TW200948760A - Process for producing isocyanate using diaryl carbonate - Google Patents
Process for producing isocyanate using diaryl carbonate Download PDFInfo
- Publication number
- TW200948760A TW200948760A TW097118263A TW97118263A TW200948760A TW 200948760 A TW200948760 A TW 200948760A TW 097118263 A TW097118263 A TW 097118263A TW 97118263 A TW97118263 A TW 97118263A TW 200948760 A TW200948760 A TW 200948760A
- Authority
- TW
- Taiwan
- Prior art keywords
- isomer
- phenol
- reaction
- reactor
- compound
- Prior art date
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
200948760 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種以碳酸二芳酯為原料之異氰酸酯之製 造方法。 【先前技術】200948760 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to a method for producing an isocyanate using a diaryl carbonate as a raw material. [Prior Art]
異氰酸酯廣泛用作聚胺基曱酸酯發泡體、塗料、接著劑 等之製造原料。異氰酸醋之主要工業製造法係使胺化合物 與光氣進行反應(光氣法),全世界之幾乎全部生產量係藉 由光氣法生產。然而,光氣法存在許多問題。 第1,使用大量光氣作為原料。光氣之毒性極強,為了 防止從業者接觸光氣’在其操作中需加以特別注意,亦需 要用以去除廢棄物之特別裝置。 第2,於光虱法中’生成大量作為副產物之腐蝕性強之 氯化氫&需要用以去除該氯化氫之處理,而且所製造之 異氰酸S日中大多含有水解性氣’因而於使用以光氣法所製 W的異氰SiL S日之情形時,有時會對聚胺基甲酸醋產品之耐 候性、财熱性帶來不良影響。 签於如此背景,囊去如枝 茶者期望一種不使用光氣之異氰酸 合物之製造方法β作么丁 卜马不使用光氣之異氰酸酯化合物 造方法之一例,提4*古 ®有利用胺基曱酸酯的熱分解之方 很早以來就已知藉由 田私基甲酸酯的熱分解而獲得異# 與羥基化合物(例如,交 #甘丄 參照非專利文獻1)。其基本反肩 述式而例示。 131505.doc 200948760 [化1] R(NHCOOR% —- R(NCO)a + a R<〇H ⑴ (式中; R表示a價之有機殘基, R'表示1價之有機殘基, a表示1以上之整數)。 胺基甲酸酿之中,醋基為芳香族基之胺基甲酸芳醋具 有’與S旨基為燒基之胺基甲酸烧g|相比,可將熱分解反應 H 之溫度設定為較低(參照專利文獻丨)。 作為製造胺基甲酸芳S旨之方法,目前為止記载有各種方 法。 根據專利文獻2之記載’記載有藉由於苯、二讀、四 氣化碳等溶劑存在下,使垸基單胺與碳酸二芳酿進行反 應,而以90〜95%之產率獲得相當之烷基單胺基甲酸芳 曰又於專利文獻3中長:出自甲基胺與碳酸二苯酯連續 製造甲基胺基甲酸苯酯之方法。 ❹ 然而,該等方法均係使用低級烷基單胺作為胺,而製造 烷基胺基甲酸芳酯之方法,並非製造烷基聚胺基曱酸芳酯 之方法。自燒基二胺或烷基三胺等烷基聚胺製造對應之院 基聚胺基甲酸芳酯之情形時,存在與使用烷基單胺之情形 時完全不同之困難的問題。其原因在於,烷基單胺之情形 時,除以式(2)所表示之反應之外,只不過因以式(3)及/戋 式(4)所表不之副反應而生成作為副產物之脲化合物,而烷 基版烧基二胺等院基聚胺之情形時’例如生成作為副 131505.doc 200948760 產物之以式⑺及/或式(6)及/或式(7)所表示之化合物等非 常多種之脲化合物。 [化2]Isocyanates are widely used as raw materials for the production of polyamino phthalate foams, paints, and adhesives. The main industrial manufacturing process for isocyanic acid is to react an amine compound with phosgene (phosgene method), and almost all of the world's production is produced by the phosgene method. However, the phosgene method has many problems. First, a large amount of phosgene is used as a raw material. The phosgene is extremely toxic, and in order to prevent the practitioner from coming into contact with phosgenes, special care is required in its operation, and special equipment for removing waste is also required. In the second method, in the optical method, a large amount of highly corrosive hydrogen chloride is produced as a by-product, and a treatment for removing the hydrogen chloride is required, and the isocyanate produced in the day contains a hydrolyzable gas. In the case of the isocyanide SiL S produced by the phosgene method, the weather resistance and the heat recovery of the polyurethane vinegar product may be adversely affected. In such a background, a person who wants to use a phthalosene-free isocyanate compound is expected to be a method for producing a isocyanate compound which does not use phosgene, and an example of a method for producing an isocyanate compound which does not use phosgene is mentioned. The thermal decomposition of the amino phthalic acid ester has long been known to obtain an iso- and hydroxy compound by thermal decomposition of the retinoic acid ester (for example, ##甘丄refer to Non-Patent Document 1). It is exemplified by its basic anti-shoulder. 131505.doc 200948760 R (NHCOOR% - R(NCO)a + a R<〇H (1) (wherein R represents an organic residue of a valence, and R' represents a monovalent organic residue, a It is an integer of 1 or more.) Among the aminocarboxylic acid, the aromatic carboxylic acid aryl vinegar having an aromatic group has a thermal decomposition reaction as compared with the amino acid calcined g of the S group. The temperature of H is set to be low (refer to the patent document 丨). As a method for producing a urethane sulfonate, various methods have been described so far. According to the description of Patent Document 2, it is described by benzene, second reading, and fourth. In the presence of a solvent such as vaporized carbon, the mercapto monoamine is reacted with the diaryl carbonate to obtain a corresponding alkyl monoamine carbamate in a yield of 90 to 95%, which is further in Patent Document 3: A method for continuously producing methyl phenyl carbamate with methylamine and diphenyl carbonate. ❹ However, these methods use a lower alkyl monoamine as an amine, and a method for producing an alkyl aryl carbamate is not A method for producing an alkyl polyamino phthalic acid aryl ester, which is produced from an alkyl polyamine such as an alkyl diamine or an alkyl triamine. In the case of a polyalkyl aryl carbamate, there is a problem that is completely different from that in the case of using an alkylmonoamine. The reason is that, in the case of an alkyl monoamine, it is represented by the formula (2). In addition to the reaction, a urea compound which is a by-product is formed by a side reaction represented by the formula (3) and / (4), and a polyalkylamine such as an alkyl group is a diamine. For example, a very wide variety of urea compounds such as a compound represented by the formula (7) and/or the formula (6) and/or the formula (7) which are products of the sub-131505.doc 200948760 are produced.
R*nh2 + Ακ〇Λ〇.ΑγR*nh2 + Ακ〇Λ〇.Αγ
RWHCOOAr + ArOH 2 R'NH2 A 人_ΑΓ (2) Ο R,、人..RWHCOOAr + ArOH 2 R'NH2 A 人_ΑΓ (2) Ο R,, person..
R' + 2 ArOH R'NH2 + R'NHCOOArR' + 2 ArOH R'NH2 + R'NHCOOAr
O h2n^r-nh4_nh^_r^nh2 (3) (4) (5)O h2n^r-nh4_nh^_r^nh2 (3) (4) (5)
O o o R'—NH-C-OAr (6)O o o R'—NH-C-OAr (6)
Ar〇-C-HN+-R*~NH-^NH\ R,_ o II NH-C—OAr (7) (式中; R表示1價之烧基或芳香族基,Ar〇-C-HN+-R*~NH-^NH\ R,_ o II NH-C-OAr (7) (wherein R represents a monovalent alkyl or aromatic group,
Ar表示1價之芳香族基, p、q、Γ分別表示1以上之整數)。 即’具有如下問題:由於該等各種脲化合物之副生成反 應等’而降低作為目標化合物之烷基聚胺基甲酸芳酯之產 率;及非常難以自與該等脲化合物或聚脲化合物之混合物 分離、純化目標生成物。 由此,自烷基聚胺與碳酸二芳酯製造烷基聚胺基甲酸芳 西旨之嘗試非常少,但有過幾次報告。例如,根據專利文獻 4之說明書,提出利用如下方式而獲得1,6-六亞甲基二胺基 甲酸苯酯之方法:向使1莫耳碳酸二苯酯溶解於5倍量之苯 131505.doc 200948760 中之;谷液中 邊滴加使1莫耳之1,6-六亞1f基二胺溶解於 5倍量之苯中之溶液,一邊於8〇艽下加以攪拌進行反應。 根據該專利說明書,記載有為使反應有利地進行,重要的 疋使用儘可月15使作為生成物之〗,6•六亞甲基二胺基甲酸苯 酉曰不;谷解之;谷劑作為反應溶劑,作為如此之溶劑,較好的 疋如本或氣苯之類之烴類。 Ο Ο 自此種觀點考慮,於非專利文獻3中,藉由使用4〇瓜乙甲 苯作為反應溶劑,使0.01莫耳之碳酸二苯酯與〇 〇〇5莫耳之 1,6-六亞甲基二胺進行長達2〇小時之反應,而獲得目標 1,6-六亞甲基二胺基甲酸苯酯。然而,即便使用如此大量 甲苯,產率亦為93%,存在生成作為副產物之必須分離之 脲化合物或聚腺化合物之問題。 又,於專利文獻5中記載有二胺基甲酸酯化合物之製造 法:於質子酸存在下,使碳酸二芳酯與胺化合物進行反 應。然而,於工業上實施專利文獻5中記載之製造法之情 形時,二胺基曱酸醋化合物之產率並不充分,且為抑制副 反應,必須於低溫下進行反應,存在反應時間變長之缺 於專利文獻6中記載有如下方法:於2_羥基吡啶等雜環 三級胺存在下,使碳酸二芳酯與芳香族聚胺進行反應。該 方法存在需要使用與反應基質等莫耳以上的高價觸媒,而 且反應速度較低之問題。 根據專利文獻7,記載有芳香族胺基甲酸酯之合成方 法:使芳香族胺與碳酸二芳酯,於路易斯酸觸媒存在下, 131505.doc 200948760 於溫度為14(TC〜23(TC下進行反應,該方法中,路易斯酸 之使用亦存在腐蝕裝置之問題,或難以自生成物分離、回 收。 於專利文獻8中’記載有烷基聚胺基甲酸芳酯之製造方 法’其特徵在於,使烷基聚胺與碳酸二芳酯進行反應而製 造院基聚胺基甲酸芳酯時,相對於烧基聚胺之胺基每1當 量’使用1〜3當量之碳酸二芳酯,使用芳香族羥基化合物 作為反應溶劑,於實質均勻之溶解狀態下使反應進行。根 © 據該專利文獻,以通常為96%以上,較佳實施態樣中為 98%以上之高產率,高選擇率獲得烷基聚胺基甲酸芳酯。 然而’雖為極少量,但確認生成脲化合物,因此無法完全 避免生成脲化合物。 另一方面,胺基甲酸酯之熱分解反應中,易於同時發生 胺基甲酸酯之不良之熱改性反應,或藉由該熱分解而生成 之異氰酸酯之縮合反應等各種不可逆副反應。作為副反 應’例如可列舉:以下述式(8)所表示之形成脲鍵之反應, ❹ 或例如以下述式(9)所表示之生成碳二醯亞胺類之反應,或 例如以下述式(10)所表示之生成異氰尿酸酯類之反應(參照 非專利文獻1、2)。 [化3] || || ^| |_| || |_| || 卜N-C-O—R. + R*—O-C-N—R ^ R—N-C—N—R + R.—〇-C—〇—R. ( 8 ) R〜N=C=0 + 0=C=N—R -R一N=C=N—R + C〇2 (9) 1315〇5.{j〇, •10· 200948760 (1 0) 降該等副反應不僅導致目標異氛酸酿之產率或選擇率下 降,而且特別於製造聚異氰酸酯時,罝 形物而使反應器閉塞等難以長期操作之情形。物狀固 作為以胺基甲酸醋為原料之異氰酸_之製造方法, 為止提出有各種方法。Ar represents a monovalent aromatic group, and p, q, and Γ respectively represent an integer of 1 or more). That is, 'there is a problem that the yield of the alkyl polyamino carboxylate as the target compound is lowered due to the by-product reaction of the various urea compounds, etc.'; and it is very difficult to self-contain the urea compound or the polyurea compound. The mixture is separated and the target product is purified. Thus, there have been very few attempts to produce alkyl polyaminocarbamate from alkyl polyamines and diaryl carbonates, but several reports have been made. For example, according to the specification of Patent Document 4, a method of obtaining phenyl 1,6-hexamethylenediaminecarboxylate by dissolving 1 mol of diphenyl carbonate in 5 times amount of benzene 131505 is proposed. Doc 200948760; a solution in which 1 mol of 1,6-hexa-1f-diamine is dissolved in 5 times of benzene is added dropwise to the solution, and the reaction is carried out while stirring at 8 Torr. According to the patent specification, it is described that in order to carry out the reaction favorably, an important hydrazine can be used as a product, and hexamethylenediamine benzoate is not used; As the reaction solvent, as such a solvent, a hydrocarbon such as a benzene or a benzene is preferable. Ο Ο From this point of view, in Non-Patent Document 3, 0.01 mol of diphenyl carbonate and 〇〇〇5 mol of 1,6-hexa are used by using 4 lysine as the reaction solvent. The methyldiamine was reacted for up to 2 hours to obtain the target phenyl 1,6-hexamethylenediaminecarboxylate. However, even with such a large amount of toluene, the yield is 93%, and there is a problem that a urea compound or a polyglycine which must be separated as a by-product is formed. Further, Patent Document 5 describes a method for producing a diurethane compound by reacting a diaryl carbonate with an amine compound in the presence of a protic acid. However, when the manufacturing method described in Patent Document 5 is industrially carried out, the yield of the diamino phthalic acid vinegar compound is not sufficient, and in order to suppress the side reaction, the reaction must be carried out at a low temperature, and the reaction time becomes long. In the case of Patent Document 6, there is described a method in which a diaryl carbonate is reacted with an aromatic polyamine in the presence of a heterocyclic tertiary amine such as 2-hydroxypyridine. This method has a problem that it is necessary to use a high-priced catalyst such as a reaction substrate or the like, and the reaction rate is low. According to Patent Document 7, a method for synthesizing an aromatic urethane is disclosed: an aromatic amine and a diaryl carbonate in the presence of a Lewis acid catalyst, 131505.doc 200948760 at a temperature of 14 (TC~23 (TC) In the method, the use of the Lewis acid also has a problem of the etching apparatus, or it is difficult to separate and recover from the product. In Patent Document 8, 'the manufacturing method of the alkyl polyamino aryl ester is described'. In the case where the alkyl polyamine is reacted with a diaryl carbonate to produce an aromatic aryl carbamate, 1 to 3 equivalents of diaryl carbonate are used per 1 equivalent of the amine group of the polyamine. The aromatic hydroxy compound is used as a reaction solvent to carry out the reaction in a substantially homogeneous dissolved state. According to the patent document, it is usually 96% or more, and in a preferred embodiment, it is 98% or more. The rate is obtained as an alkyl aryl aryl ester. However, although it is a very small amount, it is confirmed that a urea compound is formed, so that the formation of a urea compound cannot be completely avoided. On the other hand, in the thermal decomposition reaction of the urethane, it is easy At the same time, various irreversible side reactions such as a thermal modification reaction of a urethane defect or a condensation reaction of an isocyanate produced by the thermal decomposition occur, and examples of the side reaction are represented by the following formula (8). The reaction for forming a urea bond, ❹ or a reaction for producing a carbodiimide represented by the following formula (9), or a reaction for producing an isocyanurate represented by the following formula (10), for example (refer to Non-patent literature 1, 2). [Chemical 3] || || ^| |_| || |_| || 卜NCO-R. + R*—OCN—R ^ R—NC—N—R + R .—〇-C—〇—R. ( 8 ) R~N=C=0 + 0=C=N—R —R—N=C=N—R + C〇2 (9) 1315〇5.{ J〇, •10· 200948760 (1 0) The reduction of these side reactions not only leads to a decrease in the yield or selectivity of the target lyophilic acid, but also makes it difficult to long-term occlusion of the reactor, especially in the manufacture of polyisocyanates. In the case of the operation, the method of producing a solid is used as a method for producing isocyanic acid based on amino carboxylic acid vinegar, and various methods have been proposed.
=據專敎獻9,芳香族二異氰㈣及/或聚異氰酸 Γ以下2個步驟而製造。具體而言,第1步驟中,於觸媒 存在下或料在下,以及膝及醇存在下或^存在下,使芳 香族一殊胺及/或芳香族—級聚胺與基胺基甲酸醋進 仃反應,生成芳基二胺基甲酸酿及/或芳基聚胺基甲酸 醋,視需要去除所產生之氨。第2步驟中,藉由芳基二胺 基甲酸S旨及/或芳基聚胺基甲_之熱分解,而獲得芳香 族異氰酸酯及/或芳香族聚異氰酸酯。= Manufactured according to the special two, aromatic diisocyanate (tetra) and / or polyisocyanate Γ two steps. Specifically, in the first step, an aromatic amine and/or an aromatic-grade polyamine and a urethane amide are used in the presence or absence of a catalyst, and in the presence or absence of a knee and an alcohol. The hydrazine reaction is carried out to form an aryldiaminecarboxylic acid brewing and/or an arylpolyurethane carboxylic acid, and the ammonia produced is removed as needed. In the second step, an aromatic isocyanate and/or an aromatic polyisocyanate is obtained by thermal decomposition of an aryldiaminecarboxylic acid S and/or an arylpolyaminocarbazole.
藉由(環式)脂肪族,以及特別是芳香族之單胺基甲酸酯 及二胺基甲酸自旨之熱分解而產生相對狀異氰㈣及醇之 方法,已知有幾種方法··於氣相中於高溫下實施之方法, 或於液相中於較低之溫度條件下實施之方法。然而,有時 反應此合物例如產生上述副反應,於反應器及回收裝置中 形成沈澱物、聚合物狀物質及堵塞物,或又,該物質於反 應器壁面形成固著物,於在長時間内製造異氰酸酯之情形 時,經濟效率不良。 131505.doc 200948760 囚此 化學方法基甲酸醋熱分解之產量,例如記載有 獻⑴或者使= 二殊觸媒(參照專利文獻 12)。 /、青岭劑的組合物之觸媒(參照專利文獻 ❹ ❹ 之專利文獻13中,作為六亞甲基二異氰酸醋 、°己載有如下方法:於用作溶劑之二苄基甲苯 :=、以及含有甲苯績酸甲醋及二苯基二氣化錫之觸 媒心物的存在下,將六亞甲基二乙基胺基甲酸醋進行孰 =H對於起始成分之製造、及單離以及溶劑及觸 媒混合物之純化及任意回收,未作任何詳細記载,因此無 法判斷該方法之經濟效率。 根據專利文獻U中記載之方法,胺基甲酸酷可在不使用 觸媒下於含碳流化床中容易地分解成異氰酸自旨及醇。又, 根據專利文獻15之記載,六亞曱基二院基胺基甲酸醋,例 如可於包含碳、銅、黃銅、鋼、辞、铭m或石 英之透氣性包裝材料存在下或不存在下,於超過3〇(Γ(:2 溫度下,於氣相中進行分解而生成六亞甲基二異氰酸醋。 根據專利文獻14之記載,該方法係於氫自化物及/或氫齒 化物供體存在下實施。然而,該方法無法達成9〇%以上之 六亞曱基二異氰酸酯之產率。其原因在於,分解生成物一 部分再鍵結而生成胺基曱酸酯鍵。因此,必須進一步利用 蒸顧進行六亞曱基二異氰酸酯之純化,常常會造成產率之 損失增大。 進而,於專利文獻16中記載有如下情況:於較低之溫度 131505.doc -12- 200948760 下,於有利的減壓下,於觸媒及/或穩定劑存在下或不存 在下,可不使用溶劑而以良好的產率使單胺基甲酸酯分 解。分解生成物(單異氰酸酿及醇),冑由自彿騰之反應混 合物中蒸潑而將其去除,且藉由分別縮合而分別將其收 集。以普通形態記載有,為了去除於熱分解中所形成之副 產物而部分去除反應混合物之方法。因此,可自反應器底 部去除副產物,但依然殘留有針對上述固著於反應器壁面 之情形之課題,並未解決針對長期運行之課題。又,對於 經去除之(含大量有用成分)該殘留部分在工業上的應用, 亦無任何記載。 專利文獻17之記载,脂肪族、料式或芳香族聚胺 基甲酸酯之熱分解’係於15〇〜35〇艺及〇〇〇1〜2〇巴下於惰 性溶劑存在下,於作為觸媒及助劑之氣化氣、有機酸氣化 物、院基化劑或有機錫氣化物存在下或不存在下實施。所 產生之副產物,例如可與反應溶液一起自反應器中連續地 Q 去除同時添加相應量之新溶劑或經回收之溶劑。該方法 之缺點在於,例如因使用回流溶劑,故使聚異氛酸輯之空 時產量減少,而且,例如包含溶劑回收而需要大量能量。 進而,所使用之助劑於反應條件下有揮發性,可污染分解 生成物。又,相對於所生成之聚異氛酸醋之殘留部分之量 較多’於經濟效率及工業方法之可靠性方面存在疑問。 :專利文獻18中記載有:於高沸點溶劑存在下 管狀反應器内面所供給之胺基甲酸醋,例如脂環 胺基甲酸醋5_(乙氧基幾基胺基)-H乙氧基幾基胺基甲 131505.doc 13 200948760 t ,3_二甲基環己^行連續熱分解的-種方法。該方 法具有製造(環式)脂肪族二異氰酸酷時之產率較低、選擇 性較低之缺點。又,關於伴有經再鍵結或經部分分解之胺 基甲酸酷的回收之連續性方法,並未作任何記載關於含 有副產物及觸媒之溶劑之後處理亦未作任何敍述。 ❹ ❹ 可容易想像,^將以上所述之胺基甲酸芳s旨之製造方法 及藉由胺基甲酸醋之熱分解而製造異氰酸酯的方法加以組 合,可以碳酸二芳酿及胺化合物為原料而製造異氰酸醋。 然而,為將上述胺基甲酸芳酯之製造方法,與藉由胺基甲 酸芳酯之熱分解反應而製造異氰酸酯的方法加以組合,則 採用如τ彳法之任一種:自使碳酸二芳醋與胺化合物反應 而獲得之反應液,分離胺基曱酸芳酯,再進行該胺基甲酸 芳醋之熱分解反應之複雜操作的方法;或將製造胺基甲酸 芳酯所獲得之反應液直接用於熱分解反應之方法。 關於該方面,於專利文獻19中記載有如下方法:於路易 斯酸觸媒存在下’使芳香族胺與碳酸二芳酯進行反應,合 成胺基甲酸酯化合物,繼而於合成胺基甲酸酯化合物所使 用之碳酸二芳酯中,將該胺基甲酸酯化合物熱分解,合成 芳香族異氰酸酯。該專利文獻中,例示有如下方法:將於 路易斯酸觸媒存在下,使胺化合物與碳酸二芳酷進行反應 而獲得之含胺基甲酸醋反應液,於該胺基甲酸g旨合成所使 用之反應器中進行熱分解反應,製造異氰酸酯。 [專利文獻1]美國專利第399243〇號公報 [專利文獻2]日本專利申請公開昭52-71443號公報 131505.doc -14- 200948760 [專利文獻3]日本專利申請公開昭61-183257號公報 [專利文獻4]德國專利第925496號公報 [專利文獻5]日本專利申請公開平10-316645號公報 [專利文獻6]日本專利申請公開昭52-136147號公報 [專利文獻7]日本專利申請公開2004-262834號公報 [專利文獻8]曰本專利申請公開平1-230550號公報 [專利文獻9]美國專利第4290970號公報 [專利文獻10]美國專利第2692275號公報 〇 [專利文獻11]美國專利第3734941號公報 [專利文獻12]美國專利第4081472號公報 [專利文獻13]美國專利第43 88426號公報 [專利文獻14]美國專利第4482499號公報 [專利文獻15]美國專利第4613466號公報 [專利文獻16]美國專利第4386033號公報 [專利文獻17]美國專利第43 88246號公報 [專利文獻18]美國專利第4692550號公報 [專利文獻19]曰本專利申請公開2004-262835號公報 [非專利文獻 1] Berchte der Deutechen Chemischen Gesellschaft,第 3卷,653 頁,1 870年 [非專利文獻2] Journal of American Chemical Society, 第81卷,2138頁,1959年 [导卜專泮1J 文獻 3] Journal of Polymer Science Polymer Chemistry Edition,第 17卷,835 頁,1979年 【發明内容】 131505.doc -15- 200948760 [發明所欲解決之問題] 然而,由於胺基甲酸酯化合物之合成反應與熱分解反應 係於相同反應器中進行,因此無法選擇與該胺基甲酸酯化 合物之合成反應及熱分解反應分別對應之反應器或反應條 件。實際上’根據專利文獻丨9之例示,異氰酸酯之產率較 低。又,於專利文獻19中,並無與連續製造異氰酸酯之方 法相關之詳細記載,自工業上效率良好地製造異氰酸酯之 觀點考慮’並非滿意者。 如此,現狀為’以碳酸二芳酯及胺化合物為原料,製造 胺基甲酸芳酯’經由該胺基甲酸芳酯製造異氰酸酯之方法 中’應解決之課題較多,尚未達到工業化。 本發明之目的在於提供一種無先前技術中所遇到的各種 問題點’使用碳酸二芳酯及胺化合物之異氰酸酯之製造方 法。 [解決問題之技術手段] 本發明者等人對上述課題反覆進行努力研究,結果發現 如下之製造異氰酸醋之方法:將於特定條件下,使碳酸二 芳醋與胺化合物進行反應而獲得之混合物,於特定條件下 運送至熱分解反應器中,使該混合物中所含有之胺基甲酸 西曰進行熱分解反應’而製造異氰酸酯,從而完成本發明。 即,本發明提供, [1] 一種異氰酸醋之製造方法,其包括如下步驟:於進行碳 酸二芳酯與胺化合物之反應之反應器中,使碳酸二芳酯與 胺化合物進行反應,獲得含有具有來自碳酸二芳酯之芳基 131505.doc -16· 200948760 之胺基甲酸芳酯、來自碳酸二芳酯之芳香族羥基化合物、 及碳酸二芳酯的反應混合物; 將該反應混合物運送至熱分解反應器中,其中該熱分解 反應器係藉由配管而與進行碳酸二芳酯與胺化合物之反應 的該反應器連接;以及 藉由使該胺基曱酸芳酯進行熱分解反應而獲得異氰酸 si。 [2] 如刖項[1 ]之製造方法,其進—步包括以酸清洗附著於 ® 該熱分解反應器之高沸點副產物的步驟。 [3] 如前項[1]或[2]之製造方法,其中碳酸二芳酯與胺化合 物之反應係於碳酸二芳酯相對於構成該胺化合物之胺基的 化學計量比為1以上之條件下進行。 [4] 如前項[1]至[3]中任一項之製造方法,其中碳酸二芳酯 與胺化合物係於作為反應溶劑之芳香族羥基化合物存在下 進行反應。 Q [5]如前項[4]之製造方法,其中作為反應溶劑之該芳香族 羥基化合物係與化合物Ar〇H為同種者,該化合物Αγ〇η具 有於構成該碳酸二芳酯Ar〇CO〇Ar(Ar表示芳香族基,〇表 不氧原子)之基ArO上加成有氫原子之結構。 [6] 如前項[1]至[5]中任一項之製造方法,其中將該反應混 合物作為液體供給至熱分解反應器中。 [7] 如前項[6]之製造方法,其中將該反應混合物保持於1〇 C〜180°C之溫度範圍内供給至熱分解反應器中。 [8] 如前項[1]至[7]中任一項之製造方法,其中連續供給該 131505.doc 200948760 反應混合物至熱分解反應器中。 [9] 如前項[1]至[8]中任一項之製造方法,其中將該熱分解 反應中所生成之低沸點成分自熱分解反應器中作為氣相成 分加以回收,將液相成分自該反應器底部加以回收。 [10] 如前項[9]之製造方法,其中氣相成分之回收與液相成 分之回收係連續進行。 [11] 如前項[9]或[10]之製造方法,其中將藉由該胺基曱酸 务醋之熱分解反應而獲得之異氰酸醋自熱分解反應器中作 © 為氣相成分加以回收,將含有碳酸二芳酯之液相成分自該 反應器底部加以回收。 [12] 如前項[11 ]之製造方法,其進一步包括利用蒸館塔蒸 餾分離自熱分解反應器所回收之含有異氰酸酯之氣相成 分’回收異氮酸S旨之步驟,將自熱分解反應器所回收之含 有異氰酸酯之氣相成分以氣相供給至蒸餾塔中。 [13] 如前項[11]或[12]之製造方法,其中該含有碳酸二芳酯 之液相成分係含有胺基甲酸芳酯之混合物,供給該混合物 之一部分或全部至該反應器之上部。 [14] 如前項[9]或[10]之製造方法,其中將藉由該胺基曱酸 芳酯之熱分解反應而獲得之異氰酸酯自進行熱分解反應之 反應器底部作為液相成分加以回收。 [15] 如前項[14]之製造方法,其中自該反應器底部回收之 液相成分含有異氰酸酯及胺基甲酸芳酯,自該液相成分分 離一部分或全部之異氰酸酯,剩下之一部分或全部供給至 該反應器之上部。 131505.doc -18- 200948760 [16]如前項[14]或[15]之製造方法,其中蒸餾分離自熱分解 反應器回收之含有異氰酸酯之混合物,將異氰酸酯加以回 收。 [1 7]如則項[1 ]至[16]中任一項之製造方法,其中進行碳酸 二芳酯與胺化合物之反應之反應器的種類、與該熱分解反 應器之種類可相同亦可不同’進行碳酸二芳酯與胺化合物 之反應之反應器、與該熱分解反應器係選自塔型反應器及 槽型反應器所組成之群中的至少一種。 〇 [18]如前項[17]之製造方法,其中該熱分解反應器係由選 自由蒸發罐、連續多段蒸餾塔、填充塔、薄膜蒸發器及降 膜蒸發器所組成群中的至少一種所構成。 [19] 如前項[1]至[18]中任一項之製造方法,其中碳酸二芳 酯與胺化合物之反應係於觸媒存在下進行。 [20] 如前項[1]至[19]中任一項之製造方法,其中該熱分解 反應係於液相下進行。 [21] 如前項[1]至[20]中任一項之製造方法,其中 該碳酸二芳酯為以下述式(11)所表示之化合物: [化4] r'〇A〇*r1 (id (式中; R1表示碳數為6〜12之芳香族基)。 [22] 如前項[21]之製造方法,其中該碳酸二芳酯含有〇〇〇ι ppm〜10%之金屬原子。 [23] 如前項[22]之製造方法,其中該金屬原子係選自由 131505.doc 19- 200948760 鐵、鎳、鈷、鋅、錫、銅 種0 、鈦所組成群中的— 種或複數 [24]如前項[1]至[23]中任一項之製造方法,其中 包括下述步驟(1)〜步驟(3)之步驟而 該碳酸二芳酯係藉由 製造者: 步驟(1):使具有錫-氧-碳鍵之有機錫化合物與二氧化炭 進行反應’獲得含有碳酸二烧酯之反應混合物. 步驟(2):分離該反應混合物,獲得碳酸_ 奸咴自文—烷酯與殘留 Ο 液; 步驟(3):使步驟(2)中分離之碳酸二烷酯與芳香族經基 化合物Α進行反應,獲得碳酸二芳醋’回收作為副產物I 成之醇。 [25] 如前項[24]之製造方法’ #中該芳香族羥基化合物a為 碳數為6〜12之芳香族羥基化合物。 [26] 如前項[24]或[25]之製造方法,其中There are several methods known for the production of relative isocyanide (tetra) and alcohol by thermal decomposition of (cyclic) aliphatic groups, and especially aromatic monocarbamates and diaminocarbamic acids. A method carried out at a high temperature in a gas phase, or a method carried out in a liquid phase at a lower temperature. However, sometimes the reaction of the compound produces, for example, the above-mentioned side reaction, forming a precipitate, a polymer-like substance and a plug in the reactor and the recovery device, or, in addition, the substance forms a fixing on the wall surface of the reactor. When the isocyanate is produced in a time, the economic efficiency is poor. 131505.doc 200948760 In this chemical method, the yield of thermal decomposition of carboxylic acid vinegar is described, for example, as (1) or as a catalyst (see Patent Document 12). / The catalyst of the composition of the chlorinating agent (refer to Patent Document 13 of the patent document , ,, as hexamethylene diisocyanate, the method of carrying the following method: dibenzyl toluene used as a solvent ???========================================================================================== The purification and random recovery of the solvent and the catalyst mixture are not described in any detail, so the economic efficiency of the method cannot be judged. According to the method described in Patent Document U, the aminocarboxylic acid can be used without a catalyst. It is easily decomposed into isocyanic acid and alcohol in a carbon-containing fluidized bed. Further, according to the description of Patent Document 15, the hexamethylene sulfonate-based urethane carboxylic acid can be contained, for example, in carbon, copper or yellow. In the presence or absence of copper, steel, rhetoric, m or quartz gas permeable packaging materials, it decomposes in the gas phase to produce hexamethylene diisocyanate at more than 3 Torr (: 2 temperature). Vinegar. According to Patent Document 14, the method is based on hydrogen autochemistry and/or This is carried out in the presence of a denture donor. However, this method cannot achieve a yield of hexamethylene diisocyanate of 9 % or more. The reason is that a part of the decomposition product is bonded again to form an amino phthalate bond. Further, it is necessary to further purify the hexamethylene diisocyanate by steaming, which often causes an increase in yield loss. Further, Patent Document 16 describes the case where the temperature is lower at 131505.doc -12- 200948760 The monocarbamate can be decomposed in a good yield without using a solvent under an advantageous reduced pressure in the presence or absence of a catalyst and/or a stabilizer. The decomposition product (monoisocyanate) And brewing alcohol, which is removed by steaming from the reaction mixture of the turpentine, and separately collected by condensation, respectively. It is described in a common form, in order to remove by-products formed in thermal decomposition. Partial removal of the reaction mixture. Therefore, by-products can be removed from the bottom of the reactor, but the problem of fixing to the wall of the reactor is still left, and it is not solved for long-term operation. Further, there is no description on the industrial application of the residual portion (containing a large amount of useful components). Patent Document 17, Aliphatic, Feed or Aromatic Polyurethane The thermal decomposition is carried out in the presence of an inert solvent in the presence of an inert solvent in the presence of an inert gas solvent, a gasification gas, an organic acid gasification, a hospitalization agent or The by-product produced in the presence or absence of the organotin vapor, for example, can be continuously Q removed from the reactor together with the reaction solution while adding a corresponding amount of new solvent or recovered solvent. The disadvantage of this method is that For example, due to the use of a reflux solvent, the space production of the polyiso-acid acid is reduced, and, for example, a large amount of energy is required to recover the solvent. Further, the auxiliary agent used is volatile under the reaction conditions, and can be decomposed and decomposed. Things. Further, there is a question about the economic efficiency and the reliability of the industrial method with respect to the amount of the residual portion of the produced polyacetoic acid vinegar. Patent Document 18 describes an amino carboxylic acid vinegar supplied from the inner surface of a tubular reactor in the presence of a high boiling point solvent, for example, an alicyclic carboxylic acid vinegar 5-(ethoxygalamino)-H ethoxy group Aminomethyl 131505.doc 13 200948760 t , 3 - dimethylcyclohexene - a method of continuous thermal decomposition. This method has the disadvantage of producing a lower yield of (cyclo)aliphatic diisocyanate and having a lower selectivity. Further, regarding the continuity of the recovery of the aminocarboxylic acid which has undergone re-bonding or partial decomposition, there is no description about the post-treatment with a solvent containing by-products and a catalyst. ❹ ❹ It is easy to imagine that the above-mentioned method for producing amino carboxylic acid aryl s and the method for producing isocyanate by thermal decomposition of amino carboxylic acid vinegar can be combined, and the diaryl carbonate and amine compound can be used as a raw material. Make isocyanate vinegar. However, in order to combine the above-described method for producing the aryl carbamate aryl ester with the method for producing an isocyanate by thermal decomposition reaction of an aryl carbamate aryl ester, any one of the methods such as τ 彳 is used: self-made diaryl vinegar a reaction solution obtained by reacting with an amine compound, separating an amino aryl decanoate, and performing a complicated operation of the thermal decomposition reaction of the amino carboxylic acid aryl vinegar; or directly preparing a reaction liquid obtained by producing an aryl urethane A method for thermal decomposition reaction. In this regard, Patent Document 19 describes a method of reacting an aromatic amine with a diaryl carbonate in the presence of a Lewis acid catalyst to synthesize a urethane compound, followed by synthesis of a urethane. In the diaryl carbonate used for the compound, the urethane compound is thermally decomposed to synthesize an aromatic isocyanate. In this patent document, there is exemplified a method in which an amine-containing formic acid vinegar reaction liquid obtained by reacting an amine compound with diaryl carbonate in the presence of a Lewis acid catalyst is used for the synthesis of the aminocarboxylic acid g. The reactor was subjected to a thermal decomposition reaction to produce an isocyanate. [Patent Document 1] US Pat. No. 399,243, pp. [Patent Document 2] Japanese Patent Application Publication No. SHO-52-71443, No. s. [Patent Document 5] Japanese Patent Application Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. [Patent Document 8] Japanese Patent No. 4290970 (Patent Document 10) US Patent No. 2692275 (〇 Patent Document 11) US Patent [Patent Document 12] US Patent No. 4,081,472 [Patent Document 13] US Patent No. 43 88426 [Patent Document 14] US Patent No. 4482499 [Patent Document 15] US Patent No. 4,613,466 [ Patent Document 16] US Pat. No. 4,384,033 [Patent Document 17] US Patent No. 43 88246 [Patent Document 18] US Patent No. 4,692,550 [Patent Document 19] Japanese Laid-Open Patent Publication No. 2004-262835 [Non-Patent Document 1] Berchte der Deutechen Chemischen Gesellschaft, Vol. 3, 653, 1 870 [Non-Patent Document 2] Journal of American Chemical Society, Vol. 81, p. 2138, 1959 [Introduction to 1J Literature 3] Journal of Polymer Science Polymer Chemistry Edition, Vol. 17, 835, 1979 [Invention] 131505.doc -15- 200948760 [Problems to be solved by the invention] However, due to the amine group Since the synthesis reaction and the thermal decomposition reaction of the formate compound are carried out in the same reactor, it is not possible to select a reactor or a reaction condition corresponding to the synthesis reaction and the thermal decomposition reaction of the urethane compound, respectively. Actually, according to the exemplification of Patent Document 丨 9, the yield of isocyanate is low. Further, in Patent Document 19, there is no detailed description relating to the method of continuously producing isocyanate, and it is not satisfactory from the viewpoint of industrially producing isocyanate efficiently. As described above, the present invention is a method for producing an aryl urethane by using a diaryl carbonate and an amine compound as a raw material to produce an isocyanate via the urethane urethane. The problems to be solved are numerous, and industrialization has not yet been achieved. SUMMARY OF THE INVENTION An object of the present invention is to provide a process for producing an isocyanate using a diaryl carbonate and an amine compound without any problems encountered in the prior art. [Means for Solving the Problem] The inventors of the present invention have conducted intensive studies on the above problems, and as a result, have found a method for producing isocyanic acid vinegar which is obtained by reacting a diaryl carbonate with an amine compound under specific conditions. The mixture is transported to a thermal decomposition reactor under specific conditions to thermally decompose the guanidinium aminoformate contained in the mixture to produce an isocyanate, thereby completing the present invention. That is, the present invention provides, [1] a method for producing isocyanic acid vinegar, comprising the steps of: reacting a diaryl carbonate with an amine compound in a reactor for performing a reaction of a diaryl carbonate with an amine compound; Obtaining a reaction mixture comprising an aryl carbamate having an aryl group 131505.doc -16·200948760 from a diaryl carbonate, an aromatic hydroxy compound derived from a diaryl carbonate, and a diaryl carbonate; transporting the reaction mixture In the thermal decomposition reactor, wherein the thermal decomposition reactor is connected to the reactor for carrying out the reaction of the diaryl carbonate with the amine compound by a pipe; and by thermally decomposing the amino aryl phthalate And isocyanate si is obtained. [2] The method of producing the item [1], further comprising the step of acid-cleaning the high-boiling by-product attached to the thermal decomposition reactor. [3] The production method according to the above [1] or [2] wherein the reaction of the diaryl carbonate with the amine compound is based on a condition that the stoichiometric ratio of the diaryl carbonate to the amine group constituting the amine compound is 1 or more Go on. [4] The production method according to any one of [1] to [3] wherein the diaryl carbonate and the amine compound are reacted in the presence of an aromatic hydroxy compound as a reaction solvent. [5] The production method according to the above [4], wherein the aromatic hydroxy compound as a reaction solvent is the same as the compound Ar〇H, and the compound Αγ〇η is formed to constitute the diaryl carbonate Ar〇CO〇 Ar (Ar is an aromatic group, a non-oxygen atom of a quinone) is a structure in which a hydrogen atom is added to ArO. [6] The production method according to any one of [1] to [5] wherein the reaction mixture is supplied as a liquid to a thermal decomposition reactor. [7] The production method according to the above [6], wherein the reaction mixture is supplied to the thermal decomposition reactor at a temperature ranging from 1 Torr to 180 °C. [8] The production method according to any one of [1] to [7] wherein the 131505.doc 200948760 reaction mixture is continuously supplied to the thermal decomposition reactor. [9] The production method according to any one of [1] to [8] wherein the low-boiling component formed in the thermal decomposition reaction is recovered as a gas phase component from a thermal decomposition reactor, and the liquid phase component is obtained. It is recovered from the bottom of the reactor. [10] The production method according to the above [9], wherein the recovery of the gas phase component and the recovery of the liquid phase component are continuously performed. [11] The production method according to the above [9] or [10], wherein the isocyanate vinegar autothermal decomposition reactor obtained by the thermal decomposition reaction of the amino phthalic acid vinegar is used as a gas phase component It is recovered and the liquid phase component containing the diaryl carbonate is recovered from the bottom of the reactor. [12] The method according to the above [11], which further comprises the step of separating the isocyanate-containing gas phase component recovered from the thermal decomposition reactor by the distillation column to recover the isocyanic acid S, and the autothermal decomposition reaction The gas phase component containing the isocyanate recovered by the reactor is supplied to the distillation column in the gas phase. [13] The method according to the above [11] or [12] wherein the liquid phase component containing a diaryl carbonate contains a mixture of an aryl carbamate, and a part or all of the mixture is supplied to the upper portion of the reactor. . [14] The production method according to the above [9] or [10] wherein the isocyanate obtained by the thermal decomposition reaction of the amino aryl phthalate is recovered as a liquid phase component from the bottom of the reactor subjected to the thermal decomposition reaction. . [15] The production method according to [14], wherein the liquid phase component recovered from the bottom of the reactor contains isocyanate and aryl carbamate, and part or all of the isocyanate is separated from the liquid phase component, and one or both of the remaining components are left. It is supplied to the upper part of the reactor. [16] The method of manufacturing according to [14] or [15], wherein the isocyanate-containing mixture recovered from the thermal decomposition reactor is distilled and the isocyanate is recovered. [1] The production method according to any one of [1] to [16] wherein the type of the reactor for performing the reaction of the diaryl carbonate with the amine compound is the same as the type of the thermal decomposition reactor. The reactor in which the reaction between the diaryl carbonate and the amine compound is carried out differently, and the thermal decomposition reactor is selected from at least one of the group consisting of a column reactor and a tank reactor. [18] The method of manufacturing according to [17], wherein the thermal decomposition reactor is at least one selected from the group consisting of an evaporation can, a continuous multi-stage distillation column, a packed column, a thin film evaporator, and a falling film evaporator. Composition. [19] The production method according to any one of [1] to [18] wherein the reaction of the diaryl carbonate with the amine compound is carried out in the presence of a catalyst. [20] The production method according to any one of [1] to [19] wherein the thermal decomposition reaction is carried out in a liquid phase. [21] The production method according to any one of [1] to [20] wherein the diaryl carbonate is a compound represented by the following formula (11): [Chemical 4] r'〇A〇*r1 ( Id (wherein R1 represents an aromatic group having a carbon number of 6 to 12). The method according to the above [21], wherein the diaryl carbonate contains a metal atom of 〇〇〇1 ppm to 10%. [23] The method according to the above [22], wherein the metal atom is selected from the group consisting of 131505.doc 19-200948760 iron, nickel, cobalt, zinc, tin, copper species 0, titanium, or a plurality [ [24] The production method according to any one of [1] to [23], which comprises the steps of the following steps (1) to (3), wherein the diaryl carbonate is produced by the manufacturer: Step (1) : reacting an organotin compound having a tin-oxygen-carbon bond with carbon dioxide to obtain a reaction mixture containing dialkyl carbonate. Step (2): separating the reaction mixture to obtain carbonic acid _ 咴 咴 文 文 烷And residual hydrazine; Step (3): reacting the dialkyl carbonate separated in the step (2) with the aromatic sulfhydryl compound to obtain a recovery of the diaryl vinegar The product I is an alcohol. [25] The aromatic hydroxy compound a in the production method of the above [24] is an aromatic hydroxy compound having a carbon number of 6 to 12. [26] as in the above [24] or [25] Manufacturing method, wherein
該碳酸二芳醋係藉由進-步包括下述步驟⑷及步驟⑺ 之步驟而製造者: 步驟W:使步驟⑺中所獲得之殘留液與醇進行反應, 形成具有錫-氧-碳鍵之有機錫化合物及水,自反應系統去 除該水; 步驟(5):將步驟(4)中所獲得之且右姐# 丹有錫虱-碳鍵之有機錫 化合物作為步驟(1)之具有錫-氧_碳鍵 硬<有機錫化合物而再 利用。 [27]如前項[26]之製造方法 其中將該步驟(3)中回收之醇 131505.doc -20- 200948760 用作該步驟(4)之醇之一部分或全部。 [28] 如前項[9]至[27]中任一項之製造方法,其中從自熱分 解反應器中所回收之液相成分或氣相成分中分離回收碳酸 二芳酯,將該碳酸二芳酯再用作起始物質。 [29] 如前項[丨]或[24]之製造方法,其中從自熱分解反應器 中所回收之液相成分或氣相成分中分離回收芳香族羥基化 合物,將該芳香族羥基化合物作為該步驟(3)之芳香族羥基 化合物A、或作為該反應溶劑之該芳香族羥基化合物而再 ❹利用。 [30] 如前項[1]至[29]中任一項之製造方法,其中該胺化合 物為聚胺化合物。 [31] 如前項[30]之製造方法,其中 該胺化合物為以下述式(12)所表示之化合物: [化5] R2-(nH2) n (12) (式中; R表示選自由包含選自碳、氧之原子之礙數為㈣之脂 肪族基、及碳數為6〜20之芳香族基所組成群中的一個,其 具有與η相等之原子價; ' η為2〜10之整數)。 [32]如前項[31]之製造方法 為2之二胺化合物。 物為式(12)中η 网如前項⑴至[32]中任-項之製造方法,其中供給胺化 131505.doc •21- 200948760 合物至使碳酸酯與胺化合物 體狀態下進行。 進行反應之反應器時,係於液 [34]如前項[1]至[33]中杯— —項之製造方法,其中供給胺化 σ物至使厌酸8日與胺化合物進行反應之反應㈣,係於作 為與醇、水、或碳酸酿之混合物之狀態下進行。 [發明之效果] 到用本發明之方法,可以碳酸二芳醋及胺化合物為原 料,長期連續地且產率良好地製造異氰酸酯。 © 【實施方式】 以下’就用以實施本發明之最佳形態(以下,稱為「本 實施形態」)加以詳細說明。再者,本發明並不限定於以 下之實施形態,在其要旨範圍内可加以各種變形而實施。 本實施形態之製造方法係包括如下步驟之異氰酸酯的製 造方法:於作為反應溶劑之芳香族羥基化合物存在下,使 碳酸二芳酯與胺化合物進行反應,獲得含有具有來自碳酸 二芳醋之芳基之胺基甲酸芳酯、來自碳酸二芳酯之芳香族 羥基化合物'及碳酸二芳酯之反應混合物之步驟;將該反 應混合物運送至熱分解反應器中之步驟;以及藉由使該胺 基甲酸芳酯進行熱分解反應而獲得異氰酸酯之步驟, 且進行碳酸二芳酯與胺化合物之反應之反應器,與胺基 甲酸芳酯之熱分解反應器不同。 首先,就本實施形態之製造方法所使用之碳酸二芳酯及 胺化合物加以說明。 本實施形態之製造方法所使用之碳酸二芳酯係以下述式 131505.doc -22- 200948760 (13)所表示之化合物。 [化6]The diaryl carbonate is produced by further comprising the steps of the following steps (4) and (7): Step W: reacting the residual liquid obtained in the step (7) with an alcohol to form a tin-oxygen-carbon bond. The organotin compound and water are removed from the reaction system; Step (5): the organotin compound obtained in the step (4) and obtained by the right sister #丹有锡虱-carbon bond is used as the step (1) The tin-oxygen-carbon bond is hard <organic tin compound and reused. [27] The production method according to the above [26] wherein the alcohol recovered in the step (3), 131505.doc -20-200948760, is used as a part or all of the alcohol of the step (4). [28] The production method according to any one of [9] to [27] wherein the diaryl carbonate is separated and recovered from the liquid phase component or the gas phase component recovered from the autothermal decomposition reactor. The aryl ester is reused as a starting material. [29] The method of producing [A] or [24], wherein the aromatic hydroxy compound is separated and recovered from a liquid phase component or a gas phase component recovered from the thermal decomposition reactor, and the aromatic hydroxy compound is used as the The aromatic hydroxy compound A of the step (3) or the aromatic hydroxy compound as the reaction solvent is reused. [30] The production method according to any one of [1] to [29] wherein the amine compound is a polyamine compound. [31] The production method according to the above [30], wherein the amine compound is a compound represented by the following formula (12): R 2 (nH 2 ) n (12) (wherein R represents a selected from the group consisting of One of a group consisting of an aliphatic group of carbon (4) and an aromatic group having a carbon number of 6 to 20, which has an atomic valence equal to η; 'η is 2 to 10 The integer). [32] The production method according to the above [31], which is a diamine compound of 2. The method of producing the η mesh according to any one of the above items (1) to [32], wherein the amination is carried out to a state in which the carbonate is reacted with the amine compound. In the reactor in which the reaction is carried out, it is a method for producing a cup according to the above [1] to [33], wherein the amination of the σ substance to the reaction of reacting the analytic acid with the amine compound for 8 days is carried out. (4) It is carried out in a state of being mixed with alcohol, water, or carbonic acid. [Effect of the Invention] By the method of the present invention, an isocyanate can be produced continuously for a long period of time and in a good yield with a diaryl carbonate and an amine compound as a raw material. [Embodiment] Hereinafter, the best mode for carrying out the invention (hereinafter referred to as "this embodiment") will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the spirit and scope of the invention. The production method of the present embodiment includes a method for producing an isocyanate obtained by reacting a diaryl carbonate with an amine compound in the presence of an aromatic hydroxy compound as a reaction solvent to obtain an aryl group having a diaryl vinegar carbonate. a step of reacting an aryl carbamate, a reaction mixture of an aromatic hydroxy compound from a diaryl carbonate and a diaryl carbonate; a step of transporting the reaction mixture to a thermal decomposition reactor; and by causing the amine group The step of thermally decomposing the aryl formate to obtain an isocyanate, and carrying out the reaction of reacting the diaryl carbonate with the amine compound, is different from the thermal decomposition reactor of the aryl carbamate. First, the diaryl carbonate and the amine compound used in the production method of the present embodiment will be described. The diaryl carbonate used in the production method of the present embodiment is a compound represented by the following formula 131505.doc -22- 200948760 (13). [Chemical 6]
(13) (式中; R1表示碳數為6〜20之芳香族基)。(13) (wherein R1 represents an aromatic group having a carbon number of 6 to 20).
❹ 作為上述式(13)之Ri,較好的是碳數為6〜2〇之芳香族烴 基,更好的是魏為6〜U之料㈣基。料使心為碳 數為2UX上之芳香族烴基之碳酸二芳醋,自下述容易愈藉 由胺基甲酸醋之熱分解反應而生成之異氰酸醋分離之觀點 考慮’較好的是構成R1之碳數為2〇以下。 作為如此之R1之例,可列舉:苯基、甲基苯基(各異構 物)、乙基苯基(各異構物)、丙基苯基(各異構物)、丁基苯 基(各異構物)、戊基苯基(各異構物)、己基苯基(各^構 物)、二甲基苯基(各異構物)、曱基乙基笨基(各異構物卜 甲基丙基苯基(各異構物)、甲基丁基笨基(各異構物卜曱 基戊基苯基(各異構物)、二乙基苯基(各異構物)、乙基丙 基苯基(各異構物)、乙基丁基苯基(各異構物)、二丙基笨 基(各異構物)、三曱基苯基(各異構物)、三乙基苯基(各異 構物)、萘基(各異構物)等。該等碳酸二芸 、 一方S日之中,較好的 疋R為%I數為ό〜8之^'香族煙基之碳酸-— 畋一方酯,作為如此 之碳酸二芳醋,可列舉:碳酸二苯醋、碳酸二(甲基苯基 醋(各異構物 (曱基乙基苯基)酯(各異構物)等。 131505.doc -23- 200948760 較好的是該等碳酸二芳酯,於較好的是0.001 ppm〜10% 之範圍、更好的是0.001 ρρηι〜5%之範圍、進而好的是 0.002 ppm〜3%之範圍内含有金屬原子。又,該金屬原子可 作為金屬離子而存在,亦可作為金屬原子單體而存在。作 為金屬原子’較好的是可取2價或4價原子價之金屬原子, 其中’更好的是選自鐵、鈷、鎳、鋅、錫、銅、鈦中之一 種或複數種金屬。另本發明者等人吃驚的是,發現若使用 以上述範圍之濃度含有金屬原子之碳酸二芳酯,則達成抑 〇 制碳酸二芳酯與胺化合物之反應所生成之胺基甲酸芳酯之 改性反應的效果。對於達成如此之效果之機理並不明瞭, 但本發明者等人推測’該等金屬原子配位於該反應中所生 成之胺基曱酸酯之胺基甲酸酯鍵(_nhcoo-),使該胺基甲 酸酯鍵穩定化,從而抑制例如以上述式(4)、式(8)等所示 之副反應。又’於下述運送含有胺基甲酸芳酯之反應液 時’亦斷定因金屬原子而抑制胺基甲酸芳酯之改性反應的 效果’推測其機理亦與上述不同。 ❹ 原本期待將碳酸二芳酯與胺化合物加以混合而製造混合 物’再於該混合物中以上述範圍添加上述例示之金屬原子 時,亦可獲得同樣之效果’但本發明者等人進行努力研 究,結果判明,僅於碳酸二芳酯與胺化合物之混合物中添 加金屬原子,難以獲得上述效果。成為如此結果之理由並 不明瞭,但本發明者等人推測,於該碳酸二芳酯中含有金 屬原子時,該碳酸二芳酯配位於金屬原子,相對於此,於 碳酸二芳酯與胺化合物之混合物中添加金屬原子時,較之 131505.doc •24· 200948760 金屬原子與石反酸一芳g旨之相互作用,金屬原子與胺化合物 作用較大,因此金屬辱、子牢固地配位於胺化合物, 而難以配位於所生成之胺基甲酸芳醋之胺基甲酸醋鍵。 本實施形態之破酸g旨較好的是利用下述方法製造,利用 該方法裝&之石厌酸二芳醋中,於上述較好範圍内含有如上 例不之金屬原子之情形時,可直接使用該碳酸二芳醋。該 碳酸一芳s曰所含有之該金屬原子量少於上述範圍之情形 fl夺可以其他方式添加金屬原子,例如,作為乙酸鹽、環 〇 烧酸鹽等有機酸雎,盗 毆I氣化物,乙醯丙酮錯合物而添加。 又,多於上述範圍之情形時,例如可利用溶劑清洗、蒸館 純化、晶析、利用離子交換樹脂之去除、利用整合物樹脂 之去除等方法,將該金屬原子之量降低至上述範圍内而使 用。 再者,對於碳酸二芳醋中以上述範圍所含有之金屬原子 而言,基本斷定其不具有碳酸二芳醋與胺化合物之反應的 觸媒作用,因此,應與下述胺基甲酸芳酿製造用觸媒明確 區分。 該碳酸二芳酯所含有之金屬成分之量可利用眾所周知之 方法進行定量,例如可根據試料之形態,或所含有之金屬 成分的量,而自原子吸光分析法、電感耦合型電漿發光分 析法、電感耦合型電漿質量分析法、螢光x射線分析法、 X射線光電子分光法、電子束微量分析儀、二次離子質量 分析法等各種方法中選擇。 作為碳酸二芳酯之製造方法,可使用眾所周知之方法 131505.doc -25- 200948760 較好的是’使用如下方法:使具有錫-氧-碳鍵之有機錫化 合物與二氧化碳進行反應而製造碳酸酯,自該碳酸酯與芳 香族經基化合物而製造碳酸二芳酯。即,該碳酸酯可利用 以下步驟進行製造。 步驟(1):(碳酸二烷酯生成步驟)使具有錫-氧_碳鍵之有 機锡化合物與二氧化碳進行反應,獲得含有碳酸二烷酯之 反應混合物的步驟; 步驟(2):(碳酸二烷酯分離步驟)自該反應混合物將該碳 © 酸一烷酯分離並且獲得殘留液之步驟; 步驟(3):(碳酸二芳酯製造步驟)使步驟(2)中分離之碳酸 一烷酯與芳香族羥基化合物A進行反應,獲得碳酸二芳 S曰’回收作為副產物生成之醇之步驟。 又,除了該等步驟(1)〜步驟(3),亦可進行以下步驟(4) 及步驟(5)。 步驟(4):(有機錫化合物再生步驟)使步驟(B)中所獲得 〇 之該殘留液與醇進行反應,形成具有錫-氧-碳鍵之有機錫 化合物與水,自反應系統去除該水之步驟; 步驟(5) ··(再利用步驟)將步驟(4)中所獲得之具有錫_氧_ 碳鍵之該有機錫化合物,作為步驟〇)之具有錫·氧-碳鍵之 有機錫化合物而再利用的步驟。 作為步驟⑴所使用之有機錫化合物,較好的是使用二 烧基錫化合物。二烧基錫化合物係指一個錫原子上鍵結有 2個院基之有機锡化合物。 作為該二烷基錫化合物之例,可列舉自選自以下述式 131505.doc •26· 200948760 (14)所表不之二烧基錫化合物及以下述式(15)所表示之四 烷基二錫氧烷化合物所組成之群中的至少一種化 擇的化合物。 % [化7] R3a-Sn--χ2^ (1 4 ) (式中: R及R刀別獨立表示直鏈狀或支鏈狀之碳數為1〜12之烷 基; X1及X2分別獨立表示選自烷氧基、醯氧基及画素原子所 組成之群中的至少一種取代基; a及b分別為〇〜2之整數,a+b=2; c及d分別為〇〜2之整數,c+d=2)。 [化8]❹ As Ri of the above formula (13), an aromatic hydrocarbon group having a carbon number of 6 to 2 Å is preferable, and a material (4) having a Wei of 6 to U is more preferable. It is considered that the carbonic acid diaryl vinegar having an aromatic hydrocarbon group having a carbon number of 2 UX is considered to be better from the viewpoint of separation of isocyanic acid vinegar which is formed by thermal decomposition reaction of amino carboxylic acid vinegar as follows. The carbon number constituting R1 is 2 Å or less. Examples of such R1 include a phenyl group, a methylphenyl group (each isomer), an ethylphenyl group (each isomer), a propylphenyl group (each isomer), and a butylphenyl group. (each isomer), pentylphenyl (each isomer), hexylphenyl (each structure), dimethylphenyl (each isomer), mercaptoethyl stupyl (isoisomer) Methyl propyl phenyl (each isomer), methyl butyl phenyl (each isomer, decylpentyl phenyl (each isomer), diethyl phenyl (each isomer), ethyl Propyl phenyl (each isomer), ethyl butyl phenyl (each isomer), dipropyl phenyl (each isomer), tridecyl phenyl (each isomer), triethyl Phenylphenyl group (each isomer), naphthyl group (each isomer), etc. Among these divalent carbonic acid, one of the S days, the preferred 疋R is %I number is ό~8 The nicotinyl carbonate--anthracene ester, as such a diaryl carbonate, may be exemplified by diphenyl carbonate and di(methylphenyl vinegar) (each isomer (mercaptoethylphenyl) ester (each Isomers, etc. 131505.doc -23- 200948760 It is better to be such The acid diaryl ester contains a metal atom in a range of preferably 0.001 ppm to 10%, more preferably 0.001 ρ ρηι 5%, and further preferably 0.002 ppm to 3%. Further, the metal The atom may exist as a metal ion or as a metal atom. As the metal atom, it is preferably a metal atom which may be a divalent or tetravalent atom, wherein 'better is selected from iron, cobalt, One of or a plurality of metals such as nickel, zinc, tin, copper, and titanium. The inventors of the present invention were surprised to find that if a diaryl carbonate containing a metal atom in a concentration within the above range is used, carbonation is suppressed. The effect of the modification reaction of the aryl urethane formed by the reaction of the diarylate with the amine compound. The mechanism for achieving such an effect is not clear, but the inventors have speculated that 'the metal atoms are coordinated to the reaction. The urethane bond (_nhcoo-) of the amino phthalate ester formed in the above stabilizes the urethane bond, thereby inhibiting, for example, the above formula (4), formula (8), and the like Side reaction. Also 'delivered with amine groups as described below In the case of the reaction solution of the acid aryl ester, the effect of suppressing the modification reaction of the aryl carbamate aryl ester by the metal atom is also determined. The mechanism is also different from the above. ❹ It is expected to be produced by mixing a diaryl carbonate with an amine compound. When the mixture is further added to the above-mentioned range of the above-exemplified metal atoms in the above range, the same effect can be obtained, but the inventors of the present invention conducted an effort to find out that it is only in the mixture of the diaryl carbonate and the amine compound. When the metal atom is added, it is difficult to obtain the above effects. The reason for this is not clear, but the inventors of the present invention presume that when the diaryl carbonate contains a metal atom, the diaryl carbonate is coordinated to the metal atom, as opposed to Therefore, when a metal atom is added to a mixture of a diaryl carbonate and an amine compound, the metal atom and the amine compound interact more strongly than the 131505.doc •24·200948760 metal atom interacts with the amine compound. Therefore, the metal humiliation and the substance are firmly coordinated to the amine compound, and it is difficult to match the amino carboxylic acid vinegar bond of the formed amino carboxylic acid aryl vinegar.The acid-breaking g of the present embodiment is preferably produced by the method described below, and in the case where the metal anaerobic diaryl vinegar of the method is contained in the above preferred range, if the metal atom is not included in the above preferred range, The diaryl carbonate can be used directly. When the amount of the metal atom contained in the cesium carbonate is less than the above range, the metal atom may be added in other manners, for example, as an organic acid cesium such as an acetate or a guanidinium sulphate, and a sputum I vapor, B. Add the hydrazine acetone complex. Moreover, when it is more than the above range, for example, the amount of the metal atom can be reduced to the above range by a method such as solvent cleaning, vapor purification, crystallization, removal by ion exchange resin, or removal by an integrated resin. And use. Further, in the case of the metal atom contained in the above range in the diaryl vinegar, it is basically determined that it does not have the catalytic action of the reaction of the diaryl aryl carbonate with the amine compound, and therefore, it should be combined with the following aminocarboxylic acid. The manufacturing catalyst is clearly distinguished. The amount of the metal component contained in the diaryl carbonate can be quantified by a well-known method, for example, according to the form of the sample or the amount of the metal component contained, from the atomic absorption spectrometry, the inductively coupled plasma luminescence analysis. Method, inductive coupling type plasma mass analysis method, fluorescent x-ray analysis method, X-ray photoelectron spectroscopy, electron beam micro analyzer, secondary ion mass spectrometry and the like are selected. As a method for producing a diaryl carbonate, a well-known method can be used. 131505. doc - 25 - 200948760 Preferably, 'the following method is employed: a compound having a tin-oxygen-carbon bond is reacted with carbon dioxide to produce a carbonate. A diaryl carbonate is produced from the carbonate and an aromatic mercapto compound. Namely, the carbonate can be produced by the following procedure. Step (1): (dialkyl carbonate formation step) a step of reacting an organotin compound having a tin-oxygen-carbon bond with carbon dioxide to obtain a reaction mixture containing a dialkyl carbonate; and step (2): (carbonic acid) Alkyl ester separation step) a step of separating the mono-carbonic acid monoester from the reaction mixture and obtaining a residual liquid; Step (3): (diaryl carbonate production step) to separate the monoalkyl carbonate in the step (2) The reaction with the aromatic hydroxy compound A is carried out to obtain a step of recovering the alcohol formed as a by-product from the diaryl sulfonium carbonate. Further, in addition to the steps (1) to (3), the following steps (4) and (5) may be performed. Step (4): (organic tin compound regeneration step) reacting the residual liquid obtained in the step (B) with an alcohol to form an organotin compound having a tin-oxygen-carbon bond and water, and removing the same from the reaction system Step of water; Step (5) · (Reuse step) The organotin compound having a tin-oxygen-carbon bond obtained in the step (4) is used as a step 〇) having a tin-oxygen-carbon bond The step of recycling the organotin compound. As the organotin compound used in the step (1), a dialkyltin compound is preferably used. The dialkyltin compound refers to an organotin compound having two substituents bonded to a tin atom. Examples of the dialkyltin compound include a dialkyltin compound selected from the group consisting of the following formula 131505.doc •26·200948760 (14) and a tetraalkyl group represented by the following formula (15). At least one selected compound of the group consisting of a stannous oxide compound. % [Chemical Formula 7] R3a-Sn--χ2^ (1 4 ) (wherein R and R are independently represented by a linear or branched alkyl group having 1 to 12 carbon atoms; X1 and X2 are independent Representing at least one substituent selected from the group consisting of an alkoxy group, a decyloxy group, and a pixel atom; a and b are integers of 〇~2, respectively, a+b=2; c and d are respectively 〇~2 Integer, c+d=2). [化8]
(15) (式中: R、R、R7及R8分別獨立表示直鏈狀或支鏈狀之碳數為 1〜12之烷基; X及X表不選自燒氧基、醯氧基及鹵素原子所組成之群 中的至少一種取代基; e、f、g、h分別為 〇〜2之整數,e+f=2,g+h=2)。 131505.doc •27- 200948760 作為以上述式(14)所表示之二烷基錫觸媒之R3及R4、以 及以上述式(15)所表示之四烷基二錫氧烷化合物之R5、 R6、R7及R8的例,可列舉:甲基、乙基、丙基(各異構 物)、丁基(各異構物)、戊基(各異構物)、己基(各異構 物)、庚基(各異構物)、辛基(各異構物)、壬基(各異構 物)、癸基(各異構物)、十二烷基(各異構物)等構成該基之 碳原子數為選自1〜12之整數的作為脂肪族烴基的烷基等。 更好的是’構成該基之碳原子數為選自之整數的直鏈 〇 狀或支鏈狀之烷基,亦可使用構成該基之碳原子數為以上 所示範圍之外的院基之二烧基錫化合物,但有時流動性變 差’或有損生產性。進而,若考慮工業生產時獲取之容易 程度’進而好的是正丁基、正辛基。 作為以上述式(14)所表示之二燒基錫化合物之χΐ及X2、 以及以式(15)所表示之四烷基二錫氧烷化合物之&及χ4, 表示選自烷氧基、醯氧基及鹵素原子所組成之群中的至少 ❿ 種取代基’於該基為烧氧基及/或酿氧基之情形時,較 好的是構成該基之碳原子數為選自〇〜! 2之整數的基。作為 如此之例,可例示:曱氧基、乙氧基、丙氧基(各異構 物)' 丁氧基(各異構物)、戊氧基(各異構物)、己氧基(異構 物)、庚氧基(各異構物)、辛氧基(各異構物)、壬氧基(各異 構物)、癸氧基(各異構物)等由直鏈狀或支鏈狀之飽和烷基 與氧原子構成之烷氧基,乙醯氧基、丙醯氧基、丁醯氧 基、戊醯氧基、十二醯氧基等由直鏈狀或支鏈狀飽和烷 基、羰基及氧原子構成之醯氧基,氣基、溴基等齒素原 131505.doc -28- 200948760 子。若考慮流動性或溶解性,又,考慮用作碳酸醋製造觸 媒,作為進而好之例,係碳數為4~6之燒氧基。 ❹ Ο 作為以式(14)所表示之二烷基錫化合物之例,可列舉: 二甲基-二曱氧基錫、二曱基-二乙氧基錫、二甲 基錫(各異構物)、二甲基-二丁氧基錫(各異構物)、二甲基_ 二戊氧基錫(各異構物)、二甲基.二己氧基錫(各異構物卜 二曱基-二庚氧基錫(各異構物)、二甲基·二辛氧基錫(各異 構物)、二甲基-二壬氧基錫(各異構物)、二甲基-二癸氧基 錫(各異構物)、二丁基-二甲氧基錫(各異構物)、二丁'基-二 乙氧基錫(各異構物)、二丁基.二丙氧基锡(各異構物)土、= 丁基-二丁氧基錫(各異構物)、二丁基_二戊氧基錫(各異構 Γ各)異二己氧基錫(各異構物)、二丁基·二庚氧基錫 咚異構物)、二丁基_二辛氧基錫(各異構物)、二丁基二壬 氧基錫(各異構物)、二丁基_二癸氧基錫(各異構物)土、二辛 基_二甲氧基錫(各異構物)、二辛基_二乙氧基锡(各 物)、二辛基-二丙氧基錫(各異構物)、二辛基-二丁氧基錫 (各異構物)、二辛基_二戊氧基錫(各異構物)、二辛美二 =基錫(各異構物)、二辛基_二庚氧基錫(各異構物)土、= 土辛氧基錫(各異構物)、二辛基_二壬 物)、-辛八备 土錫(各異構 )一辛基-一癸氧基錫(各異構物)等二貌基 鎖,二甲基-二乙酿氧基錫、二甲基·二丙酿 2 物)、二甲基-二丁醯氧基錫(各異構 /、 錫(各異構物)、二甲基-二(十二酿氧2)錫^基-戍酿氧基 丁基-二乙酿氧基踢(各異構物)、二丁基-二丙酿氧上 131505.doc -29- 200948760 異構物)、二丁基·二丁醯氧基錫(各異構物)、二丁基-二 Γ)氧基;(:異構物)、二丁基-二(十二酿氧基)錫(各異構 )-辛基-二乙酿氧基錫(各異構物)、2辛基_二丙酿氧 錫(各異構物)、二辛基_二丁酿氧基錫(各異構物)、二辛 基-戊醯氧基錫(各異構物)、二辛基.二(十二酿 異構物)等二炫基-二酿氧基錫,二甲基-二氣化錫、二; 基-一漢化錫、二丁基_二氣化錫(各異構物)、二丁基_ Ο ❹ 化錫(各異構物)、二辛基-二氯化錫(各異構物)、二辛基-二 溴化錫(各異構物)等二烷基·二齒化錫等。 該等之中,較好的是二甲基-二甲氧基錫、二甲基-二乙 氧基錫一甲基·二丙氧基錫(各異構物)、二甲基-二丁 基錫(各異構物)、二甲基_二戊氧基錫(各異構物)、二甲美 二己氧基錫(各異構物)、二甲基二庚氧基錫(各異構物广、 基·二辛氧基錫(各異構物)、二甲基-二壬氧基錫(各異 構物)、一甲基·二癸氧基錫(各異構物)、二丁基-二 錫(各異構物)、二丁基_二乙氧基錫(各異構物)、二丁基二 丙氧基錫(各異構物)、二丁基-二丁氧基錫(各異構物二I :)基基錫(各異構物)、二丁基·二己氧基锡(各異構 a w —庚氧基錫(各異構物)、二丁基_二辛氧基錫 (广異構物)、二丁基-二壬氧基錫(各異構物)、二丁基-二八 巩基錫(各異構物)' 二辛基_二甲氧基錫(各異構物)、二: =二乙氧基锡(各異構物)、二辛基-二丙氧基錫(各異構 (各異::氧基錫(各異構物)、二辛基-二戊氧基錫 (各異構物)、二辛基-二己氧基錫(各異構物)、二辛基_二庚 131505.doc 200948760 氧基錫(各異構物)、二辛基-二辛氧基錫(各異構物)、二辛 基-二壬氧基錫(各異構物)、二辛基-二癸氧基錫(各異構物) 等二烷基-二烷氧基錫,其中,更好的是二丁基-二丙氧基 錫(各異構物)、二丁基-二丁氧基錫(各異構物)、二丁基-二 戊氧基錫(各異構物)、二丁基-二己氧基錫(各異構物)、二 丁基-一庚氧基錫(各異構物)、二辛基_二丙氧基錫(各異構 物)、二辛基-二丁氧基錫(各異構物)、二辛基-二戊氧基錫 (各異構物)、二辛基-二己氧基錫(各異構物)、二辛基-二庚 氧基錫(各異構物)等二烷基_二烷氧基錫,進而好的是二丁 〇 Ο 基-二丁氧基錫(各異構物)、二丁基-二戊氧基錫(各異構 物)、一丁基-二己氧基錫(各異構物)、二丁基-二庚氧基錫 (各異構物)、二丁基-二辛氧基錫(各異構物)、二辛基-二丁 氧基錫(各異構物)、二辛基_二戊氧基錫(各異構物)、二辛 基-二己氧基錫(各異構物)、二辛基-二庚氧基錫(各異構 物)、二辛基-二辛氧基錫(各異構物)。 以上述式(14)所表示之二烷基錫化合物表現為單體結 構’但亦可為多聚體結構或締合物。 作為以式(15)所表示之四烷基二烷氧基二錫氧烷之例, 可列舉:1,1,3,3-四曱基二曱氧基二錫氧烷、u,3,3_ 四甲基_1,3-二乙氧基二錫氧烷、^,、弘四曱基^,夂二丙 氧基二錫氧烷(各異構物)、1,1,3,3-四甲基-1,3-二丁氡基二 錫氧烷(各異構物)、M,3,3-四甲基-1,3·二戊氧基二錫氧烷 (各異構物)、μ,3,3_四甲基_丨,3_二己氧基二錫氡烷(各異 構物)、1,1,3,3-四甲基―丨义二庚氧基二錫氧烷(各異構 131505.doc •31 - 200948760 物)、1,1,3,3-四甲基-1,3-二辛氧基二錫氧烷(各異構物)、 1,1,3,3-四曱基-1,3-二壬氧基二錫氧烷(各異構物)、 1,1,3,3-四甲基-I,3-二癸氧基二錫氧烷(各異構物)、 1.1.3.3- 四丁基-1,3-二甲氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二乙氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二丙氧基二錫氧烷(各異構物)、 1.1.3.3- 四丁基-1,3-二丁氧基二錫氧烷(各異構物)、 1.1.3.3- 四丁基-1,3-二戊氧基二錫氧烷(各異構物)、 Ο 1,1,3,3-四丁基-1,3-二己氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二庚氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二辛氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二壬氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基-1,3-二癸氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二曱氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二乙氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二丙氧基二錫氧烷(各異構物)、 ® 1,1,3,3-四辛基-1,3-二丁氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二戊氧基二錫氧烷(各異構物)、 1.1.3.3- 四辛基-1,3-二己氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二庚氧基二錫氧烷(各異構物)、 1.1.3.3- 四辛基-1,3-二辛氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二壬氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基-1,3-二癸氧基二錫氧烷(各異構物)等 1,1,3,3-四烷基-1,3-二烷氧基-二錫氧烷,1,1,3,3-四曱基- 131505.doc -32- 200948760 1’3-二乙醯氧基二錫氧烷 二錫氧院(各異構物)、113四’二基仏二丙醢氧基 氧烧㈣構物)、U3;,甲:,3·二丁酿氧基二錫 (各異構物、 ,四甲土·1,3·一戊醯氧基二錫氧烷 (、構物)'1,1,3,3-四甲其 一/_!__ * (各里槿铷、 土 _,一(十二醯氧基)二錫氧烷 :冓物)、1’1,3,3-四丁基_1>3_二乙酿氧基二錫 各 異構物)、1,133 -四丁 ,, 土 _1,3·二丙酿氧基二錫氣烧f名-里雄 物)、1,1,3,3-四丁基_13·二丁酿g_氧说(各異構 物 ’ 軋基一錫氧烷(各異構 ❹ ❹ 物)、1,1,3,3-四丁基 _ι 3_ - & 疏结 物) 物) 物) 物) 物) 物) ,一戊醯乳基二錫氧烷(各異構 MW-四丁基{3-二(十二醯氧基)二踢氧院(各異構 1,1’3,3-四辛基qj·二乙醯氧基二錫氧烷(各異構 U’3’3-四辛基二丙醯氧基二錫氧烷(各異構 1,1,3,3-四辛基-丨’3·二丁醯氧基二錫氧烷(各異構 1,1,3,3-四辛基二戊醯氧基二錫氧烷(各異構 * 1,1,3,3-四辛基·ΐ,3-二(十二醯氧基)二錫氡烷(各異構 物)等1,1,3,3-四烷基-ΐ,3-二醯氧基二錫氧烧,m3四甲 基-13-二氯二錫氧烷、i山3,3_四曱基二漠二錫氧 烷、1,1,3,3-四丁基-1,3·二氣二錫氧烷(各異構物)、 四丁基{3-二溴二錫氧烷(各異構物)、^^^四 辛基·1,3-二氯二錫氧烷(各異構物)、u,3,3_四辛基_丨,3_二 漠二锡氧烷(各異構物)等U,3,3-四烷基-1,3-二鹵化二錫氧 烷。 該等之中,更好的是1,1,3,3-四曱基-1,3-二曱氧基二錫 氧烧、1,1,3,3-四曱基-1,3-二乙氧基二錫氧烧、1,1,3,3-四 曱基-1,3-二丙氧基二錫氧烷(各異構物)、1,1,3,3-四甲基- 131505.doc -33- 200948760(15) (wherein R, R, R7 and R8 each independently represent a linear or branched alkyl group having 1 to 12 carbon atoms; X and X are not selected from alkoxy groups, decyloxy groups and At least one substituent in the group consisting of halogen atoms; e, f, g, h are integers of 〇~2, respectively, e+f=2, g+h=2). 131505.doc •27-200948760 R5 and R4 as a dialkyltin catalyst represented by the above formula (14), and R5 and R6 of a tetraalkyldistannoxane compound represented by the above formula (15) Examples of R7 and R8 include a methyl group, an ethyl group, a propyl group (each isomer), a butyl group (each isomer), a pentyl group (each isomer), and a hexyl group (each isomer). , heptyl (each isomer), octyl (each isomer), thiol (each isomer), thiol (each isomer), dodecyl (each isomer), etc. The number of carbon atoms in the group is an alkyl group as an aliphatic hydrocarbon group selected from an integer of from 1 to 12. More preferably, the number of carbon atoms constituting the group is a linear or branched alkyl group selected from an integer selected from the group, and the number of carbon atoms constituting the group may be a range other than the range shown above. The second is a base-tin compound, but sometimes the fluidity is deteriorated' or the productivity is impaired. Further, in consideration of the ease of obtaining in industrial production, it is preferably n-butyl or n-octyl. The oxime and X2 of the dialkyltin compound represented by the above formula (14) and the & and χ4 of the tetraalkyldistannoxane compound represented by the formula (15) represent an alkoxy group selected from When at least the hydrazine substituent in the group consisting of a decyloxy group and a halogen atom is in the case of an alkoxy group and/or a methoxy group, it is preferred that the number of carbon atoms constituting the group is selected from hydrazine. ~! The base of an integer of 2. As such an example, an oximeoxy group, an ethoxy group, a propoxy group (each isomer) 'butoxy group (each isomer), a pentyloxy group (each isomer), a hexyloxy group ( Isomers, heptyloxy (each isomer), octyloxy (each isomer), decyloxy (each isomer), decyloxy (each isomer), etc. are linear or Alkoxy groups composed of a branched saturated alkyl group and an oxygen atom, and an alkyloxy group, a propyloxy group, a butoxy group, a pentyloxy group, a dodecyloxy group or the like are linear or branched. A saturated alkyl group, a carbonyl group and an oxygen atom constitute a methoxy group, a gas group, a bromine group and the like dentate element 131505.doc -28- 200948760. In consideration of fluidity or solubility, it is considered to be used as a catalyst for producing carbonated vinegar, and as a further preferred example, an alkoxy group having a carbon number of 4 to 6 is used. ❹ Ο As an example of the dialkyl tin compound represented by the formula (14), dimethyl-dimethoxy tin, didecyl-diethoxy tin, dimethyl tin (isomeric , dimethyl-dibutoxytin (each isomer), dimethyl-dipentyloxytin (each isomer), dimethyl.dihexyloxytin (each isomer) Dimercapto-diheptyloxytin (each isomer), dimethyldioctyloxytin (each isomer), dimethyl-dimethoxytin (each isomer), dimethyl Base-dimethoxytin (each isomer), dibutyl-dimethoxy tin (each isomer), dibutyl'-di-diethoxytin (isomeric), dibutyl Dipropoxytin (each isomer), = butyl-dibutoxytin (each isomer), dibutyl-dipentyloxytin (isomeric oxime) iso-dihexyloxy Base tin (each isomer), dibutyl bis heptyl tin oxide oxime), dibutyl _ dioctyl tin (each isomer), dibutyl dimethoxy tin (each Isomer), dibutyl-dimethoxytin (each isomer), dioctyl-dimethoxytin (isomeric), dioctyl-di-B Base tin (each), dioctyl-dipropoxytin (each isomer), dioctyl-dibutoxytin (each isomer), dioctyl-dipentyloxytin (each Isomers), dioctyl bis-yltin (each isomer), dioctyl-diheptyloxy tin (each isomer), = octyloxy tin (isomeric), two辛基_二壬物), - 辛八土土 tin (isomeric) monooctyl-monodecyloxy tin (each isomer) and other two-form base lock, dimethyl-diethyl oxy tin , dimethyl dipropylene oxide 2), dimethyl-butadienyl tin oxide (isomeric /, tin (each isomer), dimethyl-di (twelbic oxygen 2) tin ^ Base-brewed oxybutyl-diethyloxy kick (each isomer), dibutyl-dipropene on 131505.doc -29- 200948760 isomer), dibutyl·dibutyl Oxytin (each isomer), dibutyl-dioxanyloxy; (: isomer), dibutyl-bis(dodecanoxy) tin (isoisomer)-octyl-di Ethyl tin oxide (each isomer), 2 octyl-dipropane tin oxide (iso-isomer), dioctyl-dibutyl oxy tin (iso-isomer), dioctyl-pentyl Tin oxytin (each isomer) ), dioctyl. II (tweldium isomer), etc., diterpene-di-oxytin, dimethyl-di-sulphide, di-basic-tin-tin, di-butyl-di-gasification Tin (each isomer), dibutyl Ο ❹ ❹ tin (each isomer), dioctyl-tin dichloride (each isomer), dioctyl-dibromide (isoisomer) Dialkyl, bidentate, etc. Among these, preferred are dimethyl-dimethoxy tin, dimethyl-diethoxytin-methyl-dipropoxytin (each isomer), and dimethyl-dibutyltin. (each isomer), dimethyl-dipentyloxytin (each isomer), xylylene dihexyltin (each isomer), dimethyl diheptyloxy tin (isomeric Physicochemical, bis-octyloxytin (each isomer), dimethyl-dimethoxy tin (each isomer), monomethyl-dimethoxy tin (each isomer), two Butyl-ditin (each isomer), dibutyl-diethoxytin (each isomer), dibutyldipropoxide (each isomer), dibutyl-dibutoxide Base tin (each isomer II:) base tin (each isomer), dibutyl·dihexyloxytin (isomeric aw-heptyloxytin (isomeric), dibutyl _Dioctyloxytin (widely isomer), dibutyl-dimethoxytin (each isomer), dibutyl-dioctadecyltin (each isomer) 'dioctyl-dimethoxy Base tin (each isomer), two: = diethoxy tin (each isomer), dioctyl-dipropoxy tin (isomeric (different:: tin oxide (each isomer) ), dioctyl-two Pentyl pentoxide (each isomer), dioctyl-dihexyloxytin (each isomer), dioctyl-di-g-goxide 131505.doc 200948760 tin oxytin (isomeric), dioctyl -Dioctyl-dioctyltin (each isomer), dioctyl-dimethoxytin (each isomer), dioctyl-dimethoxytin (each isomer) Alkoxytin, among which, more preferred are dibutyl-dipropoxytin (each isomer), dibutyl-dibutoxytin (each isomer), dibutyl-dipentyloxy Base tin (each isomer), dibutyl-dihexyl tin (each isomer), dibutyl-monoheptyl tin (each isomer), dioctyl-dipropoxy tin (each isomer), dioctyl-dibutoxytin (each isomer), dioctyl-dipentyloxytin (each isomer), dioctyl-dihexyloxytin (each a dialkyl-dialkyloxy tin such as an isomer) or a dioctyl-diheptyloxytin (each isomer), and further preferably a dibutyl decyl-dibutoxy tin (isomeric , dibutyl-dipentyloxytin (each isomer), monobutyl-dihexyloxytin (each isomer), dibutyl- Heptyltin (each isomer), dibutyl-dioctyl tin (each isomer), dioctyl-dibutoxytin (each isomer), dioctyl-dipentoxide Base tin (each isomer), dioctyl-dihexyl tin (each isomer), dioctyl-diheptyl tin (each isomer), dioctyl-dioctyl tin (Dimers) The dialkyl tin compound represented by the above formula (14) exhibits a monomer structure 'but may also be a multimeric structure or an association. As the four represented by the formula (15) Examples of the alkyl dialkoxy distannoxane include 1,1,3,3-tetradecyldidecyloxydistannoxane, and u,3,3_tetramethyl-1,3-di Ethoxy distannoxane, ^, 弘 曱 ^ ^, 夂 dipropoxy distannoxane (each isomer), 1,1,3,3-tetramethyl-1,3-di Butyryl distannoxane (each isomer), M,3,3-tetramethyl-1,3·dipentyloxydistannoxane (each isomer), μ, 3,3-tetramethyl _丨, 3_dihexyloxystannane (each isomer), 1,1,3,3-tetramethyl-pyridyldiheptyloxydistannoxane (isomeric 131505.doc • 31 - 200948760 , 1,1,3,3-tetramethyl-1,3-dioctoxydistannoxane (each isomer), 1,1,3,3-tetradecyl-1,3- Dimethoxy distannoxane (each isomer), 1,1,3,3-tetramethyl-I,3-didecyloxydistannoxane (isomeric), 1.1.3.3- Tetrabutyl-1,3-dimethoxydistannoxane (each isomer), 1,1,3,3-tetrabutyl-1,3-diethoxydistannoxane Structure), 1,1,3,3-tetrabutyl-1,3-dipropoxydistannoxane (each isomer), 1.1.3.3-tetrabutyl-1,3-dibutoxy 1, octane oxane (each isomer), 1.1.3.3-tetrabutyl-1,3-dipentyloxystannane (each isomer), Ο 1,1,3,3-tetrazide -1,3-dihexyloxystannane (each isomer), 1,1,3,3-tetrabutyl-1,3-diheptyloxydistannoxane (isoisomers) , 1,1,3,3-tetrabutyl-1,3-dioctoxydistannoxane (each isomer), 1,1,3,3-tetrabutyl-1,3-di Decyloxystannane (each isomer), 1,1,3,3-tetrabutyl-1,3-didecyloxystannane (each isomer), 1,1,3 ,3-tetraoctyl-1,3-dioxaoxydithion (each isomer), 1,1,3,3-tetraoctyl-1,3-diethoxydistannoxane (each isomer), 1,1,3,3-tetraoctyl- 1,3-Dipropoxydistannoxane (each isomer), ® 1,1,3,3-tetraoctyl-1,3-dibutoxydistannoxane (isomers) 1,1,3,3-tetraoctyl-1,3-dipentoxydistannoxane (each isomer), 1.1.3.3-tetraoctyl-1,3-dihexyloxyditin Oxystane (each isomer), 1,1,3,3-tetraoctyl-1,3-diheptyloxydistannoxane (each isomer), 1.1.3.3-tetraoctyl-1, 3-dioctoxydistannoxane (each isomer), 1,1,3,3-tetraoctyl-1,3-dimethoxyoxydistannoxane (each isomer), 1, 1,3,3-tetraoctyl-1,3-dimethoxyoxystannane (each isomer), etc. 1,1,3,3-tetraalkyl-1,3-dialkoxy- Distannoxane, 1,1,3,3-tetradecyl-131505.doc -32- 200948760 1'3-Diethoxydecyloxanediolybdenum (all isomers), 113 four 'Diyl 仏 dipropenyloxyoxylated (four) structure), U3;, A:, 3 · dibutyl oxyditin (each isomer, tetracene · 1,3 · pentaneoxy Di-n-oxoxane物))1,1,3,3-四甲一一/_!__ * (in each case, soil _, one (dodecyloxy) distannoxane: sputum), 1'1, 3,3-tetrabutyl_1>3_diethyloxydi tin isomer), 1,133-tetrabutyl, 1,1,3, dipropene, oxydix, gas, f -Limang), 1,1,3,3-tetrabutyl_13·dibutyl g_oxo (each isomer' rolling base-stannoxaline (isomeric oxime), 1, 1,3,3-tetrabutyl_ι 3_ - & sulphate) s), pentane succinyl octoxide (each isomeric MW-tetrabutyl {3 - bis(dodecyloxy) chlorination (isomeric 1,1'3,3-tetraoctyl qj·diethoxynonantaxane) (isomeric U'3'3-four Octyl dipropenyloxydistannoxane (isomeric 1,1,3,3-tetraoctyl-indole 3) dibutyloxane distannoxane (isomeric 1,1,3, 3-tetraoctyldipentyloxydistannoxane (isomeric * 1,1,3,3-tetraoctylindole, 3-di(dodecyloxy)distanthanane (variety) Structure), etc. 1,1,3,3-tetraalkyl-indole, 3-dimethoxyoxydistannox, m3 tetramethyl-13-dichloro Oxyalkane, i-mountain 3,3_tetradecyldioxadistannoxane, 1,1,3,3-tetrabutyl-1,3·di-diisostannane (isomers), tetrabutyl {3-dibromodistannoxane (each isomer), ^^^tetraoctyl-1,3-dichlorodistannoxane (each isomer), u, 3,3_tetraoctyl U,3,3-tetraalkyl-1,3-dihaloxystannane such as bismuth, 3_dimoxetane (each isomer). Among these, 1,1,3,3-tetradecyl-1,3-didecyloxydixanthene, 1,1,3,3-tetradecyl-1,3- is more preferred. Diethoxytin oxide, 1,1,3,3-tetradecyl-1,3-dipropoxydistannoxane (isomers), 1,1,3,3-tetramethyl Base - 131505.doc -33- 200948760
】,3-二丁氧基二錫氧烷(各異構物)、u,3,3•四^美 戊氧基二錫氧烷(各異構物)、 土 ,-— 二錫氧炫(各異構物)、U,3〜尹基_!,3-二己氧基 烷(各異構物)、1,1,3,3-四f基 土 ,_一庚氧基二錫氧 異構物)、i,l,3,3-四罗基-l3 _’3 一辛氧基二錫氧烷(各 物〕、1,1,3,3-四f基」3•二二—壬氧基二錫氧烷(各異構 .基-U·二’甲一二氧基二錫氧燒(各異構物)、基-U·二乙氧;—錯氧貌(各異構物)、】, 3-dibutoxydistannoxane (each isomer), u, 3,3 • tetramethylpentaloxydistannoxane (isomeric), soil, - - tin oxide (each isomer), U, 3 ~ Yinji _!, 3-dihexyloxyalkane (each isomer), 1,1,3,3-tetraf-based soil, _-heptyloxyditin Oxygen isomer), i,l,3,3-tetraroyl-l3 _'3-octyloxydistannoxane (each), 1,1,3,3-tetraf-based"••2 Di-decyloxydistannoxane (isomeric.-U.s.-di-di-dioxydi-x-oxygen (each isomer), base-U·diethoxy]; Isomer)
1,ί,3,3_ 四 1,1,3,3-四 1,1,3,3-四 1,1,3,3-四 1,1,3,3-四 1,1,3,3-四 1,1,3,3-四 1,1,3,3-四 1,1,3,3' 四 1,1,3,3-四 踢氧烷(各異構物)、 锡氧烷(各異構物)、 錫氧烷(各異構物)、 錫氧烷(各異構物)、 錫氧烷(各異構物)、 錫氧烷(各異構物)、 辛氧基二錫氧烷(各異構物)、 壬氧基二錫氧烷(各異構物)、 1133 πα立# 癸氧基二錫氧烷(各異構物)、 ,i,·ί,·3-四辛基} U,3,3-四辛基-二乙=二錫氧垸(各異構物)、 ! 1 3 ^ 丸 乳基一錫氧烷(各異構物)、 M,3’3-四辛基],3_ 二 113·, ^ 丙氧基二錫氧烷(各異構物)、 丄,1,3,3·四辛基-1,3-二 丁 & * 1 1 .. 氧基二錫氧烷(各異構物)、 1’1,3,3-四辛基十^二 戍氧基二錫氧烷(各異構物)、 1山),3-四辛美一 土 ,-一己氧基二錫氧烷(各異構物)、 - 四辛甚 1 〇 _,,,, _,·二庚氧基二錫氧烷(各異構物)、 1,1,3’3-四辛基 q 3_ 辛虱基二錫氧烷(各異構物)、 基-U-二丙氧基 基-1,3-二丁氧基 基-1,3·二戊氧基 基-1,3-基-l,3-基 - 1 , 3 -基-1,3-基-1,3_ 己氧基 庚氧基 131505.doc •34· 200948760 1,1,3’3-四辛基_i,3_二壬氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基_丨,3_二癸氧基二錫氧烷(各異構物)等 1,1,3,3-四烷基二烷氧基_二錫氧烷,其中,進而好的 是1,1,3,3-四丁基_i,3_二丁氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基],3_二戊氧基二錫氧烷(各異構物)、 I,1,3,3-四丁基_1,3 -二己氧基二錫氧烷(各異構物)、 1,1,3,3-四丁基_丨,3_二庚氧基二錫氧烷(各異構物)、 1,1,3,3_四丁基_丨,3_二辛氧基二錫氧烷(各異構物)、 〇丨’1,3’3·四辛基-1,3-二丁氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基_丨,3_二戊氧基二錫氧烷(各異構物)、 1,1,3,3-四辛基],3·二己氧基二錫氧烷(各異構物)、 I,1,3,3-四辛基-1,3·二庚氧基二錫氧烷(各異構物)、 1,1,3’3-四辛基_丨,3_二辛氧基二錫氧烷(各異構物)。 以上述式(15)所表示之四烷基二烷氧基二錫氧烷表現為 單體結構’但亦可為多聚體結構或締合物。 ^ 已知通常有機錫化合物易於形成締合結構,例如二烷基 錫二烷氧基錫會形成二聚物結構,或四烷基二烷氧基二錫 氧烷會形成缔合2分子或3分子之梯形結構而存在,即使如 此之缔合狀態產生變化,對業者而言以單體結構表示化合 物較為普通。 又’上述所示之二烷基錫化合物可為單獨,亦可為2種 以上之混合物。 作為二燒基錫化合物之製造方法,可較好地利用已揭示 之製造方法(WO 2005/1 1 1049等)。本步驟係自二烷基氧化 131505.doc -35- 200948760 錫與醇,製造一烧基踢化合物之步驟。 作為本實施形態所使用之醇,較好地使用甲醇、乙醇、 丙醇(各異構物)、丁醇(各異構物)、戊醇(各異構物)、己醇 (各異構物)、庚醇(各異構物),(各異構物)、壬醇(各 異構物)、癸醇(各異構物)等’構成該醇之碳原子數為選自 1〜12之整數的醇。 炫基錫院氧化物合成步驟所使用之二烧基氧化錫使用以 下述式(16)所表示之二烷基氧化錫。 ® [化 9] / R9 \ (式中: R9及R1G分別獨立表示直鏈狀或分支狀之碳數為1〜Η之 烧基)。 作為R9及Ri。之例’可列舉:甲基、乙基、丙基(各異構 物)、丁基(各異構物)、戊基(各異構物)、己基(各異構 物)、庚基(各異構物)、辛基(各異構物)、壬基(各異構 物)、癸基(各異構物)、十一烷基(各異構物)、十二烷基(各 異構物)等碳數為1〜12之作為脂肪族烴基的烷基等。更好 的是碳數為1〜8之直鏈狀或支鏈狀之飽和烷基,進而好的 是正丁基、正辛基。 使醇與二烷基氧化錫進行脫水反應,將所生成之水去除 至系統外,並獲得四烷基二烷氧基二錫氧烷及/或二烷基 131505.doc -36· 200948760 錫二烷氧化物。實施該反應之溫度例如為80〜1 80°C之範圍 内,為將所生成之水蒸餾去除至系統外,反應溫度亦取決 於反應壓力,較好的是100°C〜180°C,為提高反應速度, 反應溫度較好的是高溫,另一方面,亦具有高溫下引起分 解等不良反應之情形,有時導致產率下降,因此,反應溫 度進而好的是100°c〜160°c之範圍《反應壓力係可將所生 成之水去除至系統外之壓力,亦取決於反應溫度,於2〇〜1χ 106 Pa下進行。脫水反應之反應時間並無特別限制,通常 〇 為0.001〜50小時’較好的是0.01〜10小時,更好的是01〜2 小時。若獲得所需烧基錫烧氧化物組合物則結束反應。反 應之進行可藉由測定去除至系統外之水量而確認,亦可取 樣反應液,以利用119Sn-NMR之方法確認。為於步驟(〇中 製造本實施形態之混合物,於確認獲得如下組合物即可結 束反應,即,上述反應所獲得之烷基錫烷氧化物組合物中 所含有之四烷基二烷氧基二錫氧烷與二烷基錫二烷氧化物 ❹的莫耳比率,以合併兩者之莫耳%表示,為〇: 〜go: 20之範圍,更好的是1〇 : 9〇〜7〇 : 3〇之範圍的組合物。所 使用之醇可直接以共存之狀態使用,亦可根據情況蒸餾去 除醇使用。因具有可縮小其他步驟之反應器的優點,因此 較好的是儘可能去除醇。去除之方法較好的是利用眾所周 知之利用蒸顧之去除法,又,蒸館所使用之蒸館器可使用 眾所周知之蒸館設備。作為較好的蒸顧裝置’由於可於短 時間去除,因此可較好地使用薄膜蒸館裝置。脫水反應之 反應器之形式並無特別限制,可使用眾所周知之槽狀、塔 131505.doc -37- 200948760 狀反應器。含水之低沸點反應混合物可藉由蒸餾而以氣狀 自反應器排出’且可將包含所製造之烷基錫烷氧化物或烷 基錫烷氧化物混合物之高沸點反應混合物自反應器下部以 液狀排出。作為如此之反應器,例如可採用使用包含攪拌 槽'多段攪拌槽、蒸餾塔、多段蒸餾塔、多管式反應器、 連續多段蒸餾塔、填充塔、薄膜蒸發器、内部具備支持體 之反應器、強制循環反應器、落膜蒸發器、落滴蒸發器、 細流相反應器、氣泡塔中的任一種之反應器之方式,以及 © 將該等加以組合之方式等眾所周知之各種方法。就使平衡 有效地偏向生成系側而言,較好的是使用塔狀反應器, 又,較好的是使所形成之水迅速轉移至氣相之氣_液接觸 面積較大的結構。亦可採用使用多管式反應器、多段蒸餾 塔、填充有填充劑之填充塔之連續法,但本步驟中所使用 之二烷基氧化錫通常為固狀,因此最好的是首先於槽狀反 應器中實施,繼而於塔型反應器中提高二烷基錫二烷氧化 ◎ 物之含量的方法。若不造成不良影響,則反應器及線路之 材質可為眾所周知之任何材質,其中SUS304或SUS316、 SUS316L等較為廉價,故可較好地使用。視需要,可附加 流量計、溫度計等測量儀器,再沸器、泵、冷凝器等眾所 周知之處理裝置;加熱可利用蒸汽、加熱器等眾所周知之 方法,冷卻亦可使用自然冷卻、冷卻水、鹽水等眾所周知 之方法。 步驟(1)係使藉由上述方法所製造之二烷基錫化合物與 氣狀二氧化碳進行反應,而製造碳酸酯之步驟。該步驟較 131505.doc •38. 200948760 好的是使用已揭示之碳酸酯之製造方法(WO 03/055840、 WO 04/014840等)。 供給至本步驟之烧基錫化合物,有時於啟動時由烧基錫 烧氧化物合成步驟供給;有時於連續製造時自下述步驟(4) 之二烷基錫化合物製造步驟,經由步驟(5)而供給。1, ί, 3, 3_ four 1,1,3,3-four 1,1,3,3-four 1,1,3,3-four 1,1,3,3-four 1,1,3, 3-tetra 1,1,3,3-tetra 1,1,3,3-tetra 1,1,3,3' tetra 1,1,3,3-tetraoxane (each isomer), tin Oxystane (each isomer), stannous oxide (each isomer), stannous oxide (each isomer), stannoxane (each isomer), stannoxane (each isomer), xin Oxydistanoxane (each isomer), nonyloxystannal (each isomer), 1133 πα立# 癸 二 octoxide (isomer), i, · ί ,·3-tetraoctyl} U,3,3-tetraoctyl-diethyl=distannium oxime (each isomer), ! 1 3 ^ Pellets-monostannoxane (isomers), M,3'3-tetraoctyl], 3_II113·, ^propoxydistannoxane (each isomer), hydrazine, 1,3,3·tetraoctyl-1,3-dibutyl&amp ; * 1 1 .. oxydistannoxane (each isomer), 1'1,3,3-tetraoctyldodeto-dioxaoxydistannoxane (each isomer), 1 mountain) , 3-tetraxinmei, 1-hexyloxydistannoxane (each isomer), - Sixinyi 1 〇_,,,, _,·二Heptyloxystannane (each isomer), 1,1,3'3-tetraoctyl q 3 -octyl distannoxane (each isomer), thio-U-dipropoxy-1 ,3-dibutoxy-1,3.dipentyloxy-1,3-yl-l,3-yl- 1 ,3-yl-1,3-yl-1,3-hexyloxyglycol Oxylate 131505.doc •34· 200948760 1,1,3'3-tetraoctyl_i,3_didecyloxystannane (isomers), 1,1,3,3-tetraxin 1,1,3,3-tetraalkyldialkoxy-distannoxane, such as 丨, 3_dimethoxy distannoxane (each isomer), wherein, further preferably 1, 1,3,3-tetrabutyl-i,3-dibutoxydistannoxane (each isomer), 1,1,3,3-tetrabutyl], 3-dipentyloxyditin Oxane (each isomer), I,1,3,3-tetrabutyl-1,3-dihexyloxystannane (each isomer), 1,1,3,3-tetrabutyl Base 丨, 3 bis heptyloxydistannoxane (each isomer), 1,1,3,3_tetrabutyl 丨, 3_dioctyloxydistannoxane (each isomer) ), 〇丨'1,3'3·tetraoctyl-1,3-dibutoxydistannoxane (each isomer), 1,1,3,3-tetraoctyl-丨,3_ Dipentane 1, octaneoxane (each isomer), 1,1,3,3-tetraoctyl], 3·dihexyloxydistannoxane (each isomer), I,1,3,3- Tetraoctyl-1,3·diheptyloxydistannoxane (each isomer), 1,1,3'3-tetraoctyl-indole, 3-dioctyloxydistannoxane Structure). The tetraalkyldialkoxydistannoxane represented by the above formula (15) behaves as a monomer structure' but may also be a multimeric structure or an associate. ^ It is known that usually organotin compounds are prone to form association structures, for example, dialkyltin dialkoxides form a dimer structure, or tetraalkyldialkoxydistannoxanes form associations of 2 molecules or 3 The trapezoidal structure of the molecule exists, and even if the state of association changes, it is common for the manufacturer to express the compound as a monomer structure. Further, the above-mentioned dialkyltin compound may be used singly or in combination of two or more kinds. As a method for producing the dialkyltin compound, the disclosed production method can be preferably used (WO 2005/1 1 1049, etc.). This step is a step of producing a calcining compound from a dialkyl oxide 131505.doc -35- 200948760 tin and an alcohol. As the alcohol used in the present embodiment, methanol, ethanol, propanol (each isomer), butanol (each isomer), pentanol (each isomer), and hexanol (isomeric) are preferably used. , heptanol (each isomer), (each isomer), decyl alcohol (each isomer), decyl alcohol (each isomer), etc. 'The number of carbon atoms constituting the alcohol is selected from 1~ An integer of 12 alcohols. The dialkyltin oxide used in the oxidation-forming step of the Xingxi Xiyuan oxide is a dialkyltin oxide represented by the following formula (16). ® [Chem. 9] / R9 \ (wherein R9 and R1G independently represent a linear or branched carbon number of 1 to 烧). As R9 and Ri. Examples thereof include methyl group, ethyl group, propyl group (each isomer), butyl group (each isomer), pentyl group (each isomer), hexyl group (each isomer), and heptyl group ( Each isomer), octyl (each isomer), thiol (each isomer), thiol (each isomer), undecyl (each isomer), dodecyl (each The isomer is an alkyl group or the like having an aliphatic hydrocarbon group having a carbon number of 1 to 12. More preferably, it is a linear or branched saturated alkyl group having a carbon number of 1 to 8, and more preferably n-butyl or n-octyl. Dehydrating the alcohol with dialkyltin oxide, removing the formed water to the outside of the system, and obtaining tetraalkyldialkoxydistannoxane and/or dialkyl 131505.doc -36· 200948760 tin II Alkoxide. The temperature at which the reaction is carried out is, for example, in the range of 80 to 180 ° C. In order to distill off the produced water to the outside of the system, the reaction temperature also depends on the reaction pressure, preferably 100 ° C to 180 ° C. The reaction rate is increased, and the reaction temperature is preferably high temperature. On the other hand, it also causes an adverse reaction such as decomposition at a high temperature, which sometimes causes a decrease in yield. Therefore, the reaction temperature is preferably 100 ° c to 160 ° C. The range "Reaction pressure is the pressure at which the generated water can be removed to the outside of the system, and also depends on the reaction temperature, and is carried out at 2 〇 to 1 χ 106 Pa. The reaction time of the dehydration reaction is not particularly limited, and is usually 0.001 to 50 hours', preferably 0.01 to 10 hours, more preferably 01 to 2 hours. The reaction is terminated if the desired alkyltin oxide composition is obtained. The reaction can be confirmed by measuring the amount of water removed to the outside of the system, and the reaction solution can also be sampled and confirmed by 119Sn-NMR. In order to produce the mixture of the present embodiment in the step, it was confirmed that the following composition was obtained, that is, the tetraalkyldialkoxy group contained in the alkyl tin alkoxide composition obtained by the above reaction was obtained. The molar ratio of distannoxane to dialkyltin dialkoxide oxime, expressed as the molar % of the two, is 〇: ~go: 20 range, more preferably 1〇: 9〇~7 〇: A composition in the range of 3 。. The alcohol used can be used directly in a coexistent state, and the alcohol can be distilled off depending on the situation. Since there is an advantage that the reactor can be reduced in other steps, it is preferable to The method of removing the alcohol is preferably by using the well-known method of removing the steam, and the steaming museum used in the steaming hall can use the well-known steaming equipment as a better steaming device. The time is removed, so that the film evaporation apparatus can be preferably used. The form of the reactor for the dehydration reaction is not particularly limited, and a well-known tank-shaped, column 131505.doc -37-200948760-shaped reactor can be used. The compound can be discharged from the reactor in a gaseous form by distillation and the high boiling reaction mixture comprising the alkyltin alkoxide or alkyltin alkoxide mixture produced can be discharged from the lower portion of the reactor in liquid form. As such a reactor, for example, a reactor including a stirring tank 'multistage stirring tank, a distillation column, a multi-stage distillation column, a multi-tubular reactor, a continuous multi-stage distillation column, a packed column, a thin film evaporator, and a support body inside can be used. , a method of a forced circulation reactor, a falling film evaporator, a falling drop evaporator, a fine flow phase reactor, a bubble column, and a method of combining the same, etc. In the case where the equilibrium is effectively biased toward the side of the formation system, it is preferred to use a column reactor, and it is preferred to rapidly transfer the formed water to a gas-liquid contact area having a large contact area. A continuous process using a multi-tubular reactor, a multi-stage distillation column, and a packed column packed with a filler, but the dialkyltin oxide used in this step is usually solid, so the best is Firstly, it is carried out in a trough reactor, and then the method of increasing the content of dialkyltin dioxane in the column reactor. If no adverse effect is caused, the material of the reactor and the line can be any known material. Among them, SUS304, SUS316, SUS316L, etc. are relatively inexpensive, so they can be used well. If necessary, a measuring instrument such as a flow meter or a thermometer, a well-known processing device such as a reboiler, a pump, and a condenser can be added; Well-known methods such as a heater, and a well-known method such as natural cooling, cooling water, and brine can be used for cooling. Step (1) is a reaction in which a dialkyl tin compound produced by the above method is reacted with gaseous carbon dioxide. The step of carbonate. This step is better than 131505.doc • 38. 200948760. It is better to use the disclosed method of producing carbonate (WO 03/055840, WO 04/014840, etc.). The alkyltin compound supplied to the present step may be supplied from the alkyltin oxide synthesis step at the time of startup; sometimes from the dialkyltin compound production step of the following step (4) at the time of continuous production, via the step (5) and supply.
❹ 步驟(1)中,首先吸收上述二烷基錫烷氧化物及氣狀二 氧化碳’進行化學反應,而獲得含有二烷基錫烷氧化物之 二氧化碳鍵結體之混合物。進行化學反應時,使該二烷基 錫烧氧化物成液狀而進行反應。二烷基錫烷氧化物為固體 之情形時,為了使該二烷基錫烷氧化物成為液狀,可較好 地使用藉由加熱而使之成為液狀之方法。又,亦可利用溶 劑等使其成為液狀。反應壓力亦取決於反應之溫度,較好 的是常壓〜1 MPa之範圍,進而好的是常壓〜〇 6 Mpa之範 圍。該反應溫度亦取決於反應之壓力,但較好的是_4(rc 80 C之範圍,若考慮運送時之流動性,則進而好的是 ~80艺,最好的範圍為常溫(例如2〇。(:)〜8〇。(:。反應可於數 秒〜100小時之範圍内實施,若考慮生產性等,則較好的是 數分鐘〜10小時。反應器可使用眾所周知之槽型反應器、 塔型反應器。X,可將複數個反應器組合使用。因反應係 二氧化碳氣體(氣體)與烷基錫烷氧化物組合物(液體)之反 應’故為了效率良好地進行反應,較好的是擴域液界面 以擴大氣體與液體之接觸面積。如此之擴大氣液界面而進 打反應之方法可利用眾所周知之知識,例如若利用槽型反 應器’則較好的是提高授拌速度,或使液中產生氣泡之方 131505.doc -39- 200948760 法’若利用塔型反應器,則較好的是利用填充塔,或利用 層板塔之方法。作為如此之塔型反應器之例,例如可利用 使用泡盤、多孔塔板、浮閥塔板、逆流塔板等塔板之層板 塔方式,或填充有拉西環、勒辛環、鲍爾環(PaU ring)、 弧鞍形填料(Berl saddle)、矩鞍環填料(Intalox saddle)、狄 克松填料(Dixon Packing)、網鞍填料(McMahon Packing)、 螺旋填料(Heli pack)、絲網波紋填料(Sulzer Packing)、扎 板波紋填料(Mellapak)等各種填充物之填充塔方式等。若 ^ 不造成不良影響,則反應器及線路之材質可為眾所周知之 任意材質,其中SUS304或SUS316、SUS316L等較為廉 價’故可較好地使用。視需要,可附加流量計、溫度計等 測量儀器,再沸器、泵、冷凝器等眾所周知之處理裝置; 加熱可利用蒸、加熱器等眾所周知之方法,冷卻亦可使 用自然冷卻、冷卻水、鹽水等眾所周知之方法。反應通常 為發熱反應,因此可加以冷卻,或者可利用反應器之放熱 0 而進行冷卻。或者若需一併進行碳酸酯化反應則可進行加 熱。反應器之冷卻、加熱可採用使用水套之方法、利用内 部線圈之方法等眾所周知的方法。供給至反應器之二氧化 碳氣體與烷基錫烷氧化物組合物可分別供給至反應器,亦 可於供給至反應器前預先加以混合。可自反應器之多個部 位進行供給。反應結束例如可藉由mSn_NMR*析而決 定。 其次,利用以下方法,自上述所獲得之二烷基錫烷氧化 物之二氧化碳鍵結體,獲得包含碳酸酯之反應液。 131505.doc -40- 200948760 〜200°c之範圍’為了提高反應速度, 反應條件為11 〇。(3 另一方面,亦具有高溫下引起 時導致產率下降,因此較好的 較好的是反應溫度為高溫, 分解等不良反應之情形,有 是12(TC〜180。(:之範圍’反應時間為〇」小時〜1〇小時之範 圍’反應壓力為1.5 MPa〜20 MPa,較好的是2·〇 MPa〜1〇 MPa之範圍可於反應器中生成所需的碳酸酯後結束反 應 器内之 反應之進行可利用如下方法等而確認:對反應 ΟIn the step (1), the above dialkyltin alkoxide and gaseous carbon dioxide are first absorbed to carry out a chemical reaction to obtain a mixture of a carbon dioxide bond containing a dialkyltin alkoxide. When the chemical reaction is carried out, the dialkyltin oxide oxide is brought into a liquid state to carry out a reaction. When the dialkylstannane oxide is a solid, in order to make the dialkylstannane oxide liquid, a method of bringing it into a liquid by heating can be preferably used. Further, it may be made into a liquid form by using a solvent or the like. The reaction pressure also depends on the temperature of the reaction, and is preferably in the range of normal pressure to 1 MPa, and further preferably in the range of atmospheric pressure to 〇 6 Mpa. The reaction temperature also depends on the pressure of the reaction, but is preferably in the range of _4 (rc 80 C. If the fluidity during transportation is considered, it is preferably -80 art, and the best range is normal temperature (for example, 2). :. (:)~8〇. (: The reaction can be carried out in the range of several seconds to 100 hours, and in consideration of productivity, etc., it is preferably from several minutes to 10 hours. The reactor can use a well-known groove type reaction. , a column type reactor, X, a plurality of reactors can be used in combination. Since the reaction is a reaction between carbon dioxide gas (gas) and an alkyl tin alkoxide composition (liquid), in order to carry out the reaction efficiently, It is good to expand the liquid interface to enlarge the contact area between the gas and the liquid. Thus, the method of expanding the gas-liquid interface and using the reaction can utilize well-known knowledge, for example, if the tank type reactor is used, it is better to increase the mixing. Speed, or the side that causes bubbles in the liquid 131505.doc -39- 200948760 Method 'If a tower type reactor is used, it is preferable to use a packed column or a method of using a layered tower. As such a tower type reactor For example, for example Use a slab tower method using a tray such as a bubble tray, a perforated tray, a valve tray, a countercurrent tray, or the like, or filled with a Raschig ring, a Lexin ring, a Paul ring (PaU ring), an arc saddle filler ( Berl saddle), Intalox saddle, Dixon Packing, McMahon Packing, Heli pack, Sulzer Packing, corrugated packing (Mellapak), etc., such as a packed tower method of various fillers. If the adverse effect is not caused, the material of the reactor and the line may be any known material, and SUS304, SUS316, SUS316L, etc. are relatively inexpensive, so that it can be preferably used. If necessary, a measuring instrument such as a flow meter or a thermometer, a well-known processing device such as a reboiler, a pump, and a condenser may be added; heating may be performed by a well-known method such as steaming or heating, and cooling may also use natural cooling and cooling water. Well-known methods such as brine. The reaction is usually an exothermic reaction, so it can be cooled, or it can be cooled by using the exotherm of the reactor. The carbonation reaction can be carried out by heating. The cooling and heating of the reactor can be carried out by a known method such as a method using a water jacket or a method using an internal coil. The carbon dioxide gas and the alkyl tin alkoxide composition supplied to the reactor can be used. They may be supplied to the reactor separately or may be previously mixed before being supplied to the reactor. The mixture may be supplied from a plurality of parts of the reactor. The completion of the reaction can be determined, for example, by mSn_NMR*. Next, the following method is used. The carbon dioxide bond of the dialkylstannane oxide was obtained to obtain a reaction liquid containing a carbonate. 131505.doc -40- 200948760 Range of ~200 ° C 'In order to increase the reaction rate, the reaction condition was 11 Torr. (3 On the other hand, it also causes a decrease in yield when it is caused by a high temperature. Therefore, it is preferable that the reaction temperature is a high temperature, decomposition or the like, and there is a case of 12 (TC to 180. (: range of ' The reaction time is in the range of 〇"h~1 hr". The reaction pressure is 1.5 MPa~20 MPa, preferably 2 〇 MPa~1 〇 MPa, the reaction can be completed after the desired carbonate is formed in the reactor. The progress of the reaction in the apparatus can be confirmed by the following method or the like:
反應液進行取樣,以lH_NMR或氣相層析法等方法對所生 成之碳酸酯進行分析。例如,相對於二烷基錫烷氧化物及/ 或二烷基錫烷氧化物之二氧化碳鍵結體中所含之二烷基錫 烧氧化物及/或二烧基錫烷氧化物之二氧化碳鍵結體的莫 耳數,生成10%以上後便可結束反應,於欲增加碳酸酯產 量之情形時’反應持續至該值為90%以上後終止。反應器 可使用眾所周知之反應器,可較好地使用塔型反應器、槽 型反應器。若不造成不良影響,則反應器及線路之材質可 為眾所周知之任意材質,其中SUS304或SUS316、 SUS3 16L等較為廉價’故可較好地使用。視需要,可附加 流量計、溫度計等測量儀器,再彿器、泵、冷凝器等眾所 周知之處理裝置;加熱可利用蒸汽、加熱器等眾所周知之 方法’冷卻亦可使用自然冷卻、冷卻水、鹽水等眾所周知 之方法。The reaction solution was sampled, and the produced carbonate was analyzed by a method such as lH_NMR or gas chromatography. For example, a carbon dioxide bond of a dialkyl tin oxide oxide and/or a dialkyl tin alkoxide contained in a carbon dioxide bond of a dialkyl tin alkoxide and/or a dialkyl tin alkoxide. The number of moles of the knot is 10% or more, and the reaction can be terminated. When the yield of the carbonate is to be increased, the reaction is continued until the value is 90% or more. As the reactor, a well-known reactor can be used, and a column reactor or a tank reactor can be preferably used. If the adverse effect is not caused, the material of the reactor and the line can be any known material, and SUS304 or SUS316, SUS3 16L, etc. are relatively inexpensive, so that it can be preferably used. If necessary, a measuring instrument such as a flow meter or a thermometer can be attached, and a well-known processing device such as a Buddha, a pump, or a condenser can be added. The heating can be performed by a well-known method such as steam or a heater. 'Cooling can also use natural cooling, cooling water, and brine. And other well-known methods.
本實施形態之步驟(2)係自上述步驟(1)中所獲得之包含 石炭酸酯之反應液中將碳酸酯加以分離回收,並且獲得殘胃 液之步驟。分離方法可適宜地利用眾所周知之方法或I 131505.doc • 41 - 200948760 置。較好的方法係利用蒸餾進行分離之方法。 將自上述步驟(1)中所運送出之反應液進行批式或半批 式或者連續性之蒸餾,而獲得碳酸酯及殘留液。較好的蒸 館方法係如下方法:將該反應液供給至蒸餾器中’將碳酸 ^作為氣相成分自蒸餾器上部分離至系統外,將殘留液作 為液狀成分自蒸餾器之底部排出。本步驟之溫度亦取決於 該碳酸醋之沸點或壓力,為常溫(例如20 Ό )〜200 °C之範 圍’因有時於高溫下殘留液中之錫化合物會發生改性,或 〇 碳酸酯由於逆反應而減少,因此較好的是常溫(例如20 C)〜150C之範圍。壓力亦取決於碳酸酯之種類或實施反 應之溫度’通常是以常壓至減壓條件進行反應,若考慮生 產性’則進而好的是1〇〇 pa〜80 KPa之範圍,最好的是i〇〇 Pa〜50 KPa之範圍。反應時間可為〇〇1小時〜1〇小時之範圍 下實施,若於高溫下長時間實施反應,則該反應液中所含 錫化合物會發生改性或碳酸酯由於逆反應而減少,因此較 ◎ 好的是0.01小時〜0·5小時之範圍,最好的是〇〇1小時〜〇3 小時之範圍。蒸餾器可使用眾所周知之蒸餾器,亦可較好 地使用塔型蒸餾器、槽型蒸餾器,亦可將複數個蒸餾器組 合使用。進而好的蒸餾器係薄膜蒸發器、薄膜蒸餾器,最 好的是具備蒸餾塔之薄膜蒸發器、薄膜蒸餾器。若不造成 不良影響,則蒸餾器及線路之材質可為眾所周知之任意材 質’其中SUS304或SUS316、SUS316L等較為廉價,故可 較好地使用。視需要,可附加流量計、溫度計等測量儀 器,再沸器、泵、冷凝器等眾所周知之處理裝置;加熱可 131505.doc -42- 200948760 利用蒸汽、加熱器等眾所周知之方法,冷卻亦可使用自然 冷卻、冷卻水、鹽水等眾所周知之方法。 步驟(3)係使步驟⑺中分離之碳酸二院醋與芳香族經基 化合物A進行反應,獲得碳酸二芳醋,將作為副產物而= 成之醇加以回收之步驟。此處所謂芳香族經基化合物朴 相當於化合物Ri〇H之化合物,該化合物Rl〇H係於構成^ 上述式(1)所表示之碳酸二芳酯之基Rl〇(Rl表示上述定義 之方香族基,〇表示氣月早、μ 軋原千)上加成有氫原子者。具體而 ❹言’作為較好使用之芳香㈣基化合物Α之例,可列舉: 苯紛、甲基苯盼(各異構物)、[基苯齡(各異構物)、丙基 苯酴(各異構物)、丁基苯盼(各異構物)、戊&苯盼(各異構 物)、己基苯酚(各異構物)等單取代苯酚類二甲基苯酚 (各異構物)、二乙基苯酚(各異構物)、二丙基苯盼(各異構 物)、甲基乙基苯酚(各異構物)、甲基丙基苯酚(各異構 物)、曱基丁基苯酚(各異構物)、甲基戊基苯酚(各異構 〇物):乙基丙基苯酚(各異構物)、乙基丁基苯紛(各異構物) 等-取代苯紛類,二子基苯齡(各異構物)、三乙基苯齡(各 異構物)、二甲基乙基苯酚(各異構物)、二甲基丙基苯酚 (各異構物)、二甲基丁基苯酚(各異構物)等三取代苯酚 類,萘酚(各異構物)等。 本實施形態之步驟(3)係使步驟(2)中分離之主要含有碳 酸酯之成分與芳香族羥基化合物八進行反應,獲得碳酸二 芳a之步驟。自碳酸一烧醋及芳香族經基化合物獲得碳酸 烷基芳酯、碳酸二芳酯之方法,目前為止提出有多個方 131505.doc -43- 200948760 案,本實施形態中,亦可較好地使用該等技術。 步驟(3)之反應包含碳酸酯與芳香族羥基化合物之酯交 換反應,及藉由該酯交換反應而獲得之碳酸二烷基芳酯之 不均化反應。 酯交換反應係平衡反應,為使反應有利進行,較好的是 於酯交換反應中一邊排出脫附生成之醇,一邊進行反應, 該情形時,較好的是,步驟(3)所使用之芳香族羥基化合物 之沸點高於構成步驟(2)所獲得之碳酸烷酯之烷基醇的沸 © 點。尤其,使步驟(1)〜步驟(3)之步驟重複一次以上連續實 施之情形時,較好的是烷基醇之沸點低於芳香族經基化合 物之標準沸點,該沸點差較好的是2°C,若考慮分離之容 易程度,進而好的是10°C。 作為步驟(3 )所使用之碳酸二烧g旨之例,例如使用碳酸 二甲酯 '碳酸二乙酯、碳酸二丙酯(各異構物)、碳酸二丁 酯(各異構物)、碳酸二戊酯(各異構物)、碳酸二己酯(各異 ❹ 構物)、碳酸二庚酯(各異構物)、碳酸二辛酯(各異構物)、 碳酸二壬酯(各異構物)、碳酸二癸酯(各異構物)、碳酸二 環戊酯 '碳酸二環己酯、碳酸二環庚酯(各異構物)、碳酸 一苄酯、碳酸二苯乙酯(各異構物)、碳酸二(苯基丙基)酯 (各異構物)、碳酸二(苯基丁基)酯(各異構物)、碳酸二(氯 苄基)酯(各異構物)、碳酸二(甲氧基苄基)酯(各異構物广 碳酸二(甲氧基曱基)酯、碳酸二(甲氧基乙基)酯(各異構 物)、碳酸二(氣乙基)酿(各異構物)、碳酸二(氛乙基)醋(各 異構物)、碳酸甲基乙酯、碳酸甲基丙酯(各異構物)、碳酸 131505.doc -44- 200948760 甲基丁醋(各異構物)、碳酸乙基丙醋(各異構物)、碳酸乙 基丁酯(各異構物)、碳酸乙烯酯、碳酸丙烯酯等。所使用 之碳酸酯可為一種,亦可為混合物。 該等碳酸二烷酯中,本實施形態中較好使用的是,構成 碳酸酯之醇之標準沸點高於水之標準沸點,且具有碳數為 4〜12之烷基之烷基醇、具有直鏈狀或支鏈狀之碳數為4〜u 之烯基的烯基醇、環烷基醇、芳烷基醇。若考慮為使步驟 中進行之反應有利進行,而去除步驟(3)之反應所生成 之醇,則進而好的是標準沸點低於步驟(3)所使用之芳香族 羥基化合物之標準沸點的醇。即,較好的是由標準沸點高 於水,且標準沸點低於芳香族羥基化合物之醇所構成的碳 酸二烷酯。 步驟(3)所使用之芳香族經基化合物之量,相對於步驟 (2)中分離後於步驟(3)所使用之碳酸二烷酯之量,以化學 計量比計,可於O.i倍〜1〇〇〇〇倍之範圍内使用。步驟(3)之 Q 反應主要係平衡反應,因此芳香族羥基化合物之量較多較 為有利’若增加使用量則反應器變大,之後之生成物之分 離亦需要較大之蒸餾塔等,因此較好的是相對於碳酸二烷 醋’為1〜1000倍之範圍,更好的是1〜1〇〇倍之範圍。 供給至步驟(3)之化合物主要係碳酸二烷酯、芳香族羥 基化合物’視需要亦供給觸媒,亦可混入對反應不造成特 別不良影響之雜質。 該等供給原料中可包含作為生成物之醇、碳酸烷基芳 Ss、及碳酸二芳酯等,本反應為可逆反應,因此該等生成 131505.doc -45· 200948760 物之農度過咼之情形時,有時原料之反應率下降,故而不 良。所供給之碳酸二烷酯與芳香族羥基化合物之量比可根 據觸媒之種類及量、以及反應條件而改變,通常,較好的 是以相對於供給原料中之該碳酸二烷酯,以莫耳比計為 〇.〇1〜1000倍之範圍供給芳香族羥基化合物。 步驟(3)之醋交換反應之反應時間亦根據反應條件或反 應器之種類或内部結構而不同,通常為〇 〇〇1〜5〇小時,較 好的是0.01〜10小時,更好的是0.05〜5小時。反應溫度係反 © 應器内之溫度,根據所使用之原料化合物即碳酸二烷酯及 芳香族經基化合物之種類而不同,通常於5〇它〜350 °c,較 好的是100°C〜280°C之範圍内進行。又,反應壓力根據所 使用之原料化合物之種類或反應溫度等而不同,可為減 壓、常壓、加壓之任一種,通常於1〇 Pa〜2〇 Mpa之範圍内 進行。 本實施形態中,未必必須使用溶劑,為了使反應操作容 ❹ 易等,可使用適當惰性溶劑,例如醚類、脂肪族烴類、芳 香族烴類、幽化脂肪族烴類、_化芳香族烴類等作為反應 溶劑。又,可使作為對反應為惰性之物質之氮氣、氣氣、 氬氣等惰性氣體共存於反應系統中,為了加速顧去生成之 低彿點副產物,可自連續多段蒸餾塔之下部,將上述惰性 氣體或對反應為惰性之低熔點有機化合物以氣狀導入。 實施步驟(3)之酯交換反應時,可添加觸媒。如上所 述,藉由酯交換而自碳酸酯獲得碳酸烷基芳酯及碳酸-芳 酯,該酯交換反應之平衡偏向反應系且反應速度較慢,因 131505.doc • 46- 200948760 此利用該方法製造碳酸二芳酯時,為改良該等而提出有幾 種方案,本實施形態中亦可較好地使用眾所周知之方法。 本實施形態所使用之觸媒量根據所使用之觸媒的種類、 反應器之種類、碳酸酯及芳香族羥基化合物之種類或其量 比、反應溫度、反應壓力等反應條件之不同而不同,以相 對於作為供給原料之碳酸酯及芳香族羥基化合物的合計重 量之比例表示,通常於0.0001〜50重量%使用。又,使用固 體觸媒之情形時,相對於反應器之空塔容積,較好的是使 Ο 用0.01〜75體積%之觸媒量。 作為與用以加快反應速度之觸媒相關的提出方案,已知 眾多含金屬觸媒。本實施形態中亦可使用眾所周知之醋交 換反應觸媒。於使碳酸酯與芳香族羥基化合物進行反應, 而製造包含碳酸烷基芳酯及/或碳酸烷基芳酯與碳酸二芳 酯之混合物的方法中,作為如此之觸媒,例如提出過渡金 屬鹵化物等路易斯酸或使路易斯酸純化之化合物類,有機 錫烧氧化物或有機錫氧化物類等錫化合物,驗金屬或驗土 w 金屬之鹽類及烷氧化物類,鉛化合物類,銅、鐵、錯等之 金屬錯合物類,鈦酸酯類,路易斯酸與質子酸之混合物, Sc、Mo、Mn、Bi、Te等之化合物,乙酸鐵等。碳酸二芳 酯之生成可僅於酯交換反應中產生,亦可利用酯交換反應 所生成之碳酸烧基芳酯之不均化反應而生成。此處所謂不 均化反應係指自2分子之碳酸烷基芳酯生成碳酸二烷酯及 碳酸二芳醋之反應。碳酸烧基芳S旨進一步與芳香族經基化 合物進行反應,亦引起成為碳酸二芳酯之反應,因不均化 131505.doc •47- 200948760 Π::故於欲獲得碳酸二芳醋之情形時,使破酸炫基 得碳酸二芳醋,-反應均為平衡反應。 m # 方酉曰之知交換反應中,-邊排出烷基醇- ::應’不均化步驟中’一邊排出碳酸二㈣一邊進 1、拿:、4有利。因此,各階段中較好之反應條件不同。 ';、、,‘進行反應之情形時,必須分成2個階段進行反應, 於以批次式進行之彳杳并彡 丁之^時,亦可於相同反應器内逐次進 行0 Ο ❹ 可使促進不均化反應之觸媒與上述醋交換觸媒共 存。亦提出較多如此之觸媒之例。作為如此之觸媒,例如 提出路易斯酸及可產生路易斯酸之過渡金屬化合物,聚合 物性錫化合物’以通m( = Q)〇H(式中χ選自如及… R選自1仏烴基)所表不之化合物,路易斯酸與質子酸之混 合物,錯觸媒’鈦或鍅化㈣,錫化合物,Sc、M〇、 Μη、Bi、Te等之化合物等。 不均化步驟係將醋交換步驟中所獲得之碳酸烧基芳醋不 均化,從而獲得碳酸二烷酯及碳酸二芳酯之步驟。如上所 述,實施酯交換反應時可添加不均化觸媒而使酯交換反應 與不均化反應同時實施,亦可使酯交換反應與不均化反應 分別連續或批次式進行。又,使酯交換反應與不均化反應 分別進行之情形的酯交換反應中,亦存在與碳酸烷基芳酯 同時獲得碳酸二芳酯之情形,該情形時亦可直接實施不均 化反應《不均化反應如上所示,係藉由碳酸二烷酯與芳香 族羥基化合物之酯交換反應而獲得碳酸烷基芳酯之步驟, 131505.doc -48- 200948760 為使該平衡反應有利進行,一邊排出 畔一邊進行反應之方 法較為有利。不均化反應亦受到平衡 w <限制,因此為了有 ❹ 利進行…邊將不均化反應所生成之_二㈣及碳酸二 芳醋中之其中-者排出至线外—邊進行反應之方法較為 有利。本實施形態中’較好的是生成物中,以使碳酸二燒 醋之沸點低於碳酸二芳醋之方式分別選擇烷氧基、芳基, 且-邊將碳酸二以旨排出至系統外_邊進行*均化反應。 所排出之碳酸二烷酯可返回至不均化反應以前之步驟使 用。若欲使碳酸二芳醋之生產量多,則較好的是使所排出 之碳酸二烷酯返回至酯交換步驟使用。 不均化步驟中,可使用催化不均化反應之觸媒。亦提出 很多如此之觸媒之例。作為如此之觸媒,例如提出路易斯 酸及可產生路易斯酸之過渡金屬化合物,聚合物性錫化合 物,以通式R-X(=〇)〇H(式中’ X選自Sn&Ti,R選自1價烴 基)所表不之化合物,路易斯酸與質子酸之混合物鉛觸 媒,欽或錯化合物,錫化合物,Sc、MO、Mn、Bi、等 之化合物等。 作為本實施形態之不均化反應觸媒,可使用與酯交換步 驟所使用之酯交換反應觸媒相同之觸媒。 不均化步驟所使用之碳酸烷基芳酯係碳酸烷基芳基酯。 作為碳酸烷基芳酯之例,可列舉:碳酸甲基苯酯、碳酸乙 基苯酯、碳酸丙基苯酯(各異構物)、碳酸丁基苯酯(各異構 物)、碳酸烯丙基苯酯(各異構物)、碳酸戊基苯酯(各異構 物)、碳酸己基本醋(各異構物)、碳酸庚基苯醋(各異構 131505.doc -49· 200948760 物)、碳酸辛基甲苯酯(各異構物)、碳酸壬基(乙基苯基)酯 (各異構物)、碳酸癸基(丁基苯基)酯(各異構物)、碳酸甲基 曱苯醋(各異構物)、碳酸乙基甲苯酯(各異構物)、碳酸丙 基甲笨酯(各異構物)、碳酸丁基曱苯酯(各異構物)、碳酸 稀丙基甲苯酯(各異構物)、碳酸甲基二曱苯酯(各異構 物)、碳酸甲基(三甲基苯基)酯(各異構物)、碳酸甲基(氯苯 基)酯(各異構物)、碳酸曱基(硝基苯基)酯(各異構物)、碳 酸曱基(曱氧基笨基)酯(各異構物)、碳酸曱基(n比啶基)酯 ® (各異構物)、碳酸乙基異丙苯酯(各異構物)、碳酸曱基(苯 甲醯基笨基)酯(各異構物)、碳酸乙基二甲苯酯(各異構 物)、碳酸苄基二甲苯酯(各異構物)等。該等碳酸烷基芳酯 可為1種’亦可為2種以上之混合物。 該等碳酸烷基芳酯中,本實施形態中較好使用的是,構 成碳酸烷基芳酯之醇的沸點高於水之醇,且構成碳酸烷基 芳酯之醇的沸點低於構成碳酸烷基芳酯之芳香族羥基化合 ◎ 物的沸點,例如選自具有直鏈狀或支鏈狀之碳數為4〜12之 烷基的烷基醇、具有直鏈狀或支鏈狀之碳數為4〜12之烯基 的烯基醇、環烷基醇、芳烷基醇,若考慮為使不均化反應 有利進行,而去除不均化反應所生成之碳酸二烷酯,則較 好的是沸點低於藉由不均化反應而獲得之碳酸二芳酯的碳 酸二烷酯。作為如此之最佳組合,可列舉:醇、與以上述 式(14)及式(15)所表示之具有金屬·碳-氧鍵之金屬化合物之 烷氧基相當的醇、構成碳酸二烷酯之醇係選自戊醇(各異 構物)、己醇(各異構物)、庚醇(各異構物)之群中的醇,芳 131505.doc -50- 200948760 香族經基化合物係選自苯紛、甲盼之芳香族經基化合物。 供給至不均化步驟之化合物主要係碳酸烧基芳酯,視需 要亦供給觸媒,可混入對反應不造成特別不良影響之雜 質。 本實施形態所使用之觸媒量根據所使用之觸媒的種類、 反應器之種類、碳酸烧基芳醋之種類或其量、反應溫度以 ❹The step (2) of the present embodiment is a step of separating and recovering the carbonate from the reaction solution containing the carbonic acid ester obtained in the above step (1), and obtaining a residual gastric juice. The separation method can be suitably carried out using a well-known method or I 131505.doc • 41 - 200948760. A preferred method is a method of separating by distillation. The reaction liquid carried out from the above step (1) is subjected to batch or semi-batch or continuous distillation to obtain a carbonate and a residual liquid. A preferred steaming method is a method in which the reaction liquid is supplied to a distiller. The carbonic acid is separated as a gas phase component from the upper portion of the distiller to the outside of the system, and the residual liquid is discharged as a liquid component from the bottom of the distiller. The temperature of this step also depends on the boiling point or pressure of the carbonated vinegar, which is in the range of normal temperature (for example, 20 Ό) to 200 ° C. 'The tin compound may be modified in the residual liquid at high temperature, or bismuth carbonate. Since it is reduced by the reverse reaction, it is preferably in the range of normal temperature (for example, 20 C) to 150C. The pressure also depends on the type of carbonate or the temperature at which the reaction is carried out. 'It is usually carried out under normal pressure to reduced pressure. If productivity is considered, then it is preferably in the range of 1 〇〇pa to 80 KPa, and the best is i〇〇Pa~50 KPa range. The reaction time can be carried out in the range of from 1 hour to 1 hour. If the reaction is carried out at a high temperature for a long period of time, the tin compound contained in the reaction solution is modified or the carbonate is reduced by the reverse reaction, so Good is a range of 0.01 hours to 0. 5 hours, and the best is a range of 1 hour to 〇 3 hours. As the distiller, a well-known distiller can be used, and a tower distiller, a trough distiller, or a plurality of distillers can be preferably used in combination. Further, a retort type thin film evaporator and a thin film distiller are preferable, and a thin film evaporator and a thin film distiller having a distillation column are preferable. If the adverse effects are not adversely affected, the material of the distiller and the line can be any known material. Among them, SUS304, SUS316, SUS316L and the like are relatively inexpensive, so that they can be preferably used. If necessary, additional measuring instruments such as flow meters and thermometers, and well-known processing devices such as reboilers, pumps, and condensers can be added. Heating can be used. 131505.doc -42- 200948760 Using well-known methods such as steam and heater, cooling can also be used. Well-known methods such as natural cooling, cooling water, and brine. The step (3) is a step of reacting the carbonated vinegar separated in the step (7) with the aromatic transaluminum compound A to obtain a diaryl carbonate, and recovering the alcohol as a by-product. Here, the aromatic radical compound corresponds to a compound of the compound Ri〇H, and the compound R1〇H is a group R1〇 constituting the diaryl carbonate represented by the above formula (1) (R1 represents the above definition) The fragrant base, 〇 indicates that the gas is added early, and the original one is added to the hydrogen atom. Specifically, it is exemplified as an example of the aromatic (tetra)-based compound which is preferably used, and examples thereof include: benzophenone, methylbenzene (each isomer), [base benzene (each isomer), propyl benzoquinone (monoisomers), butyl benzene (each isomer), pentane & benzophenone (each isomer), hexyl phenol (each isomer) and other monosubstituted phenolic dimethyl phenol (variety Structure), diethylphenol (each isomer), dipropyl benzene (each isomer), methyl ethyl phenol (each isomer), methyl propyl phenol (each isomer) , mercaptobutylphenol (each isomer), methyl amyl phenol (isomeric ruthenium): ethyl propyl phenol (each isomer), ethyl butyl benzene (each isomer) Equivalent-substituted benzene, di-based benzene (individual isomers), triethylbenzene (individual isomers), dimethylethylphenol (each isomer), dimethylpropylphenol ( Each of the isomers), a trisubstituted phenol such as dimethylbutylphenol (each isomer), a naphthol (each isomer), and the like. The step (3) of the present embodiment is a step of reacting a component mainly containing a carbonate separated in the step (2) with an aromatic hydroxy compound VIII to obtain diaryla carbonate. A method for obtaining an alkyl aryl carbonate or a diaryl carbonate from a carbonated vinegar and an aromatic sulfonic acid-based compound has been proposed so far as to have a plurality of methods 131505.doc-43-200948760, which may be better in this embodiment. These technologies are used. The reaction of the step (3) comprises an ester exchange reaction of a carbonate with an aromatic hydroxy compound, and an uneven reaction of a dialkyl aryl carbonate obtained by the transesterification reaction. The transesterification reaction is an equilibrium reaction, and in order to facilitate the reaction, it is preferred to carry out the reaction while discharging the desorbed alcohol in the transesterification reaction. In this case, it is preferred to use the step (3). The boiling point of the aromatic hydroxy compound is higher than the boiling point of the alkyl alcohol constituting the alkyl carbonate obtained in the step (2). In particular, when the steps of the steps (1) to (3) are repeated one or more times, it is preferred that the boiling point of the alkyl alcohol is lower than the standard boiling point of the aromatic trans group compound, and the difference in boiling point is preferably At 2 ° C, if the ease of separation is considered, it is preferably 10 ° C. As an example of the carbonic acid calcination used in the step (3), for example, dimethyl carbonate 'diethyl carbonate, dipropyl carbonate (each isomer), dibutyl carbonate (each isomer), Dipentyl carbonate (each isomer), dihexyl carbonate (different oxime), diheptyl carbonate (each isomer), dioctyl carbonate (each isomer), dinonyl carbonate ( Each isomer), dinonyl carbonate (each isomer), dicyclopentanyl carbonate 'dicyclohexyl carbonate, dicycloheptyl carbonate (each isomer), monobenzyl carbonate, diphenyl carbonate Ester (each isomer), di(phenylpropyl) carbonate (each isomer), di(phenylbutyl) carbonate (each isomer), di(chlorobenzyl) carbonate (each Isomer), bis(methoxybenzyl)carbonate (each isomer bis(methoxyindenyl)polycarbonate, bis(methoxyethyl)carbonate (each isomer), carbonic acid Two (gas ethyl) brewing (each isomer), di(ethyl ether) vinegar (each isomer), methyl ethyl carbonate, methyl propyl carbonate (each isomer), carbonic acid 131505. Doc -44- 200948760 methyl butyl vinegar (each isomer), ethyl propylene carbonate (each isomer), ethyl butyl carbonate (each isomer), ethylene carbonate, propylene carbonate, etc. The carbonate may be one kind or a mixture. Among the above-mentioned dialkyl carbonates, it is preferably used in the embodiment that the standard boiling point of the alcohol constituting the carbonate is higher than the standard boiling point of water, and the carbon number is An alkyl alcohol having 4 to 12 alkyl groups, an alkenyl alcohol having a linear or branched alkenyl group having a carbon number of 4 to u, a cycloalkyl alcohol, or an aralkyl alcohol. The reaction carried out is advantageously carried out, and the alcohol formed by the reaction of the step (3) is removed, and further preferably an alcohol having a standard boiling point lower than the standard boiling point of the aromatic hydroxy compound used in the step (3). It is a dialkyl carbonate composed of an alcohol having a standard boiling point higher than water and having a lower boiling point than the aromatic hydroxy compound. The amount of the aromatic mercapto compound used in the step (3) is separated from that in the step (2). The amount of dialkyl carbonate used in the step (3), in stoichiometric ratio It can be used in the range of Oi times to 1〇〇〇〇. The Q reaction in the step (3) is mainly an equilibrium reaction, so the amount of the aromatic hydroxy compound is more favorable. Large, and the separation of the subsequent products also requires a larger distillation column or the like, and therefore it is preferably in the range of 1 to 1000 times, more preferably 1 to 1 inch, relative to the dialkyl carbonate. The compound to be supplied to the step (3) is mainly a dialkyl carbonate or an aromatic hydroxy compound. The catalyst is supplied as needed, and impurities which do not particularly adversely affect the reaction may be mixed in. The raw materials may be contained as a product. The alcohol, the alkyl aryl Ss, and the diaryl carbonate, etc., the reaction is a reversible reaction. Therefore, when the agricultural product of 131505.doc -45·200948760 is produced, the reaction rate of the raw material sometimes decreases. Therefore, it is bad. The ratio of the amount of the dialkyl carbonate to the aromatic hydroxy compound to be supplied may vary depending on the kind and amount of the catalyst, and the reaction conditions. Usually, it is preferred to use the dialkyl carbonate in the raw material. The molar ratio is 供给. 〇 1 to 1000 times the range of the supply of the aromatic hydroxy compound. The reaction time of the vinegar exchange reaction in the step (3) also varies depending on the reaction conditions or the type or internal structure of the reactor, and is usually 〇〇〇1 to 5 hrs, preferably 0.01 to 10 hours, more preferably 0.05 to 5 hours. The reaction temperature is the temperature in the reactor, and it varies depending on the type of the raw material compound to be used, that is, the dialkyl carbonate and the aromatic mercapto compound, and is usually 5 Torr to 350 ° C, preferably 100 ° C. It is carried out within the range of ~280 °C. Further, the reaction pressure varies depending on the type of the raw material compound to be used, the reaction temperature, and the like, and may be any one of pressure reduction, normal pressure, and pressurization, and is usually carried out in the range of 1 〇 Pa to 2 〇 Mpa. In the present embodiment, it is not necessary to use a solvent, and in order to facilitate the reaction operation, an appropriate inert solvent such as an ether, an aliphatic hydrocarbon, an aromatic hydrocarbon, a condensed aliphatic hydrocarbon, or an aromatic aromatic may be used. A hydrocarbon or the like is used as a reaction solvent. Further, an inert gas such as nitrogen gas, gas gas or argon gas which is inert to the reaction may be allowed to coexist in the reaction system, and in order to accelerate the formation of the low-fossil by-product, it may be from the lower part of the continuous multi-stage distillation column. The above inert gas or a low melting point organic compound which is inert to the reaction is introduced as a gas. When the transesterification reaction of the step (3) is carried out, a catalyst may be added. As described above, the alkyl aryl carbonate and the carbonic acid-aryl ester are obtained from the carbonate by transesterification, and the equilibrium of the transesterification reaction is biased toward the reaction system and the reaction rate is slow, since 131505.doc • 46-200948760 When a diaryl carbonate is produced, several proposals have been made for improving the above, and a well-known method can be preferably used in the present embodiment. The amount of the catalyst used in the present embodiment differs depending on the type of the catalyst to be used, the type of the reactor, the kind of the carbonate and the aromatic hydroxy compound, the amount ratio thereof, the reaction temperature, and the reaction pressure. It is usually used in an amount of 0.0001 to 50% by weight, based on the total weight of the carbonate and the aromatic hydroxy compound as a raw material to be supplied. Further, in the case of using a solid catalyst, it is preferred to use 0.01 to 75% by volume of the catalyst amount with respect to the empty column volume of the reactor. As a proposal relating to a catalyst for accelerating the reaction rate, a large number of metal-containing catalysts are known. In the present embodiment, a well-known vinegar exchange reaction catalyst can also be used. In the method of reacting a carbonate with an aromatic hydroxy compound to produce a mixture comprising an alkyl aryl carbonate and/or an alkyl aryl carbonate and a diaryl carbonate, as such a catalyst, for example, a transition metal halogenation is proposed. a Lewis acid such as a substance or a compound which purifies a Lewis acid, a tin compound such as an organotin oxide oxide or an organotin oxide, a metal or a soil test, a metal salt and an alkoxide, a lead compound, copper, Metal complexes such as iron, erbium, etc., titanates, mixtures of Lewis acids and proton acids, compounds of Sc, Mo, Mn, Bi, Te, etc., iron acetate, and the like. The formation of the diaryl carbonate can be produced only in the transesterification reaction, or can be produced by the heterogeneous reaction of the alkyl aryl carbonate formed by the transesterification reaction. Here, the heterogeneous reaction means a reaction of producing a dialkyl carbonate and a diaryl carbonate from two molecules of an alkyl aryl carbonate. The carbonic acid aryl group S is further reacted with the aromatic sulfhydryl compound, and also causes the reaction to become a diaryl carbonate, which is caused by the unevenness of 131505.doc •47- 200948760 Π:: When the acid-depleting base is obtained, the diaryl vinegar carbonate is obtained, and the reaction is an equilibrium reaction. In the exchange reaction of m #方酉曰, the alkyl alcohol is discharged - - in the 'unevenness step', while discharging the carbonic acid (four) while taking 1, taking: 4 is advantageous. Therefore, the preferred reaction conditions are different in each stage. ';,,,' When the reaction is carried out, it is necessary to carry out the reaction in two stages. When the batch is carried out and the mixture is used, it can also be carried out in the same reactor for 0 Ο 逐. The catalyst for promoting the heterogeneous reaction coexists with the above vinegar exchange catalyst. More examples of such catalysts have also been proposed. As such a catalyst, for example, a Lewis acid and a transition metal compound capable of generating a Lewis acid are proposed, and the polymer tin compound 'is passed through m (= Q) 〇H (wherein χ is selected from, for example, R is selected from a monohydrocarbyl group) A compound of the formula, a mixture of a Lewis acid and a protonic acid, a catalyst of the wrong catalyst 'titanium or bismuth (IV), a tin compound, a compound such as Sc, M〇, Μη, Bi, Te, or the like. The unevenness step is a step of obtaining a non-homogeneous carbonic acid aromatic vinegar obtained in the vinegar exchange step, thereby obtaining a dialkyl carbonate and a diaryl carbonate. As described above, when the transesterification reaction is carried out, a heterogeneous catalyst may be added to carry out the transesterification reaction together with the heterogeneous reaction, and the transesterification reaction and the heterogeneous reaction may be carried out continuously or in batches. Further, in the transesterification reaction in which the transesterification reaction and the heterogeneous reaction are respectively carried out, there is also a case where a diaryl carbonate is obtained simultaneously with an alkyl aryl carbonate, and in this case, an uneven reaction can be directly carried out. The heterogeneous reaction is as shown above, which is a step of obtaining an alkyl aryl carbonate by transesterification of a dialkyl carbonate with an aromatic hydroxy compound, 131505.doc -48-200948760, in order to facilitate the equilibrium reaction, one side It is advantageous to carry out the reaction while discharging the side. The heterogeneous reaction is also limited by the balance w < Therefore, in order to carry out the reaction, the reaction is carried out by discharging the bis(tetra) and the dicarbonate produced by the heterogeneous reaction to the outside of the line. The method is more advantageous. In the present embodiment, it is preferable that the alkoxy group and the aryl group are respectively selected so that the boiling point of the carbonated vinegar is lower than that of the diaryl vinegar, and the carbonic acid is discharged to the outside of the system. _ while performing * homogenization reaction. The discharged dialkyl carbonate can be returned to the step before the heterogeneous reaction. If the production amount of the diaryl carbonate is to be increased, it is preferred to return the discharged dialkyl carbonate to the transesterification step. In the unevenness step, a catalyst for catalyzing the heterogeneous reaction can be used. Many examples of such catalysts have also been proposed. As such a catalyst, for example, a Lewis acid and a transition metal compound capable of generating a Lewis acid, a polymeric tin compound, having the formula RX(=〇)〇H (wherein 'X is selected from Sn&Ti, R is selected from 1 a compound represented by a valence hydrocarbon group, a mixture of a Lewis acid and a protonic acid, a lead catalyst, a compound of a cis or a wrong compound, a tin compound, a compound of Sc, MO, Mn, Bi, or the like. As the heterogeneous reaction catalyst of the present embodiment, the same catalyst as the transesterification catalyst used in the transesterification step can be used. The alkyl aryl carbonate-based alkyl aryl carbonate used in the unevenness step. Examples of the alkyl aryl carbonate include methyl phenyl carbonate, ethyl phenyl carbonate, propyl phenyl carbonate (each isomer), butyl phenyl carbonate (each isomer), and carbene carbonate. Propyl phenyl ester (each isomer), amyl phenyl carbonate (each isomer), basic hexane vinegar (each isomer), heptyl benzene carbonate (isomeric 131505.doc -49· 200948760 , octyl cresyl carbonate (each isomer), decyl carbonate (ethyl phenyl) ester (each isomer), decyl phenyl (butyl phenyl) ester (each isomer), carbonic acid Methyl benzene vinegar (each isomer), ethyl cresyl carbonate (each isomer), propyl methyl acrylate (each isomer), butyl phenyl phenyl carbonate (each isomer), Dyl propyl carbonate (each isomer), methyl decyl phenyl carbonate (each isomer), methyl (trimethylphenyl) carbonate (each isomer), methyl carbonate (chlorine) Phenyl) ester (each isomer), decyl carbonate (nitrophenyl) ester (each isomer), decyl carbonate (decyloxy) ester (each isomer), cesium carbonate N-pyridyl)ester (each isomer), ethyl cumyl carbonate (each isomer), guanidinium carbonate (benzimidyl) ester (each isomer), ethyl carbonate Xylene ester (each isomer), benzyl cresyl carbonate (each isomer), and the like. These alkyl aryl carbonates may be one type or a mixture of two or more types. Among the alkyl aryl carbonates, it is preferred in the present embodiment that the alcohol constituting the alkyl aryl carbonate has a boiling point higher than that of water, and the alcohol constituting the alkyl aryl carbonate has a boiling point lower than that of the carbonic acid. The aromatic hydroxyl group of the alkyl aryl ester has a boiling point selected, for example, from an alkyl alcohol having a linear or branched alkyl group having 4 to 12 carbon atoms, and having a linear or branched carbon. The alkenyl alcohol, cycloalkyl alcohol, and aralkyl alcohol having 4 to 12 alkenyl groups are considered to be advantageous in that the heterogeneous reaction is carried out to remove the dialkyl carbonate formed by the heterogeneous reaction. It is preferably a dialkyl carbonate having a boiling point lower than that of a diaryl carbonate obtained by a heterogeneous reaction. As such an optimum combination, an alcohol, an alcohol equivalent to an alkoxy group of a metal compound having a metal/carbon-oxygen bond represented by the above formula (14) and formula (15), and a dialkyl carbonate are exemplified. The alcohol is an alcohol selected from the group consisting of pentanol (each isomer), hexanol (each isomer), and heptanol (each isomer), aryl 131505.doc -50- 200948760 aromatic base compound It is selected from the group consisting of benzene and abipan. The compound supplied to the unevenness step is mainly a aryl carbonate, and a catalyst is supplied as needed, and impurities which do not particularly adversely affect the reaction can be mixed. The amount of the catalyst used in the present embodiment depends on the type of the catalyst to be used, the type of the reactor, the type or amount of the carbonated aromatic vinegar, or the reaction temperature.
及反應壓力等反應條件等而不同,以相對於作為供給原料 之碳酸烧基芳酯之重量的比例表示,通常於〇 〇〇〇1〜5〇重 量%使用。又,使用固體觸媒之情形時,相對於反應器之 空塔容積,較好的是使用0.01〜75體積%之觸媒量。 該等供給原料中可包含醇、芳香族羥基化合物、及碳酸 二芳酯等,本反應係可逆反應,因此該等成分中濃度過 高之情形時,有時原料之反應率下降,故而不佳。 不均化反應之反應時間根據反應條件或反應器之種類或 内部結構而不同’通常為請㈣小時,較好的是g〇i〜i〇 小時’更好的是G.G5〜5小時〇反應溫度根據所使用之碳酸 烧基芳醋之種類而不同,通常於5〇t〜35〇t,更好的是 I’C之溫度範圍内進行。又,反應壓力根據所使 用之原料化合物之種類或反應溫度等而不同,可為減壓、 常麼、加麼之任—磁,, 種通常於Pa〜20 MPa之範圍内進 行0 本實施形態之不均化舟驟由 叼化步驟中,未必必須使用溶劑,為了 使反應操作容易等, 便用適§之惰性溶劑,例如,醚 類、脂肪族烴類、芳番竑抱 方香族烴類、齒化脂肪族烴類、齒化芳 131505.doc 200948760 香=煙類等作為反應溶齊卜又,可使作為對反應為惰性之 物貝之氮氣、氦氣、氬氣等惰性氣體共存於反應系統中, 為了加速餾去生成之低沸點副產物,可自連續多段蒸餾塔 之下部,將上述惰性氣體或對反應為惰性之低熔點有機化 合物以氣狀導入。 不均化反應結束後,以眾所周知之方法將觸媒、碳酸烷 土芳知、芳香族羥基化合物、醇加以分離,獲得碳酸二芳The reaction conditions such as the reaction pressure and the like are different, and are expressed as a ratio of the weight of the aryl carbonate as a raw material to be supplied, and are usually used in an amount of from 1 to 5 % by weight. Further, in the case of using a solid catalyst, it is preferred to use a catalyst amount of 0.01 to 75 % by volume with respect to the volume of the reactor in the reactor. The feedstock may contain an alcohol, an aromatic hydroxy compound, a diaryl carbonate, etc., and the reaction is reversible. Therefore, when the concentration of the components is too high, the reaction rate of the raw material may decrease, which is not preferable. . The reaction time of the heterogeneous reaction varies depending on the reaction conditions or the type of the reactor or the internal structure. Usually, it is (four) hours, preferably g〇i~i〇 hour. More preferably, G.G5~5 hours〇 The reaction temperature varies depending on the type of the carbonated aromatic vinegar to be used, and is usually carried out at a temperature ranging from 5 Torr to 35 Torr, more preferably I'C. Further, the reaction pressure varies depending on the type of the raw material compound to be used, the reaction temperature, and the like, and may be a reduced pressure, a normal or a magnetic property, and is usually carried out in the range of Pa to 20 MPa. In the step of deuteration, it is not necessary to use a solvent. In order to make the reaction operation easy, etc., an inert solvent such as an ether, an aliphatic hydrocarbon, or an aromatic hydrocarbon is used. Class, toothed aliphatic hydrocarbons, dentate aromatics 131505.doc 200948760 Aroma = smoke, etc. as a reaction, and can coexist as an inert gas such as nitrogen, helium or argon which is inert to the reaction. In the reaction system, in order to accelerate the distillation of the low-boiling by-product formed, the inert gas or the low-melting organic compound inert to the reaction may be introduced in a gas form from the lower portion of the continuous multi-stage distillation column. After the end of the heterogeneous reaction, the catalyst, the alkyl carbonate, the aromatic hydroxy compound, and the alcohol are separated by a well-known method to obtain a diaryl carbonate.
Sg 0 〇 81交換步驟及不均化步驟所使用之反應器之形式並無特 別限制,可採用使用攪拌槽方式、多段攪拌槽方式、多段 蒸餾塔之方式,及將該等加以組合之方式等眾所周知的各 種方法。該等反應器可使用批式、連續式之任一種。於使 平衡有效偏向生成系側方面考慮,較好的是使用多段蒸餾 塔之方法,尤其好的是使用多段蒸餾塔之連續法。多段蒸 顧塔係指蒸德之理論段數為2段以上之多段蒸德塔,若可 Q 進行連續蒸餾則可為任意者。作為如此之多段蒸餾塔,例 如若係使用泡盤、多孔塔板、浮閥塔板 '逆流塔板等塔板 之層板塔方式,或填充有拉西環、勒辛環、鮑爾環、弧鞍 形填料、矩鞍環填料、狄克松填料、網鞍填料、螺旋填 料、絲網波紋填料、孔板波紋填料等各種填充物之填充塔 方式等通常作為多段蒸館塔使用者,則可使用任意者。進 而,亦可較好地使用使層板部分與填充有填充物的部分加 以合併之層板·填充混合塔方式。於使用多段蒸餾塔實施 連續法之情形時,將起始物質與反應物質連續供給至連續 131505.doc -52- 200948760 多权蒸鶴塔内’於該蒸餾塔内於含金屬觸媒之存在下,以 液相或氣-液相進行兩物質間之酯交換反應及/或不均化反 應,同時將包含所製造之碳酸烷基芳酯及/或碳酸二芳酯 之尚/弗點反應混合物自該蒸館塔之下部以液狀排出,另一 方面,將包含生成之副產物之低沸點反應混合物藉由蒸餾 自該蒸餾塔之上部以氣狀連續排出,藉此製造碳酸二芳 醋。 以上,表示使用二烷基錫化合物之碳酸二芳酯的製造 〇 例’除了上述步驟(1)〜步驟(3),可進行以下步驟(4)及步驟 (5)。 步驟(4):使步驟(2)所獲得之殘留液與醇反應,形成具 有錫-氧-¼鍵之有機錫化合物與水,自反應系統去除該水 之步驟; 步驟(5):將步驟(4)所獲得之具有錫_氧_碳鍵之有機錫化 合物再用作步驟(1)之具有錫·氧_碳鍵之有機錫化合物的步 驟。 ❹ 步驟(4)係使步驟(2)所獲得之殘留液與醇反應,使二烷 基錫化合物再生之步驟。 作為本步驟所使用之醇,較好地使用曱醇、乙醇、丙醇 (各異構物)、丁醇(各異構物)、戊醇(各異構物)、己醇(各 異構物)、庚醇(各異構物)、辛醇(各異構物)、壬醇(各異構 物)、癸醇(各異構物)等,構成該醇之碳原子數係選自卜12 之整數的醇’更好的是使用與上述烷基錫烷氧化物合成步 驟所使用之醇相同的醇。 131505.doc -53- 200948760 較好的是,脫水反應之條件亦以與上述烷基錫烷氧化物 合成步驟同樣之條件實施。若獲得所需烷基錫烷氧化物組 合物則結束反應。反應之進行可藉由測定排出至系統外之 水量而確認,亦可對反應液進行取樣,以利用u9Sn_NMR 之方法而確認。為於步驟(”中製造本實施形態之混合物, 於確認獲得如下組合物即可結束反應,即,上述反應所獲 得之烷基錫烷氧化物組合物中所含有之四烷基二烷氧基二 錫氧烷與二烷基錫二烷氧化物之莫耳比率,以合併兩者之 © 莫耳%表示,為0 :丨〇〇〜80 :20之範圍,更好的是1〇: 90〜70 : 3 0之範圍的組合物。所使用之醇可直接於共存狀 態下使用,亦可根據情況蒸餾去除醇而使用。因具有可縮 小其他步驟之反應器之優點,因此較好的是儘可能去除 醇。去除之方法較好的是利用眾所周知之利用蒸餾的去 除,又,蒸餾所使用之蒸餾器可使用眾所周知之蒸餾設 備。作為較好的蒸餾裝置,由於可於短時間去除,因此可 Q 較好地使用薄膜蒸餾裝置。本步驟中,與烷基錫烷氧化物 之合成步驟不同,通常不使用作為固體之二烷基氧化錫, 因此反應器之限制較少。即’脫水反應之反應器之形式並 無特別限制,可使用眾所周知之槽狀、塔狀反應器。將含 水之低/弗點反應混合物藉由蒸餾而以氣狀自反應器排出, 3所製1^之燒基錫烧氧化物或烧基錫烧氧化物混合物 之高沸點反應混合物自反應器下部以液狀排出。作為如此 之反應器,例如可採用使用包含攪拌槽、多段攪拌槽、蒸 餾塔、多段蒸餾塔、多管式反應器、連續多段蒸餾塔、填 131505.doc -54- 200948760 充塔、薄臈蒸發器、内部且備去括 及廒吳咬 備支持體之反應器、強制循環 反應器、落膜蒸發器、落 Ο 同為發器細流相反應器、氣泡 。中的任-種之反應器之方式,及將該等加以組合之方式 等眾所周知的各種方法。於使平衡有效偏向生成系側之方 面考慮’較好的是使用塔狀反應器…較好的是所形成 之X迅速轉移至氣相之氣_液接觸面積較大的結構。尤其 好的是使用多管式反應器、多段蒸㈣、填充有填充劑之 填充塔的連續法。若*造成Μ影響,則反應n及線路之 材質可為眾所周知之任意材質,其中SUS3〇44Sus3i6、 SUS316L等較為廉價,故可較好地使用。視需要可附加 流量計、溫度計等測量儀器,再沸器、泵、冷凝器等眾所 周知之處理裝置;加熱可利用蒸汽、加熱器等眾所周知之 方法’冷卻亦可使用自然冷卻、冷卻水、鹽水等眾所周知 之方法。 以上步驟(4)所製造之二烷基錫化合物藉由步驟(5)(再利 用步驟)’而再用作步驟(丨)所使用之二烷基錫化合物步 驟(5)係將步驟(4)所獲得之具有錫-氧-碳鍵之該有機錫化合 物再用作步驟(1)之具有錫-氧·碳鍵之有機錫化合物之步 驟0 <胺化合物> 另一方面,作為本實施形態之製造方法所使用之胺化合 物,使用以下述式(17)所表示之胺化合物。 131505.doc -55- 17) 200948760 [化 ίο] R2 如 h2: (式中’ R2係選自包含選自碳、氧之原子之碳數為_之 脂肪族基及碳數為6〜20之芳香族基所組成之群中的一個 基,具有與η相等之原子價, η為2〜10之整數)。 ❹ 使用上述式(17)中,較好的是…以上之聚胺進而好 的是η為2之二胺化合物。 上述式(17)之R2更好的是可列舉:碳數為㈣之烧美、 碳數為5〜默環絲,作為如此之R2之例,較好地使=: 亞甲基、二亞甲基、三亞甲基、四亞甲基、五亞甲基、六 亞甲基、八亞甲基等直鏈烴基;環戊烷、環己烷、環庚 院、環辛烧、雙(環己基)院烴等未經取代之脂環式煙基; 曱基環戊烷、乙基環戊烷、曱基環己烷(各異構物卜乙基 環己烧(各異構物)、丙基環己烷(各異構物)、丁基環己烷 (各異構物)、戊基環己院(各異構物)、己基環己烧(各異構 物)等烧基取代環己燒;二甲基環己烧(各異構物)、二乙基 環己烧(各異構物)、二丁基環己燒(各異構物)等二烧基取 代環己烷H’5,5_三甲基環己烷、M,5_三乙基環己烷、 1,5,5-三丙基環己烧(各異構物)、M,5_三丁基環己則各異 構物)等三烧基取代環己烧;甲笨、乙基苯、丙基苯等單 烷基取代苯;二甲苯、萁岔 本一乙基本、二丙基苯等二烷基取代 苯;二苯基烷烴、苯等芳番祐,网楚 I方晋族烴等。其中,較好地使用六 131505.doc •56· 200948760 亞甲基、伸苯基、二苯基甲烷、曱苯、環己烷、二甲苯、 甲基環己烷、異佛酮及二環己基曱基。 作為如此之聚胺化合物之例’可列舉:六亞甲基二胺、 4,4'-亞甲基雙(環己基胺)(各異構物)、環己烷二胺(各異構 物)、3-胺基甲基_3,5,5_三甲基環己基胺(各異構物)等脂肪 奴一胺,苯二胺(各異構物)、甲苯二胺(各異構物)、4,4,_ 亞曱基二苯胺等芳香族二胺。其中較好地使用六亞甲基二 胺4’4 -亞甲基雙(環己基胺)(各異構物)、環己烧二胺(各 〇 異構物)、3_胺基曱基-3,5,5-三曱基環己基胺(各異構物)等 脂肪族二胺,其中更好地使用六亞甲基二胺、4,4,_亞曱基 雙(環己基胺)、3-胺基甲基_3,5,5_三曱基環己基胺。 <碳酸二芳酯與胺化合物之反應> 對上述所說明之碳酸二芳酯與胺化合物之反應加以說 明。 碳酸二芳酯與胺化合物之反應係於芳香族羥基化合物存 Q 在下進行。作為該芳香族羥基化合物,較好的是構成該芳 香族羥基化合物之芳香族烴環上直接鍵結有1個羥基之化 σ物。構成該芳香族羥基化合物之芳香族烴環上直接鍵結 有2個以上之羥基的芳香族羥基化合物,亦可用作構成本 實施形態之組合物之芳香族羥基化合物,該碳酸二芳酯與 該胺化合物之反應中有時溶液之黏度提高,從而有時導致 反應效率下降,或下述之反應液之運送時效率下降。 作為碳酸二芳酯與胺化合物反應所使用之芳香族羥基化 合物,可列舉:苯紛、甲基_苯紛(各異構物)、乙基_苯盼 131505.doc -57- 200948760 (各異構物)、丙基-苯酚(各異構物)、丁基-笨酚(各異構 物)、戊基-苯齡(各異構物)、己基-苯紛(各異構物)、庚基_ 苯盼(各異構物)、辛基-苯酚(各異構物)、壬基-苯盼(各異 構物)、癸基-苯酚(各異構物)、十二烷基-苯酚(各異構 物)、苯基-苯酚(各異構物)、苯氧基苯酚(各異構物)、異丙 苯基-苯酚(各異構物)等單取代苯酚類,二曱基-苯盼(各異 構物)、二乙基-苯酚(各異構物)、二丙基-苯酚(各異構 物)一丁基_本紛(各異構物)、二戊基-苯盼(各異構物)、 ® 二己基-苯酚(各異構物)、二庚基-苯酚(各異構物)、二辛 基-苯酚(各異構物)、二壬基_苯酚(各異構物)、二癸基-笨 紛(各異構物)、_一(十二烧基)-苯盼(各異構物)、二苯基-笨 齡·(各異構物)、二苯氧基苯酚(各異構物)、二異丙苯基_笨 酚(各異構物)、曱基·乙基-苯酚(各異構物)、甲基·丙基-笨 酚(各異構物)、甲基·丁基_苯酚(各異構物)、甲基_戊基·笨 酚(各異構物)、甲基-己基-苯酚(各異構物)、甲基_庚基_笨 Q 酚(各異構物)、甲基-辛基-苯酚(各異構物)、甲基-壬基_笨 酚(各異構物)、甲基-癸基-苯酚(各異構物)、甲基_十二烷 基-笨酚(各異構物)、甲基_苯基_苯酚(各異構物)、曱基苯 氧基苯酚(各異構物)、甲基-異丙苯基-苯酚(各異構物)、乙 基-丙基-苯酚(各異構物)、乙基-丁基·苯酚(各異構物)、乙 基·戊基-苯酚(各異構物)、乙基-己基-苯酚(各異構物)、乙 基··庚基-苯酚(各異構物)、乙基-辛基·苯酚(各異構物)、乙 基-壬基-苯酚(各異構物)、乙基-癸基·苯酚(各異構物)、乙 基··十二烷基-苯酚(各異構物)、乙基-苯基_苯酚(各異構 13l505.doc -58 - 200948760 物)、乙基-苯氧基苯酚(各異構物)、乙基-異丙苯基-苯酚 (各異構物)、丙基-丁基-苯酚(各異構物)、丙基_戊基_苯酚 (各異構物)、丙基-己基-苯酚(各異構物)、丙基_庚基-苯酚 (各異構物)、丙基-辛基-苯酚(各異構物)、丙基_壬基_苯酚 (各異構物)、丙基·癸基-苯酚(各異構物)、丙基_十二烷基_ 苯酚(各異構物)、丙基_苯基_苯酚(各異構物)、丙基_苯氧 基苯紛(各異構物)、丙基-異丙苯基-苯酚(各異構物)、丁 基-戊基-苯酚(各異構物)、丁基-己基-苯酚(各異構物)、丁 ® 基-庚基-苯酚(各異構物)、丁基-辛基-苯酚(各異構物)、丁 基-壬基-苯盼(各異構物)、丁基_癸基苯紛(各異構物)、丁 基-十二烷基-苯酚(各異構物)、丁基苯基-苯酚(各異構 物)、丁基-苯氧基苯酚(各異構物)、丁基-異丙苯基·苯酚 (各異構物)、戊基-己基-苯酚(各異構物)、戊基_庚基苯酚 (各異構物)、戊基-辛基-苯酚(各異構物)、戊基_壬基_苯酚 (各異構物)、戊基-癸基-苯酚(各異構物)、戊基_十二烷基_ 〇 苯酚(各異構物)、戊基·苯基-苯酚(各異構物)、戊基·苯氧 基苯酚(各異構物)、戊基-異丙笨基-苯酚(各異構物)、己 基-庚基-苯酚(各異構物)、己基_辛基_苯酚(各異構物)、己 基-壬基-苯酚(各異構物)、己基-癸基-苯酚(各異構物卜己 基-十二烷基-苯酚(各異構物)、己基苯基苯酚(各異構 物)、己基-苯氧基苯酚(各異構物)、己基·異丙苯基-苯酚 (各異構物)、庚基-辛基-苯酚(各異構物)、庚基_壬基_苯酚 (各異構物)、庚基·癸基-苯酚(各異構物)、庚基十二烷基_ 苯酚(各異構物)、庚基-苯基-笨酚(各異構物)、庚基苯氧 131505.doc •59- 200948760 基苯酚(各異構物)、庚基-異丙苯基-苯酚(各異構物)、辛 基-壬基-苯酚(各異構物)、辛基_癸基_苯酚(各異構物)、辛 基十一垸基-笨酚(各異構物)、辛基-苯基-苯酚(各異構 物)、辛基-苯氧基苯酚(各異構物)、辛基_異丙苯基-苯酚 (各異構物)、壬基·癸基·苯酚(各異構物)、壬基_十二烷基_ 苯酚(各異構物)、壬基-苯基_苯酚(各異構物)、壬基·苯氧 基苯酚(各異構物)、壬基_異丙苯基_苯酚(各異構物)、十二 烷基-苯基-苯酚(各異構物)、十二烷基_苯氧基苯酚(各異構 〇 物)' 十二烷基-異丙苯基-苯酚(各異構物)等二取代苯酚 類,二甲基-苯酚(各異構物)、三乙基_苯酚(各異構物)、三 丙基-苯酚(各異構物)、三丁基_苯酚(各異構物)、三戊基_ 苯酚(各異構物)、三己基_苯酚(各異構物)、三庚基-苯酚 (各異構物)、三辛基·苯酚(各異構物)、三壬基-苯酚(各異 構物)、三癸基-苯酚(各異構物)、三(十二烷基苯酚(各異 構物)、三苯基-苯酚(各異構物)、三苯氧基苯酚(各異構 0 物)、三異丙苯基-苯酚(各異構物)、二甲基-乙基-苯酚(各 異構物)、二曱基-丙基-苯盼(各異構物)、二甲基_丁基_苯 紛(各異構物)、二甲基-戊基-苯酚(各異構物)、二甲基·己 基-苯酚(各異構物)、二甲基_庚基_苯酚(各異構物)、二甲 基-辛基-苯酚(各異構物)、二曱基-壬基-苯酚(各異構物)、 二曱基-癸基-苯齡(各異構物)、二曱基-十二烧基-笨盼(各 異構物)、二甲基-苯基-苯酚(各異構物)、二甲基-苯氧基笨 紛(各異構物)、二甲基-異丙笨基-苯酚(各異構物)、二乙 基-甲基-苯酚(各異構物)、二乙基-丙基-苯酚(各異構物)、 131505.doc -60- 200948760 一乙基-丁基-苯酚(各異構物)、二乙基·戊基苯酚(各異構 物)、二乙基-己基-苯酚(各異構物)、二乙基_庚基苯酚(各 異構物)、二乙基-辛基-苯酚(各異構物)、二乙基·壬基·苯 酚(各異構物)、二乙基-癸基-苯酚(各異構物)、二乙基_十 二烷基-苯酚(各異構物)、二乙基-苯基_苯酚(各異構物)、 二乙基-苯氧基苯酚(各異構物)、二乙基_異丙苯基苯酚(各 異構物)、二丙基-曱基-苯紛(各異構物)、二丙基-乙基_苯 盼(各異構物)、二丙基-丁基-苯酚(各異構物)、二丙基_戊 ® 基-笨酚(各異構物)、二丙基-己基-苯酚(各異構物)、二丙 基-庚基-苯酚(各異構物)、二丙基-辛基-苯酚(各異構物)、 二丙基-壬基-苯酚(各異構物)、二丙基-癸基-苯酚(各異構 物)、二丙基-十二烷基-苯酚(各異構物)、二丙基-笨基-苯 酚(各異構物)、二丙基_苯氧基苯酚(各異構物)、二丙基-異 丙苯基-苯酚(各異構物)、二丁基-甲基-苯酚(各異構物)、 一丁基-乙基-苯紛(各異構物)、二丁基-丙基-苯酌·(各異構 ^ 物)、二丁基·戊基-苯酚(各異構物)、二丁基-己基-笨酚(各 異構物)、二丁基-庚基-苯酚(各異構物)、二丁基·辛基_苯 酚(各異構物)、二丁基-壬基-苯酚(各異構物)、二丁基-癸 基-苯酚(各異構物)、二丁基-十二烷基-苯酚(各異構物)、 二丁基-苯基-苯酚(各異構物)、二丁基-苯氧基苯酚(各異構 物)、二丁基-異丙苯基-苯酚(各異構物)、二戊基-曱基-苯 酚(各異構物)、二戊基-乙基-苯酚(各異構物)、二戊基-丙 基-苯酚(各異構物)、二戊基-丁基-苯酚(各異構物)、二戊 基-己基-苯酚(各異構物)、二戊基-庚基-苯酚(各異構物)、 131505.doc • 6卜 200948760 二戊基-辛基-苯酚(各異構物)、二戊基_壬基-苯酚(各異構 物)、二戊基-癸基-苯酚(各異構物)、二戊基_十二烷基_苯 酚(各異構物)、二戊基_苯基_苯酚(各異構物)、二戊基-苯 氧基苯酚(各異構物)、二戊基_異丙苯基_苯酚(各異構物)、 二己基-甲基-苯酚(各異構物)、二己基_乙基_苯酚(各異構 物)、一己基-丙基·苯酚(各異構物)' 二己基_丁基苯酚(各 異構物)、二己基-戊基-苯酚(各異構物)、二己基-庚基-苯 酚(各異構物)、二己基-辛基-苯酚(各異構物)、二己基-壬 基-苯酚(各異構物)、二己基_癸基_苯酚(各異構物)、二己 基-十二烷基-苯酚(各異構物)、二己基_苯基_苯酚(各異構 物)、二己基-苯氧基苯酚(各異構物)、二己基_異丙苯基苯 酚(各異構物)、二庚基-甲基-苯酚(各異構物)、二庚基乙 基-笨酚(各異構物)、二庚基-丙基_苯酚(各異構物)、二庚 基-丁基-苯酚(各異構物)、二庚基-戊基_苯酚(各異構物)、 二庚基-己基-苯酚(各異構物)、二庚基_辛基-苯酚(各異構 ◎ 物)、二庚基-壬基·苯酚(各異構物)、二庚基-癸基-苯酚(各 異構物)、二庚基-十二烷基-苯酚(各異構物)、二庚基-苯 基-苯酚(各異構物)、二庚基-苯氧基苯酚(各異構物)、二庚 基-異丙苯基·苯酚(各異構物)、二辛基_曱基_苯酚(各異構 物)、二辛基-乙基-苯酚(各異構物)、二辛基_丙基苯酚(各 異構物)、二辛基-丁基-苯酚(各異構物)、二辛基-戊基-苯 酚(各異構物)、二辛基-己基_苯酚(各異構物)、二辛基-庚 基-苯酚(各異構物)、二辛基·壬基-苯酚(各異構物)、二辛 基-癸基-苯酚(各異構物)、二辛基-十二烷基-苯酚(各異構 131505.doc -62- 200948760 物)、二辛基-苯基-苯酚(各異構物)、二辛基苯氧基苯酚 (各異構物)、二辛基·異丙苯基_苯酚(各異構物)、二壬基_ 甲基-苯酚(各異構物)、二壬基_乙基·苯酚(各異構物)、二 壬基-丙基-苯酚(各異構物)、二壬基_丁基苯酚(各異構 物)、二壬基-戊基-苯酚(各異構物)、二壬基_己基·苯酚(各 異構物)、二壬基-庚基-苯酚(各異構物)、二壬基_辛基-笨 酚(各異構物)、二壬基•癸基·苯酚(各異構物)、二壬基-十 —烷基-苯酚(各異構物)、二壬基·苯基·苯酚(各異構物)、 —壬基-苯氧基苯酚(各異構物)、二壬基_異丙苯基_苯酚(各 異構物)、二癸基-曱基_笨酚(各異構物)、二癸基乙基笨 酚(各異構物)、二癸基-丙基-苯酚(各異構物)、二癸基-丁 基-苯酚(各異構物)、二癸基_戊基_苯酚(各異構物)、二癸 基-己基-苯酚(各異構物)、二癸基_庚基苯酚(各異構物)、 二癸基-辛基·苯酚(各異構物)、二癸基_壬基_苯酚(各異構 物)、二癸基-十二烷基·苯酚(各異構物)、二癸基_苯基-笨 ❹酚(各異構物)、二癸基-苯氧基苯酚(各異構物)、二癸基_異 丙苯基苯酚(各異構物)、二(十二烷基曱基_苯酚(各異構 物)、一(十一烧基)_乙基-苯盼(各異構物)、二(十二燒基)· 丙基-苯盼(各異構物)、二(十二烷基)_丁基-苯酚(各異構 物)、一(十一烧基)-戊基-苯盼(各異構物)、二(十二燒基)_ 己基-苯紛(各異構物)、二(十二烷基)_庚基-苯酚(各異構 物)、二(十二烷基)-辛基·苯酚(各異構物)、二(十二烷基)_ 壬基-苯酚(各異構物)、二(十二烷基)_癸基-苯酚(各異構 物)、二(十二烷基)_十二烷基_苯酚(各異構物)、二(十二烷 131505.doc -63- 200948760 基)-苯基-苯盼(各異構物)、二(十二烷基)_苯氧基苯酚(各 異構物)、二(十二烷基)_異丙苯基_苯酚(各異構物)、二苯 基-甲基-苯酚(各異構物)、二苯基_乙基_苯酚(各異構物)、 一苯基-丙基·苯酚(各異構物)、二苯基_丁基_苯酚(各異構 物)、二苯基·戊基-苯酚(各異構物)、二苯基-己基_苯酚(各 異構物)、二苯基-庚基-苯酚(各異構物)、二苯基辛基苯 酚(各異構物)、二苯基-壬基-苯酚(各異構物)、二苯基_癸 基·苯酚(各異構物)、二苯基_十二烷基_苯酚(各異構物)、 二苯基-苯氧基苯酚(各異構物)、二苯基_異丙苯基_苯酚(各 異構物)、二苯氧基甲基_苯酚(各異構物)、二苯氧基乙基_ 苯盼(各異構物)、二苯氧基丙基-苯酚(各異構物)、二苯氧 基丁基-苯酚(各異構物)、二苯氧基戊基·苯盼(各異構物)、 二苯氧基己基-苯酚(各異構物)、二苯氧基庚基_苯酚(各異 構物)、一本氧基辛基-苯紛(各異構物)、二苯氧基壬基_苯 盼(各異構物)、二苯氧基癸基-苯酚(各異構物)、二苯氧基 十二烷基-苯酚(各異構物)、二苯氧基苯基·苯酚(各異構 物)、二苯氧基異丙苯基-苯酚(各異構物)、二異丙苯基_甲 基·笨酚(各異構物)、二異丙苯基-乙基_苯酚(各異構物)、 二異丙苯基-丙基-苯酚(各異構物)、二異丙苯基_丁基_苯盼 (各異構物)、一異丙苯基-戍基-苯酌(各異構物)、二異丙苯 基·己基_本盼(各異構物)、·一異丙笨基-庚基-苯紛(各異構 物)、二異丙苯基-辛基-苯紛(各異構物)' 二異丙苯基_壬 基-本齡(各異構物)、二異丙苯基-癸基-苯齡(各異構物)、 一異丙苯基-十二烧基-苯紛(各異構物)、二異丙苯基-苯基 131505.doc • 64 - 200948760 ΟThe form of the reactor used in the Sg 0 〇81 exchange step and the unevenness step is not particularly limited, and a stirring tank method, a multi-stage stirring tank method, a multi-stage distillation column, and the like may be employed. Various methods are well known. These reactors can be used in either batch or continuous mode. In view of effectively balancing the equilibrium toward the formation side, it is preferred to use a multistage distillation column, and particularly preferably a continuous process using a multistage distillation column. The multi-stage steaming tower refers to a multi-stage steaming tower in which the number of theoretical stages of steaming is two or more, and any one can be continuously distilled if Q can be used. As such a multi-stage distillation column, for example, a tray tower method using a tray such as a bubble tray, a perforated tray, a valve tray, a countercurrent tray, or the like, or a Raschig ring, a Lexin ring, a Pall ring, or the like is used. Arc saddle packing, moment saddle ring packing, Dixon packing, net saddle packing, spiral packing, wire mesh corrugated packing, orifice corrugated packing, etc., which are usually used as multi-stage steaming tower users, Any one can be used. Further, a laminate/filler mixing tower in which the laminate portion and the filler-filled portion are combined may be preferably used. When a continuous process is carried out using a multi-stage distillation column, the starting materials and the reaction materials are continuously supplied to a continuous 131505.doc -52-200948760 multi-weight steaming tower in the presence of a metal-containing catalyst in the distillation column. Conducting a transesterification reaction and/or a heterogeneous reaction between the two substances in a liquid phase or a gas-liquid phase, and simultaneously containing the prepared alkyl aryl carbonate and/or diaryl carbonate The lower portion of the steaming tower is discharged as a liquid, and on the other hand, the low-boiling reaction mixture containing the by-product formed is continuously discharged in a gaseous state by distillation from the upper portion of the distillation column, thereby producing a diaryl carbonate. The above shows the production of a diaryl carbonate using a dialkyltin compound. In addition to the above steps (1) to (3), the following steps (4) and (5) can be carried out. Step (4): reacting the residual liquid obtained in the step (2) with an alcohol to form an organotin compound having a tin-oxo-1⁄4 bond and water, and removing the water from the reaction system; Step (5): the step (4) The obtained organotin compound having a tin-oxygen-carbon bond is used as the step of the organotin compound having a tin/oxygen-carbon bond in the step (1). ❹ Step (4) is a step of reacting the residual liquid obtained in the step (2) with an alcohol to regenerate the dialkyltin compound. As the alcohol used in this step, decyl alcohol, ethanol, propanol (each isomer), butanol (each isomer), pentanol (each isomer), hexanol (isomeric) are preferably used. , heptanol (each isomer), octanol (each isomer), decyl alcohol (each isomer), decyl alcohol (each isomer), etc., the number of carbon atoms constituting the alcohol is selected from The alcohol of the integer number of 12 is more preferably the same alcohol as that used in the alkyltin alkoxide synthesis step described above. 131505.doc -53- 200948760 It is preferred that the conditions of the dehydration reaction are also carried out under the same conditions as the above-mentioned alkyltin alkoxide synthesis step. The reaction is terminated if the desired alkyl tin alkoxide composition is obtained. The progress of the reaction can be confirmed by measuring the amount of water discharged to the outside of the system, and the reaction solution can be sampled and confirmed by the method of u9Sn_NMR. In order to produce the mixture of the present embodiment in the step (", it is confirmed that the following composition is obtained, that is, the tetraalkyldialkoxy group contained in the alkyl tin alkoxide composition obtained by the above reaction. The molar ratio of distannoxane to dialkyltin dialkoxide, expressed as % of the combination of the two, is 0: 丨〇〇 ~ 80: 20, more preferably 1 〇: 90 The composition of the range of ~70:30. The alcohol used may be used directly in the coexisting state, and may be used by distilling off the alcohol according to the situation. Since it has the advantage of reducing the reactor of other steps, it is preferred that The alcohol is removed as much as possible. The removal method is preferably carried out by the use of distillation which is well known, and the distillation apparatus used for the distillation can use a well-known distillation apparatus. As a preferred distillation apparatus, since it can be removed in a short time, A thin film distillation apparatus can be preferably used. In this step, unlike the alkyltin alkoxide synthesis step, dialkyltin oxide as a solid is usually not used, so the reactor is less restrictive. The form of the reactor for the water reaction is not particularly limited, and a well-known tank-like or column-shaped reactor can be used. The low-water/fuss-point reaction mixture is discharged from the reactor in a gas form by distillation, and is produced by a gas system. The high-boiling reaction mixture of the base-burning oxide or the base-burning oxide mixture is discharged from the lower portion of the reactor as a liquid. As such a reactor, for example, a stirring tank, a multi-stage stirring tank, a distillation column, Multi-stage distillation column, multi-tubular reactor, continuous multi-stage distillation column, filling 131505.doc -54- 200948760 charging tower, thin crucible evaporator, reactor with internal and optional support, forced circulation reaction , the falling film evaporator, the falling enthalpy, the same as the reactor fine-phase reactor, the bubble, the way of the reactor, and the methods of combining them, etc. In terms of the side of the formation system, it is preferable to use a columnar reactor. Preferably, the formed X is rapidly transferred to the gas phase, and the gas-liquid contact area is large. Particularly preferably, a multi-tube is used. Reactor, multi-stage steaming (four), continuous method filled with filler filling tower. If * caused by Μ, the material of reaction n and the line can be any known material, of which SUS3〇44Sus3i6, SUS316L, etc. are relatively cheap, so It can be used well. It can be equipped with measuring instruments such as flow meters and thermometers, well-known processing devices such as reboilers, pumps, and condensers. Heating can be done by well-known methods such as steam and heaters. A well-known method such as cooling water, brine, etc. The dialkyl tin compound produced in the above step (4) is reused as the dialkyl tin compound used in the step (丨) by the step (5) (reuse step). Step (5) is the step of using the organotin compound having the tin-oxygen-carbon bond obtained in the step (4) as the organotin compound having the tin-oxygen-carbon bond in the step (1). Compound> On the other hand, as the amine compound used in the production method of the present embodiment, an amine compound represented by the following formula (17) is used. 131505.doc -55- 17) 200948760 [Chemical] R2 is as h2: (wherein R2 is selected from aliphatic groups containing carbon atoms selected from carbon and oxygen, and having a carbon number of 6 to 20 One of the groups consisting of aromatic groups has an valence equal to η, and η is an integer of 2 to 10. ❹ In the above formula (17), it is preferred that the above polyamine is more preferably a diamine compound having η of 2. R2 of the above formula (17) is more preferably a burnt beauty having a carbon number of (d), and a carbon number of 5 to a ring-shaped filament. As an example of such R2, it is preferable to make =: methylene group, two subunits a straight-chain hydrocarbon group such as a methyl group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group or an octamethyl group; a cyclopentane, a cyclohexane, a cycloglycine, a cyclooctane, a bis (ring) An unsubstituted alicyclic nicotinyl such as a hydrocarbon; decylcyclopentane, ethylcyclopentane, nonylcyclohexane (each isomer, ethylcyclohexanone (each isomer), propyl Cyclohexane (each isomer), butylcyclohexane (each isomer), pentylcyclohexan (each isomer), hexylcyclohexane (each isomer), etc. a dialkyl group substituted cyclohexane H' such as dimethylcyclohexane (each isomer), diethylcyclohexane (each isomer), dibutylcyclohexane (each isomer) 5,5_trimethylcyclohexane, M,5-triethylcyclohexane, 1,5,5-tripropylcyclohexane (each isomer), M,5-tributylcyclohexane Then, each isomer) is substituted with a trialkyl group to replace the cyclohexane; a monoalkyl substituted benzene such as a stupid, ethylbenzene or propylbenzene; Dimethylbenzene, hydrazine, monoethylidene, dipropylbenzene, etc., dialkyl-substituted benzene; diphenylalkane, benzene, etc., Fangfanyou, Netchu, I Fangjin hydrocarbon, etc. Among them, it is better to use six 131505.doc • 56· 200948760 methylene, phenyl, diphenylmethane, toluene, cyclohexane, xylene, methylcyclohexane, isophorone and dicyclohexyl曱基. Examples of such a polyamine compound include hexamethylenediamine, 4,4'-methylenebis(cyclohexylamine) (each isomer), and cyclohexanediamine (each isomer). , 3-aminomethyl-3,5,5-trimethylcyclohexylamine (each isomer), such as adiamine, phenylenediamine (each isomer), toluenediamine (isomeric) An aromatic diamine such as 4,4,_-decylene diphenylamine. Among them, hexamethylenediamine 4'4-methylenebis(cyclohexylamine) (each isomer), cyclohexene diamine (each isomer), and 3-aminocarbonyl group are preferably used. -3,5,5-tridecylcyclohexylamine (each isomer), such as an aliphatic diamine, wherein hexamethylenediamine, 4,4,-indenyl bis(cyclohexylamine) is better used. ), 3-aminomethyl-3,5,5-tridecylcyclohexylamine. <Reaction of diaryl carbonate with an amine compound> The reaction of the above-described diaryl carbonate with an amine compound will be described. The reaction of the diaryl carbonate with the amine compound is carried out in the presence of an aromatic hydroxy compound. The aromatic hydroxy compound is preferably a ruthenium compound in which one hydroxyl group is directly bonded to an aromatic hydrocarbon ring constituting the aromatic hydroxy compound. An aromatic hydroxy compound in which two or more hydroxyl groups are directly bonded to an aromatic hydrocarbon ring constituting the aromatic hydroxy compound can also be used as an aromatic hydroxy compound constituting the composition of the present embodiment, and the diaryl carbonate and In the reaction of the amine compound, the viscosity of the solution may increase, which may cause a decrease in the reaction efficiency, or may decrease the efficiency of the reaction liquid described below. Examples of the aromatic hydroxy compound used for the reaction of the diaryl carbonate with the amine compound include benzophenone, methyl benzophenone (each isomer), and ethyl benzophenone 131505.doc -57- 200948760 (various Structure), propyl-phenol (each isomer), butyl-p-phenol (each isomer), pentyl-phenyl age (each isomer), hexyl-benzene (each isomer), Heptyl benzophenone (each isomer), octyl-phenol (each isomer), mercapto-phenone (each isomer), mercapto-phenol (each isomer), dodecyl - monosubstituted phenols such as phenol (each isomer), phenyl-phenol (each isomer), phenoxyphenol (each isomer), cumyl-phenol (each isomer), Mercapto-phene (each isomer), diethyl-phenol (each isomer), dipropyl-phenol (each isomer) monobutyl _ _ (isomeric), di-pentane -Benzene (each isomer), ® Dihexyl-phenol (each isomer), Diheptyl-phenol (each isomer), Dioctyl-phenol (each isomer), Dimercapto _phenol (each isomer), dimercapto-stupid Each isomer), _mono(dodecanyl)-benzene (each isomer), diphenyl-mild (each isomer), diphenoxyphenol (each isomer), Diisopropylphenyl- phenol (each isomer), decyl-ethyl-phenol (each isomer), methyl propyl-polyphenol (each isomer), methyl butyl _ Phenol (each isomer), methyl-pentyl-polyphenol (each isomer), methyl-hexyl-phenol (each isomer), methyl-heptyl-stupylphenol (each isomer) ), methyl-octyl-phenol (each isomer), methyl-mercapto-ylphenol (each isomer), methyl-mercapto-phenol (each isomer), methyl-tine Alkyl-p-phenol (each isomer), methyl-phenyl-phenol (each isomer), nonylphenoxyphenol (each isomer), methyl-cumyl-phenol (each Isomers), ethyl-propyl-phenol (each isomer), ethyl-butyl-phenol (each isomer), ethyl·pentyl-phenol (each isomer), ethyl- Hexyl-phenol (each isomer), ethyl·heptyl-phenol (each isomer), ethyl-octyl·phenol (each isomer) , ethyl-mercapto-phenol (each isomer), ethyl-mercapto-phenol (each isomer), ethyl · dodecyl-phenol (each isomer), ethyl-benzene -Phenol (each isomer 13l505.doc -58 - 200948760), ethyl-phenoxyphenol (each isomer), ethyl-isopropylphenyl-phenol (each isomer), propyl- Butyl-phenol (each isomer), propyl-pentyl-phenol (each isomer), propyl-hexyl-phenol (each isomer), propyl-heptyl-phenol (each isomer) ), propyl-octyl-phenol (each isomer), propyl-hydrazino-phenol (each isomer), propyl-mercapto-phenol (each isomer), propyl-dodecane - phenol (each isomer), propyl-phenyl-phenol (each isomer), propyl-phenoxybenzene (each isomer), propyl-isopropylphenyl-phenol (each Isomers), butyl-pentyl-phenol (each isomer), butyl-hexyl-phenol (each isomer), butyl-heptyl-heptyl-phenol (each isomer), butyl- Octyl-phenol (each isomer), butyl-mercapto-phenone (each isomer), butyl-nonylbenzene (each Structure), butyl-dodecyl-phenol (each isomer), butylphenyl-phenol (each isomer), butyl-phenoxyphenol (each isomer), butyl- Phenylphenol·phenol (each isomer), amyl-hexyl-phenol (each isomer), amyl-heptylphenol (each isomer), amyl-octyl-phenol (isomeric , pentyl-fluorenyl-phenol (each isomer), pentyl-fluorenyl-phenol (each isomer), amyl-dodecyl-nonylphenol (each isomer), pentyl Phenyl-phenol (each isomer), pentylphenoxyphenol (each isomer), pentyl-isopropylphenyl-phenol (each isomer), hexyl-heptyl-phenol (each Isomers), hexyl-octyl-phenol (each isomer), hexyl-mercapto-phenol (each isomer), hexyl-fluorenyl-phenol (each isomer, hexyl-dodecyl- Phenol (each isomer), hexylphenylphenol (each isomer), hexyl-phenoxyphenol (each isomer), hexyl-cumenyl-phenol (each isomer), heptyl- Octyl-phenol (each isomer), heptyl-mercapto-phenol (each isomer) , heptyl-decyl-phenol (each isomer), heptyldodecyl-phenol (each isomer), heptyl-phenyl-p-phenol (each isomer), heptylphenoxyl 131505 .doc •59- 200948760 phenol (each isomer), heptyl-cumyl-phenol (each isomer), octyl-fluorenyl-phenol (each isomer), octyl-fluorenyl _Phenol (each isomer), octylundecyl-p-phenol (each isomer), octyl-phenyl-phenol (each isomer), octyl-phenoxyphenol (isomeric , octyl-cumyl-phenol (each isomer), mercapto-fluorenyl-phenol (each isomer), mercapto-dodecyl-phenol (each isomer), hydrazine -Phenyl-phenol (each isomer), mercapto-phenoxyphenol (each isomer), mercapto-cumenyl-phenol (each isomer), dodecyl-phenyl -Diphenols such as phenol (each isomer), dodecyl-phenoxyphenol (each isomer), dodecyl-cumylphenol-phenol (each isomer), Methyl-phenol (each isomer), triethyl-phenol (each isomer), tripropyl-benzene Phenol (each isomer), tributyl-phenol (each isomer), tripentyl-phenol (each isomer), trihexyl-phenol (each isomer), triheptyl-phenol (each Isomers), trioctyl phenol (each isomer), tridecyl-phenol (each isomer), tridecyl-phenol (each isomer), tris(dodecylphenol) Isomers), triphenyl-phenol (each isomer), triphenyloxyphenol (isomeric), triisopropylphenyl-phenol (each isomer), dimethyl-ethyl - phenol (each isomer), dimercapto-propyl-benzoin (each isomer), dimethyl-butyl-benzene (each isomer), dimethyl-pentyl-phenol ( Each isomer), dimethylhexyl-phenol (each isomer), dimethyl-heptyl-phenol (each isomer), dimethyl-octyl-phenol (each isomer), Dimercapto-indenyl-phenol (each isomer), dimercapto-indenyl-benzoate (each isomer), dimercapto-dodecyl-p-stoke (each isomer), two Methyl-phenyl-phenol (each isomer), dimethyl-phenoxy group (each isomer), two Methyl-isopropylphenyl-phenol (each isomer), diethyl-methyl-phenol (each isomer), diethyl-propyl-phenol (each isomer), 131505.doc - 60- 200948760 Monoethyl-butyl-phenol (each isomer), diethyl·pentylphenol (each isomer), diethyl-hexyl-phenol (each isomer), diethyl_ Heptylphenol (each isomer), diethyl-octyl-phenol (each isomer), diethyl thiol phenol (each isomer), diethyl-mercapto-phenol (each Isomers), diethyl-dodecyl-phenol (each isomer), diethyl-phenyl-phenol (each isomer), diethyl-phenoxyphenol (each isomer) ), diethyl-cumylphenol (each isomer), dipropyl-fluorenyl-benzoic acid (each isomer), dipropyl-ethyl-phenylene (each isomer), Dipropyl-butyl-phenol (each isomer), dipropyl-pentyl-polyphenol (each isomer), dipropyl-hexyl-phenol (each isomer), dipropyl- Heptyl-phenol (each isomer), dipropyl-octyl-phenol (each isomer), dipropyl-fluorenyl- Phenol (each isomer), dipropyl-indenyl-phenol (each isomer), dipropyl-dodecyl-phenol (each isomer), dipropyl-styl-phenol (each Isomers), dipropyl-phenoxyphenol (each isomer), dipropyl-cumylphenol-phenol (each isomer), dibutyl-methyl-phenol (each isomer) ), monobutyl-ethyl-benzene (each isomer), dibutyl-propyl-benzene (each isomer), dibutyl-pentyl-phenol (each isomer) , dibutyl-hexyl-p-phenol (each isomer), dibutyl-heptyl-phenol (each isomer), dibutyl-octyl-phenol (each isomer), dibutyl- Mercapto-phenol (each isomer), dibutyl-mercapto-phenol (each isomer), dibutyl-dodecyl-phenol (each isomer), dibutyl-phenyl- Phenol (each isomer), dibutyl-phenoxyphenol (each isomer), dibutyl-cumylphenol-phenol (each isomer), dipentyl-indenyl-phenol (each Isomer), dipentyl-ethyl-phenol (each isomer), dipentyl-propyl-phenol (each isomer), two -butyl-phenol (each isomer), dipentyl-hexyl-phenol (each isomer), dipentyl-heptyl-phenol (each isomer), 131505.doc • 6b 200948760 II Pentyl-octyl-phenol (each isomer), dipentyl-mercapto-phenol (each isomer), dipentyl-indolyl-phenol (each isomer), dipentyl-tweldium Alkyl-phenol (each isomer), dipentyl-phenyl-phenol (each isomer), dipentyl-phenoxyphenol (each isomer), dipentyl-isopropylidene Phenol (each isomer), dihexyl-methyl-phenol (each isomer), dihexyl-ethyl-phenol (each isomer), monohexyl-propyl·phenol (each isomer) Dihexyl-butylphenol (each isomer), dihexyl-pentyl-phenol (each isomer), dihexyl-heptyl-phenol (each isomer), dihexyl-octyl-phenol (each Isomers), dihexyl-fluorenyl-phenol (each isomer), dihexyl-fluorenyl-phenol (each isomer), dihexyl-dodecyl-phenol (each isomer), two Hexyl-phenyl-phenol (each isomer), dihexyl-phenoxy Phenol (each isomer), dihexyl-cumylphenol (each isomer), diheptyl-methyl-phenol (each isomer), diheptylethyl-phenol (isoisomer) , diheptyl-propyl-phenol (each isomer), diheptyl-butyl-phenol (each isomer), diheptyl-pentyl-phenol (each isomer), diheptan -hexyl-phenol (each isomer), diheptyl-octyl-phenol (isomeric), diheptyl-fluorenyl-phenol (each isomer), diheptyl-fluorenyl- Phenol (each isomer), diheptyl-dodecyl-phenol (each isomer), diheptyl-phenyl-phenol (each isomer), diheptyl-phenoxyphenol (each Isomers), diheptyl-isopropylphenyl·phenol (each isomer), dioctyl-fluorenyl-phenol (each isomer), dioctyl-ethyl-phenol (each isomer) ), dioctyl-propylphenol (each isomer), dioctyl-butyl-phenol (each isomer), dioctyl-pentyl-phenol (each isomer), dioctyl- Hexyl-phenol (each isomer), dioctyl-heptyl-phenol (each isomer), dioctyl·壬Base-phenol (each isomer), dioctyl-fluorenyl-phenol (each isomer), dioctyl-dodecyl-phenol (isomeric 131505.doc-62-200948760), two Octyl-phenyl-phenol (each isomer), dioctylphenoxyphenol (each isomer), dioctyl-cumenyl-phenol (each isomer), dimercapto -Phenol (each isomer), Dimercapto-ethyl-phenol (each isomer), Dimercapto-propyl-phenol (each isomer), Dimercapto-butylphenol (variety) Structure), dimercapto-pentyl-phenol (each isomer), dimercapto-hexylphenol (each isomer), dimercapto-heptyl-phenol (each isomer), diterpenes Base-octyl-p-phenol (each isomer), dimercapto-fluorenyl-phenol (each isomer), didecyl-deca-alkyl-phenol (isomer), dimercapto Phenyl·phenol (each isomer), —mercapto-phenoxyphenol (each isomer), dimercapto-cumylphenyl-phenol (each isomer), dimercapto-indenyl group_ Streptophenol (each isomer), dimercaptoethyl phenol (each isomer), dimercapto-propyl-benzene (each isomer), didecyl-butyl-phenol (each isomer), dimercapto-pentyl-phenol (each isomer), dimercapto-hexyl-phenol (each isomer) , dimercapto-heptylphenol (each isomer), dimercapto-octyl phenol (each isomer), dimercapto-fluorenyl-phenol (each isomer), dimercapto-ten Dialkyl·phenol (each isomer), dimercapto-phenyl-cupolic phenol (each isomer), dimercapto-phenoxyphenol (each isomer), dimercapto-isopropyl Phenylphenol (each isomer), di(dodecyldecyl-phenol (each isomer), one (undecyanyl)-ethyl-benzene (each isomer), two (ten) Dialkyl) propyl-benz (each isomer), di(dodecyl)-butyl-phenol (each isomer), one (undecyanyl)-pentyl-benzene ( Each isomer), bis(dodecyl)-hexyl-benzene (each isomer), di(dodecyl)-heptyl-phenol (each isomer), di(dodecyl) )-octyl phenol (each isomer), di(dodecyl)-decyl-phenol (each isomer), two ( Dodecyl)-mercapto-phenol (each isomer), di(dodecyl)-dodecyl-phenol (each isomer), di(dodecane 131505.doc -63- 200948760 Phenyl-phenyl-benzine (each isomer), di(dodecyl)-phenoxyphenol (each isomer), di(dodecyl)-isopropylphenyl-phenol (each Isomers), diphenyl-methyl-phenol (each isomer), diphenyl-ethyl-phenol (each isomer), monophenyl-propyl-phenol (each isomer), Diphenyl-butyl-phenol (each isomer), diphenyl-pentyl-phenol (each isomer), diphenyl-hexyl-phenol (each isomer), diphenyl-heptyl - phenol (each isomer), diphenyloctylphenol (each isomer), diphenyl-mercapto-phenol (each isomer), diphenyl-fluorenyl-phenol (each isomer) ), diphenyl-dodecyl-phenol (each isomer), diphenyl-phenoxyphenol (each isomer), diphenyl-cumylphenyl-phenol (each isomer) , diphenoxymethyl-phenol (each isomer), diphenoxyethyl benzophenone (each isomer) , diphenoxypropyl-phenol (each isomer), diphenoxybutyl-phenol (each isomer), diphenoxypentyl-benzoan (each isomer), diphenyloxide Hexyl-phenol (each isomer), diphenoxyheptyl-phenol (each isomer), one oxyoctyl-benzene (iso-isomer), diphenoxynonyl-benzene Expectant (each isomer), diphenoxynonyl-phenol (each isomer), diphenoxydodecyl-phenol (each isomer), diphenoxyphenyl·phenol (each Isomers), diphenoxyisopropyl phenyl-phenol (each isomer), diisopropylphenyl-methyl phenol (each isomer), dicumyl-ethyl phenol (isomeric), diisopropylphenyl-propyl-phenol (each isomer), diisopropylphenyl-butyl-benzoin (each isomer), monoisopropylphenyl-fluorenyl - benzene (each isomer), diisopropylphenyl hexyl _ Benzine (each isomer), · isopropyl phenyl - heptyl - benzene (each isomer), dicumyl Benzyl-octyl-benzene (each isomer) 'diisopropylphenyl-fluorenyl-the present (each isomer), dicumyl - decyl - age benzene (including isomers), a cumyl - twelve burn-yl - benzene numerous (including isomers), dicumyl - phenyl 131505.doc • 64 - 200948760 Ο
苯酚(各異構物)、二異丙苯基_苯氧基苯酚(各異構物)、甲 基-乙基-丙基-笨酚(各異構物)、曱基_乙基·丁基-苯酚(各 異構物)、甲基-乙基-戊基-苯酚(各異構物)' 甲基_乙基-己 基-苯酚(各異構物)、曱基-乙基·庚基-苯酚(各異構物)、甲 基-乙基-辛基-苯酚(各異構物)、甲基_乙基_壬基苯酚(各 異構物)、甲基-乙基-癸基-苯酚(各異構物)、甲基-乙基-十 二烷基-苯酚(各異構物)、曱基_乙基_苯基_苯酚(各異構 物)、曱基-乙基-苯氧基苯酚(各異構物)、曱基-乙基異丙 苯基-苯酚(各異構物)、曱基-丙基_丁基·苯酚(各異構物)、 甲基-丙基-戊基-苯酚(各異構物)、甲基_丙基己基苯酚 (各異構物)、甲基·丙基-庚基-苯酚(各異構物)、曱基-丙 基-辛基-苯酚(各異構物)、甲基-丙基_壬基_苯酚(各異構 物)、甲基-丙基-癸基-苯酚(各異構物)、曱基_丙基_十二烷 基-苯酚(各異構物)、曱基-丙基-苯基-苯酚(各異構物)、甲 基-丙基-苯氧基苯酚(各異構物)、甲基丙基異丙苯基苯 酚(各異構物)、甲基-丁基-戊基·苯酚(各異構物)、甲基·丁 基-己基-苯酚(各異構物)、甲基-丁基_庚基_苯酚(各異構 物)、曱基-丁基-辛基-苯酚(各異構物)' 甲基丁基壬基_ 苯酚(各異構物)、曱基_丁基_癸基_苯酚(各異構物)、甲基_ 丁基-十二烷基-苯酚(各異構物)、甲基_丁基_苯基-苯酚(各 異構物)、曱基-丁基-苯氧基苯酚(各異構物)、曱基_丁基· 異丙苯基-苯酚(各異構物)、曱基-戊基_己基_苯酚(各異構 物)、曱基-戊基·庚基-苯酚(各異構物)、甲基_戊基辛基_ 苯紛(各異構物)、曱基-戊基-壬基-笨酚(各異構物)、甲基· 131505.doc -65- 200948760 戊基·癸基-苯酚(各異構物)、甲基-戊基_十二烷基苯酚(各 異構物)、曱基-戊基-苯基·苯紛(各異構物)、甲基-戊基-苯 氧基苯酚(各異構物)、甲基_戊基_異丙苯基-苯酚(各異構 物)、甲基-己基-庚基·苯酚(各異構物)、甲基·己基辛基-苯酚(各異構物)、甲基_己基_壬基_苯酚(各異構物)、甲基_ 己基-癸基-苯酚(各異構物)、甲基-己基_十二烷基_苯酚(各 異構物)、甲基-己基-苯基-苯盼(各異構物)、甲基-己基苯 氧基苯酚(各異構物)、甲基-己基-異丙苯基_笨酚(各異構 ° 物)、乙基·丙基·丁基-笨酚(各異構物)、乙基-丙基·戊基_ 苯酚(各異構物)、乙基-丙基-己基-苯酚(各異構物)、乙基_ 丙基-庚基-苯酚(各異構物)、乙基-丙基_辛基_苯酚(各異構 物)、乙基-丙基-壬基_苯酚(各異構物)、乙基-丙基_癸基_ 苯酚(各異構物)、乙基-丙基-十二烷基_苯酚(各異構物)、 乙基-丙基-苯基-笨酚(各異構物)、乙基·丙基_苯氧基苯酚 (各異構物)、乙基-丙基-異丙苯基-苯酚(各異構物)、乙基_ 0 丁基-苯酚(各異構物)、乙基·丁基_戊基_苯酚(各異構物)、 乙基-丁基-己基-苯酚(各異構物)、乙基-丁基·庚基_苯酚 (各異構物)、乙基-丁基-辛基-苯酚(各異構物)、乙基丁 基-壬基-苯紛(各異構物)、乙基-丁基-癸基-苯酚(各異構 物)、乙基-丁基-十二烷基-苯酚(各異構物)、乙基_丁基_笨 基-笨酚(各異構物)、乙基-丁基-苯氧基苯酚(各異構物)、 乙基-丁基-異丙苯基-苯酚(各異構物)、乙基_戊基_己基_苯 酚(各異構物)、乙基-戊基-庚基-苯酚(各異構物)、乙基_戊 基-辛基-苯酚(各異構物)、乙基-戊基-壬基-苯酚(各異構 131505.doc -66- 200948760Phenol (each isomer), diisopropylphenyl-phenoxyphenol (each isomer), methyl-ethyl-propyl-p-phenol (each isomer), mercapto-ethyl -Phenol (each isomer), methyl-ethyl-pentyl-phenol (each isomer) 'Methyl-ethyl-hexyl-phenol (each isomer), mercapto-ethyl·g -Phenol (each isomer), methyl-ethyl-octyl-phenol (each isomer), methyl-ethyl-nonylphenol (each isomer), methyl-ethyl-oxime -Phenol (each isomer), methyl-ethyl-dodecyl-phenol (each isomer), mercapto-ethyl-phenyl-phenol (each isomer), mercapto-B -Phenoxyphenol (each isomer), mercapto-ethyl cumyl-phenol (each isomer), mercapto-propyl-butyl-phenol (each isomer), methyl -propyl-pentyl-phenol (each isomer), methyl-propylhexylphenol (each isomer), methyl propyl-heptyl-phenol (each isomer), mercapto-propyl -octyl-phenol (each isomer), methyl-propyl-fluorenyl-phenol (each isomer), methyl-propyl-decyl-phenol (each Structure), mercapto-propyl-dodecyl-phenol (each isomer), mercapto-propyl-phenyl-phenol (each isomer), methyl-propyl-phenoxyphenol (each isomer), methylpropyl cumylphenol (each isomer), methyl-butyl-pentyl phenol (each isomer), methyl butyl-hexyl-phenol ( Each isomer), methyl-butyl-heptyl-phenol (each isomer), mercapto-butyl-octyl-phenol (each isomer)' methylbutylsulfonyl-phenol (isomeric , fluorenyl-butyl-hydrazino-phenol (each isomer), methyl-butyl-dodecyl-phenol (each isomer), methyl-butyl-phenyl-phenol ( Each isomer), mercapto-butyl-phenoxyphenol (each isomer), mercapto-butyl-cumenyl-phenol (each isomer), mercapto-pentyl-hexyl_ Phenol (each isomer), mercapto-pentylheptyl-phenol (each isomer), methyl-pentyloctyl_benzene (each isomer), mercapto-pentyl-fluorenyl - phenol (each isomer), methyl · 131505.doc -65- 200948760 pentyl thiol-phenol (each isomer), methyl - -dododecylphenol (each isomer), mercapto-pentyl-phenyl-benzene (iso-isomer), methyl-pentyl-phenoxyphenol (each isomer), A -Pentyl-cumyl-phenol (each isomer), methyl-hexyl-heptyl-phenol (each isomer), methylhexyloctyl-phenol (each isomer), A -hexyl-fluorenyl-phenol (each isomer), methyl-hexyl-indenyl-phenol (each isomer), methyl-hexyl-dodecyl-phenol (each isomer), A Hexyl-hexyl-phenyl-benz (each isomer), methyl-hexylphenoxyphenol (each isomer), methyl-hexyl-isopropylphenyl-p-phenol (isomeric) , ethyl·propyl·butyl-p-phenol (each isomer), ethyl-propyl·pentyl phenol (each isomer), ethyl-propyl-hexyl-phenol (each isomer) ), ethyl-propyl-heptyl-phenol (each isomer), ethyl-propyl-octyl-phenol (each isomer), ethyl-propyl-fluorenyl-phenol (isoisomer) , ethyl-propyl-fluorenyl-phenol (each isomer), ethyl-propyl-dodecyl-phenol (each isomer) Ethyl-propyl-phenyl- phenol (each isomer), ethyl propyl phenoxy phenol (each isomer), ethyl-propyl-isopropyl phenyl-phenol (variety) Structure), ethyl _ 0 butyl-phenol (each isomer), ethyl butyl pentyl phenol (each isomer), ethyl-butyl-hexyl-phenol (each isomer) ), ethyl-butylheptyl-phenol (each isomer), ethyl-butyl-octyl-phenol (each isomer), ethylbutyl-mercapto-benzene (isoisomer) , ethyl-butyl-mercapto-phenol (each isomer), ethyl-butyl-dodecyl-phenol (each isomer), ethyl-butyl-phenyl-p-phenol (each isomer), ethyl-butyl-phenoxyphenol (each isomer), ethyl-butyl-isopropylphenyl-phenol (each isomer), ethyl-pentyl-hexyl -Phenol (each isomer), ethyl-pentyl-heptyl-phenol (each isomer), ethyl-pentyl-octyl-phenol (each isomer), ethyl-pentyl-oxime Base-phenol (isomeric 131505.doc -66- 200948760
物)、乙基-戊基-癸基-苯酚(各異構物)、乙基戊基-十二烷 基_苯齡(各異構物)、乙基-戊基-苯基_苯盼(各異構物)、乙 基··戊基-苯氧基苯酚(各異構物)、乙基-戊基-異丙苯基-苯 酚(各異構物)、乙基-己基-庚基_苯酚(各異構物)、乙基·己 基-辛基-苯酚(各異構物)、乙基_己基·壬基_苯酚(各異構 物)、乙基-己基-癸基-苯酚(各異構物)、乙基_己基_十二烷 基-苯酚(各異構物)、乙基-己基_苯基·苯酚(各異構物)、乙 基-己基·苯氧基苯酚(各異構物)、乙基_己基-異丙苯基·苯 酚(各異構物)、乙基-庚基-辛基-苯酚(各異構物)、乙基_庚 基-壬基-苯酚(各異構物)、乙基-庚基_癸基·苯酚(各異構 物)、乙基-庚基-十二烷基-苯酚(各異構物)、乙基-庚基苯 基-苯酚(各異構物)、乙基-庚基_苯氧基苯酚(各異構物)、 乙基-庚基-異丙苯基-苯酚(各異構物)、乙基_辛基苯酚(各 異構物)、乙基·辛基·壬基·苯酚(各異構物)、乙基_辛基_癸 基-苯酚(各異構物)、乙基-辛基_十二烷基·苯酚(各異構 物)、乙基-辛基-苯基-苯酚(各異構物)、乙基_辛基苯氧基 苯酚(各異構物)、乙基-辛基-異丙苯基-苯酚(各異構物)、 乙基-壬基-癸基-苯酚(各異構物)、乙基_壬基_十二烷基_苯 酚(各異構物)、乙基·壬基-苯基-苯酚(各異構物)、乙基_壬 基-本氧基本紛(各異構物)、乙基-壬基-異丙苯基-苯紛(各 異構物)、乙基-癸基-十二烷基-苯酚(各異構物)、乙基癸 基-苯基-苯酚(各異構物)、乙基-癸基-苯氧基苯酚(各異構 物)、乙基-癸基-異丙苯基-苯酚(各異構物)、乙基_十二烷 基-苯基-苯酚(各異構物)、乙基-十二烷基_苯氧基苯酚(各 131505.doc •67- 200948760 異構物)、乙基-十二烷基-異丙苯基-苯酚(各異構物)、乙 基-苯基-苯氧基苯酚(各異構物)、乙基-苯基-異丙苯基_苯 齡(各異構物)' 丙基-丁基-苯酚(各異構物)、丙基_丁基_戊 基-本酌·(各異構物)、丙基-丁基-己基·苯粉(各異構物)、丙 基-丁基-庚基-苯紛(各異構物)、丙基-丁基-辛基-苯酚(各 異構物)、丙基·•丁基-壬基-苯紛(各異構物)、丙基_丁基_癸 基-苯酚(各異構物)、丙基-丁基-十二烷基-苯酚(各異構 物)、丙基-丁基-苯基-苯酚(各異構物)、丙基-丁基-苯氧基 ® 苯酚(各異構物)、丙基-丁基-異丙苯基-苯酚(各異構物)、 丙基-戊基-苯盼(各異構物)、丙基-戊基-己基-笨酌·(各異構 物)、丙基-戊基-庚基-苯酚(各異構物)、丙基-戊基-辛基_ 苯酚(各異構物)、丙基-戊基-壬基-苯酚(各異構物)、丙基_ 戊基·癸基-苯酚(各異構物)、丙基-戊基-十二烷基-苯酚(各 異構物)、丙基-戊基-苯基-苯酚(各異構物)、丙基_戊基_苯 氧基苯酚(各異構物)、丙基-戊基-異丙苯基-苯酚(各異構 ❹ 物)、丙基-己基-苯驗(各異構物)、丙基-己基-庚基-苯盼 (各異構物)、丙基-己基-辛基-苯酚(各異構物)、丙基-己 基-壬基-本酌(各異構物)、丙基-己基-癸基-苯盼(各異構 物)、丙基-己基-十二烷基-苯酚(各異構物)、丙基-己基_苯 基-苯酚(各異構物)、丙基-己基-苯氧基苯酚(各異構物)、 丙基-己基-異丙苯基-苯酚(各異構物)、丙基·庚基-辛基-苯 盼(各異構物)、丙基-庚基-壬基-苯紛(各異構物)、丙基_庚 基-癸基-苯酚(各異構物)、丙基·庚基-十二燒基-苯酚(各異 構物)、丙基-庚基-苯基-苯紛(各異構物)、丙基-庚基_笨氧 131505.doc -68 · 200948760 基苯酚(各異構物)、丙基_庚基·異丙苯基-苯酚(各異構 物)、丙基-辛基-壬基-苯酚(各異構物)、丙基辛基癸基_ 苯酚(各異構物)、丙基-辛基-十二烷基-苯酚(各異構物)、 丙基-辛基-苯基-苯酚(各異構物)、丙基_辛基苯氧基苯酚 (各異構物)、丙基-辛基-異丙苯基_苯酚(各異構物)、丙基-壬基-癸基-苯酚(各異構物)、丙基-壬基_十二烷基_苯酚(各 異構物)、丙基-壬基-苯基-苯酚(各異構物)、丙基壬基苯 氧基苯酚(各異構物)、丙基-壬基-異丙苯基-苯酚(各異構 物)、丙基·癸基-十二烷基-苯酚(各異構物)、丙基_癸基-苯 基-苯酚(各異構物)、丙基-癸基-苯氧基苯酚(各異構物)、 丙基-癸基·異丙苯基-苯酚(各異構物)、丙基_十二烷基-苯 基-苯酚(各異構物)、丙基-十二烷基_苯氧基苯酚(各異構 物)、丙基-十二烷基-異丙苯基_苯酚(各異構物)、曱基苯 酚(各異構物)、乙基-苯酚(各異構物)、丙基_苯酚(各異構 物)、丁基-苯酚(各異構物)、戊基_苯酚(各異構物)、己基^ ❹ 笨酚(各異構物)、庚基-苯酚(各異構物)、辛基-苯酚(各異 構物)、壬基-苯酚(各異構物)、癸基_苯酚(各異構物)、十 二烷基-苯酚(各異構物)、苯基_苯酚(各異構物)、苯氧基苯 酚(各異構物)、異丙苯基-苯酚(各異構物)、丙基_苯基苯 氧基苯酚(各異構物)、丙基_苯基_異丙苯基_苯酚(各異構 物)、丙基-苯氧基異丙苯基_苯酚(各異構物)、丙基_丁基_ 戊基-苯酚(各異構物)、丙基_丁基_己基_苯酚(各異構物)、 丙基-丁基-庚基-苯酚(各異構物)、丙基-丁基-辛基·苯酚 (各異構物)、丙基-丁基-壬基-苯酚(各異構物)、丙基-丁 131505.doc -69· 200948760 基-癸基-苯紛(各異構物)、丙基_丁基-十二院基苯紛(各異 構物)、丙基-丁基-笨基-苯酚(各異構物)、丙基_丁基·苯氧 基苯酌·(各異構物)、丙基-丁基-異丙苯基-苯酚(各異構 物)、丙基·戊基·苯酚(各異構物)、丙基-戊基-己基·苯酚 (各異構物)、丙基-戊基-庚基-笨酚(各異構物)、丙基-戊 基-辛基-苯酌·(各異構物)、丙基-戊基_壬基_苯盼(各異構 物)、丙基-戊基-癸基-笨酚(各異構物)、丙基_戊基-十二烷 基-苯酚(各異構物)、丙基_戊基_苯基_苯酚(各異構物)、丙 ® 基-戊基-本氧基苯盼(各異構物)、丙基-戊基-異丙苯基-苯 酚(各異構物)、丙基-己基-庚基·苯酚(各異構物)、丙基_己 基-辛基-苯酚(各異構物)、丙基-己基-壬基·苯酚(各異構 物)、丙基-己基-癸基-苯紛(各異構物)、丙基·己基_十二燒 基-苯酚(各異構物)、丙基·己基-苯基_苯酚(各異構物)、丙 基-己基-苯氧基苯酚(各異構物)、丙基-己基_異丙苯基苯 酚(各異構物)、丙基-庚基-辛基·苯酚(各異構物)、丙基-庚 〇 基-壬基-苯酚(各異構物)、丙基_庚基_癸基-苯酚(各異構 物)、丙基-庚基-十二烷基-苯酚(各異構物)、丙基·庚基_笨 基-苯酚(各異構物)、丙基-庚基·苯氧基苯盼(各異構物)、 丙基-庚基··異丙苯基-苯酚(各異構物)、丙基_辛基_壬基_苯 酚(各異構物)、丙基-辛基-癸基-苯酚(各異構物)、丙基·辛 基•十二烷基-苯酚(各異構物)、丙基-辛基-苯基-苯酚(各異 構物)、丙基·辛基-苯氧基苯酚(各異構物)、丙基_辛基-異 丙笨基-苯酚(各異構物)、丙基-壬基·癸基_苯酚(各異構 物)、丙基-壬基-十二烷基-苯酚(各異構物)、丙基壬基苯 131505.doc -70- 200948760 基-苯酚(各異構物)、丙基_壬基_苯氧基苯酚(各異構物)、 丙基壬基-異丙苯基-苯酚(各異構物)、丙基_癸基_十二烷 基-苯酚(各異構物)、丙基-癸基_苯基_苯酚(各異構物)、丙 基-癸基-苯氧基苯酚(各異構物)、丙基_癸基-異丙苯基_苯 酚(各異構物)、丙基-十二烷基_苯基_苯酚(各異構物)、丙 基-十二烷基-苯氧基苯酚(各異構物)、丙基_十二烷基-異丙 苯基-苯酚(各異構物)、丙基-苯基·苯氧基苯酚(各異構 物)、丙基-苯基-異丙苯基_苯酚(各異構物)、丁基戊基_己 〇 基-苯酚(各異構物)、丁基-戊基-庚基-苯酚(各異構物)、丁 基-戊基-辛基-苯酚(各異構物)、丁基_戊基_壬基-苯酚(各 異構物)、丁基-戊基-癸基-苯酚(各異構物)、丁基_戊基十 二烷基-苯酚(各異構物)、丁基-戊基-苯基-苯酚(各異構 物)、丁基-戊基-苯氧基苯酚(各異構物)、丁基_戊基_異丙 苯基-苯酚(各異構物)、丁基-己基_庚基·苯酚(各異構物)、 丁基-己基-辛基-苯酚(各異構物)、丁基-己基-壬基·苯酚 ◎(各異構物)、丁基-己基-癸基-苯酚(各異構物)' 丁基己 基-十二烷基-苯酚(各異構物)、丁基_己基_苯基_苯酚(各異 構物)、丁基-己基-苯氧基苯酚(;各異構物)、丁基-己基異 丙苯基-苯酚(各異構物)、丁基-庚基_辛基·苯酚(各異構 物)、丁基-庚基-壬基_苯酚(各異構物)、丁基_庚基-癸基_ 苯酚(各異構物)、丁基_庚基_十二烷基苯酚(各異構物)、 丁基-庚基-苯基-苯酚(各異構物)、丁基_庚基_苯氧基苯酚 (各異構物)、丁基-庚基-異丙苯基-苯酚(各異構物)、丁基_ 辛基-壬基-笨紛(各異構物)、丁基_辛基_癸基_苯齡(各異構 131505.doc •71 · 200948760 物)、丁基-辛基-十二烷基-苯酚(各異構物)、丁基-辛基-苯 基·苯酚(各異構物)、丁基_辛基_苯氧基苯酚(各異構物)、 丁基-辛基-異丙苯基-苯酚(各異構物)、丁基-壬基癸基苯 酚(各異構物)、丁基-壬基-十二烷基_苯酚(各異構物)、丁 基-壬基-苯基-苯酚(各異構物)、丁基-壬基_苯氧基苯酚(各 異構物)、丁基·壬基·異丙苯基-苯酚(各異構物)、丁基-癸 基-十二烷基-苯酚(各異構物)、丁基_癸基_苯基_苯酚(各異 構物)、丁基-癸基-苯氧基苯酚(各異構物)、丁基-癸基·異 丙苯基-苯酚(各異構物)、丁基-十二烷基_苯酚(各異構 物)、丁基-十二烧基-苯基-苯齡(各異構物)、丁基十二院 基-苯氧基苯酚(各異構物)、丁基-十二烷基_異丙苯基-苯酚 (各異構物)、丁基·苯基_苯紛(各異構物)、丁基·苯基-苯氧 基苯酚(各異構物)、丁基·苯基_異丙苯基苯酚(各異構 物)、戊基-己基-庚基-苯酚(各異構物)、戊基-己基-辛基_ 苯酚(各異構物)、戊基·己基-壬基-苯酚(各異構物)、戊基_ 〇 己基-癸基-苯酚(各異構物)、戊基_己基-十二烷基苯酚(各 異構物)、戊基-己基-苯基-苯酚(各異構物)、戊基己基苯 氧基苯酚(各異構物)、戊基-己基_異丙苯基苯酚(各異構 物)、戊基-庚基·辛基-苯酚(各異構物)、戊基_庚基_壬基_ 苯酚(各異構物)、戊基-庚基-癸基-苯酚(各異構物)、戊基· 庚基-十二烷基-苯酚(各異構物)、戊基_庚基_苯基_苯酚(各 異構物)、戊基-庚基-苯氧基苯酚(各異構物)、戊基_庚基_ 異丙苯基-苯酚(各異構物)、戊基-辛基_壬基_苯酚(各異構 物)、戊基-辛基-癸基·苯酚(各異構物)、戊基_辛基-十二烷 131505.doc -72- 200948760 基-苯酚(各異構物)、戊基-辛基-笨基-苯酚(各異構物)、戊 基·辛基-苯氧基苯酚(各異構物)、戊基_辛基_異丙苯基_笨 酚(各異構物)、戊基-壬基-癸基-苯酚(各異構物)、戍基-壬 基-十二烧基-苯酚(各異構物)、戊基_壬基_苯基_苯酚(各異 構物)、戊基-壬基-苯氧基苯酚(各異構物)、戊基_壬基_異 丙苯基-苯酚(各異構物)、戊基-癸基_十二烷基-苯酚(各異 構物)、戊基-癸基-苯基-苯酚(各異構物)、戍基-癸基_苯氡 基苯酚(各異構物)、戊基-癸基-異丙苯基_苯齡(各異構 〇 物)、戊基-癸基-十二烷基-苯酚(各異構物)、戊基-癸基-苯 基-苯酚(各異構物)' 戊基-癸基-苯氧基笨酚(各異構物)、 戊基··癸基-異丙本基-苯紛(各異構物)、戊基_十二烧基_苯 基-苯酚(各異構物)、戊基-十二烷基-苯氧基苯酚(各異構 物)、戊基-十二烷基-異丙苯基-苯酚(各異構物)、戊基苯 基-苯氧基苯酚(各異構物)、戊基_苯基_異丙苯基苯酚(各 異構物)、己基-庚基-辛基-苯酚(各異構物)、己基_庚基-壬 0 基-笨酚(各異構物)、己基-庚基_癸基·苯酚(各異構物)、己 基-庚基-十二烷基-苯酚(各異構物)、己基-庚基_苯基_苯酚 (各異構物)、已基-庚基-苯氧基苯酚(各異構物)、己基庚 基-異丙苯基-苯酚(各異構物)、己基_辛基_壬基苯酚(各異 構物)、己基-辛基-癸基-苯酚(各異構物)、己基辛基十二 烷基-苯酚(各異構物)、己基-辛基_苯基_苯酚(各異構物)、 己基-辛基-苯氧基苯酚(各異構物)、己基_辛基·異丙苯基_ 苯酚(各異構物)、己基_壬基_癸基苯酚(各異構物)、己基_ 壬基-十二烷基-苯酚(各異構物)、己基-壬基_苯基_苯酚(各 13I505.doc -73- 200948760 異構物)、己基-壬基-苯氧基己基-癸基-十二烷基_苯酚(各 異構物)、己基-癸基-苯基-苯酚(各異構物)、己基·癸基苯 氧基苯酚(各異構物)、己基-癸基_異丙苯基_苯酚(各異構 物)' 己基-十二烷基-苯基-苯酚(各異構物)、己基_十二烷 基-苯氧基苯酚(各異構物)、己基-十二烷基_異丙苯基_苯酚 (各異構物)、己基-苯基-苯氧基苯酚(各異構物)、己基_苯 基-異丙笨基-笨紛(各異構物)、庚基_辛基壬基苯紛(各異 構物)、庚基-辛基-癸基-苯酚(各異構物)、庚基_辛基-十二 ® 烷基-苯酚(各異構物)、庚基-辛基-苯基-苯酚(各異構物)、 庚基·辛基-苯氧基苯酚(各異構物)、庚基_辛基_異丙苯基_ 苯酚(各異構物)、庚基-壬基-癸基-苯酚(各異構物)、庚基_ 壬基-十二烷基-苯酚(各異構物)、庚基_壬基·苯基苯酚(各 異構物)、庚基-壬基·苯氧基苯酚(各異構物)、庚基_壬基_ 異丙苯基-苯酚(各異構物)、庚基-癸基_十二烷基_苯酚(各 異構物)、庚基-癸基-苯基-苯酚(各異構物)、庚基_癸基苯 Q 氧基苯酚(各異構物)、庚基-癸基-異丙苯基-苯酚(各異構 物)、庚基-十二烷基·苯基_苯酚(各異構物)、庚基十二烷 基-笨氧基苯酚(各異構物)、庚基_十二烷基_異丙苯基-苯酚 (各異構物)、庚基-苯基-年氧基苯酚(各異構物)、庚基_苯 基-異丙苯基-苯酚(各異構物)、辛基_壬基_癸基_苯酚(各異 構物)、辛基-壬基·十二烷基-笨酚(各異構物)、辛基-壬基· 苯基-苯酚(各異構物)、辛基-壬基-笨氧基苯酚(各異構 物)、辛基-壬基-異丙苯基_苯酚(各異構物)、辛基-癸基-十 二烷基·苯酚(各異構物)、辛基-癸基-苯基-苯酚(各異構 131505.doc •74· 200948760 物)、辛基-癸基-苯氧基苯酚(各異構物)、辛基-癸基-異丙 苯基·苯酚(各異構物)、辛基-十二烷基-苯基-苯酚(各異構 物)、辛基-十二烷基-苯氧基苯酚(各異構物)、辛基-十二烷 基-異丙苯基-苯酚(各異構物)、辛基-十二烷基-苯基-苯酚 (各異構物)、辛基-十二烷基-苯氧基苯酚(各異構物)、辛 基-十二烷基·異丙苯基-苯酚(各異構物)、辛基-苯基-苯氧 基苯酚(各異構物)、辛基-苯基-異丙苯基-苯酚(各異構 物)、壬基-癸基-十二烷基-苯酚(各異構物)、壬基-癸基-苯 〇 基-苯酚(各異構物)、壬基-癸基-苯氧基苯酚(各異構物)、 壬基-癸基-異丙苯基-苯酚(各異構物)、壬基-十二烷基-苯 基-苯酚(各異構物)、壬基-十二烷基-苯氧基苯酚(各異構 物)、壬基-十二烷基-異丙苯基-苯酚(各異構物)、壬基-苯 基-苯氧基苯酚(各異構物)、壬基-苯基-異丙苯基-苯酚(各 異構物)、癸基-十二烷基-苯基-苯酚(各異構物)、癸基-十 二烷基-苯氧基苯酚(各異構物)、癸基-十二烷基-異丙苯基- 苯酚(各異構物)、癸基-苯基-苯氧基苯酚(各異構物)、癸, ethyl-pentyl-indolyl-phenol (each isomer), ethylpentyl-dodecyl-benzene age (each isomer), ethyl-pentyl-phenyl-benzene (each isomer), ethyl·pentyl-phenoxyphenol (each isomer), ethyl-pentyl-cumyl-phenol (each isomer), ethyl-hexyl-g -Phenol (each isomer), ethylhexyl-octyl-phenol (each isomer), ethyl-hexyl-decyl-phenol (each isomer), ethyl-hexyl-fluorenyl- Phenol (each isomer), ethyl-hexyl-dodecyl-phenol (each isomer), ethyl-hexyl-phenylphenol (each isomer), ethyl-hexylphenoxy Phenol (each isomer), ethyl-hexyl-isopropylphenyl·phenol (each isomer), ethyl-heptyl-octyl-phenol (each isomer), ethyl-heptyl-fluorene -Phenol (each isomer), ethyl-heptyl-fluorenyl phenol (each isomer), ethyl-heptyl-dodecyl-phenol (each isomer), ethyl-g Phenyl-phenol (each isomer), ethyl-heptyl-phenoxyphenol (each isomer), ethyl-heptyl-cumene - phenol (each isomer), ethyl-octylphenol (each isomer), ethyl octyl decyl phenol (each isomer), ethyl-octyl hydrazino-phenol ( Each isomer), ethyl-octyl-dodecylphenol (each isomer), ethyl-octyl-phenyl-phenol (each isomer), ethyl-octylphenoxy Phenol (each isomer), ethyl-octyl-isopropylphenyl-phenol (each isomer), ethyl-mercapto-indolyl-phenol (each isomer), ethyl-mercapto group_ Dodecyl-phenol (each isomer), ethyl-mercapto-phenyl-phenol (each isomer), ethyl-mercapto-the presentoxyne (each isomer), ethyl- Mercapto-isopropylphenyl-benzene (each isomer), ethyl-mercapto-dodecyl-phenol (each isomer), ethylmercapto-phenyl-phenol (each isomer) ), ethyl-mercapto-phenoxyphenol (each isomer), ethyl-mercapto-isopropylphenyl-phenol (each isomer), ethyl-dodecyl-phenyl-phenol (each isomer), ethyl-dodecyl-phenoxyphenol (each 131505.doc •67-200948760 isomer), ethyl-tweldium -Phenylphenyl-phenol (each isomer), ethyl-phenyl-phenoxyphenol (each isomer), ethyl-phenyl-isopropylphenyl-benzene age (each isomer) ''propyl-butyl-phenol (each isomer), propyl-butyl-pentyl----(iso-isomer), propyl-butyl-hexyl-benzene powder (each isomer) ), propyl-butyl-heptyl-benzene (each isomer), propyl-butyl-octyl-phenol (each isomer), propyl·t-butyl-fluorenyl-benzene Each isomer), propyl-butyl-mercapto-phenol (each isomer), propyl-butyl-dodecyl-phenol (each isomer), propyl-butyl-phenyl - phenol (each isomer), propyl-butyl-phenoxy® phenol (each isomer), propyl-butyl-isopropylphenyl-phenol (each isomer), propyl-pentyl -Benzene (each isomer), propyl-pentyl-hexyl-stupid (each isomer), propyl-pentyl-heptyl-phenol (each isomer), propyl-pentyl Benzyl-octyl-phenol (each isomer), propyl-pentyl-indolyl-phenol (each isomer), propyl-pentyl-mercapto-phenol (each isomer), propyl- E - dodecyl-phenol (each isomer), propyl-pentyl-phenyl-phenol (each isomer), propyl-pentyl-phenoxyphenol (each isomer), propyl -pentyl-cumyl-phenol (isomeric oxime), propyl-hexyl-benzene (each isomer), propyl-hexyl-heptyl-benzene (each isomer), C Hexyl-octyl-octyl-phenol (each isomer), propyl-hexyl-fluorenyl-isolated (each isomer), propyl-hexyl-fluorenyl-benzone (each isomer), C -hexyl-dodecyl-phenol (each isomer), propyl-hexyl-phenyl-phenol (each isomer), propyl-hexyl-phenoxyphenol (each isomer), C -hexyl-isopropylidene-phenol (each isomer), propylheptyl-octyl-benzine (each isomer), propyl-heptyl-fluorenyl-benzene (isoisomer) , propyl-heptyl-fluorenyl-phenol (each isomer), propylheptyl-dodecyl-phenol (each isomer), propyl-heptyl-phenyl-benzene (each isomer), propyl-heptyl- phenyloxy 131505.doc -68 · 200948760 phenol (each isomer), propyl-heptyl cumyl- Phenol (each isomer), propyl-octyl-decyl-phenol (each isomer), propyloctylfluorenyl-phenol (each isomer), propyl-octyl-dodecyl - phenol (each isomer), propyl-octyl-phenyl-phenol (each isomer), propyl-octylphenoxyphenol (each isomer), propyl-octyl-isopropyl Phenyl-phenol (each isomer), propyl-mercapto-indolyl-phenol (each isomer), propyl-indenyl-dodecyl-phenol (each isomer), propyl- Mercapto-phenyl-phenol (each isomer), propyl nonylphenoxyphenol (each isomer), propyl-mercapto-isopropylphenyl-phenol (each isomer), propyl · Mercapto-dodecyl-phenol (each isomer), propyl-mercapto-phenyl-phenol (each isomer), propyl-mercapto-phenoxyphenol (each isomer) , propyl-indenyl-cumenyl-phenol (each isomer), propyl-dodecyl-phenyl-phenol (each isomer), propyl-dodecyl-phenoxy Phenol (each isomer), propyl-dodecyl-cumylphenyl-phenol (each isomer), nonylphenol (each isomer), -Phenol (each isomer), propyl-phenol (each isomer), butyl-phenol (each isomer), pentyl-phenol (each isomer), hexyl phenol Isomers), heptyl-phenol (each isomer), octyl-phenol (each isomer), mercapto-phenol (each isomer), mercapto-phenol (each isomer), ten Dialkyl-phenol (each isomer), phenyl-phenol (each isomer), phenoxyphenol (each isomer), cumyl-phenol (each isomer), propyl _ Phenylphenoxyphenol (each isomer), propyl-phenyl-cumenyl-phenol (each isomer), propyl-phenoxyisopropylphenyl-phenol (each isomer) , propyl-butyl-pentyl-phenol (each isomer), propyl-butyl-hexyl-phenol (each isomer), propyl-butyl-heptyl-phenol (each isomer) , propyl-butyl-octyl phenol (each isomer), propyl-butyl-mercapto-phenol (each isomer), propyl-butyl 131505.doc -69· 200948760 base-fluorenyl - Benzene (each isomer), propyl-butyl-t-yard benzene (each isomer), C Base-butyl-phenyl-phenol (each isomer), propyl-butyl-phenoxybenzene (each isomer), propyl-butyl-cumyl-phenol (variety) Structure), propyl pentyl phenol (each isomer), propyl-pentyl-hexyl phenol (each isomer), propyl-pentyl-heptyl-phenol (polyisomer) ), propyl-pentyl-octyl-benzene (each isomer), propyl-pentyl-mercapto-phenylene (each isomer), propyl-pentyl-mercapto-phenol (each isomer), propyl-pentyl-dodecyl-phenol (each isomer), propyl-pentyl-phenyl-phenol (each isomer), propyl-pentyl-pentyl- The present oxybenz (each isomer), propyl-pentyl-cumyl-phenol (each isomer), propyl-hexyl-heptyl phenol (each isomer), propyl _ Hexyl-octyl-phenol (each isomer), propyl-hexyl-fluorenyl phenol (each isomer), propyl-hexyl-fluorenyl-benzoic acid (isomeric), propyl·hexyl _12-alkyl-phenol (each isomer), propyl·hexyl-phenyl-phenol (each isomer), propyl-hexyl-phenoxyphenol (each isomer) , propyl-hexyl cumylphenol (each isomer), propyl-heptyl-octyl phenol (each isomer), propyl-heptyl-fluorenyl-phenol (isomeric , propyl-heptyl-fluorenyl-phenol (each isomer), propyl-heptyl-dodecyl-phenol (each isomer), propylheptyl-styl-phenol ( Each isomer), propyl-heptylphenoxyphene (each isomer), propyl-heptyl··cumyl-phenol (each isomer), propyl-octyl group _ Mercapto-phenol (each isomer), propyl-octyl-fluorenyl-phenol (each isomer), propyl-octyl-dodecyl-phenol (each isomer), propyl- Octyl-phenyl-phenol (each isomer), propyl-octyl-phenoxyphenol (each isomer), propyl-octyl-isopropylphenyl-phenol (each isomer), Propyl-fluorenyl-fluorenyl-phenol (each isomer), propyl-mercapto-dodecyl-phenol (each isomer), propyl nonylbenzene 131505.doc -70- 200948760 base- Phenol (each isomer), propyl-mercapto-phenoxyphenol (each isomer), propyl decyl-isopropylphenyl-phenol (each Structure), propyl-fluorenyl-dodecyl-phenol (each isomer), propyl-mercapto-phenyl-phenol (each isomer), propyl-mercapto-phenoxyphenol (each isomer), propyl-mercapto-cumyl phenyl-phenol (each isomer), propyl-dodecyl-phenyl-phenol (each isomer), propyl-tweldium Alkyl-phenoxyphenol (each isomer), propyl-dodecyl-cumyl-phenol (each isomer), propyl-phenylphenoxyphenol (each isomer) ), propyl-phenyl-cumyl phenyl-phenol (each isomer), butylpentyl-hexyldecyl-phenol (each isomer), butyl-pentyl-heptyl-phenol (each Isomers), butyl-pentyl-octyl-phenol (each isomer), butyl-pentyl-fluorenyl-phenol (each isomer), butyl-pentyl-decyl-phenol ( Each isomer), butyl-pentyldodecyl-phenol (each isomer), butyl-pentyl-phenyl-phenol (each isomer), butyl-pentyl-phenoxy Phenol (each isomer), butyl-pentyl-cumyl-phenol (each isomer), butyl-hexyl-heptyl-phenol (each isomer) , butyl-hexyl-octyl-phenol (each isomer), butyl-hexyl-fluorenyl phenol ◎ (each isomer), butyl-hexyl-decyl-phenol (each isomer) Butylhexyl-dodecyl-phenol (each isomer), butyl-hexyl-phenyl-phenol (each isomer), butyl-hexyl-phenoxyphenol (each isomer), Butyl-hexyl cumyl-phenol (each isomer), butyl-heptyl-octyl phenol (each isomer), butyl-heptyl-fluorenyl-phenol (each isomer) , butyl-heptyl-fluorenyl-phenol (each isomer), butyl-heptyl-dodecylphenol (each isomer), butyl-heptyl-phenyl-phenol (isomeric , butyl-heptyl-phenoxyphenol (each isomer), butyl-heptyl-isopropylphenyl-phenol (each isomer), butyl-octyl-fluorenyl-stupid (each isomer), butyl-octyl-mercapto-phenylene (isomeric 131505.doc •71 · 200948760), butyl-octyl-dodecyl-phenol (each isomer) , butyl-octyl-phenyl·phenol (each isomer), butyl-octyl-phenoxyphenol (each isomer), butyl- -Phenylphenyl-phenol (each isomer), butyl-nonylnonylphenol (each isomer), butyl-mercapto-dodecyl-phenol (each isomer), - mercapto-phenyl-phenol (each isomer), butyl-mercapto-phenoxyphenol (each isomer), butyl thiol cumene-phenol (each isomer) ), butyl-mercapto-dodecyl-phenol (each isomer), butyl-fluorenyl-phenyl-phenol (each isomer), butyl-mercapto-phenoxyphenol (each Isomers), butyl-fluorenyl-cumenyl-phenol (each isomer), butyl-dodecyl-phenol (each isomer), butyl-dodecyl-phenyl - benzene age (each isomer), butyl doxyl-phenoxyphenol (each isomer), butyl-dodecyl-cumylphenol-phenol (each isomer), Benzyl phenyl benzene (each isomer), butyl phenyl-phenoxy phenol (each isomer), butyl phenyl cumene phenol (each isomer), pent -hexyl-heptyl-phenol (each isomer), amyl-hexyl-octyl-phenol (each isomer), pentyl-hexyl-fluorenyl- Phenol (each isomer), amyl 〇 〇 hexyl-fluorenyl-phenol (each isomer), pentyl-hexyl-dodecyl phenol (each isomer), pentyl-hexyl-phenyl- Phenol (each isomer), amylhexylphenoxyphenol (each isomer), amyl-hexyl-cumylphenol (each isomer), pentyl-heptyl-octyl-phenol ( Each isomer), amyl-heptyl-fluorenyl-phenol (each isomer), pentyl-heptyl-fluorenyl-phenol (each isomer), pentyl-heptyl-dodecyl -phenol (each isomer), pentyl-heptyl-phenyl-phenol (each isomer), pentyl-heptyl-phenoxyphenol (each isomer), pentyl-heptyl group Propyl phenyl-phenol (each isomer), amyl-octyl-fluorenyl-phenol (each isomer), amyl-octyl-fluorenyl-phenol (each isomer), pentyl-octyl Base-dodecane 131505.doc -72- 200948760 base-phenol (each isomer), amyl-octyl-styl-phenol (each isomer), amyl-octyl-phenoxyphenol ( Each isomer), amyl-octyl-isopropylidene-p-phenol (each isomer), pentyl-fluorenyl-fluorenyl-phenol (each isomer), fluorenyl-fluorenyl-dodecanyl-phenol (each isomer), amyl-fluorenyl-phenyl-phenol (each isomer), pentyl-fluorenyl-benzene Oxyphenol (each isomer), amyl-fluorenyl-cumenyl-phenol (each isomer), amyl-fluorenyl-dodecyl-phenol (each isomer), pentyl - mercapto-phenyl-phenol (each isomer), mercapto-mercapto-phenylnonylphenol (each isomer), pentyl-mercapto-isopropylphenyl-phenylene (isomeric oxime) , pentyl-decyl-dodecyl-phenol (each isomer), amyl-decyl-phenyl-phenol (each isomer) 'pentyl-mercapto-phenoxy phenol (each isomer), pentyl·decyl-isopropyl-phenyl-benzene (each isomer), pentyl-dodecyl-phenyl-phenol (each isomer), pentyl- Dodecyl-phenoxyphenol (each isomer), amyl-dodecyl-isopropylphenyl-phenol (each isomer), pentylphenyl-phenoxyphenol (isomeric , pentyl-phenyl-cumylphenol (each isomer), hexyl-heptyl-octyl-phenol (each isomer), hexyl-heptyl-oxime - phenol (each isomer), hexyl-heptyl-fluorenyl phenol (each isomer), hexyl-heptyl-dodecyl-phenol (each isomer), hexyl-heptyl-benzene -Phenol (each isomer), hexyl-heptyl-phenoxyphenol (each isomer), hexylheptyl-isopropylphenyl-phenol (each isomer), hexyl-octyl-壬Phenol (each isomer), hexyl-octyl-fluorenyl-phenol (each isomer), hexyloctyldodecyl-phenol (each isomer), hexyl-octyl-phenyl-phenol (each isomer), hexyl-octyl-phenoxyphenol (each isomer), hexyl-octyl-cumenyl-phenol (each isomer), hexyl-mercapto-nonylphenol ( Each isomer), hexyl-decyl-dodecyl-phenol (each isomer), hexyl-fluorenyl-phenyl-phenol (each 13I505.doc-73-200948760 isomer), hexyl-oxime -Phenoxyhexyl-fluorenyl-dodecyl-phenol (each isomer), hexyl-fluorenyl-phenyl-phenol (each isomer), hexyl-nonylphenoxyphenol (variety) Structure), hexyl-fluorenyl-cumylphenyl-phenol (isomeric) - dodecyl-phenyl-phenol (each isomer), hexyl-dodecyl-phenoxyphenol (each isomer), hexyl-dodecyl-cumylphenyl-phenol (each Isomers), hexyl-phenyl-phenoxyphenol (each isomer), hexyl-phenyl-isopropyl-p-styl-stupid (each isomer), heptyl-octyl-decylbenzene (variety) Structure), heptyl-octyl-fluorenyl-phenol (each isomer), heptyl-octyl-dodecyl-alkyl-phenol (each isomer), heptyl-octyl-phenyl- Phenol (each isomer), heptyl-octyl-phenoxyphenol (each isomer), heptyl-octyl-cumylphenyl-phenol (each isomer), heptyl-fluorenyl- Mercapto-phenol (each isomer), heptyl-decyl-dodecyl-phenol (each isomer), heptyl-fluorenyl-phenylphenol (isomeric), heptyl-hydrazine Phenyloxyphenol (each isomer), heptyl-fluorenyl-cumenyl-phenol (each isomer), heptyl-fluorenyl-dodecyl-phenol (each isomer) , heptyl-fluorenyl-phenyl-phenol (each isomer), heptyl-nonylbenzene Q-oxyphenol (each isomer), heptyl- -Phenylphenyl-phenol (each isomer), heptyl-dodecyl-phenyl-phenol (each isomer), heptyldodecyl-p-oxyphenol (each isomer) ), heptyl-dodecyl-cumylphenol-phenol (each isomer), heptyl-phenyl-anthoxyphenol (each isomer), heptyl-phenyl-isopropylphenyl - phenol (each isomer), octyl-fluorenyl-fluorenyl-phenol (each isomer), octyl-decyl-dodecyl-phenol (each isomer), octyl-oxime Phenyl-phenyl-phenol (each isomer), octyl-fluorenyl-p-oxyphenol (each isomer), octyl-fluorenyl-cumyl phenyl-phenol (each isomer), octyl Base-fluorenyl-dodecylphenol (each isomer), octyl-mercapto-phenyl-phenol (isomeric 131505.doc •74·200948760), octyl-decyl-phenoxy Phenol (each isomer), octyl-fluorenyl-cumyl phenol (each isomer), octyl-dodecyl-phenyl-phenol (each isomer), octyl- Dodecyl-phenoxyphenol (each isomer), octyl-dodecyl-cumyl-phenol (each isomer), octyl- Dialkyl-phenyl-phenol (each isomer), octyl-dodecyl-phenoxyphenol (each isomer), octyl-dodecyl-cumenyl-phenol (each Isomers), octyl-phenyl-phenoxyphenol (each isomer), octyl-phenyl-isopropylphenyl-phenol (each isomer), decyl-decyl-dodecane -Phenol (each isomer), mercapto-mercapto-phenylhydrazine-phenol (each isomer), mercapto-nonyl-phenoxyphenol (each isomer), mercapto-fluorenyl - cumyl-phenol (each isomer), mercapto-dodecyl-phenyl-phenol (each isomer), mercapto-dodecyl-phenoxyphenol (each isomer) ), mercapto-dodecyl-cumyl-phenol (each isomer), mercapto-phenyl-phenoxyphenol (each isomer), mercapto-phenyl-isopropylphenyl - phenol (each isomer), mercapto-dodecyl-phenyl-phenol (each isomer), mercapto-dodecyl-phenoxyphenol (each isomer), mercapto- Dodecyl-cumyl-phenol (each isomer), mercapto-phenyl-phenoxyphenol (each isomer), hydrazine
Q 基-苯基-異丙苯基-苯酚(各異構物)、十二烷基-苯基-苯氧 基苯酚(各異構物)、十二烷基-苯基-異丙苯基-苯酚(各異構 物)、苯基-苯氧基異丙苯基-苯酚(各異構物)等三取代苯酚 類等。該等芳香族羥基化合物之中,更好的是使用相當於 化合物RhH之化合物,該化合物RhH係於構成碳酸二芳 酯之基WCKR1為上述定義之芳香族基,Ο表示氧原子)上加 成有氫原子者。其原因在於,可縮小藉由碳酸二芳酯與胺 化合物之反應而獲得之反應混合物中之化合物的種類,可 131505.doc -75- 200948760 簡化分離操作。 胺化合物較好的是,以液體狀態供給至製造胺基甲酸芳 s曰之反應器中。一般而言,以上例示之胺化合物於常溫 (例如20 C )下大多為固體,如此情形時,亦可將該胺化合 物加熱至溶點以上’而以液體之狀態供給,但若於過高溫 度下供給胺化合物,則有時因加熱產生熱改性反應等副反 應因此較好的將肖胺化合物作為與上述芳香族經基 化〇物碳酸一芳酿或水之混合物,於較低之溫度下以液 ^ 體狀態供給。 進仃碳酸二芳酯與胺化合物之反應之反應條件根據反應 之化σ物而不同,相對於胺化合物之胺基以化學計量比 計,使碳酸二芳酯在〗〜!〇〇〇倍之範圍内,為提高反應速 度’使反應早點完《,較好的是碳冑二芳醋相對於胺化合 物之胺基為過剩量,若考慮反應器之大小,較好的是 1.1〜50倍之範圍,進而好的是15〜1〇倍之範圍。至於芳香 Q 族羥基化合物之使用量,相對於胺化合物之胺基,以化學 «十量比汁,使芳香族經基化合物在丨〜丨⑼倍之範圍内更 好的疋1.2〜50倍,進而好的是15~1〇倍。反應溫度通常為〇 °C〜15〇t之範圍。為提高反應速度較好的是高溫,另一方 面,有時於尚溫下亦引起不良反應,因此較好的是i〇<>c 〇〇 C之範圍。為固定反應溫度,可於上述反應器中設置 眾所周知之冷卻褒置、加熱裝置。又’反應屢力根據所使 用之化合物之種類或反應溫度而不同,可為減壓、常壓、 加壓之任種,通常於20〜lxio6 Pa之範圍内進行。對反應 131505.doc -76· 200948760 時間(連續法之情形時為滯留時間)並無特別限制,通常為 〇顧〜5〇小日夺,較好的是0.01〜20小時,更好的是〇㈣小 時:又,亦可採取反應液,例如以液相層析法確認生成所 需量之胺基甲酸芳酯後結束反應。 本實施形態中’碳酸二芳s旨與胺化合物之反應,較好的 =不使用觸媒。下述反應混合物之運送、及反應混合物所 含有之胺基甲酸醋之熱分解反應中,若於來自觸媒之金屬 f分存在下對胺基甲酸芳醋加熱,則有時產生該胺基甲酸 芳酿之熱改性反應等。亦可於進行碳酸二芳醋與胺化合物 之反應時使用觸媒,經過去除觸媒之步驟後,進行反應混 合物之運送或熱分解反應’但增加步驟,因此不良。 二而,為了使反應於紐時間完成,降低反應溫度等,不 能否定使用觸媒。-般而言,芳香族胺化合物與脂肪族胺 相比反應性較低,因此使用芳香族胺化合物作為胺化合物 之情形時,有時觸媒之使用較為有效。使用觸媒之情形 ❹時,例如可使用錫、錯、銅、欽等之有機金屬化合物或無 機金屬化合物,驗金屬、驗土金屬之醇鹽,例如鐘、納、 卸、約、鋇之甲醇鹽、乙醇鹽、丁醇鹽(各異構物)等驗性 觸媒等。 本實施形態中,較好的是除上述芳香族羥基化合物、及/ 或剩餘碳酸二芳酯之外,不使用反應溶劑。先前技術中, 有記載有相對於藉由胺基甲酸二芳酯之熱分解反應而生成 之異氰酸酯及胺基甲酸酯而使用惰性反應溶劑之方法,但 若使用如此之惰性溶劑,則與藉由下述胺基甲酸酯之熱分 131505.doc -77· 200948760 解反應而生成之異氰酸酯或芳香族羥基化合物的分離等變 得麻煩’故而不良。 碳酸二芳酯與胺化合物之反應所使用之反應器可使用眾 所周知之槽型反應器、塔型反應器、蒸餾塔,若對起始物 質或反應物質不造成不良影響,則反應器及線路之材質可 為眾所周知之任意材質,其中SUS304或SUS316、 SUS316L等較為廉價,故可較好地使用。 <胺基曱酸芳酯> 利用該反應,獲得含有胺基甲酸芳酯、剩餘碳酸二芳 酯、及芳香族羥基化合物之反應混合物。 該胺基甲酸芳酯係以下述式(18)所表示之化合物。 [化 11]Q-phenyl-isopropylphenyl-phenol (each isomer), dodecyl-phenyl-phenoxyphenol (each isomer), dodecyl-phenyl-isopropylphenyl - Trisubstituted phenols such as phenol (each isomer) and phenyl-phenoxyisopropylphenyl-phenol (each isomer). Among these aromatic hydroxy compounds, it is more preferred to use a compound corresponding to the compound RhH, wherein the group WCKR1 constituting the diaryl carbonate is an aromatic group as defined above, and Ο represents an oxygen atom. There are hydrogen atoms. The reason for this is that the kind of the compound in the reaction mixture obtained by the reaction of the diaryl carbonate with the amine compound can be reduced, and the separation operation can be simplified by 131505.doc -75 - 200948760. The amine compound is preferably supplied in a liquid state to a reactor for producing aryl sulfonate. In general, the amine compound exemplified above is mostly solid at normal temperature (for example, 20 C), and in this case, the amine compound may be heated to above the melting point and supplied as a liquid, but at an excessively high temperature. When the amine compound is supplied to the lower side, a side reaction such as a thermal modification reaction may be generated by heating, so that the mixture of the short amine compound and the above aromatic aromatic mercaptocarbonate is preferably used as a mixture with water or a lower temperature. It is supplied in a liquid state. The reaction conditions for the reaction of the diaryl carbonate and the amine compound vary depending on the sigma of the reaction, and the diaryl carbonate is in a stoichiometric ratio with respect to the amine group of the amine compound. In the range of 〇〇〇 times, in order to increase the reaction rate, the reaction is completed early, and it is preferred that the carbonic acid diaryl vinegar has an excess amount with respect to the amine group of the amine compound, and it is preferable to consider the size of the reactor. The range of 1.1 to 50 times, and thus the range of 15 to 1 times. As for the amount of the aromatic Q-group hydroxy compound, the amount of the aromatic-based compound is preferably 1.2 to 50 times in the range of 丨~丨(9) times, relative to the amine group of the amine compound. Furthermore, it is 15~1 times better. The reaction temperature is usually in the range of 〇 °C to 15 〇t. In order to increase the reaction rate, it is preferred that the temperature is high, and on the other hand, it may cause an adverse reaction at room temperature. Therefore, the range of i〇<>c 〇〇 C is preferred. In order to fix the reaction temperature, a well-known cooling device and a heating device can be provided in the above reactor. Further, the reaction is repeated depending on the type of the compound to be used or the reaction temperature, and may be any of reduced pressure, normal pressure, and pressure, and is usually carried out in the range of 20 to 1 x 6 Pa. There is no particular limitation on the reaction time of 131505.doc -76· 200948760 (the residence time in the case of the continuous method), and it is usually a care of ~5〇 small day, preferably 0.01 to 20 hours, more preferably 〇 (4) Hours: Further, a reaction liquid may be used, for example, by liquid chromatography to confirm the formation of the desired amount of the aryl carbamate, and the reaction is terminated. In the present embodiment, the reaction of the diaryl carbonate with the amine compound is preferred, and the catalyst is not used. In the thermal decomposition reaction of the following reaction mixture and the amino carboxylic acid vinegar contained in the reaction mixture, if the aryl carboxylic acid is heated in the presence of the metal f component from the catalyst, the urethane is sometimes produced. Aromatization heat modification reaction, etc. It is also possible to use a catalyst in the reaction of the diaryl aryl carbonate with the amine compound, and carry out the reaction mixture or the thermal decomposition reaction after the step of removing the catalyst, but the step is increased, which is disadvantageous. Second, in order to complete the reaction in the time, reduce the reaction temperature, etc., it is not possible to deny the use of the catalyst. In general, since the aromatic amine compound has lower reactivity than the aliphatic amine, when an aromatic amine compound is used as the amine compound, the use of a catalyst may be effective. In the case of using a catalyst, for example, an organometallic compound or an inorganic metal compound such as tin, erbium, copper, or chin, or a metal alkoxide of a soil test such as a bell, a nano, a retort, a hydrazine, or a hydrazine may be used. An organic catalyst such as a salt, an ethanol salt or a butoxide (each isomer). In the present embodiment, it is preferred that the reaction solvent is not used except for the above aromatic hydroxy compound and/or the remaining diaryl carbonate. In the prior art, there is described a method of using an inert reaction solvent with respect to an isocyanate and a urethane formed by a thermal decomposition reaction of a diaryl urethane, but if such an inert solvent is used, The separation of the isocyanate or the aromatic hydroxy compound formed by the reaction of the thermal group 131505.doc-77·200948760 of the following urethane is troublesome. The reactor used for the reaction of the diaryl carbonate with the amine compound can be a well-known tank reactor, a column reactor, a distillation column, and if the starting material or the reaction material is not adversely affected, the reactor and the line are The material can be any known material, and SUS304, SUS316, SUS316L, etc. are relatively inexpensive, so that they can be preferably used. <Amino aryl phthalate> With this reaction, a reaction mixture containing an aryl carbamate, a residual diaryl carbonate, and an aromatic hydroxy compound is obtained. The aryl carbamate is a compound represented by the following formula (18). [化11]
(式中; R2係上述定義之基,表示來自胺化合物之基, R1係上述定義之基,表示來自碳酸二芳酯之基, η為2〜10之整數,與胺化合物之胺基數為相同數)。 作為以上述式(18)所表示之胺基甲酸酯,例如可列舉: ΛΓ,ΛΤ-己二基-雙-胺基甲酸二苯酯、见ΛΓ-己二基_雙_胺基甲 酸二(曱基苯基)酯(各異構物)、己二基_雙_胺基甲酸 一(乙基苯基)醋(各異構物)、iV, iV"’-己二基-雙-胺基甲酸二 (丙基苯基)酯(各異構物)、见#,_己二基-雙-胺基曱酸二(丁 131505.doc -78- 200948760 基苯基)醋(各異構物)、愚#,_己二基_雙_胺基甲酸二(戊基 苯基)s旨(各異構物)、二苯基_4,4,_亞曱基_二環己基胺基曱 酸醋、二(曱基笨基)-4,4,-亞曱基-二環己基胺基甲酸酯、 二(乙基笨基)-4,4'-亞曱基-二環己基胺基甲酸酯、二(丙基 苯基)-4,4’-亞甲基_二環己基胺基甲酸酯(各異構物)、二(丁 基苯基)-4,4’-亞甲基_二環己基胺基曱酸酯(各異構物)、二 (戊基苯基)-4,4’-亞曱基·二環己基胺基曱酸酯(各異構物)、 二(己基苯基)-4,4,-亞甲基-二環己基胺基甲酸酯(各異構 〇 物)、二(庚基苯基)-4,4,-亞曱基-二環己基胺基甲酸酯(各異 構物广二(辛基苯基)-4,4,-亞甲基-二環己基胺基甲酸酯(各 異構物)、3-(苯氧基羰基胺基_甲基)_3,5,5·三甲基環己基胺 基甲酸苯醋、3·(曱基苯氧基羰基胺基-甲基)_3,5,5_三甲基 環己基胺基甲酸(甲基苯氧基)酯(各異構物)、3-(乙基苯氧 基幾基胺基-曱基)-3,5,5-三甲基環己基胺基甲酸(乙基苯 基)酷(各異構物)、3-(丙基苯氧基羰基胺基-曱基)-3,5,5-三 q 甲基環己基胺基曱酸(丙基苯基)S旨(各異構物)、3-( 丁基苯 氧基幾基胺基-甲基)-3,5,5-三甲基環己基胺基甲酸(丁基苯 基)酷(各異構物)、3·(戊基苯氧基羰基胺基-甲基)-3,5,5-三 曱基環己基胺基曱酸(戊基苯基)酯(各異構物)、3_(己基苯 氧基幾基胺基-甲基)-3,5,5-三甲基環己基胺基甲酸(己基苯 基)(各異構物)、3-(庚基苯氧基羰基胺基-曱基)_3,5,5_三 曱基環己基胺基甲酸(庚基苯基)酯(各異構物)、3_(辛基苯 氧基幾基胺基-甲基)-3,5,5·三甲基環己基胺基甲酸(辛基苯 基)(各異構物)、曱苯_二胺基曱酸二苯酯(各異構物)、甲 131505.doc -79- 200948760(wherein R2 is a group defined above, and represents a group derived from an amine compound, and R1 is a group defined above, and represents a group derived from a diaryl carbonate, and η is an integer of 2 to 10, which is the same as the number of amine groups of the amine compound. number). Examples of the urethane represented by the above formula (18) include hydrazine, fluorenyl-hexanediyl-bis-carbamic acid diphenyl ester, and fluorenyl-hexanediyl-bis-aminocarbamic acid. (nonylphenyl) ester (each isomer), hexamethylene bis-aminocarbamic acid mono(ethylphenyl) vinegar (each isomer), iV, iV"'-hexanediyl-bis- Di(propylphenyl) carbamate (each isomer), see #, _ hexanediyl-bis-amino phthalic acid di(butyl 131505.doc -78- 200948760 phenyl) vinegar (variety Structure), fool #,_hexanediyl-bis-aminocarbamic acid bis(pentylphenyl)s (each isomer), diphenyl-4,4,-indenyl-dicyclohexylamine Based on acid vinegar, bis(indenyl)-4,4,-ylidene-dicyclohexylcarbamate, bis(ethylphenyl)-4,4'-arylene-bicyclic Hexyl carbazate, bis(propylphenyl)-4,4'-methylene-dicyclohexylcarbamate (each isomer), di(butylphenyl)-4,4 '-Methylene-dicyclohexylamino phthalate (each isomer), bis(pentylphenyl)-4,4'-arylene-dicyclohexylamino decanoate (isomeric Object , bis(hexylphenyl)-4,4,-methylene-dicyclohexylcarbamate (isomeric oxime), bis(heptylphenyl)-4,4,-anthracene- Dicyclohexylcarbamate (each isomer guang (octylphenyl)-4,4,-methylene-dicyclohexylcarbamate (each isomer), 3-(benzene Oxycarbonylaminomethyl-methyl)_3,5,5·trimethylcyclohexylaminocarboxylic acid phenyl vinegar, 3·(nonylphenoxycarbonylamino-methyl)_3,5,5-trimethyl Cyclohexylaminocarbamic acid (methylphenoxy) ester (each isomer), 3-(ethylphenoxylamino-indenyl)-3,5,5-trimethylcyclohexylamino Formic acid (ethylphenyl) cool (each isomer), 3-(propylphenoxycarbonylamino-indenyl)-3,5,5-trisqmethylcyclohexylamine decanoic acid (propyl Phenyl)S (each isomer), 3-(butylphenoxymethylamino-methyl)-3,5,5-trimethylcyclohexylaminocarboxylic acid (butylphenyl) cool (each isomer), 3·(pentylphenoxycarbonylamino-methyl)-3,5,5-trimethylcyclohexylaminodecanoic acid (pentylphenyl) ester (each isomer) ), 3_(hexylphenoxyamino)-A -3,5,5-trimethylcyclohexylaminocarboxylic acid (hexylphenyl) (each isomer), 3-(heptylphenoxycarbonylamino-indenyl)_3,5,5_three Nonylcyclohexylaminocarbamic acid (heptylphenyl) ester (each isomer), 3-(octylphenoxyamino-methyl)-3,5,5·trimethylcyclohexylamino Formic acid (octylphenyl) (each isomer), toluene-diamino phthalic acid diphenyl ester (each isomer), A 131505.doc -79- 200948760
❹ 苯-二胺基甲酸二(曱基苯基)醋(各異構物)、甲*二胺某甲 酸二(乙基苯基)醋(各異構物)、甲苯·二胺基甲酸二-(丙:苯 基)醋(各異構物)、甲苯-二胺基甲酸二(丁基苯基)醋(各異 構物)、甲苯-二胺基甲酸二(戊基笨基W (各異構物>、甲 苯-二胺基甲酸二(己基苯基)酿(各異構物)、甲苯二胺基甲 酸二(庚鮮綱各異構物)、甲苯-二胺基甲酸二(辛:苯 基)酿(各異構物)、α^·(4,4,_亞甲基·二苯基)·雙胺基甲酸 二苯西旨'TO,亞甲基·二笨基)韻基甲酸二(甲基苯 基)S旨、W’-(4,4'-亞甲基-二笨基)_雙胺基曱酸二(乙基苯 基μ旨、亞甲基-二苯基)_雙胺基甲酸二(丙基苯 基)酯、iV,iV-(4,4-亞甲基-二苯基)_雙胺基曱酸二(丁基苯 基)酯、亞曱基-二苯基雙胺基甲酸二(戊基苯 基)酯、ΛΜ'-(4,4·-亞甲基-二苯基)_雙胺基甲酸二(己基苯 基)S旨、W-(4,4·-亞曱基-二笨基)-雙胺基甲酸二(庚基笨 基)S旨、7VK4,4' -亞曱基-二笨基)-雙胺基甲酸二(辛基苯 基)酯(各異構物)等胺基甲酸芳酯。 <胺基甲酸酯化反應液之運送> 以上述方法所製造之含有胺基甲酸芳酯之反應液較好的 是,自進行該反應之反應器中取出,運送至進行該胺基甲 酸芳酯之熱分解反應的反應器(以下,稱為熱分解反應器) 中,實施該胺基甲酸芳酯之熱分解反應。可藉由如此區別 製造胺基甲酸芳酯之反應器、及熱分解反應器,而選擇與 各個反應相應之反應器,可靈活設定反應條件,因此可提 高各反應之產率。 131505.doc -80- 200948760 該等胺基甲酸㈣藉由構成胺基甲酸芳_之胺基甲酸醋 鍵而易於在分子間形成氫鍵,因此大多具有較高溶點。運 送如此之胺基曱酸芳酯時,例如可運送經將固體胺基甲酸 酯加以粉碎或加工成顆粒狀等之賦形化處理者。然而,於 運送經賦形化處理之固體胺基甲酸芳酯之情形時,經常會 導致運送線路堵塞,或者當胺基甲酸芳酯之形狀不均較多 時為了穩定地運送一定量之胺基曱酸芳醋*需要複雜的裝 置,或者需要將該胺基甲酸芳酯之形狀控制於某範圍之步 驟。因此,該胺基甲酸芳酯較好的是以液狀供給至熱分解 反應器。 作為將胺基曱酸芳酯以液狀供給至熱分解反應器中之方 法,較好的是可採用作為藉由碳酸二芳酯與胺化合物之反 應而獲得之反應混合物而供給的方法。 亦可使用將胺基甲酸芳酯加熱至高於熔點之溫度,使胺 基甲酸芳酯成為液狀而運送之方法,但若亦考慮防止運送 ❹ 中之固化’則必須將該胺基曱酸芳酯加熱至高於溶點之溫 度(例如200°c )。於如此高溫下保持胺基甲酸芳酯之情形 時’常常於非理想處產生胺基甲酸芳酯之熱分解反應,生 成異氰酸酯’或產生如上所述之胺基甲酸芳酯的熱改性反 應。 相對於此’藉由碳酸二芳酯與胺化合物之反應而獲得之 反應混合物於常溫(20°C )下為液體,或即使於常溫下為固 體’亦可常常以低於該胺基甲酸芳酯之熔點的溫度成為均 勻液體’因此可抑制胺基甲酸芳酯之熱改性反應等。 131505.doc • 81 · 200948760 又,本發明者等人吃驚的是,發現若將胺基甲酸芳酯作 為藉由該碳酸二芳酯與胺化合物之反應而獲得之反應混合 物而運送’則抑制該胺基甲酸芳酯之熱改性反應等導致之 胺基甲酸芳s曰的減少。實現如此效果之理由並不明瞭,但 本發明者等人推測’於以上述式(2)所表示之形成脲鍵之反 應中’該反應混合物所含有之芳香族羥基化合物,與胺基 甲酸酯之胺基曱酸酯鍵(_nhcoo_)b成氫鍵,藉此形成胺 基甲酸酯鍵彼此難以接近之狀態,因此難以產生形成脲鍵 ❹之反應。 該反應混合物之運送較好的是於i t〜i 8〇 〇c之溫度範 圍,更好的是30°C〜17(TC,進而好的是5(TC〜15(TC之溫度 範圍内實施。 將胺基曱酸芳酯作為藉由碳酸二芳酯與胺化合物之反應 而獲得之反應混合物而供給至熱分解反應之方法中,不進 行蒸館分離操作等而供給反應混合物,因此亦具有可簡化 ❹步驟之優點。又,作為自反應混合物中分離一部分或全部 之芳香族羥基化合物之混合物而供給的方法中,亦無須進 行自該反應混合物中僅將胺基甲酸芳酯單離之操作,因此 簡化步驟。 <胺基甲酸芳酯之熱分解反應> 其次,就藉由胺基曱酸芳酯之熱分解反應而製造異氣酸 酯加以說明。 本實施形態之熱分解反應係自胺基曱酸芳酯,生成所對 應之異氰酸酯及芳香族羥基化合物的反應。 131505.doc -82 · 200948760 反應溫度通常為贿〜30(rc之範圍,為提高反應速 度’匕較好的是高溫,另一方面,有時高溫下由於胺基甲酸 芳醋及/或作為生成物之異氰酸醋而引起如上所述之副反 應,因此較好的是15代〜25代之範圍。為㈣反應溫 ° ;上述反應器中設置眾所周知之冷卻裝置、加熱裝 反應壓力根據所使用之化合物之種類或反應溫度 而6不同,可為減塵、常壓、加塵之任一種,通常於別士 ία6 ㈣行D反應時間(連續法之情形時為滞留時 間)並無特別限制,通常為0.001〜100小時,較好的是 0.005〜50小時,更好的是〇 〇1〜1〇小時。 本實施形態中,較好的是不使用觸媒。使用觸媒可促進 熱分解反應,但常常易於產生上述胺基甲酸芳g旨及/或作 為生成物之異氰酸酯所引起的副反應,因此不良。 胺基甲酸芳醋於高溫下長時間保持之情形時,有時產生 如上所述之副反應。又,藉由熱分解反應而生成之異氛酸 〇醋有時引起如上所述之副反應。因此,該胺基甲酸芳酿及 該異氰酸醋於高溫下保持之時間較好的是儘可能短,該熱 分解反應較好的是以連續法進行。所謂連續法係指將含有' 該胺基甲酸芳酯之混合物連續供給至反應器中,使之進行 熱分解反應,將所生成之異氰酸酯及芳香族羥基化合物自 該熱分解反應器中連續排出之方法。該連續法中,藉由胺 基曱酸芳酯之熱分解反應而生成之低沸點成分較好的是作 為氣相成分自該熱分解反應器之上部加以回收,剩餘部分 作為液相成分自該熱分解反應器之底部加以回收。亦可將 J31505.doc -83- 200948760 熱分解反應器中存在之所有化合物作為氣相成分加以回 收,但藉由使液相成分存在於該熱分解反應器中,可將由 胺基曱酸芳酯及/或異氰酸酯引起之副反應所生成之聚合 物狀化合物溶解’具有防止該聚合物狀化合物附著、積蓄 於該熱分解反應器之效果。利用胺基曱酸芳酯之熱分解反 應’生成異氰酸酯與芳香族羥基化合物,將該等化合物中 至夕' 其中一個化合物作為氣相成分加以回收。將哪個化合 物作為氣相成分加以回收係依存於熱分解反應條件。 此處,本實施形態所使用之用語Γ藉由胺基曱酸芳酯之 熱分解反應而生成之低沸點成分」係相當於藉由該胺基甲 酸酯之熱分解反應而生成之芳香族羥基化合物及/或異氰 酸Sa,尤其係指於實施該熱分解反應之條件下可作為氣體 而存在之化合物。 例如’可採用將藉由熱分解反應而生成之異氰酸酯與芳 香族經基化合物作為氣相成分加以回收,將含有碳酸二芳 醋及/或胺基曱酸酯之液相成分加以回收的方法。該方法 中’可利用熱分解反應器將異氰酸酯與芳香族經基化合物 分別加以回收。所回收之含有異氰酸酯之氣相成分較好的 疋以氣相供給至用以純化分離該異氣酸g旨之蒸德裝置中。 亦可將所回收之含有異亂酸S旨之氣相成分利用冷凝器等製 成液相後,供給至蒸餾裝置中’但常常使裝置變得複雜, 或所使用之能量變大’故而不良。另一方面,含有碳酸二 芳酯及/或胺基曱酸芳酯之液相成分自熱分解反應器底部 加以回收,該液相成分含有碳酸二芳酯之情形時,較好的 131505.doc -84- 200948760 疋’自該液相成分將碳酸二芳酯加以分離回收,再利用該 碳酸二芳醋。又,該液相成分含有胺基甲酸芳酯之情形 時,較好的是將該液相成分之一部分或全部供給至該熱分 解反應器之上部,使該胺基甲酸芳酯再次進行熱分解反 應。此處所謂熱分解反應器之上部,例如該熱分解反應器 為蒸餾塔之情形時,係指以理論段數自塔底向上之第2段 以上之層段,該熱分解反應器為薄膜蒸餾器之情形時,係 ❹指經加熱之傳面部分之上部分。將該液相成分之一部分或 全部供給至熱分解反應器之上部時,將該液相成分保持為 較好的是5(TC〜18(TC ’更好的是7{rc〜17〇<t,進而好的是 100°C〜i5〇°c而運送。 又,例如,可採用將藉由熱分解反應而生成之異氰酸 知、芳香族羥基化合物及碳酸二芳酯作為氣相成分加以回 收將含有胺基曱酸芳酯之液相成分自熱分解反應器之底 P加以回收的方法。該方法中,所回收之含有異氰酸酯之 Q 氣體成分較好的是以氣相供給至用以純化分離該異氰酸酯 之蒸館裝置中。另-方面’含有胺基甲酸芳醋之液相成分 之部分或全部供給至該熱分解反應器之上部,使該胺基 I馱芳酯再次進行熱分解反應。將該液相成分之一部分或 全部供給至熱分解反應器之上部時,將該液相成分保持為 較好的疋50C〜180。(:,更好的是7〇〇c〜17〇〇c,進而好的是 C〜15 0°C而運送。 #進而’例如可採用藉由熱分解反應而生成之異氰酸酯與 方香族經基化合物中,將芳香族經基化合物作 為氣相成分 131505.doc -85- 200948760 加以回收’將含有該異氰酸酯之混合物作為液相成分自該 熱分解反應器之底部加以回收的方法。該情形時,將該液 相成分供給至蒸餾裝置中’將異氰酸酯加以回收。該液相 成分中含有碳酸二芳酯之情形時,較好的是將碳酸二芳酯 分離回收再利用。又’該液相成分中含有胺基甲酸芳酯之 情形時’較好的是’將含有該胺基曱酸芳酯之混合物之一 部分或全部供給至該熱分解反應器之上部,使該胺基曱酸 芳醋再次進行熱分解反應。將該液相成分之一部分或全部 ° 供給至熱分解反應器之上部時,將該液相成分保持為較好 的疋50C〜180C ’更好的是70°C〜170°C,進而好的是1〇〇 °C〜150°C而運送。 如上所述’較好的是該熱分解反應中,將液相成分自該 熱分解反應器之底部加以回收。其原因在於,可藉由使液 相成分存在於該熱分解反應器中,而將由胺基曱酸芳酯及/ 或異氰酸酯引起之副反應所生成之聚合物狀副產物溶解, Q 作為液相成分自熱分解反應器中排出,藉此具有減少該聚 合物狀化合物附著、積蓄於該熱分解反應器之效果。 液相成分中含有胺基甲酸芳酯之情形時,將該液相成分 之一部分或全部供給至該熱分解反應器之上部,使該胺基 甲酸芳輯再次進行熱分解反應,若重複該步驟,則有時液 相成分中積蓄有聚合物狀副產物。該情形時,可將該液相 成分之一部分或全部自反應系統中去除,減少聚合物狀副 產物之積蓄,或可保持為一定之濃度。 藉由以上熱分解反應而獲得之氣相成分及/或液相成分 131505.doc -86- 200948760 斤s有之芳香族經基化合物及/或碳酸二芳酯可分別分 離㈣再利用。具體而言,芳香族經基化合物可再用作碳 酸,芳酷與胺化合物之反應的反應溶劑,及/或製造碳酸 二芳酯之步驟(3)的芳香族羥基化合物A,碳酸二芳酯可再 用作製造胺基甲酸芳酯之原料。 該熱分解反應器之形式並無特別限制,為將氣相成分效 率良好地加以回收,較好的是使用眾所周知之蒸餾裝置。 例如、,可採用使用包含蒸館塔、多段蒸館塔、多管式反應 器、連續多段蒸餾塔、填充塔、薄膜蒸發器、内部具備支 持體之反應器、強制循環反應器、落膜蒸發器、落滴蒸發 器之任一種之反應器的方式,及將該等加以組合之方式等 眾所周知的各種方法。自將低沸點成分快速自反應系統中 去除之觀點考慮,較好的是使用管狀反應器,更好的是使 用管狀薄膜蒸發器、管狀降膜蒸發器等反應器之方法,較 好的疋所生成之低沸點成分迅速轉移至氣相之氣液接觸 面積較大的結構。 Ο 条 若不對該胺基甲酸芳酯或作為生成物之芳香族羥基化合 物、異氰酸酯等造成不良影響,則熱分解反應器及線路之 材質可為眾所周知之任意材質,其中SUS3〇4或SUS316、 SUS316L等較為廉價,故可較好地使用。 <熱分解反應器之清洗> 本實施形態中,使碳酸二芳酯與胺化合物反應而獲得之 含有胺基甲酸芳酯之反應液例如含有以上述式(5)、式 (6)、式(7)所表示之聚合物狀副反應生成物等。該副反應 131505.doc -87 - 200948760 2成物大多易於溶解於芳香族經基化合物中,因此溶解於 3有該胺基甲酸芳g旨之反應液中。然而,熱分解反應器 中,若大部分芳香族經基化合物作為氣相成分自該熱分解 反應器中排出,則該副反應生成物常常析出並附著於該熱 分解反應器。又,伴隨該胺基甲酸芳醋之熱分解反應,例 如生成來自以上述式⑻、式⑼、式(10)等所表示之副反應 之聚〇物刹產物等,該熱分解反應之副產物亦常常附著於 ❹=熱分解反應器。若附著於該等熱分解反應器之化合物積 蓄至某程度,則常常妨礙該熱分解反應器之運轉,而難以 長時間運轉,因此必須進行將該熱分解反應器解體進行清 掃等作業。 本發明者等人吃驚的是’發現附著於該熱分解反應器上 之化合物易於溶解於酸中。以該知識為基礎,考慮並完成 如下方法:該㉟分解反應器上附著有高沸物之情形時,以 酸清洗該熱分解反應器之壁面,將該等高沸物溶解並自該 〇 熱分解反應器去除,藉此使該熱分解反應器内(尤其為壁 面)保持清潔。利用該方法,可不解體該熱分解反應器進 行分掃,而清洗該熱分解反應器之壁面,因此可大幅縮短 該熱分解反應器之運轉停止時間,異氰酸酯之生產效率較 兩0 作為清洗之酸,若為溶解該聚合物狀副產物者則無特 別限定,可使用有機酸、無機酸之任一種,較好的是使用 有機酸。作為有機酸,可例示:羧酸、磺酸、亞磺酸、苯 盼類、婦醇類、硫㈣、醯亞胺類、肪類、芳香族續酿胺 13I505.doc -88- 200948760 類等,較好的是使用羧酸、苯酚類。作為如此之化合物, 可列舉:甲酸、乙酸、丙酸、正丁酸、異丁酸、戊酸、異 戊酸、2-甲基丁酸、特戊酸、己酸、異己酸、孓乙基丁 酸、2,2-二甲基丁酸、庚酸(各異構物)、辛酸(各異構物)、 壬酸(各異構物)、癸酸(各異構物)、十一酸(各異構物)、十 二酸(各異構物)、十四酸(各異構物)、十六酸(各異構物)、 丙烯酸、丁烯酸、異丁稀酸、乙烯基乙酸、甲基丙烯酸、 白止酸、甘菊花酸、烯丙基乙酸、十一烯酸(各異構物)等 飽和或不飽和脂肪族單羧酸化合物,乙二酸、丙二酸、丁 二酸、戊二酸、己二酸、庚二酸(各異構物)、辛二酸(各異 構物)、壬二酸(各異構物)、癸二酸(各異構物)、順丁烯二 酸、反丁烯二酸、甲基順丁烯二酸、曱基反丁烯二酸、戊 烯二酸(各異構物)、伊康酸、烯丙基丙二酸等飽和或不飽 和月曰肪族一羧酸,丙烷三羧酸、,弘丙烯三羧酸、 2’3-一甲基丁烷三羧酸等飽和或不飽和脂肪族三羧 〇酸化合物,苯甲酸、苯甲酸甲酯(各異構物)、苯甲酸乙酯 (各異構物)、苯甲酸丙酯(各異構物)、苯甲酸二曱酯(各異 構物)、苯甲酸三甲醋(各異構物)等芳香族單竣酸化合物, 鄰苯二甲酸、間苯二甲酸、對苯二甲酸、甲基間苯二甲酸 (各異構物)等芳香族二羧酸化合物,丨,2,3_苯三甲酸、 1’2’4-苯三甲酸、苯三甲酸等芳香族三㈣化合物, 苯紛、甲基-苯盼(各異構物)、乙基_苯齡(各異構物)、丙 基-苯紛(各異構物)、丁基-苯盼(各異構物)、戊基-苯紛(各 異構物)、己基-苯齡(各異構物)、庚基_苯紛(各異構物卜 131505.doc •89· 200948760 辛基-苯酚(各異構物)、壬基-苯酚(各異構物)、癸基-苯酚 (各異構物)、十二烷基-苯酚(各異構物)、苯基_苯酚(各異 構物)、苯氧基苯酚(各異構物)、異丙苯基_苯酚(各異構物) 等單取代苯酚類,二甲基-苯酚(各異構物)、二乙基-苯酚 (各異構物)、二丙基-苯酚(各異構物)、二丁基苯酚(各異 構物)、二戊基·苯酚(各異構物)、二己基-苯酚(各異構 物)、二庚基-苯酚(各異構物)、二辛基_苯酚(各異構物)、 二壬基·苯酚(各異構物)、二癸基_苯酚(各異構物)、二(十 二烷基)-苯酚(各異構物)、二苯基_苯酚(各異構物)、二苯 氧基苯酚(各異構物)' 二異丙苯基_苯酚(各異構物)、甲基_ 乙基-苯酚(各異構物)、甲基_丙基_苯酚(各異構物)、甲基_ 丁基-苯酚(各異構物)、曱基-戊基-苯酚(各異構物)、甲基_ 己基-苯酚(各異構物)、曱基-庚基_苯酚(各異構物)、曱基_ 辛基-苯酚(各異構物)、曱基-壬基_苯酚(各異構物)、甲基_ 癸基-苯酚(各異構物)、曱基-十二烷基苯酚(各異構物)、 甲基-苯基-苯盼(各異構物)、甲基-苯氧基苯紛(各異構 物)、甲基-異丙苯基-苯酚(各異構物)、乙基_丙基_苯酚(各 異構物)、乙基-丁基-苯酚(各異構物)、乙基_戊基_苯酚(各 異構物)、乙基-己基-苯酚(各異構物)、乙基_庚基_苯酚(各 異構物)、乙基-辛基-苯酚(各異構物)、乙基_壬基_苯酚(各 異構物)、乙基-癸基-苯酚(各異構物)、乙基_十二烷基_苯 盼(各異構物)、乙基-苯基-苯酚(各異構物)、乙基苯氧基 苯酚(各異構物)、乙基-異丙苯基-苯酚(各異構物)、丙基_ 丁基-苯酚(各異構物)、丙基-戊基-苯酚(各異構物)、丙基· 131505.doc -90- 200948760 己基-苯酚(各異構物)、丙基-庚基_苯酚(各異構物)、丙基_ 辛基··苯酚(各異構物)、丙基-壬基_苯酚(各異構物)、丙基_ 癸基-苯酚(各異構物)、丙基-十二烷基_苯酚(各異構物)、 丙基-苯基-笨酚(各異構物)、丙基_苯氧基苯酚(各異構 物)、丙基-異丙苯基·苯酚(各異構物)、丁基_戊基_苯酚(各 異構物)、丁基-己基-苯酚(各異構物)、丁基_庚基_苯酚(各 異構物)、丁基·•辛基-苯酚(各異構物)、丁基-壬基·苯酚(各 異構物)、丁基·癸基-苯酚(各異構物)、丁基-十二烷基-苯 酚(各異構物)、丁基·苯基-苯酚(各異構物)、丁基_苯氧基 苯酚(各異構物)、丁基_異丙苯基-苯酚(各異構物)、戊基_ 己基-苯酚(各異構物)、戊基-庚基_苯酚(各異構物)、戊基_ 辛基·苯酚(各異構物)、戊基-壬基_苯酚(各異構物)、戊基_ 癸基-苯酚(各異構物)、戊基-十二烷基苯酚(各異構物)、 戊基·苯基-苯酚(各異構物)、戊基-苯氧基苯酚(各異構 物)、戊基-異丙苯基-苯酚(各異構物)、己基_庚基·苯酚(各 Q 異構物)、己基-辛基-苯酚(各異構物)、己基-壬基-苯酚(各 異構物)、己基-癸基·苯酚(各異構物)、己基_十二烷基_苯 酚(各異構物)、己基-苯基-苯酚(各異構物)、己基苯氧基 苯酚(各異構物)、己基-異丙苯基-苯酚(各異構物)、庚基_ 辛基-苯酚(各異構物)、庚基_壬基_苯酚(各異構物)、庚基_ 癸基-苯酚(各異構物)、庚基-十二烷基_苯酚(各異構物卜 庚基-苯基·苯酚(各異構物)、庚基_苯氧基苯酚(各異構 物)、庚基-異丙苯基-苯酚(各異構物)、辛基_壬基_苯酚(各 異構物)、辛基·癸基-苯酚(各異構物)、辛基_十二烷基-笨 13I505.doc -91 · 200948760 酚(各異構物)、辛基-苯基-苯酚(各異構物)、辛基苯氧基 苯酚(各異構物)、辛基-異丙苯基-苯酚(各異構物)' 壬基_ 癸基·苯酚(各異構物)、壬基_十二烷基-笨酚(各異構物)、 壬基-笨基-笨酚(各異構物)、壬基_苯氧基笨紛(各異構 物)、壬基-異丙苯基-苯酴(各異構物)、十二院基·苯基苯 盼(各異構物)、十二烷基_苯氧基苯酚(各異構物)、十二燒 基異丙本基-本酌·(各異構物)等二取代苯紛類,三甲基-苯 紛(各異構物)、三乙基-苯酚(各異構物)、三丙基_苯紛(各 異構物)、二丁基-苯紛(各異構物)、三戊基-苯盼(各異構 物)、三己基-苯酚(各異構物)、三庚基-苯酚(各異構物)、 三辛基-苯酚(各異構物)、三壬基-苯酚(各異構物)、三癸 基-苯酚(各異構物)、三(十二烷基)·苯酚(各異構物)、三苯 基-本盼(各異構物)、三苯氧基苯紛(各異構物)、三異丙苯 基·苯酚(各異構物)、二甲基-乙基·苯酚(各異構物)、二曱 基-丙基-苯酚(各異構物)、二甲基-丁基-苯酚(各異構物)、 二甲基-戊基-苯酚(各異構物)、二曱基-己基-苯酚(各異構 物)、二甲基-庚基-苯酚(各異構物)、二曱基-辛基-苯酚(各 異構物)、二曱基-壬基-苯酚(各異構物)、二甲基_癸基·笨 酚(各異構物)、二曱基-十二烷基-笨酚(各異構物)、二曱 基-苯基-苯酚(各異構物)、二曱基-苯氧基苯酚(各異構 物)、二甲基-異丙苯基-苯酚(各異構物)、二乙基-曱基·笨 盼(各異構物)、二乙基-丙基-苯酌(各異構物)、二乙基-丁 基-苯酚(各異構物)、二乙基-戊基-苯酚(各異構物)、二乙 基-己基-苯酚(各異構物)、二乙基-庚基-苯酚(各異構物)、 131505.doc •92- 200948760 —乙基-辛基-苯酚(各異構物)、二乙基_壬基_苯酚(各異構 物)、二乙基-癸基-苯酚(各異構物)、二乙基·十二烷基_笨 酚(各異構物)、二乙基-苯基-苯酚(各異構物)、二乙基·苯 氧基苯酚(各異構物)、二乙基_異丙苯基_苯酚(各異構物)、 二丙基-甲基-苯酚(各異構物)、二丙基-乙基_苯酚(各異構 物)、二丙基-丁基-苯酚(各異構物)、二丙基-戊基_苯酚(各 異構物)、二丙基-己基-苯酚(各異構物)、二丙基_庚基_苯 Ο ❹ 酚(各異構物)、二丙基-辛基-苯酚(各異構物)、二丙基壬 基·苯酚(各異構物)、二丙基-癸基_苯酚(各異構物)、二丙 基-十二烷基-苯酚(各異構物)、二丙基_苯基-苯酚(各異構 物)、二丙基-苯氧基苯酚(各異構物)、二丙基_異丙苯基·苯 酚(各異構物)、二丁基-曱基-苯酚(各異構物)、二丁基-乙 基-苯酚(各異構物)、二丁基·丙基_苯酚(各異構物)、二丁 基-戊基-苯酚(各異構物)、二丁基_己基_苯酚(各異構物)、 一丁基-庚基-苯酚(各異構物)、二丁基_辛基_苯酚(各異構 物)、二丁基-壬基-苯酚(各異構物)、二丁基_癸基苯酚(各 異構物)、二丁基_十二烷基_苯酚(各異構物)、二丁基笨 基-苯酚(各異構物)、二丁基-苯氧基苯酚(各異構物)、二丁 基·異丙苯基-苯酚(各異構物)、二戊基_甲基-苯酚(各異構 物)、二戊基-乙基-苯酚(各異構物)、二戊基_丙基_苯酚(各 異構物)、二戊基-丁基_苯酚(各異構物)、二戊基_己基笨 酚(各異構物)、二戊基-庚基-苯酚(各異構物)、二戊基辛 基-苯酚(各異構物)、二戊基-壬基-笨酚(各異構物)、二戊 基·癸基-苯酚(各異構物)、二戊基_十二烷基-苯酚(各異構 131505.doc -93- 200948760 物)、二戊基-苯基-苯酚(各異構物)、二戊基-苯氧基苯酚 (各異構物)、二戊基-異.丙苯基-苯酚(各異構物)、二己基_ 甲基-苯酚(各異構物)、二己基_乙基_苯酚(各異構物)、二 己基-丙基-苯酚(各異構物)、二己基-丁基-苯酚(各異構 物)、二己基-戊基-苯酚(各異構物)、二己基_庚基_苯酚(各 異構物)、二己基-辛基-苯酚(各異構物)、二己基-壬基·苯 紛(各異構物)、二己基-癸基_苯紛(各異構物)、二己基十 ^ 二烷基-苯酚(各異構物)、二己基-苯基-苯酚(各異構物)、 一己基-笨氧基苯盼(各異構物)、二己基·異丙苯基·苯酚(各 異構物)、二庚基-甲基·苯酚(各異構物)、二庚基-乙基_苯 酚(各異構物)、二庚基_丙基-苯酚(各異構物)、二庚基_丁 基-苯酚(各異構物)、二庚基_戊基_苯酚(各異構物)、二庚 基-己基-苯酚(各異構物)、二庚基_辛基_苯酚(各異構物)、 一庚基-壬基-苯酚(各異構物)、二庚基_癸基苯酚(各異構 物)、一庚基-十二烧基-苯紛(各異構物)、二庚基_苯基-笨 〇 酚(各異構物)、二庚基·苯氧基苯酚(各異構物)、二庚基-異 丙笨基-苯酚(各異構物)、二辛基-曱基_苯酚(各異構物)、 二辛基-乙基-苯酚(各異構物)、二辛基_丙基-苯酚(各異構 物)、二辛基-丁基-苯酚(各異構物)' 二辛基_戊基_苯酚(各 異構物)、二辛基-己基-苯酚(各異構物)、二辛基-庚基-苯 酚(各異構物)、二辛基-壬基-苯酚(各異構物)、二辛基-癸 基笨酚(各異構物)、二辛基_十二烷基苯酚(各異構物)、 辛基-苯基-笨酚(各異構物)、二辛基_笨氧基苯酚(各異構 物)、二辛基-異丙苯基-苯酚(各異構物)、二壬基-甲基-苯 131505.doc -94- 200948760 盼(各異構物)、二壬基-乙基-苯酚(各異構物)、二壬基-丙 基-苯酚(各異構物)、二壬基-丁基-苯酚(各異構物)、二壬 基-戊基-苯酚(各異構物)、二壬基·己基-苯酚(各異構物)、 一壬基-庚基-苯酚(各異構物)、二壬基-辛基-苯酚(各異構 物)、二壬基-癸基-苯紛(各異構物)、二壬基_十二院基-苯 盼(各異構物)、二壬基·苯基-苯紛(各異構物)、二壬基_笨 氧基苯酚(各異構物)、二壬基·異丙苯基-苯酚(各異構物)、 二癸基-甲基-苯酚(各異構物)、二癸基-乙基_苯酚(各異構 ® 物)、二癸基-丙基-苯酚(各異構物)、二癸基-丁基_苯酚(各 異構物)、二癸基-戊基-苯酚(各異構物)、二癸基_己基苯 盼(各異構物)、二癸基-庚基-苯盼(各異構物)、二癸基辛 基-本酌·(各異構物)、二癸基·壬基-苯齡(各異構物)、二癸 基-十一烧基-本紛(各異構物)' 二癸基-苯基-苯盼(各異構 物)、二癸基-苯氧基苯酌·(各異構物)、二癸基_異丙苯基_笨 酚(各異構物)、二(十二烷基)-曱基-苯酚(各異構物)、二 Q (十二烷基)-乙基-苯酚(各異構物)、二(十二烷基丙基苯 酚(各異構物)、二(十二烷基)-丁基-苯酚(各異構物)、二 (十二烷基)-戊基-苯酚(各異構物)、二(十二燒基)_己基-苯 酚(各異構物)、二(十二烷基)-庚基-笨酚(各異構物)、二 (十二烷基)-辛基-苯酚(各異構物)、二(十二烷基)壬基笨 酚(各異構物)、二(十二烷基)-癸基-苯酚(各異構物)、二 (十二烷基)_十二烷基-苯酚(各異構物)、二(十二烷基)_笨 基-苯酚(各異構物)、二(十二烷基)_苯氧基苯酚(各異構 物)、二(十二烷基)-異丙苯基-苯基(各異構物)、二苯基甲 131505.doc -95- 200948760 基-笨酚(各異構物)、二苯基_乙基苯酚(各異構物)、二笨 基-丙基-苯酚(各異構物)、二笨基_丁基_苯酚(各異構物)、 二苯基-戊基-苯酚(各異構物)、二苯基_己基_苯酚(各異構 物)、二苯基-庚基-苯酚(各異構物)、二苯基_辛基-苯酚(各 異構物)、二苯基-壬基-笨酚(各異構物)、二苯基-癸基-笨 酚(各異構物)、二苯基-十二烷基_苯酚(各異構物)、二苯 基-苯氧基苯酚(各異構物)、二苯基_異丙苯基_苯酚(各異構 物)、二苯氧基甲基-苯酚(各異構物)、二苯氧基乙基-苯酚 (各異構物)、二苯氧基丙基-苯酚(各異構物)、二苯氧基丁 基-笨酚(各異構物)、二苯氧基戊基_苯酚(各異構物)、二苯 氧基己基-苯酚(各異構物)、二苯氧基庚基_苯酚(各異構 物)、二苯氧基辛基-苯酚(各異構物)、二苯氧基壬基_苯酚 (各異構物)、二苯氧基癸基_苯酚(各異構物)、二苯氧基十 二烷基-苯酚(各異構物)、二苯氧基苯基-苯酚(各異構物)、 二苯氧基異丙苯基·•苯酚(各異構物)、二異丙苯基_甲基-苯 Q 酚(各異構物)、二異丙苯基-乙基-苯酚(各異構物)、二異丙 苯基-丙基-笨酚(各異構物)、二異丙苯基-丁基-苯酚(各異 構物)、二異丙苯基-戊基_苯酚(各異構物)、二異丙苯基-己 基-苯酚(各異構物)、二異丙苯基庚基苯酚(各異構物” 二異丙苯基-辛基-苯酚(各異構物)、二異丙苯基壬基-苯酚 (各異構物)、二異丙苯基-癸基_苯酚(各異構物)、二異丙苯 基-十二烷基-苯酚(各異構物)、二異丙苯基苯基-苯酚(各 異構物)、二異丙苯基_苯氧基苯酚(各異構物)、甲基乙基_ 丙基-苯酚(各異構物)、甲基-乙基_ 丁基-苯酚(各異構物)、 131505.doc -96- 200948760 甲基-乙基-戊基-苯酚(各異構物)、甲基-乙基己基-苯酚 (各異構物)、甲基-乙基·庚基-苯酚(各異構物)、甲基-乙 基·辛基-苯酚(各異構物)、曱基-乙基-壬基·苯酚(各異構 物)、甲基-乙基-癸基-苯酚(各異構物)、甲基-乙基十二烧 基-苯酚(各異構物)、甲基-乙基-苯基_苯酚(各異構物)、曱 基-乙基·苯氧基苯酚(各異構物)、甲基-乙基_異丙苯基-苯 酚(各異構物)、曱基-丙基-曱基-丙基_丁基_苯酚(各異構 物)、甲基-丙基-戊基-苯酚(各異構物)、甲基-丙基-己基_ © 苯酚(各異構物)、甲基-丙基-庚基-苯酚(各異構物)、甲基_ 丙基-辛基·苯酚(各異構物)、甲基_丙基_壬基-苯酚(各異構 物)、甲基-丙基-癸基-苯酚(各異構物)、甲基-丙基_十二烷 基-笨酚(各異構物)、曱基·丙基_苯基苯酚(各異構物)、甲 基-丙基-苯氧基苯酚(各異構物)、甲基-丙基_異丙苯基-苯 盼(各異構物)、甲基·丁基-戊基_苯齡(各異構物)、甲基-丁 基-己基-苯酚(各異構物)、曱基·丁基_庚基-苯酚(各異構 & 物)、曱基-丁基-辛基-苯酚(各異構物)、甲基_丁基壬基· 苯紛(各異構物)、曱基·丁基·癸基-苯酚(各異構物)、曱基_ 丁基-十二烷基-苯酚(各異構物)、甲基-丁基-苯基-苯酚(各 異構物)、甲基·丁基_苯氧基苯酚(各異構物)、甲基·丁基_ 異丙苯基·苯酚(各異構物)、甲基-戊基-己基-苯酚(各異構 物)、曱基·戊基·庚基-苯酚(各異構物)、曱基_戊基·辛基_ 苯酚(各異構物)、曱基·戊基-壬基-苯酚(各異構物)、曱基_ 戊基-癸基-笨酌·(各異構物)、曱基_«戊基_十二烧基苯盼(各 異構物)、曱基-戊基·•苯基-苯酚(各異構物)、甲基-戊基-笨 131505.doc •97· 200948760 氧基苯酚(各異構物)、甲基_戊基·異丙苯基_苯酚(各異構 物)、甲基-己基-庚基-苯酚(各異構物)、甲基·己基_辛基_ 苯酚(各異構物)、甲基_己基_壬基_苯酚(各異構物)、甲基-己基-癸基·苯酚(各異構物)、甲基-己基_十二烷基_苯酚(各 異構物)、甲基-己基-苯基-苯酚(各異構物)、甲基己基-苯 氧基苯酚(各異構物)、甲基_己基·異丙苯基苯酚(各異構 物)、乙基-丙基-丁基-苯酚(各異構物)、乙基_丙基-戊基_ 苯酚(各異構物)、乙基-丙基-己基-苯酚(各異構物)、乙基_ 丙基-庚基-苯酚(各異構物)、乙基_丙基_辛基_苯酚(各異構 物)、乙基-丙基-壬基-苯酚(各異構物)、乙基丙基癸基_ 苯酚(各異構物)、乙基-丙基·十二烷基_苯酚(各異構物卜 乙基-丙基-苯基-苯酚(各異構物)、乙基_丙基_苯氧基苯酚 (各異構物)、乙基-丙基-異丙苯基·苯酚(各異構物)、乙基_ 丁基-苯酚(各異構物)、乙基-丁基-戊基-苯酚(各異構物)、 乙基-丁基-己基·苯酚(各異構物)、乙基_丁基_庚基-苯酚 Q (各異構物)、乙基-丁基-辛基-苯酚(各異構物)、乙基·丁 基-壬基-苯酚(各異構物)、乙基_ 丁基癸基苯酚(各異構 物)、乙基-丁基-十二烷基·笨酚(各異構物)、乙基-丁基·苯 基-苯酚(各異構物)、乙基-丁基_苯氧基苯酚(各異構物)、 乙基·丁基-異丙苯基·苯酚(各異構物)' 乙基_戊基_己基苯 酚(各異構物)、乙基·戊基-庚基_苯紛(各異構物)、乙基-戊 基-辛基-苯酚(各異構物)、乙基·戊基_壬基苯酚(各異 物)、乙基-戊基-癸基-苯酚(各異構物)、乙基戊基十i烷 基-苯紛(各異構物)、乙基-戍基·笨基_苯酚(各異構物)、$ 秦 131505.doc 200948760 基-戊基-苯氧基苯酚(各異構物)、乙基_戊基_異丙苯基苯 酚(各異構物)、乙基-己基-庚基_苯酚(各異構物)、乙基_己 基-辛基-苯酚(各異構物)、乙基-己基_壬基_苯酚(各異構 物)、乙基-己基-癸基-苯酚(各異構物)、乙基-己基·十二烷 基-苯酚(各異構物)、乙基-己基-苯基-苯酚(各異構物)、乙 基·己基-苯氧基苯酚(各異構物)、乙基-己基_異丙苯基-苯 酚(各異構物)、乙基-庚基-辛基-苯酚(各異構物)、乙基_庚 基-壬基-苯酚(各異構物)、乙基-庚基-癸基-笨酚(各異構 物)、乙基庚基-十二烷基-笨酚(各異構物)、乙基_庚基_苯 基-苯酚(各異構物)、乙基_庚基_苯氧基苯酚(各異構物)、 乙基-庚基-異丙苯基-苯酚(各異構物)、乙基_辛基_苯酚(各 異構物)、乙基-辛基-壬基-苯酚(各異構物)、乙基_辛基-癸 基-苯齡(各異構物)、乙基-辛基-十二烷基苯酚(各異構 物)、乙基-辛基-苯基-苯酚(各異構物)、乙基_辛基_苯氧基 苯酚(各異構物)、乙基-辛基-異丙苯基_苯酚(各異構物)、 Q 乙基-壬基-癸基-苯酚(各異構物)、乙基-壬基-十二烷基_苯 盼(各異構物)、乙基-壬基-苯基-苯酚(各異構物)、乙基壬 基-苯氧基苯酚(各異構物)、乙基-壬基-異丙苯基_苯酚(各 異構物)、乙基-癸基-十二烷基-苯酚(各異構物)、乙基_癸 基-苯基-苯酚(各異構物)、乙基-癸基-苯氧基苯酚(各異構 物)、乙基-癸基-異丙苯基·苯酚(各異構物)、乙基_十二烷 基-苯基-苯酚(各異構物)、乙基-十二烷基_苯氧基苯盼(各 異構物)、乙基-十二烧基-異丙笨基·苯酚(各異構物)、乙 基-苯基-苯氧基苯盼(各異構物)、乙基_苯基-異丙苯基苯 131505.doc -99· 200948760 酚(各異構物)、丙基-丁基-苯酚(各異構物)、丙基-丁基·戊 基-苯酚(各異構物)、丙基·丁基-己基-苯酚(各異構物)、丙 基-丁基-庚基-苯酚(各異構物)、丙基-丁基-辛基-苯酚(各 異構物)、丙基-丁基-壬基-苯酚(各異構物)、丙基·丁基_癸 基-苯酚(各異構物)、丙基-丁基-十二烷基-苯酚(各異構 物)、丙基-丁基··苯基-苯酚(各異構物)、丙基·丁基_苯氧基 笨酚(各異構物)、丙基-丁基-異丙苯基-苯酚(各異構物)、 丙基-戊基-苯酚(各異構物)、丙基-戊基-己基_苯酚(各異構 ® 物)、丙基-戊基-庚基-苯酚(各異構物)、丙基-戊基-辛基_ 本齡(各異構物)、丙基-戊基-壬基-苯紛(各異構物)、丙基_ 戊基-癸基-苯盼(各異構物)、丙基-戊基_十二烧基_苯紛(各 異構物)、丙基-戊基-苯基_苯酚(各異構物)、丙基戊基笨 氧基本盼(各異構物)、丙基·戊基-異丙苯基-苯紛(各異構 物)、丙基-己基-苯盼(各異構物)、丙基·己基_庚基_笨酚 (各異構物)、丙基-己基-辛基-苯酚(各異構物)、丙基-己 〇 基-壬基-苯酚(各異構物)、丙基_己基-癸基·苯酚(各異構 物)、丙基·己基-十二烷基-苯酚(各異構物)、丙基·己基_笨 基-苯酚(各異構物)、丙基_己基_苯氧基苯酚(各異構物)、 丙基-己基-異丙苯基-苯酚(各異構物)、丙基_庚基辛基苯 酚(各異構物)、丙基-庚基-壬基-苯酚(各異構物)、丙基-庚 基·癸基-苯酚(各異構物)、丙基_庚基_十二烷基-苯酚(各異 構物)' 丙基-庚基-苯基_苯酚(各異構物)、丙基庚基笨氧 基苯酚(各異構物)、丙基-庚基-異丙苯基-苯酚(各異構 物)、丙基-辛基-壬基-苯酚(各異構物)、丙基_辛基·癸基_ 131505.doc •100- 200948760 苯紛(各異構物)、丙基-辛基-十二烷基-苯酚(各異構物)、 丙基-辛基-苯基-苯酚(各異構物)、丙基-辛基_苯氧基苯酚 (各異構物)、丙基-辛基-異丙苯基_苯酚(各異構物)、丙基_ 壬基-癸基-苯酚(各異構物)、丙基-壬基-十二烷基·苯酚(各 異構物)、丙基-壬基-苯基·苯酚(各異構物)、丙基_壬基_苯 氧基苯酚(各異構物)、丙基_壬基-異丙苯基-苯酚(各異構 物)、丙基-癸基·十二烷基·苯酚(各異構物)、丙基_癸基_苯 基-苯酚(各異構物)、丙基-癸基-苯氧基苯酚(各異構物)、 丙基-癸基-異丙苯基-苯酚(各異構物)、丙基-十二烷基_苯 基-苯酚(各異構物)、丙基-十二烷基-苯氧基苯酚(各異構 物)、丙基-十二烷基_異丙苯基-苯酚(各異構物)、曱基_笨 酚(各異構物)、乙基-苯酚(各異構物)、丙基_苯酚(各異構 物)' 丁基-苯酚(各異構物)、戊基_苯酚(各異構物)、己基_ 苯酚(各異構物)、庚基-苯酚(各異構物)、辛基_苯酚(各異 構物)、壬基-苯酚(各異構物)、癸基_苯酚(各異構物)、十 ❹二烷基-苯酚(各異構物)、苯基-苯酚(各異構物)、苯氧基苯 酚(各異構物)、異丙苯基-苯酚(各異構物)、丙基_苯基_苯 氧基苯酚(各異構物)、丙基-苯基_異丙苯基_笨酚(各異構 物)' 丙基-苯氧基異丙苯基_苯酚(各異構物)、丙基-丁基一 戊基-苯酚(各異構物)、丙基-丁基-己基_苯酚(各異構物)、 丙基-丁基-庚基-苯酚(各異構物)、丙基_丁基_辛基_苯酚 (各異構物)、丙基-丁基-壬基-笨酚(各異構物)、丙基丁 基·癸基-苯酚(各異構物)、丙基·丁基_十二烷基_苯酚(各異 構物)、丙基-丁基-苯基-苯酚(各異構物)、丙基丁基笨氧 131505.doc -101- 200948760 基苯酚(各異構物)、丙基-丁基-異丙苯基-苯酚(各異構 物)、丙基-戊基-苯紛(各異構物)、丙基-戊基-己基-苯酚 (各異構物)、丙基-戊基-庚基-苯酚(各異構物)、丙基_戊 基·辛基-苯酚(各異構物)、丙基-戊基-壬基-苯酚(各異構 物)、丙基-戊基·癸基-苯酌(各異構物)、丙基_戊基_十二烷 基-苯酚(各異構物)、丙基-戊基-苯基_苯酚(各異構物)、丙 基-戊基-苯氧基苯酚(各異構物)、丙基_戊基_異丙苯基苯 酚(各異構物)、丙基-己基-庚基-苯酚(各異構物)、丙基_己 ◎ 基-辛基-苯酚(各異構物)' 丙基-己基·壬基·苯酚(各異構 物)、丙基-己基-癸基-苯酚(各異構物)、丙基·己基_十二烷 基-苯酚(各異構物)、丙基-己基-苯基_苯酚(各異構物)、丙 基-己基-本氧基本盼(各異構物)、丙基_己基_異丙苯基-苯 酚(各異構物)、丙基-庚基-辛基·苯酚(各異構物)、丙基_庚 基-壬基-苯酚(各異構物)、丙基_庚基_癸基_苯酚(各異構 物)、丙基-庚基-十二烷基_苯酚(各異構物)、丙基_庚基苯 Q 基-笨酚(各異構物)、丙基-庚基·苯氧基苯酚(各異構物)、 丙基-庚基-異丙苯基-苯酚(各異構物)、丙基_辛基壬基-苯 酚(各異構物)、丙基-辛基-癸基-苯酚(各異構物)、丙基-辛 基-十二烧基-苯酚(各異構物)、丙基_辛基_苯基-苯酚(各異 構物)、丙基-辛基-苯氧基苯酚(各異構物)、丙基_辛基-異 丙苯基-苯酚(各異構物)、丙基_壬基_癸基_苯酚(各異構 物)、丙基-壬基-十二烷基-苯酚(各異構物)、丙基壬基-笨 基-苯酚(各異構物)、丙基·壬基_苯氧基苯酚(各異構物)、 丙基-壬基·異丙苯基-苯酚(各異構物)、丙基_癸基_ 131505.doc •102- 200948760 基-苯酚(各異構物)、丙基-癸基-苯基_苯酚(各異構物)、丙 基·•癸基-苯氧基苯酚(各異構物)、丙基_癸基_異丙苯基_苯 齡(各異構物)、丙基-十二烷基-苯基-苯酚(各異構物)、丙 基-十二烷基_苯氧基苯酚(各異構物)、異丙苯基_苯酚(各異 構物)' 丙基-苯基-苯氧基苯酚(各異構物)、丙基·苯基-異 丙苯基-苯酚(各異構物)、丁基-戊基-己基-苯酚(各異構 物)、丁基-戊基-庚基-苯酚(各異構物)、丁基_戊基·辛基_ 苯酚(各異構物)、丁基_戊基_壬基_苯酚(各異構物)、丁基_ ® 戊基-癸基-苯酚(各異構物)、丁基-戊基-十二烷基-苯酚(各 異構物)、丁基·戊基-苯基-苯酚(各異構物)、丁基·戊基_苯 氧基苯酚(各異構物)、丁基-戊基_異丙苯基-苯酚(各異構 物)、丁基-己基·庚基-苯酚(各異構物)、丁基-己基_辛基_ 苯酚(各異構物)、丁基_己基_壬基_苯酚(各異構物)、丁基_ 己基-癸基-苯酚(各異構物)、丁基-己基_十二烷基_苯酚(各 異構物)、丁基-己基-苯基-苯酚(各異構物)、丁基己基-苯 ◎ 氧基苯酚(各異構物)、丁基-己基·異丙苯基_苯酚(各異構 物)、丁基-庚基-辛基·苯酚(各異構物)、丁基_庚基_壬基^ 苯酚(各異構物)、丁基-庚基_癸基-苯酚(各異構物)、丁基_ 庚基-十二烷基-苯酚(各異構物)、丁基_庚基-苯基-苯酚(各 異構物)、丁基·庚基-苯氧基苯酚(各異構物)、丁基·庚基_ 異丙苯基-苯酚(各異構物)、丁基_辛基_壬基苯酚(各異構 物)、丁基-辛基-癸基-苯酚(各異構物)、丁基·辛基十二烷 基-苯酚(各異構物)、丁基-辛基-苯基·苯酚(各異構物)、丁 基-辛基·苯氧基苯酚(各異構物)、丁基_辛基異丙苯基-苯 131505.doc -103- 200948760 齡(各異構物)、丁基-壬基-癸基·苯酚(各異構物)、丁基-壬 基·十二烷基-苯酚(各異構物)、丁基-壬基·苯基-苯酚(各異 構物)、丁基-壬基-苯氧基苯盼(各異構物)、丁基·壬基_異 丙苯基-苯酚(各異構物)、丁基癸基-十二烷基·苯酚(各異 構物)、丁基-癸基·苯基·苯酚(各異構物)' 丁基_癸基_苯氧 基笨酚(各異構物)、丁基-癸基-異丙苯基-苯酚(各異構 物)、丁基-十二烷基-苯酚(各異構物)、丁基-十二烷基_笨 基-笨酚(各異構物)、丁基-十二烷基-苯氧基苯酚(各異 物)、丁基-十一院基-異丙苯基-苯盼(各異構物)、丁基-苯 基··苯酚(各異構物)、丁基_苯基_苯氧基苯酚(各異構物)、 丁基-苯基-異丙笨基-苯酚(各異構物)、戊基·己基庚基苯 酚(各異構物)、戊基-己基-辛基-苯酚(各異構物)、戊基·己 基-壬基-苯酚(各異構物)、戊基-己基_癸基-苯酚(各異構 物)、戊基-己基-十二烷基-苯酚(各異構物)、戊基-己基苯 基-苯酚(各異構物)、戊基_己基_苯氧基苯酚(各異構物)、 ◎ 戊基己基-異丙本基_苯紛(各異構物)、戊基-庚基-辛基-笨 酚(各異構物)、戊基-庚基-壬基-苯酚(各異構物)、戊基-庚 基-癸基-苯酚(各異構物)、戊基_庚基_十二烷基_苯酚(各異 構物)、戊基-庚基-苯基_苯酚(各異構物)、戊基-庚基-苯氧 基苯酚(各異構物)、戊基_庚基_異丙苯基_苯酚(各異構 物)、戊基-辛基-壬基·苯酚(各異構物)、戊基-辛基-癸基_ 苯酚(各異構物)、戊基-辛基-十二烷基-苯酚(各異構物)、 戊基-辛基·笨基-苯酚(各異構物)、戊基_辛基_苯氧基苯酚 (各異構物)、戊基·辛基-異丙苯基-苯酚(各異構物)、戊基_ 131505.doc 200948760 壬基-癸基-苯酴(各異構物)、戊基_壬基·十二烧基_苯紛(各 ㈣物)、戊基-壬基-苯基-苯紛(各異構物)、戍基-壬基·苯 氧基苯紛(各異構物)、&基·壬基·異丙苯基_苯紛(各異構 物)、戊基-癸基-十二烷基·苯酚(各異構物)、戊基_癸基·苯 基-苯酚(各異構物)、戊基-癸基·苯氧基苯酚(各異構物)、 戊基-癸基-異丙苯基-苯酚(各異構物)、戊基_癸基-十二烷 基-苯酚(各異構物)、戊基-癸基_苯基_苯酚(各異構物)、戊 基-癸基-苯氧基苯酚(各異構物)、戊基-癸基·異丙苯基_苯 酚(各異構物)、戊基_十二烷基_苯基_苯酚(各異構物)、戊 基-十二烷基苯氧基苯酚(各異構物)、戊基-十二烷基-異丙 苯基-苯酚(各異構物)、戊基-笨基-苯氧基苯酚(各異構 物)、戊基-苯基-異丙苯基·苯酚(各異構物)、己基_庚基-辛 基·苯酚(各異構物)、己基-庚基-壬基-苯酚(各異構物)、己 基-庚基-癸基-苯酚(各異構物)、己基_庚基_十二烷基苯酚 (各異構物)、己基-庚基-苯基-苯酚(各異構物)、己基-庚 Q 基-苯氧基苯酚(各異構物)、己基-庚基-異丙苯基-苯酚(各 異構物)、己基-辛基-壬基·苯酚(各異構物)、己基_辛基-癸 基-苯酚(各異構物)、己基-辛基-十二烷基-苯酚(各異構 物)、己基-辛基-苯基·苯酚(各異構物)、己基_辛基_苯氧基 苯酚(各異構物)、己基-辛基_異丙苯基_苯酚(各異構物)、 己基-壬基-癸基-苯酚(各異構物)、己基·壬基_十二烷基-笨 酚(各異構物)、己基-壬基-苯基-苯酚(各異構物)、己基·壬 基-苯氧基己基-癸基-十二烷基-苯酚(各異構物)、己基癸 基-苯基-苯酚(各異構物)、己基-癸基-苯氧基苯酚(各異構 131505.doc -105- 200948760 物)、己基-癸基-異丙苯基_苯紛(各異構物)、己基十二烧 基-苯基-苯酚(各異構物)、己基-十二烷基_苯氧基苯酚(各 異構物)、己基·十二烷基-異丙苯基-苯酚(各異構物)' 己 基-苯基-苯氧基苯酚(各異構物)、己基_苯基_異丙苯基笨 酚(各異構物)、庚基·辛基_壬基-苯酚(各異構物)、庚基辛 基-癸基-苯酚(各異構物)、庚基_辛基_十二烷基苯酚(各異 構物)、庚基-辛基_苯基-苯酚(各異構物)、庚基_辛基_苯氧 基苯酚(各異構物)、庚基-辛基-異丙苯基-苯酚(各異構 物)、庚基-壬基·癸基-苯酚(各異構物)、庚基_壬基·十二烷 基-笨酚(各異構物)、庚基-壬基-苯基-苯酚(各異構物)、庚 基-壬基-苯氧基苯酚(各異構物)、庚基_壬基_異丙苯基_笨 酚(各異構物)、庚基-癸基-十二烷基-苯酚(各異構物)、庚 基-癸基-苯基-苯酚(各異構物)、庚基_癸基_苯氧基苯酚(各 異構物)、庚基-癸基-異丙苯基-苯酚(各異構物)、庚基_十 二烷基-苯基-苯酚(各異構物)、庚基_十二烷基_苯氧基苯酚 Q (各異構物)、庚基-十二烷基-異丙苯基-苯酚(各異構物)、 庚基-苯基-苯氧基苯酚(各異構物)、庚基_苯基_異丙苯基_ 苯紛(各異構物)、辛基-壬基-癸基-苯酚(各異構物)、辛基_ 壬基-十二烷基-苯酚(各異構物)、辛基_壬基_苯基_苯酚(各 異構物)、辛基-壬基-苯氧基苯酚(各異構物)、辛基_壬基· 異丙苯基-苯酚(各異構物)、辛基-癸基-十二烷基-苯酚(各 異構物)、辛基-癸基-苯基-苯酚(各異構物)、辛基_癸基_苯 氧基苯酚(各異構物)、辛基_癸基-異丙苯基-苯酚(各異構 物)、辛基-十二烷基-苯基-苯酚(各異構物)、辛基_十二烷 131505.doc -106- 200948760 基-苯氧基苯酚(各異構物)、辛基-十二烷基-異丙苯基-苯酚 (各異構物)、辛基-十二烷基-苯基-苯酚(各異構物)、辛基-十二烷基-苯氧基笨酚(各異構物)、辛基-十二烷基-異丙苯 基-苯酚(各異構物)、辛基-苯基-苯氧基苯酚(各異構物)、 辛基-苯基-異丙苯基-苯酚(各異構物)、壬基-癸基-十二烷 基-苯酚(各異構物)、壬基-癸基-苯基-苯酚(各異構物)、壬 基-癸基-苯氧基苯酚(各異構物)、壬基-癸基·異丙苯基-苯 酚(各異構物)、壬基-十二烷基-苯基-苯酚(各異構物)、壬 〇 基-十二烷基-苯氧基苯酚(各異構物)、壬基-十二烷基-異丙 苯基-苯酚(各異構物)、壬基-苯基-苯氧基苯酚(各異構 物)、壬基-苯基-異丙苯基-苯酚(各異構物)、癸基-十二烷 基-苯基-苯酚(各異構物)、癸基-十二烷基-苯氧基苯酚(各 異構物)、癸基-十二烷基-異丙苯基-苯酚(各異構物)、癸 基-苯基-苯氧基苯酚(各異構物)、癸基-苯基-異丙苯基-苯 酚(各異構物)、十二烷基-苯基-苯氧基苯酚(各異構物)、十 二烷基-苯基-異丙苯基-苯酚(各異構物)、苯基-苯氧基異丙 〇 苯基-苯酚(各異構物)等。該等有機酸中,考慮到該熱分解 反應器之清洗操作後殘留有該清洗溶劑之情形的影響,更 好的是芳香族羥基化合物,進而好的是與碳酸二芳酯與胺 化合物之反應所使用之芳香族羥基化合物為同種化合物。 再者,使用芳香族經基化合物作為清洗之酸之情形時, 自清洗效果之觀點考慮,該芳香族羥基化合物之標準沸點 較好的是,與相當於上述藉由胺基曱酸芳酯之熱分解反應 而生成之異氰酸酯的化合物,或藉由該胺基甲酸芳酯之熱 131505.doc -107- 200948760 分解反應而生成之芳香族羥基化合物的標準沸點具有丨〇〇c 以上之沸點差。 作為使用上述清洗溶劑清洗該熱分解反應器之方法,可 使用自該熱分解反應器上部導入清洗溶劑清洗該熱分解反 應器之方法,將清洗溶劑導入至該熱分解反應器之底部, 使S亥清洗溶劑於該熱分解反應器内向上沸騰而清洗内部之 方法等各種方法。 該清洗操作無需於每次實施該熱分解反應時均實施,可 根據所使用之化合物、運轉速度等而任意決定,較好的是 以運轉時間每1小時〜20000小時進行丨次,更好的是運轉時 間每1天〜1年進行1次’進而好的是運轉時間每丨個月〜工年❹ Benzene-diaminocarbamic acid bis(nonylphenyl) vinegar (each isomer), methyl*diamine, bis(ethylphenyl)acetate formic acid (each isomer), toluene·diaminocarbamic acid - (C: phenyl) vinegar (each isomer), toluene-diaminocarbamic acid di(butylphenyl) vinegar (each isomer), toluene-diaminocarbamic acid bis(pentyl stupyl W ( Each isomer>, toluene-diaminocarbamic acid di(hexylphenyl) brewed (each isomer), toluenediminoformic acid di(glyphosic isomer), toluene-diaminocarbamic acid (Xin: phenyl) brewed (each isomer), α^·(4,4,_methylenediphenyl)·diphenylcarbamate, 'TO, methylene·diphenyl Rhodium (methylphenyl) S, W'-(4,4'-methylene-diphenyl)-diaminopyruic acid di(ethylphenyl), methylene- Diphenyl)-di(propylphenyl) bis-dicarboxylate, iV, iV-(4,4-methylene-diphenyl)-diamino decanoic acid di(butylphenyl) ester, Imidyl-diphenyldiaminocarbamate di(pentylphenyl) ester, ΛΜ'-(4,4.-methylene-diphenyl)-diaminocarbamic acid di(hexylphenyl)S , W-(4,4·-indenylene-diphenyl)-diaminocarbamic acid di(heptylphenyl)S, 7VK4,4'-indenylene-diphenyl)-diaminocarboxylic acid An aryl carbamate such as bis(octylphenyl)ester (each isomer). <Transportation of the urethane-based reaction liquid> The reaction liquid containing the aryl carbamate produced by the above method is preferably taken out from the reactor in which the reaction is carried out, and transported to carry out the amine group. In the reactor for thermal decomposition reaction of aryl formate (hereinafter referred to as a thermal decomposition reactor), the thermal decomposition reaction of the aryl carbamate is carried out. By thus distinguishing the reactor for producing the aryl urethane and the thermal decomposition reactor, the reactor corresponding to each reaction can be selected, and the reaction conditions can be flexibly set, so that the yield of each reaction can be improved. 131505.doc -80- 200948760 The urethanes (4) are easy to form hydrogen bonds between molecules by constituting the amino carboxylic acid urethane bond of the amino carboxylic acid, and therefore have a relatively high melting point. When such an amino aryl phthalate is transported, for example, a shaped processor which pulverizes or processes the solid urethane to a granular form can be carried. However, in the case of transporting the shaped aryl aryl carbamate, it often causes clogging of the transport line, or in order to stably transport a certain amount of amine groups when the shape of the aryl carbamate is not uniform. Aromatic vinegar vinegar* requires a complicated apparatus or a step of controlling the shape of the aryl urethane to a certain range. Therefore, the aryl carbamate is preferably supplied to the thermal decomposition reactor in a liquid form. As a method of supplying the amino aryl decanoate in a liquid form to the thermal decomposition reactor, a method of supplying the reaction mixture obtained by the reaction of a diaryl carbonate and an amine compound can be preferably employed. It is also possible to use a method in which the aryl urethane is heated to a temperature higher than the melting point to allow the aryl carbamate to be liquid and transported, but if it is also considered to prevent the solidification in the crucible, the amino citrate must be used. The ester is heated to a temperature above the melting point (e.g., 200 ° C). In the case where the aryl carbamate is maintained at such a high temperature, the thermal decomposition reaction of the aryl carbamate arylate is often produced at a non-ideal point to produce an isocyanate or to produce a thermally modified reaction of the aryl carbamate as described above. The reaction mixture obtained by the reaction of the diaryl carbonate with the amine compound is liquid at normal temperature (20 ° C), or is solid at room temperature, and may often be lower than the amine carboxylic acid. The temperature at the melting point of the ester becomes a homogeneous liquid', so that the thermal modification reaction of the aryl carbamate aryl ester can be suppressed. 131505.doc • 81 · 200948760 Further, the inventors of the present invention were surprised to find that if the aryl carbamate is transported as a reaction mixture obtained by the reaction of the diaryl carbonate with an amine compound, the inhibition is suppressed. The thermal modification reaction of the aryl urethane or the like results in a decrease in the aryl sulfonium carbamate. The reason for achieving such an effect is not clear, but the inventors of the present invention presumed that 'in the reaction for forming a urea bond represented by the above formula (2), 'the aromatic hydroxy compound contained in the reaction mixture, and the uric acid The ester amino phthalate bond (_nhcoo_) b forms a hydrogen bond, whereby a urethane bond is in a state in which it is inaccessible to each other, and thus it is difficult to generate a reaction for forming a urea bond. The transport of the reaction mixture is preferably in the temperature range of it~i 8〇〇c, more preferably 30°C to 17 (TC, and further preferably 5 (TC~15) in the temperature range of TC. The aryl aryl phthalate is supplied to the thermal decomposition reaction as a reaction mixture obtained by the reaction of a diaryl carbonate and an amine compound, and is supplied to the reaction mixture without performing a vaporization separation operation or the like, and thus has a The advantage of the hydrazine step is simplified. Further, as a method of separating a part or all of the aromatic hydroxy compound from the reaction mixture, it is not necessary to carry out the operation of separating only the aryl carbamate from the reaction mixture. So simplify the steps. <Thermal decomposition reaction of aryl carbamate> Next, an isogastric acid ester is produced by thermal decomposition reaction of an amino aryl phthalate. The thermal decomposition reaction of this embodiment is a reaction of an isocyanate and an aromatic hydroxy compound from an amino aryl phthalate. 131505.doc -82 · 200948760 The reaction temperature is usually a bribe ~ 30 (the range of rc, in order to increase the reaction rate '匕 is better high temperature, on the other hand, sometimes at high temperatures due to the amino carboxylic acid aromatic vinegar and / or as a generation The isocyanic acid vinegar causes the side reaction as described above, so it is preferably in the range of 15 passages to 25 generations. It is (iv) the reaction temperature °; the above-mentioned reactor is provided with a well-known cooling device, and the heating reaction pressure is according to the The type of the compound to be used or the reaction temperature is different, and it may be any one of dust reduction, normal pressure, and dusting, and is usually not limited in the case of the reaction time of the Shishi ία6 (four) D (the residence time in the case of the continuous method). It is usually 0.001 to 100 hours, preferably 0.005 to 50 hours, more preferably 1 to 1 hour. In the present embodiment, it is preferred that no catalyst is used. The catalyst can be used to promote thermal decomposition. Although the reaction is carried out, it is often easy to produce a side reaction caused by the above-mentioned amino formic acid aryl g and/or isocyanate as a product, and thus it is disadvantageous. When the amino carboxylic acid aromatic vinegar is kept at a high temperature for a long period of time, it sometimes occurs as described above. The side reaction, in addition, the sulphuric acid sulphuric acid formed by the thermal decomposition reaction sometimes causes a side reaction as described above. Therefore, the amino carboxylic acid aromatic broth and the isocyanate vinegar are kept at a high temperature for a longer period of time. Preferably, it is as short as possible, and the thermal decomposition reaction is preferably carried out in a continuous process. The so-called continuous process means that a mixture containing the aryl aryl carbamate is continuously supplied to the reactor for thermal decomposition reaction. a method of continuously discharging the produced isocyanate and aromatic hydroxy compound from the thermal decomposition reactor. In the continuous method, a low-boiling component formed by thermal decomposition reaction of an amino aryl phthalate is preferably used as The gas phase component is recovered from the upper part of the thermal decomposition reactor, and the remaining portion is recovered as a liquid phase component from the bottom of the thermal decomposition reactor. All compounds present in the thermal decomposition reactor of J31505.doc -83- 200948760 can also be used. It is recovered as a gas phase component, but by the presence of a liquid phase component in the thermal decomposition reactor, a polycondensation by a side reaction caused by an aryl aryl phthalate and/or an isocyanate can be obtained. The dissolution of the compound compound has the effect of preventing the polymer compound from adhering to and accumulating in the thermal decomposition reactor. The thermal decomposition reaction of the amino aryl phthalate is used to form an isocyanate and an aromatic hydroxy compound, and the compounds are neutralized. One of the compounds is recovered as a gas phase component, and which compound is recovered as a gas phase component depends on the thermal decomposition reaction conditions. Here, the term used in the present embodiment is the heat of the aryl aryl phthalate. The low-boiling component formed by the decomposition reaction corresponds to an aromatic hydroxy compound and/or isocyanate Sa formed by thermal decomposition reaction of the urethane, and particularly refers to a condition for carrying out the thermal decomposition reaction. A compound which can be present as a gas. For example, 'isocyanate formed by a thermal decomposition reaction and an aromatic meso-based compound can be recovered as a gas phase component, and the diaryl vinegar and/or amino phthalate are contained. The method of recovering the liquid phase component. In this method, the isocyanate and the aromatic mercapto compound can be separately recovered by a thermal decomposition reactor. The recovered gas phase component containing an isocyanate is preferably supplied in a gas phase to a steaming unit for purifying and separating the isogas. The recovered gas phase component containing the dissociated acid S may be supplied to the distillation apparatus by a condenser or the like, and then supplied to the distillation apparatus. However, the apparatus is often complicated or the energy used is increased. . On the other hand, a liquid phase component containing a diaryl carbonate and/or an aryl phthalate is recovered from the bottom of the thermal decomposition reactor, and when the liquid component contains a diaryl carbonate, a preferred 131505.doc -84- 200948760 疋' The diaryl carbonate was separated and recovered from the liquid phase component, and the diaryl vinegar was reused. Further, when the liquid phase component contains an aryl carbamate, it is preferred to supply part or all of the liquid phase component to the upper portion of the thermal decomposition reactor to thermally decompose the aryl carbamate. reaction. Here, the upper part of the thermal decomposition reactor, for example, when the thermal decomposition reactor is a distillation column, refers to a section above the second stage which is upward from the bottom of the column by a theoretical number of stages, and the thermal decomposition reactor is a thin film distillation. In the case of a device, the system refers to the upper portion of the heated surface portion. When a part or all of the liquid phase component is supplied to the upper portion of the thermal decomposition reactor, the liquid phase component is preferably maintained at 5 (TC 18 (TC ' is more preferably 7 {rc to 17 〇). <t, and further preferably 100°C to i5〇°c. Further, for example, the isocyanate, the aromatic hydroxy compound and the diaryl carbonate formed by the thermal decomposition reaction can be recovered as a gas phase component, and the liquid phase component containing the aryl aryl phthalate can be thermally decomposed. The bottom of the reactor is recovered by a method. In this method, the recovered Q-containing gas component containing isocyanate is preferably supplied in a vapor phase to a vaporizer apparatus for purifying and separating the isocyanate. Further, a part or all of the liquid phase component containing the aromatic aryl aryl vinegar is supplied to the upper portion of the thermal decomposition reactor, and the amine sulfonium ester is subjected to thermal decomposition reaction again. When a part or all of the liquid phase component is supplied to the upper portion of the thermal decomposition reactor, the liquid phase component is preferably maintained at 疋50C to 180. (:, more preferably 7〇〇c~17〇〇c, and further preferably C~15 0°C and transported. # Further', for example, an isocyanate formed by thermal decomposition reaction and a Fangxiang group can be used. In the base compound, the aromatic trans group-based compound is recovered as a gas phase component 131505.doc-85-200948760. A method of recovering a mixture containing the isocyanate as a liquid phase component from the bottom of the thermal decomposition reactor. The liquid phase component is supplied to the distillation apparatus to recover the isocyanate. When the liquid phase component contains a diaryl carbonate, it is preferred to separate and recycle the diaryl carbonate. In the case where the component contains an aryl carbamate, it is preferred to supply a part or all of the mixture containing the aryl aryl citrate to the upper part of the thermal decomposition reactor to make the amino arsenic vinegar The thermal decomposition reaction is carried out again. When a part or all of the liquid phase component is supplied to the upper portion of the thermal decomposition reactor, the liquid phase component is preferably maintained at 疋50C to 180C', more preferably 70°C to 170°. °C, into Preferably, it is transported at a temperature of from 1 ° C to 150 ° C. As described above, it is preferred that the liquid phase component is recovered from the bottom of the thermal decomposition reactor in the thermal decomposition reaction. The polymerous by-product formed by the side reaction caused by the aryl aryl phthalate and/or the isocyanate is dissolved by the presence of the liquid phase component in the thermal decomposition reactor, and Q is used as the liquid phase component autothermal decomposition reactor. Discharging, thereby reducing the adhesion of the polymer-like compound and accumulating in the thermal decomposition reactor. When the liquid phase component contains an aryl carbamate, part or all of the liquid phase component is supplied thereto. The upper part of the reactor is thermally decomposed, and the amino formic acid is again subjected to a thermal decomposition reaction. When this step is repeated, a polymer-form by-product may be accumulated in the liquid phase component. In this case, the liquid phase component may be obtained. Part or all of it is removed from the reaction system to reduce the accumulation of polymer-like by-products, or may be maintained at a certain concentration. The gas phase component and/or liquid phase component obtained by the above thermal decomposition reaction is 131505. Doc -86- 200948760 The aromatic trans-based compounds and/or diaryl carbonates can be separated and reused separately. Specifically, the aromatic trans-based compounds can be reused as carbonic acid, and the reaction of aromatic and amine compounds The reaction solvent, and/or the aromatic hydroxy compound A of the step (3) for producing a diaryl carbonate, the diaryl carbonate can be reused as a raw material for producing an aryl urethane. The form of the thermal decomposition reactor is not In particular, in order to efficiently recover the gas phase component, it is preferred to use a well-known distillation apparatus. For example, a steaming tower, a multi-stage steaming tower, a multi-tubular reactor, a continuous multi-stage distillation tower can be used. a method of filling a column, a thin film evaporator, a reactor having a support inside, a forced circulation reactor, a falling film evaporator, and a falling drop evaporator, and a method of combining the same, etc. Various methods. From the viewpoint of quickly removing low-boiling components from the reaction system, it is preferred to use a tubular reactor, preferably a tubular thin film evaporator, a tubular falling film evaporator or the like, and a better drying chamber. The resulting low-boiling component is rapidly transferred to a structure in which the gas-liquid contact area of the gas phase is large. The material of the thermal decomposition reactor and the line may be any known material, such as SUS3〇4 or SUS316, SUS316L, if the arylamine carboxylic acid ester or the aromatic hydroxy compound or isocyanate as a product is adversely affected. It is cheaper, so it can be used well. <Cleaning of Thermal Decomposition Reactor> In the present embodiment, the reaction liquid containing an aryl urethane obtained by reacting a diaryl carbonate with an amine compound contains, for example, the above formula (5), formula (6), A polymer-formed side reaction product represented by the formula (7). The side reaction 131505. Doc-87 - 200948760 Most of the two products are easily dissolved in the aromatic mercapto group compound, and therefore are dissolved in the reaction liquid in which the amino acid is used. However, in the thermal decomposition reactor, if most of the aromatic trans group-based compound is discharged as a gas phase component from the thermal decomposition reactor, the side reaction product is often precipitated and adhered to the thermal decomposition reactor. Further, with the thermal decomposition reaction of the urethane carboxylic acid, for example, a polybinder product derived from a side reaction represented by the above formula (8), formula (9), formula (10), or the like, and a by-product of the thermal decomposition reaction are produced. It is also often attached to the ❹=thermal decomposition reactor. When the compound adhering to the thermal decomposition reactor is accumulated to a certain extent, the operation of the thermal decomposition reactor is often hindered, and it is difficult to operate for a long period of time. Therefore, it is necessary to perform the operation of disassembling the thermal decomposition reactor for cleaning. The inventors of the present invention were surprised that the compound attached to the thermal decomposition reactor was found to be easily dissolved in an acid. Based on this knowledge, the following method is considered and completed: when the high-boiling substance is attached to the 35-decomposition reactor, the wall surface of the thermal decomposition reactor is washed with acid, and the high-boiling substances are dissolved and heated therefrom. The decomposition reactor is removed, thereby keeping the inside of the thermal decomposition reactor (especially the wall) clean. By using the method, the thermal decomposition reactor can be separated and the wall surface of the thermal decomposition reactor can be cleaned, so that the operation stop time of the thermal decomposition reactor can be greatly shortened, and the production efficiency of the isocyanate is higher than that of the cleaning acid. In the case of dissolving the polymer-form by-product, it is not particularly limited, and any of an organic acid and an inorganic acid can be used, and an organic acid is preferably used. The organic acid may, for example, be a carboxylic acid, a sulfonic acid, a sulfinic acid, a benzophenone, a female alcohol, a sulfur (tetra), a quinone imine, a fat, or an aromatic extender amine 13I505. Doc-88- 200948760 class, etc., it is preferred to use carboxylic acid, phenol. Examples of such a compound include formic acid, acetic acid, propionic acid, n-butyric acid, isobutyric acid, valeric acid, isovaleric acid, 2-methylbutyric acid, pivalic acid, caproic acid, isohexanoic acid, and decylethyl. Butyric acid, 2,2-dimethylbutyric acid, heptanoic acid (each isomer), octanoic acid (each isomer), citric acid (each isomer), citric acid (each isomer), eleven Acid (each isomer), dodecanoic acid (each isomer), tetradecanoic acid (each isomer), palmitic acid (each isomer), acrylic acid, crotonic acid, isobutyl acid, ethylene Saturated or unsaturated aliphatic monocarboxylic acid compounds such as acetic acid, methacrylic acid, leucovoric acid, glyceryl acid, allyl acetic acid, undecylenic acid (each isomer), oxalic acid, malonic acid, Succinic acid, glutaric acid, adipic acid, pimelic acid (each isomer), suberic acid (each isomer), sebacic acid (each isomer), azelaic acid (each isomer) ), maleic acid, fumaric acid, methyl maleic acid, decyl fumaric acid, glutaconic acid (isomers), itaconic acid, allyl propane Saturated or unsaturated sulphate Saturated or unsaturated aliphatic tricarboxylic acid compounds such as carboxylic acid, propane tricarboxylic acid, propylene propylene tricarboxylic acid, 2'3-methylbutane tricarboxylic acid, benzoic acid, methyl benzoate (various Fragrance, ethyl benzoate (each isomer), propyl benzoate (each isomer), dinonyl benzoate (each isomer), trimethyl benzoic acid (isomeric), etc. An aromatic dicarboxylic acid compound such as phthalic acid, phthalic acid, isophthalic acid, terephthalic acid or methyl isophthalic acid (each isomer), hydrazine, 2,3-benzenetricarboxylic acid , aromatic tris(tetra) compounds such as 1'2'4-benzenetricarboxylic acid and trimellitic acid, benzophenone, methyl-benzoin (each isomer), ethyl-benzoin (each isomer), propyl - Benzene (each isomer), butyl-benzene (each isomer), pentyl-benzene (each isomer), hexyl-benzene age (each isomer), heptyl-benzene (All isomers 131505. Doc •89· 200948760 Octyl-phenol (each isomer), mercapto-phenol (each isomer), mercapto-phenol (each isomer), dodecyl-phenol (each isomer) Monosubstituted phenols such as phenyl-phenol (each isomer), phenoxyphenol (each isomer), cumyl-phenol (each isomer), dimethyl-phenol (isomeric , diethyl-phenol (each isomer), dipropyl-phenol (each isomer), dibutyl phenol (each isomer), dipentyl phenol (each isomer), Dihexyl-phenol (each isomer), diheptyl-phenol (each isomer), dioctyl-phenol (each isomer), dimercapto-phenol (each isomer), dimercapto _Phenol (each isomer), di(dodecyl)-phenol (each isomer), diphenyl-phenol (each isomer), diphenoxyphenol (each isomer)' Cumyl-phenol (each isomer), methyl-ethyl-phenol (each isomer), methyl-propyl-phenol (each isomer), methyl-butyl-phenol (each Isomer), mercapto-pentyl-phenol (each isomer) , methyl-hexyl-phenol (each isomer), mercapto-heptyl-phenol (each isomer), mercapto-octyl-phenol (each isomer), mercapto-fluorenyl-phenol ( Each isomer), methyl-mercapto-phenol (each isomer), mercapto-dodecylphenol (each isomer), methyl-phenyl-benzene (each isomer), Methyl-phenoxybenzene (each isomer), methyl-isopropylphenyl-phenol (each isomer), ethyl-propyl-phenol (each isomer), ethyl-butyl - phenol (each isomer), ethyl-pentyl-phenol (each isomer), ethyl-hexyl-phenol (each isomer), ethyl-heptyl-phenol (each isomer), Ethyl-octyl-phenol (each isomer), ethyl-fluorenyl-phenol (each isomer), ethyl-mercapto-phenol (each isomer), ethyl-dodecyl group Benzine (each isomer), ethyl-phenyl-phenol (each isomer), ethylphenoxyphenol (each isomer), ethyl-cumylphenol-phenol (each isomer) ), propyl-butyl-phenol (each isomer), propyl-pentyl-phenol (each isomer), propyl·131505 . Doc -90- 200948760 Hexyl-phenol (each isomer), propyl-heptyl-phenol (each isomer), propyl-octyl·phenol (each isomer), propyl-mercapto group_ Phenol (each isomer), propyl-mercapto-phenol (each isomer), propyl-dodecyl-phenol (each isomer), propyl-phenyl-p-phenol (isoisomer) , propyl-phenoxyphenol (each isomer), propyl-isopropylphenyl·phenol (each isomer), butyl-pentyl-phenol (each isomer), butyl- Hexyl-phenol (each isomer), butyl-heptyl-phenol (each isomer), butyl-octyl-phenol (each isomer), butyl-mercapto-phenol (isomeric) , butyl-mercapto-phenol (each isomer), butyl-dodecyl-phenol (each isomer), butyl-phenyl-phenol (each isomer), butyl _ Phenoxyphenol (each isomer), butyl-cumyl-phenol (each isomer), pentyl-hexyl-phenol (each isomer), pentyl-heptyl-phenol (variety) Structure), amyl _ octyl phenol (each isomer), pentyl-fluorenyl phenol (iso areomers) ), pentyl hydrazino-phenol (each isomer), pentyl-dodecyl phenol (each isomer), pentyl phenyl-phenol (each isomer), pentyl-phenoxy Phenol (each isomer), pentyl-cumyl-phenol (each isomer), hexyl-heptyl phenol (each Q isomer), hexyl-octyl-phenol (each isomer) ), hexyl-fluorenyl-phenol (each isomer), hexyl-fluorenyl phenol (each isomer), hexyl-dodecyl-phenol (each isomer), hexyl-phenyl-phenol ( Each isomer), hexylphenoxyphenol (each isomer), hexyl-cumylphenol-phenol (each isomer), heptyl-octyl-phenol (each isomer), heptyl group Mercapto-phenol (each isomer), heptyl-decyl-phenol (each isomer), heptyl-dodecyl-phenol (each isomer, heptyl-phenyl-phenol (each isomer) ), heptyl-phenoxyphenol (each isomer), heptyl-isopropylphenyl-phenol (each isomer), octyl-fluorenyl-phenol (each isomer), octyl·癸Base-phenol (each isomer), octyl-dodecyl-stupid 13I505. Doc -91 · 200948760 Phenol (each isomer), octyl-phenyl-phenol (each isomer), octylphenoxyphenol (each isomer), octyl-isopropylphenyl-phenol ( Each isomer) 'mercapto- fluorenyl phenol (each isomer), fluorenyl-dodecyl-polyphenol (each isomer), fluorenyl-stupyl-stupylphenol (each isomer) ), fluorenyl-phenoxy abundance (each isomer), mercapto-cumyl-benzoquinone (isomers), twelfth phenyl phenyl benzene (all isomers), Dodecyl-phenoxyphenol (each isomer), dodecyl-isopropyl-based-division--(iso-isomers) and other disubstituted benzenes, trimethyl-benzene (various Structure), triethyl-phenol (each isomer), tripropyl-benzene (each isomer), dibutyl-benzene (each isomer), tripentyl-benzene (each Isomers), trihexyl-phenol (each isomer), triheptyl-phenol (each isomer), trioctyl-phenol (each isomer), tridecyl-phenol (each isomer) ), tridecyl-phenol (each isomer), tris(dodecyl)-phenol (each isomer), three Base-bens (each isomer), triphenyloxybenzene (each isomer), triisopropylphenyl·phenol (each isomer), dimethyl-ethylphenol (isoisomer) , dimercapto-propyl-phenol (each isomer), dimethyl-butyl-phenol (each isomer), dimethyl-pentyl-phenol (each isomer), diterpene -hexyl-phenol (each isomer), dimethyl-heptyl-phenol (each isomer), dimercapto-octyl-phenol (each isomer), dimercapto-indenyl-phenol (each isomer), dimethyl-hydrazino-p-phenol (each isomer), didecyl-dodecyl-phenol (each isomer), dimercapto-phenyl-phenol ( Each isomer), dimercapto-phenoxyphenol (each isomer), dimethyl-isopropylphenyl-phenol (each isomer), diethyl-fluorenyl group Structure), diethyl-propyl-benzene (each isomer), diethyl-butyl-phenol (each isomer), diethyl-pentyl-phenol (each isomer), Diethyl-hexyl-phenol (each isomer), diethyl-heptyl-phenol (each isomer), 131505. Doc •92- 200948760—ethyl-octyl-phenol (each isomer), diethyl-mercapto-phenol (each isomer), diethyl-mercapto-phenol (each isomer), Diethyl-dodecyl-phenol (each isomer), diethyl-phenyl-phenol (each isomer), diethylphenoxyphenol (isomeric), diethyl - cumyl phenyl phenol (each isomer), dipropyl-methyl-phenol (each isomer), dipropyl-ethyl phenol (each isomer), dipropyl-butyl -Phenol (each isomer), dipropyl-pentyl-phenol (each isomer), dipropyl-hexyl-phenol (each isomer), dipropyl-heptyl-benzoquinone (each isomer), dipropyl-octyl-phenol (each isomer), dipropyl decyl phenol (each isomer), dipropyl-fluorenyl phenol (each isomer) , dipropyl-dodecyl-phenol (each isomer), dipropyl-phenyl-phenol (each isomer), dipropyl-phenoxyphenol (each isomer), dipropyl -Phenylphenyl·phenol (each isomer), dibutyl-mercapto-phenol (each isomer), dibutyl -ethyl-phenol (each isomer), dibutyl-propyl-phenol (each isomer), dibutyl-pentyl-phenol (each isomer), dibutyl-hexyl-phenol (each isomer), monobutyl-heptyl-phenol (each isomer), dibutyl-octyl-phenol (each isomer), dibutyl-mercapto-phenol (each isomer) ), dibutyl-nonylphenol (each isomer), dibutyl-dodecyl-phenol (each isomer), dibutyl styryl-phenol (each isomer), dibutyl -phenoxyphenol (each isomer), dibutyl cumene-phenol (each isomer), dipentyl-methyl-phenol (each isomer), dipentyl-ethyl - phenol (each isomer), dipentyl-propyl-phenol (each isomer), dipentyl-butyl-phenol (each isomer), dipentyl-hexylphenol (isoisomer) , dipentyl-heptyl-phenol (each isomer), dipentyloctyl-phenol (each isomer), dipentyl-mercapto-p-phenol (isomeric), dipentane Base thiol-phenol (each isomer), dipentyl-dodecyl-phenol (isomeric 131505. Doc-93- 200948760), dipentyl-phenyl-phenol (each isomer), dipentyl-phenoxyphenol (each isomer), dipentyl-iso. Propyl phenyl-phenol (each isomer), dihexyl-methyl-phenol (each isomer), dihexyl-ethyl-phenol (each isomer), dihexyl-propyl-phenol (different Structure), dihexyl-butyl-phenol (each isomer), dihexyl-pentyl-phenol (each isomer), dihexyl-heptyl-phenol (each isomer), dihexyl-octyl -Phenol (each isomer), dihexyl-fluorenyl-benzoic acid (each isomer), dihexyl-fluorenyl-benzoic acid (each isomer), dihexyldecyl-dialkyl-phenol ( Each isomer), dihexyl-phenyl-phenol (each isomer), monohexyl-p-oxybenzone (each isomer), dihexyl-cumenyl phenol (each isomer) , diheptyl-methyl phenol (each isomer), diheptyl-ethyl phenol (each isomer), diheptyl-propyl-phenol (each isomer), diheptyl _ Butyl-phenol (each isomer), diheptyl-pentyl-phenol (each isomer), diheptyl-hexyl-phenol (each isomer), diheptyl-octyl-phenol (each Isomer), heptyl-indenyl-phenol (isomeric), diheptane _nonylphenol (each isomer), monoheptyl-dodecyl-benzoic acid (each isomer), diheptyl-phenyl-cupolic phenol (each isomer), diheptyl group Phenoxyphenol (each isomer), diheptyl-isopropylphenyl-phenol (each isomer), dioctyl-fluorenyl-phenol (each isomer), dioctyl-ethyl- Phenol (each isomer), dioctyl-propyl-phenol (each isomer), dioctyl-butyl-phenol (each isomer) 'dioctyl-pentyl-phenol (isoisomer) , dioctyl-hexyl-phenol (each isomer), dioctyl-heptyl-phenol (each isomer), dioctyl-fluorenyl-phenol (each isomer), dioctyl - mercaptophenol (each isomer), dioctyl-dodecylphenol (each isomer), octyl-phenyl-phenol (each isomer), dioctyl-phenyloxy Phenol (each isomer), dioctyl-isopropylphenyl-phenol (each isomer), dimercapto-methyl-benzene 131505. Doc -94- 200948760 (each isomer), dimercapto-ethyl-phenol (each isomer), dimercapto-propyl-phenol (each isomer), dimercapto-butyl- Phenol (each isomer), dimercapto-pentyl-phenol (each isomer), dimercapto-hexyl-phenol (each isomer), monodecyl-heptyl-phenol (each isomer) ), dimercapto-octyl-phenol (each isomer), dimercapto-fluorenyl-benzoic acid (isomeric), dimercapto-t-cylylene-benzene (each isomer) , dimercapto-phenyl-benzene (each isomer), dimercapto-p-oxyphenol (each isomer), dimercapto-cumyl-phenol (each isomer), two Mercapto-methyl-phenol (each isomer), dimercapto-ethyl-phenol (isomeric product), dimercapto-propyl-phenol (isomeric), dimercapto-butyl -Phenol (each isomer), Dimercapto-pentyl-phenol (each isomer), Dimercapto-hexylbenzene (each isomer), Dimercapto-heptyl-Benzene (each Isomers), dimercaptooctyl-present (each isomer), dimercapto-mercapto-phenyl age (each isomer), Mercapto-eleven-alkyl-isolated (iso-isomers) 'dimercapto-phenyl-phenanthrene (each isomer), dimercapto-phenoxybenzene (each isomer), Dimercapto- isopropylidene phenol (each isomer), di(dodecyl)-fluorenyl-phenol (each isomer), di-Q (dodecyl)-ethyl-phenol (each isomer), di(dodecylpropylphenol (each isomer), di(dodecyl)-butyl-phenol (each isomer), di(dodecyl)- Pentyl-phenol (each isomer), bis(dodecyl)-hexyl-phenol (each isomer), di(dodecyl)-heptyl-p-phenol (each isomer), two (dodecyl)-octyl-phenol (each isomer), di(dodecyl)decylphenol (each isomer), di(dodecyl)-fluorenyl-phenol (each Isomer), di(dodecyl)-dodecyl-phenol (each isomer), di(dodecyl)-phenyl-phenol (each isomer), di(dodecane) Phenoxyphenol (each isomer), di(dodecyl)-isopropylphenyl-phenyl (isomer), diphenyl 131505. Doc -95- 200948760 base-p-phenol (each isomer), diphenyl-ethylphenol (each isomer), di-p-propyl-phenol (each isomer), di-phenyl group -Phenol (each isomer), diphenyl-pentyl-phenol (each isomer), diphenyl-hexyl-phenol (each isomer), diphenyl-heptyl-phenol (different Structure), diphenyl-octyl-phenol (each isomer), diphenyl-mercapto-p-phenol (each isomer), diphenyl-mercapto-p-phenol (isomeric) , diphenyl-dodecyl-phenol (each isomer), diphenyl-phenoxyphenol (each isomer), diphenyl-cumylphenyl-phenol (each isomer), Diphenoxymethyl-phenol (each isomer), diphenoxyethyl-phenol (each isomer), diphenoxypropyl-phenol (each isomer), diphenoxybutyrate Base-p-phenol (each isomer), diphenoxypentyl-phenol (each isomer), diphenoxyhexyl-phenol (each isomer), diphenoxyheptyl-phenol (each Isomers), diphenoxyoctyl-phenol (each isomer), diphenoxynonyl-phenol (each Structure), diphenoxynonyl-phenol (each isomer), diphenoxydodecyl-phenol (each isomer), diphenoxyphenyl-phenol (each isomer) , diphenoxyisopropylphenyl·•phenol (each isomer), diisopropylphenyl-methyl-benzene Q phenol (each isomer), dicumyl-ethyl-phenol (each Isomers), diisopropylphenyl-propyl-polyphenol (each isomer), dicumyl-butyl-phenol (each isomer), diisopropylphenyl-pentyl-phenol (each isomer), dicumyl-hexyl-phenol (each isomer), diisopropylphenylheptylphenol (each isomer) diisopropylphenyl-octyl-phenol (different Structure), diisopropylphenylindolyl-phenol (each isomer), diisopropylphenyl-fluorenyl-phenol (each isomer), dicumyl-dodecyl-phenol ( Each isomer), dicumylphenyl-phenol (each isomer), diisopropylphenyl-phenoxyphenol (each isomer), methylethyl-propyl-phenol (each Isomer), methyl-ethyl-butyl-phenol (each isomer), 131505. Doc -96- 200948760 Methyl-ethyl-pentyl-phenol (each isomer), methyl-ethylhexyl-phenol (each isomer), methyl-ethylheptyl-phenol (variety) Structure), methyl-ethyl-octyl-phenol (each isomer), mercapto-ethyl-fluorenyl-phenol (each isomer), methyl-ethyl-decyl-phenol (each Isomers), methyl-ethyldodecanyl-phenol (each isomer), methyl-ethyl-phenyl-phenol (each isomer), mercapto-ethylphenoxyphenol (each isomer), methyl-ethyl-cumyl-phenol (each isomer), mercapto-propyl-mercapto-propyl-butyl-phenol (each isomer), A -propyl-pentyl-phenol (each isomer), methyl-propyl-hexyl_© phenol (each isomer), methyl-propyl-heptyl-phenol (each isomer), Methyl-propyl-octylphenol (each isomer), methyl-propyl-mercapto-phenol (each isomer), methyl-propyl-indolyl-phenol (each isomer) , methyl-propyl-dodecyl-polyphenol (each isomer), mercapto-propyl-phenylphenol (each isomer), methyl-propyl-benzene Phenol (each isomer), methyl-propyl-cumyl-benzophenone (each isomer), methyl butyl-pentyl-benzene age (each isomer), methyl- Butyl-hexyl-phenol (each isomer), mercapto-butyl-heptyl-phenol (isomeric & thiol), mercapto-butyl-octyl-phenol (each isomer), A — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — Methyl-butyl-phenyl-phenol (each isomer), methyl butyl phenoxy phenol (each isomer), methyl butyl _ cumyl phenol (isoisomer) , methyl-pentyl-hexyl-phenol (each isomer), mercapto-pentyl-heptyl-phenol (each isomer), mercapto-pentyl-octyl-phenol (isomeric) , fluorenyl-pentyl-fluorenyl-phenol (each isomer), fluorenyl _ pentyl-fluorenyl-stupid (each isomer), fluorenyl _ «pentyl _ 12 base Benzine (each isomer), mercapto-pentyl phenyl-phenol (each isomer), methyl-pentyl-stupid 131505. Doc •97· 200948760 oxyphenol (each isomer), methyl-pentyl cumene-phenol (each isomer), methyl-hexyl-heptyl-phenol (each isomer), Methyl·hexyl-octyl_phenol (each isomer), methyl-hexyl-mercapto-phenol (each isomer), methyl-hexyl-fluorenyl-phenol (each isomer), methyl -hexyl-dodecyl-phenol (each isomer), methyl-hexyl-phenyl-phenol (each isomer), methylhexyl-phenoxyphenol (each isomer), methyl group_ Hexyl cumylphenol (each isomer), ethyl-propyl-butyl-phenol (each isomer), ethyl-propyl-pentyl-phenol (each isomer), ethyl -propyl-hexyl-phenol (each isomer), ethyl-propyl-heptyl-phenol (each isomer), ethyl-propyl-octyl-phenol (each isomer), ethyl -propyl-decyl-phenol (each isomer), ethylpropyl decyl-phenol (each isomer), ethyl-propyl·dodecyl-phenol (each isomer ethyl-propyl) -Phenyl-phenol (each isomer), ethyl-propyl-phenoxyphenol (each isomer) Ethyl-propyl-isopropylphenyl·phenol (each isomer), ethyl-butyl-phenol (each isomer), ethyl-butyl-pentyl-phenol (each isomer), Ethyl-butyl-hexyl phenol (each isomer), ethyl-butyl-heptyl-phenol Q (each isomer), ethyl-butyl-octyl-phenol (each isomer) , ethyl butyl-mercapto-phenol (each isomer), ethyl-butyl decyl phenol (each isomer), ethyl-butyl-dodecyl phenol (isoisomer) , ethyl-butyl phenyl-phenol (each isomer), ethyl-butyl-phenoxyphenol (each isomer), ethyl butyl-isopropylphenyl phenol ( Each isomer) 'ethyl-pentyl-hexylphenol (each isomer), ethyl·pentyl-heptyl-benzene (each isomer), ethyl-pentyl-octyl-phenol ( Each isomer), ethyl·pentyl-nonylphenol (each foreign matter), ethyl-pentyl-mercapto-phenol (each isomer), ethylpentyl decyl-benzene (each Isomer), ethyl-fluorenyl, stupyl-phenol (each isomer), $ Qin 131505. Doc 200948760 yl-pentyl-phenoxyphenol (each isomer), ethyl-pentyl-cumylphenol (each isomer), ethyl-hexyl-heptyl-phenol (each isomer) ), ethyl-hexyl-octyl-phenol (each isomer), ethyl-hexyl-fluorenyl-phenol (each isomer), ethyl-hexyl-decyl-phenol (each isomer), Ethyl-hexyl-dodecyl-phenol (each isomer), ethyl-hexyl-phenyl-phenol (each isomer), ethylhexyl-phenoxyphenol (each isomer), Ethyl-hexyl-cumylphenyl-phenol (each isomer), ethyl-heptyl-octyl-phenol (each isomer), ethyl-heptyl-decyl-phenol (each isomer) ), ethyl-heptyl-fluorenyl-p-phenol (each isomer), ethylheptyl-dodecyl-phenol (each isomer), ethyl-heptyl-phenyl-phenol ( Each isomer), ethyl-heptyl-phenoxyphenol (each isomer), ethyl-heptyl-isopropylphenyl-phenol (each isomer), ethyl-octyl-phenol ( Each isomer), ethyl-octyl-fluorenyl-phenol (each isomer), ethyl-octyl-mercapto-phenyl age (variety) , ethyl-octyl-dodecylphenol (each isomer), ethyl-octyl-phenyl-phenol (each isomer), ethyl-octyl-phenoxyphenol (each Isomers), ethyl-octyl-isopropylphenyl-phenol (each isomer), Q ethyl-mercapto-indolyl-phenol (each isomer), ethyl-mercapto- 12 Alkyl-benzoin (each isomer), ethyl-mercapto-phenyl-phenol (each isomer), ethylmercapto-phenoxyphenol (each isomer), ethyl-mercapto group - cumyl phenol (each isomer), ethyl-mercapto-dodecyl-phenol (each isomer), ethyl-mercapto-phenyl-phenol (each isomer), Ethyl-indenyl-phenoxyphenol (each isomer), ethyl-mercapto-isopropylphenyl·phenol (each isomer), ethyl-dodecyl-phenyl-phenol (each Isomer), ethyl-dodecyl-phenoxybenz (each isomer), ethyl-dodecyl-isopropylidene phenol (each isomer), ethyl-benzene -Phenoxybenzene (each isomer), ethyl-phenyl-cumylbenzene 131505. Doc -99· 200948760 Phenol (each isomer), propyl-butyl-phenol (each isomer), propyl-butyl-pentyl-phenol (each isomer), propyl·butyl- Hexyl-phenol (each isomer), propyl-butyl-heptyl-phenol (each isomer), propyl-butyl-octyl-phenol (each isomer), propyl-butyl- Mercapto-phenol (each isomer), propyl-butyl-mercapto-phenol (each isomer), propyl-butyl-dodecyl-phenol (each isomer), propyl- Butyl phenyl phenol (each isomer), propyl butyl phenoxy phenol (each isomer), propyl-butyl-isopropyl phenyl-phenol (each isomer) ), propyl-pentyl-phenol (each isomer), propyl-pentyl-hexyl-phenol (isomeric product), propyl-pentyl-heptyl-phenol (each isomer), Propyl-pentyl-octyl _ present age (each isomer), propyl-pentyl-fluorenyl-benzoic acid (each isomer), propyl-pentyl-fluorenyl-benzene (variety) Structure), propyl-pentyl-dodecyl-benzene (iso-isomer), propyl-pentyl-phenyl-phenol (each isomer), propylpentyl Essentially (each isomer), propyl·pentyl-cumyl-benzene (each isomer), propyl-hexyl-benzone (each isomer), propyl·hexyl-heptyl _ phenol (each isomer), propyl-hexyl-octyl-phenol (each isomer), propyl-hexyl fluorenyl-fluorenyl-phenol (each isomer), propyl-hexyl-fluorene Phenol (each isomer), propyl·hexyl-dodecyl-phenol (each isomer), propyl·hexyl-styl-phenol (each isomer), propyl-hexyl-benzene Oxyphenol (each isomer), propyl-hexyl-cumyl-phenol (each isomer), propyl-heptyl octylphenol (each isomer), propyl-heptyl-hydrazine -Phenol (each isomer), propyl-heptyl-decyl-phenol (each isomer), propyl-heptyl-dodecyl-phenol (each isomer)' propyl-g -Phenyl-phenol (each isomer), propylheptyl phenoxy phenol (each isomer), propyl-heptyl-isopropylphenyl-phenol (each isomer), propyl- Octyl-fluorenyl-phenol (each isomer), propyl-octyl fluorenyl _ 131505. Doc •100- 200948760 Benzene (each isomer), propyl-octyl-dodecyl-phenol (each isomer), propyl-octyl-phenyl-phenol (each isomer), Propyl-octyl-phenoxyphenol (each isomer), propyl-octyl-isopropylphenyl-phenol (each isomer), propyl-mercapto-mercapto-phenol (isomeric , propyl-mercapto-dodecyl phenol (each isomer), propyl-mercapto-phenyl-phenol (each isomer), propyl-mercapto-phenoxyphenol ( Each isomer), propyl-hydrazino-cumyl-phenol (each isomer), propyl-indenyl-dodecylphenol (each isomer), propyl-mercapto group_ Phenyl-phenol (each isomer), propyl-mercapto-phenoxyphenol (each isomer), propyl-mercapto-isopropylphenyl-phenol (each isomer), propyl- Dodecyl-phenyl-phenol (each isomer), propyl-dodecyl-phenoxyphenol (each isomer), propyl-dodecyl-cumylphenol-phenol ( Each isomer), mercapto-phenol (each isomer), ethyl-phenol (each isomer), propyl-phenol (each isomer) Butyl-phenol (each isomer), pentyl-phenol (each isomer), hexyl-phenol (each isomer), heptyl-phenol (each isomer), octyl-phenol (variety) Structure), mercapto-phenol (each isomer), mercapto-phenol (each isomer), decadecyl-phenol (each isomer), phenyl-phenol (each isomer) , phenoxyphenol (each isomer), cumyl-phenol (each isomer), propyl-phenyl-phenoxyphenol (each isomer), propyl-phenyl-isopropyl Phenyl-phenol (each isomer)' propyl-phenoxyisopropylphenyl-phenol (each isomer), propyl-butyl-pentyl-phenol (each isomer), propyl -butyl-hexyl-phenol (each isomer), propyl-butyl-heptyl-phenol (each isomer), propyl-butyl-octyl-phenol (each isomer), propyl -butyl-mercapto-p-phenol (each isomer), propylbutyl-decyl-phenol (each isomer), propyl-butyl-dodecyl-phenol (each isomer) , propyl-butyl-phenyl-phenol (each isomer), propylbutyl oxyphylline 131505. Doc -101- 200948760 phenol (each isomer), propyl-butyl-isopropylphenyl-phenol (each isomer), propyl-pentyl-benzene (each isomer), propyl -pentyl-hexyl-phenol (each isomer), propyl-pentyl-heptyl-phenol (each isomer), propyl-pentyl-octyl-phenol (each isomer), propyl -pentyl-fluorenyl-phenol (each isomer), propyl-pentyl-mercapto-benzene (each isomer), propyl-pentyl-dodecyl-phenol (each isomer) ), propyl-pentyl-phenyl-phenol (each isomer), propyl-pentyl-phenoxyphenol (each isomer), propyl-pentyl-cumylphenol (variety) Structure), propyl-hexyl-heptyl-phenol (each isomer), propyl-hexyl benzyl-octyl-phenol (each isomer) 'propyl-hexyl decyl phenol (variety) Structure), propyl-hexyl-decyl-phenol (each isomer), propyl·hexyl-dodecyl-phenol (each isomer), propyl-hexyl-phenyl-phenol (variety) Structure), propyl-hexyl-presentoxyl (each isomer), propyl-hexyl-cumyl-phenol (each isomer) , propyl-heptyl-octyl phenol (each isomer), propyl-heptyl-fluorenyl-phenol (each isomer), propyl-heptyl-fluorenyl-phenol (each isomer) ), propyl-heptyl-dodecyl-phenol (each isomer), propyl-heptylbenzene Q-phenylphenol (each isomer), propyl-heptylphenoxyphenol ( Each isomer), propyl-heptyl-cumyl-phenol (each isomer), propyl-octyldecyl-phenol (each isomer), propyl-octyl-decyl-phenol ( Each isomer), propyl-octyl-dodecyl-phenol (each isomer), propyl-octyl-phenyl-phenol (each isomer), propyl-octyl-phenoxy Phenol (each isomer), propyl-octyl-isopropylphenyl-phenol (each isomer), propyl-mercapto-mercapto-phenol (each isomer), propyl-fluorenyl - dodecyl-phenol (each isomer), propyl decyl-phenyl-phenol (each isomer), propyl-mercapto-phenoxyphenol (each isomer), propyl- Mercapto-cumenyl-phenol (each isomer), propyl-fluorenyl _ 131505. Doc •102- 200948760 base-phenol (each isomer), propyl-mercapto-phenyl-phenol (each isomer), propyl·nonyl-phenoxyphenol (each isomer), Propyl-fluorenyl-cumylphenyl-benzoate (each isomer), propyl-dodecyl-phenyl-phenol (each isomer), propyl-dodecyl-phenoxy Phenol (each isomer), cumene-phenol (each isomer) 'propyl-phenyl-phenoxyphenol (each isomer), propyl-phenyl-cumylphenol-phenol (each isomer), butyl-pentyl-hexyl-phenol (each isomer), butyl-pentyl-heptyl-phenol (each isomer), butyl-pentyl-octyl-phenol (each isomer), butyl-pentyl-fluorenyl-phenol (each isomer), butyl _ pentyl-mercapto-phenol (each isomer), butyl-pentyl-tweldium Alkyl-phenol (each isomer), butyl-pentyl-phenyl-phenol (each isomer), butyl-pentyl-phenoxyphenol (each isomer), butyl-pentyl _Phenylphenyl-phenol (each isomer), butyl-hexylheptyl-phenol (each isomer), butyl-hexyl-octyl_benzene Phenol (each isomer), butyl-hexyl-fluorenyl-phenol (each isomer), butyl-hexyl-fluorenyl-phenol (each isomer), butyl-hexyl-dodecyl group Phenol (each isomer), butyl-hexyl-phenyl-phenol (each isomer), butylhexyl-benzene oxyphenol (each isomer), butyl-hexyl cumene _ Phenol (each isomer), butyl-heptyl-octyl phenol (each isomer), butyl-heptyl-fluorenyl phenol (each isomer), butyl-heptyl-fluorenyl - phenol (each isomer), butyl-heptyl-dodecyl-phenol (each isomer), butyl-heptyl-phenyl-phenol (each isomer), butyl heptyl -phenoxyphenol (each isomer), butyl.heptyl-cumene-phenol (each isomer), butyl-octyl-nonylphenol (each isomer), butyl- Octyl-fluorenyl-phenol (each isomer), butyl-octyldodecyl-phenol (each isomer), butyl-octyl-phenyl-phenol (each isomer), Base-octylphenoxyphenol (each isomer), butyl-octyl cumyl-benzene 131505. Doc -103- 200948760 Age (each isomer), butyl-mercapto-fluorenyl phenol (each isomer), butyl-mercapto-dodecyl-phenol (each isomer), butyl Base-fluorenyl phenyl-phenol (each isomer), butyl-mercapto-phenoxybenz (each isomer), butyl fluorenyl cumene-phenol (isoisomer) , butyl decyl-dodecyl phenol (each isomer), butyl-fluorenyl phenyl phenol (each isomer) 'butyl 癸 _ _ phenoxy phenol ( Each isomer), butyl-mercapto-cumyl-phenol (each isomer), butyl-dodecyl-phenol (each isomer), butyl-dodecyl group -Phenols (each isomer), butyl-dodecyl-phenoxyphenol (each foreign matter), butyl-deuterine-p-isopropylphenyl-benzene (each isomer), Butyl-phenyl·.phenol (each isomer), butyl-phenyl-phenoxyphenol (each isomer), butyl-phenyl-isopropylphenyl-phenol (each isomer) , pentyl-hexylheptylphenol (each isomer), amyl-hexyl-octyl-phenol (each isomer), pentyl-hexyl-fluorenyl- Phenol (each isomer), amyl-hexyl-fluorenyl-phenol (each isomer), amyl-hexyl-dodecyl-phenol (each isomer), amyl-hexylphenyl-phenol (each isomer), amyl-hexyl-phenoxyphenol (each isomer), ◎ pentylhexyl-isopropylidene Benzene (each isomer), pentyl-heptyl-octyl - phenol (each isomer), pentyl-heptyl-fluorenyl-phenol (each isomer), pentyl-heptyl-fluorenyl-phenol (each isomer), pentyl-heptyl _ Dodecyl-phenol (each isomer), pentyl-heptyl-phenyl-phenol (each isomer), pentyl-heptyl-phenoxyphenol (each isomer), pentyl group Heptyl-cumylphenyl-phenol (each isomer), amyl-octyl-fluorenyl-phenol (each isomer), pentyl-octyl-fluorenyl-phenol (each isomer), Amyl-octyl-dodecyl-phenol (each isomer), amyl-octyl-styl-phenol (each isomer), amyl-octyl-phenoxyphenol (isomeric) , pentyl octyl-isopropylphenyl-phenol (each isomer), pentyl _ 131505. Doc 200948760 fluorenyl-fluorenyl-benzoquinone (each isomer), pentyl-mercapto- 12-alkyl group Benzene (each (four)), pentyl-fluorenyl-phenyl-benzene (variety) Structure), fluorenyl-fluorenyl phenoxybenzene (each isomer), & yl thiol cumene benzophenone (isomeric), pentyl-fluorenyl-ten Dialkyl·phenol (each isomer), amyl-mercapto-phenyl-phenol (each isomer), pentyl-fluorenylphenoxyphenol (each isomer), pentyl-hydrazine -Phenylphenyl-phenol (each isomer), amyl-mercapto-dodecyl-phenol (each isomer), pentyl-fluorenyl-phenyl-phenol (each isomer) , pentyl-fluorenyl-phenoxyphenol (each isomer), pentyl-fluorenyl-cumenyl-phenol (each isomer), pentyl-dodecyl-phenyl-phenol ( Each isomer), pentyl-dodecylphenoxyphenol (each isomer), amyl-dodecyl-isopropylphenyl-phenol (each isomer), pentyl-styl -phenoxyphenol (each isomer), pentyl-phenyl-isopropylphenyl·phenol (each isomer), hexyl-heptyl-octyl·phenol (each Isomers), hexyl-heptyl-fluorenyl-phenol (each isomer), hexyl-heptyl-fluorenyl-phenol (each isomer), hexyl-heptyl-dodecylphenol (variety) Structure), hexyl-heptyl-phenyl-phenol (each isomer), hexyl-heptyl-yl-phenoxyphenol (each isomer), hexyl-heptyl-isopropylphenyl-phenol (each Isomers), hexyl-octyl-fluorenyl phenol (each isomer), hexyl-octyl-fluorenyl-phenol (each isomer), hexyl-octyl-dodecyl-phenol (each Isomers), hexyl-octyl-phenyl-phenol (each isomer), hexyl-octyl-phenoxyphenol (each isomer), hexyl-octyl-cumylphenyl-phenol (each Isomers), hexyl-fluorenyl-fluorenyl-phenol (each isomer), hexyl fluorenyl-dodecyl-phenol (each isomer), hexyl-mercapto-phenyl-phenol ( Each isomer), hexyl fluorenyl-phenoxyhexyl-fluorenyl-dodecyl-phenol (each isomer), hexyldecyl-phenyl-phenol (each isomer), hexyl-oxime Ketophenoxyphenol (isomeric 131505. Doc-105- 200948760), hexyl-mercapto-isopropylphenyl-benzene (each isomer), hexyldodecyl-phenyl-phenol (each isomer), hexyl-dodecyl -Phenoxyphenol (each isomer), hexyl-dodecyl-isopropylphenyl-phenol (each isomer) 'hexyl-phenyl-phenoxyphenol (each isomer), hexyl _ Phenyl-cumylphenol (each isomer), heptyl-octyl-decyl-phenol (each isomer), heptyloctyl-decyl-phenol (each isomer), g - octyl-dodecylphenol (each isomer), heptyl-octyl-phenyl-phenol (each isomer), heptyl-octyl-phenoxyphenol (each isomer) , heptyl-octyl-isopropylphenyl-phenol (each isomer), heptyl-fluorenyl-decyl-phenol (each isomer), heptyl-fluorenyl-dodecyl-phenol (each isomer), heptyl-fluorenyl-phenyl-phenol (each isomer), heptyl-fluorenyl-phenoxyphenol (each isomer), heptyl-fluorenyl-cumene —Phenol (each isomer), heptyl-fluorenyl-dodecyl-phenol (each isomer), heptyl-fluorenyl-phenyl- Phenol (each isomer), heptyl-fluorenyl-phenoxyphenol (each isomer), heptyl-fluorenyl-cumyl-phenol (each isomer), heptyl-dodecane -Phenyl-phenol (each isomer), heptyl-dodecyl-phenoxyphenol Q (each isomer), heptyl-dodecyl-isopropylphenyl-phenol (variety) Structure), heptyl-phenyl-phenoxyphenol (each isomer), heptyl-phenyl-cumylphenyl-benzene (iso-isomer), octyl-fluorenyl-fluorenyl- Phenol (each isomer), octyl-decyl-dodecyl-phenol (each isomer), octyl-fluorenyl-phenyl-phenol (each isomer), octyl-fluorenyl- Phenoxyphenol (each isomer), octyl-fluorenyl-cumenyl-phenol (each isomer), octyl-fluorenyl-dodecyl-phenol (each isomer), xin - mercapto-phenyl-phenol (each isomer), octyl-fluorenyl-phenoxyphenol (each isomer), octyl-fluorenyl-cumyl-phenol (each isomer) ), octyl-dodecyl-phenyl-phenol (each isomer), octyl-dodecane 131505. Doc-106- 200948760 Benzyl-phenoxyphenol (each isomer), octyl-dodecyl-isopropylphenyl-phenol (each isomer), octyl-dodecyl-phenyl- Phenol (each isomer), octyl-dodecyl-phenoxy phenol (each isomer), octyl-dodecyl-isopropylphenyl-phenol (each isomer), xin -Phenyl-phenoxyphenol (each isomer), octyl-phenyl-isopropylphenyl-phenol (each isomer), fluorenyl-fluorenyl-dodecyl-phenol (variety) Structure), mercapto-mercapto-phenyl-phenol (each isomer), mercapto-fluorenyl-phenoxyphenol (each isomer), mercapto-fluorenyl-cumenyl-phenol (each isomer), mercapto-dodecyl-phenyl-phenol (each isomer), mercapto-dodecyl-phenoxyphenol (each isomer), mercapto-ten Dialkyl-isopropylphenyl-phenol (each isomer), mercapto-phenyl-phenoxyphenol (each isomer), mercapto-phenyl-cumylphenol-phenol (isomeric , mercapto-dodecyl-phenyl-phenol (each isomer), mercapto-dodecyl-phenoxyphenol (each isomer), -dodecyl-cumylphenol-phenol (each isomer), mercapto-phenyl-phenoxyphenol (each isomer), mercapto-phenyl-isopropylphenyl-phenol ( Each isomer), dodecyl-phenyl-phenoxyphenol (each isomer), dodecyl-phenyl-isopropylphenyl-phenol (each isomer), phenyl-benzene Oxypyridinyl phenyl-phenol (each isomer) and the like. Among these organic acids, in view of the influence of the cleaning solvent remaining after the cleaning operation of the thermal decomposition reactor, an aromatic hydroxy compound, more preferably a reaction with a diaryl carbonate and an amine compound, is preferred. The aromatic hydroxy compound used is the same compound. Further, when an aromatic mercapto compound is used as the acid for cleaning, the standard boiling point of the aromatic hydroxy compound is preferably from the viewpoint of the cleaning effect, and is equivalent to the above-mentioned aryl aryl phthalate. a compound which is thermally decomposed to form an isocyanate, or a heat of the aryl aryl ester 131505. Doc -107- 200948760 The standard boiling point of the aromatic hydroxy compound formed by the decomposition reaction has a difference in boiling point above 丨〇〇c. As a method of washing the thermal decomposition reactor by using the above-described cleaning solvent, a method of washing the thermal decomposition reactor by introducing a cleaning solvent from an upper portion of the thermal decomposition reactor may be used, and a cleaning solvent is introduced into the bottom of the thermal decomposition reactor to make S Various methods such as a method in which the washing solvent is boiled upward in the thermal decomposition reactor to clean the inside. The cleaning operation is not required to be carried out every time the thermal decomposition reaction is carried out, and can be arbitrarily determined depending on the compound to be used, the operation speed, etc., and it is preferably carried out in an operation time of from 1 hour to 20,000 hours, preferably. It is the operation time every 1 day ~ 1 year, and then the operation time is every month ~ the work year
分解反應器中具備導入清洗溶劑之線路。 又’以清洗該熱分解;5廄哭盔θ认.,___^ .The decomposition reactor has a line for introducing a cleaning solvent. Also, to clean the thermal decomposition; 5 廄 盔 盔 θ .., ___^.
氰酸醋不反應之化合物,相對於此,例如, ’例如,文獻(journalA compound which does not react with cyanic acid vinegar, for example, 'for example, the literature (journal
物進行反應而獲得之反應混合物運送至 ) 物與異氰酸苯酯之反應 匕合物可與異氰酸酯反 由碳酸二芳酯與胺化合 送至熱分解反應器時加 13I505.doc -108- 200948760 以混合供給至熱分解反應器中’亦可與供給該反應混合物 之線路區分,設置供給該芳香族羥基化合物之線路而供 給。 以本實施形態之製造方法而獲得之異氰酸酯可較好地用 作聚胺基甲酸酯發泡體、塗料、接著劑等之製造原料。利 用本實施形態之製造方法,可不使用劇毒之光氣而產率良 好地製造異氰酸酯,因此本發明在產業上極為重要。 [實施例] 以下,根據實施例具體說明本發明,但本發明之範圍並 不限定於該等實施例。 <分析方法> 1) NMR分析方法 裝置.曰本,曰本電子股份有限公司製造之 FT-NMR系統 (1) Η及3C-NMR分析樣品之製備 〇 稱量約〇.3 §樣品溶液,向溶液中添加約0.7 g仇化氯仿 (美國’ Α1ί^公司製造,"狗及〇.〇5 g作為内部標準物 質之四甲基錫(曰本,和光純藥工業公司製造,和光一 級)均勻混合’將所得溶液作為NMR分析樣品。 (2) 定量分析法 =:票準物質實施分析而製成之校正 施刀析樣品溶液之定量分析。 2)液相層析法分析方法 裝置·日本,農、、杳 本島卓公司製造之lc,at系統 131505.doc 200948760 管柱:日本,Tosoh公司製造之Silica_6〇管柱2根串連連接 展開溶劑:己烷/四氫呋喃=80/20(體積比)之混合液 溶劑流量:2 mL/分鐘 管枉溫度:35t: 檢測器:R.I.(折射率計) (1) 液相層析法分析樣品 稱量約0.1 g樣品,向其中添加約1 g四氫呋喃(日本,和 光純藥工業公司製造,脫水)及約〇.〇2 g作為内部標準物質 之雙酚A(日本,和光純藥工業公司製造,一級),均勻混 合,將所得溶液作為液相層析法分析之樣品。 (2) 定量分析法 以對各標準物質實施分析而製成之校正 曲線為基準,實 施分析樣品溶液之定量分析。 3)氣相層析法分析方法 裝置:日本’島津公司製造之GC-2010 管柱:美國,Agilent Technologies司製造之DB-1 長度為30 m、内徑為0.250 mm、膜厚為1.00 μιη 管柱溫度:於50°C下保持5分鐘後,以1〇。(:/分鐘之升溫 速度升溫至200。(:The reaction mixture obtained by carrying out the reaction is transported to the reaction of the compound with phenyl isocyanate. The complex can be added to the thermal decomposition reactor when the isocyanate is reacted with the diaryl carbonate and the amine. 13I505.doc -108- 200948760 The mixture is supplied to the thermal decomposition reactor, and may be supplied separately from the line for supplying the reaction mixture, and the line for supplying the aromatic hydroxy compound is provided. The isocyanate obtained by the production method of the present embodiment can be preferably used as a raw material for producing a polyurethane foam, a coating material, an adhesive or the like. According to the production method of the present embodiment, the isocyanate can be produced with good yield without using highly toxic phosgene, and therefore the present invention is extremely important in the industry. [Examples] Hereinafter, the present invention will be specifically described based on examples, but the scope of the present invention is not limited to the examples. <Analytical method> 1) NMR analytical method device. 曰本, FT-NMR system manufactured by Sakamoto Electronics Co., Ltd. (1) Preparation of Η and 3C-NMR analysis samples 〇 Weighing amount 〇.3 § Sample solution Add about 0.7 g of chlorinated chloroform to the solution (manufactured by the US company Α1ί^, "Dog and 〇.〇5 g as the internal standard substance of tetramethyltin (Sakamoto, manufactured by Wako Pure Chemical Industries, Ltd., and light grade) ) Uniform mixing 'The obtained solution is analyzed as a sample by NMR. (2) Quantitative analysis method: Quantitative analysis of the calibration sample solution prepared by performing the analysis of the quasi-substance. 2) Liquid chromatography method Lc,at system manufactured by Japan, Nakamoto, and Sakamoto Shimao Corporation 131505.doc 200948760 Pipe column: Silica_6〇 pipe column manufactured by Tosoh Corporation, Japan 2 connected in series with solvent: hexane/tetrahydrofuran=80/20 (volume Mixture solvent flow rate: 2 mL/min Tube temperature: 35t: Detector: RI (refractive index meter) (1) Liquid chromatography method to sample a sample weighing about 0.1 g, adding about 1 g to it Tetrahydrofuran (Japan, Wako Pure Chemical Industries Co., Ltd. Making, dehydration) and approximately 〇.〇2 g of bisphenol A as the internal standard substance (Japan, Wako Pure Chemical Industries, Ltd., a), uniformly mixed, and the resulting solution was used as a sample of the liquid chromatography analysis. (2) Quantitative analysis The quantitative analysis of the analytical sample solution is carried out based on the calibration curve prepared by analyzing each standard substance. 3) Gas Chromatography Analysis Method Device: GC-2010 manufactured by Shimadzu Corporation, Japan: DB-1, manufactured by Agilent Technologies, USA, has a length of 30 m, an inner diameter of 0.250 mm, and a film thickness of 1.00 μm. Column temperature: After 5 minutes at 50 ° C, 1 Torr. (: / minute temperature rises the temperature to 200. (:
於200°C下保持5分鐘後,以1〇。(:/分鐘之升 溫速度升溫至300°C 檢測器:FID (1)氣相層析法分析樣品 稱1約0.05 g樣品’向其中添加約1 g丙網(日本,和光 I31505.doc •110- 200948760 純藥工業公司製造,脫水)及約0.02 g作為内部標準物質之 曱苯(日本’和光純藥工業公司製造,脫水),均勻混合, 將所得溶液作為氣相層析法分析之樣品。 (2)定量分析法 以對各標準物質實施分析而製成之校正曲線為基準,實 施分析樣品溶液之定量分析。 4)電感耦合型電漿質量分析法 裝置:日本,精工電子公司製造,SPQ-8000 (1) 電感耦合型電漿質量分析樣品 以稀硫酸使約〇. 15 g試料灰化後,溶解於稀硝酸中。 (2) 定量分析法 以對各標準物質實施分析而製成之校正曲線為基準,實 施分析樣品溶液之定量分析。 [參考例1 ]碳酸二苯酯之製造 •步驟(1-1):二烷基錫觸媒之製造 向容積為3000 mL之茄型燒瓶中,加入692 g(2.78 mol) 二正丁基氧化錫及2〇〇〇 g(27 mol) 1-丁醇(日本,和光純藥 工業公司製造)。將加入白色漿料狀該混合物之燒瓶安裝 於蒸發器’該蒸發器係將附有溫度調節器之油浴與真空泵 與真二控制器加以連接。蒸發器之通氣閥出口與以常壓流 通氮氣之線路相連接。關閉蒸發器之通氣閥,進行系統内 減壓後,緩慢打開通氣閥,使氮氣流入系統内,且恢復至 常壓。將油浴溫度設定為126t,將該燒瓶浸清於該油浴 中,開始蒸發器之旋轉。於使蒸發器之通氣閥開放之狀態 131505.doc 200948760 下於常壓下旋轉攪拌約30分鐘並加熱後,使混合液沸騰, 開始低彿成分之蒸顧。將該狀態保持8小時後,關閉通氣 閥’對系統内進行緩慢減壓,以系統内壓力為76〜54 kpa 之狀態將殘留低沸成分進行蒸德。待不出現低沸成分後, 將該燒瓶自油浴中取出。反應液為透明之液體。其後,將 該燒瓶自油浴中取出緩慢打開通氣間,使系統内之壓力恢 復至常壓。於該燒瓶中獲得952 g反應液。根據⑴〜、 巾、13C-NMR之分析、结果確認’以二正丁基氧化錫為基 準,以產率99%獲得生成物1,1,3,3-四正丁基〇二(正丁 氧基)-二錫氧烷。重複12次同樣之操作,獲得合計1148〇 g 之1,1,3,3-四正丁基-1,3·二(正丁氧基)_二錫氧烷。 •步驟(1-2):碳酸二丁酯之製造 於如圖1所示之連續製造裝置中,製造碳酸酯。由線路 4,以4201 g/hr,將步驟屮丨)製造之Μ,"四正丁基丨,% 二(正丁氧基)-二錫氧烷,以及由線路2,以24717 g/hr,將 Q 蒸餾塔101中純化之丨_ 丁醇供給至填充有填充物mellapak 750Y(瑞士 ’ Sulzer Chemtech Ltd.公司製造)之内徑為 151 mm、有效長度為5040 mm之塔型反應器1〇2中。該反應器 内藉由加熱器及再沸器112進行調整以使液體溫度達到16〇 C,利用壓力調節閥進行調整以使壓力達到約15〇 kpa_ G。該反應器内之滯留時間約為1〇分鐘。自反應器上部經 由線路6以24715 g/hr將含水之1_ 丁醇、以及經由線路1以 824 g/hr將1-丁醇輸送至填充有填充物Metai Gauze (瑞 士,Sulzer Chemtech Ltd.公司製造)且具備再沸器lu及冷 131505.doc -112- 200948760 凝器121之蒸館塔1〇1中,進行蒸德純化。於蒸館塔IQ】之 上部,將含有高濃度水之館分利用冷凝器12ι加以冷凝後 由線路3加以回收。經由蒸館塔⑻之下部的線路2輸送經 純化之1-丁醇。自塔型反應器1〇2之下部,獲得包含二正 丁基錫-二正丁氧化物幻山3,3_四正丁基正丁氧 基)-二錫氧烷之烷基錫烷氧化物觸媒組合物,經由線路5供 給至薄膜蒸發裝置1G3中(日本,K〇bele。eeG s()iuti嶋公司 製造)。於薄膜蒸發裝置1〇3中德去卜丁醇經由冷凝器 123、線路8及線路4返回至塔型反應器1〇2中。自薄膜蒸發 裝置103之下部經由線路7輸送烷基錫烷氧化物觸媒組合 物,將二丁基錫二丁氧化物與匕^^-四正丁基二(正 丁氧基)-二錫氧烷之活性成分之流量調節為約4812以心, 供給至高壓釜104中。經由線路9以973 g/hr將二氧化碳供 給至高壓釜中,將高壓爸内壓維持為4 MPa_G。將高壓釜 中之溫度設定為12(TC,將滞留時間調整成約4小時,進行 Q 二氧化碳與烷基錫烷氧化物觸媒組合物之反應,獲得含碳 酸二丁酯之反應液。經由線路10及調節閥將該反應液運送 至除碳槽105中,去除殘留的二氧化碳,由線路^將二氡 化碳加以回收。其後,將該反應液經由線路i 2運送至設為 約140°C、約1.4 kPa之薄膜蒸發裝置1〇6(日本,K〇beU〇 eco-solutions公司製造)中,將H3 3·四正丁基_13二(正 丁氧基)-二錫氧炫的流量調節為約4201 g/hr進行供給,獲 得包含碳酸二丁醋之顧分’另一方面,將蒸發殘渣經由線 路13及線路4,將1,1,3,3-四正丁基·丨,3_二(正丁氧基)_二錫 131505.doc -113- 200948760 氧烷流量調節成約4201 g/hr,循環至塔型反應器102。將 包含碳酸二丁酯之餾分,經由冷凝器126及線路14,以830 g/hr供給至填充有填充物Metal Gauze CY(瑞士,Sulzer Chemtech Ltd.公司製造)且具備再沸器U7及冷凝器127之 蒸餾塔107中’進行蒸餾純化後,由線路15以814 g/hr獲得 99 wt%之碳酸二丁酯。利用ii9Sn、iH、13C-NMR對線路13 之烷基錫烧氧化物觸媒組合物進行分析,結果含有 1,1,3,3-四正丁基-1,3-二(正丁氧基)·二錫氧烷,不含有二 正丁基錫-二正丁氧化物。進行上述連續運轉約600小時 後’由線路1 6以1 6 g/hr供給烷基錫烷氧化物觸媒組合物, 另一方面,由線路17以16 g/hr供給步驟(1-1)製造之1,1,3,3-四正丁基-1,3-二(正丁氧基)_二錫氧烷。 •步驟(1-3):芳香族碳酸酯之製造 [觸媒之製備] 將79 g苯酚及32 g一氧化鉛於180°C下加熱10小時,將所 0 生成之水與苯酚一起餾去。以10小時排出約2.5 g水。其 後’自反應器上部餾去笨酚,製備觸媒。 [芳香族碳酸酯之製造] 使用如圖2所示之裝置。 向填充有狄克松填料(6 mm φ)内徑約為5 cm、塔長為2 m 之連續多段蒸餾塔2〇2之中段,經由預熱器2〇1,由線路21 以約270 g/hr ’以液狀連續進料包含步驟(^2)所獲得之碳 酸二丁酯、苯酚、及上述製備之觸媒之混合液(混合液中 之碳酸二丁酯與苯酚之重量比製備成約為65/35 ,鉛濃度 131505.doc -114- 200948760 製備成約1重量%)’進行反應。反應及蒸館必需之熱量係 藉由經由線路23及再沸器204使塔下部之液體循環而供 給。連續多段蒸镏塔202之塔底部之液體溫度為238t:,塔 頂壓力約為250 kPa,回流比約為2。將自連續多段蒸餾塔 202之塔頂館出之氣體由線路22排出,經由冷凝器203,由 線路24以約67 g/hr,連續排出至貯槽2〇5中。自塔底經由 線路23以約204 g/hr連續排出至貯槽2〇6中。 自線路24排出之液體之組成為,丨_丁醇約為33重量0/〇, ❹ 苯酚約為65重量。Λ,碳酸二丁酯約為2重量%。排出至貯槽 206之液體組成為,苯酚約為〗丨重量%,碳酸二丁醋約為 60重量% ’碳酸丁基苯酯約為26重量%,碳酸二苯酯約為 1.6重量%,鉛濃度約為1重量〇/0。 其次’使用如圖3所示之裝置。 向填充有狄克松填料(6 mm φ)之内徑為5 cm、塔長為2m 之連續多段蒸餾塔302之中段,經由預熱器3〇ι,由線路31 ◎ 以約203 g/hr ’以液狀連續進料排出至貯槽206中之液體。 反應及蒸館所必需之熱量係藉由經由線路33及再沸器304 使塔下部液體循環而供給。連續多段蒸顧塔302之塔底部 液體im·度為240 C ’塔頂壓力約為27 kPa,回流比約為2。 將自連續多段蒸餾塔302之塔頂餾出之氣體經由線路32, 於冷凝器303中冷凝’由線路34以約165 g/hr連續排出至貯 槽305中。自塔底經由線路33以約39层/匕連續排出至貯槽 306 中。 ppm, 由線路34排出之液體之組成為,卜丁醇約為5〇〇 131505.doc -115· 200948760 苯酚約為13重量%,碳酸二丁酯約為85重量%,碳酸丁基 苯酯約為2重量%。排出至貯槽3〇6之液體之組成為,碳酸 二丁酯約為0.3重量%,碳酸丁基苯酯約為32重量%,碳酸 二苯酯約為61重量%,鉛濃度約為7重量〇/0。 [醇之再利用] 使用如圖4所示之裝置,進行醇之再利用。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔4〇2的距塔最下部約〇7瓜處由線路 41經由預熱器4〇1,以約2〇1 g/hr連續進料上述步驟中連續 排出至貯槽205之液體,進行蒸餾分離。蒸餾分離所必需 之熱量係藉由經由線路43及再沸器4〇4使塔下部液體循環 而供、σ連續多段蒸餾塔402之塔底部之液體溫度為145 乞’塔頂壓力約為13 kPa’回流比約為〇3。將由連續多段 蒸餾塔402餾出之氣體,經由線路42,於冷凝器4〇3中冷 凝,由線路44以約68 g/hr排出至貯槽4〇5。自塔底經由線 路43 ’以約133以心連續排出至貯槽4〇6。 由線路44排出之液體之組成為,丨_ 丁醇約為99重量%, 苯酚7為100 pp„^排出至貯槽4〇6之液體之組成為碳酸 一丁酯約為2重量。/。,苯酚約為98重量0/〇。 [碳酸二芳酯之純化] 使用如圖5、6所示之裝置’進行碳酸二芳酯之純化。 向填充有狄克松填料(6 mm 之内徑約為5 cm、塔長為2 之連續多#又蒸餾塔502之中段,由線路51經由預熱器 以約195 g/hr連續進料排出至貯槽3 〇6之液體。蒸餾 131505.doc .116· 200948760After holding at 200 ° C for 5 minutes, 1 〇. (: / / temperature rise rate to 300 ° C detector: FID (1) gas chromatography analysis sample said 1 about 0.05 g sample 'to add 1 g of polypropylene network (Japan, and light I31505.doc • 110 - 200948760 manufactured by Pure Chemical Industries, Ltd., dehydrated) and about 0.02 g of benzene as an internal standard substance (manufactured by Wako Pure Chemical Industries, Ltd., dehydrated), uniformly mixed, and the obtained solution was sampled by gas chromatography. (2) Quantitative analysis method Quantitative analysis of analytical sample solution is carried out based on a calibration curve prepared by analyzing each standard substance. 4) Inductively coupled plasma mass spectrometry device: manufactured by Seiko Instruments Inc., Japan, SPQ -8000 (1) Inductively coupled plasma mass analysis samples were ashed with dilute sulfuric acid. After the 15 g sample was ashed, it was dissolved in dilute nitric acid. (2) Quantitative analysis The quantitative analysis of the analytical sample solution is carried out based on a calibration curve prepared by performing analysis on each reference substance. [Reference Example 1] Production of diphenyl carbonate • Step (1-1): Production of dialkyltin catalyst To an eggplant type flask having a volume of 3000 mL, 692 g (2.78 mol) of di-n-butyl oxide was added. Tin and 2 〇〇〇g (27 mol) 1-butanol (manufactured by Wako Pure Chemical Industries, Ltd., Japan). A flask in which the mixture was added in the form of a white slurry was attached to an evaporator. The evaporator was connected to an oil bath with a temperature regulator and a vacuum pump. The vent valve outlet of the evaporator is connected to a line that flows nitrogen at atmospheric pressure. Close the evaporator vent valve, and after decompressing the system, slowly open the vent valve to allow nitrogen to flow into the system and return to normal pressure. The oil bath temperature was set to 126 t, and the flask was immersed in the oil bath to start the rotation of the evaporator. After the vent valve of the evaporator is opened, the mixture is rotated under normal pressure for about 30 minutes and heated, and then the mixture is boiled to start steaming of the low-fog component. After maintaining this state for 8 hours, the vent valve was closed and the inside of the system was slowly decompressed, and the residual low boiling component was steamed in a state where the pressure in the system was 76 to 54 kpa. After the low boiling component did not occur, the flask was taken out of the oil bath. The reaction solution is a transparent liquid. Thereafter, the flask was taken out of the oil bath and the aeration chamber was slowly opened to restore the pressure in the system to normal pressure. 952 g of the reaction liquid was obtained in the flask. According to the analysis of (1)~, towel, and 13C-NMR, it was confirmed that the product 1,1,3,3-tetra-n-butyl fluorene (n-butyl) was obtained in a yield of 99% based on di-n-butyltin oxide. Oxy)-distannoxane. The same operation was repeated 12 times to obtain a total of 1148 〇 g of 1,1,3,3-tetra-n-butyl-1,3·di(n-butoxy)-distannoxane. • Step (1-2): Production of dibutyl carbonate In the continuous production apparatus shown in Fig. 1, a carbonate was produced. From line 4, at 4201 g/hr, the steps were made), "tetra-n-butyl hydrazine, % bis(n-butoxy)-distannoxane, and by line 2, to 24,717 g/ Hr, the purified 丨-butanol in the Q distillation column 101 is supplied to a column reactor 1 having an inner diameter of 151 mm and an effective length of 5040 mm filled with a filler mellapak 750Y (manufactured by Sulzer Chemtech Ltd., Switzerland). 〇 2 in. The reactor was conditioned by a heater and reboiler 112 to bring the liquid temperature to 16 〇 C and adjusted with a pressure regulating valve to bring the pressure to about 15 〇 kpa _ G. The residence time in the reactor was about 1 minute. From the upper part of the reactor, the aqueous 1-butanol was fed via line 6 at 24,715 g/hr, and the 1-butanol was conveyed via line 1 at 824 g/hr to a filled filling material, Metai Gauze (Switzerland, manufactured by Sulzer Chemtech Ltd.). And equipped with a reboiler lu and a cold 131505.doc -112- 200948760 coagulator 121 in the steaming tower 1〇1, steaming purification. In the upper part of the steaming tower IQ], the hall containing the high-concentration water is condensed by the condenser 12ι and then recovered by the line 3. Purified 1-butanol is delivered via line 2 below the steaming tower (8). From the lower part of the column reactor 1〇2, an alkyl stane alkoxide containing di-n-butyltin-di-n-butoxide oxide 3,3_tetra-n-butyl-n-butoxy)-distannoxane was obtained. The medium composition is supplied to the thin film evaporation apparatus 1G3 via the line 5 (K〇bele, eeG s(), manufactured by iuti., Japan). In the thin film evaporation apparatus 1〇3, debutanol is returned to the column reactor 1〇2 via the condenser 123, the line 8 and the line 4. The alkyl tin alkoxide catalyst composition is transported from the lower portion of the thin film evaporation device 103 via line 7, and dibutyltin dibutoxide and 匕^^-tetra-n-butylbis(n-butoxy)-distannoxane The flow rate of the active ingredient was adjusted to about 4812 cents and supplied to the autoclave 104. Carbon dioxide was supplied to the autoclave at 973 g/hr via line 9, and the high pressure dad internal pressure was maintained at 4 MPa_G. The temperature in the autoclave was set to 12 (TC, and the residence time was adjusted to about 4 hours, and the reaction of Q carbon dioxide with the alkyl tin alkoxide catalyst composition was carried out to obtain a reaction liquid containing dibutyl carbonate. And the regulating valve transports the reaction liquid to the carbon removal tank 105, removes residual carbon dioxide, and recovers the carbon dioxide by the line. Thereafter, the reaction liquid is transported via the line i 2 to be set to about 140 ° C. A flow rate of H3 3 · tetra-n-butyl _13 bis(n-butoxy)-distannoxane in a film evaporation apparatus 1〇6 (manufactured by K〇beU〇eco-solutions Co., Ltd., Japan) of about 1.4 kPa Adjusted to about 4201 g/hr for supply, to obtain the risk of including dibutyl sulphate. On the other hand, the evaporation residue was passed through line 13 and line 4, and 1,1,3,3-tetra-n-butyl hydrazine was 3_bis(n-butoxy)_ditin 131505.doc -113- 200948760 The oxane flow rate was adjusted to about 4201 g/hr, and was recycled to the column reactor 102. The dibutyl carbonate-containing fraction was passed through a condenser 126. And line 14, supplied at 830 g/hr to the filled Metal Gauze CY (Switzerland, Sulzer Chemtech Ltd) The company manufactured and equipped with a reboiler U7 and a condenser 127 in a distillation column 107, after performing distillation purification, 99 wt% of dibutyl carbonate was obtained from line 15 at 814 g/hr. Using ii9Sn, iH, 13C- NMR analysis of the alkyl tin oxide oxide catalyst composition of line 13 resulted in 1,1,3,3-tetra-n-butyl-1,3-di(n-butoxy)-distannoxane. Does not contain di-n-butyltin-di-n-butyl oxide. After the continuous operation described above for about 600 hours, the alkyltin alkoxide catalyst composition is supplied by line 16 at 16 g/hr, and on the other hand, by line 17. 1,1,3,3-tetra-n-butyl-1,3-di(n-butoxy)-distannoxane produced in the step (1-1) at 16 g/hr. • Step (1-3) ): Preparation of aromatic carbonate [Preparation of catalyst] 79 g of phenol and 32 g of lead monoxide were heated at 180 ° C for 10 hours, and the water formed by 0 was distilled off together with phenol. 2.5 g of water. Thereafter, the catalyst was prepared by distilling off the phenol from the upper part of the reactor. [Manufacture of aromatic carbonate] The apparatus shown in Fig. 2 was used. The inside was packed with Dixon packing (6 mm φ). The tower is about 5 cm in diameter The middle section of the continuous multi-stage distillation column 2〇2 of 2 m long, via the preheater 2〇1, continuously feeds the liquid carbon dioxide obtained by the step (^2) from the line 21 at about 270 g/hr' a mixture of butyl ester, phenol, and a catalyst prepared as described above (the weight ratio of dibutyl carbonate to phenol in the mixture is about 65/35, and the lead concentration is 131505.doc -114-200948760 is about 1% by weight) 'Respond. The heat necessary for the reaction and steaming is supplied by circulating the liquid in the lower portion of the column via line 23 and reboiler 204. The liquid temperature at the bottom of the continuous multi-stage distillation column 202 is 238 t: the overhead pressure is about 250 kPa, and the reflux ratio is about 2. The gas from the tower top of the continuous multi-stage distillation column 202 is discharged from the line 22, and is continuously discharged to the storage tank 2〇5 by the line 24 at about 67 g/hr via the condenser 203. From the bottom of the column, it was continuously discharged into the storage tank 2〇6 via line 23 at about 204 g/hr. The composition of the liquid discharged from line 24 is about 33-butanol of about 33 wt%/〇 and ❹ phenol of about 65 wt%. Niobium, dibutyl carbonate is about 2% by weight. The liquid composition discharged to the storage tank 206 is such that the phenol is about 丨 丨 by weight, the dibutyl acrylate is about 60% by weight, the butyl phenyl carbonate is about 26% by weight, the diphenyl carbonate is about 1.6% by weight, and the lead concentration is It is about 1 weight 〇/0. Next, use the device shown in Figure 3. The middle portion of the continuous multi-stage distillation column 302 having an inner diameter of 5 cm and a column length of 2 m filled with a Dixon packing (6 mm φ), via a preheater 3 ,, from the line 31 ◎ at about 203 g/hr 'Liquid discharged into the sump 206 as a continuous feed in liquid form. The heat necessary for the reaction and steaming is supplied by circulating the lower portion of the liquid through the line 33 and the reboiler 304. The bottom of the column of the continuous multi-stage steaming tower 302 has a liquid im-degree of 240 C 'top pressure of about 27 kPa and a reflux ratio of about 2. The gas distilled from the top of the continuous multi-stage distillation column 302 is condensed in the condenser 303 via line 32 and continuously discharged into the sump 305 by line 34 at about 165 g/hr. From the bottom of the column, it is continuously discharged into the sump 306 via line 33 at about 39 layers/inch. Ppm, the composition of the liquid discharged from line 34 is such that the butanol is about 5 〇〇 131505. doc - 115 · 200948760 phenol is about 13% by weight, dibutyl carbonate is about 85% by weight, and butyl phenyl carbonate is about It is 2% by weight. The liquid discharged to the storage tank 3〇6 has a composition of about 0.3% by weight of dibutyl carbonate, about 32% by weight of butyl phenyl carbonate, about 61% by weight of diphenyl carbonate, and a lead concentration of about 7% by weight. /0. [Reuse of Alcohol] The use of the alcohol as shown in Fig. 4 was carried out. The continuous multi-stage distillation column 4〇2 filled with Dixon packing (6 mm φ) and having an inner diameter of about 5 cm and a column length of 2 m is about 7 melons from the bottom of the tower, and the line 41 is passed through the preheater. 4〇1, the liquid continuously discharged to the storage tank 205 in the above step was continuously fed at about 2〇1 g/hr, and distillation separation was carried out. The heat necessary for the distillation separation is obtained by circulating the liquid in the lower portion of the column through the line 43 and the reboiler 4〇4, and the liquid temperature at the bottom of the column of the σ continuous multi-stage distillation column 402 is 145 乞 'the top pressure is about 13 kPa. 'The reflux ratio is about 〇3. The gas distilled from the continuous multi-stage distillation column 402 was condensed in the condenser 4〇3 via line 42, and discharged to the storage tank 4〇5 by line 44 at about 68 g/hr. From the bottom of the tower, it is continuously discharged to the storage tank 4〇6 at a center of about 133 via the line 43'. The composition of the liquid discharged from line 44 is about 99% by weight of 丨-butanol, and 100 pp of phenol 7 is discharged to the storage tank 4〇6. The composition of the liquid is about 2% by weight of monobutyl carbonate. Phenol was about 98 wt%/〇. [Purification of diaryl carbonate] Purification of diaryl carbonate was carried out using the apparatus shown in Figures 5 and 6. The filling was carried out with a Dixon filler (about 6 mm inner diameter). It is a continuous section of 5 cm, a column length of 2, and a middle section of the distillation column 502, which is continuously fed to the tank 3 〇6 by a line 51 via a preheater at about 195 g/hr. Distillation 131505.doc.116 · 200948760
器503中冷凝’由線路54連續排出。 器5 04使塔下 ;底部液體溫 回流比約為1。將自連 證經由線路52,於冷凝 。自塔底經由線路53以 約14 g/hr排出至貯槽506。 由線路54排出之液體之組成為,碳酸二丁 g旨約為重 量。/。,碳酸丁基苯醋約為34重量%,碳酸二笨醋約為“重 量% » 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔602之中段,由線路61經由預熱器 601 ’以約181 g/hr連續進料由線路54排出之液體。蒸餾分 離所必需之熱量係藉由經由線路63及再沸器6〇4使塔下部 液體循環而供給。連續多段蒸餾塔6〇2之塔底部液體溫度 為232C ’塔頂壓力約為15 kPa,回流比約為2。將自連續 多段蒸餾塔602之塔頂餾出之氣體經由線路62,於冷凝器 603中冷凝’由線路64連續排出。自塔底經由線路63以約 119 g/hr排出至貯槽606。 由線路64排出之液體之組成為,碳酸二丁酯約為〇.6重 量%,碳酸丁基苯酯約為99重量%,碳酸二苯酯約為〇.4重 量%。排出至貯槽606之液體之組成為,碳酸丁基苯酯為 0.1重量%,碳酸二苯酯約為99.9重量%。該碳酸二笨酯中 含有作為金屬成分之22 ppm鐵。 [實施例1] 131505.doc -117· 200948760 •步驟(1-1) : ΛΓ,ΛΤ-己二基-雙-胺基曱酸二苯酯之製造 使用如圖7所示之裝置進行反應。 於關閉線路74之狀態下,由貯槽701經由線路71將135〇 g(6.3 mol)參考例1之碳酸二苯酯供給至内容積為5 L之附 有擔板之SUS製反應容器704中’由貯槽702經由線路72, 將987 g(l〇·5 mol)苯酚(美國,Aldrich公司製造)供給至該 SUS製反應器中。將該反應器704内之液體溫度調整成約 50°C,由貯槽703經由線路73 ’將244 g(2.1 mol)六亞甲基 二胺(美國,Aldrich公司製造)以約200 g/hr供給至該反應 器704中。 以液相層析法對反應後之溶液進行分析,結果為以產率 99.5%生成己二基-雙·胺基曱酸二苯酯。 打開線路74 ’將該反應液經由線路74運送至貯槽7〇5 中。 •步驟(1-2):利用愚,己二基-雙-胺基甲酸二苯酯之熱分 解而製造異氰酸酯 使用如圖8所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸餾裝置801(曰本,Kobelco eco-solutions公司製造)加熱至220°C,使内部壓力約為13 kPa。將步驟(1-1)中由貯槽705所回收之混合物加熱至15〇 C,經由線路81,以約800 g/hr供給至薄膜蒸顧裝置go!之 上部。自薄膜蒸餾裝置801之底部,將液相成分由線路83 排出,經由線路84及線路81,循環至薄膜蒸餾襄置8〇 1之 上部。將氣相成分由線路82排出。 131505.doc -118- 200948760 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔802之中段,連續進料由薄膜蒸餾裝置 801經由線路82排出之氣相成分’進行該氣相成分之蒸餾 分離。蒸餾分離所必需之熱量係藉由經由線路86及再沸器 804使塔下部液體循環而供給。連續多段蒸餾塔8〇2之塔底 部之液體溫度為150。(:,塔頂壓力約為15 kPa。將自連續 多段蒸餾塔802之塔頂餾出之氣體,經由線路85,於冷凝 器803中冷凝’由線路87連續排出。自連續多段蒸餾塔802 〇 之低於線路82之位置的線路89,將液相成分排出。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔805的中段,連續進料由線路89排出之 液相成分’進行該液相成分之蒸餾分離。蒸餾分離所必需 之熱量係藉由經由線路91及再沸器807使塔下部液體循環 而供給。連續多段蒸餾塔805之塔底部液體溫度為i50〇c, 塔頂壓力約為1.5 kPa。將自連續多段蒸餾塔805之塔頂館 ◎ 出之氣體,經由線路90,於冷凝器806中冷凝,經由線路 92連續排出至貯槽809。穩定狀態之排出量約為1〇4 g/hr。 穩定狀態下,將液相成分由線路94,以約140 g/hr排出 至貯槽810。該液相成分含有約97重量%碳酸二苯酯。 由線路92排出之液體係含有約99.8重量%六亞甲基二異 氰酸酯之溶液。相對於六亞曱基二胺之產率為95.3%。 •步驟(1-3):碳酸二芳酯之再利用 使用如圖9、10所示之裝置’進行碳酸二芳酯之再利 用0 131505.doc • 119- 200948760 將步驟(1-2)中由線路94排出之液體,由線路95經由預熱 器901 ’以約195 g/hr連續進料至填充有狄克松填料(6 mm Φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔9〇2的中 段。蒸顧分離所必需之熱量係藉由經由線路97及再沸器 904使塔下部液體循環而供給。連續多段蒸餾塔9〇2之塔底 部液體溫度為210。(:,塔頂壓力約為1.5 kPa,回流比約為 1 °將自連續多段蒸餾塔902之塔頂餾出之氣體,經由線路 96於冷凝器903中冷凝,由線路99連續排出。自塔底經由 ❹ 線路97以約14 g/hr排出至貯槽906。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔1〇〇2之中段,由線路幻經由預熱器 1001,以約181 g/hr連續進料由線路99排出之液體。蒸顧 分離所必需之熱量係藉由經由線路A3及再沸器丨〇〇4使塔下 部液體循環而供給。連續多段蒸餾塔丨002之塔底部液體温 度為232C ’塔頂壓力約為15 kPa ’回流比約為2。將自連 ◎ 續多段蒸德塔1002之塔頂館出之氣體,經由線路A2於冷凝 器1003中冷凝,由線路A4連續排出Q自塔底經由線路 A3,以約119 g/hr排出至貯槽1〇〇6。排出至貯槽1〇〇6之液 體含有約99.9重量%碳酸二苯醋。 •步驟(1-4):苯酚之再利用 使用如圖11所示之裝置進行苯酚之再利用。 將步驟(1 -2)中由線路87排出之液體,由線路B丨經由預 熱器1101,以約200 g/hr連續進料至填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸館塔丨丨〇2 131505.doc •120· 200948760 的中段。蒸館分離所必需之熱量係藉由經由線路B3及再沸 器1104使塔下部液體循環而供給。連續多段蒸餾塔11〇2之 塔底部液體溫度為230°c ’塔頂壓力為大氣壓,回流比約 為1 °將自連續多段蒸餾塔1102之塔頂餾出之氣體經由線 路B2於冷凝器11 〇3中冷凝,由線路A4連續排出至貯槽 1 105。排出至貯槽11〇5之液體含有約99.9重量%苯紛。進 行10天連續運轉’未發現於薄膜蒸餾裝置801之壁面積蓄 有附著物。進而進行300天連續運轉,結果發現於薄膜蒸 ® 餾裝置801之壁面積蓄有附著物。 [實施例2] .步驟(2-1) : 3-(苯氧基羰基胺基-甲基)_3,5,5_三甲基環己 基胺基甲酸苯酯之製造 使用如圖7所示之裝置進行反應。 於關閉線路74之狀態下,將1992 g(9.3 mol)參考例1之碳 酸二苯酯,由貯槽701經由線路71供給至内容積為5 l之附 Q 有擋板的SUS製反應容器704中,將1311 g(14.〇 m〇l)苯盼 由貯槽702經由線路72供給至該SUS製反應器中。將該反 應器704内液體溫度調整成約50°C,由貯槽703經由線路 73 ’ 以約 250 g/hr將 528 g(3.1 mol) 3-胺基曱基·3,5,5·三甲 基環己基胺(美國’ Aldrich公司製造)供給至該反應器7〇4 中。 以液相層析法對反應後之溶液進行分析,結果以收率 99_3%生成3-(苯氧基幾基胺基-曱基)-3,5,5-三甲基環己基 胺基甲酸苯酯。 131505.doc -121- 200948760 打開線路74,將該反應液經由線路74運送至貯槽705。 •步驟(2-2):利用3_(苯氧基羰基胺基-甲基)_3,5,5-三曱基 環己基胺基甲酸苯酯之熱分解而製造異氰酸酯 使用如圖8所示之裝置進行反應。 將傳熱面積為〇·1 m2之薄膜蒸餾裝置8〇1(日本,K〇belco ΟCondensation in unit 503 is continuously discharged by line 54. The device 5 04 is placed under the column; the bottom liquid temperature reflux ratio is about 1. The self-certification is condensed via line 52. From the bottom of the column, it is discharged to the sump 506 via line 53 at about 14 g/hr. The composition of the liquid discharged from line 54 is such that dibutyl carbonate is about weight. /. , butyl styrene carbonate is about 34% by weight, and diphenyl vinegar is about "% by weight". Continuously multi-stage with an inner diameter of about 5 cm and a length of 2 m filled with Dixon packing (6 mm φ). In the middle of the distillation column 602, the liquid discharged from the line 54 is continuously fed by the line 61 via the preheater 601' at about 181 g/hr. The heat necessary for the distillation separation is passed through the line 63 and the reboiler 6〇4. The liquid in the lower portion of the column is circulated and supplied. The liquid temperature at the bottom of the continuous multi-stage distillation column 6 〇 2 is 232 C 'the top pressure is about 15 kPa, and the reflux ratio is about 2. The top of the continuous multi-stage distillation column 602 is distilled off. The gas is condensed in line condensed in condenser 603 by line 64. It is discharged from line to column 606 via line 63 at about 119 g/hr. The composition of the liquid discharged from line 64 is about dibutyl carbonate. It is 6% by weight, butyl phenyl carbonate is about 99% by weight, and diphenyl carbonate is about 〇. 4% by weight. The composition of the liquid discharged to the storage tank 606 is 0.1% by weight of butyl phenyl carbonate. Diphenyl carbonate is about 99.9% by weight. The diphenyl carbonate is contained as a metal component. 22 ppm of iron. [Example 1] 131505.doc -117· 200948760 • Step (1-1): 制造, ΛΤ-hexyldi-di-amino phthalic acid diphenyl ester was used as shown in Fig. 7 In the state in which the line 74 is closed, 135 〇g (6.3 mol) of diphenyl carbonate of Reference Example 1 is supplied from the storage tank 701 via the line 71 to a SUS system with an internal volume of 5 L and a support plate. In the reaction vessel 704, 987 g (10 〇·5 mol) of phenol (manufactured by Aldrich Co., Ltd.) was supplied from the storage tank 702 to the SUS reactor via line 72. The temperature of the liquid in the reactor 704 was adjusted to about At 50 ° C, 244 g (2.1 mol) of hexamethylenediamine (manufactured by Aldrich Co., USA) was supplied from the storage tank 703 to the reactor 704 at about 200 g/hr via line 73'. The solution after the reaction was analyzed, and as a result, dihexyl-bis-amino phthalic acid diphenyl ester was formed in a yield of 99.5%. The reaction liquid was transferred to the storage tank 7〇5 via line 74. • Step (1-2): The isocyanate is produced by thermal decomposition of ruthenium, hexamethylene-bis-carbamic acid diphenyl ester, as shown in Figure 8. The reaction was carried out. A thin film distillation apparatus 801 (manufactured by Kobelco Eco-solutions Co., Ltd.) having a heat transfer area of 0.1 m2 was heated to 220 ° C to have an internal pressure of about 13 kPa. The mixture recovered in storage tank 705 was heated to 15 ° C and supplied via line 81 to the upper portion of the film evaporation unit go! at about 800 g/hr. From the bottom of the thin film distillation apparatus 801, the liquid phase component is discharged from the line 83, and is circulated to the upper portion of the thin film distillation unit 8 through the line 84 and the line 81. The gas phase components are discharged from line 82. 131505.doc -118- 200948760 To the middle of a continuous multi-stage distillation column 802 filled with Dixon packing (6 mm φ) having an inner diameter of about 5 cm and a column length of 2 m, continuous feeding is carried out by the thin film distillation apparatus 801. The gas phase component discharged from line 82 performs the distillation separation of the gas phase component. The heat necessary for the distillation separation is supplied by circulating the lower portion of the liquid through the line 86 and the reboiler 804. The liquid temperature at the bottom of the continuous multi-stage distillation column 8〇2 was 150. (:, the top pressure is about 15 kPa. The gas distilled from the top of the continuous multi-stage distillation column 802 is condensed in the condenser 803 via line 85. It is continuously discharged by line 87. From the continuous multi-stage distillation column 802 〇 The liquid phase component is discharged at a line 89 lower than the position of the line 82. The middle section of the continuous multi-stage distillation column 805 having an inner diameter of about 5 cm and a column length of 2 m filled with a Dixon packing (6 mm φ) The liquid phase component discharged from the line 89 is continuously distilled to carry out the distillation separation of the liquid phase component. The heat necessary for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line 91 and the reboiler 807. Continuous multi-stage distillation The liquid temperature at the bottom of the column of column 805 is i50 〇c, and the pressure at the top of the column is about 1.5 kPa. The gas from the top of the continuous multi-stage distillation column 805 is condensed in the condenser 806 via line 90, via line 92. It is continuously discharged to the storage tank 809. The discharge amount in the steady state is about 1 〇 4 g / hr. In a steady state, the liquid phase component is discharged from the line 94 to the storage tank 810 at about 140 g / hr. The liquid phase component contains about 97. Weight % diphenyl carbonate. discharged by line 92 The liquid system contains a solution of about 99.8% by weight of hexamethylene diisocyanate. The yield relative to the hexamethylenediamine is 95.3%. • Step (1-3): Reuse of the diaryl carbonate is shown in the figure. The apparatus shown in 9, 10 'Recycling the diaryl carbonate 0 131505.doc • 119- 200948760 The liquid discharged from the line 94 in the step (1-2) is passed from the line 95 via the preheater 901 ' 195 g/hr was continuously fed to the middle section of a continuous multi-stage distillation column 9〇2 filled with Dixon packing (6 mm Φ) with an inner diameter of about 5 cm and a column length of 2 m. Steaming the heat necessary for separation The liquid is supplied by circulating the lower portion of the liquid through the line 97 and the reboiler 904. The liquid temperature at the bottom of the continuous multi-stage distillation column 9〇2 is 210. (:, the top pressure is about 1.5 kPa, and the reflux ratio is about 1 The gas distilled from the top of the continuous multi-stage distillation column 902 is condensed in the condenser 903 via line 96, and continuously discharged from the line 99. From the bottom of the column, it is discharged to the storage tank 906 at about 14 g/hr via the enthalpy line 97. Continuous multi-stage distillation column with a diameter of about 5 cm and a length of 2 m filled with Dixon packing (6 mm φ) In the middle section of the second stage, the liquid discharged from the line 99 is continuously fed by the line phantom through the preheater 1001 at about 181 g/hr. The heat necessary for the separation of the steam is passed through the line A3 and the reboiler 丨〇〇4. The liquid in the lower part of the tower is circulated and supplied. The liquid temperature at the bottom of the continuous multi-stage distillation tower 丨002 is 232C 'the top pressure is about 15 kPa' and the reflux ratio is about 2. The self-connected ◎ continues the multi-stage steam tower 1002 tower top pavilion The gas discharged was condensed in the condenser 1003 via the line A2, and the Q was continuously discharged from the bottom line via the line A3, and discharged to the storage tank 1〇〇6 at about 119 g/hr. The liquid discharged to the storage tank 1〇〇6 contained about 99.9% by weight of diphenyl vinegar. • Step (1-4): Recycling of phenol The phenol was reused using the apparatus shown in Fig. 11. The liquid discharged from the line 87 in the step (1 - 2) is continuously fed from the line B through the preheater 1101 at about 200 g/hr to the inner diameter filled with the Dixon packing (6 mm φ). The middle section of a continuous multi-stage steaming tower with a length of 5 cm and a length of 2 m. 131 350.doc • 120· 200948760. The heat necessary for the steaming chamber separation is supplied by circulating the lower portion of the liquid through the line B3 and the reboiler 1104. The liquid temperature at the bottom of the continuous multi-stage distillation column 11〇2 is 230°c. 'The top pressure is atmospheric pressure, and the reflux ratio is about 1°. The gas distilled from the top of the continuous multi-stage distillation column 1102 is passed through the line B2 to the condenser 11 Condensation in crucible 3 is continuously discharged from line A4 to storage tank 1 105. The liquid discharged to the storage tank 11〇5 contained about 99.9% by weight of benzene. The continuous operation was carried out for 10 days. No deposit was observed in the wall area of the thin film distillation apparatus 801. Further, after 300 days of continuous operation, it was found that deposits were deposited in the wall area of the thin film vaporization apparatus 801. [Example 2] Step (2-1): Production of phenyl 3-(phenoxycarbonylamino-methyl)-3,5,5-trimethylcyclohexylaminocarboxylate was carried out as shown in Fig. 7 The device is reacted. In the state where the line 74 was closed, 1992 g (9.3 mol) of diphenyl carbonate of Reference Example 1 was supplied from the storage tank 701 via the line 71 to the SUS reaction vessel 704 with an internal volume of 5 l. 1311 g (14. 〇m〇l) benzene was supplied from the storage tank 702 via line 72 to the SUS reactor. The liquid temperature in the reactor 704 was adjusted to about 50 ° C, and 528 g (3.1 mol) of 3-aminomercapto-3,5,5·trimethyl group was transferred from the storage tank 703 via line 73' at about 250 g/hr. Cyclohexylamine (manufactured by Aldrich, USA) was supplied to the reactor 7〇4. The solution after the reaction was analyzed by liquid chromatography to give 3-(phenoxyamino-indenyl)-3,5,5-trimethylcyclohexylaminocarboxylic acid in a yield of 99-3%. Phenyl ester. 131505.doc -121- 200948760 The line 74 is opened and the reaction liquid is transported via line 74 to storage tank 705. • Step (2-2): The isocyanate is produced by thermal decomposition of phenyl 3-(phenoxycarbonylamino-methyl)_3,5,5-trimethylcyclohexylcarbamate, as shown in FIG. The device reacts. A thin film distillation unit 8〇1 with a heat transfer area of 〇·1 m2 (K,belco 日本, Japan)
eco-s〇luti〇ns公司製造)加熱至22〇〇c,使内部壓力約為13 kPa °將步驟(2-1)中由貯槽705所回收之混合物加熱至150 C,經由線路81 ’以約780 g/hr供給至薄膜蒸餾裝置801之 上部。由薄膜蒸餾裝置801之底部,將液相成分由線路83 排出,經由線路84及線路81,循環至薄膜蒸餾裝置801之 上部。將氣相成分由線路82排出。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔802之中段,連續進料由薄膜蒸餾裝置 801、,’呈由線路82排出之氣相成分,進行該氣相成分之蒸餾 刀離蒸餾刀離所必需之熱量係藉由經由線路86及再沸器 刪使塔下部液㈣環而供給。連續多段蒸麟觀之塔底 部液體溫度為150<t,塔頂壓力約為15 kpa。將自連續多 段蒸館塔8G2之塔頂館出之氣體經由線路於冷凝器綱中 冷凝’由料87連續㈣。由連❹段蒸料搬之低於 線路82之位置的線路89’排出液相成分。 向異兄有狄克松填料(6叫)之内徑約為5⑽、塔長為2 m之連續多段蒸館塔8G5之中段,連續進料由線路师出之 液相成分,進行該液相成分 之蒸餾为離。蒸餾分離所必需 之熱量係藉由經由線路9〗B s 91及再沸器807使塔下部液體循環 131505.doc -122- 200948760 而供給。連續多段蒸餾塔805之塔底部液體溫度為15〇。〇, 塔頂壓力約為1·3 kPa。將自連續多段蒸餾塔805之塔頂館 出之氣體經由線路90於冷凝器806中冷凝,經由線路92以 約134 g/hr連續排出至貯槽809。 由線路92所排出之液體係含有約99.8重量%異佛酮二異 氰酸酯之溶液。相對於3-胺基甲基-3,5,5-三甲基環己基胺 之產率為95.0%。進行1〇天連續運轉,未發現於薄膜蒸餾 裝置801之壁面積蓄有附著物。 ^ [實施例3] .步驟(3-1):二苯基-4,4’·亞甲基-二環己基胺基甲酸酯之製造 向參考例1之碳酸二笨酯中添加乙酿丙酮鐵(II),製備含 有2.3%之作為金屬原子之鐵的碳酸二苯酯。 使用如圖7所示之裝置進行反應。 於關閉線路74之狀態下,將1577 g(7.4 mol)碳酸二苯酯 由貯槽701經由線路71供給至内容積為5 l之附有擋板之 ◎ SUS製反應容器704中,將1189 g(12.7 mol)苯酚由貯槽702 經由線路72供給至該SUS製反應器中。將該反應器704内 之液體溫度調整成約50 °C,由貯槽703經由線路73,以約 250 g/hr將484 g(2.3 mol)之4,4’-亞甲基雙(環己基胺八美 國’ Aldrich公司製造)供給至該反應器704中。 以液相層析法對反應後之溶液進行分析,結果以產率 99.1%生成二苯基_4,41_亞甲基_二環己基胺基曱酸酯。 打開線路74 ’將該反應液經由線路74運送至貯槽705。 .步驟(3-2):利用二苯基_4,4,_亞甲基-二環己基胺基曱酸酯 131505.doc -123- 200948760 之熱分解而製造異氰酸酯 使用如圖12所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸餾裝置1201(日本,Heated to 22 〇〇c, the internal pressure is about 13 kPa °. The mixture recovered from the sump 705 in step (2-1) is heated to 150 C, via line 81 ' About 780 g/hr was supplied to the upper portion of the thin film distillation apparatus 801. From the bottom of the thin film distillation apparatus 801, the liquid phase component is discharged from the line 83, and is circulated to the upper portion of the thin film distillation apparatus 801 via the line 84 and the line 81. The gas phase components are discharged from line 82. To the middle of the continuous multi-stage distillation column 802 filled with Dixon packing (6 mm φ) having an inner diameter of about 5 cm and a column length of 2 m, the continuous feeding is performed by the thin film distillation apparatus 801, 'discharged by the line 82 The gas phase component, the heat necessary for the distillation of the gas phase component to be separated from the distillation knife, is supplied by removing the lower liquid (four) ring through the line 86 and the reboiler. The liquid temperature at the bottom of the continuous multi-stage steaming tower is 150 < t, and the pressure at the top of the tower is about 15 kpa. The gas from the tower top of the continuous multi-stage steaming tower 8G2 is condensed through the line in the condenser section. The material 87 is continuous (four). The liquid phase component is discharged from the line 89' where the continuous section of the steam is moved below the line 82. To the middle brother, there is a middle section of the continuous multi-stage steaming tower 8G5 with a Dickson packing (6) having an inner diameter of about 5 (10) and a tower length of 2 m, and continuously feeding the liquid phase component from the line division to carry out the liquid phase. The distillation of the ingredients is off. The heat necessary for the distillation separation is supplied by circulating the lower liquid stream 131505.doc - 122 - 200948760 via the line 9 Bs 91 and the reboiler 807. The liquid temperature at the bottom of the continuous multi-stage distillation column 805 is 15 Torr. 〇, the top pressure is about 1.3 kPa. The gas from the top of the continuous multi-stage distillation column 805 is condensed in the condenser 806 via line 90 and continuously discharged to the sump 809 via line 92 at about 134 g/hr. The liquid system discharged from line 92 contained a solution of about 99.8% by weight of isophorone diisocyanate. The yield based on 3-aminomethyl-3,5,5-trimethylcyclohexylamine was 95.0%. The continuous operation was carried out for one day, and no deposit was observed in the wall area of the thin film distillation apparatus 801. [Example 3] Step (3-1): Production of diphenyl-4,4'·methylene-dicyclohexylcarbamate To the diphenyl carbonate of Reference Example 1, Acetone iron (II), a diphenyl carbonate containing 2.3% of iron as a metal atom was prepared. The reaction was carried out using the apparatus shown in FIG. 1577 g (7.4 mol) of diphenyl carbonate was supplied from the storage tank 701 via the line 71 to a reaction vessel 704 made of 5.2 SUS with an internal volume of 5 l in a state where the line 74 was closed, and 1189 g (1189 g ( 12.7 mol) of phenol was supplied from the storage tank 702 to the SUS reactor via line 72. The temperature of the liquid in the reactor 704 was adjusted to about 50 ° C, and 484 g (2.3 mol) of 4,4'-methylenebis(cyclohexylamine VIII) was passed from the storage tank 703 via line 73 at about 250 g/hr. The reactor of the United States 'Aldrich Company' is supplied to the reactor 704. The solution after the reaction was analyzed by liquid chromatography to give diphenyl-4,41-methylene-dicyclohexylamino phthalate in a yield of 99.1%. The line 74' is opened to transport the reaction liquid to the sump 705 via line 74. Step (3-2): Production of isocyanate by thermal decomposition of diphenyl-4,4,-methylene-dicyclohexylamino phthalate 131505.doc-123-200948760 is used as shown in FIG. The device reacts. A thin film distillation apparatus 1201 having a heat transfer area of 0.1 m2 (Japan,
Kobelco eco-solutions公司製造)加熱至25(TC,使内部之壓 力約為1.3 kPa。將步驟(3-1)中由貯槽705所回收之混合物 加熱至170°C,經由線路C1,以約650 g/hr供給至薄膜蒸餾 裝置1201之上部。由薄膜蒸餾裝置1201之底部,將液相成 分由線路C3排出’經由線路C4及線路C1,循環至薄膜蒸 ® 餾裝置1201之上部。將氣相成分由線路C2排出。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔1202中段’連續進料由薄膜蒸顧裝置 1201經由線路C2排出之氣相成分’進行該氣相成分之蒸顧 分離。蒸顧分離所必需之熱量係藉由經由線路C6及再沸器 1 204使塔下部液體循環而供給。連續多段蒸餾塔丨2〇丨之塔 底部液體溫度為210 °C,塔頂壓力為大氣壓。將自連續多 Q 段蒸館塔1201之塔頂顧出之氣體經由線路C5,於冷凝器 1203中冷凝,由線路C7連續排出。由線路〇8排出液相成 分。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔1205的中段,連續進料由線路C8排出 之液相成分’進行該液相成分之蒸餾分離。蒸餾分離所必 需之熱量係藉由經由線路C11及再沸器12〇7使塔下部液體 循環而供給。連續多段蒸餾塔1205之塔底部液體溫度為 21〇°C,塔頂壓力約為2·5 kPa。將自連續多段蒸餾塔12〇5 131505.doc -124- 200948760 之塔頂德出之氣體經由線路CIO,於冷凝器ι2〇6中冷凝, 經由線路C12連續排出。由線路C14排出液相成分。 ❹ Ο 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸館塔12〇8的中段,連續進料由線路C14排 出之液相成分,進行該液相成分之蒸餾分離。蒸餾分離所 必需之熱量係藉由經由線路C16及再沸器121〇使塔下部液 體循環而供給。連續多段蒸餾塔12〇8之塔底部液體溫度為 22(TC ’塔頂塵力約為〇.5 kPa。將自連續多段蒸館塔12〇5 之塔頂餾出之氣體經由線路C15,於冷凝器12〇9中冷凝, ,-里由線路C17以約113 g/hr連續排出。由C17排出之液體 含有約99.9重量%之4,4,·亞甲基-雙(環己基異氰酸醋)。相 對於4,4,-亞甲基雙(環己基胺)之產率為93 2%。進行ι〇天連 續運轉’未發現於薄膜基顧坡甚 得膘瘵餾裝置1202之壁面積蓄有附著 物0 [實施例4] •步驟(4-1):二苯基_4 4,-25 田 I m ,亞甲基環己基胺基曱酸酯之製造 除供給 1650 g(7.7 來去 )參考例1之碳酸二苯酯、1344 g(l 1 ·0 mol) 2,6、二曱其m 土酚(美國,Aldrich公司製造)代替 苯酚、及463 g(2.2 m〇1) 4 | ; ’亞甲基雙(環己基胺)之外,實 施與實施例3之步驟(3_υ 菔德之m °以液相層析法對反 應後之/合液進仃分析,妗果 秸果以產率99.3%生成二笨基 亞甲基-二環己基胺基甲酸酿。 风本基Μ .步驟(4-2):利用二苯基_4 4,· ’ 亞甲基'二環己基胺基甲酸之 熱分解而製造異氰酸5旨 胺基甲酸之 131505.doc -125- 200948760 除使用步驟(4_ 1)所獲得之混合物代替步驟(3 -1)所獲得之 混合物,將該混合物加熱至l4〇°C之外,實施與實施例3之 步驟(3-2)同樣之方法。由C7排出苯紛與2,6-二甲基苯紛之 混合物。由C17排出之液體含有約99.9重量%之4,4,-亞甲 基-雙(環己基異氰酸酯)。相對於4,4'-亞甲基雙(環己基胺) 之產率為92.3%。進行10天連續運轉,未發現於薄膜蒸德 裝置1202之壁面積蓄有附著物。 [實施例5] •步驟(5-1) : Ν,Ν· -己二基·雙-胺基曱酸二苯酿之製造 除供給1874 g(8·8 mol)參考例1之碳酸二苯醋、 1246(13.3 mol)苯酚及291 g(2.5 mol)六亞甲基二胺之外, 實施與實施例1之步驟(1-1)同樣之方法。 以液相層析法對反應後之溶液進行分析,結果以產率 99.4%生成己二基-雙-胺基甲酸二苯醋。 •步驟(5-2):利用见iV,-己二基-雙-胺基甲酸二苯酯之熱分 解而製造異氰酸酯 除使用步驟(5-1)所獲得之混合物代替步驟〇_1}所獲得之 混合物’將該混合物加熱至190°C,供給至薄膜蒸顧裝置 801之外’實施與實施例i之步驟(1_2)同樣的方法。由線路 92以76.5 g/hr連續將液體排出至貯槽809。由線路92所排 出之液體係含有約99.8重量%六亞甲基二異氰酸醋之溶 液°相對於六亞曱基二胺之產率為77.5%。進行1〇天連續 運轉,未發現於薄膜蒸餾裝置801之壁面積蓄有附著物。 [實施例6] 131505.doc -126- 200948760 .步驟(6-1) : 己二基_雙_胺基甲酸二笨酯之製造 除供给2〇56 g(9.6 mol)參考例1之碳酸二苯酯、15〇4 g(16_〇 mol)苯酚及372 g(3.2 m〇1)六亞曱基二胺之外,實施 與實施例1之步驟同樣的方法。 以液相層析法對反應後之溶液進行分析,結果以產率 99·4°/〇生成况己二基-雙-胺基曱酸二苯酯。 •步驟(6-2):利用心_己二基_雙-胺基甲酸二苯醋之熱分 ❹解而製造異氰酸醋 使用如圖8所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸餾裝置8〇1加熱至22〇<t, 使内部壓力約為0.13 kPae將步驟(6·υ*由貯槽7〇5回收之 混合物加熱至1〇(rc,經由線路81以約8〇〇 g/hr供給至薄膜 蒸顧裝置術之上部。由薄膜蒸館裝置8〇1將氣相成分經由 線路82排出。自薄膜蒸餾裝置8〇1之底部具備之線路83, 幾乎未回收液相成分。 〇 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸館塔8G2的中段,連續進料由薄膜蒸顧裝置 801經由線路82排出之氣相成分,進行該氣相成分之蒸餾 分離。蒸餾分離所必需之熱量係藉由經由線路86及再沸器 804使塔下部液體循環而供給。連續多段蒸餾塔8〇2之塔底 部液體溫度為150°C,塔頂壓力約為8 kpa。將自連續多段 蒸餾塔802之塔頂餾出之氣體經由線路以於冷凝器中冷 凝,由線路87連續排出。由連續多段蒸餾塔8〇2之低於線 路82之位置的線路89排出液相成分。 131505.doc 127- 200948760Heating by Kobelco eco-solutions) to 25 (TC, the internal pressure is about 1.3 kPa. The mixture recovered from the storage tank 705 in the step (3-1) is heated to 170 ° C, via line C1, to about 650 The g/hr is supplied to the upper portion of the thin film distillation apparatus 1201. From the bottom of the thin film distillation apparatus 1201, the liquid phase component is discharged from the line C3, and is circulated to the upper portion of the thin film vaporization apparatus 1201 via the line C4 and the line C1. The component is discharged from the line C2. The continuous section of the continuous multi-stage distillation column 1202 having an inner diameter of about 5 cm and a column length of 2 m filled with a Dixon packing (6 mm φ) is continuously fed by the film evaporation device 1201 via the line. The vapor phase component "discharged from C2" performs the vaporization separation of the gas phase component. The heat necessary for the vaporization separation is supplied by circulating the liquid in the lower portion of the column via the line C6 and the reboiler 1204. The continuous multi-stage distillation column 丨2 The liquid temperature at the bottom of the tower is 210 ° C, and the pressure at the top of the tower is atmospheric pressure. The gas taken from the top of the continuous multi-Q section steaming tower 1201 is condensed in the condenser 1203 via the line C5, and continuous by the line C7. Discharge. Discharge from line 〇8 In the middle section of the continuous multi-stage distillation column 1205 filled with Dixon packing (6 mm φ) and having an inner diameter of about 5 cm and a column length of 2 m, the liquid phase component discharged from the line C8 is continuously fed. Distillation separation of the liquid phase component. The heat necessary for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line C11 and the reboiler 12 〇 7. The liquid temperature at the bottom of the continuous multi-stage distillation column 1205 is 21 〇 ° C, The pressure at the top of the column is about 2.5 kPa. The gas from the top of the continuous multi-stage distillation column 12〇5 131505.doc -124- 200948760 is condensed in the condenser ι2〇6 via line CIO, continuously through line C12. Discharge. The liquid phase component is discharged from line C14. ❹ Ο The middle section of the continuous multi-stage steaming tower 12〇8 filled with Dixon packing (6 mm φ) with an inner diameter of about 5 cm and a tower length of 2 m The liquid phase component discharged from the line C14 is fed to perform distillation separation of the liquid phase component. The heat necessary for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line C16 and the reboiler 121. The continuous multi-stage distillation column is supplied. The liquid temperature at the bottom of the 12〇8 tower is 22 (TC 'Tower The dust power is about 55 kPa. The gas distilled from the top of the continuous multi-stage steaming tower 12〇5 is condensed in the condenser 12〇9 via line C15, and the line C17 is about 113 g/ The hr is continuously discharged. The liquid discharged from C17 contains about 99.9% by weight of 4,4,·methylene-bis(cyclohexyl isocyanate). Compared to 4,4,-methylenebis(cyclohexylamine). The yield was 93 2%. The continuous operation of ι〇天 was not found in the wall area of the film-based sloping rectification apparatus 1202. Attachment 0 [Example 4] • Step (4-1): II Phenyl_4 4,-25 Field Im, methylene cyclohexylamino phthalate production except for the supply of 1650 g (7.7 to) diphenyl carbonate of Reference Example 1, 1344 g (l 1 · 0 mol) 2,6, 曱 曱 m phenol (manufactured by Aldrich, USA) instead of phenol, and 463 g (2.2 m〇1) 4 | ; 'methylene bis(cyclohexylamine), implementation and Example 3 The step (3_υ 菔德的 m ° is analyzed by liquid chromatography for the reaction/liquid mixture after the reaction, and the fruit of the fruit is produced in a yield of 99.3% to form di-p-methylene-dicyclohexylamine formic acid. . Wind-based basis. Step (4-2): Preparation of isocyanic acid 5-amino carbamic acid by thermal decomposition of diphenyl-4-4,· 'methylene' dicyclohexylaminocarboxylic acid 131505.doc - 125- 200948760 In addition to using the mixture obtained in the step (4-1) in place of the mixture obtained in the step (3 -1), the mixture is heated to a temperature other than 14 ° C, and the step (3-2) of the embodiment 3 is carried out. The same method. A mixture of benzene and 2,6-dimethylbenzene is discharged from C7. The liquid discharged from C17 contained about 99.9% by weight of 4,4,-methylene-bis(cyclohexyl isocyanate). The yield relative to 4,4'-methylenebis(cyclohexylamine) was 92.3%. The continuous operation was carried out for 10 days, and no deposit was found in the wall area of the thin film steaming device 1202. [Example 5] • Step (5-1): Ν, Ν·-hexanediyl·bis-amino phthalic acid diphenyl styrene was produced in addition to 1874 g (8·8 mol) of the diphenyl carbonate of Reference Example 1. The same procedure as in the step (1-1) of Example 1 was carried out, except for vinegar, 1246 (13.3 mol) phenol and 291 g (2.5 mol) hexamethylenediamine. The solution after the reaction was analyzed by liquid chromatography, and as a result, hexamethylenediamine-diphenylacetate was formed in a yield of 99.4%. • Step (5-2): Production of isocyanate by thermal decomposition of iV,-hexanediyl-bis-carbamic acid diphenyl ester, except that the mixture obtained in the step (5-1) is used instead of the step 〇_1} The obtained mixture 'heated the mixture to 190 ° C and supplied to the outside of the film evaporation device 801' was carried out in the same manner as in the step (1_2) of Example i. The liquid was continuously discharged to the sump 809 by line 92 at 76.5 g/hr. The liquid system discharged from line 92 contained a solution of about 99.8% by weight of hexamethylene diisocyanate. The yield based on the hexamethylenediamine was 77.5%. The continuous operation was performed for one day, and no deposit was found in the wall area of the thin film distillation apparatus 801. [Example 6] 131505.doc -126- 200948760. Step (6-1): Manufacture of dihexyl bis-bis-carbamic acid di- bromo ester except that 2 〇 56 g (9.6 mol) of the carbonic acid of Reference Example 1 was supplied The same procedure as in Example 1 was carried out, except that phenyl ester, 15 〇 4 g (16 〇 mol) phenol, and 372 g (3.2 m 〇 1) hexamethylenediamine. The solution after the reaction was analyzed by liquid chromatography, and as a result, a yield of 99·4 ° / 〇 was produced as dihexyl bis-amino phthalic acid diphenyl ester. • Step (6-2): Isocyanic acid vinegar was prepared by thermal decomposition of hexamethylene bis- carbamic acid diphenyl vinegar. The reaction was carried out using a device as shown in Fig. 8. The thin film distillation apparatus 8〇1 having a heat transfer area of 0.1 m2 is heated to 22 〇<t, and the internal pressure is about 0.13 kPae. The step (6·υ* of the mixture recovered from the storage tank 7〇5 is heated to 1 〇 (rc It is supplied to the upper portion of the film evaporation device via line 81 at about 8 〇〇g/hr. The gas phase component is discharged from the vapor deposition device 8〇1 via line 82. It is provided at the bottom of the thin film distillation device 8〇1. Line 83, almost no liquid phase component was recovered. The middle section of the continuous multi-stage steaming tower 8G2 filled with Dixon packing (6 mm φ) with an inner diameter of about 5 cm and a tower length of 2 m was continuously fed. The vapor phase component discharged from the thin film evaporation device 801 via the line 82 performs distillation separation of the gas phase component. The heat necessary for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line 86 and the reboiler 804. The bottom of the column of the distillation column 8〇2 has a liquid temperature of 150 ° C and a column top pressure of about 8 kPa. The gas distilled from the top of the continuous multi-stage distillation column 802 is condensed in the condenser via the line, and is continuously connected by the line 87. Discharged from the continuous multi-stage distillation column 8〇2 below the line 82 The liquid composition discharge line 89. 131505.doc 127- 200948760
向填充有狄克松填料(6ππηφ)之内徑約為5咖、塔長為2 m之連續多段蒸料奶的中段,連續進料由線路μ所排出 之液相成分,進行該液相成分之蒸料離。蒸齡離所必 需之熱量係藉由經由線路91及再彿請7使塔下部液體循 環而供給。連續多段蒸館塔8〇5之塔底部液體溫度為15〇 °C ’塔頂壓力約為L5 kPa。將自連續多段蒸館塔8〇5之塔 頂餾出之氣體經由線路90於冷凝器8〇6中冷凝,經由線路 92連續排出至貯槽8〇9。穩定狀態之排出量約為⑽咖。 由線路92排出之液體係含有約99.9重量%六亞曱基二異 氰酸醋之溶液《相對於六亞甲基二胺之產率為95 4%。進 行ίο天連續運轉,結果發現於薄膜蒸餾裝置8〇1之壁面積 蓄有附著物。 [實施例7] .步驟(7-1):二苯基_4,4,_亞曱基-二環己基胺基甲酸酯之製造 除使用1874 g(8.8 mol)參考例1之碳酸二苯酯、丨175 Q g(12.5 mo1)苯酚及526 g(2.5 mol) 4,4'-亞甲基雙(環己基胺) 之外,實施與實施例3之步驟(34)同樣之方法。 以液相層析法對反應後之溶液進行分析,結果以產率 99.20/〇生成二苯基-4,4,-亞甲基-二環己基胺基甲酸酯。 .步驟(7-2):利用二苯基_4,4,-亞曱基-二環己基胺基曱酸醋 之熱分解而製造異氰酸酯 使用如圖13所示之裝置進行反應。 將步驟(7-1)中由貯槽705回收之混合物加熱至15〇。(:,經 由線路D1,以約510 g/hr進料至填充有狄克松填料(6 mm 131505.doc 1〇〇 200948760 Φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔1301的 中段,進行熱分解反應。熱分解反應所必需之熱量係藉由 經由線路D3及再沸器1303使塔下部液體循環而供給。連續 多段蒸餾塔1301之塔底部的液體溫度為220。(:,塔頂壓力 約為15 kPa。將自連續多段蒸餾塔1301之塔頂餾出之氣體 經由線路D2於冷凝器1302中冷凝,由線路D4連續排出。 由連續多段蒸顧塔13 01之底部,將液相成分經由線路D3回 收。 〇 向填充有狄克松填料(6 mm Φ)之内徑約為5 cm、塔長為2 m之連續多段蒸館塔13 04的中段,連續進料經由線路D6而 排出之液相成分’進行該液相成分之蒸館分離。蒸館分離 所必需之熱量係藉由經由線路D8及再沸器1306使塔下部液 體循環而供給。連續多段蒸餾塔1304之塔底部液體溫度為 220°C ’塔頂壓力約為5.2 kPa。將自連續多段蒸餾塔1304 之塔頂餾出之氣體經由線路D7,於冷凝器1305中冷凝,由 Q 線路D9連續排出。由連續多段蒸餾塔1304之底部,將液相 成分經由線路D8及線路D11加以回收。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔13〇7的中段,連續進料由線路d8所排 出之液相成分,進行該液相成分之蒸餾分離。蒸餾分離所 必需之熱量係藉由經由線路D14及再沸器1309使塔下部液 體循環而供給。連續多段蒸餾塔1307之塔底部液體溫度為 220°C,塔頂壓力約為〇 4〇 kp^將自連續多段蒸餾塔13〇7 之塔頂餾出之氣體經由線路D12,於冷凝器13〇8中冷凝, 131505.doc -129- 200948760 經由線路D13連續排出。穩定狀態之排出量約為75 g/hr。 由線路D13所排出之液體係含有約99.8重量%之4,4'-亞曱 基-雙(環己基異氰酸酯)之溶液,相對於4,4,-亞曱基雙(環 己基胺)之產率為80.4%。進行1〇天連續運轉,結果未發現 於連續多段蒸顧塔1301之内部積蓄有附著物。 [實施例8] .步驟(8·〗):从#’-己二基-雙-胺基曱酸二苯酯之製造 〇 除供給135〇 g(6.3 mol)參考例1之碳酸二苯酯、2204 g(8.4 mol)4-十二烷基苯酚(美國,Aldrich公司製造)代替 笨酚、及244 g(2.l mol)六亞甲基二胺之外,實施與實施例 1之步驟(1 -1)同樣的方法。 以液相層析法對反應後之溶液進行分析,結果以產率 99.0%生成厦#’-己二基-雙-胺基甲酸二苯酯。 .步驟(8-2):利用ΛΓ,ΛΓ’·己二基_雙-胺基曱酸二苯酯之熱分 Q 解而製造異氰酸酯 使用如圖8所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸餾裝置8〇1加熱至22(rc, 使内部壓力約為5.2 kPa。將步驟(8-1)中由貯槽705回收之 混合物加熱至15CTC,經由線路81以約12〇〇以匕供給至薄 膜蒸餾裝置801之上部。由薄膜蒸餾裝置8〇1之底部,將液 相成分由線路83排出,經由線路84及線路8 1,循環至薄膜 蒸德裝置801之上部。將氣相成分由線路82排出。 向填充有狄克松填料(6 mm勿之内徑約為5 cm、塔長為2 131505.doc -130- 200948760 m之連續多段蒸餾塔802的中段’連續進料由薄膜蒸餾裝置 801經由線路82所排出之氣相成分’進行該氣相成分之蒸 德分離。蒸餾分離所必需之熱量係藉由經由線路86及再沸 器804使塔下部液體循環而供給。連續多段蒸餾塔8〇2之塔 底部液體溫度為150°C,塔頂壓力約為4.0 kPa。將自連續 多段蒸館塔802之塔頂餾出之氣體經由線路85於冷凝器803 中冷凝’由線路87連續排出。由連續多段蒸館塔802之低 於線路82之位置的線路89排出液相成分。 向填充有狄克松填料(6 mm妁之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔805的中段,連續進料由線路89排出之 液相成分,進行該液相成分之蒸館分離。蒸餾分離所必需 之熱量係藉由經由線路91及再沸器807使塔下部液體循環 而供給。連續多段蒸餾塔805之塔底部液體溫度為15〇()(:, 塔頂壓力約為0.8 kPa。將自連續多段蒸餾塔8〇5之塔頂餾 出之氣體經由線路90於冷凝器806中冷凝,經由線路92連 0 續排出至貯槽809。穩定狀態之排出量約為104 g/hr。 穩定狀態下,由線路94以約69〇 g/hr將液相成分排出至 貯槽810。該液相成分含有約97重量%之肛十二烷基苯酚。 由線路92排出之液體係含有約99 8重量%六亞曱基二異 氰酸醋之溶液。相對於六亞甲基二胺之產率為931%。進 行1〇天連續運轉,未發現於薄膜蒸餾裝置8〇1之壁面積蓄 有附著物。 [實施例9] •步驟(9-1) : 3-(苯氧基幾基胺基_甲基⑷^王甲基環己 131505.doc -131- 200948760 基胺基甲酸苯酯之製造 除供給 1028 g(4.8 mol)參;& )麥亏例1之碳酸二苯酯、2643 g(8.0 mol) 2,4-(α,α·二曱基苄其、贫 xw 丁秦卞基)本酚(日本,東京化成公 司製造)代替苯盼、及273机6_)3_胺基甲基_3,5,5•三 甲基環己基胺之外,實施與實施例2之步驟㈣同樣的方法。 以液相層析法對反應後之溶液進行分析,結果以產率 99.0%生成3_(苯氧基幾基胺基·甲基)355三甲基環己基 胺基甲酸苯酯。 •步驟(9-2):利用3_(苯氧基羰基胺基-甲基)_3,5,5_三甲基 環己基胺基甲酸苯酯之熱分解而製造異氰酸酯 除使用步驟(9-2)所獲得之混合物代替步驟叫)所獲得之 混合物,將該混合物加熱至150〇c,以約131〇 g/hr供給之 外,實施與實施例8之步驟(8_2)同樣的方法。 將自連續多段蒸餾塔8〇5之塔頂餾出之氣體經由線路 9〇,於冷凝器806中冷凝,經由線路92以約112 g/hr連續排 出至貯槽809 » 由線路92排出之液體係含有約99.8重量%異佛酮二異氰 酸酯之溶液。相對於3·胺基曱基-3,5,5-三甲基環己基胺之 產率為94.5%。進行1〇天連續運轉,未發現於薄膜蒸餾裝 置801之壁面積蓄有附著物。 [實施例10] •步驟(1(M):愚#’-(4,4,·亞曱基-二苯基)-雙胺基甲酸二苯 酯之製造 使用如圖7所示之裝置進行反應。 131505.doc -132- 200948760 於關閉線路74之狀態下,由貯槽701經由線路71,將 1478 g(6.9 mol)參考例1之碳酸二苯酯與50.5 g(0.2 mol)乙 酸鋅2水合物(美國,Aldrich公司製造)之混合液供給至内 谷積為5 L之附有播板的SUS製反應容器704中,由貯槽702 經由線路72將1297 g(13.8 mol)笨酚供給至該sus製反應器 中。將該反應器704内之液體溫度調整成約50〇c,由貯槽 703 經由線路 73,以約 200 g/hl^ 456 g(23 m〇1) 44,亞曱 基一苯胺(美國’ Aldrich公司製造)供給至該反應器7〇4中。 ❹ 以液相層析法對反應後之溶液進行分析,結果以產率 98.8%生成况,(4,4,-亞曱基-二苯基)-雙胺基甲酸二苯酯。 打開線路74 ’將該反應液經由線路74運送至貯槽705。 .步驟(10-2):利用况#,-(4,4|-亞曱基-二苯基)_雙胺基曱酸 二苯酯之熱分解而製造異氰酸酯 使用如圖12所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸餾裝置12〇1加熱至23〇〇c, Q 使内部壓力約為1.3 kPa。將步驟(10-1)中由貯槽705回收之 混合物加熱至13〇°C,經由線路C1以約690 g/hr供給至薄膜 蒸顧裝置1201之上部。由薄膜蒸館裝置丨2〇丨之底部,將液 相成分由線路C3排出’經由線路C4及線路C1,循環至薄 膜蒸顧裝置1201之上部。將氣相成分由線路C2排出。 向填充有狄克松填料(6 mm ψ)之内徑約為5 cni、塔長為2 m之連續多段蒸餾塔12〇2的中段,連續進料由薄膜蒸餾裝 置1201經由線路C2所排出之氣相成分,進行該氣相成分之 蒸餾分離。蒸餾分離所必需之熱量係藉由經由線路C6及再 131505.doc •133- 200948760 沸器1204使塔下部液體循環而供給。連續多段蒸德塔12〇1 之塔底部液體溫度為20(TC,塔頂壓力為6〇 kpa。將自連 續多段蒸餾塔1201之塔頂餾出的氣體經由線路C5,於冷凝 器1203中冷凝,由線路C7連續排出。由線路以排出液相 成分。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔1205的中段,連續進料由線路C8排出 之液相成分,進行該液相成分之蒸餾分離。蒸餾分離所必 需之熱量係藉由經由線路C11及再沸器1207使塔下部液體 循環而供給。連續多段蒸餾塔12〇5之塔底部液體溫度為 210C ’塔頂壓力約為2.5 kPa。將由連續多段蒸顧塔12〇5 之塔頂館出之氣體經由線路C10於冷凝器12〇6中冷凝,經 由線路C12連續排出。由線路c 14排出液相成分。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔1208的中段,連續進料由線路CM所 Q 排出之液相成分,進行該液相成分之蒸餾分離。蒸餾分離 所必需之熱量係藉由經由線路C16及再沸器121〇使塔下部 液體循環而供給。連續多段蒸餾塔12〇8之塔底部液體溫度 為220 C,塔頂壓力約為〇·5 kPa。將由連續多段蒸餾塔 1205之塔頂餾出之氣體經由線路C15於冷凝器12〇9中冷 凝,經由線路C17以約99.6 g/hr連續排出。由C17所排出之 液體含有約99.9重量%之4,4,_二苯基曱烷二異氰酸酯。相 對於4,4’-亞甲基二苯胺之產率為82 3Q/(^進行1〇天連續運 轉,未發現於薄膜蒸餾裝置12〇2之壁面積蓄有附著物。 131505.doc -134- 200948760 [實施例π] •步驟(11-1):曱苯-2,4-二胺基甲酸二苯酯之製造 使用如圖7所示之裝置進行反應。 於關閉線路74之狀態下’由貯槽701經由線路7丨,將 2125 g(9.9 mol)參考例丄之碳酸二苯酯及35」g(〇2 m〇1)乙 酸鋅2水合物之混合液供給至内容積為5 l之附有擋板的 SUS製反應谷器704中’由貯槽702經由線路72,將1534 〇 g(16·3 mo1)苯酚供給至該SUS製反應器中。將該反應器704 内之液體溫度調整成約50。(:,由貯槽703經由線路73,以 約 230 g/hr 將 391 g(3.2 mol) 2,4-甲苯二胺(美國,Aldrich 公 司製造)供給至該反應器704中。 以液相層析法對反應後之溶液進行分析,結果以產率 98.1 %生成曱苯_2,4_二胺基曱酸二苯酯。 打開線路74,將該反應液經由線路74運送至貯槽7〇5。 .步驟(11-2):利用甲苯_2,4-二胺基甲酸二苯酯之熱分解而 Q 製造異氰酸酯 使用如圖8所示之裝置進行反應。 將傳熱面積為0.1 m2之薄膜蒸餾裝置8〇1加熱至22(rc, 使内部壓力約為13 kPa。將步驟(π — :)*由貯槽7〇5所回收 之混合物加熱至130。(:,經由線路81,以約820 g/hr供給至 薄膜蒸餾裝置801之上部。由薄膜蒸餾裝置8〇1之底部,將 液相成分由線路83排出,經由線路84及線路81,循環至薄 膜蒸館裝置801之上部。將氣相成分由線路82排出。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 131505.doc -135- 200948760 m之連續多段蒸餾塔8〇2的中段,連續進料由薄膜蒸餾裝置 801經由線路82排出之氣相成分,進行該氣相成分之蒸餾 分離。蒸餾分離所必需之熱量係藉由經由線路86及再沸器 804使塔下部液體循環而供給。連續多段蒸餾塔8〇2之塔底 部液體溫度為15(TC,塔頂壓力約為15 kpa。將由連續多 段蒸餾塔802之塔頂餾出之氣體經由線路85,於冷凝器8〇3 中冷凝,由線路87連續排出。由連續多段蒸餾塔8〇2之低 於線路82之位置的線路89將液相成分排出。 〇 向填充有狄克松填料(6 mm Φ)之内徑約為5 em、塔長為2 m之連續多段蒸餾塔8〇5的中段,連續進料由線路89所排出 之液相成分,進行該液相成分之蒸餾分離。蒸餾分離所必 需之熱量係藉由經由線路91及再沸器807使塔下部液體循 環而供給。連續多段蒸镏塔805之塔底部液體溫度為15〇 C ^^頂壓力約為1.3 kPa。將自連續多段蒸館塔之塔 頂館出之氣體經由線路9〇,於冷凝器806中冷凝,經由線 Q 路92,以約93 g/hr連續排出至貯槽809。 由線路92所排出之液體係含有約99.7重量%之2,4_甲苯 二異氰酸酯之溶液。相對於2,4-甲苯二胺之產率為83 4%。 進行10天連續運轉,未發現於薄膜蒸餾裝置8〇1之壁面積 蓄有附著物。 [實施例12] .步驟(12-1):况#,-(4,4,-亞甲基_二苯基)_雙胺基甲酸二苯 酯之製造 除使用2055 g(9.5 mol)參考例1之碳酸二苯酯與M 9 131505.doc -136- 200948760 g(0.3 mol)乙酸鋅2水合物之混合液、1293 g(13.8 mol)苯酚 及496 g(2.5 mol)4,4'-亞甲基二苯胺之外,實施與實施例ι〇 之步驟(10-1)同樣的方法。 以液相層析法對反應後之溶液進行分析,結果以產率 98.6%生成从#,-(4,4,-亞曱基-二苯基)-雙胺基甲酸二苯酯。 •步驟(12-2):利用iV,iV'-(4,4·-亞曱基-二苯基)_雙胺基曱酸 一苯醋之熱分解而製造異氣酸醋 使用步驟(12-1)所獲得之混合物代替步驟(7_ 1)所獲得之 混合物,將該混合物加熱至1 30°C ’經由線路d 1,以約700 g/hr進料進行熱分解反應。熱分解反應所必需之熱量係藉 由經由線路D3及再沸器1303使塔下部液體循環而供給。連 續多段蒸餾塔1301之塔底部液體溫度為22(TC,塔頂壓力 約為15 kPa。將自連續多段蒸餾塔1301之塔頂餾出之氣體 經由線路D2於冷凝器1 3 02中冷凝,由線路〇4連續排出。 由連續多段蒸餾塔1301之底部將液相成分經由線路d3加以 回收。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔13〇4的中段,連續進料經由線路〇6而 排出之液相成分’進行該液相成分之蒸餾分離。蒸餾分離 所必需之熱量係藉由經由線路D8及再沸器1306使塔下部液 體循環而供給。連續多段蒸餾塔1304之塔底部液體溫度為 22〇°C,塔頂壓力約為5.2 kPa。將自連續多段蒸餾塔13〇4 之塔頂餾出之氣體經由線路D7,於冷凝器13〇5中冷凝由 線路D9連續排出。由連續多段蒸餾塔13〇4之底部,將液相 131505.doc •137- 200948760 成分經由線路D8及線路d 11回收。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔1307的中段,連續進料由線路D8所排 出之液相成分,進行該液相成分之蒸餾分離。蒸餾分離所 必需之熱量係藉由經由線路D14及再沸器1309使塔下部液 體循環而供給。連續多段蒸餾塔1307之塔底部液體溫度為 220°C,塔頂壓力約為0.40 kPa。將自連續多段蒸餾塔13〇7 之塔頂餾出之氣體經由線路D12,於冷凝器1308中冷凝, 經由線路D13連續排出。穩定狀態之排出量約為92 g/hr。 由線路D13所排出之液體係含有約99.8重量%之4,4,-二苯 基曱烷二異氰酸酯之溶液。相對於4,4·-亞曱基二苯胺之產 率為76.9%。進行10天連續運轉,結果未發現於連續多段 蒸餾塔1301之内部積蓄有附著物。 [實施例13] •步驟(13-1):愚^·己二基_雙-胺基甲酸二苯酯之製造 將參考例1之碳酸二苯酯放入内容積為10 L之茄型燒瓶 中,於該茄型燒瓶上安裝三通旋塞、附有填充有螺旋填料 No. 3之蒸餾柱及與餾液接受器相連接之回流冷卻器的分 餾塔、及溫度計,將系統内進行真空-氮氣置換,蒸餾純 化碳酸二苯酯。對該蒸餾純化物進行1H-NMR測定,結果 含有約99.9重量%碳酸二苯酯。又’含有0.002 ppm作為金 屬原子之鐵。 除供給 1414 g(6.6 mol)該碳酸二苯酯、1〇34 g(11.0 mol) 苯酚及256 g(2.2 mol)六亞甲基二胺之外,實施與實施例1 131505.doc -138· 200948760 之步驟(1-1)同樣的方法。 以液相層析法對反應後之溶液進行分析,結果以產率 99.0%生成#,#,·己二基-雙·胺基甲酸二笨醋。 •步_3·2):利用#,-己二基冬胺基甲酸二苯醋之熱分 解而製造異氰酸酯 除使用步驟(13-1)所獲得之混合物代替步驟(11)所獲得 之混合物之外,實施與實施例丨之步驟(12)同樣的方法。 由線路Μ以約1〇4 g/hr連續排出至貯槽8〇9。由線路“所排 出之液體係含有約99.8重量%六亞甲基二異氰酸醋之溶 液。相對於六亞甲基二胺之產率為95 〇%。進行丨〇天連續 運轉’未發現於薄膜蒸顧裝置801之壁面積蓄有附著物。 [實施例14] 步驟(14-1). iV,7V_己二基-雙-胺基甲酸二苯酯之製造 向參考例1之碳酸二苯醋中添加乙酿丙嗣鐵(H),製備含 有8%作為金屬原子之鐵的碳酸二苯酯。除供給丨37丨g(6 4 Q m〇l)該碳酸二苯酯、940 g(l〇.〇 mol)苯酚及 232 g(2.0 mol) 六亞曱基二胺之外,實施與實施例1之步驟(U)同樣的方 法。 以液相層析法對反應後之溶液進行分析,結果以產率 98.9%生成己二基-雙-胺基甲酸二苯酯。 .步驟(14-2):利用ΛΓ,ΛΓ-己二基-雙-胺基甲酸二苯醋之熱分 解而製造異氰酸酯 除使用步驟(14-1)所獲得之混合物代替步驟(ι_ι)所獲得 之混合物之外,實施與實施例1之步驟(1-2)同樣的方法。 131505.doc -139- 200948760 由線路92以約101 g/hr連續排出至貯槽8〇9。由線路92所排 出之液體係含有約99.8重量%六亞甲基二異氰酸酯之溶 液。相對於六亞甲基二胺之產率為95.2%。進行1 〇天連績 運轉’未發現於薄膜蒸餾裝置801之壁面積蓄有附著物。 [實施例15 ] 步驟(15-1) . iV,己二基-雙-胺基甲酸二苯醋之製造 將參考例1之碳酸二苯酯放入内容積為1〇 L之茄型燒瓶 中’於該茄型燒瓶上安裝三通旋塞、附有填充有螺旋填料 No. 3之蒸餾柱及與餾液接受器相連接之回流冷卻器的分 顧塔、及溫度計,將系統内進行真空-氮氣置換,蒸餾純 化碳酸二苯酯《於獲得添加量約4分之1的館出物之時,將 該燒瓶冷卻’結束蒸德純化。對館出物進行1H-NMR測 定’結果該顧出物含有約99.9重量%碳酸二苯醋。又.,該 德出物中所含有之金屬原子,就鐵、钻、鎳、鋅、錫、 銅、欽而言,係檢測下限(0.001 ppm)以下。 除供給 1553 g(7.3 mol)該碳酸二苯酯、1175 g(12.5 mol) 苯酚及291 g(2.5 mol)六亞曱基二胺之外,實施與實施例1 之步驟(1-1)同樣的方法。 以液相層析法對反應後之溶液進行分析,結果以產率 95.6%生成愚己二基-雙-胺基甲酸二苯酯。 •步驟(15-2):利用己二基-雙-胺基曱酸二苯醋之熱分 解而製造異氰酸酯 除使用步驟(15-1)所獲得之混合物代替步驟(1-1)所獲得 之混合物之外,實施與實施例1之步驟(1-2)同樣的方法。 131505.doc -140- 200948760 由線路92以約99_ 1 g/hr將液體連續排出至貯槽8〇9。由線 路92所排出之液體係含有約99 8重量%六亞甲基二異氰酸 酯之溶液。相對於六亞甲基二胺之產率為88.9%。進行10 天連續運轉,未發現於薄膜蒸餾裝置8〇1之壁面積蓄有附 著物。 [實施例16] .步驟(16-1):坨#'-己二基-雙-胺基甲酸二苯酯之製造 向參考例1之碳酸二苯g旨添加乙醯丙酮鐵(II),製備含有 13 /❶作為金屬原子之鐵的碳酸二苯酯。除供給1527 i mol)該碳酸一苯酯、1〇81 g(u 5 m〇i)苯酚及 g(23 mol) /、亞甲基一胺之外,實施與實施例丨之步驟(1 _ 1)同樣 的方法。 以液相層析法對反應後之溶液進行分析,結果以產率 94.5%生成恳#’_己二基_雙_胺基甲酸二苯酯。 •步驟(16-2):利用己二基_雙_胺基甲酸二苯酯之熱分 解而製造異氰酸酯 除使用步驟(16-1)所獲得之混合物代替步驟ο — 〗)所獲得 之此合物之外,實施與實施例丨之步驟〇·2)同樣的方法。 由線路92以約95.1 g/hr連續將液體排出至貯槽8〇9。由線 路92所排出之液體係含有約99.8重量%六亞曱基二異氰酸 酉曰之溶液。相對於六亞曱基二胺之產率為88〇%。進行1〇 天連續運轉,結果未發現於薄膜蒸餾裝置8〇1之壁面積蓄 有附著物。 [實施例17] 131505.doc -141- 200948760 •步驟(17-1) : #,己二基-雙-胺基曱酸二苯醋之製造 除供給1350 g(6.3 mol)碳酸二苯酯及79〇 g(8 4 m〇1)苯 驗’供給244 g(2.1 mol)六亞甲基二胺與197 g(2.1 mol)* 酚之混合液代替六亞曱基二胺之外,實施與實施例1之步 驟(1-1)同樣的方法。 以液相層析法對反應後之溶液進行分析,結果以產率 99.0%生成己二基-雙-胺基甲酸二苯醋。 .步驟(17-2):利用己二基·雙-胺基曱酸二苯酯之熱分 ® 解而製造異氰酸酯 除使用步驟(17-1)所獲得之混合物代替步驟(1_丨)所獲得 之混合物之外’實施與實施例1之步驟(1_2)同樣的方法。 由線路92以約1〇6 g/hr將液體連續排出至貯槽8〇9 ^由線路 92所排出之液體係含有約99.8重量%六亞甲基二異氰酸酯 之溶液。相對於六亞曱基二胺之產率為97 〇%。進行1〇天 連續運轉’未發現於薄膜蒸餾裝置8〇1之壁面積蓄有附著 _ 物。 ❹ [實施例18] •步驟(18-1) : 己二基·雙-胺基甲酸雙(3_曱基丁基)酯 之製造 使用如圖16所示之裝置。 於關閉線路G4之狀態下,由貯槽1601經由線路G1,將 1660 g(7.8 mol)碳酸二苯酯供給至内容積為5 l之附有擋板 之sus製反應容器1604中,由貯槽1602經由線路〇2,將 1175 g(12.5 mol)苯酚供給至該SUS製反應器中。將該反應 131505.doc -142- 200948760 器1604内之液體溫度調整成約50°C,由貯槽1603經由線路 G3,將291 g(2.5 mol)六亞甲基二胺與水之混合液以約2〇〇 g/hr供給至該反應器1604中。 反應結束後’將該反應器1604内減壓至10 kPa,顧去 水。水於冷凝器1607中冷凝,經由線路排出。 以液相層析法對反應後之溶液進行分析,結果以產率 99.0%生成己二基-雙-胺基甲酸二苯酯。 打開線路G4 ’將該反應液經由線路G4運送至貯槽 ® 1605 。 .步驟(18-2):利用己二基_雙_胺基曱酸二苯酯之熱分 解而製造異氰酸西旨 除使用步驟(18-1)所獲得之混合物代替步驟(丨_丨)所獲得 之混合物之外,實施與實施例1之步驟(丨_2)同樣的方法。 薄膜蒸館裝置801之相對於反應器容量之加熱面積比圖16 之反應器1 604大。由線路92以約1 〇4 g/hr將液體連續排出 q 至貯槽809。由線路92所排出之液體係含有約99.8重量%六 亞曱基二異氰酸酯之溶液。相對於六亞甲基二胺之產率為 96.5°/。。進行1〇天連續運轉’未發現於薄膜蒸餾裝置8〇1之 壁面積蓄有附著物。 [實施例19]反應器之清洗 實施例6中實施積蓄有附著物之薄膜蒸餾裝置801之清洗 操作。將薄膜蒸館裝置8〇1加熱至18〇。匸,使薄膜蒸館裝置 801内部為大氣壓氮氣環境。由線路81以約12〇〇 g/hr供給 苯盼’由線路83排出,經由線路94將液相成分回收至貯槽 131505.doc -143· 200948760 810 °進行該操作1小時,結果於薄膜蒸餾裝置801之内部 未發現附著物。 [實施例20]〜[實施例27] 連續進行實施例6之操作’每1 〇天使用各種清洗溶劑, 以與實施例19同樣之方法進行清洗操作,結果示於表!。 [比較例1] •步驟(A-l) : iV,AT-己二基_雙-胺基曱酸二苯酯之製造 使用如圖14所示之裝置進行反應。 於關閉線路E4之狀態下,由貯槽14〇1經由線路E1將1979 g(9.2 mol)碳酸二苯酯供給至内容積為$ l之附有擋板的 SUS製反應容器1404中,由貯槽1402經由線路E2將13 16 g( 14.0 mol)苯酚供給至該sus製反應器中。將該反應器 1404内之液體溫度調整成約5〇〇c,由貯槽14〇3經由線路 E3 ’以約190 g/hr將325 g(2.8 mol)六亞曱基二胺供給至該 反應器1404中。 以液相層析法對反應後之溶液進行分析,結果以產率 99.3%生成己二基·雙·胺基曱酸二苯酯。 .步驟(A-2):利用己二基-雙-胺基甲酸二苯酯之熱分 解而製造異氰酸酯 繼而使用如圖14所示之裝置進行反應。 將SUS製反應器14〇4加熱至220。(:,使該反應器内減壓 至1.3 kPa。由線路E4排出氣相成分,向填充有狄克松填料 (6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔 1405的中段’連續進料該氣相成分,進行該氣相成分之蒸 131505.doc 200948760 餾分離。蒸餾分離所必需之熱量係藉由經由線路E6及再沸 器1408使塔下部液體循環而供給。連續多段蒸德塔14〇5之 塔底部液體溫度為150 °C,塔頂壓力約為15 kPa。將自連 續多段蒸餾塔802之塔頂餾出之氣體經由線路^於冷凝器 1407中冷凝’由線路E7連續排出。由連續多段蒸德塔丨405 之低於線路E4之位置的線路E9,排出液相成分。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為 2 m之連續多段蒸餾塔1406的中段,連續進料由線路E9所 排出之液相成分,進行該液相成分之蒸餾分離。蒸餾分離 所必需之熱量係藉由經由線路El 1及再沸器1412使塔下部 液體循環而供給。連續多段蒸餾塔1406之塔底部的液體溫 度為150°C,塔頂壓力約為1.5 kPa。將自連續多段蒸餾塔 1406之塔頂餾出之氣體經由線路E10於冷凝器1410中冷 凝,經由線路E12連續排出至貯槽1411。由貯槽1411回收 之液體約為304 g。該液體係含有約99.8重量%六亞曱基二 q 異氰酸酯之溶液。相對於六亞曱基二胺之產率為64.5%。 [比較例2] .步驟(B-l) : jV,AT-(4,4’-亞甲基-二苯基)-雙胺基甲酸二苯 酯之製造 使用如圖15所示之裝置進行反應。 於關閉線路F4之狀態下,由貯槽1501經由線路F1將1527 g(7.1 mol)碳酸二苯酯與50.5 g(0.2 mol)乙酸鋅2水合物之 混合物供給至内容積為5 L之附有擋板的SUS製反應容器 1504中’由貯槽1502經由線路F2,將1146 g(l.2 mol)苯酚 131505.doc -145· 200948760 供給至該SUS製反應器中。將該反應器1504内之液體溫度 調整成約50°C,由貯槽1503經由線路F3,將456 g(2.3 mol) 4,4’-亞曱基二苯胺以約200 g/hr供給至該反應器1504 中〇 以液相層析法對反應後之溶液進行分析,結果以產率 98.3%生成iV,iVf-(4,4'-亞曱基-二苯基)-雙胺基甲酸二苯酯。 •步驟(B-2):利用W-(4,4’-亞甲基-二苯基)_雙胺基曱酸 二苯酯之熱分解而製造異氰酸酯 〇 繼而使用如圖15所示之裝置進行反應。 將SUS製反應器1504加熱至220°c,使該反應器内減壓 成1.3 kPa。由線路F4排出氣相成分,向填充有狄克松填料 (6 mm φ)之内徑約為5 cm、塔長為2 m之連續多段蒸餾塔 1506的中段’連續進料該氣相成分,進行該氣相成分之蒸 餾分離。蒸餾分離所必需之熱量係藉由經由線路F6及再沸 器1 507使塔下部液體循環而供給。連續多段蒸顧塔丨5〇6之 © $底部 液體溫度為200°C,塔頂壓力為60 kPa。將自連續 多段蒸顧塔1506之塔頂顧出之氣體經由線路F5,於冷凝器 1505中冷凝,由線路F7連續排出。由線路!?6排出液相成 分。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、塔長為 2 m之連續多段蒸餾塔1509的中段,連續進料由線路?6所 排出之液相成分,進行該液相成分之蒸餾分離。蒸餾分離 所必需之熱量係藉由經由線路F11及再沸器1510使塔下部 液體循環而供給。連續多段蒸餾塔丨509之塔底部液體溫度 131505.doc 200948760 為210°C,塔頂壓力約為2.5 kPa。將自連續多段蒸餾塔 1509之塔頂餾出之氣體經由線路F10於冷凝器15〇8中a 凝,經由線路F12連續排出。由線路fii排出液相成分。 向填充有狄克松填料(6 mm φ)之内徑約為5 cm、技長為 2 m之連續多段蒸餾塔1512的中段,連續進料由線路Fi4所 排出之液相成分’進行該液相成分之蒸餾分離。蒸館分離 所必需之熱量係藉由經由線路F16及再沸器1513使塔下部 液體循環而供給。連續多段蒸餾塔15 12之塔底部液體溫度 為220°C,塔頂壓力約為〇.5 kPa。將自連續多段蒸餾塔 1512之4頂顧出之氣體經由線路ΡΉ於冷凝器bn中a 凝,經由線路F17排出。由F17所排出之液體約為7〇 g,含 有約99.9重量%之4,4,-二苯基甲烷二異氰酸酯。相對於 4,4'-亞甲基二苯胺之產率為56.0%。 [比較例3] •步驟(C-1) : 己二基-雙·胺基曱酸二苯醋之製造 g 使用如圖7所示之裝置進行反應。 於關閉線路74之狀態下,由貯槽7〇1經由線路71,將 2454 g(ll.5 mol)碳酸二苯酯供給至内容積為5 [之附有擋 板的SUS製反應容器704中。將該反應器7〇4内之液體溫度 調整成約80C,熔融碳酸二苯酯,由貯槽7〇3經由線路73 將372 g(3.2 mol)六亞曱基二胺以約1〇〇 g/hr供給至該反應 器704中。 以液相層析法對反應後之溶液進行分析,結果以產率 77.5%生成己二基-雙-胺基甲酸二苯酯。 131505.doc -147- 200948760 打開線路74,將該反應液經由線路74運送至貯槽705。 •步驟(C-2):利用己二基-雙-胺基甲酸二苯酯之熱分 解而製造異氰酸酯 使用如圖8所示之裝置進行反應。 除使用步驟(C-1)所獲得之混合物代替步驟(1-1)所獲得 之混合物之外,實施與實施例1之步驟(1-2)同樣之方法。 經由線路92以約113 g/hr連續排出液體至貯槽809。 由線路92所排出之液體係含有約99.8重量%六亞曱基二 ® 異氰酸酯之溶液。相對於六亞甲基二胺之產率為74.4%。 [比較例4]〜[比較例6] 連續進行實施例6之操作,每10天使用各種清洗溶劑, 以與實施例13同樣之方法進行清洗操作,結果示於表1。 [表1] 表1清洗操作實施結果The liquid phase component discharged from the line μ is continuously fed to a middle portion of a continuous multi-stage steamed milk filled with a Dixon filler (6ππηφ) having an inner diameter of about 5 coffee and a column length of 2 m, and the liquid phase component is discharged. The steamed material is separated. The heat required for the steaming age is supplied by circulating the liquid in the lower portion of the tower via line 91 and again. The liquid temperature at the bottom of the tower of the continuous multi-stage steaming tower 8〇5 is 15 ° C. The top pressure is about L5 kPa. The gas distilled from the top of the continuous multi-stage steaming tower 8〇5 is condensed in the condenser 8〇6 via the line 90, and continuously discharged to the storage tank 8〇9 via the line 92. The steady state discharge is about (10) coffee. The liquid system discharged from line 92 contains about 99. The solution of 9 wt% of hexamethylenediamine diisocyanate has a yield of 95 4% relative to hexamethylenediamine. When the operation was continued for ίο, it was found that the wall area of the thin film distillation apparatus 8〇1 was deposited. [Example 7]. Step (7-1): Production of diphenyl-4,4,-indenylene-dicyclohexylcarbamate except 1874 g (8. 8 mol) Reference Example 1 diphenyl carbonate, 丨 175 Q g (12. 5 mo1) phenol and 526 g (2. The same procedure as in the step (34) of Example 3 was carried out, except that 5 mol of 4,4'-methylenebis(cyclohexylamine) was used. The solution after the reaction was analyzed by liquid chromatography, and the yield was 99. 20/〇 produces diphenyl-4,4,-methylene-dicyclohexylcarbamate. . Step (7-2): Production of isocyanate by thermal decomposition of diphenyl-4,4,-fluorenylene-dicyclohexylamine phthalic acid vinegar The reaction was carried out using an apparatus as shown in Fig. 13. The mixture recovered from the storage tank 705 in the step (7-1) was heated to 15 Torr. (:, via line D1, fed at approximately 510 g/hr to fill with Dixon packing (6 mm 131505. Doc 1〇〇 200948760 Φ) The middle section of a continuous multi-stage distillation column 1301 having an inner diameter of about 5 cm and a column length of 2 m is subjected to thermal decomposition reaction. The heat necessary for the thermal decomposition reaction is supplied by circulating the lower portion of the liquid through the line D3 and the reboiler 1303. The liquid temperature at the bottom of the column of the continuous multi-stage distillation column 1301 was 220. (:, the top pressure is about 15 kPa. The gas distilled from the top of the continuous multi-stage distillation column 1301 is condensed in the condenser 1302 via the line D2, and continuously discharged from the line D4. From the continuous multi-stage steaming tower 13 01 At the bottom, the liquid phase component is recovered via line D3. The middle section of the continuous multi-stage steaming tower 13 04 filled with Dixon packing (6 mm Φ) and having an inner diameter of about 5 cm and a tower length of 2 m is continuously fed. The liquid phase component "discharged through the line D6" is used to separate the liquid phase components. The heat necessary for the vapor separation is supplied by circulating the lower portion of the liquid through the line D8 and the reboiler 1306. Continuous multi-stage distillation The bottom of the tower 1304 has a liquid temperature of 220 ° C. The top pressure is about 5. 2 kPa. The gas distilled from the top of the continuous multi-stage distillation column 1304 is condensed in the condenser 1305 via the line D7, and continuously discharged from the Q line D9. From the bottom of the continuous multi-stage distillation column 1304, the liquid phase component is recovered via line D8 and line D11. The liquid phase component discharged from the line d8 is continuously fed to the middle portion of the continuous multi-stage distillation column 13〇7 filled with Dixon packing (6 mm φ) and having an inner diameter of about 5 cm and a column length of 2 m. The liquid phase component is separated by distillation. The heat necessary for the distillation separation is supplied by circulating the lower portion of the liquid through the line D14 and the reboiler 1309. The liquid temperature at the bottom of the continuous multi-stage distillation column 1307 is 220 ° C, and the pressure at the top of the column is about 〇 4 〇 kp ^ The gas distilled from the top of the continuous multi-stage distillation column 13 〇 7 is passed through the line D12 in the condenser 13 8 condensing, 131505. Doc -129- 200948760 is continuously discharged via line D13. The steady state discharge is about 75 g/hr. The liquid system discharged from line D13 contains about 99. A solution of 8 wt% of 4,4'-arylene-bis(cyclohexyl isocyanate) having a yield of 80% relative to 4,4,-fluorenylene bis(cyclohexylamine). 4%. The continuous operation was carried out for one day, and as a result, no deposit was accumulated in the inside of the continuous multi-stage steaming tower 1301. [Example 8]. Step (8·): From the manufacture of #'-hexanediyl-bis-amino phthalic acid diphenyl ester 〇 In addition to the supply of 135 〇 g (6. 3 mol) Reference Example 1 diphenyl carbonate, 2204 g (8. 4 mol) 4-dodecylphenol (manufactured by Aldrich, USA) instead of stupid phenol, and 244 g (2. The same procedure as in the step (1-1) of Example 1 was carried out, except for the mol of hexamethylenediamine. The solution after the reaction was analyzed by liquid chromatography, and the yield was 99. 0% is produced by #'-hexanediyl-bis-carbamic acid diphenyl ester. . Step (8-2): Production of isocyanate by thermal decomposition of hydrazine, hydrazine, hexamethylene bis-amino phthalic acid diphenyl ester The reaction was carried out using an apparatus as shown in Fig. 8. The heat transfer area is 0. The 1 m2 thin film distillation unit 8〇1 is heated to 22 (rc, so that the internal pressure is about 5. 2 kPa. The mixture recovered in the storage tank 705 in the step (8-1) was heated to 15 CTC, and supplied to the upper portion of the thin film distillation apparatus 801 via a line 81 at about 12 Torr. From the bottom of the thin film distillation apparatus 〇1, the liquid phase component is discharged from the line 83, and is circulated to the upper portion of the thin film evaporation apparatus 801 via the line 84 and the line 801. The gas phase components are discharged from line 82. Filled with Dixon packing (6 mm inner diameter is about 5 cm, tower length is 2 131505. The middle section of the continuous multi-stage distillation column 802 of doc-130-200948760 m is continuously fed by the thin film distillation apparatus 801 by the gas phase component discharged from the line 82 to perform vapor separation of the gas phase components. The heat necessary for the distillation separation is supplied by circulating the lower portion of the liquid through the line 86 and the reboiler 804. The tower of the continuous multi-stage distillation column 8〇2 has a liquid temperature of 150 ° C at the bottom and a pressure of about 4. 0 kPa. The gas distilled from the top of the continuous multi-stage vaporization column 802 is condensed in the condenser 803 via line 85 and continuously discharged by line 87. The liquid phase component is discharged from the line 89 of the continuous multi-stage vaporization tower 802 which is lower than the position of the line 82. The liquid phase component discharged from the line 89 is continuously fed to a middle portion of a continuous multi-stage distillation column 805 filled with a Dixon packing (6 mm 妁 having an inner diameter of about 5 cm and a column length of 2 m) to carry out the liquid phase component. The steam is separated. The heat necessary for the distillation separation is supplied by circulating the lower portion of the liquid through the line 91 and the reboiler 807. The liquid temperature at the bottom of the continuous multi-stage distillation column 805 is 15 〇 (), The pressure is about 0. 8 kPa. The gas distilled from the top of the continuous multi-stage distillation column 8〇5 is condensed in the condenser 806 via line 90, and continuously discharged to the storage tank 809 via line 92. The steady state discharge is about 104 g/hr. In the steady state, the liquid phase component is discharged to the storage tank 810 by line 94 at about 69 〇 g/hr. The liquid phase component contains about 97% by weight of anal dodecylphenol. The liquid system discharged from line 92 contains a solution of about 99% by weight of hexamethylene diisocyanate. The yield based on hexamethylenediamine was 931%. The continuous operation was carried out for one day, and no deposit was found in the wall area of the thin film distillation apparatus 8〇1. [Example 9] • Step (9-1): 3-(phenoxyaminoamino-methyl(4)^-methylmethylcyclohexane 131505. Doc -131- 200948760 Manufacture of phenyl carbazate In addition to supply 1028 g (4. 8 mol) ginseng; &) wheat diphenyl carbonate, 2643 g (8. 0 mol) 2,4-(α,α·dimercaptobenzylidene, lean xw butylglycolyl) phenol (made by Tokyo Chemical Industry Co., Ltd.) instead of benzene, and 273 machine 6_)3_aminomethyl_3 The same procedure as in the step (IV) of Example 2 was carried out except for the 5,5-trimethylcyclohexylamine. The solution after the reaction was analyzed by liquid chromatography, and the yield was 99. 0% yielded 3_(phenoxymethylaminomethyl)355 trimethylcyclohexylcarbamate. • Step (9-2): Production of isocyanate by thermal decomposition of phenyl 3-(phenoxycarbonylamino-methyl)_3,5,5-trimethylcyclohexylcarbamate except for the use step (9-2) The obtained mixture was replaced by the mixture obtained in the step, and the mixture was heated to 150 ° C and supplied at about 131 〇 g / hr, and the same procedure as in the step (8-2) of Example 8 was carried out. The gas distilled from the top of the continuous multi-stage distillation column 8〇5 is condensed in the condenser 806 via line 9, and continuously discharged to the storage tank 809 via line 92 at about 112 g/hr. » Liquid system discharged from line 92 Contains about 99. A solution of 8 wt% isophorone diisocyanate. The yield based on 3·aminomercapto-3,5,5-trimethylcyclohexylamine was 94. 5%. The continuous operation was performed for one day, and no deposit was observed in the wall area of the thin film distillation apparatus 801. [Example 10] • Step (1 (M): ??? #'-(4,4,·-indenyl-diphenyl)-diphenyl diphenyl carbamate was produced using the apparatus shown in FIG. Reaction. Doc -132- 200948760 In the state of closing line 74, by tank 701 via line 71, 1478 g (6. 9 mol) of diphenyl carbonate of Reference Example 1 and 50. 5 g (0. A mixture of 2 mol) zinc acetate 2 hydrate (manufactured by Aldrich Co., USA) was supplied to a SUS reaction vessel 704 with a median grain product of 5 L, and a storage tank 702 was used to pass 1297 g (13) via line 72. . 8 mol) of phenol is supplied to the reactor of the SUS. The temperature of the liquid in the reactor 704 is adjusted to about 50 〇c, from the sump 703 via line 73, to about 200 g / hl ^ 456 g (23 m 〇 1) 44, fluorenyl aniline (manufactured by Aldrich, USA) ) is supplied to the reactor 7〇4. ❹ The solution after the reaction was analyzed by liquid chromatography, and the yield was 98. 8% of the formation, (4,4,-fluorenylene-diphenyl)-diphenyl dicarboxylate. The line 74' is opened to transport the reaction liquid to the sump 705 via line 74. . Step (10-2): Production of isocyanate by thermal decomposition of the condition #,-(4,4|-fluorenylene-diphenyl)-diamino decanoic acid diphenyl ester is carried out using a device as shown in FIG. reaction. The heat transfer area is 0. The 1 m2 thin film distillation unit 12〇1 is heated to 23〇〇c, and the internal pressure is about 1. 3 kPa. The mixture recovered in the storage tank 705 in the step (10-1) was heated to 13 ° C and supplied to the upper portion of the film evaporation device 1201 via line C1 at about 690 g/hr. From the bottom of the film evaporation chamber, the liquid phase component is discharged from the line C3 and circulated to the upper portion of the film evaporation device 1201 via the line C4 and the line C1. The gas phase component is discharged from line C2. The middle section of the continuous multi-stage distillation column 12〇2 filled with Dixon packing (6 mm ψ) having an inner diameter of about 5 cni and a column length of 2 m is continuously fed by the thin film distillation apparatus 1201 via line C2. The gas phase component is subjected to distillation separation of the gas phase component. The heat necessary for distillation separation is via line C6 and again 131505. Doc •133- 200948760 The boiler 1204 circulates and supplies the liquid in the lower part of the tower. The liquid temperature at the bottom of the continuous multi-stage steaming tower 12〇1 is 20 (TC, the top pressure is 6 〇kpa. The gas distilled from the top of the continuous multi-stage distillation column 1201 is condensed in the condenser 1203 via the line C5. , which is continuously discharged by line C7. The liquid phase component is discharged by the line. The middle section of the continuous multi-stage distillation column 1205 having an inner diameter of about 5 cm and a column length of 2 m filled with a Dixon packing (6 mm φ) is continuously The liquid phase component discharged from the line C8 is fed to perform distillation separation of the liquid phase component. The heat necessary for the distillation separation is supplied by circulating the lower portion of the liquid through the line C11 and the reboiler 1207. The continuous multi-stage distillation column 12 The liquid temperature at the bottom of the 〇5 tower is 210C 'the top pressure is about 2. 5 kPa. The gas discharged from the tower top of the continuous multi-stage steaming tower 12〇5 is condensed in the condenser 12〇6 via the line C10, and continuously discharged through the line C12. The liquid phase component is discharged by line c14. The liquid phase component discharged from the line CM Q is continuously fed to the middle section of the continuous multi-stage distillation column 1208 filled with Dixon packing (6 mm φ) and having an inner diameter of about 5 cm and a column length of 2 m. Distillation separation of liquid phase components. The heat necessary for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line C16 and the reboiler 121. The liquid temperature at the bottom of the continuous multi-stage distillation column 12〇8 is 220 C, and the pressure at the top of the column is about 〇·5 kPa. The gas distilled from the top of the continuous multi-stage distillation column 1205 is condensed in the condenser 12〇9 via line C15, via line C17 at about 99. 6 g / hr continuous discharge. The liquid discharged from C17 contains about 99. 9 wt% of 4,4,-diphenyldecane diisocyanate. The yield of 4,4'-methylenediphenylamine was 82 3Q/(^ was continuously carried out for 1 day, and no deposit was found in the wall area of the film distillation apparatus 12〇2. 131505. Doc-134-200948760 [Example π] • Step (11-1): Production of terphenyl benzene-2,4-dicarbamic acid diphenyl ester The reaction was carried out using an apparatus as shown in Fig. 7. In the state where the line 74 is closed, 'by the sump 701 via the line 7, 2 2125 g (9. 9 mol) a mixture of a reference example of diphenyl carbonate and 35"g (〇2 m〇1) zinc acetate dihydrate is supplied to a SUS reaction cell 704 with a baffle having an internal volume of 5 l From the storage tank 702, 1534 〇g (16.3 mol) of phenol was supplied to the SUS reactor via line 72. The temperature of the liquid in the reactor 704 was adjusted to about 50. (:, by tank 703 via line 73, will be 391 g at about 230 g/hr. 2 mol) 2,4-toluenediamine (manufactured by Aldrich, USA) was supplied to the reactor 704. The solution after the reaction was analyzed by liquid chromatography, and the yield was 98. 1% produces diphenyl 2,4-diaminodecanoic acid diphenyl ester. Line 74 is opened and the reaction liquid is conveyed via line 74 to storage tank 7〇5. . Step (11-2): Thermal decomposition of toluene 2,4-dicarbamic acid dicarboxylate to produce isocyanate The reaction was carried out using a apparatus as shown in Fig. 8. The heat transfer area is 0. The 1 m2 thin film distillation apparatus 8〇1 is heated to 22 (rc, so that the internal pressure is about 13 kPa. The step (π — :)* is recovered from the mixture recovered by the storage tank 7〇5 to 130. (:, via line 81 It is supplied to the upper portion of the thin film distillation apparatus 801 at about 820 g/hr. From the bottom of the thin film distillation apparatus 8〇1, the liquid phase component is discharged from the line 83, and is circulated to the thin film evaporation apparatus 801 via the line 84 and the line 81. Upper portion. The gas phase component is discharged from line 82. The inner diameter of the filled Dixon packing (6 mm φ) is about 5 cm and the length of the tower is 2 131505. In the middle section of the continuous multi-stage distillation column 8〇2 of doc-135-200948760 m, the gas phase component discharged from the thin film distillation apparatus 801 via the line 82 is continuously fed, and the vapor phase component is subjected to distillation separation. The heat necessary for the distillation separation is supplied by circulating the lower portion of the liquid through the line 86 and the reboiler 804. The liquid temperature at the bottom of the continuous multi-stage distillation column 8〇2 is 15 (TC, the column top pressure is about 15 kpa. The gas distilled from the top of the continuous multi-stage distillation column 802 is condensed in the condenser 8〇3 via line 85. Exhausted continuously by line 87. The liquid phase component is discharged from line 89 of the continuous multi-stage distillation column 8〇2 below line 82. The inner diameter of the 〇-filled Dixon packing (6 mm Φ) is about 5 Em, a middle section of a continuous multi-stage distillation column 8〇5 having a column length of 2 m, continuously feeding the liquid phase component discharged from the line 89, and performing distillation separation of the liquid phase component. The heat necessary for distillation separation is passed through The line 91 and the reboiler 807 circulate and supply the liquid in the lower part of the column. The liquid temperature at the bottom of the tower of the continuous multi-stage steaming tower 805 is 15 〇C ^^ and the top pressure is about 1. 3 kPa. The gas from the tower of the continuous multi-stage steaming tower was condensed in the condenser 806 via the line 9 and continuously discharged to the storage tank 809 at about 93 g/hr via the line Q path 92. The liquid system discharged from line 92 contains about 99. 7 wt% of a solution of 2,4-toluene diisocyanate. The yield based on 2,4-toluenediamine was 83 4%. The continuous operation was carried out for 10 days, and no deposit was found in the wall area of the thin film distillation apparatus 8〇1. [Example 12]. Step (12-1): Preparation of #,-(4,4,-methylene-diphenyl)-diphenyl dicarboxylate In addition to using 2055 g (9. 5 mol) Reference Example 1 diphenyl carbonate with M 9 131505. Doc -136- 200948760 g(0. 3 mol) a mixture of zinc acetate 2 hydrate, 1293 g (13. 8 mol) phenol and 496 g (2. The same procedure as in the step (10-1) of Example ι was carried out except that 5 mol of 4,4'-methylenediphenylamine was used. The solution after the reaction was analyzed by liquid chromatography, and the yield was 98. 6% was produced from #,-(4,4,-ytylene-diphenyl)-diphenyldicarboxylate. • Step (12-2): Using isothermal acid vinegar by iV, iV'-(4,4·-indenylene-diphenyl)-diamino phthalic acid monophenyl vinegar to produce isogastric acid vinegar -1) The obtained mixture was substituted for the mixture obtained in the step (7-1), and the mixture was heated to 1 30 ° C. The thermal decomposition reaction was carried out via line d 1, with a feed of about 700 g/hr. The heat necessary for the thermal decomposition reaction is supplied by circulating the lower portion of the liquid through the line D3 and the reboiler 1303. The liquid temperature at the bottom of the continuous multi-stage distillation column 1301 is 22 (TC, the column top pressure is about 15 kPa. The gas distilled from the top of the continuous multi-stage distillation column 1301 is condensed in the condenser 133 via line D2, The line 〇4 is continuously discharged. The liquid phase component is recovered from the bottom of the continuous multi-stage distillation column 1301 via the line d3. The inner diameter is filled with Dickson packing (6 mm φ) and the inner diameter is about 5 cm, and the length of the tower is 2 m. In the middle section of the continuous multi-stage distillation column 13〇4, the liquid phase component discharged continuously through the line 〇6 is subjected to distillation separation of the liquid phase component. The heat necessary for the distillation separation is passed through the line D8 and the reboiler 1306. The liquid in the lower part of the column is circulated and supplied. The liquid temperature at the bottom of the continuous multi-stage distillation column 1304 is 22 〇 ° C, and the pressure at the top of the column is about 5. 2 kPa. The gas distilled from the top of the continuous multi-stage distillation column 13〇4 is continuously discharged through the line D9 via the line D7 and condensed in the condenser 13〇5. From the bottom of the continuous multi-stage distillation column 13〇4, the liquid phase will be 131505. Doc •137- 200948760 The ingredients are recovered via line D8 and line d 11. The liquid phase component discharged from the line D8 is continuously fed to the middle section of the continuous multi-stage distillation column 1307 filled with Dixon packing (6 mm φ) and having an inner diameter of about 5 cm and a column length of 2 m, and the liquid is continuously supplied. Distillation separation of phase components. The heat necessary for the distillation separation is supplied by circulating the lower portion of the liquid through the line D14 and the reboiler 1309. The liquid temperature at the bottom of the continuous multi-stage distillation column 1307 is 220 ° C, and the pressure at the top of the column is about 0. 40 kPa. The gas distilled from the top of the continuous multi-stage distillation column 13〇7 is condensed in the condenser 1308 via the line D12, and continuously discharged through the line D13. The steady state discharge is about 92 g/hr. The liquid system discharged from line D13 contains about 99. A solution of 8 wt% of 4,4,-diphenylnonane diisocyanate. The yield relative to 4,4·-fluorenylene diphenylamine is 76. 9%. When the continuous operation was carried out for 10 days, no deposit was accumulated in the inside of the continuous multi-stage distillation column 1301. [Example 13] • Step (13-1): Production of dioxin-dihexyl-bis-carbamic acid diphenyl ester The diphenyl carbonate of Reference Example 1 was placed in an eggplant type flask having an internal volume of 10 L. In the eggplant type flask, a three-way cock is installed, and a spiral filler No. is filled. A distillation column of 3, a fractionation column of a reflux condenser connected to the distillate receiver, and a thermometer are subjected to vacuum-nitrogen replacement in the system to distill the purified diphenyl carbonate. The purified product was subjected to 1H-NMR measurement, and the result contained about 99. 9 wt% diphenyl carbonate. Also' contains 0. 002 ppm is the iron of the metal atom. In addition to the supply 1414 g (6. 6 mol) of diphenyl carbonate, 1 〇 34 g (11. 0 mol) phenol and 256 g (2. In addition to 2 mol) hexamethylenediamine, it was carried out with Example 1 131505. The same method as step (1-1) of doc -138· 200948760. The solution after the reaction was analyzed by liquid chromatography, and the yield was 99. 0% generated #,#,·hexanediyl-bis-aminocarboxylic acid dip vinegar. • Step _3·2): Production of isocyanate by thermal decomposition of #,-hexanediaminocarbamic acid diphenyl vinegar, except that the mixture obtained in the step (13-1) is used instead of the mixture obtained in the step (11) Further, the same method as in the step (12) of the example was carried out. It is continuously discharged to the storage tank 8〇9 by the line Μ at about 1〇4 g/hr. The liquid system discharged by the line contains about 99. A solution of 8 wt% hexamethylene diisocyanate. The yield relative to hexamethylenediamine was 95%. The continuous operation was carried out on a dry day. The deposit was not found in the wall area of the film evaporation device 801. [Example 14] Step (14-1). Preparation of iV, 7V-hexanediyl-bis-carbamic acid diphenyl ester To the diphenyl carbonate of Reference Example 1, ethylene bromide (H) was added to prepare carbonic acid containing 8% of iron as a metal atom. Phenyl ester. In addition to the supply of 丨37丨g (6 4 Q m〇l) the diphenyl carbonate, 940 g (l〇. 〇 mol) phenol and 232 g (2. The same procedure as in the step (U) of Example 1 was carried out, except that 0 mol of hexamethylenediamine. The solution after the reaction was analyzed by liquid chromatography, and the yield was 98. 9% yielded dihexyl-bis-carbamic acid diphenyl ester. . Step (14-2): Production of isocyanate by thermal decomposition of hydrazine, hydrazine-hexanediyl-bis-carbamic acid diphenyl vinegar, except that the mixture obtained in the step (14-1) is used instead of the step (ι_ι) The same procedure as in the step (1-2) of Example 1 was carried out, except for the mixture. 131505. Doc-139-200948760 is continuously discharged to the storage tank 8〇9 by line 92 at about 101 g/hr. The liquid system discharged by line 92 contains about 99. A solution of 8 wt% hexamethylene diisocyanate. The yield relative to hexamethylenediamine is 95. 2%. After 1 day of continuous operation, the operation was not found in the wall area of the thin film distillation apparatus 801. [Example 15] Step (15-1). iV, hexamethylene-bis-carbamic acid diphenyl vinegar was produced. The diphenyl carbonate of Reference Example 1 was placed in an eggplant type flask having an internal volume of 1 〇L. A three-way cock was attached to the eggplant type flask, Attached with a spiral filler No. a distillation column of 3 and a reflux tower connected to the distillate receiver, and a thermometer, vacuum-nitrogen replacement in the system, and distillation of purified diphenyl carbonate to obtain about one-fourth of the added amount. At the time of the museum's release, the flask was cooled to complete the purification. 1H-NMR measurement of the contents of the library was carried out, and the result contained about 99. 9 wt% diphenyl vinegar. also. The metal atoms contained in the German product, in terms of iron, diamond, nickel, zinc, tin, copper, and Qin, are the lower limit of detection (0. 001 ppm) or less. In addition to supply 1553 g (7. 3 mol) of diphenyl carbonate, 1175 g (12. 5 mol) phenol and 291 g (2. The same procedure as in the step (1-1) of Example 1 was carried out, except for 5 mol of hexamethylenediamine. The solution after the reaction was analyzed by liquid chromatography, and the yield was 95. 6% produces dihexyldiyl-bis-carbamic acid diphenyl ester. • Step (15-2): Production of isocyanate by thermal decomposition of hexamethylene-bis-amino phthalic acid diphenyl vinegar except that the mixture obtained in the step (15-1) is used instead of the step (1-1) The same procedure as in the step (1-2) of Example 1 was carried out, except for the mixture. 131505. Doc -140- 200948760 The liquid is continuously discharged to the sump 8〇9 by line 92 at about 99 _ 1 g/hr. The liquid system discharged from line 92 contains a solution of about 99% by weight of hexamethylene diisocyanate. The yield relative to hexamethylenediamine is 88. 9%. The continuous operation was carried out for 10 days, and no deposit was observed in the wall area of the thin film distillation apparatus 8〇1. [Example 16]. Step (16-1): Production of 坨#'-hexanediyl-bis-carbamic acid diphenyl ester To the diphenyl carbonate of Reference Example 1, iron (II) acetonitrile was added to prepare 13/❶ as a preparation. Diphenyl carbonate of metal atomic iron. In addition to supplying 1527 i mol of the monophenyl carbonate, 1 〇 81 g (u 5 m〇i) phenol, and g (23 mol) /, methylene monoamine, the steps of the embodiment (1 _ 1) The same method. The solution after the reaction was analyzed by liquid chromatography, and the yield was 94. 5% yields 恳#'_hexanediyl-bis-carbamic acid diphenyl ester. • Step (16-2): Production of isocyanate by thermal decomposition of diphenyl bis-bis-carbamic acid diphenyl ester except that the mixture obtained in the step (16-1) is used instead of the step ο — In addition to the materials, the same method as in the procedure of Example 2) was carried out. From line 92 to about 95. 1 g/hr was continuously discharged to the storage tank 8〇9. The liquid system discharged by line 92 contains about 99. A solution of 8 wt% hexamethylene diisocyanate ruthenium. The yield relative to the hexamethylenediamine was 88%. The continuous operation was carried out for 1 day, and as a result, no deposit was observed in the wall area of the thin film distillation apparatus 8〇1. [Example 17] 131505. Doc -141- 200948760 •Step (17-1): #, Manufacture of hexamethylene-bis-amino phthalic acid diphenyl vinegar In addition to supply 1350 g (6. 3 mol) diphenyl carbonate and 79 〇 g (8 4 m 〇 1) benzene test 'supply 244 g (2. 1 mol) hexamethylenediamine and 197 g (2. The same procedure as in the first step (1-1) of Example 1 was carried out except that a mixture of 1 mol)* phenol was used instead of the hexamethylenediamine. The solution after the reaction was analyzed by liquid chromatography, and the yield was 99. 0% produces hexamethylene-bis-carbamic acid diphenyl vinegar. . Step (17-2): producing an isocyanate by using a thermal decomposition of dihexyldiamine-diphenylphosphonate, except that the mixture obtained in the step (17-1) is used instead of the step (1_丨) The same method as the step (1_2) of Example 1 was carried out except for the mixture. The liquid is continuously discharged from the line 92 at about 1 〇 6 g/hr to the sump 8 〇 9 ^ The liquid system discharged from the line 92 contains about 99. A solution of 8 wt% hexamethylene diisocyanate. The yield relative to the hexamethylenediamine was 97%. The continuous operation was carried out for 1 day. The surface area of the thin film distillation apparatus 8〇1 was not found to be attached.实施 [Example 18] • Step (18-1): Production of bis(3- mercaptobutyl) hexamethylenedicarboxylate The apparatus shown in Fig. 16 was used. In the state where the line G4 is closed, 1660 g (7.) is received by the sump 1601 via the line G1. 8 mol) diphenyl carbonate was supplied to a sus-made reaction vessel 1604 with a baffle of 5 l, and the sump 1602 was passed through a line 〇2, which was 1175 g (12. 5 mol) of phenol was supplied to the reactor made of SUS. The reaction 131505. Doc -142- 200948760 The temperature of the liquid in the device 1604 is adjusted to about 50 ° C, and the sump 1603 is 291 g (2. A mixture of 5 mol) hexamethylenediamine and water was supplied to the reactor 1604 at about 2 g/hr. After the completion of the reaction, the pressure inside the reactor 1604 was reduced to 10 kPa, and water was removed. The water is condensed in the condenser 1607 and discharged through the line. The solution after the reaction was analyzed by liquid chromatography, and the yield was 99. 0% yielded dihexyl-bis-carbamic acid diphenyl ester. The line G4' is opened and the reaction liquid is transported via line G4 to the sump ® 1605. . Step (18-2): using a thermal decomposition of hexamethylene-bis-amino phthalic acid diphenyl ester to produce isocyanate, except that the mixture obtained in the step (18-1) is used instead of the step (丨_丨) The same procedure as in the step (?_2) of Example 1 was carried out except for the obtained mixture. The heating area of the film evaporation apparatus 801 with respect to the reactor capacity is larger than the reactor 1 604 of FIG. The liquid is continuously discharged q to the sump 809 by line 92 at about 1 〇 4 g/hr. The liquid system discharged from line 92 contains about 99. A solution of 8 wt% hexamethylene diisocyanate. The yield relative to hexamethylenediamine is 96. 5°/. . The continuous operation was carried out for one day. The deposit was not found in the wall area of the thin film distillation apparatus 8〇1. [Example 19] Cleaning of the reactor The cleaning operation of the thin film distillation apparatus 801 in which the deposit was accumulated was carried out in Example 6. The film evaporation chamber 8〇1 was heated to 18 Torr.匸, the inside of the film evaporation chamber 801 is an atmospheric nitrogen atmosphere. It is supplied by line 81 at about 12 〇〇 g/hr, and is discharged from line 83, and the liquid phase component is recovered to storage tank 131505 via line 94. Doc -143· 200948760 810 ° This operation was carried out for 1 hour, and as a result, no deposit was observed inside the thin film distillation apparatus 801. [Example 20] to [Example 27] The operation of Example 6 was continuously carried out. The cleaning operation was carried out in the same manner as in Example 19 using various cleaning solvents every one day, and the results are shown in the table! . [Comparative Example 1] • Step (A-1): Production of iV, AT-hexanediyl-bis-amino phthalic acid diphenyl ester The reaction was carried out using an apparatus as shown in Fig. 14. In the state in which the line E4 is closed, 1979 g (9.) is carried out from the storage tank 14〇1 via the line E1. 2 mol) of diphenyl carbonate was supplied to a SUS reaction vessel 1404 with a baffle of internal volume, and 13 16 g was passed from the storage tank 1402 via line E2. 0 mol) phenol was supplied to the reactor of the SUS. The temperature of the liquid in the reactor 1404 is adjusted to about 5 〇〇c, which is 325 g (about 190 g/hr) from the sump 14〇3 via the line E3'. 8 mol) of the hexamethylenediamine is supplied to the reactor 1404. The solution after the reaction was analyzed by liquid chromatography, and the yield was 99. 3% yielded diphenyl bis-amino phthalate. . Step (A-2): Isocyanate was produced by thermal decomposition of dihexyl-bis-carbamic acid diphenyl ester, followed by a reaction as shown in Fig. 14. The SUS reactor 14〇4 was heated to 220. (:, decompress the reactor to 1. 3 kPa. The gas phase component is discharged from the line E4, and the gas phase component is continuously fed to the middle section of the continuous multi-stage distillation column 1405 having an inner diameter of about 5 cm and a column length of 2 m filled with a Dixon packing (6 mm φ). The vaporization of the gas phase component is carried out 131505. Doc 200948760 Distillation separation. The heat necessary for the distillation separation is supplied by circulating the lower portion of the liquid through the line E6 and the reboiler 1408. The continuous multi-stage steaming tower 14〇5 has a liquid temperature of 150 ° C at the bottom of the column and a pressure of about 15 kPa at the top of the column. The gas distilled from the top of the continuous multi-stage distillation column 802 is condensed by the line in the condenser 1407 and continuously discharged by the line E7. The liquid phase component is discharged from the line E9 of the continuous multi-stage steaming tower 405 at a position lower than the line E4. The liquid phase component discharged from the line E9 is continuously fed to the middle section of the continuous multi-stage distillation column 1406 filled with Dixon packing (6 mm φ) and having an inner diameter of about 5 cm and a column length of 2 m, and the liquid is continuously supplied. Distillation separation of phase components. The heat necessary for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line El 1 and the reboiler 1412. The liquid temperature at the bottom of the continuous multi-stage distillation column 1406 is 150 ° C, and the pressure at the top of the column is about 1. 5 kPa. The gas distilled from the top of the continuous multi-stage distillation column 1406 is condensed in the condenser 1410 via the line E10, and continuously discharged to the storage tank 1411 via the line E12. The liquid recovered from the storage tank 1411 is about 304 g. The liquid system contains about 99. A solution of 8 wt% hexamethylenediyl q-isocyanate. The yield relative to the hexamethylenediamine is 64. 5%. [Comparative Example 2]. Step (B-1): Production of jV, AT-(4,4'-methylene-diphenyl)-dicarbamic acid diphenyl ester The reaction was carried out using a device as shown in Fig. 15. In the state where the line F4 is closed, 1527 g (7.) is received by the sump 1501 via the line F1. 1 mol) diphenyl carbonate and 50. 5 g (0. A mixture of 2 mol) zinc acetate 2 hydrate was supplied to a SUS reaction vessel 1504 with a baffle having an internal volume of 5 L. From the storage tank 1502 via line F2, 1146 g (1. 2 mol) phenol 131505. Doc -145· 200948760 was supplied to the SUS reactor. The temperature of the liquid in the reactor 1504 is adjusted to about 50 ° C, and 456 g (2.) is passed from the storage tank 1503 via the line F3. 3 mol) 4,4'-decylenediphenylamine was supplied to the reactor 1504 at about 200 g/hr. The solution after the reaction was analyzed by liquid chromatography, and the yield was 98. 3% yield iV, iVf-(4,4'-fluorenylene-diphenyl)-diphenyl dicarboxylate. • Step (B-2): Production of isocyanate by thermal decomposition of W-(4,4'-methylene-diphenyl)-diamino phthalic acid diphenyl ester followed by using a device as shown in FIG. Carry out the reaction. The SUS reactor 1504 was heated to 220 ° C to decompress the reactor into 1. 3 kPa. The gas phase component is discharged from the line F4, and the gas phase component is continuously fed to the middle section of the continuous multi-stage distillation column 1506 filled with the Dixon packing (6 mm φ) and having an inner diameter of about 5 cm and a column length of 2 m. Distillation separation of the gas phase component is carried out. The heat necessary for the distillation separation is supplied by circulating the lower portion of the liquid through the line F6 and the reboiler 1 507. Continuous multi-stage steaming tower 丨 5〇6 © $ bottom The liquid temperature is 200 ° C, the top pressure is 60 kPa. The gas taken from the top of the continuous multi-stage steaming tower 1506 is condensed in the condenser 1505 via the line F5, and continuously discharged from the line F7. By the line! ? 6 discharge liquid phase components. To the middle section of a continuous multi-stage distillation column 1509 filled with Dixon packing (6 mm φ) with an inner diameter of about 5 cm and a column length of 2 m, continuously fed by the line? The liquid phase components discharged in 6 are subjected to distillation separation of the liquid phase components. The heat necessary for the distillation separation is supplied by circulating the liquid in the lower portion of the column via the line F11 and the reboiler 1510. Continuous multi-stage distillation column 丨 509 tower bottom liquid temperature 131505. Doc 200948760 is 210 ° C, the top pressure is about 2. 5 kPa. The gas distilled from the top of the continuous multi-stage distillation column 1509 is condensed in the condenser 15A through the line F10, and continuously discharged through the line F12. The liquid phase component is discharged from the line fii. The liquid phase component discharged from the line Fi4 is continuously fed to the middle portion of the continuous multi-stage distillation column 1512 filled with Dixon packing (6 mm φ) and having an inner diameter of about 5 cm and a technical length of 2 m. Distillation separation of phase components. The heat necessary for the vaporization separation is supplied by circulating the liquid in the lower portion of the column via the line F16 and the reboiler 1513. The liquid temperature at the bottom of the continuous multi-stage distillation column 15 12 is 220 ° C, and the pressure at the top of the column is about 〇. 5 kPa. The gas taken from the fourth of the continuous multi-stage distillation column 1512 is condensed in the condenser bn via the line, and is discharged via the line F17. The liquid discharged from F17 is about 7 〇 g, which contains about 99. 9 wt% of 4,4,-diphenylmethane diisocyanate. The yield relative to 4,4'-methylenediphenylamine was 56. 0%. [Comparative Example 3] • Step (C-1): Production of hexamethylene-bis-amino phthalic acid diphenyl vinegar g The reaction was carried out using a device as shown in Fig. 7. In the state where the line 74 is closed, 2454 g (ll.) will be passed from the storage tank 7〇1 via the line 71. 5 mol of diphenyl carbonate was supplied to a SUS reaction vessel 704 with an internal volume of 5 [with a baffle plate. The temperature of the liquid in the reactor 7〇4 was adjusted to about 80 C, and the diphenyl carbonate was melted, and 372 g (3.) was passed from the storage tank 7〇3 via the line 73. 2 mol) hexamethylenediamine was supplied to the reactor 704 at about 1 〇〇 g/hr. The solution after the reaction was analyzed by liquid chromatography, and the yield was 77. 5% yields dihexyl-bis-carbamic acid diphenyl ester. 131505. Doc-147-200948760 The line 74 is opened and the reaction liquid is transported via line 74 to the sump 705. • Step (C-2): Isocyanate was produced by thermal decomposition of dihexyl-bis-carbamic acid diphenyl ester. The reaction was carried out using a apparatus as shown in Fig. 8. The same procedure as in the step (1-2) of Example 1 was carried out except that the mixture obtained in the step (C-1) was used instead of the mixture obtained in the step (1-1). The liquid is continuously discharged to the sump 809 via line 92 at about 113 g/hr. The liquid system discharged from line 92 contains about 99. A solution of 8 wt% hexamethylene dihydrochloride ® isocyanate. The yield relative to hexamethylenediamine is 74. 4%. [Comparative Example 4] - [Comparative Example 6] The operation of Example 6 was carried out continuously, and various washing solvents were used every 10 days, and washing operation was carried out in the same manner as in Example 13, and the results are shown in Table 1. [Table 1] Table 1 Cleaning operation implementation results
薄膜蒸餾裝置溫度 清洗溶劑 清洗溶劑供給量 清洗時間 結果 實施例20 200°C 2,6-二甲基笨酚 1000 g/Hr 2小時 〇 實施例21 210。。 2,4,6-三甲基苯酚 800 g/Hr 2小時 〇 實施例22 250°C 2-苯基苯酚 1000 g/Hr 3小時 〇 實施例23 280°C 2,4-(α,α-二甲基苄基)苯酚 1200 g/Hr 1小時 〇 實施例24 2001: 4-乙氧基苯酚 1100 g/Hr 2小時 〇 實施例25 270。。 4-十二烷基苯酚 1300 g/Hr 1小時 〇 實施例26 2001: 水楊酸 800 g/Hr 2小時 〇 實施例27 220〇C 苯曱酸 800 g/Hr 4小時 〇 比較例4 200°C 正癸烷 1000 g/Hr 4小時 〇 比較例5 200°C 萘 1000 g/Hr 4小時 X 比較例6 180°C 1-苯基苯酚 1000 g/Hr 4小時 X 〇:清洗操作後,未發現附著物 X:清洗操作後,發現附著物 131505.doc -148- 200948760 [產業上之可利用性] 本發明之異氰酸酯之製造方法可不使用劇毒光氣而效率 良好地製造異氰酸酯,因此本發明之製造方法於產業上大 為有用,商業價值較高。 【圖式簡單說明】 圖1係表示本發明之實施例之碳酸酯的連續製造裝置的 概念圖。 圖2係表示本發明之實施例之芳香族碳酸酯製造裝置的 ^ 概念圖^ 圖3係表示本發明之實施例之芳香族碳酸酯製造裝置的 概念圖》 圖4係表示本發明之實施例之醇純化裝置的概念圖。 圖5係表示本發明之實施例之碳酸二芳酯純化裝置的概 念圖。 圖6係表示本發明之實施例之碳酸二芳酯純化裝置的概 Λ 念圖。 ❹ 圖7係表示本發明之實施例之胺基甲酸芳酯製造裝置的 概念圖。 圖8係表示本發明之實施例之異氰酸酯製造裝置的概念 圖。 圖9係表示本發明之實施例之異氰酸酯製造裝置的概念 圖。 圖10係表示本發明之實施例之異氰酸酯製造裝置的概念 圖。 131505.doc -149- 200948760 圖11係表示本發明之實施例之異氰酸酯製造裝置的概念 圖。 圖12係表示本發明之實施例之異氰酸酯製造裝置的概念 圖。 圖13係表示本發明之實施例之異氰酸酯製造裝置的概念 圖。 圖14係表示本發明之實施例之異氰酸酯製造裝置的概念 圖。 〇 圖1 5係表示本發明之實施例之異氰酸酯製造裝置的概念 圖。 圖16係表示本發明之實施例之胺基曱酸芳酯製造裝置的 概念圖。 【主要元件符號說明】 (圖1) 1、2、3、4、5、6、 線路 7 、 8 、 9 、 10 、 11 、 12 、 13、14、15、16、17 101 ' 107 蒸餾塔 102 塔型反應器 103 、 106 薄膜蒸餾裝置 104 高壓釜 105 除碳槽 111 、 112 、 117 再彿器 121、123、126、127 冷凝器 131505.doc -150- 200948760 (圖2) 21、22、23、24、25 201 202 203 204 205 、 206 線路 預熱器 連續多段蒸餾塔 冷凝器 再沸器 貯槽 (圖3)Thin film distillation apparatus temperature Cleaning solvent Cleaning solvent supply amount Cleaning time Result Example 20 200 ° C 2,6-Dimethylphenol 100 g/Hr 2 hours 实施 Example 21 210. . 2,4,6-Trimethylphenol 800 g/Hr 2 hours 〇 Example 22 250 ° C 2-Phenylphenol 1000 g/Hr 3 hours 〇 Example 23 280 ° C 2,4-(α,α- Dimethylbenzyl)phenol 1200 g/Hr 1 hour 〇 Example 24 2001: 4-ethoxyphenol 1100 g/Hr 2 hours 〇 Example 25 270. . 4-dodecylphenol 1300 g/Hr 1 hour 〇 Example 26 2001: Salicylic acid 800 g/Hr 2 hours 〇 Example 27 220 〇C Benzoic acid 800 g/Hr 4 hours 〇 Comparative Example 4 200° C-n-decane 1000 g/Hr 4 hours 〇Comparative Example 5 200°C Naphthalene 1000 g/Hr 4 hours X Comparative Example 6 180°C 1-Phenylphenol 1000 g/Hr 4 hours X 〇: After washing operation, Found attachments X: After the cleaning operation, the deposits were found 131505.doc -148- 200948760 [Industrial Applicability] The isocyanate production method of the present invention can efficiently produce isocyanate without using highly toxic phosgene, and thus the present invention The manufacturing method is very useful in the industry and has a high commercial value. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a conceptual view showing a continuous production apparatus of a carbonate according to an embodiment of the present invention. Fig. 2 is a conceptual view showing an apparatus for producing an aromatic carbonate according to an embodiment of the present invention. Fig. 3 is a conceptual view showing an apparatus for producing an aromatic carbonate according to an embodiment of the present invention. Fig. 4 is a view showing an embodiment of the present invention. A conceptual diagram of an alcohol purification unit. Fig. 5 is a conceptual view showing a diaryl carbonate purification apparatus according to an embodiment of the present invention. Fig. 6 is a view showing the outline of a diaryl carbonate purification apparatus according to an embodiment of the present invention. Fig. 7 is a conceptual view showing an apparatus for producing an aryl urethane according to an embodiment of the present invention. Fig. 8 is a conceptual view showing an apparatus for producing an isocyanate according to an embodiment of the present invention. Fig. 9 is a conceptual view showing an apparatus for producing an isocyanate according to an embodiment of the present invention. Fig. 10 is a conceptual view showing an apparatus for producing an isocyanate according to an embodiment of the present invention. 131505.doc -149- 200948760 Fig. 11 is a conceptual view showing an apparatus for producing an isocyanate according to an embodiment of the present invention. Fig. 12 is a conceptual view showing an apparatus for producing an isocyanate according to an embodiment of the present invention. Fig. 13 is a conceptual view showing an apparatus for producing an isocyanate according to an embodiment of the present invention. Fig. 14 is a conceptual view showing an apparatus for producing an isocyanate according to an embodiment of the present invention. Fig. 15 is a conceptual view showing an apparatus for producing an isocyanate according to an embodiment of the present invention. Fig. 16 is a conceptual view showing an apparatus for producing an amino aryl phthalate according to an embodiment of the present invention. [Explanation of main component symbols] (Fig. 1) 1, 2, 3, 4, 5, 6, lines 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 101 ' 107 Distillation column 102 Tower reactor 103, 106 thin film distillation unit 104 autoclave 105 carbon removal tank 111, 112, 117 regenerators 121, 123, 126, 127 condenser 131505.doc -150- 200948760 (Fig. 2) 21, 22, 23 , 24, 25 201 202 203 204 205, 206 line preheater continuous multi-stage distillation tower condenser reboiler storage tank (Figure 3)
31 、 32 、 33 、 34 、 35 301 302 303 304 305 > 306 (圖4) 線路 預熱器 連續多段蒸餾塔 冷凝器 再沸器 貯槽31, 32, 33, 34, 35 301 302 303 304 305 > 306 (Fig. 4) Line Preheater Continuous Multistage Distillation Column Condenser Reboiler Storage Tank
41 、 42 、 43 、 44 、 45 401 402 403 404 405 、 406 (圖5) 線路 預熱器 連續多段蒸餾塔 冷凝器 再沸器 貯槽 51、52、53、54、55 501 線路 預熱器 131505.doc 151 - 200948760 502 503 504 505 、 506 (圖6) 連續多段蒸餾塔 冷凝器 再沸器 貯槽 61 ' 62 ' 63、64、65 Ο 601 602 603 604 605 > 606 線路 預熱器 連續多段蒸餾塔 冷凝器 再沸器 貯槽 (圖7) 71 、 72 、 73 、 74 701 、 702 、 703 、 705 線路 貯槽 704 (圖8) 攪拌槽 81 、 82 、 83 、 84 、 線路 85 、 86 、 87 、 88 ' 89 801 802 ' 803 808 、 809 、 810 803 ' 806 804 ' 807 薄膜蒸餾裝置 連續多段蒸餾塔 貯槽 冷凝器 再沸器 131505.doc -152- 20094876041, 42 , 43 , 44 , 45 401 402 403 404 405 , 406 ( Fig. 5 ) Line preheater continuous multi-stage distillation tower condenser reboiler storage tank 51, 52, 53, 54, 55 501 line preheater 131505. Doc 151 - 200948760 502 503 504 505, 506 (Fig. 6) Continuous multi-stage distillation column condenser reboiler storage tank 61 ' 62 ' 63, 64, 65 Ο 601 602 603 604 605 > 606 line preheater continuous multi-stage distillation tower Condenser reboiler sump (Fig. 7) 71, 72, 73, 74 701, 702, 703, 705 line tank 704 (Fig. 8) Stirring tanks 81, 82, 83, 84, lines 85, 86, 87, 88 ' 89 801 802 '803 808 , 809 , 810 803 ' 806 804 ' 807 Thin film distillation unit continuous multi-stage distillation column sump condenser reboiler 131505.doc -152- 200948760
(圖9) 90 、 91 、 92 、 93 94、95、96、97、 98、99 901 902 903 904 905 、 906 (圖 10) 1001 1002 1003 1004 1005 、 1006 Al、A2、A3、 A4、A5 (圖 11) 1101 1102 1103 1104 1105、 1106 Bl、B2、B3、 線路 預熱器 連續多段蒸餾塔 冷凝器 再沸器 貯槽 預熱器 連續多段蒸餾塔 冷凝器 再沸器 貯槽 線路 預熱器 連續多段蒸餾塔 冷凝器 再沸器 貯槽 線路 131505.doc -153 - 200948760 B4、B5 (圖 12) 薄膜蒸餾裝置 連續多段蒸餾塔 冷凝器 再沸器 線路 1201 1202 、 1205 ' 1208 1203 ' 1206 、 1209 1204 ' 1207 ' 1210 Cl、C2、C3、(Fig. 9) 90, 91, 92, 93 94, 95, 96, 97, 98, 99 901 902 903 904 905, 906 (Fig. 10) 1001 1002 1003 1004 1005, 1006 Al, A2, A3, A4, A5 ( Figure 11) 1101 1102 1103 1104 1105, 1106 Bl, B2, B3, line preheater continuous multi-stage distillation tower condenser reboiler storage tank preheater continuous multi-stage distillation tower condenser reboiler storage tank line preheater continuous multi-stage distillation Tower condenser reboiler sump line 131505.doc -153 - 200948760 B4, B5 (Fig. 12) Thin film distillation unit continuous multi-stage distillation column condenser reboiler line 1201 1202, 1205 ' 1208 1203 ' 1206 , 1209 1204 ' 1207 ' 1210 Cl, C2, C3,
C4、C5、C6、 C7、C8、C9、 CIO、Cll、C12、 C13、C14、C15、 C16、C17、C18 (圖 13)C4, C5, C6, C7, C8, C9, CIO, C11, C12, C13, C14, C15, C16, C17, C18 (Figure 13)
1301 、 1304 、 1307 1302 、 1305 、 1308 1303 、 1306 、 13091301, 1304, 1307 1302, 1305, 1308 1303, 1306, 1309
Dl、D2 ' D3、 連續多段蒸餾塔 冷凝器 再沸器 線路 D4、D5、D6、 D7、D8、D9、 D10、Dll、D12、 D13、D14、D15 (圖 14) 1401、1402、 貯槽 1403 ' 1409 、 1410 -154- 131505.doc 200948760 1404 1405 、 1406 1407 、 1410 1408 、 1412 El 、 E2 、 E3 、 攪拌槽 連續多段蒸餾塔 冷凝器 再沸器 線路 E4、E5、E6、 E7、E8、E9、 E10、El 1、E12、Dl, D2 ' D3, continuous multi-stage distillation tower condenser reboiler line D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15 (Fig. 14) 1401, 1402, storage tank 1403 ' 1409 , 1410 -154- 131505.doc 200948760 1404 1405 , 1406 1407 , 1410 1408 , 1412 El , E2 , E3 , Stirring tank continuous multistage distillation tower condenser reboiler line E4, E5, E6, E7, E8, E9, E10, El 1, E12,
E13 (圖 15) 1501、1502、1503 貯槽 1504 1506 、 1509 、 1512 1505 、 1508 、 1511 1507 、 1510 、 1513 攪拌槽 連續多段蒸餾塔 冷凝器 再沸器E13 (Fig. 15) 1501, 1502, 1503 sump 1504 1506, 1509, 1512 1505, 1508, 1511 1507, 1510, 1513 Stirring tank Continuous multi-stage distillation column Condenser Reboiler
FI 、 F2 、 F3 、 線路 F4 、 F5 、 F6 、 F7 、 F8 、 F9 、 F10、FI 1、F12、 F13 、 F14 、 F15 、 F16 、 F17 、 F18 (圖 16) 1601、1602、1603 貯槽 1606 131505.doc -155- 200948760 1604 攪拌槽 1605 管柱 1607 冷凝器 G1、G2、G3、 線路 G4、G5、G6 ❹ ❿ 131505.doc 156-FI, F2, F3, lines F4, F5, F6, F7, F8, F9, F10, FI1, F12, F13, F14, F15, F16, F17, F18 (Fig. 16) 1601, 1602, 1603 Storage tanks 1606 131505. Doc -155- 200948760 1604 Stirring tank 1605 Column 1607 Condenser G1, G2, G3, Line G4, G5, G6 ❹ ❿ 131505.doc 156-
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/058944 WO2009139061A1 (en) | 2008-05-15 | 2008-05-15 | Process for producing isocyanate using diaryl carbonate |
TH801002439A TH110369A (en) | 2008-05-15 | A method for producing isocyanates using carbonic acid dialyls |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200948760A true TW200948760A (en) | 2009-12-01 |
TWI408120B TWI408120B (en) | 2013-09-11 |
Family
ID=44870724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097118263A TWI408120B (en) | 2008-05-15 | 2008-05-16 | A process for producing isocyanates using diaryl carbonates |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI408120B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10450265B2 (en) | 2016-12-29 | 2019-10-22 | Great Eastern Resins Industrial Co., Ltd. | Method for producing amides or polyamides by using aromatic carbamates by way of isocyanates as precursors through catalyzed thermal processes and method for producing aromatic carbamate precursors from aromatic amines |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1183332B (en) * | 1985-02-08 | 1987-10-22 | Enichem Sintesi | PROCEDURE FOR THE PRODUCTION OF N-METHYL CARBAMATES |
JP2004262835A (en) * | 2003-02-28 | 2004-09-24 | Mitsui Chemicals Inc | Method for producing aromatic isocyanate |
KR100726925B1 (en) * | 2003-06-27 | 2007-06-14 | 아사히 가세이 케미칼즈 가부시키가이샤 | Method for producing aromatic carbonate |
-
2008
- 2008-05-16 TW TW097118263A patent/TWI408120B/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10450265B2 (en) | 2016-12-29 | 2019-10-22 | Great Eastern Resins Industrial Co., Ltd. | Method for producing amides or polyamides by using aromatic carbamates by way of isocyanates as precursors through catalyzed thermal processes and method for producing aromatic carbamate precursors from aromatic amines |
Also Published As
Publication number | Publication date |
---|---|
TWI408120B (en) | 2013-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101363232B1 (en) | Process for producing isocyanate using diaryl carbonate | |
JP5592786B2 (en) | Isocyanate production method | |
TW200909397A (en) | Method for production of isocyanate using composition comprising carbamic acid ester and aromatic hydroxy compound, and composition for transport or storage of carbamic acid ester | |
TW200844080A (en) | Process for producing isocyanate | |
TW200948760A (en) | Process for producing isocyanate using diaryl carbonate | |
WO2018212206A1 (en) | Isocyanate production method | |
JP5650777B2 (en) | Method for producing isocyanate using diaryl carbonate | |
TWI496763B (en) | Preparation of isocyanates | |
SG190662A1 (en) | Process for producing isocyanates using diaryl carbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |