TW200948648A - Vehicle distance measuring safety system - Google Patents
Vehicle distance measuring safety system Download PDFInfo
- Publication number
- TW200948648A TW200948648A TW97119659A TW97119659A TW200948648A TW 200948648 A TW200948648 A TW 200948648A TW 97119659 A TW97119659 A TW 97119659A TW 97119659 A TW97119659 A TW 97119659A TW 200948648 A TW200948648 A TW 200948648A
- Authority
- TW
- Taiwan
- Prior art keywords
- vehicle
- distance
- pixel value
- right rear
- image
- Prior art date
Links
Landscapes
- Measurement Of Optical Distance (AREA)
Abstract
Description
200948648 九、發明說明: 【發明所屬之技術領域】 特別是一種 當行車距離 本發明係有關一種行車安全警示系統, 利用擷取影像偵測前方車輛間距,以保持適 的安全警示系統。 【先前技術】 未保持行車距離是發生車禍的主要原因,雖然目前 ❹ 在習知技術中已存在許多量測方法可用來計算二點間之 距離,然而應用在行車距離監測時因受到行進中車輛的 不固定性以及夜間周遭環境亮度的影響,致使習知量測 方法皆無法有效應用於行進申車輛的行車距離監測。/ 一般而言,習知的距離量測方法主要可分為非接觸 式與接觸式量測方法。其中,由於接觸式量測方法皆需 要在待測的二點之間設置並固定一量測裝置,例如直尺 或捲尺,再讀取二點之間的間距長度。因此,接觸式量 ❹ 測方法並不適合於行車距離的量測系統中。 而在非接觸式的量測方法中,最常見的作法為超音 波或雷射測距方法。該等量測方法即利用聲波與光波的 反射之在返時間估鼻往返的距離,但由於反射的時間會 受到反射面的材質而影響,因此造成量測的不穩定性, 且對於行進中的車輛無法取得一穩定的反射面,故此等 量測方法亦無法適用於行車距離的量測系統中。 目前行車距離監測之系統亦有使用影像圖形辨識技 術作為監測之方法,然而由於進行影像圖形辨識需要較 200948648 j算成本錢算咖,且由於影像_ =析;使;Γ影像圖形辨識的監測系統無法: 車雷達- 離的碰撞料纽卜主錢用於近距 且進一步而言 3用Γίί道線辨識或汽車陰影辨識等方法,於夜 間使用時,靴制強力燈如取得清 辨?所完成的行車距離量測系統的量:準 ’使用影像圖形辨識技術的車距辨識 確度大幅下降,甚而無法使用 【發明内容】 —t發明之目的在於提供—種應用於行車安全 =全車距監測裝置,藉由辨識前 t 素值計算三車之_車距。 ⑽早燈組之像 測裝本發明係提供—種行車安全車距監 -‘-直二』弟一車體’用於偵測第一車體與前方 準寬度DS的左、右後車d f具有標 擷敗句人m 更半燈包括.一影像模組,用以 ° 3 1 第二車體的左、右後車燈之影像的—書 :’以及一運算模組,用以根據前述畫面中左、右後車 隔的像素值N(HK)判斷第-車體與第二車體 用以i測一第一車體與前方一第二 6 200948648 車體之車距,其中前述第二車體包含一組具有標 準寬度DS的左、右後車燈,包括:擷取包含前述 第二車體的左、右後車之影像的一晝面;計算前 述左、右後車燈之影像間隔的像素值n(hk);以 及根據前述像素值N(HK)計算第一車體與第二車體之車 距 HK。 ' •綜上所述,本發明之行車安全車距監測裝置可 利用傳統之CCD或CMOS鏡頭量測車輛間的距 Ο 以提供安全車距的監控,並且因為不需要進 行全晝面的影像辨識,因此可大幅降低運算的成 本與時間,而過濾不同車道的車輛所造成之影 響’可降低量測的誤差。 【實施方式】 雖然本發明將參閱含有發明較佳實施例之所 25予以充分描述’但在此描述之前應瞭解熟 行技藝之人士可修改本文中所描述之發明, ,時獲致本發明之功效。因此,需瞭解以下之描 述對熟悉本行技藝之人士而言為一廣泛之揭示, 且其内容不在於限制本發明。 本發明係有關一種利用簡單的影像處理進行 ^輛距離監測的行車安全警示系統,透過使用一 曰通的CCD或CMOS攝影機做為距離量測裝置, 現夜間行車距離的量測,除可提醒駕駛人 击則車保持安全車距外,亦可應用於警告後面來 車必須保持安全車距,以避免追撞事故的發生。 200948648 於在一般的垂直攝影中,蚩 點之間的像素值與實際距離中的二 貧料中可根據所擷取到二上:二;-晝面 ❹200948648 IX. INSTRUCTIONS: [Technical field of invention] In particular, a driving distance warning system relates to a driving safety warning system for detecting a distance between vehicles in front of a vehicle to maintain an appropriate safety warning system. [Prior Art] Failure to maintain driving distance is the main cause of car accidents. Although there are many measurement methods available in the prior art to calculate the distance between two points, it is applied to the traveling vehicle due to the traveling vehicle. The unfixedness and the influence of the ambient brightness around the night make the conventional measurement methods ineffective for the driving distance monitoring of the traveling vehicles. / In general, conventional distance measurement methods can be mainly divided into non-contact and contact measurement methods. Among them, since the contact measurement method needs to set and fix a measuring device between two points to be tested, such as a ruler or a tape measure, and then read the length of the gap between the two points. Therefore, the contact type measurement method is not suitable for the measurement system of the driving distance. In the non-contact measurement method, the most common method is ultrasonic or laser ranging. The measurement method uses the reflection time of the sound wave and the light wave to estimate the round-trip distance of the nose, but since the reflection time is affected by the material of the reflection surface, the measurement instability is caused, and for the traveling The vehicle cannot obtain a stable reflecting surface, so the measurement method cannot be applied to the measuring system of the driving distance. At present, the system of driving distance monitoring also uses image pattern recognition technology as a monitoring method. However, since the image pattern recognition needs to be calculated and calculated according to 200948648, and because of the image _ = analysis; Can't: Car Radar - The collision material is used for close-up and further 3 uses Γίί line identification or car shadow recognition. When used at night, the boot power lamp is clear. The distance of the driving distance measurement system: the accuracy of the vehicle distance identification using the image pattern recognition technology is greatly reduced, and even cannot be used. [Inventive content] - The purpose of the invention is to provide a type of driving safety = full distance monitoring device, The distance between the three cars is calculated from the pre-identification t-value. (10) Image measurement of the early lamp group The present invention provides a left-right and right rear vehicle df for detecting the first vehicle body and the front-precision width DS. The semi-lights include a video module for the image of the left and right rear lights of the second body, and a computing module for The pixel value N (HK) of the left and right rear compartments in the picture determines that the first body and the second body are used to measure the distance between the first body and the front and the second 6 200948648 body, wherein the foregoing The second vehicle body comprises a set of left and right rear lights having a standard width DS, comprising: capturing a side surface of the image of the left and right rear vehicles including the second vehicle body; calculating the left and right rear lights a pixel value n(hk) of the image interval; and calculating a vehicle distance HK between the first body and the second body based on the aforementioned pixel value N (HK). In summary, the driving safety distance monitoring device of the present invention can measure the distance between vehicles by using a conventional CCD or CMOS lens to provide safe vehicle distance monitoring, and does not require full-face image recognition. Therefore, the cost and time of the calculation can be greatly reduced, and the influence of filtering the vehicles in different lanes can reduce the measurement error. [Embodiment] The present invention will be fully described with reference to the preferred embodiment of the invention. However, it should be understood that those skilled in the art can modify the invention described herein to obtain the effect of the present invention. . Therefore, it is to be understood that the following description is a broad disclosure of those skilled in the art and is not intended to limit the invention. The invention relates to a driving safety warning system for performing distance monitoring by simple image processing, which uses a CCD or CMOS camera as a distance measuring device, and measures the driving distance at night, in addition to reminding driving When the person hits the car and keeps the safety distance, it can also be applied to the warning. The car must maintain a safe distance to avoid the collision accident. 200948648 In general vertical photography, the pixel value between the 蚩 point and the actual distance in the two poor materials can be obtained according to the two: two; - 昼 ❹
:,所有的車輛在後侧車體至少都而會=:全: 苡用以提供後方行進=駕二 :識則方車輛的位置與車況等。因此,本發明 亍進中之車輛之間,#|J用在後方車體中 二置監測裝置用以監測前方車體的左、右後 =的5素值變化,以及利用基本的三 疋理來计算前、後方車體之間的車距。 參考第一圖為本發明一實施例之系統架構 圖。在該實施例中,一車體10係設置一行車安全 車距監測裝置U用以量測車體10與前方一車體2〇 之車距。該行車安全車距監測裝置U包括一鏡頭 12與一處理器(圖中未顯示),且該車體後側設 置一組標準規格的左、右後車燈21、22。且該鏡 頭12在不同實施例中可根據不同電路設計的需求 而以CCD或CMOS數位鏡頭實施,且進一步亦可 使用其他用來擷取影像之影像擷取裝置。在第一 圖中,HK係車體1〇與車體20的實際車距,HM為 鏡頭12的攝影光軸距離地面高度,而DS即為左、 右後車燈21、22的實際距離。 參考第二圖所示由鏡頭12擷取該車體20影像 之一晝面13的示意圖,在該晝面13中’車體20 的左、右後車燈21、22所形成之影像PL、PR近似 200948648 於一組平行雷射光源投射在一平面上所形成之影 像,因此根據像素值與實際距離成正比的關係以 及簡單的三角函數定理,該行車安全車距監測裝 置11即可藉由鏡頭12所擷取之晝面資料(Frame), 計算PL、PR之間的像素值,以進一步計算出車體 10與車體20的實際距離HK。: All vehicles in the rear side of the car at least will = = full: 苡 to provide rear travel = driving two: know the location of the vehicle and the car conditions. Therefore, between the vehicles of the present invention, #|J is used in the rear vehicle body to monitor the five-value change of the left and right rear of the front body, and to utilize the basic three-dimensional treatment. To calculate the distance between the front and rear bodies. Referring to the first figure, a system architecture diagram of an embodiment of the present invention is shown. In this embodiment, a vehicle body 10 is provided with a row of vehicle safety distance monitoring device U for measuring the distance between the vehicle body 10 and the front body 2〇. The driving safety distance monitoring device U includes a lens 12 and a processor (not shown), and a set of standard left and right rear lights 21, 22 are disposed on the rear side of the vehicle body. Moreover, the lens 12 can be implemented by a CCD or CMOS digital lens according to different circuit design requirements in different embodiments, and further image capturing devices for capturing images can be further used. In the first figure, the actual distance between the HK vehicle body 1 and the vehicle body 20, HM is the height of the photographing optical axis of the lens 12 from the ground, and DS is the actual distance between the left and right rear lights 21, 22. Referring to the second figure, a schematic diagram of one of the images of the body 20 of the vehicle body 20 is taken from the lens 12, and the image PL formed by the left and right rear lights 21, 22 of the vehicle body 20 is PR approximates 200948648. The image formed by a set of parallel laser light sources projected on a plane, so the driving safety distance monitoring device 11 can be used according to the relationship between the pixel value and the actual distance and the simple trigonometric function theorem. The frame data captured by the lens 12 calculates the pixel value between the PL and the PR to further calculate the actual distance HK between the vehicle body 10 and the vehicle body 20.
由於該左、右後車燈21、22的實際距離約略 為一固定值DS,晝面13的水平像素值亦為一固定 值NHmax,而該左、右後車燈21、22的影像點 PL、PR之間的像素值可經由計數得知為N(HK)。 因此,在攝影距離為HK時的最大攝影角度2ΘΙι時 所擷取之最大攝影寬度Dmax(HK)可由下列方程式 得知: 而根據三角函數定理,在直角三角形中已知 對邊長度Dmax(HK),臨邊長度HK即可藉由cot 函數計算而得: HK=\^ DS^ cot ehSince the actual distance between the left and right rear lights 21, 22 is approximately a fixed value DS, the horizontal pixel value of the face 13 is also a fixed value NHmax, and the image points PL of the left and right rear lights 21, 22 The pixel value between the PRs can be known as N(HK) by counting. Therefore, the maximum photographic width Dmax(HK) taken at the maximum photographic angle 2ΘΙ when the photographic distance is HK can be obtained by the following equation: According to the trigonometric function theorem, the length of the opposite side Dmax(HK) is known in the right triangle. The length of the edge can be calculated by the cot function: HK=\^ DS^ cot eh
2 N HK 在一實施例中,為了增加行車安全車距監測 裝置11的量測準確度,可以進一步考慮鏡頭12的 光學原點0P距離鏡頭12表面之距離hs,由於前 述方程式所計算之攝影距離HK係包含了 hs的長 度,因此將所得到攝影距離HK減去hs即可得到更 精確的攝影距離HK1 :2 N HK In an embodiment, in order to increase the measurement accuracy of the driving safety distance monitoring device 11, the optical origin 0P of the lens 12 may be further considered to be the distance hs from the surface of the lens 12, and the photographic distance calculated by the foregoing equation The HK system contains the length of hs, so the subtracted hs from the obtained photographic distance HK can get a more accurate photographic distance HK1:
HK1 = HK-hs=\y· ΖΗτ^ χ DSx cot ΘΗ ~ 1 L N HK 200948648 因此,本發明之行車安全車距監測裝置11只 要在畫面13中找出車體20的左、右後車燈21、22 之影像PL、PR的位置,以及二影像PL、PR之間 的像素值N(HK),即可藉由計算鏡頭12的最大攝 影寬度Dmax(HK),並進一步求出車體10與車體 20的實際距離HK。 進一步觀察畫面13,在不同的攝影距離HK之 下,左、右後車燈21、22之影像PL、PR所佔的像 ^ 素面積會跟著改變,使得影像PL、PR的影像寬度 也會產生變動。為了避免因影像PL、PR所佔的像 素面積改變而影響量測準確性,行車安全車距監 測裝置11可以影像PL、PR的中心點之距離作為像 素值N(HK)的二個端點而進行量測。 復參考第一圖,由於在攝影距離為DN的位 置,鏡頭12之垂直最大攝影角(2θν)所擷取之影像 即達到地面的位置,因此在小於DN的攝影距離之 範圍内,無法取得有效的最大攝影寬度(Dmax), ❹ 因此該行車安全車距監測裝置11的最小攝影距離 即為DN。 參考第三圖,在本發明一實施例中,該鏡頭 12可設置在一固定高度,將鏡頭12的光學軸可與 地面平行,致使左、右後車燈21、22的影像可以 固定在所擷取晝面中的一定範圍内之水平掃瞄線 中。如第三A圖與第三B圖所示,車體10與車體 20之間的車距HK在不同的長度(5公尺、15公尺) 之下,左、右後車燈21、22的影像PR、PL皆可位 200948648 於晝面13的水平掃猫線(INVmax)附近,並限制在 特定水平掃瞄線(NV1、NV2)的範圍之内,因此行 車安全車距監測裝置11可利用 WOI(Window of Interesting)的方式或者使用線性CCD對該等範圍 内之水平掃瞄線(NV1、NV2)進行亮度的運算就可 以快速的知道左、右後車燈21、22的影像所出現 的位置PR、PL,以及左、右後車燈21、22的影像 之間的像素值N(HK)。 @ 根據第三A圖與第三B圖,行車安全車距監測 裝置11對特定區間,水平掃瞄線NV1至NV2之間 進行亮度分析,可以得到第四A圖與第四B圖之信 號波形圖,而在該等信號波形圖可輕易找出亮度 極大值的二個水平像素點,亦即左、右後車燈 21、22的影像PR、PL的位置。 根據第四A圖或第四B圖之信號波形圖可發現 影像PR、PL分別產生如第二圖所示的像素值 NR、NL,因此,將像素值NR、NL的中心點作為 〇 量測的二端點計算間隔之像素值,即可得到影像 PR、PL之間的像素值如下: N HK =^[ NL1 NL2- NR1 NR2 ] 其中,NR1、NR2與NL1、NL2分別為NR、 NL的二個邊界點。 在行車安全車距監測的應用中,對於不同車 道上的前方車輛可不需進行警示的動作,因此在 本發明的一實施例中,該行車安全車距監測裝置 11可將不同車道上之車體的資訊過濾掉。 11 200948648 參考第五圖,當車體10所擷取前方晝面13中 包含了不同車道上之車體,並在晝面13中擷取到 包含PI、P2、P3、P4與P5等五個影像分另出現在 水平掃瞄值Nl、N2、N3、N4與N5的位置上。 由於跟車體10在同一車道上之車體20的左、 右後車燈在車體10所擷取的畫面中13會最對稱於 晝面13的中心位置,因此比較兩兩相鄰的一組影 像的像素值,其中一組影像的像素平均值最接近 畫面13的垂直掃瞄線dNHmax)者即為車體20所 形成之影像: N i Ni 1 _ NHmax= i=l".N 2 2 當xi的值最小時的Pi即為車體20的左後車燈影 像。 因此,影像P1所代表為在左方車道上之一車 體,因此晝面13中僅擷取其右後車燈影像,P2與 P3所代表為車體20的左、右後車燈影像PL、 PR,P4與P5所代表為在右方車道上之一車體的 左、右後車燈影像,其中PI、P4與P5的影像因屬 於不同車道的車體之影像,因此會被過濾掉,而 像素值N(HK)即可由N2與N3所求得: N HK = N3- N2 根據上述實施例,本發明之行車安全車距監 測裝置11在鏡頭12的hs與cot(0行車安全行車安 全車距監測h)等參數已知的情況下,即可精確的 計算車體10與車體20之實際距離HK。參考第六 12 200948648 圖為建立鏡頭12的相關參數之系統架構圖,將鏡 頭12固定在一框架30上方以避免因震動所成的誤 差,且在框架30下方設置一可調整位置之水平量 尺31。 當水平量尺31與鏡頭12之距離為]νπ時,則 ,頭12,水平量尺31上所節取道之寬度為Li,而 當水平量尺31與鏡頭12之距離為M2時,則鏡頭 1〜2在水平量尺31上所節取道之寬度為L2。根據簡 單三角形定理,cot(0h)可由下列方程式表示··HK1 = HK-hs=\y· ΖΗτ^ χ DSx cot ΘΗ ~ 1 LN HK 200948648 Therefore, the driving safety distance monitoring device 11 of the present invention only needs to find the left and right rear lights 21 of the vehicle body 20 in the screen 13. The position of the image PL, PR, and the pixel value N(HK) between the two images PL and PR can be calculated by calculating the maximum photographic width Dmax (HK) of the lens 12, and further obtaining the vehicle body 10 and The actual distance of the body 20 is HK. Further, under the different photographic distances HK, the image areas occupied by the images PL and PR of the left and right rear lamps 21 and 22 are changed, so that the image widths of the images PL and PR are also generated. change. In order to avoid the measurement accuracy caused by the change of the pixel area occupied by the images PL and PR, the driving safety distance monitoring device 11 can use the distance between the center points of the images PL and PR as the two end points of the pixel value N (HK). Make measurements. Referring back to the first figure, since the image captured by the vertical maximum photographic angle (2θν) of the lens 12 reaches the ground position at the position where the photographic distance is DN, it is impossible to obtain an effective range within a photographic distance smaller than DN. The maximum photographic width (Dmax), ❹ Therefore, the minimum photographic distance of the driving safety distance monitoring device 11 is DN. Referring to the third figure, in an embodiment of the invention, the lens 12 can be disposed at a fixed height, and the optical axis of the lens 12 can be parallel to the ground, so that the images of the left and right rear lights 21, 22 can be fixed at the same. Draw a horizontal scan line within a certain range in the face. As shown in the third A diagram and the third B diagram, the vehicle distance HK between the vehicle body 10 and the vehicle body 20 is under different lengths (5 meters, 15 meters), left and right rear lights 21, The image PR and PL of 22 can be located near the horizontal sweep line (INVmax) of the face 13 in 200948648, and are limited to the range of the specific horizontal scanning line (NV1, NV2), so the driving safety distance monitoring device 11 The image of the left and right rear lights 21, 22 can be quickly known by using the WOI (Window of Interesting) method or using a linear CCD to calculate the brightness of the horizontal scanning lines (NV1, NV2) in the range. The position PR, PL, and the pixel value N (HK) between the images of the left and right rear lights 21, 22 appear. @ According to the third A picture and the third B picture, the driving safety distance monitoring device 11 performs brightness analysis on a specific section and the horizontal scanning line NV1 to NV2, and can obtain signal waveforms of the fourth A picture and the fourth B picture. In the signal waveform diagrams, two horizontal pixel points of the maximum brightness value, that is, the positions of the images PR, PL of the left and right rear lights 21, 22 can be easily found. According to the signal waveform diagrams of the fourth A or the fourth B, it can be found that the images PR and PL respectively generate the pixel values NR and NL as shown in the second figure. Therefore, the center points of the pixel values NR and NL are measured as 〇. The two endpoints calculate the pixel value of the interval, and the pixel values between the images PR and PL are obtained as follows: N HK =^[ NL1 NL2- NR1 NR2 ] wherein NR1, NR2 and NL1, NL2 are NR, NL, respectively Two boundary points. In the application of the driving safety distance monitoring, the warning action may be omitted for the preceding vehicles on different lanes. Therefore, in an embodiment of the invention, the driving safety distance monitoring device 11 may be used for the vehicle body in different lanes. The information is filtered out. 11 200948648 Referring to the fifth figure, when the front body 13 of the body 10 is taken, the body of the lane is included, and five parts including PI, P2, P3, P4 and P5 are captured in the surface 13. The image appears separately at the horizontal scan values Nl, N2, N3, N4 and N5. Since the left and right rear lights of the vehicle body 20 in the same lane as the vehicle body 10 are most symmetrical with respect to the center position of the face 13 in the picture taken by the vehicle body 10, the adjacent ones are compared. The pixel value of the group image, in which the pixel average of one group of images is closest to the vertical scanning line dNHmax of the picture 13 is the image formed by the body 20: N i Ni 1 _ NHmax= i=l".N 2 2 When the value of xi is the smallest, Pi is the left rear light image of the vehicle body 20. Therefore, the image P1 represents a car body in the left lane, so only the right rear car image is captured in the kneading surface 13, and the left and right rear car images PL represented by the car body 20 are represented by P2 and P3. , PR, P4 and P5 represent the left and right rear car lights of one of the cars in the right lane. The images of PI, P4 and P5 are filtered because they belong to the image of the car body of different lanes. And the pixel value N(HK) can be obtained by N2 and N3: N HK = N3- N2 According to the above embodiment, the driving safety distance monitoring device 11 of the present invention is in the hs and cot of the lens 12 (0 driving safely driving In the case where the parameters such as the safety distance monitoring h) are known, the actual distance HK between the vehicle body 10 and the vehicle body 20 can be accurately calculated. Reference No. 6 12 200948648 The figure shows a system architecture diagram for establishing relevant parameters of the lens 12, fixing the lens 12 above a frame 30 to avoid errors caused by vibration, and setting an adjustable scale horizontal scale below the frame 30. 31. When the distance between the horizontal scale 31 and the lens 12 is ]νπ, then the width of the section of the head 12 and the horizontal scale 31 is Li, and when the distance between the horizontal scale 31 and the lens 12 is M2, the lens The width of the section taken on the horizontal scale 31 of 1 to 2 is L2. According to the simple triangle theorem, cot(0h) can be represented by the following equation··
cot eh =31^2-Mi L2- LI M及tis如下: hs Ml hs M2Cot eh =31^2-Mi L2- LI M and tis are as follows: hs Ml hs M2
L】 L2 _ M2xL1~MJx 1.7 L2~ LI hs 、藉由上述的參數計算過程,可使各種攝影鏡 頭適用於本發明之行車安全車距監測裝置η。L] L2 _ M2xL1~MJx 1.7 L2~ LI hs. With the above parameter calculation process, various photographic lenses can be applied to the driving safety distance monitoring device η of the present invention.
由於行車安全車距監測裝置u不需要進行全 旦面的影像辨識,因此可以利用簡單之硬 電算,參考第七圖為本發明—之 =車女全車距監測裝置u的運算電路4〇之電路 構圖。如圖所示,該運算電路4〇包括— 雛 = 之影像信號:並取 斤需之皁色仏號’一般而言由於車輛 d由/色燈源所組成’因此在該時施例 中’該为離電路41係用以分離出紅色信號。該運 13 200948648 算電路40進一步包括一比較電路42用以接收該紅 色信號,並與一臨界值設定電路43所提供之亮度 臨界值進行比較,以判斷後車燈影像的位置。該 比較電路42進一步可連接一區間電路44用以將進 行亮度判斷之晝面限制在水平掃瞄線NV1與NV2 之間,以降低比較電路42的運算量。 、 該比較電路42計算出的結果再提供給一 SISO(串列輸入串列輸出)暫存器45,且由一同步 φ 電路46控制該SISO暫存器45的位移動作。該 SISO暫存器45再將所接收的資料提供至一 OR電 路47進行OR運算並輸出運算結果Ycom,以求得 在同一個車道前方車體的後車燈影像的位置。 參考第八圖為第七圖所示運算電路40進行判 斷的信號波形圖,在水平掃瞄線NV1與NV2之間 將所擷取到各水平掃瞄線進行OR運算可以得到 Ycom'的波形,而根據Ycom'的波形即可算出二個 後車燈影像之間所佔據之像素值: Q N HK NR1 NR2 - j NL1 NL2 當計算出二個後車燈影像之間所佔據之像素 值時,即可藉由前述相關方程式計算出二車體之 間的實際距離HK。在本發明一實施例中,該行車 安全車距監測裝置11可進一步連接一碰撞防止電 路,用以避免車距過短的二車體發生碰撞。 當所量測之車距HK小於一根據當時車速所計 算出來的預定值HG,則可主動驅動煞車燈點亮, 以提醒後方來車進行減速的動做或準備,並可進 14 200948648 一步利用警示燈或蜂喰哭,$ Α Α 車距。參考第九圖通知駕駛人需保持安全 雷踗sn从♦ 為本發明—實施例之碰撞防止 电路50的電路架構圖, 姚禮防止 接受接收運算電路鼻電路51用以 步4唬以及車速信號,並以— 」 計算電路51所需電源。穩壓電源52 乂供該 ❹ Ο 即會ίΓΐί;?聪線結束時,垂直同步信號 J會中斷要求,致使該計算電路 中=Ν(ΗΚ)數值,並得出實際車距ηκ = = ===速信號計算出-適 田小於女王車距時,則計算電路51驅動一蜂 點亮’以提醒後方來車進行減速的動: 備:該計算電路51可進一步連接一顯示器55,用 以直接顯不目前車距於該顯示 做為參考。 〈上供鳥敬者 綜上所述,本發明之行車安全車距監測裝置 可利用傳統之CCD或CMOS鏡頭量測車輛間的距 ,,以提供安全車距的監控,並且因為不需要進 行全畫面的影像辨識,因此可大幅降低運算的成 本與時間,而過濾不同車道的車輛所造成之影 響,可降低量測的誤差。 、 在詳細說明本發明的較佳實施例之後,熟悉 該項技術領域者可清楚的暸解,在不脫離下述申 請專利範圍與精神下進行各種變化與改變,且本 15 200948648 發明亦不受限於說明書中所舉實施例的實施方 式。 【圖式簡單說明】 第一圖為本發明一實施例之行車安全車距監測裝 置的系統架構圖。 第二圖為本發明一實施例之鏡頭擷取畫面的示 意圖。 ❹ 第三圖為本發明一實施例之鏡頭擷取部分區域 晝面的示意圖。 第二A圖與第三B圖為本發明一實施例在不同 距離下之鏡頭擷取晝面的示意圖。 第四A圖或第四B圖為第三A圖與第三B圖所 示晝面的信號波形圖。 第五圖為本發明一實施例之鏡頭擷取多個車道 衫像的畫面的示意圖。 參考第六圖為本發明一實施例建立鏡頭的相關 參數之系統架構圖。 參考第七圖為本發明一實施例之行車安全車距 監測裝置的運算電路之電路架構圖。 第八圖為第七圖所示運算電路的比較電路的信 號波形圖。 第九圖為本發明一實施例之碰撞防止電路的電 路架構圖。 16 200948648 元件符號說明: 10、20—車體 11…行車安全車距監測裝置 12— 鏡頭 13— 晝面 21、22—左、右後車燈 30…框架 31…水平量尺 ❹ 40…運算電路 41…信號分離電路 42— 比較電路 43— 臨界值設定電路 44— 區間電路 45…SISO暫存器 46---同步電路 47 — OR電路 0 50—碰撞防止電路 51 —計鼻電路 5 2 ---穩壓電源 53…蜂鳴器 54…煞車燈 55 —顯不 17Since the driving safety distance monitoring device u does not need to perform full-face image recognition, it is possible to use a simple hard computer, and refer to the seventh figure as the circuit of the operation circuit 4 of the vehicle-wide full-distance monitoring device u. Composition. As shown in the figure, the arithmetic circuit 4 includes the image signal of the chick = and the soap color ' of the jin is required. Generally speaking, since the vehicle d is composed of a light source, it is therefore in the case of the case. The off-circuit 41 is used to separate the red signal. The circuit 40 further includes a comparison circuit 42 for receiving the red signal and comparing it with a brightness threshold provided by a threshold setting circuit 43 to determine the position of the rear vehicle image. The comparison circuit 42 is further connectable to an interval circuit 44 for limiting the brightness of the brightness determination between the horizontal scanning lines NV1 and NV2 to reduce the amount of calculation by the comparison circuit 42. The result calculated by the comparison circuit 42 is further supplied to a SISO (serial input string output) register 45, and the displacement operation of the SISO register 45 is controlled by a synchronous φ circuit 46. The SISO register 45 then supplies the received data to an OR circuit 47 for OR operation and outputs the operation result Ycom to obtain the position of the rear vehicle image of the vehicle body in front of the same lane. Referring to FIG. 8 , a signal waveform diagram for determining the arithmetic circuit 40 shown in FIG. 7 , and performing an OR operation on each horizontal scanning line between the horizontal scanning lines NV1 and NV2 to obtain a waveform of Ycom′. According to the waveform of Ycom', the pixel value occupied between the two rear lamp images can be calculated: QN HK NR1 NR2 - j NL1 NL2 When calculating the pixel value occupied between the two rear lamp images, The actual distance HK between the two bodies can be calculated by the aforementioned correlation equation. In an embodiment of the invention, the driving safety distance monitoring device 11 can be further connected with a collision preventing circuit to avoid collision of the two vehicle bodies whose vehicle distance is too short. When the measured vehicle distance HK is less than a predetermined value HG calculated according to the current vehicle speed, the brake light can be actively driven to illuminate to remind the rear vehicle to perform the deceleration operation or preparation, and can be used in one step. Warning light or bee cries, $ Α 车 distance. Referring to the ninth figure, the driver is required to maintain the safety thunder. From the ♦ is a circuit diagram of the collision prevention circuit 50 of the present invention--the embodiment, Yao Li prevents the receiving operation circuit nose circuit 51 from being used for the step 4 and the vehicle speed signal. The power required by circuit 51 is calculated by -". The regulated power supply 52 is for the ❹ Ο Ο Γΐ Γΐ Ο ? ? 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直 垂直= Speed signal is calculated - when the field is smaller than the Queen's distance, the calculation circuit 51 drives a bee to light 'to remind the rear to decelerate the movement:: the calculation circuit 51 can be further connected to a display 55 for direct It is indicated that the current distance is the reference for this display. In summary, the driving safety distance monitoring device of the present invention can measure the distance between vehicles by using a conventional CCD or CMOS lens to provide monitoring of the safety distance, and since it is not necessary to perform the whole The image recognition of the screen can greatly reduce the cost and time of the calculation, and the effect of filtering the vehicles in different lanes can reduce the measurement error. Having described the preferred embodiments of the present invention in detail, it will be apparent to those skilled in the art that various modifications and changes can be made without departing from the scope and spirit of the inventions. Embodiments of the embodiments set forth in the description. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a system architecture diagram of a driving safety distance monitoring device according to an embodiment of the present invention. The second figure is a schematic view of a lens capture screen according to an embodiment of the present invention. ❹ The third figure is a schematic diagram of a side of a lens capturing portion of an embodiment of the present invention. 2A and 3B are schematic views of the lens capture surface at different distances according to an embodiment of the present invention. The fourth A picture or the fourth B picture is a signal waveform diagram of the face shown in the third A picture and the third B picture. Fig. 5 is a schematic view showing a screen for capturing a plurality of lane shirt images by a lens according to an embodiment of the present invention. Referring to a sixth figure, a system architecture diagram for establishing related parameters of a lens according to an embodiment of the present invention is shown. Reference is made to the seventh embodiment of the circuit diagram of an arithmetic circuit of a driving safety distance monitoring device according to an embodiment of the present invention. The eighth figure is a signal waveform diagram of the comparison circuit of the arithmetic circuit shown in the seventh figure. Figure 9 is a circuit diagram of a collision prevention circuit according to an embodiment of the present invention. 16 200948648 Component symbol description: 10, 20 - car body 11... driving safety distance monitoring device 12 - lens 13 - 昼 21, 22 - left and right rear lights 30... frame 31... horizontal measuring ❹ 40... arithmetic circuit 41...Signal separation circuit 42 - Comparison circuit 43 - Threshold setting circuit 44 - Interval circuit 45...SISO register 46---Synchronization circuit 47 - OR circuit 0 50 - Collision prevention circuit 51 - Nose circuit 5 2 -- - regulated power supply 53... buzzer 54... 煞 car light 55 - not 17
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97119659A TW200948648A (en) | 2008-05-28 | 2008-05-28 | Vehicle distance measuring safety system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW97119659A TW200948648A (en) | 2008-05-28 | 2008-05-28 | Vehicle distance measuring safety system |
Publications (1)
Publication Number | Publication Date |
---|---|
TW200948648A true TW200948648A (en) | 2009-12-01 |
Family
ID=44870687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW97119659A TW200948648A (en) | 2008-05-28 | 2008-05-28 | Vehicle distance measuring safety system |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW200948648A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI725684B (en) * | 2019-12-26 | 2021-04-21 | 國立臺北科技大學 | Self-propelled vehicle formation control system based on light source detection |
CN113165653A (en) * | 2018-12-17 | 2021-07-23 | 宁波吉利汽车研究开发有限公司 | Following vehicle |
-
2008
- 2008-05-28 TW TW97119659A patent/TW200948648A/en unknown
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113165653A (en) * | 2018-12-17 | 2021-07-23 | 宁波吉利汽车研究开发有限公司 | Following vehicle |
US11473921B2 (en) * | 2018-12-17 | 2022-10-18 | Ningbo Geely Automobile Research & Development Co. | Method of following a vehicle |
CN113165653B (en) * | 2018-12-17 | 2023-10-24 | 宁波吉利汽车研究开发有限公司 | Following vehicle |
TWI725684B (en) * | 2019-12-26 | 2021-04-21 | 國立臺北科技大學 | Self-propelled vehicle formation control system based on light source detection |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107480613B (en) | Face recognition method and device, mobile terminal and computer readable storage medium | |
JP6620881B2 (en) | Apparatus, system, method, and program for measuring the number of passengers, and apparatus, method, and program for calculating travel distance of vehicle | |
TWI570674B (en) | Image detection system of vehicle | |
US6795200B1 (en) | Method and system for dimensioning boxes or other cuboid objects | |
JP6431535B2 (en) | Automatic video-based acquisition for tooth surface imaging device | |
US20150278617A1 (en) | Device, method and program for measuring number of passengers | |
CN108351964B (en) | Pattern recognition device and image-recognizing method | |
US20170344833A1 (en) | Method and system for identifying an individual with increased body temperature | |
US9277206B1 (en) | Dual-view laser-based three-dimensional capture system and method for employing the same | |
CN107960989B (en) | Pulse wave measurement device and pulse wave measurement method | |
JP6607308B2 (en) | Passenger counting device, system, method and program | |
WO2015125298A1 (en) | Local location computation device and local location computation method | |
DE602006006017D1 (en) | Estimate the distance of an object using an image sequence recorded by means of a monocular camera | |
JP2017096777A (en) | Stereo camera system | |
CN107492123B (en) | Road monitoring camera self-calibration method using road surface information | |
KR102019047B1 (en) | Apparatus and method for estimating vehicle speed within moving picture images | |
JP2016529959A5 (en) | ||
JP2015513714A (en) | Method for operating automobile driver assistance device, driver assistance device, and automobile | |
JP2007011815A (en) | Driving recorder | |
CN203489844U (en) | System for measuring size of outer profile of vehicle based on machine vision and laser light screen | |
JP2015068675A (en) | Trolley wire measurement apparatus and trolley wire measurement method | |
JP3747863B2 (en) | In-vehicle distance measuring device | |
JP6089576B2 (en) | Vehicle window detection system, vehicle window detection method and program | |
US20190051005A1 (en) | Image depth sensing method and image depth sensing apparatus | |
TW200948648A (en) | Vehicle distance measuring safety system |