TW200948480A - Fluid jetting device - Google Patents

Fluid jetting device Download PDF

Info

Publication number
TW200948480A
TW200948480A TW97118510A TW97118510A TW200948480A TW 200948480 A TW200948480 A TW 200948480A TW 97118510 A TW97118510 A TW 97118510A TW 97118510 A TW97118510 A TW 97118510A TW 200948480 A TW200948480 A TW 200948480A
Authority
TW
Taiwan
Prior art keywords
fluid
nozzle
acceleration unit
venturi
unit
Prior art date
Application number
TW97118510A
Other languages
Chinese (zh)
Other versions
TWI391185B (en
Inventor
shi-chang Zhang
Original Assignee
United Benefit Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Benefit Inc filed Critical United Benefit Inc
Priority to TW97118510A priority Critical patent/TW200948480A/en
Publication of TW200948480A publication Critical patent/TW200948480A/en
Application granted granted Critical
Publication of TWI391185B publication Critical patent/TWI391185B/zh

Links

Landscapes

  • Nozzles (AREA)

Abstract

This invention discloses a fluid jetting device in which at least one acceleration unit is disposed for accelerating the fluid before it is jetted out, thereby increasing the speed of the jetted fluid.

Description

200948480 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種流體喷出裝置,尤其關於—種二流體 f該裝置内部設置縮小通過截面積的加速單元,以對欲噴出之流體加 迷’該加速單元亦可具有使二流體均勻噴出之功能。 【先前技術】 ❹ 噴嘴裝置乃為雜霧縣狀顧,級據_霧韓理可分為單 ^體和二流體兩種。單流體喷嘴又稱為液體加壓式噴嘴,其乃是利用 幫浦將液體加壓至所需壓力,而後流經噴嘴⑽的特殊機U後再 ^出时散出去,此種_之噴嘴,其平料徑較粗,若欲將 喷霧粒徑變小,則需提高使用壓力或縮小孔徑,因此易有幫浦選擇和 喷嘴堵塞侧題。二紐喷嘴又稱域_助式喷嘴,盆乃使用古壓 氣體(-般為空氣)為動力衝擊液體,破壞液體的表自張力,輔助液=微 霧化’再軸出口分散出去。與科財嘴味,二趙噴嘴可生成 更微小的顆粒,且該喷嘴孔徑較大,可減少異物阻塞,流量調整範圍 也變大》 =流體噴嘴的霧化機構可以分為畴霧化(intemal atQmizing)和外 部霧化(external atomizing)。外部霧化為液體離開系統後,在外部直接 以氣體衝擊液體,使氣體與液體碰揸混合形成霧化, 二 於外部,因此沒有壓力可以再跡内部霧化乃在喷== 氣體,以氣體衝擊液體,經過混合腔混合液體與氣體,再經過各種型 式的出口孔(如圓孔、長條狀開口等)形成所需的分散形式與效果於指定 表面上。外部霧化較常使用於環境增濕、氣體降溫等,而'内部霧^由 於出口孔的設計,較常使用於物件洗淨、液體分布、鋼胚冷卻等。對 於現有設計之二越喷嘴,很_時滿足空氣消耗量少、液滴粒徑小 和衝擊力大的條件,因為上述三項變數乃是互相牵引,當空氣消耗量 越少時,衝擊力越小,則液滴粒徑越大;反之,粒徑越小,所需衝擊 5 200948480 力越大’啦氣雜量越大,然而大的空氣4將帶走紐巾大比例的 液滴,若藉由縮小孔徑以提高液滴速度增加衝擊力,則在氣體速度到 達音速時達雕限’因此,無法藉由孔徑雜小來滿足以上之三條件。 【發明内容】 本發明係提供一種設置加速單元的流體喷出裝置。該流體喷出裝置 可為内部霧化的二流體噴霧裝置,所述設置加速單元的喷嘴乃利用在 嘴嘴本體内,於錢體衝擊液體的混合腔巾設置至少—個加速單元, 該加速單元可為第7®所示之文氏管(文丘里管,Venturitube)或第8圖 所示之孔口(orifice)。該加速單元可以在不提高空氣壓力的情況下增 、,液/商速纟j_可將空氣回收再利用,其可使霧化所需的空氣麼力和 消耗量降低,而達到高效率的壓力應用。 。於是,本發^之-目的為在流體喷出裝置主體中設置—或多段式加 速單7G,以提高频速度,流體喷出裝置可為二流射霧系統由 於在傳統的二流體儒纽巾,加数紐麟_—次,大部分的 加壓空氣在經過-次加速之後即消失於大氣中,而設置一或多段式加 速單元’空氣可以多次地被回收彻,以多次加速液滴,達到所要求 的液滴速度。若液滴速度或純已可滿足需求,則可降低空氣的壓力。 因此’設置加速單觸噴嘴裝置,可以在不增加壓力的航下,增加 液滴速度,達到降低空氣消耗量的需求。 本發明之另—目的乃是設置加速單元可以騎獲得更大的衝擊力 和更小的液滴粒徑’越高速的水滴越會裂開成細微的粒徑,而速度越 :越顿糊’在某缸業上的應料提高4鱗,例如鋼 鐵工業中鋼胚的冷卻、LCD玻璃基板的洗淨、環境增濕與消毒等。 ,設置加速單元流體喷出裝置亦可為助式霧化祕,參第5 圖和第6 ®。在風刀式的結構中’除霧化機構外,另設置至少一個加 速單元,如此二流體的噴流可被加速單元加速並均勻化,進而創造出 與垂直於欲賴表面的霧化效果,以解決於複數_形 雙流體噴嘴分佈不均的困境。 200948480 以藉由以下的發明詳述及所附圖 關於本發明的優點與實施方式可 式得到進一步的了解。 【實施方式】 裝置,做詳細之說明: 為能詳細揭鉢發明之裝置的特徵’ _由下述料關,配合所 附之圖示:對本發明之-種流體噴岭置,尤制於—種二流體喷霧 Ο ❹ 本發明之二流體喷霧裝置係屬於—種内部霧化的裝置,其在氣體衝 擊液體誠合腔上設置至少-侧顿面_加速單元。氣體與液體 進入混合腔,並姐合腔愤均自絲後經舰加料元,該加速單 元可為-具有-端内壁收斂、-翻壁漸擴結構的文氏管(文丘里管, Venturi tube)7〇2、704,參第7 ®。該加速單元之内壁收斂的一端連接 至混合腔的ii} σ ’ f雜或氣體敵概_麟,&amp;域面積變小, 而使二流_流速增加。該域單元料紐有縮錢面積的孔口或 開口 802、804,參第8圖,其亦可使二流體的流速增加。以下實施例 乃是比較未設置加速單元的喷嘴裝置與設置加速單元的喷嘴裝置,於 出口處的液滴速度。由於,該液體觀體衝擊之後形成細微液滴而成 非連續相,因此,當液滴到達出口孔時,無法以動量不滅定律 ,m為液滴質量,v為液滴速度)直接計算液滴的速度,而是 必須同時以動量不滅定律、質量不滅定律和能量不滅定律來計算得 出。以下之實施例為進一步證明此觀念及其效果。 本發明之具體實施例一為設置一文氏管的二流體嘴嘴2〇〇,參第2 圖。 以下係為比較習知技術未設置加速單元的二流體噴嘴和本實施例 設置一加速單元的二流體喷嘴之出口處的液滴速度; 第1圖係為習知技術未設置加速單元的二流體噴嘴100,其構造由 左而右依序為混合腔(mixingchamber)101和出口孔102。 以下為於未設置加速單元二流體喷嘴1〇〇中的各項條件: a、在混合腔(mixing chamber) 101 中 200948480 空氣速度:15 m/s 水滴速度:7.5 m/s 水滴粒徑:30 μιη 溫度:25°C 壓力:3 kg/cm2G 内腔直徑Dll: 6 m/m b、 PT11 至 PT12 的長度 dll: 5 mm c、 於出口孔102處 出 口孔徑 D12: 1.8 m/m [2至PT13的長度dl2:5mm Λ *構造由左而右依 2圖係為設置一加速單元的二流體喷嘴2〇 、 d、PT12 至 ΡΤ13 的長度 dl2:5 第 序為混合腔(mixing chamber)201、文氏管(Venturi tllbe)202 、回收部) (recovery portion)203 和出 口孔! 204。 以下為於二流體喷嘴200中的各項條件: a、在混合腔(mixingchamber)201 中 空氣速度:15 m/s 水滴速度:7.5 m/s 水滴粒徑:30 μιη 溫度:25°C 壓力:3 kg/cm2G 内腔直徑D21: 6 m/m b、 PT21 至 PT22 的長度 d21: 5mm c、 文氏管(Venturi tube)202 最小直徑D22: 1.8 m/m d、 PT22 至 PT23 的長度 d22: 5mm e、回收部份(recovery p〇rtion)203 内腔直徑D23:6m/m f、 PT23 至 PT24 的長度 d23: 5mm g、 出口孔204處 200948480 出 口孔徑 D24: 1.8m/m h、PT24 至 PT25 的長度 d24: 5mm 上述兩例除了加速單元以外,其他條件皆相同,並假設上述兩例中 粒徑大小為30μπι的水滴在加速過程中不會發生粒徑的改變,同時以— 維為a·}·算的基礎,利用數值分析(numericai⑽以^也)法計算所得結果如 附表1-1〜1-2和附表2-1〜2-4所示。附表2_4中最後一行的數據為二流 體喷嘴200中PT25處的資料,其數據如下: 空氣速度:51.8123 m/s 空氣溫度:297.89 K 0 壓力:0.2684* 106Pa 水滴速度:68.8067 m/s 附表1-2中最後一行的數據為二流體噴嘴1〇〇中PT13處(距出口孔5mm 處)的資料,其數據如下: 空氣速度:43.6308 m/s 空氣溫度:297.81 K 壓力:0.3186*106Pa 水滴速度:50.2845 m/s 從以上數據可得知,設置一文氏管的二流體喷嘴2〇〇,其在距離出 口 5mni處的水滴速度為68.8067m/s ’而未設置加速單元的二流體喷嘴 ® 100 ’其在距離出口孔5mm處的水滴速度為5〇.2845m/s,兩者速度相 差I8.5222m/s,也就是該加速單元對水滴的加速效果達到36.8%。然 而,在該二流體喷嘴200中,經過該加速單元到達ρτ23的壓損為 1〇.8°/0 ’因此,代表還有壓力可以再利用,也就是設置複數個加速單元 的噴嘴裝置是可以被期待而設計的。因此,以下之實施例二乃是在二 流體噴嘴300中設置兩個文氏管(Venturi tube)302、304作為加速單元。 本發明之具體實施例二為設置兩個文氏管的二流體喷嘴300,參第 3圖。 以下係為比較習知技術未設置加速單元的二流體喷嘴1〇〇和本實 200948480 施例設置兩個加速單元的二流體噴嘴300之出口處的液滴速度。 第3圖係為在二流體喷嘴300中設置兩個文氏管(Venturi tube)302、3〇4作為加速單元,其結構構造由左而右依序為混合腔(mixing chamber)301、文氏管(Venturi tube)302、回收部分(recovery portion)303、 文氏管(Venturi tube)304、回收部份(recovery p〇rti〇n)305、出口孔 306。 以下為在二流體喷嘴300中的各項條件: a、在混合腔(mixingchamber)301 中 空氣速度:15 m/s 水滴速度:7.5 m/s 水滴粒徑:30 μιη 溫度:25°C 壓力:3 kg/cm2G 内腔直徑D31: 6 m/m b、 PT31 至 PT32 的長度 d31: 5mm c、 文氏管(Venturi tube)302: 直徑 D32: 1.8m/m d、 PT32 至 PT33 的長度 d32: 5mm e、 回收部份(recovery p〇rtion)303: 直徑 D3: 6 m/m f、 PT33 至 PT34 的長度 d33: 5mm g、 文氏管(Vemturitube)304: 直徑 D34: 1.8m/m h、 PT34 至 PT35 的長度 d34: 5mm i、 回收部份(recovery p〇rtion)305: 直徑 D35: 6 m/m j、 PT35 至 PT36 的長度 d35: 5mm k、 出口孔 306: 出 口孔徑 D36: 2.0 m/m l、 PT36 至 PT37 的長度 d36: 5mm 200948480 假設上例中’粒徑大小為3〇μπι的水滴在加速過程中不會發生粒徑 的改變’同時以一維為計算的基礎’利用數值分析(numericai anaiysis) 法s十算所付結果如附表3-1、3-2、3-3、3-4、3-5、3-6。附表3-6中最 後一行數據為二流體噴嘴300中ΡΤ37(距離出口 5mm)處的資料,其數 據如下: 空氣速度:46.8082 m/s 空氣溫度:298.41 K 壓力:0.2829E+6Pa 水滴速度:72.6306 m/s ❹ 由以上結果可得知,設置兩個加速單元的二流體喷嘴300,其距離 出口 5m/m處的水滴速度為72.6306m/s,與未設置加速單元的二流體喷 嘴100中距離出口 5m/m處的水滴速度50.2845m/s相差22.3461m/s, 因此’設置兩個加速單元對水滴的加速效果達到提高444〇/〇。 由以上兩實施例可得知’在未增加空氣壓力,且設置加速單元的 二流體噴嘴200、300的出口孔徑(2m/m)不小於未設置加速單元的二流 體噴嘴100的出口孔徑的情形下,經過加速單元的水滴確實被 加速。 第4a圖係為本發明另一實施例設置一個孔口作為加速單元的二流 體噴嘴裝置簡單示意圖。 第4b圖係為本發明另一實施例設置兩個孔口作為加速單元的二流 體噴嘴裝置簡單示意圖。 第5圖係為將以上所述之文氏管應用於風刀式霧化系統的簡單示 意圖。所述文氏管502應用於風刀式霧化系統400亦可使藉由文氏管 502所噴出之二流體均勻且提高液滴速度的情況下,喷灑於所欲喷灑之 物體的表面。 第6圖係為本發明另一實施例將孔口應用於風刀式霧化系統的簡 單示意圖。 如以上實施例所述,本發明之一種設置加速單元的流體喷出裝 置’確實有其加速流體之功效,惟以上所述者,為本發明之較佳具體 11 200948480 實施例,當不能限定本發明實施之範圍。凡依據本發明申請範圍所作 之均等變化與修飾等,皆應仍屬本發明之專利涵蓋範圍内。200948480 IX. Description of the Invention: [Technical Field] The present invention relates to a fluid ejection device, and more particularly to a two-fluid f. The device is internally provided with an acceleration unit that reduces the cross-sectional area to add fluid to be ejected. The acceleration unit can also have the function of uniformly discharging the two fluids. [Prior Art] 喷嘴 The nozzle device is a miscellaneous county. The grade _ fog can be divided into single body and two fluid. The single-fluid nozzle is also referred to as a liquid-pressurized nozzle, which is used to pressurize the liquid to a desired pressure, and then flows through the special machine U of the nozzle (10) and then disperses when it is discharged. The flat material diameter is relatively thick. If the particle size of the spray is to be small, the pressure of use or the diameter of the hole needs to be increased, so that it is easy to have a pump selection and a nozzle blockage problem. The two-nozzle nozzle is also called the domain-assisted nozzle. The basin uses the ancient gas (-like air) as the power to impact the liquid, destroying the self-tension of the liquid, and the auxiliary liquid = micro-atomization and then the shaft outlet is dispersed. With the scent of the mouth, the two Zhao nozzles can generate more tiny particles, and the nozzle has a larger aperture, which can reduce the blockage of foreign matter, and the flow adjustment range becomes larger. <<The atomization mechanism of the fluid nozzle can be divided into domain atomization (intemal) atQmizing) and external atomizing. External atomization is the liquid immediately after leaving the system, the liquid directly impacts the liquid with the gas, and the gas and the liquid are mixed and formed into atomization, and the second is external. Therefore, there is no pressure to trace the internal atomization, and the gas is sprayed. The liquid is impacted, and the liquid and gas are mixed through the mixing chamber, and then through various types of outlet holes (such as round holes, elongated openings, etc.) to form the desired dispersion form and effect on the designated surface. External atomization is more commonly used for environmental humidification, gas cooling, etc., and 'internal fog ^ is used in the design of the outlet hole, which is often used for object cleaning, liquid distribution, and steel embryo cooling. For the two-nozzle nozzle of the prior design, the condition of less air consumption, small droplet size and large impact force is satisfied, because the above three variables are mutually traction, and the less the air consumption, the more the impact force is. Small, the larger the droplet size; on the contrary, the smaller the particle size, the greater the impact 5200948480. The greater the force, the larger the air 4 will take away the larger proportion of the droplets. By reducing the aperture to increase the velocity of the droplet and increasing the impact force, the gas limit is reached when the gas velocity reaches the speed of sound. Therefore, the above three conditions cannot be satisfied by the pore size. SUMMARY OF THE INVENTION The present invention provides a fluid ejection device in which an acceleration unit is provided. The fluid ejecting device may be an internally atomized two-fluid spraying device, and the nozzle for setting the accelerating unit is configured by using at least one accelerating unit in the mixing chamber of the body impacting liquid in the mouth body, the accelerating unit It can be a venturi (Venturitube) as shown in the 7th® or an orifice shown in Figure 8. The accelerating unit can be increased without increasing the air pressure, and the liquid/commercial speed _j_ can be used for recycling and recycling, which can reduce the air force and consumption required for atomization, and achieve high efficiency. Pressure application. . Therefore, the purpose of the present invention is to provide a multi-stage acceleration single 7G in the main body of the fluid ejection device to increase the frequency velocity, and the fluid ejection device can be a two-flow fog system due to the conventional two-fluid Confucius towel. Adding a number of New Zealand _- times, most of the pressurized air disappears into the atmosphere after the acceleration - and one or more stages of acceleration unit 'air can be recovered multiple times to accelerate the droplets multiple times , to achieve the required droplet velocity. If the droplet velocity or purity is sufficient to meet the demand, the pressure of the air can be reduced. Therefore, the installation of the accelerating one-touch nozzle device can increase the droplet velocity without increasing the pressure, thereby reducing the need for air consumption. Another object of the present invention is to provide an accelerating unit that can ride a larger impact force and a smaller droplet size. The higher the speed, the more the water droplets will split into finer particle sizes, and the faster the speed: the more the paste In the cylinder industry, it is expected to increase 4 scales, such as cooling of steel embryos in the steel industry, washing of LCD glass substrates, environmental humidification and disinfection. The acceleration unit fluid ejection device can also be used as a helper atomization secret, see Figure 5 and Section 6®. In the air knife type structure, in addition to the atomization mechanism, at least one acceleration unit is disposed, so that the two fluid jets can be accelerated and homogenized by the acceleration unit, thereby creating an atomization effect perpendicular to the surface to be applied. Solve the dilemma of uneven distribution of complex _-shaped two-fluid nozzles. Further details of the advantages and embodiments of the present invention will become apparent from the following detailed description of the invention. [Embodiment] The device is described in detail: In order to be able to disclose the features of the device of the invention in detail, the following materials are used, together with the accompanying drawings: the fluid jetting of the present invention is made in particular - The two-fluid spray ❹ ❹ The two-fluid spray device of the present invention belongs to an internal atomization device, which is provided with at least a side surface _ accelerating unit on the gas impact liquid convection chamber. The gas and the liquid enter the mixing chamber, and the anger is fed from the wire to the ship feeding element. The acceleration unit can be a venturi with a - end wall converging, a wall-expanding structure (Venturi tube, Venturi tube) ) 7〇2, 704, see 7®. The convergent end of the inner wall of the accelerating unit is connected to the ii} σ 'f or the gas enemies of the mixing chamber, and the area of the domain becomes smaller, and the flow rate of the second stream is increased. The domain unit has apertures or openings 802, 804 of reduced area, as shown in Figure 8, which also increases the flow rate of the two fluids. The following embodiment compares the droplet velocity at the exit of the nozzle device in which the acceleration unit is not provided and the nozzle device in which the acceleration unit is disposed. Because the liquid is formed into a discontinuous phase after the liquid body impact, so when the droplet reaches the exit hole, the law of momentum is not extinguished, m is the mass of the droplet, and v is the velocity of the droplet. The speed must be calculated simultaneously by the law of momentum immortality, the law of mass incompetence, and the law of energy incompetence. The following examples are intended to further demonstrate this concept and its effects. A specific embodiment of the present invention is a two-fluid nozzle 2〇〇 provided with a venturi, as shown in FIG. The following is a comparison of the droplet velocity at the outlet of the two-fluid nozzle in which the acceleration unit is not provided in the prior art and the two-fluid nozzle in which the acceleration unit is provided in the embodiment; FIG. 1 is a two-fluid in which the acceleration unit is not provided in the prior art. The nozzle 100 is constructed from left to right in the order of a mixing chamber 101 and an outlet port 102. The following are the conditions in the acceleration unit two-fluid nozzle 1〇〇: a, in the mixing chamber 101 200948480 air velocity: 15 m / s water droplet velocity: 7.5 m / s water droplet diameter: 30 Μιη Temperature: 25°C Pressure: 3 kg/cm2G Inner cavity diameter Dll: 6 m/mb, length of PT11 to PT12 dll: 5 mm c, outlet aperture D12 at outlet hole 102: 1.8 m/m [2 to PT13 Length dl2: 5mm Λ *Structure consists of two-fluid nozzles 2〇, d, PT12 to ΡΤ13 lengths dl2:5 set by an acceleration unit from left to right. The first sequence is mixing chamber 201, text Venturi tllbe 202, recovery section 203 and exit hole! 204. The following are the conditions in the two-fluid nozzle 200: a. Air velocity in the mixing chamber 201: 15 m/s Water droplet velocity: 7.5 m/s Water droplet diameter: 30 μιη Temperature: 25 ° C Pressure: 3 kg/cm2G lumen diameter D21: 6 m/mb, length of PT21 to PT22 d21: 5 mm c, Venturi tube 202 minimum diameter D22: 1.8 m/md, length of PT22 to PT23 d22: 5 mm e , recovery part (recovery p〇rtion) 203 lumen diameter D23: 6m / mf, PT23 to PT24 length d23: 5mm g, exit hole 204 at 200948480 outlet aperture D24: 1.8m / mh, PT24 to PT25 length d24 : 5mm The above two conditions except the accelerating unit are the same, and it is assumed that the water droplets with a particle size of 30 μm in the above two cases will not change in particle size during the acceleration process, and the calculation is - a. The basis is calculated by numerical analysis (numericai (10) by ^ also) method as shown in the attached table 1-1 to 1-2 and the attached table 2-1 to 2-4. The data in the last row of Schedule 2_4 is the data at PT25 in the two-fluid nozzle 200. The data is as follows: Air velocity: 51.8123 m/s Air temperature: 297.89 K 0 Pressure: 0.2684* 106Pa Water droplet velocity: 68.8067 m/s Schedule The data in the last row of 1-2 is the data of PT13 (5mm from the exit hole) in the two-fluid nozzle 1〇〇. The data is as follows: Air velocity: 43.6308 m/s Air temperature: 297.81 K Pressure: 0.3186*106Pa Speed: 50.2845 m/s From the above data, it is known that a two-fluid nozzle 2 一 with a venturi is set at a velocity of 68.8067 m/s at a distance of 5 mni from the outlet and a two-fluid nozzle without an acceleration unit is provided. 100' its water droplet velocity at 5mm from the exit hole is 5〇.2845m/s, and the speed difference between the two is I8.5222m/s, which means that the accelerating unit accelerates the water droplet by 36.8%. However, in the two-fluid nozzle 200, the pressure loss reaching ρτ23 through the accelerating unit is 1 〇.8°/0 '. Therefore, it is represented that there is pressure that can be reused, that is, a nozzle device in which a plurality of accelerating units are provided is Designed to be expected. Therefore, the second embodiment below is to provide two Venturi tubes 302 and 304 as the accelerating unit in the two-fluid nozzle 300. A second embodiment of the present invention is a two-fluid nozzle 300 in which two venturi tubes are provided, as shown in Fig. 3. The following is a comparison of the droplet velocity at the outlet of the two-fluid nozzles 1 of the two-fluid nozzles in which the two-acceleration unit is provided with the two-fluid nozzles 1 未 and the actual embodiment of the present invention. Fig. 3 is a diagram showing two Venturi tubes 302 and 3〇4 as two accelerating units in the two-fluid nozzle 300, the structure of which is left and right in the order of mixing chamber 301, Wen. A Venturi tube 302, a recovery portion 303, a Venturi tube 304, a recovery portion 305, and an exit hole 306. The following are the conditions in the two-fluid nozzle 300: a. Air velocity in the mixing chamber 301: 15 m/s Water droplet velocity: 7.5 m/s Water droplet diameter: 30 μιη Temperature: 25 ° C Pressure: 3 kg/cm2G lumen diameter D31: 6 m/mb, length of PT31 to PT32 d31: 5 mm c, Venturi tube 302: diameter D32: 1.8 m/md, length of PT32 to PT33 d32: 5 mm e Recovery part (recovery p〇rtion) 303: diameter D3: 6 m/mf, length of PT33 to PT34 d33: 5 mm g, venturi (Vemturitube) 304: diameter D34: 1.8 m/mh, PT34 to PT35 Length d34: 5mm i, recovery part (recovery p〇rtion) 305: diameter D35: 6 m/mj, length of PT35 to PT36 d35: 5mm k, outlet hole 306: outlet aperture D36: 2.0 m/ml, PT36 to Length of PT37 d36: 5mm 200948480 Assume that the water droplets with a particle size of 3〇μπι in the above example do not change in particle size during acceleration. At the same time, the one-dimensional calculation is based on the numerical analysis (numericai anaiysis) method. The results of the ten calculations are shown in Schedules 3-1, 3-2, 3-3, 3-4, 3-5, 3-6. The last row of data in Schedules 3-6 is the data at ΡΤ37 (5mm from the outlet) in the two-fluid nozzle 300. The data is as follows: Air velocity: 46.8082 m/s Air temperature: 298.41 K Pressure: 0.2829E+6Pa Water droplet velocity: 72.6306 m/s ❹ From the above results, it can be known that the two-fluid nozzle 300 of two acceleration units has a water droplet velocity of 72.6306 m/s from the outlet at 5 m/m, and the two-fluid nozzle 100 in which the acceleration unit is not provided. The distance between the water droplets at the exit 5m/m is 50.2845m/s, which is 22.3461m/s, so the acceleration effect of the two acceleration units on the water droplets is increased by 444〇/〇. It can be known from the above two embodiments that the outlet aperture (2 m/m) of the two-fluid nozzles 200, 300 in which the acceleration unit is provided is not smaller than the outlet aperture of the two-fluid nozzle 100 in which the acceleration unit is not provided, without increasing the air pressure. Underneath, the water droplets passing through the acceleration unit are indeed accelerated. Fig. 4a is a simplified schematic view of a two-fluid nozzle device in which an orifice is provided as an accelerating unit in accordance with another embodiment of the present invention. Fig. 4b is a simplified schematic view of a two-fluid nozzle device in which two orifices are provided as an accelerating unit according to another embodiment of the present invention. Figure 5 is a simplified schematic representation of the application of the venturi described above to a wind knife atomizing system. The application of the venturi 502 to the air knife atomization system 400 can also be applied to the surface of the object to be sprayed by the uniformity of the two fluids sprayed by the venturi 502 and the increase of the droplet velocity. . Figure 6 is a simplified schematic view of another embodiment of the invention for applying an orifice to a wind knife atomizing system. As described in the above embodiments, the fluid ejection device of the present invention, which is provided with the acceleration unit, does have the effect of accelerating the fluid, but the above is a preferred embodiment of the present invention. The scope of the invention. Equivalent variations and modifications in accordance with the scope of the present invention should still be within the scope of the invention.

〇 12 200948480 【圖式簡單說明】 第1圖係為未設置加速單元的二流體噴嘴結構之簡單示意圖。 第2圖係為設置一個文氏管作為加速單元的二流體噴嘴結構之簡單示 意圖。 第3圖係為設置兩個文氏管作為加速單元的二流體喷嘴結構之簡單示 意圖。 第4a圖係為本發明另一實施例設置一個孔口作為加速單元的二流體 噴嘴裝置簡單示意圖。 ” 第4b圖係為本發明另一實施例設置兩個孔口作為加速單元的二流體 喷嘴裝置簡單示意圖。 第5圖係為設置文氏管作為加速單元的風刀裝置之簡單示意圖。 第6圖係為設置孔口作為加速單元的風刀裝置之簡單示意圖。 第7圖係為文氏管結構之簡單示意圖。 u 第8圖係為孔口結構之簡單示意圖。 附表1-1〜1-2、附表2-1〜2-4、附表3-1〜3-6為以一維為計算基礎並利 用數值分析(numerical analysis)法計算所得結果的數值表列。 【主要元件符號說明】 100未設置任何加速單元的二流體噴嘴 101混合腔 102出口孔 200設置一加速單元的二流體喷嘴 201混合腔 202文氏管 203回收部份 204出口孔 300 s史置兩個加速單元的二流體噴嘴 13 200948480 301混合腔 302、 304文氏管 303、 304、305回收部份 306出口孔 402、404、406 孔口 500風刀式霧化系統 502文氏管 600風刀式霧化系統 602 孔口 702、704文氏管 802、804 孔口〇 12 200948480 [Simple description of the diagram] Figure 1 is a simplified diagram of the structure of a two-fluid nozzle without an acceleration unit. Figure 2 is a simplified schematic representation of a two-fluid nozzle configuration with a venturi as an accelerating unit. Figure 3 is a simplified schematic representation of a two-fluid nozzle configuration with two venturis as the accelerating unit. Fig. 4a is a simplified schematic view of a two-fluid nozzle device in which an orifice is provided as an acceleration unit in accordance with another embodiment of the present invention. Figure 4b is a simplified schematic diagram of a two-fluid nozzle device with two orifices as an acceleration unit according to another embodiment of the present invention. Figure 5 is a simplified schematic diagram of a wind knife device with a venturi as an acceleration unit. The figure is a simple schematic diagram of the air knife device with the orifice as the acceleration unit. Figure 7 is a simple schematic diagram of the venturi structure. u Figure 8 is a simple schematic diagram of the orifice structure. -2, Schedules 2-1 to 2-4, and Tables 3-1 to 3-6 are numerical tables which are calculated on the basis of one dimension and calculated by numerical analysis. [Main component symbols Description: 100 two-fluid nozzle 101 without any accelerating unit, mixing chamber 102, outlet hole 200, two-fluid nozzle 201 with an accelerating unit, mixing chamber 202, venturi tube 203, recovery portion 204, outlet hole 300, and two accelerating units. Two-fluid nozzle 13 200948480 301 mixing chamber 302, 304 venturi 303, 304, 305 recovery portion 306 outlet hole 402, 404, 406 orifice 500 air knife atomization system 502 venturi 600 air knife atomization system 602 orifice 702, 704 venturi 802, 804 aperture

Claims (1)

200948480 十、申請專利範®: 1. 一種流體噴出裝置,包含.. 腔體,流體進入其中滿含’ 至少一個加速單元,所述加速單元設置於腔體内或與腔體連接,用以 加速腔體内之流體; 流體出口處,所述流體出口處連接至所述加速單元之一端。 2. 如申請專利範園第1項所述之流體喷出裝置,其為一種二流體喷霧系 統。 3. 如申請專利範圍第2項所述之流體喷出裝置,其為一喷嘴。 〇 4.如申請專利範圍第2項所述之流體喷出裝置,其為一風刀式霧化系統。 5. 如申請專利範圍第1項所述之流體喷出裝置,其中,所述加速單元為 至少一個文氏管(Venturi tube)。 6. 如申請專利範圍第1項所述之流體喷出裝置,其中,所述加 至少一個孔口 (orifice)。 、 … ❹ 15200948480 X. Patent Application: 1. A fluid ejection device comprising: a cavity into which a fluid is filled with 'at least one acceleration unit, the acceleration unit being disposed in or connected to the cavity for accelerating a fluid in the chamber; at the fluid outlet, the fluid outlet is connected to one end of the acceleration unit. 2. The fluid ejection device of claim 1, wherein the fluid ejection device is a two-fluid spray system. 3. The fluid ejection device of claim 2, which is a nozzle. 4. The fluid ejection device of claim 2, which is a air knife type atomization system. 5. The fluid ejection device of claim 1, wherein the acceleration unit is at least one Venturi tube. 6. The fluid ejection device of claim 1, wherein the at least one orifice is added. , ... ❹ 15
TW97118510A 2008-05-20 2008-05-20 Fluid jetting device TW200948480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97118510A TW200948480A (en) 2008-05-20 2008-05-20 Fluid jetting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97118510A TW200948480A (en) 2008-05-20 2008-05-20 Fluid jetting device

Publications (2)

Publication Number Publication Date
TW200948480A true TW200948480A (en) 2009-12-01
TWI391185B TWI391185B (en) 2013-04-01

Family

ID=44870606

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97118510A TW200948480A (en) 2008-05-20 2008-05-20 Fluid jetting device

Country Status (1)

Country Link
TW (1) TW200948480A (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322003B1 (en) * 1999-06-11 2001-11-27 Spraying Systems Co. Air assisted spray nozzle
JP3544650B2 (en) * 2001-06-19 2004-07-21 東海合金工業株式会社 Gas-liquid blowing slit nozzle
JP2004237282A (en) * 2003-01-16 2004-08-26 Kyoritsu Gokin Co Ltd Double fluid nozzle
JP5022074B2 (en) * 2006-05-02 2012-09-12 株式会社共立合金製作所 Two-fluid nozzle and spraying method using the same

Also Published As

Publication number Publication date
TWI391185B (en) 2013-04-01

Similar Documents

Publication Publication Date Title
CN102803520B (en) Method and apparatus for cooling material by atomised spray
JP2012515071A (en) Spray generator
US20110095105A1 (en) Nozzle arrangement
JP2010274249A (en) Nozzle
Qin et al. Controlling droplet-size distribution using oil emulsions in agricultural sprays
JP6159711B2 (en) Liquid ejecting apparatus and liquid ejecting method
JP2004351267A (en) Method and apparatus for producing micro mist
DE102014207657B3 (en) Method and device for selectively generating a liquid spray
TW200948480A (en) Fluid jetting device
JP2006167599A (en) Two-fluid nozzle
JP2011098284A (en) Nozzle for mixing gas and liquid
JP4239879B2 (en) Micro-mist generation method and apparatus
JP2012035166A (en) Fluid ejecting nozzle and washing device using the same
JP2019018183A (en) Two-fluid nozzle
CN107838819A (en) nozzle structure
JP5140712B2 (en) Liquid atomization apparatus and liquid atomization method
CN104254622A (en) Method, apparatus and use for tempering material
JP2018089597A (en) One fluid nozzle
JP5773808B2 (en) Spray gun for paint
JP6404204B2 (en) Nebulizer
JP2012111993A (en) Atomization device
JP2019084523A (en) Jet nozzle and jet method
JP3155334U (en) Two-fluid nozzle
KR20100027327A (en) Fluid ejection device
JP2010064029A (en) Fluid delivery device