyl) ester to prepare bis(3- mercaptobutyl) carbonate containing 11% of iron as a metal atom. In addition to supplying 3434 g (17.0 mol) of the bis(3-methylbutyl) carbonate, 395 g (3.5 mol) of hexamethylenediamine, and 6.6 g of sodium decoxide (28% methanol solution), the reaction was carried out. The same procedure is used in the procedure of Example 1 (〗 〖). 131506.doc -170- 200948759 The solution after the reaction was analyzed by liquid chromatography, and the result was N'N,N-hexanediyl-bis-aminocarbamic acid bis(3 methylbutyl) in a yield of 92.0%. ester. The line 24 was opened, and the reaction liquid was supplied to an acidic ion exchange resin (Amberlyst-1 5 (spherical): r〇hm &amp; HAAS), which was adjusted to remove moisture, and was insulated by an external casing to 8 In the column of 〇t 2〇5, 'sodium methoxide is neutralized. The solution is transported via line 25 to storage tank 206. Step (17-2): distillation of the low boiling component to the middle of continuous multistage distillation column 302, via preheater 301, from line 31 at about 280 g/ The hr is continuously fed to the mixture of the storage tank 2〇6 in a liquid form, and the liquid phase component is continuously discharged from the bottom of the column through the line 33 to the storage tank 306' at a flow rate of about 240 g/hr to the continuous multi-stage distillation column 4〇2. The middle stage is the same as the step (1_2) of the embodiment except that the mixture of the tank 306 is continuously fed from the line 41 at about 240 g/hr in a liquid state via the preheater 4〇1. method. The gas distilled from the top of the continuous multi-stage distillation column 402 was condensed in the condenser 403 via the line 42 and continuously discharged from the line 44 to the storage tank 405 at about 160 g/hr. From the bottom of the column, via line 43, it is continuously discharged to the storage tank 406 at about 80 g/hr.

GG

G 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約98.1重量。/〇之己二基-雙-胺基曱酸雙 (3-甲基丁基)酯。 .步驟(17-3):利用N,N' -己二基_雙_胺基甲酸雙(3_曱基丁 基)酯之熱分解來製造異氰酸酯 使用如圖5所示之裝置進行反應。 131506.doc • 171 - 200948759 將傳熱面積為0.1 m2之薄膜蒸餾裝置5〇1(日本,Kobdco ec〇-s〇iuti〇ns公司製造)加熱至27〇r,使内部壓力約為13 kPP將步驟(17-2)中回收至貯槽4〇6之混合物加熱至 C,經由管路50,以約280 g/hr供給至薄膜蒸發器5〇1之上 部,自管路51以約25.2 g/hr進料二月桂酸二丁基錫除此 之外,實施與實施例1之步驟(1-3)同樣之方法。經由管路 62’以約127 g/hr連續將液體排出至貯槽5〇9。 運轉40小時後,將液相成分自管路64以約85岁匕排出至 貯槽510。 自管路62排出之液體係含有約99 8重量%二異氰酸己二 醋之溶液。相對於己二胺之產率為87 5〇/〇。 進行10天連續運轉,未發現於薄膜蒸餾裝置5〇1之壁面 上積蓄有附著物。 [實施例18] ’步驟(18-1) : Ν,Ν·-己二基·雙·胺基曱酸雙(3_甲基丁基)酯 之製造 除供給2969 g(l4.7 mol)參考例1之碳酸雙(3_甲基丁基) 知、488 g(4.2 mol)己二胺、8.1 g曱醇鈉(280/〇曱醇溶液), 進行反應之外’實施與實施例1之步驟(丨_丨)同樣之方法。 以液相層析法對反應後之溶液進行分析,結果以產率 99.1%生成N,N’-己二基-雙-胺基甲酸雙(3_甲基丁基)酯。 打開管路24 ’將該反應液供給至收容有去除水分而經調 整之酸性離子交換樹脂(Amberlyst-15(球狀):ROHM &amp; HAAS公司製造)且利用外部套管保溫為8(rc之管柱2〇5 131506.doc -172- 200948759 中’進行曱醇鈉之中和。將該溶液經由管路25運送至貯槽 206 〇 •步驟(18-2):低沸成分之餾去 向連續多級蒸餾塔302之中段,經由預熱器301,自管路 31以約300 g/hr以液狀連續進料回收至貯槽2〇6之混合物, 自塔底將液相成分經由管路33,以約221 g/hr連續排出至 貯槽306,向連續多級蒸餾塔402之中段,經由預熱器 401,自管路41以約221 g/hr,以液狀連續進料回收至貯槽 © 306之混合物,除此之外,實施與實施例1之步驟(ι_2)同樣 之方法。使自連續多級蒸餾塔402之塔頂餾出之氣體經由 管路42於冷凝器403中冷凝,自管路44以約104 g/hr連續排 出至貯槽405。自塔底經由管路43以約117 g/hr連續排出至 貯槽406。 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約98_7重量%2Ν,Ν,-己二基-雙-胺基曱酸雙 (3 -曱基丁基)g旨。 〇 .步驟(18-2):利用N,N,-己二基-雙·胺基曱酸二苯酯之熱分 解來製造異氰酸酯 使用如圖11所示之裝置進行反應。 將與圖2之SUS製反應器204相同形狀之SUS製反應器 1104加熱至270°C,使内部壓力約為13 kPa。向該反應器 1104中以280 g/hr供給步驟(18-2)中排出至貯槽4〇6之N,N,-己二基-雙-胺基甲酸雙(3-曱基丁基)酯,同時自貯槽11〇2 經由管路E2,以25.3 g/hr將二月桂酸二丁基錫供給至反應 131506.doc -173- 200948759 器1104。將氣相成分自管路E4排出,向填充有狄克松填料 (6匪幻之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔 U05的中段,連續進料該氣相成分’進行該氣相成分之蒸 餾分離。蒸餾分離所需之熱量係藉由使塔下部之液體經由 管路E6及再沸器1108循環而供給。連續多級蒸餾塔11〇5之 塔底部之液體溫度為150。(:,塔頂壓力約為15 kPa〇使自 連續多級蒸餾塔U02之塔頂餾出之氣體經由管路E5於冷凝 器1107中冷凝,自管路以連續排出。自連續多級蒸餾塔 〇 1105之低於管路E4之位置的管路E9’排出液相成分。 向填充有狄克松填料(6 mm幻之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔1106的中段,連續進料自管路E9排出 之液相成分,進行該液相成分之蒸餾分離。蒸餾分離所需 之熱量係藉由使塔下部之液體經由管路E丨丨及再沸器丨丨^ 2 循環而供給。連續多級蒸餾塔1106之塔底部之液體溫度為 150°C,塔頂壓力約為1.5 kPa。使自連續多級蒸餾塔u〇6 ❹ 之塔頂餾出之氣體經由管路E10於冷凝器1110中冷凝,經 由管路E12,以約88 g/hr連續排出至貯槽丨丨丨丨。自貯槽 11 Π回收之液體係含有約99.8重量%之二異氰酸己二醋之 溶液。相對於己二胺之產率為64.4%。 進行10小時連續運轉’結果發現於該反應器1104之壁面 上積蓄有附著物。 [實施例19]反應器之清洗 對實施例4中發現積蓄有附著物之薄膜蒸餾裝置7〇1進行 清洗操作。將薄膜蒸餾裝置701加熱至l8〇〇c,使薄膜蒸餘 131506.doc -174- 200948759 裝置701内為大氣壓氮氣環境。自管路7❶以約η。。吕心 供給苯盼,自管路83排出,經由管路89將液相成分回收至 貯槽711冑行該操作i小時,結果於薄膜蒸顧裝置Μ之 内部未發現附著物。 [實施例20]〜[實施例27] 連續實施實施例4之操作,每3〇天使用各種清洗溶劑, 以與實施例19同樣之方法實施清洗操作,結果示於表ι。 [比較例1] 步驟(A 1) . N,N -己二基_雙_胺基甲酸雙(3_甲基丁基)酯 之製造 使用如圖9所示之裝置進行反應。 於關閉管路C4及C6之狀態下,自貯槽9〇1經由管路〇, 將2909 g(14.4 mol)參考例】之碳酸雙(3_曱基丁基)酯供給 至内容積為5 L之附有擋板之sus製反應容器9〇4中,自貯 槽902經由管路C2將349 g(13.0 mol)己二胺供給至該反應 ❹ 器904中。將該反應器9〇4内之液體溫度調整成約肋^,自 貯槽903經由管路C3將8.7 g曱醇鈉(28%甲醇溶液)供給至該 SUS製反應器904中,進行反應。 以液相層析法對反應後之溶液進行分析,結果以產率 99.0%生成N,N’-己二基-雙·胺基甲酸雙(3-甲基丁基)酯。 打開管路C4 ’將該反應液供給至收容有去除水分而經調 整之酸性離子交換樹脂(Amberlyst-15(球狀):R〇hm &amp; HAAS公司製造)且利用外部套管保溫為8〇。(:之管柱9〇5 中,進行甲醇鈉之中和。將該溶液經由管路C5運送至貯槽 131506.doc -175- 200948759 906 ° .步驟(A-2):低沸成分之餾去 使用如圖3所示之裝置,進行醇之餾去。 向填充有狄克松填料(6 ιηιηφ)之内徑為5 cm、塔長為2 m 之連續多級蒸餾塔3 02的中段,經由預熱器3〇1,自管路31 以約280 g/hr以液狀連續進料回收至貯槽2〇6之混合物。反 應及蒸餾所需之熱量係藉由使塔下部之液體經由管路33及 再沸器304循環而供給。連續多級蒸餾塔3〇2之塔底部之液 ® 體溫度為l60°c,塔頂壓力約為70 kPa。使自連續多級蒸 館塔302之塔頂傑出之氣體經由管路32於冷凝器303中冷 凝,自管路34以約44 g/hr連續排出至貯槽305。自塔底經 由管路33,以約236 g/hr連續排出至貯槽3〇6。 使用如圖4所示之裝置,進行碳酸酯之餾去。 向填充有狄克松填料(6 mm多)之内徑為5 cm、塔長為2m 之連續多級蒸餾塔402的中段,經由預熱器4〇1,自管路41 ^ 以約23 6 g/hr,以液狀連續進料回收至貯槽306之混合物。 反應及蒸德所需之熱量係藉由使塔下部之液體經由管路4 3 及再沸器404循環而供給。連續多級蒸餾塔4〇2之塔底部之 液體溫度為160°C,塔頂壓力約為2.6 kPa。使自連續多級 4館塔402之塔頂備出之氣體經由管路42於冷凝器403中冷 凝,自管路44以約146 g/hr連續排出至貯槽4〇5。自塔底經 由管路43 ’以約90 g/hr連續排出至貯槽4〇6。 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約97.6重量%之N,N,-己二基-雙-胺基曱酸雙 131506.doc •176- 200948759 (3 -甲基丁基)醋。 .步驟(A-3):利用N,N’-己二基-雙-胺基甲酸雙(3-曱基丁 基)酯之熱分解來製造異氰酸酯 使用如圖5所示之裝置進行反應。 關閉管路54 ’將傳熱面積為〇.1 m2之薄膜蒸館裝置 501(日本,Kobelco eco-solutions公司製造)加熱至 27〇。〇, 使内部壓力約為13 kPa。將步驟(A_2)中回收至貯槽4〇6之 混合物加熱至160乞,經由管路50,以約28〇 g/hr供給至薄 © 膜蒸發器5〇1之上部。又,自管路51以約25.1 g/hr進料二 月桂酸二丁基錫(日本,和光純藥工業公司製造)。自薄臈 蒸餾裝置501之底部,將液相成分自管路53排出經由管 路54回收至貯槽510。將氣相成分自管路52排出。 向填充有狄克松填料(6 ηιηιφ)之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔502的中段,連續進料自薄膜蒸餾裝置 501經由管路52排出之氣相成分,進行該氣相成分之蒸餾 φ 分離。蒸餾分離所需之熱量係藉由使塔下部之液體經由管 路56及再沸器504循環而供給。連續多級蒸餾塔5〇2之塔底 部之液體溫度為150。(: ’塔頂壓力約為5〇 kPa。使自連續 多級蒸餾塔502之塔頂餾出之氣體經由管路55於冷凝器5〇3 中冷凝,自管路57連續排出。自連續多級蒸餾塔5〇2之低 於管路52之位置的管路59排出液相成分。 向填充有狄克松填料(6 ππηφ)之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔505的中段,連續進料自管路59排出之 液相成分,進行該液相成分之蒸餾分離。蒸餾分離所需之 131506.doc •177· 200948759 熱量係藉由使塔下部之液體經由管路61及再沸器5〇7循環 而供給。連續多級蒸餾塔505之塔底部之液體溫度為15〇 °C,塔頂壓力約為丨.5 kPa。使自連續多級蒸餾塔5〇5之塔 頂餾出之氣體經由管路60於冷凝器506中冷凝,經由管路 62連續排出至貯槽509。 •步驟(A-4):重複進行之胺基甲酸酯之製造 使用如圖9所示之裝置’重複胺基曱酸酯之製造。 關閉管路C4,將約220 g排出至貯槽51〇之混合物經由管 ❹ 路供給至反應容器904,自貯槽901經由管路ci將2909 g(14.4 mol)碳酸雙(3_甲基丁基)酯供給至内容積為5 L之附 有擋板之SUS製反應容器904中,自貯槽9〇2經由管路以將 349 g(3.0 mol)己二胺供給至該反應器9〇4中。將該反應器 904内之液體溫度調整為約8〇。〇,自貯槽9〇3經由管路, 將8.7 g曱醇鈉(28%甲醇溶液)供給至該sus製反應器9〇4 中,進行反應。以液相層析法對反應後之溶液進行分析, 〇 結果相對於所供給之己二胺以產率為92 〇%生成N,N,-己二 基-雙•胺基甲酸雙(3-甲基丁基)酯。 打開管路C4,將該反應液供給至收容有去除水分而經調 整之酸性離子交換樹脂(AmberiySt_i5(球狀):ROHM &amp; HAAS公司製造)且利用外部套管保溫為8〇&lt;t之管柱9〇5 中,進行曱酵鈉之中和。將該溶液經由管路C5運送至貯槽 906 〇 •步驟(A-5):低沸成分之餾去 使用如圖3所示之裝置,進行醇之館去。 131506.doc -178· 200948759 向填充有狄克松填料(6 ηιπιφ)之内徑為5 cm、塔長為2 m 之連續多級蒸餾塔302的中段,經由預熱器301,自管路31 以約280 g/hr以液狀連續進料回收至貯槽206之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路33及再彿器 304循環而供給。連續多級蒸館塔302之塔底部之液體溫度 為160°C ’塔頂壓力約為70 kPa。使自連續多級蒸餾塔3〇2 之塔頂餾出之氣體經由管路32於冷凝器303中冷凝,自管 路34以約39 g/hr連續排出至貯槽305。自塔底經由管路 33 ’以約241 g/hr連續排出至貯槽3〇6。 使用如圖4所示之裝置,進行碳酸酯之餾去。 向填充有狄克松填料(6 ιηηιφ)之内徑為5 cm、塔長為2 m 之連續多級蒸餾塔402的中段,經由預熱器40 1,自管路41 以約241 g/hr ’以液狀連續進料回收至貯槽306之混合物。 蒸館所需之熱量係藉由使塔下部之液體經由管路43及再沸 器404循環而供給。連續多級蒸餾塔4〇2之塔底部之液體溫 度為160°C,塔頂壓力約為2.6 kPa。使自連續多級蒸餾塔 402之塔頂餾出之氣體經由管路42於冷凝器403中冷凝,自 管路44以約144 g/hr連續排出至貯槽4〇5。自塔底經由管路 43以約97 g/hr連續排出至貯槽4〇6。 對排出至貯槽406之混合物進行液相層析法分析,結果 5亥混合物含有約94.3重量%之N,N'-己二基-雙-胺基曱酸雙 (3 -甲基丁基)醋。 •步驟(A-6):利用N,N’_己二基-雙-胺基甲酸雙(3_曱基丁 基)醋之熱分解來製造異氰酸酯 131506.doc -179· 200948759 使用如圖5所示之裝置進行反應。 關閉管路54 ’將傳熱面積為〇·ΐ m2之薄膜蒸館裝置5〇丨加 熱至270°C,使内部壓力約為13 kPa。將步驟(A_5)中回收 至貯槽406之混合物加熱至16(TC,經由管路5〇,以約28〇 g/hr供給至薄膜蒸發器501之上部。又,自管路51以約24 2 g/hr進料二月桂酸二丁基錫。自薄膜蒸餾裝置5〇1之底部’ 將液相成分自管路53排出,經由管路64,自貯槽51〇回 收。將氣相成分自管路5 2排出。G The liquid chromatography analysis of the mixture discharged to the storage tank 406 revealed that the mixture contained about 98.1% by weight. /〇 bis-yl-bis-amino bis(3-methylbutyl) decanoate. Step (17-3): Production of isocyanate by thermal decomposition of N,N'-hexanediyl-bis-aminocarbamic acid bis(3- mercaptobutyl) ester The reaction was carried out using a apparatus as shown in Fig. 5. 131506.doc • 171 - 200948759 A thin film distillation unit 5〇1 (manufactured by Kobdco ec〇-s〇iuti〇ns, Japan) with a heat transfer area of 0.1 m2 is heated to 27〇r, so that the internal pressure is about 13 kPP. The mixture recovered in the step (17-2) to the storage tank 4〇6 is heated to C, supplied via line 50 to the upper portion of the thin film evaporator 5〇1 at about 280 g/hr, and from the line 51 at about 25.2 g/ The same procedure as in the step (1-3) of Example 1 was carried out except that hr was fed to dibutyltin dilaurate. The liquid was continuously discharged to the sump 5〇9 via line 62' at about 127 g/hr. After 40 hours of operation, the liquid phase component was discharged from line 64 to the storage tank 510 at about 85 years old. The liquid system discharged from line 62 contains a solution of about 99% by weight of dihexamethylene diisocyanate. The yield relative to hexamethylenediamine was 87 5 〇/〇. The continuous operation was carried out for 10 days, and no deposit was accumulated on the wall surface of the thin film distillation apparatus 5〇1. [Example 18] 'Step (18-1): Ν, Ν·-hexanediyl bis-amino bismuth citrate bis(3-methylbutyl) ester was produced in addition to 2969 g (l4.7 mol) Refer to Example 1 for bis(3-methylbutyl carbonate), 488 g (4.2 mol) hexamethylenediamine, 8.1 g sodium decanoate (280/sterol solution), and carry out the reaction. The steps (丨_丨) are the same. The solution after the reaction was analyzed by liquid chromatography to give N,N'-hexanediyl-bis-aminocarbamic acid bis(3-methylbutyl) ester in a yield of 99.1%. The line 24' was opened to supply the reaction liquid to an acidic ion exchange resin (Amberlyst-15 (spherical): ROHM &amp; HAAS), which was adjusted to remove moisture, and was insulated by an external sleeve to 8 (rc). Pipe column 2〇5 131506.doc -172- 200948759 'Sodium neutralization of sodium decoxide. The solution is transported via line 25 to storage tank 206 〇•Step (18-2): Distillation of low boiling components continuously The middle stage of the distillation column 302 is continuously fed from the line 31 at a flow rate of about 300 g/hr to the mixture of the storage tanks 2 to 6 via the preheater 301, and the liquid phase component is passed through the line 33 from the bottom of the column. It is continuously discharged to the storage tank 306 at about 221 g/hr, to the middle of the continuous multi-stage distillation column 402, and is continuously fed into the storage tank from the line 41 at about 221 g/hr through the preheater 401 to the storage tank. The mixture was subjected to the same procedure as in the step (1) of Example 1. The gas distilled from the overhead of the continuous multi-stage distillation column 402 was condensed in the condenser 403 via the line 42, and the tube was condensed. The passage 44 is continuously discharged to the storage tank 405 at about 104 g/hr. The row is continuously discharged from the bottom of the tower via the line 43 at about 117 g/hr. To the storage tank 406. The mixture discharged to the storage tank 406 was subjected to liquid chromatography analysis, and as a result, the mixture contained about 98-7 wt% of 2 Ν, Ν,-hexanediyl-bis-amino decanoic acid bis(3-mercaptobutyl group). g. Step (18-2): The isocyanate is produced by thermal decomposition of N,N,-hexanediyl-bis-amino phthalic acid diphenyl ester using a device as shown in Fig. 11. The SUS reactor 1104 having the same shape as the SUS reactor 204 of Fig. 2 was heated to 270 ° C to have an internal pressure of about 13 kPa, and supplied to the reactor 1104 at 280 g / hr in the step (18-2). N,N,-hexanediyl-bis-aminocarbamic acid bis(3-mercaptobutyl) ester discharged to the storage tank 4〇6, and simultaneously from the storage tank 11〇2 via the line E2, at 25.3 g/hr Dibutyltin laurate is supplied to the reaction 131506.doc -173- 200948759 1104. The gas phase component is discharged from the line E4, and is filled with a Dixon filler (the inner diameter of the 6 illusion is about 5 cm, and the length of the tower is 2). The middle section of the continuous multi-stage distillation column U05 of m continuously feeds the gas phase component to carry out the distillation separation of the gas phase component. The heat required for the distillation separation is made by making the liquid in the lower part of the column The body is circulated through the line E6 and the reboiler 1108. The temperature of the liquid at the bottom of the continuous multi-stage distillation column 11〇5 is 150. (:, the top pressure is about 15 kPa, so that the continuous multi-stage distillation column U02 The overhead gas is condensed in the condenser 1107 via line E5 and continuously discharged from the line. The liquid phase component is discharged from the line E9' of the continuous multi-stage distillation column 〇 1105 below the line E4. The liquid phase component discharged from the pipe E9 is continuously fed to a middle portion of a continuous multi-stage distillation column 1106 filled with a Dixon packing (6 mm phantom inner diameter of about 5 cm and a column length of 2 m), and the liquid is discharged. Distillation separation of the phase components. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line E and the reboiler. The liquid temperature at the bottom of the continuous multi-stage distillation column 1106 The pressure at the top of the column is about 1.5 kPa at 150 ° C. The gas distilled from the top of the continuous multi-stage distillation column u 〇 6 冷凝 is condensed in the condenser 1110 via line E10, via line E12, to about 88 The g/hr was continuously discharged to the storage tank. The liquid system recovered from the storage tank 11 contained a solution of about 99.8% by weight of diisocyanatohexane diacetate, and the yield relative to hexamethylenediamine was 64.4%. In the case of continuous operation in hours, it was found that deposits were accumulated on the wall surface of the reactor 1104. [Example 19] Cleaning of the reactor The membrane distillation apparatus 7〇1 in which the deposits were found in Example 4 was subjected to a cleaning operation. The thin film distillation device 701 is heated to 18 〇〇c to make the film vaporize 131506.doc -1 74- 200948759 The inside of the device 701 is an atmospheric pressure nitrogen atmosphere. The gas is supplied from the line 7 to about η. The heart is supplied to the benzene, discharged from the line 83, and the liquid phase component is recovered to the storage tank 711 via the line 89. As a result, no deposit was found inside the film evaporation device. [Example 20] to [Example 27] The operation of Example 4 was continuously carried out, and various cleaning solvents were used every 3 days, in the same manner as in Example 19. The cleaning operation was carried out, and the results are shown in Table 1. [Comparative Example 1] Step (A 1) . The production of N,N-hexanediyl-bis-aminocarbamic acid bis(3-methylbutyl) ester was as shown in the figure. The apparatus shown in Figure 9 is reacted. In the state in which the lines C4 and C6 are closed, 2909 g (14.4 mol) of the reference example of bis(3-fluorenylbutyl) is fed from the storage tank 9〇1 via the piping. The ester was supplied to a reaction vessel 9〇4 made up of a baffle with an internal volume of 5 L, and 349 g (13.0 mol) of hexamethylenediamine was supplied from the storage tank 902 to the reaction vessel 904 via a line C2. The temperature of the liquid in the reactor 9〇4 is adjusted to be about ribs, and 8.7 g of sodium decoxide (28% methanol solution) is supplied from the storage tank 903 via the line C3. The reaction was carried out in the reactor 904 made of SUS. The solution after the reaction was analyzed by liquid chromatography, and N,N'-hexanediyl-bis-aminocarboxylic acid bis (3) was produced in a yield of 99.0%. -methyl butyl acrylate. The reaction liquid was supplied to the line C4 ', and the acidic ion exchange resin (Amberlyst-15 (spherical): R〇hm &amp; HAAS), which was adjusted to remove moisture, was supplied. Use an external casing to keep 8 保温. (In the column 9〇5, sodium methoxide is neutralized. The solution is transported via line C5 to the storage tank 131506.doc -175- 200948759 906 °. Step (A-2): Distillation of low boiling components The alcohol was distilled off using a device as shown in Fig. 3. The middle portion of a continuous multi-stage distillation column 312 filled with a Dixon packing (6 ιηιηφ) having an inner diameter of 5 cm and a column length of 2 m was passed through The preheater 3〇1 is continuously fed from the line 31 at a rate of about 280 g/hr to the mixture of the storage tanks 2〇6. The heat required for the reaction and distillation is obtained by passing the liquid in the lower part of the tower through the pipeline. 33 and the reboiler 304 are circulated and supplied. The liquid of the bottom of the continuous multi-stage distillation column 3〇2 is at a temperature of l60 ° C, and the pressure at the top of the column is about 70 kPa. The tower of the continuous multi-stage steaming tower 302 The top gas is condensed in condenser 303 via line 32 and continuously discharged from line 34 to storage tank 305 at about 44 g/hr. From the bottom of the column via line 33, it is continuously discharged to storage tank 3 at about 236 g/hr. 〇6. Distillation of carbonate was carried out using a device as shown in Fig. 4. The inner diameter of 5 cm and the length of the tower were 2 m filled with Dixon packing (6 mm). The middle section of the multi-stage distillation column 402 is recovered from the line 41 ^ at about 23 6 g / hr in a continuous liquid feed to the mixture of the storage tank 306 via the preheater 4 。 1. The heat required for the reaction and steaming The liquid is supplied by circulating the liquid in the lower portion of the column through the line 43 and the reboiler 404. The liquid temperature at the bottom of the column of the continuous multi-stage distillation column 4〇2 is 160 ° C, and the pressure at the top of the column is about 2.6 kPa. The gas prepared from the top of the continuous multistage 4 Pavilion tower 402 is condensed in the condenser 403 via line 42 and continuously discharged from the line 44 to the storage tank 4〇5 at about 146 g/hr. 43' was continuously discharged to the storage tank 4〇6 at about 90 g/hr. The mixture discharged to the storage tank 406 was subjected to liquid chromatography analysis, and as a result, the mixture contained about 97.6% by weight of N,N,-hexanediyl-double -Amino phthalic acid bis 131506.doc • 176- 200948759 (3-methylbutyl) vinegar. Step (A-3): using N,N'-hexanediyl-bis-aminocarboxylic acid bis (3- Thermal decomposition of mercaptobutyl ester to produce isocyanate is carried out using a device as shown in Figure 5. Closed line 54 'film vaporizing device 501 with a heat transfer area of 〇.1 m2 , manufactured by Kobelco eco-solutions) heated to 27 〇. 〇, the internal pressure is about 13 kPa. The mixture recovered in step (A_2) to storage tank 4〇6 is heated to 160 乞, via line 50, to about 28 〇g/hr was supplied to the upper portion of the thin film evaporator 5〇1. Further, dibutyltin dilaurate (manufactured by Wako Pure Chemical Industries, Ltd.) was fed from the line 51 at about 25.1 g/hr. From the bottom of the thin distillation apparatus 501, the liquid phase component is discharged from the line 53 and recovered to the storage tank 510 via the pipe 54. The gas phase components are discharged from line 52. The middle portion of the continuous multi-stage distillation column 502 filled with a Dixon packing (6 ηιηιφ) having an inner diameter of about 5 cm and a column length of 2 m is continuously fed into the gas phase discharged from the thin film distillation apparatus 501 via the line 52. The component is subjected to distillation φ separation of the gas phase component. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column through the line 56 and the reboiler 504. The liquid temperature at the bottom of the continuous multi-stage distillation column 5〇2 was 150. (: 'The top pressure is about 5 kPa. The gas distilled from the top of the continuous multi-stage distillation column 502 is condensed in the condenser 5〇3 via the line 55, and continuously discharged from the line 57. Since continuous The liquid phase component is discharged from the line 59 of the stage distillation column 5〇2 below the line 52. The inner diameter is about 5 cm and the length of the tower is 2 m, which is filled with the Dixon packing (6 ππηφ). The middle stage of the distillation column 505 continuously feeds the liquid phase component discharged from the line 59 to carry out the distillation separation of the liquid phase component. The 131506.doc • 177· 200948759 required for the distillation separation is performed by making the liquid in the lower part of the column It is supplied through the circulation of the line 61 and the reboiler 5〇7. The liquid temperature at the bottom of the continuous multi-stage distillation column 505 is 15 ° C, and the pressure at the top of the column is about 5 5 kPa. The gas distilled from the top of the column 5 is condensed in the condenser 506 via the line 60, and continuously discharged to the storage tank 509 via the line 62. • Step (A-4): repeated use of the urethane for manufacture As shown in Figure 9, the device 'repeated the production of amino phthalate. Close the line C4 and discharge about 220 g to the storage tank 51. The mixture was supplied to the reaction vessel 904 via a pipe, and 2,909 g (14.4 mol) of bis(3-methylbutyl)carbonate was supplied from the storage tank 901 via a line ci to a SUS with a baffle having an internal volume of 5 L. In the reaction vessel 904, 349 g (3.0 mol) of hexamethylenediamine was supplied from the storage tank 9〇2 to the reactor 9〇4 via a line. The temperature of the liquid in the reactor 904 was adjusted to about 8 Torr. 〇, 8.7 g of sodium decoxide (28% methanol solution) was supplied from the storage tank 9〇3 to the sus reactor 9〇4 via a line to carry out a reaction. The solution after the reaction was subjected to liquid chromatography. Analysis, the hydrazine yielded N,N,-hexanediyl-bis-aminocarbamic acid bis(3-methylbutyl) ester in a yield of 92% by weight relative to the supplied hexamethylene diamine. The reaction solution was supplied to an acid ion exchange resin (Amberiy St_i5 (spherical): manufactured by ROHM &amp; HAAS) containing moisture removal, and was insulated by an external sleeve to 8 〇&lt;t. In the middle, the sodium zymide is neutralized. The solution is transported to the storage tank 906 via line C5. Step (A-5): distillation of the low boiling component The apparatus shown in Fig. 3 is used to carry out the alcohol hall. 131506.doc -178· 200948759 Continuous multi-stage distillation tower with a diameter of 5 cm and a length of 2 m filled with Dixon packing (6 ηιπιφ) The middle section of 302, through the preheater 301, is continuously fed from the line 31 at a rate of about 280 g/hr to the mixture of the storage tank 206. The heat required for the distillation is performed by passing the liquid in the lower portion of the column through the line 33. And the Buddha apparatus 304 is cycled and supplied. The liquid temperature at the bottom of the tower of the continuous multi-stage steaming tower 302 is 160 ° C. The top pressure is about 70 kPa. The gas distilled from the top of the continuous multi-stage distillation column 3〇2 was condensed in the condenser 303 via the line 32, and continuously discharged from the line 34 to the storage tank 305 at about 39 g/hr. From the bottom of the column, it was continuously discharged to the storage tank 3〇6 via the line 33' at about 241 g/hr. The carbonate was distilled off using a device as shown in FIG. The middle section of the continuous multi-stage distillation column 402 filled with Dixon packing (6 ηηηιφ) having an inner diameter of 5 cm and a column length of 2 m was passed through the preheater 40 1, from the line 41 at about 241 g/hr. 'The mixture recovered to the storage tank 306 by continuous feed in liquid form. The heat required for the steaming is supplied by circulating the liquid in the lower portion of the column through the line 43 and the reboiler 404. The liquid temperature at the bottom of the continuous multi-stage distillation column 4〇2 was 160 ° C, and the pressure at the top of the column was about 2.6 kPa. The gas distilled from the top of the continuous multi-stage distillation column 402 was condensed in the condenser 403 via the line 42, and continuously discharged from the line 44 to the storage tank 4〇5 at about 144 g/hr. From the bottom of the column, it is continuously discharged to the storage tank 4〇6 via the line 43 at about 97 g/hr. The mixture discharged to the storage tank 406 was subjected to liquid chromatography analysis, and as a result, the mixture of 5 liters contained about 94.3 wt% of N,N'-hexanediyl-bis-amino bismuth citrate bis(3-methylbutyl) vinegar. . • Step (A-6): Preparation of isocyanate using thermal decomposition of N,N'-hexanediyl-bis-carbamic acid bis(3-mercaptobutyl) vinegar 131506.doc -179· 200948759 Use Figure 5 The device shown is reacted. The closing line 54' was heated to 270 ° C by a film evaporation apparatus 5 having a heat transfer area of 〇·ΐ m2 so that the internal pressure was about 13 kPa. The mixture recovered in the step (A_5) to the storage tank 406 is heated to 16 (TC, supplied via line 5〇 to the upper portion of the thin film evaporator 501 at about 28 〇g/hr. Again, from the line 51 at about 24 2 g/hr feed dibutyltin dilaurate. From the bottom of the thin film distillation apparatus 5〇1, the liquid phase component is discharged from the line 53 and recovered from the storage tank 51 via the line 64. The gas phase component is supplied from the line 5 2 discharge.

向填充有狄克松填料(6 ηιιηφ)之内徑約為5 cm、塔長為2 m之連續多級蒸館塔5 〇 2的中段,連續進料自薄膜蒸館裝置 5(H經由管路52排出之氣相成分’進行該氣相成分之蒸館 分離。蒸餾分離所需之熱量係藉由使塔下部之液體經由管 路56及m5G4循環而供給。連續多級蒸館塔如之塔底 部之液體溫度為15(TC,塔頂壓力約為5〇 kpa。使自連續 多級蒸德塔502之塔頂顧出之氣體經由管路55於冷凝器如 中冷凝,自管路57連續排出。自連續多級蒸料502之低 於管路52之位置的管路59排出液相成分。 ㈣騒狄見松填料(6 _φ)之内徑約為5⑽、塔長為2 m之連續多級蒸掏塔5Q5的中部,連續進料自管路π排出之 液相成分’進行該氣相成分之蒸館分離。蒸館分離所需之 熱量係藉由使塔下部之液體經由管㈣及㈣㈣7循環 二壓連力 =蒸顧塔505之塔底部之液體溫度為⑽ 頂顧出之氣體/ U 1使自連續多級蒸館塔505之塔 頂顧出乳體經由管路6〇於冷凝器寫中冷凝,經由管路 131506.doc 200948759 62連續排出至貯槽509。自管路62以約38.7 g/hr回收液 體’該液體含有約99.8重量%之二異氰酸己二酯。 重複上述步驟(A-4)〜步驟(A-6) ’進行1〇天連續運轉,結 果發現於反應器904、管柱905、貯槽906、薄臈蒸館襄置 501、貯槽510、及將該等連接之管路的壁面上積蓄有附著 物。 [比較例2] •步驟(B-l) : 3-((3-甲基丁氧基)羰基胺基-甲基_3,5,5_三甲 ® 基環己基胺基甲酸(3-曱基丁基)酯之製造 除供給3394 g(l 6.8 mol)參考例1之碳酸雙(3-甲基丁基) 酯、596 g(3,5 mol)代替己二胺之3-胺基甲基-3,5,5-三甲基 環己基胺、6.8 g甲醇鈉(28%甲醇溶液)而進行反應之外, 實施與實施例1之步驟(1 -1)同樣之方法。以液相層析法對 反應後之溶液進行分析’結果以產率99.5%生成3·((3-甲基 丁氧基)羰基胺基-甲基-3,5,5-三甲基環己基胺基甲酸(3_甲 基丁基)酯。將反應液供給至收容有去除水分而經調整之The middle section of a continuous multi-stage steaming tower 5 〇2 filled with a Dixon packing (6 ηιιηφ) having an inner diameter of about 5 cm and a tower length of 2 m is continuously fed from the thin film steaming device 5 (H via a tube) The vapor phase component discharged from the channel 52 performs the vapor phase separation of the gas phase component. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line 56 and the m5G4. The continuous multi-stage steaming tower is as The liquid temperature at the bottom of the column is 15 (TC, the pressure at the top of the column is about 5 〇 kpa. The gas taken from the top of the continuous multi-stage steaming tower 502 is condensed in the condenser, for example, via line 55, from line 57. Continuously discharged. The liquid phase component is discharged from the line 59 of the continuous multi-stage steaming material 502 which is lower than the line 52. (4) The inner diameter of the Di Di Song bulking material (6 _φ) is about 5 (10), and the length of the tower is 2 m. The middle part of the continuous multi-stage steaming tower 5Q5 continuously feeds the liquid phase component discharged from the pipeline π to carry out the steaming separation of the gas phase component. The heat required for the steaming chamber separation is made by passing the liquid in the lower part of the tower through the tube. (4) and (4) (4) 7 cycles of two pressures = the temperature of the liquid at the bottom of the tower of the steam tower 505 is (10) the gas taken from the top / U 1 makes it self-connected At the top of the multi-stage steaming tower 505, the milk is condensed via a line 6 in a condenser write, and continuously discharged to a storage tank 509 via a line 131506.doc 200948759 62. It is recovered from the line 62 at about 38.7 g/hr. The liquid 'The liquid contains about 99.8% by weight of hexamethylene diisocyanate. The above steps (A-4) to (A-6) are repeated for 1 day continuous operation, and the results are found in the reactor 904 and the column. 905, the storage tank 906, the thin steaming chamber 501, the storage tank 510, and the deposits on the wall surface of the connected pipes. [Comparative Example 2] • Step (Bl): 3-((3-A) Preparation of (butoxy)carbonylamino-methyl-3,5,5-trimethyl®cyclohexylaminocarbamic acid (3-mercaptobutyl) ester except for the supply of 3394 g (1 6.8 mol) of Reference Example 1 Bis(3-methylbutyl) carbonate, 596 g (3,5 mol) in place of hexamethylenediamine 3-aminomethyl-3,5,5-trimethylcyclohexylamine, 6.8 g sodium methoxide ( The reaction was carried out in the same manner as in the step (1 -1) of Example 1 except that the reaction was carried out in a 28% methanol solution. The solution after the reaction was analyzed by liquid chromatography, and the result was a yield of 99.5%. ((3-methylbutoxy) Amino group - cyclohexyl-3,5,5-trimethyl-ylcarbamic acid (3_-methylbutyl) ester The reaction solution is supplied to the moisture removal is accommodated Adjusted

酸性離子交換樹脂(Amberlyst-15(球狀):ROHM &amp; HAAS 公司製造)且利用外部套管保溫為80°C之管柱205中,進行 甲醇鈉之中和。將該溶液經由管路25運送至貯槽2〇6。 •步驟(B-2):低沸成分之館去 使用如圖3所示之裝置,進行醇之餾去。 向填充有狄克松填料(6 πιπιφ)之内徑為5 cm、塔長為2 m 之連續多級蒸餾塔302的中段,經由預熱器301,自管路31 以約280 g/hr以液狀連續進料回收至貯槽2〇6之混合物。蒸 131506.doc -181 - 200948759 餾所需之熱量係藉由使塔下部之液體經由管路33及再沸器 304循環而供給。連續多級蒸餾塔302之塔底部之液體溫度 為160°C,塔頂壓力約為7〇 kpa。使自連續多級蒸餾塔3〇2 之塔頂餾出之氣體經由管路32於冷凝器3〇3中冷凝,自管 路34以約43 g/hr連續排出至貯槽3〇5。自塔底經由管路 33’以約23 7 g/hr連續排出至貯槽3〇6。 使用如圖4所示之裝置,進行碳酸酯之餾去。 向填充有狄克松填料(6 rnmcj))之内徑為5 cm、塔長為2〇1 © 之連續多級蒸餾塔402的中段,經由預熱器4〇1,自管路41 以約237 g/hr以液狀連續進料回收至貯槽3〇6之混合物。蒸 餾所需之熱量係藉由使塔下部之液體經由管路43及再沸器 404循環而供給。連續多級蒸餾塔4〇2之塔底部之液體溫度 為160 C,塔頂壓力約為2.0 kPa。使自連續多級蒸餾塔4〇2 之塔頂餾出之氣體經由管路42於冷凝器403中冷凝,自管 路44以約138 g/hr連績排出至貯槽405。自塔底經由管路43 以約98 g/hr連續排出至貯槽406。 ❹ 對排出至貯槽406之混合物進行液相層析法分析,結果 該混合物含有約99.0重量%之3-((3·甲基丁氧基)羰基胺基_ 甲基-3,5,5-三甲基環己基胺基甲酸(3_曱基丁基)酯。 •步驟(B-3):利用3-((3-甲基丁氧基)羰基胺基-甲基-3,5,5· 二曱基環己基胺基曱酸(3-子基丁基)醋之熱分解來製造異 氣酸醋 使用如圖5所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸顧裝置501加熱至27CTC, 131506.doc •182· 200948759 使内部壓力約為0.13 kPa。將步驟(B-2)中回收至貯槽4〇6 之混合物加熱至170°C,經由管路50,以約200 g/hr供給至 薄膜蒸發裝置501之上部《又,自管路51以約25 2 ^匕進 料一月桂酸一丁基錫’將氣相成分自管路52排出。自薄膜 蒸餾裝置501之底部幾乎未回收液相成分。 向填充有狄克松填料(6 ηιηιφ)之内徑約為5 cm、塔長為2 m之連續多級蒸餾塔502的中段,連續進料自薄膜蒸傑裝置 501經由管路52排出之氣相成分,進行該氣相成分之蒸餾 © 分離。蒸餾分離所需之熱量係藉由使塔下部之液體經由管 路56及再沸器504循環而供給。連續多級蒸餾塔5〇2之塔底 部之液體溫度為15(TC,塔頂壓力約為5〇 kpa。使自連續 多級蒸餾塔502之塔頂餾出之氣體經由管路”於冷凝器5〇3 中冷凝,自管路57連續排出。自連續多級蒸餾塔5〇2之低 於管路52之位置的管路59排出氣相成分。 向填充有狄克松填料(6 之内徑約為5 、塔長為2 ❹ m之連續多級蒸館塔505的中段,連續進料自管路灣出之An acidic ion exchange resin (Amberlyst-15 (spherical): manufactured by ROHM &amp; HAAS) was neutralized by sodium methoxide in a column 205 which was kept at 80 °C by an external sleeve. This solution is transported via line 25 to storage tank 2〇6. • Step (B-2): Low-boiling ingredients are used to distill off the alcohol using the apparatus shown in Figure 3. The middle section of the continuous multi-stage distillation column 302 filled with Dixon packing (6 πιπιφ) having an inner diameter of 5 cm and a column length of 2 m was passed through the preheater 301 from the line 31 at about 280 g/hr. The liquid continuous feed is recovered to a mixture of tanks 2〇6. Steam 131506.doc -181 - 200948759 The heat required for the distillation is supplied by circulating the liquid in the lower portion of the column through the line 33 and the reboiler 304. The liquid temperature at the bottom of the column of the continuous multi-stage distillation column 302 is 160 ° C, and the pressure at the top of the column is about 7 〇 kpa. The gas distilled from the top of the continuous multi-stage distillation column 3〇2 was condensed in the condenser 3〇3 via line 32, and continuously discharged from the line 34 to the storage tank 3〇5 at about 43 g/hr. From the bottom of the column, it was continuously discharged to the storage tank 3〇6 via the line 33' at about 23 7 g/hr. The carbonate was distilled off using a device as shown in FIG. The middle section of the continuous multi-stage distillation column 402 having an inner diameter of 5 cm and a column length of 2〇1 © filled with a Dixon packing (6 rnmcj), via the preheater 4〇1, from the line 41 237 g/hr was continuously fed in liquid form to a mixture of tanks 3〇6. The heat required for the distillation is supplied by circulating the liquid in the lower portion of the column through the line 43 and the reboiler 404. The liquid temperature at the bottom of the continuous multi-stage distillation column 4〇2 was 160 C, and the pressure at the top of the column was about 2.0 kPa. The gas distilled from the top of the continuous multi-stage distillation column 4〇2 was condensed in the condenser 403 via the line 42, and discharged from the line 44 to the storage tank 405 at a rate of about 138 g/hr. From the bottom of the column, it is continuously discharged to the storage tank 406 via a line 43 at about 98 g/hr.液相 The mixture discharged to the storage tank 406 was subjected to liquid chromatography analysis, and as a result, the mixture contained about 99.0% by weight of 3-((3.methylbutoxy)carbonylamino group_methyl-3,5,5- Trimethylcyclohexylaminocarbamic acid (3-decylbutyl) ester. Step (B-3): using 3-((3-methylbutoxy)carbonylamino-methyl-3,5, 5. Thermal decomposition of dimercaptocyclohexylamino decanoic acid (3-ylidene butyl) vinegar to produce isogastric acid vinegar The reaction was carried out using the apparatus shown in Fig. 5. The film having a heat transfer area of 0.1 m2 was steamed. The apparatus 501 is heated to 27 CTC, 131506.doc • 182. 200948759 to have an internal pressure of about 0.13 kPa. The mixture recovered in the step (B-2) to the storage tank 4〇6 is heated to 170 ° C, via line 50, About 200 g/hr is supplied to the upper portion of the thin film evaporation apparatus 501. Further, the gas phase component is discharged from the line 52 from the line 51 at a rate of about 25 2 ^ 匕 of monobutyltin laurate. From the thin film distillation apparatus 501 The liquid phase component was hardly recovered at the bottom. The middle section of the continuous multi-stage distillation column 502 filled with a Dixon packing (6 ηιηιφ) having an inner diameter of about 5 cm and a column length of 2 m was continuously fed from a thin portion. The vapor phase component discharged from the steaming device 501 via the line 52 performs distillation/separation of the gas phase component. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column through the line 56 and the reboiler 504. The liquid temperature at the bottom of the continuous multi-stage distillation column 5〇2 is 15 (TC, the top pressure is about 5 〇kpa. The gas distilled from the top of the continuous multi-stage distillation column 502 is condensed via the line) Condensed in the vessel 5〇3, continuously discharged from the line 57. The gas phase component is discharged from the line 59 of the continuous multi-stage distillation column 5〇2 below the line 52. The filling is filled with a Dixon packing (6 The middle section of a continuous multi-stage steaming tower 505 with an inner diameter of about 5 and a tower length of 2 ❹ m, continuous feeding from the pipeline bay

氣相成分,進行該氣相成分之蒸餾分離。蒸餾分離所需之 熱量係藉由使塔下部之液體經由管路61及再沸器5〇7循環 而供給。連續多級蒸餘塔505之塔底部之液體溫度為15〇 °C ’塔頂魔力約為Μ kPa。使自連續多級蒸館塔5〇5之塔 頂德出之氣體經由管路6〇於冷凝器5〇6中冷凝,經由管路 62連續排出至貯槽5G9。定常狀態之排出量約^1()1 g/hP 自管路62排出之液體係含有約99·8重量%之異佛爾酮二 異氰酸酯之溶液。相對於己二胺之產率為91.5%。 \3\506Aoc -183 200948759 進行24小時連續運轉,發現於薄膜蒸餾裝置501之壁面 上積蓄有附著物。 [比較例3 ]〜[比較例5 ] 連續進行實施例4之操作,每30天使用各種清洗溶劑, 以與實施例1 5同樣之方法進行清洗操作,結果示於表1。 [表1] 表1清洗操作實施結果The gas phase component is subjected to distillation separation of the gas phase component. The heat required for the distillation separation is supplied by circulating the liquid in the lower portion of the column through the line 61 and the reboiler 5?7. The liquid temperature at the bottom of the tower of the continuous multi-stage steaming tower 505 is 15 〇 ° C. The top magic is about Μ kPa. The gas from the tower of the continuous multi-stage steaming tower 5〇5 is condensed in the condenser 5〇6 via the line 6 and continuously discharged to the storage tank 5G9 via the line 62. The discharge amount in the steady state is about 1 (1 g/hP). The liquid system discharged from the line 62 contains a solution of about 99.8% by weight of isophorone diisocyanate. The yield based on hexamethylenediamine was 91.5%. \3\506Aoc -183 200948759 The continuous operation was carried out for 24 hours, and it was found that deposits were accumulated on the wall surface of the thin film distillation apparatus 501. [Comparative Example 3] - [Comparative Example 5] The operation of Example 4 was continued, and various washing solvents were used every 30 days, and the washing operation was carried out in the same manner as in Example 15. The results are shown in Table 1. [Table 1] Table 1 Cleaning operation implementation results

薄膜蒸餾裝置溫度 清洗溶劑 清洗溶劑供給量 清洗時間 結果 實施例20 200。。 2,6-二甲基苯酚 1000 g/Hr 2小時 〇 實施例21 210°C 2,4,6-三甲基苯酚 800 g/Hr 2小時 〇 實施例22 250°C 2-苯基苯酚 1000 g/Hr 3小時 〇 實施例23 280〇C 2,4-(cr,a-二甲基苄基)苯酚 1200 g/Hr 1小時 〇 實施例24 200°C 4-乙氧基苯酚 1100 g/Hr 2小時 〇 實施例25 270〇C 4-十二烷基苯酚 1300 g/Hr 1小時 〇 實施例26 200°C 水楊酸 800 g/Hr 2小時 〇 實施例27 220〇C 苯曱酸 800 g/Hr 4小時 〇 比較例3 200°C 正十二烷 1000 g/Hr 4小時 X 比較例4 200。。 萘 1000 g/Hr 4小時 X 比較例5 180°C 1-笨基苯酚 1000 g/Hr 4小時 X 〇:清洗操作後,未發現附著物 X :清洗操作後,發現附著物 G [產業上之可利用性] 本發明之異氰酸酯之製造方法可不使用劇毒光氣而高效 率地製造異氰酸酯,因此本發明之製造方法於產業上大為 有用,商業價值較高。 【圖式簡單說明】 圖1係表示本發明之實施例之碳酸酯的連續製造裝置之 概念圖。 圖2係表示本發明之實施例之胺基甲酸酯製造裝置的概 -184- I31506.doc 200948759 念圖。 圖3係表示本發明之實施例之低沸成分餾去裝置的概念 圖。 圖4係表示本發明之實施例之低沸成分餾去裝置的概念 圖。 圖5係表示本發明之實施例之異氰酸酯製造裝置的概念 圖。 圖6係表示本發明之實施例之異氰酸酯製造裝置的概念 圖。 圖7係表示本發明之實施例之胺基曱酸酯製造裝置的概 念圖。 圖8係表示本發明之實施例之異氰酸酯製造裝置的概念 圖。 圖9係表示本發明之實施例之胺基甲酸酯製造裝置的概 念圖。 圖10係表示本發明之實施例之胺基甲酸酯製造裝置的概 念圖。 圖11係表示本發明之實施例之異氰酸酯製造裝置的概念 圖。 【主要元件符號說明】 (圖1) 蒸餾塔 塔型反應器 薄膜蒸餾裝置 101 、 107 102 103 &gt; 106 13l506.doc •185 200948759 104 105 111 、 112 、 117 121 、 123 、 126 、 127 1、2、3、4、5、6、7、 高壓爸 除碳槽 再沸器 冷凝器 管路 8、9、10、11、12、13、 14 、 15 、 16 、 17 (圖2) 〇 201 、 202 、 203 ' 206 204 205 21 、 22 、 23 、 24 、 25 (圖3) 302 305 ' 306 301 303 304 31 、 32 、 33 、 34 、 35 (圖4) 402 405 ' 406 401 403 貯槽 攪拌槽 管柱 管路 連續多級蒸餾塔 貯槽 預熱器 冷凝器 再沸器 管路 連續多級蒸餾塔 貯槽 預熱器 冷凝器 131506.doc -186 200948759 404 41 、 42 、 43 、 44 、 45 (圖5) 501 502 ' 505 508 、 509 、 510 503 、 506 504 ' 507Thin film distillation apparatus temperature Cleaning solvent Cleaning solvent supply amount Cleaning time Result Example 20 200. . 2,6-Dimethylphenol 1000 g/Hr 2 hours 〇 Example 21 210 ° C 2,4,6-Trimethylphenol 800 g/Hr 2 hours 〇 Example 22 250 ° C 2-Phenylphenol 1000 g/Hr 3 hours 〇 Example 23 280 〇C 2,4-(cr,a-dimethylbenzyl)phenol 1200 g/Hr 1 hour 〇 Example 24 200 ° C 4-ethoxyphenol 1100 g / Hr 2 hours 〇 Example 25 270〇C 4-dodecylphenol 1300 g/Hr 1 hour 〇 Example 26 200 °C Salicylic acid 800 g/Hr 2 hours 〇 Example 27 220 〇C benzoic acid 800 g/Hr 4 hours 〇 Comparative Example 3 200 ° C n-dodecane 1000 g/Hr 4 hours X Comparative Example 4 200. . Naphthalene 1000 g/Hr 4 hours X Comparative Example 5 180 ° C 1-Phenylphenol 1000 g/Hr 4 hours X 〇: No attachment X was found after the cleaning operation: Attachment G was found after the cleaning operation [Industrial UTILITY] The method for producing an isocyanate of the present invention can efficiently produce isocyanate without using highly toxic phosgene. Therefore, the production method of the present invention is industrially useful and has high commercial value. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a conceptual view showing a continuous production apparatus of a carbonate according to an embodiment of the present invention. Fig. 2 is a view showing the apparatus for producing a urethane of the embodiment of the present invention - 184 - I31506.doc 200948759. Fig. 3 is a conceptual view showing a low boiling component distillation apparatus according to an embodiment of the present invention. Fig. 4 is a conceptual view showing a low boiling component distillation apparatus according to an embodiment of the present invention. Fig. 5 is a conceptual view showing an apparatus for producing an isocyanate according to an embodiment of the present invention. Fig. 6 is a conceptual view showing an apparatus for producing an isocyanate according to an embodiment of the present invention. Fig. 7 is a conceptual view showing an apparatus for producing an amino phthalate ester of an embodiment of the present invention. Fig. 8 is a conceptual view showing an apparatus for producing an isocyanate according to an embodiment of the present invention. Fig. 9 is a schematic view showing a urethane producing apparatus according to an embodiment of the present invention. Fig. 10 is a conceptual view showing a urethane producing apparatus of an embodiment of the present invention. Fig. 11 is a conceptual view showing an apparatus for producing an isocyanate according to an embodiment of the present invention. [Explanation of main component symbols] (Fig. 1) Distillation column type reactor thin film distillation apparatus 101, 107 102 103 &gt; 106 13l506.doc • 185 200948759 104 105 111 , 112 , 117 121 , 123 , 126 , 127 1 , 2 , 3, 4, 5, 6, 7, high pressure dad removal carbon tank reboiler condenser lines 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 (Figure 2) 〇201, 202 , 203 ' 206 204 205 21 , 22 , 23 , 24 , 25 ( Fig. 3 ) 302 305 ' 306 301 303 304 31 , 32 , 33 , 34 , 35 ( Fig. 4 ) 402 405 ' 406 401 403 sump stirrer column Pipeline continuous multi-stage distillation tower storage tank preheater condenser reboiler line continuous multi-stage distillation tower storage tank preheater condenser 131506.doc -186 200948759 404 41 , 42 , 43 , 44 , 45 ( Figure 5 ) 501 502 '505 508 , 509 , 510 503 , 506 504 ' 507

50 、 51 、 52 、 53 、 54 、 55 、 再沸器 管路 薄膜蒸餾裝置 連續多級蒸餾塔 貯槽 冷凝器 再沸器 管路 56、57、58、59、60、61、50, 51, 52, 53 , 54 , 55 , reboiler line thin film distillation unit continuous multi-stage distillation tower storage tank condenser reboiler line 56, 57, 58, 59, 60, 61,

70 、 71 、 72 、 73 、 74 、 75 、 62 、 63 、 64 (圖6) 701 702 ' 705 ' 708 703 、 706 、 709 704 、 707 、 710 711 薄膜蒸顧裝置 連續多級蒸餾塔 冷凝器 再沸器 貯槽 管路 76 、 77 、 78 、 79 、 80 、 81 、 82 、 83 、 84 、 85 、 86 、 87 、 88 ' 89 (圖7) 721 、 722 、 723 ' 725 724 貯槽 攪拌槽 131506.doc -187- 200948759 A1、A2、A3、A4 (圖8) 管路 801 、 804 、 807 連續多級蒸餾塔 802 、 805 、 808 冷凝器 803 ' 806 &gt; 809 再沸器 B1、B2、B3、B4、B5、 B6、B7、B8、B9、BIO、 B11、B12、B13、B14、B15 © (圖 9) 管路 901 、 902 ' 903 、 906 貯槽 904 攪拌槽 905 管柱 Cl、C2、C3、C4、C5、C6 (圖 10) 管路 1001 、 1002 ' 1003 、 1006 貯槽 1004 攪拌槽 Q 1005 管柱 1007 冷凝器 D1、D2、D3、D4、D5、D6 (圖Π) 管路 1102、 1409 、 1411 貯槽 1104 攪拌槽 1105 、 1106 連續多級蒸餾塔 1107、 1110 冷凝器 131506.doc -188- 200948759 再沸器 管路 1108、 111270, 71, 72, 73, 74, 75, 62, 63, 64 (Fig. 6) 701 702 '705 '708 703, 706, 709 704, 707, 710 711 thin film evaporation unit continuous multi-stage distillation tower condenser Boiling tank line 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88 '89 (Fig. 7) 721, 722, 723 ' 725 724 tank agitation tank 131506.doc -187- 200948759 A1, A2, A3, A4 (Fig. 8) Pipeline 801, 804, 807 Continuous multi-stage distillation column 802, 805, 808 Condenser 803 ' 806 &gt; 809 Reboiler B1, B2, B3, B4 , B5, B6, B7, B8, B9, BIO, B11, B12, B13, B14, B15 © (Fig. 9) Pipes 901, 902 '903, 906 Storage tank 904 Stirring tank 905 Columns Cl, C2, C3, C4 , C5, C6 (Fig. 10) Pipeline 1001, 1002 '1003, 1006 Storage tank 1004 Stirring tank Q 1005 Column 1007 Condenser D1, D2, D3, D4, D5, D6 (Fig.) Pipes 1102, 1409, 1411 Storage tank 1104 Stirring tank 1105, 1106 Continuous multi-stage distillation column 1107, 1110 Condenser 131506.doc -188- 200948759 Reboiler piping 1108, 1112

El 、 E2 、 E3 、 E4 、 E5 、 E6、E7、E8、E9、E10、El, E2, E3, E4, E5, E6, E7, E8, E9, E10,

El 1、E12、E13 〇El 1, E12, E13 〇

131506.doc -189·131506.doc -189·

Claims (1)

200948759 十、申請專利範圍: 1 ·—種異氰酸酯之製造方法,其係使胺基甲酸醋進行熱分 解反應而製造異氰酸酯者,該方法包括如下步驟: 自進行該熱分解反應之熱分解反應器將低沸點成分作 為氣相成分加以回收; 自該熱分解反應器之底部將含有胺基甲酸醋之液相成 分加以回收;以及 將該液相成分之一部分或全部供給至該熱分解反應器 〇 之上部。 2’如凊求項1之製造方法’其中將胺基甲酸g旨於50°C~180 °C之溫度範圍内,供給至熱分解反應器中。 3.如請求項1之製造方法’其中將該胺基曱酸酯作為液體 供給至熱分解反應器中。 4·如請求項1之製造方法’其中該胺基曱酸酯係使碳酸酯 與胺化合物進行反應而製造者。 5'如請求項4之製造方法’其中製造該胺基曱酸酯之反應 〇 器與該熱分解反應器可相同亦可不同,製造該胺基曱酸 s旨之反應器及該熱分解反應器係選自由塔型反應器及槽 型反應器所組成群中的至少一種。 6. 如請求項1之製造方法,其中該熱分解反應器係由選自 由蒸發罐、連續多級蒸餾塔、填充塔、薄膜蒸發器及降 膜蒸發器所組成群中的至少一種所構成者。 7. 如請求項1之製造方法,其中該熱分解反應係以液相進 行0 131506.doc 200948759 8·如印求項4之製造方法,其中自使碳酸酯與胺化合物進 订反應而製造之含有胺基甲酸酯之混合物中、分離一部 刀或全部之羥基化合物及/或一部分或全部之碳酸酯,且 將所得之混合物供給至熱分解反應裝置中。 月求項8之製造方法’其中該分離係藉由蒸館分離而 進行’該蒸餾分離係於180°C以下進行。 1〇·如請求項1之製造方法,其中將自熱分解反應器之底部 回收之液相成分的一部分或全部於5(rc 〜18〇〇c之溫度範 圍内’供給至該熱分解反應器之上部。 11. 如請求項4之製造方法,其中相對於構成胺化合物之胺 基’以化學計量比計,使用1倍以上之碳酸s旨。 12. 如請求項1之製造方法,其中進一步包括以酸清洗附著 於該熱分解反應器之高沸點副產物的步驟。 I3·如請求項12之製造方法,其中該酸係芳香族羥基化合 物。 〇 I4.如請求項4之製造方法,其中該碳酸酯係以下述式〇)所 表示之化合物: [化1] 以〇人〇州⑴ (式中: 12之芳香族 Rl表示碳數為1~12之脂肪族基或碳數為6 基) 15.如請求項14之製造方法,其中該碳酸醋含有 131506.doc 200948759 ppm〜10%之金屬原子。 16. 17. 18. 〇 ©19, 20. 21. 如請求項15之製造方法,甘| ^ ^ 在’其中該金屬原子係選自由鐵、 錄録辞、錫、鋼、銥中所組成群中的一種或複數 種。 如π $項14之裝&amp;方法’其中該碳酸自旨之係破數為 5〜7之脂肪族基或碳數為6〜7之芳香族基。 如請求項4之製造方法’其中該胺化合物係以下述式⑺ 所表示之化合物: [化2] r24nh2) &quot;(2) (式中·· R表示選自由包含選自碳、氧之原子的碳數為卜2〇之 脂肪族基及碳數為6〜20之芳香族基所組成群中的一個 基’其具有與η相等之原子價; η為2〜1〇之整數)。 如請求項18之製造方法,其中該胺化合物係以式(2)所表 示之化合物中η為2之二胺化合物。 如請求項1之製造方法,其中將藉由熱分解反應而生成 並作為氣相成分加以回收之低沸點成分、作為氣體成分 供給至蒸餾塔,於該蒸餾塔中,自該低沸點成分中將來 自胺基甲酸酯之羥基化合物與來自胺基曱酸酯之異氣酸 酯分離。 如請求項1之製造方法’其中自該薄膜蒸發器,由藉由 131506.doc 200948759 熱分解反應而生成並作為氣體成分加以回收之低沸點成 分中’分別回收來自胺基甲酸醋之經基化合物與來自胺 基曱酸酯之異氰酸酯。 22. 如請求項1之製造方法’其中自該液相成分將異氰酸酯 藉由蒸餾分離而加以回收。 23. 如請求項14之製造方法,其中該碳酸酯於式(1)*R〗係碳 數為1〜12之脂肪族基,其係利用包括下述步驟(1)及步驟 (2)之方法而製造: 步驟(1):使具有錫-氧-碳鍵之有機錫化合物與二氧化 碳進行反應而獲得含有碳酸二烷基酯之反應混合物; 步驟(2):將該反應混合物分離,獲得碳酸二烷基酯及 殘留液。 24. 如請求項1 4之製造方法,其中該碳酸酯於式(1)中R1係碳 數為6~12之芳香族基,其係利用除了上述步驟(1)及步驟 (2)以外,包括下述步驟(3)之方法而製造: 步驟(3):將步驟(2)中所分離之碳酸二烷基酯與芳香 族羥基化合物A進行反應而獲得碳酸二芳酯,將副生之 醇加以回收。 25. 如請求項23或24之製造方法,其中該碳酸酯係利用除了 步驟(1)及步驟(2)、或步驟(1)〜步驟(3)以外,包括下述 步驟(4)及步驟(5)之步驟而製造: 步驟(4):使步驟(2)中所獲得之殘留液與醇反應’形 成具有錫-氧-碳鍵之有機錫化合物與水,自反應系去除 該水; 131506.doc 200948759 步驟(5):將步驟(4)中所獲得之具有錫 錫化合物作為步驟⑴之具有錫_氧_碳鍵之有:::, 而再利用。 ’ 1匕合物 26.如請求項25之製造方法’其中將步驟(3)中 為步驟(4)之醇而再利用。 之醇作 2':請求項25之製造方法,其中該經基化合物為醇 時’作為步驟⑷之醇使用,該經基化合物為芳香族經茂 ❹ 化合物之情形時,作為步驟(3)之芳香族經基化合^ 用。 文 其中將所分離之碳酸酯作為碳 其中胺基甲酸酯之熱分解反應 28·如請求項8之製造方法 酸酯再利用。 29·如請求項1之製造方法 係於溶劑不存在下進行 30·如凊求項4之製造方法,其中將胺化合物供給至使碳酸 酯與胺化合物進行反應之反應器時,係於液體狀態下進 行。 3 1.如請求項4之製造方法,其中將胺化合物供給至使碳酸 酯與胺化合物進行反應之反應器時,係作為與醇、水、 或碳酸酯之混合物而進行。 131506.doc200948759 X. Patent application scope: 1 - A method for producing isocyanate, which is a method for producing isocyanate by thermal decomposition reaction of amino carboxylic acid vinegar, the method comprising the following steps: a thermal decomposition reactor from which the thermal decomposition reaction is carried out The low boiling component is recovered as a gas phase component; the liquid phase component containing the amino carboxylic acid vinegar is recovered from the bottom of the thermal decomposition reactor; and a part or all of the liquid phase component is supplied to the thermal decomposition reactor. Upper part. 2'. The production method of claim 1 wherein the urethane is supplied to the thermal decomposition reactor at a temperature ranging from 50 ° C to 180 ° C. 3. The production method according to claim 1, wherein the amino phthalate is supplied as a liquid to the thermal decomposition reactor. 4. The production method according to claim 1, wherein the amino phthalate is produced by reacting a carbonate with an amine compound. 5' The production method of claim 4, wherein the reaction reactor for producing the amino phthalate ester is the same as or different from the thermal decomposition reactor, and the reactor for the preparation of the amino decanoic acid and the thermal decomposition reaction The apparatus is selected from at least one selected from the group consisting of a column reactor and a tank reactor. 6. The production method of claim 1, wherein the thermal decomposition reactor is composed of at least one selected from the group consisting of an evaporation can, a continuous multi-stage distillation column, a packed column, a thin film evaporator, and a falling film evaporator. . 7. The production method according to claim 1, wherein the thermal decomposition reaction is carried out in a liquid phase. The method for producing a product is the same as the method for producing a carbonic acid ester and an amine compound. In the mixture containing the urethane, one or all of the hydroxy compounds and/or part or all of the carbonate are separated, and the resulting mixture is supplied to the thermal decomposition reaction apparatus. The manufacturing method of the monthly item 8 wherein the separation is carried out by steaming, and the distillation separation is carried out at 180 ° C or lower. The manufacturing method of claim 1, wherein a part or all of the liquid phase component recovered from the bottom of the thermal decomposition reactor is supplied to the thermal decomposition reactor in a temperature range of 5 (rc to 18 〇〇c) 11. The manufacturing method according to claim 4, wherein the amount of the carbonic acid is used in a stoichiometric ratio with respect to the amine group constituting the amine compound. 12. The manufacturing method of claim 1, wherein further And a method of producing the high-boiling by-products of the thermal decomposition reactor, wherein the acid-based aromatic hydroxy compound is produced by the method of claim 12, wherein the acid-based aromatic hydroxy compound is produced according to claim 12, wherein the method of claim 4, wherein The carbonate is a compound represented by the following formula: [Chemical Formula 1] The anthracene (1) (wherein the aromatic R1 of the formula 12 represents an aliphatic group having a carbon number of 1 to 12 or a carbon number of 6 15. The method of claim 14, wherein the carbonated vinegar contains 131506.doc 200948759 ppm~10% of a metal atom. 16. 17. 18. 〇©19, 20. 21. In the manufacturing method of claim 15, Gan | ^ ^ where 'the metal atom is selected from the group consisting of iron, recorded, tin, steel, and samarium One or more of them. For example, the π $ Item 14 &amp;method&apos; wherein the carbonic acid has a number of 5 to 7 aliphatic groups or a carbon number of 6 to 7 aromatic groups. The method of claim 4, wherein the amine compound is a compound represented by the following formula (7): [Chemical Formula 2] r24nh2) &quot; (2) (wherein R represents an atom selected from the group consisting of carbon and oxygen; The carbon number is a group of aliphatic groups and an aromatic group having a carbon number of 6 to 20, which has a valence equal to η; η is an integer of 2 to 1 )). The process according to claim 18, wherein the amine compound is a diamine compound wherein η is 2 in the compound represented by the formula (2). The method of claim 1, wherein the low-boiling component which is produced by the thermal decomposition reaction and recovered as a gas phase component is supplied as a gas component to the distillation column, and in the distillation column, from the low-boiling component The hydroxy compound from the carbamate is separated from the isophthalate from the amino phthalate. The method of manufacturing claim 1 wherein the low-boiling component formed by the thermal decomposition reaction of 131506.doc 200948759 and recovered as a gas component is recovered from the base compound of the amino carboxylic acid vinegar, respectively. And isocyanate from an amino phthalate. 22. The method of manufacture of claim 1, wherein the isocyanate is recovered by distillation from the liquid phase component. 23. The method of claim 14, wherein the carbonate is in the formula (1)*R is an aliphatic group having a carbon number of from 1 to 12, which comprises the following steps (1) and (2); The method comprises the steps of: (1): reacting an organotin compound having a tin-oxygen-carbon bond with carbon dioxide to obtain a reaction mixture containing a dialkyl carbonate; and (2): separating the reaction mixture to obtain a carbonic acid Dialkyl esters and residual liquids. 24. The method of claim 14, wherein the carbonate is in the formula (1) wherein R1 is an aromatic group having 6 to 12 carbon atoms, which is used in addition to the above steps (1) and (2), The method comprises the following step (3): Step (3): reacting the dialkyl carbonate separated in the step (2) with the aromatic hydroxy compound A to obtain a diaryl carbonate, which is a by-product The alcohol is recovered. 25. The method of claim 23 or 24, wherein the carbonate system comprises the following steps (4) and steps in addition to the step (1) and the step (2), or the steps (1) to (3). Step (4): Step (4): reacting the residual liquid obtained in the step (2) with an alcohol to form an organotin compound having a tin-oxygen-carbon bond and water, and removing the water from the reaction system; 131506.doc 200948759 Step (5): The tin-tin compound obtained in the step (4) is used as the tin-oxygen-carbon bond of the step (1):::, and reused. The composition of claim 25, wherein the alcohol of the step (4) in the step (3) is reused. The alcohol is 2': the production method of claim 25, wherein when the radical compound is an alcohol, it is used as the alcohol of the step (4), and when the radical compound is an aromatic fluorene compound, as the step (3) Aromatic transalkylation. The carbonate which is separated is used as a carbon. The thermal decomposition reaction of the urethane therein. The production method of the claim 8 is an acid ester reuse. 29. The production method according to claim 1 is carried out in the absence of a solvent. The manufacturing method according to claim 4, wherein the amine compound is supplied to the reactor for reacting the carbonate with the amine compound, is in a liquid state Go on. 3. The production method according to claim 4, wherein the amine compound is supplied to a reactor for reacting the carbonate with the amine compound, and is carried out as a mixture with an alcohol, water or carbonate. 131506.doc
TW097118261A 2008-05-15 2008-05-16 Preparation of isocyanates TWI496763B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TH801002438A TH106752B (en) 2008-05-15 Isocyanate Manufacturing Method
PCT/JP2008/058952 WO2009139062A1 (en) 2008-05-15 2008-05-15 Process for producing isocyanate

Publications (2)

Publication Number Publication Date
TW200948759A true TW200948759A (en) 2009-12-01
TWI496763B TWI496763B (en) 2015-08-21

Family

ID=44870723

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097118261A TWI496763B (en) 2008-05-15 2008-05-16 Preparation of isocyanates

Country Status (1)

Country Link
TW (1) TWI496763B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1317756B1 (en) * 2000-02-03 2003-07-15 Eni Spa INTEGRATED PROCEDURE FOR THE PREPARATION OF AROMATIC ISOCYANATES AND PROCESSES FOR THE REALIZATION OF THE RELATIVE INTERMEDIATE PHASES.
ES2367797T3 (en) * 2003-06-27 2011-11-08 Asahi Kasei Chemicals Corporation METHOD FOR PRODUCING AN AROMATIC CARBONATE.

Also Published As

Publication number Publication date
TWI496763B (en) 2015-08-21

Similar Documents

Publication Publication Date Title
JP5592786B2 (en) Isocyanate production method
KR101363232B1 (en) Process for producing isocyanate using diaryl carbonate
JP4981997B2 (en) Method for producing isocyanate using composition containing carbamate and aromatic hydroxy compound, and composition for transporting and storing carbamate
JP4257798B2 (en) Process for producing alkyltin alkoxides
JP5591289B2 (en) Isocyanate production method
TWI296617B (en)
KR101002385B1 (en) Method for producing isocyanate
TW201107279A (en) Method for producing N-substituted carbamate ester, method for producing isocyanate using the N-substituted carbamate ester, and a composition comprising N-substituted carbamate ester and aryl hydroxy compound for transferring and storing N-substituted c
TWI374145B (en)
TW200948759A (en) Process for producing isocyanate
JP5650777B2 (en) Method for producing isocyanate using diaryl carbonate
TW200948760A (en) Process for producing isocyanate using diaryl carbonate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees