TW200948190A - Process for producing organic el element - Google Patents

Process for producing organic el element Download PDF

Info

Publication number
TW200948190A
TW200948190A TW098104842A TW98104842A TW200948190A TW 200948190 A TW200948190 A TW 200948190A TW 098104842 A TW098104842 A TW 098104842A TW 98104842 A TW98104842 A TW 98104842A TW 200948190 A TW200948190 A TW 200948190A
Authority
TW
Taiwan
Prior art keywords
layer
organic
electrode
metal
half mirror
Prior art date
Application number
TW098104842A
Other languages
Chinese (zh)
Inventor
Ryohei Makino
Original Assignee
Fuji Electric Holdings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings filed Critical Fuji Electric Holdings
Publication of TW200948190A publication Critical patent/TW200948190A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • H05B33/24Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers of metallic reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Disclosed is a process for producing an organic EL element, comprising a first step of forming an organic EL luminescent part comprising a first electrode, an organic EL layer, and a second electrode in this order on a substrate and a second step of forming a semitransparent laminate formed of a half mirror and a transparent layer. The second step comprises (i) a stage of depositing a metal material to form a metal layer, and (ii) a stage of oxidizing the metal layer by a dry process to form a transparent layer formed of a metal oxide and a half mirror formed of a metal. According to the above constitution, the oxidation of the metal layer by a dry process can realize the formation of a good half mirror as a very thin and continuous film. This leads to the development of a high level of a microcavity resonance effect between the half mirror and a reflection electrode formed on the surface of an organic EL luminescent layer on the side opposed to half mirror, whereby, for example, a desired light enhancing effect can be attained and an organic EL element, which can realize high definition and excellent visibility, can be provided.

Description

.200948190 六、發明說明: 【發明所屬之技術領域】 本發明係關於有機電激發光元 而言,本發明之有機電激發光元件 細且辨視性優異,可多色顯示之有 機EL )顯示器,及可使用於照明 件之製造方法者。 ❹ 【先前技術】 有機EL元件乃可利用於個人 視機、傳真機、音響、錄影機、汽 算機、電話機、攜帶終端機、及產 用裝置。又,有機EL元件乃可利 背光之其他之照明機器。 如此,有機EL元件乃做爲適 © 機器之發光元件而被使用,就該構 機化合物之薄膜層積構造者。有機 發光型元件,具有低驅動電壓、高 優異之特性。爲此,對於有機EL 置等之實用化做爲種種的檢討。 近年以來,有許多尤其關於有 之提升的硏究。於使用有機EL元 發光效率的原因之一 ’推論發光層 封閉在該元件內或透明基板內。(: 件之製造方法。更詳細 之製造方法乃有關高精 機電激發光(以下稱有 機器之有機電激發光元 電腦、文字處理機、電 車導航器、電式桌上計 業用之計測類等之顯示 用於彩色液晶顯示器之 用於顯示用裝置及照明 造而言,眾所周知爲有 EL元件乃薄膜狀之自 解析度及高視角之種種 元件而言,就顯示用裝 機EL元件之發光效率 件之時,無法得優異之 所產生之光之一大半被 非專利文獻1 ) -5- 200948190 做爲藉由高效率取出封閉於有機EL元件或透明基板 內之光線,提升發光效率之方法,使用微小共振器構造之 手法爲眾所周知者(非專利文獻2 ),也有提案利用此手 法之有機EL元件(專利文獻1 )。. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . And can be used in the manufacturing method of the lighting member. ❹ [Prior Art] Organic EL elements can be used in personal video cameras, fax machines, audio, video recorders, computers, telephones, mobile terminals, and production devices. Further, the organic EL element is another illumination device that can be used for backlighting. As described above, the organic EL element is used as a light-emitting element of a device, and is a thin film laminate structure of the compound. The organic light-emitting element has a low driving voltage and excellent characteristics. For this reason, we have made various reviews on the practical use of organic EL. In recent years, there have been many studies on the promotion. One of the reasons for the use of organic EL elements in luminous efficiency is to infer that the light-emitting layer is enclosed in the element or in the transparent substrate. (The manufacturing method of the parts. The more detailed manufacturing method is related to the high-precision electro-mechanical excitation light (hereinafter referred to as the organic electro-excitation optical element computer of the machine, word processor, tram navigator, electric table meter measurement class) For the display device and illumination for color liquid crystal display, it is known that the EL element has a luminous efficiency of the mounted EL element in terms of a film-like self-resolution and a high viewing angle. In the case of a piece of light, one of the light that cannot be obtained is excellent, and the method of improving the luminous efficiency by taking out the light enclosed in the organic EL element or the transparent substrate by high efficiency is widely used in the non-patent document 1) -5-200948190. A technique of using a microresonator structure is known (Non-Patent Document 2), and an organic EL element using this method is also proposed (Patent Document 1).

適用微小共振器構造之時,發光層所產生之光子,則 具指向性而射出,而且光子之能量分布成爲銳利,即發光 光譜變得銳利,可得尖峰強度成爲數倍乃至數十倍之效果 。爲此,根據微小共振器構造,可獲得由發光層所得之光 Q 增強效果,單色化之效果。然而,此效果乃稱微腔共振效 果,或微小空洞共振效果等。 做爲利用上述效果之有機EL元件最基本之構成之一 ,可列舉將透明基板、和半透明反射層、和透明電極、至 少含發光層之複數之有機層、和反射電極,依此順序層積 ,挾著上述發光層之上述半透明反射層與上述反射電極,When the structure of the micro resonator is applied, the photons generated by the luminescent layer are directed and emitted, and the energy distribution of the photons becomes sharp, that is, the luminescence spectrum becomes sharp, and the peak intensity can be several times or even several tens of times. . For this reason, according to the structure of the minute resonator, the effect of enhancing the light Q obtained by the light-emitting layer and monochromating can be obtained. However, this effect is called a microcavity resonance effect, or a small cavity resonance effect. One of the most basic constitutions of the organic EL element using the above effects is a transparent substrate, a semitransparent reflective layer, a transparent electrode, a plurality of organic layers including at least a light-emitting layer, and a reflective electrode. And the semi-transparent reflective layer of the light-emitting layer and the reflective electrode are

配置於構成增強從上述發光層放射之光線中之特定波長之 光強度的微小共振器的光學距離爲特徵之構成。 G 在此,半透明反射層乃亦稱半反射鏡,將Ag或A1爲 主成分之金屬單體,或此等合金,經由濺鏟法或蒸鍍法, 形成呈數nm程度之膜厚爲一般者。 又,鄰接於半反射鏡之透明電極乃將ITO( In-Sn氧 化物)、IZO ( In-Zn氧化物)等之銦系之導電性透明金屬 氧化物,經由濺鍍法,形成呈數十至數百nm程度之膜厚 爲一般的。 使用於半反射鏡之金屬一般而言耐藥品性爲低。尤其 -6 - 200948190 ,將透明電極之膜厚按每畫素改變之構造中,透明電極之 蝕刻在半透明反射層上多次加以進行之故,會有經由蝕刻 之藥液,易於劣化半反射鏡之表面的問題。 爲解決如此問題,提案在於基板側之電極(相當於上 述透明電極)與光反射膜(相當於上述半透明反射層)之 間,經由陽極氧化該光反射膜之表面,形成保護膜之技術 〇 〇 [專利文獻1]日本特開平6-283271號公報 [專利文獻2]日本特開2006-302748號公報 [非專利文獻 l]Advanced Materials,νο1·6,p.491, 1 994 年 [非專利文獻 2]Applied Physics Letters, vol. 64, P.2486, 1994 年 【發明內容】 ® [發明欲解決之課題] 但是,於上述專利文獻2中,會有包含以下不期望之 事項之疑慮。 首先,進行記載於專利文獻2之陽極氧化之時,由於 使用溶液製程,會有對於進行氧化之具體手段之適用範圍 產生限制的疑慮。即’於揭示在專利文獻2之技術中,可 適用弱酸性之電解液’具備而言將硫酸水溶液做爲電解液 加以使用。於該溶液製程中,在該之前之工程,將形成於 基板上之要素所成之層積體,浸漬於液體。因此,底發射 -7- 200948190 型元件之陽極氧化乃將在於基板僅形成氧化對象之金屬層 之光反射膜的層積體,浸漬於電解液之故,因而可被適用 ,但頂發射型元件之陽極氧化乃將已形成有機EL之層積 體,浸漬於電解液之故,因而不適用。 又,進行記載於專利文獻2之陽極氧化處理之時,需 令氧化對象之光反射膜峙爲陽極之故,該光反射膜需兼做 爲陽極氧化處理之工程的配線及電極。但是,光反射膜爲 數nm〜數十nm之薄膜時,會有無法充分達到做爲需要電 0 性傳導度之配線之機能及做爲電極之機能之疑慮。如此, 需充分電性傳導度之必要性之故,對於光反射膜之材料本 身就會有產生限制之疑慮。 首先,將記載於專利文獻2之光反射膜成爲陽極之時 ,於膜之面內方向,產生電壓下降,在於電位分布會有產 生不均的疑慮。尤其,由於陽極氧化處理之強度之大小, 會有在於膜之面內方向明顯產生關於電位分布之不均的疑 慮。 Ο 更且,於記載於專利文獻2之陽極氧化處理對象之光 反射膜,如前所述,需陽極氧化處理之工程之配線及電極 之機能之故,該光反射膜需形成呈可通電之圖案。又,爲 確保自陽極氧化處理用之外部電源至基板上之光反射膜之 導通而進行通電,可需求通電用之連接電極等之構件。因 此,揭示於專利文獻2之技術中,光反射膜必需是可通電 之圖案,且視情形,有還需要其他之構成要件之疑慮。 由於以上種種理由,於記載在專利文獻2之電激發光 -8- 200948190 裝置之製造過程中,尤其,於基板側之電極與光反射膜間 形成保護膜之時,有難以將保護膜及未氧化呈一定之膜厚 保持金屬膜下做爲半反射鏡工作之光反射膜之膜厚控制在 極薄之狀況。又,有著未氧化呈一定之膜厚殘留呈金屬膜 下做爲半反射鏡工作之光反射膜被完全氧化,或未氧化殘 留呈金屬膜之膜厚過薄,無法將半反射鏡做爲連續膜加以 形成的情形。就結果而言,會有做爲具有極薄膜厚之金屬 ® 膜形成之半反射鏡之反射率無法達成在高水準,欲達成原 來之微腔共振效果之顯現爲不充分,而無法得期望之光增 強效果等之疑慮。 因此,本發明之目的乃提供藉由均勻形成具有極薄之 膜厚之金屬膜所成半反射鏡,得優異之反射特性、透.過特 性,顯現高度之微腔共振效果下,可得期望之光增強效果 ,進而提供高精細且辨視性優異之有機EL元件之製造方 法。 ❿ [爲解決課題之手段] 本發明乃關於在基板上包含:(1)形成令第1電極 、有機電激發光層及第2電極依此順序含有之有機電激發 光部的工程,和(2 )形成半反射鏡及透明層所成半透過 性層積體的工程;工程(2 )則包含:(i )堆積金屬材料 形成金屬層之階段,以及(H)令該金屬層在乾式製程中 被氧化,形成金屬氧化物所成透明層、和金屬所成半反射 鏡的階段之有機EL元件之製造方法。本發明之有機電激 -9- 200948190 發光元件之製造方法乃適用於各種顯示用裝置及照明機器 〇 如此之有機電激發光元件之製造方法中,令工程(1 )在工程(2)之前實施,可令第1電極爲反射電極(頂 發射型)。對此,令工程(1)在工程(2)之後實施,可 令第2電極爲反射電極(底發射型)。 又,於此等有機電激發光元件之製造方法,其中,令 上述金屬材料乃可包含至少一種選自銀、鋁、銦、錫、鎢 0 、鉬、釩、釕、鎢、鈮、鋅、鈦、銶、釕、鉻、鎳、鐵、 銥、餓、鐯及銅所成群的單體、合金或金屬化合物。更且 ,可將形成上述金屬層之階段,以阻抗加熱蒸鍍法、電子 束加熱蒸鍍法、濺鍍法、及CVD法之任一者加以進行。 更且,可令氧化上述金屬層之階段,經由熱氧化處理 '氧電漿處理、uv/o3處理、氧離子注入、及氧自由基注 入之任一者加以進行。又,令上述金屬層之厚度爲5〜 3 0nm,令半反射鏡之厚度爲1〜20nm者爲佳。 ϋ 又,令前述半反射鏡、和上述第1電極及上述第2電 極中,自前述半反射鏡之距離爲大之電極,配置呈構成增 加從前述有機電激發光層放射之特定波長之光強度的微小 共振器之光學距離者極佳。 [發明之效果] 於本發明中,經由將金屬層以乾式製程氧化,做爲極 薄狀且連續之膜,而適切形成半反射鏡。因此,可在形成 -10- 200948190 於挾持有機EL發光層之相反側之面的反射電極間,顯現 高度之微腔共振效果,而可得期望之光增強效果,進而可 得高精細且辨視性優異之有機EL元件。 【實施方式】 &lt;實施形態1 &gt; 圖1乃顯示本發明之製造方法所形成頂發射型之有機 〇 EL元件的剖面模式圖。同圖所示有機EL元件乃由基板 10、和形成於基板上之有機EL發光部30、和半透過性層 積體5 0所構成。 有機EL發光部30乃做爲順序形成反射陰極32 (第1 電極)、電子植入層34、電子輸送層36、有機發光層38 、電洞輸送層40、電洞植入層42及透明陽極44 (第2電 極)之層積體而構成,此等之構成要素34〜42則構成有 機EL層。 〇 半透過性層積體50乃做爲順形成於有機EL發光部 30上之半反射鏡與透明層54之層積體而構成者。 (形成第1電極、有機EL34〜4 2層及第2電極44之工程) 本工程中,於基板10上,將反射陰極32(第1電極 )、有機EL層34〜42及透明陽極44(第2電極44),依 此順序加以形成。 基板10乃使用可承受採用在層積於其上之反射陰極 32、有機EL層3 4〜42及透明陽極44之形成之條件(溶媒 -11 - 200948190 、溫度等)的材料而形成者。更且,使用尺寸安定性優異 之材料者爲佳。基板10之材料之例乃包含玻璃、各種塑 膠、各種薄膜等。 做爲實施形態1之有機EL發光部30,可包含圖1所 不構成,採用以下之任一層構造。 (Ο反射陰極32/有機發光層38/透明陽極44 (2) 反射陰極32 /有機發光層38 /電洞植入層42/ 透明陽極44 ❹ (3) 反射陰極32 /電子植入層34 /有機發光層38/ 透明陽極44 (4) 反射陰極32 /電子植入層34 /有機發光層38/ 電洞植入層42/透明陽極44 (5) 反射陰極32 /電子植入層34 /有機發光層38/ 電洞輸送層40/電洞植入層42/透明陽極44 (6) 反射陰極32 /電子植入層34 /電子輸送層36/ 有機發光層38/電洞輸送層40/電洞植入層42/透明陽 © 極44 然而,圖1所示之例’乃上述(6 )之形態。 反射陰極32乃具有將後述之有機發光層38所產生之 光線加以反射,導入至圖1之上方’增大光強度之機能’ 與做爲第1電極之機能的構成要素。反射陰極32只要是 低阻抗,耐腐蝕性’則不特別加以限定。例如可使用Mg 及Ag之單層,或此等之合金’或IT0(氧化銦錫)及 ΙΖΟ (氧化銦鋅)等。此等之中,尤其使用Mg與Ag之合 -12 - 200948190 金者,在於反射率、導電率、工作函數的部分爲佳。 然而,於與反射陰極32鄰接配置之後述電子植入 34,適用摻雜低工作函數之金屬的共蒸鎪膜時,反射陰 32只要是可輸送載子者即可,例如可爲 Ag之單層, ITO 或 IZO。 反射陰極32乃可使用在於蒸鍍(阻抗加熱或電子 加熱)等之該技術爲周知之任意手段而加以形成。 © 反射陰極32之膜厚乃爲確保有機發光層38所產生 光線被良好反射之機能,以5 Onm以上者爲佳。 接著,於反射陰極32上,形成有機EL層(電子植 層34、電子輸送層36、有機發光層38、電洞輸送層40 電洞植入層42)。有機EL層34〜42乃令有機發光層 爲必需構成要素加以包含,如上所述,可任意選擇電子 入層34、電洞植入層42。 做爲有機發光層38之材料,可對應期望之色調加 G 選擇,例如爲得藍色至藍綠色之發光,可使用苯并噻唑 、苯并咪唑系、苯并噁二唑系等之螢光增白劑、金屬螯 化氧鎗化合物,苯乙烯基苯系化合物、或芳香族二甲茚 系化合物之至少一個材料。或’將上述材料做爲主材料 用,於此經由添加摻雜劑,形成有機發光層38亦可。 可做爲摻雜劑使用之材料而言’例如可使用做爲雷射色 使用而眾知之茈(藍色)等。 做爲電子植入層34之材料’可使用如三(8-喹啉 鋁(Alq3)之有機金屬錯合物,噁二唑衍生物、茈衍生物 層 極 或 束 之 入 、 38 植 以 系 合 定 使 就 素 ) -13- 200948190 吡啶衍生物、嘧啶衍生物、喹喔啉衍生物、聯苯醌衍生物 、硝基置換芴衍生物等。又,此等之外,可使用鹼金屬及 鹼土類金屬、以及此等之氧化物、氟化物、氮化物、硼化 物(例如LiF )等。 做爲電子植入層36之材料,可使用如Alq3之金屬錯 合物,如PBD、TPOB之噁二唑衍生物、如TAZ之三唑衍 生物、三嗪衍生物、苯基喹喔啉類、如BMB-2T之噻吩衍 生物等之材料。 做爲電洞輸送層40之材料,可使用星狀型胺、芳香 族二胺等。又,可使用具有三芳胺基部分構造、咔唑部分 構造、噁二唑部分構造之材料(例如TPD、α-NPD、PBD 、m-MTDATA 等) 做爲電洞植入層42之材料,可使用芳香族胺化合物 、星狀型胺、聯苯胺基胺之多量體、酞花青(Pc)類(包 含銅酞花青(CuPc )等)及陰丹酮系化合物等。 構成有機EL層之各層34〜42乃可使用在於蒸鍍(阻 抗加熱或電子束加熱)等之該技術爲周知之任意手段而加 以形成。 又,排除電子植入層34之此等各層36〜42之膜厚乃 可使用在該技術領域所眾知之膜厚。對此,電子植入層34 之膜厚乃從電子植入障壁之減低所造成提升電子植入性之 效果與電子植入層本身之膜厚所造成電壓下降之抑制的觀 點來看,以1〜5nm者爲佳,更佳爲1〜2nm,更佳爲lnm 200948190 更且,於電洞植入層42形成透明陽極44。透明陽極 44乃具有將有機發光層38所產生之光線,導引至圖1之 上方,增大光強度之機能,與做爲第2電極之機能的構成 要素。做爲透明陽極33,使用含In、Sn、Zn及Sb等之 氧化物,例如使用ITO (氧化銦錫)及IZO (氧化銦鋅) ,就透過率,導電率、工作函數及成膜表面之平坦性之觀 點視之爲佳。 〇 透明陽極44乃可使用在於蒸鍍(阻抗加熱或電子束 加熱)等之該技術爲周知之任意手段而加以形成。例如可 使用採用自混合氬與氧氣體產生電漿之製膜法之電漿CVD 法及濺鍍法。又,可利用倂用氧自由基源之製膜法。 於使用濺鍍法之時,使用特定之標靶,在含氧之環境 下進行成膜者爲佳。例如,可將氧與氬之混合氣體做爲放 電氣體使用。放電氣體之氧之比例雖未特別加以限定,例 如令氧/放電氣體(氬)之比爲0.01〜0·05時,就透明陽極 〇 44之透過率、導電率、工作函數之觀點視之爲佳,而以 〇.〇2者更佳。 (形成半反射鏡52及透明層54所成半透過性層積體50 的工程) 本工程中,於有機EL發光部30上,形成半反射鏡 52及透明層54所成半透過性層積體50。具體而言’經由 (i)堆積金屬材料,形成金屬層之階段,和(ii)令該金 屬層在乾式製程中被氧化’形成金屬氧化物所成透明層、 -15- 200948190 和金屬所成半反射鏡的階段,形成半透過性層積體。 〔形成金屬層之階段〕 於透明陽極44’堆積金屬材料,形成金屬層。金屬層 乃經由後述之乾式製程’在構成上分離爲接近透明陽極44 側(圖1之下方)之半反射鏡52、和遠離透明陽極44側 (圖1之上方)之透明層54,就整體而言構成半透過性層 積體50。金屬層之材質乃對於成爲半反射鏡53之部分, © 對於需要光吸收•散亂爲小,具有期望之反射率而言,對 於成爲透明層54之部分而言,需要透明度爲高。 因此,做爲使用於金屬層之材料而言,同時滿足此等 不同之要件之材料,即可使用選自銀及鋁,以及含此等之 合金及金屬化合物所成群之一種者。又,除了此等之材料 以外,例如可爲包含至少一種選自銦 '錫、鎢、鉬、釩、 釕、鎢、鈮、鋅、鈦、鍊、釕、鉻 '鎳、鐵、銥、餓、鐯 及銅所成群之材料。 〇 金屬層之形成方法乃只要不損及基板10,及已形成於 基板1 0上之基材所成之層3 2〜44,則不特別加以限定。 例如可由阻抗加熱蒸鍍法、電子束加熱蒸鍍法、濺鍍法、 及CVD法之任一者加以選擇。 又,金屬層之膜厚乃5〜30nm者爲佳。經由使成爲 5nm以上之時,可容易控制金屬層本身之膜厚的同時,可 防止金屬層之過度氧化,可充分確保做爲金屬殘留之半反 射鏡52之膜厚,而且,對於半反射鏡52及透明層54之 -16- 200948190 任一者,皆可得良好之連續膜。爲此,可適切設定半反 鏡52之反射率,充分發揮微腔共振效果。對此’經由 成爲30nm以下之時,可防止做爲金屬殘留之透明層52 厚度會變得過大,使透過率下降。然而,令金屬層之膜 成爲10〜20nm之時,此效果可發揮得更好。 〔形成透明層與半反射鏡之階段〕 〇 將如此形成之金屬層,以乾式製程氧化’形成金屬 成半反射鏡53與金屬氧化物所成之透明層54。氧化金 層之方法乃只要不損及基板1〇,及已形成於基板上 基材所成之層3 2〜44,則不特別加以限定。例如’可使 氧離子注入、氧電漿處理、氧自由基注入、及UV/03處 等。 氧離子注入 〇 圖3乃顯示在於金屬層進行氧離子注入之離子注入 置之一例剖面模式圖。同圖中,符號60乃基板平台、 乃氣體導入部、64乃高頻電漿產生裝置、66乃拉伸電 、68乃加速電極、70乃控制電極,然後72乃顯示接地 極。 於進行氧離子注入之時,首先,於基板平台60上 欲注入氧離子之金屬層之面與接地電極72對向,於基 上配置形成金屬層之層積體(未圖示)。 將維持如此狀態而含氧之氣體,由外部藉由氣體導 射 使 之 厚 所 屬 之 用 理 裝 62 極 電 板 入 -17- 200948190 部62輸送至高頻電漿產生裝置64,施加高頻電壓而產生 氧電漿。接著,將此氧電漿,於該裝置64之下面部與拉 伸電極66間,施加電壓,由裝置64向拉伸電極66導出 。更且,將到達拉伸電極66之氧電漿,於拉伸電極66與 加速電極68間,施加電壓而加速的同時,於加速電極68 與控制電極70間,施加電壓加以減速。然後,將如此減 速之氧電漿,通過接地電極72,注入至位在設置於基板平 台60上之層積體之最上層的金屬層,氧化金屬層之一部 分。 於進行氧離子注入時,尤其,使加速電壓成爲lkV至 2〇kV,在於氧化速度之控制性之觀點下爲佳。 氧電漿處理 圖4乃顯示在於金屬層進行氧電漿處理之濺鍍裝置之 —例剖面模式圖。同圖中,符號80乃氧電漿裝置,80a乃 基板平台、80乃附有磁控管之標靶、82乃真空泵、84乃 © 氬氣供給部,86乃〇2氣體供給部,然後88乃顯示DC可 變電源。 於進行氧電漿處理之時,首先,於氧電漿裝置80之 陽極側之基板平台8 0a,配置於基板上形成金屬層之層積 體(未圖示)。 以真空泵82,使氧電漿裝置80內成爲特定之壓力, 從Ar氣體供給部84將做爲非活性氣體之Ar氣體,或從 〇2氣體供給部86將做爲反應性氣體之02氣體,各別導入 -18 - 200948190 氧電漿裝置80內。接著,於構成氧電漿裝置80之基板平 台8 0a與附有磁控管之標靶80b間,經由DC可變電源88 ’施加電壓,使氧電漿化。更且,將此電漿化之氧,經由 衝擊上述層積體之金屬層,使金屬層之一部分氧化。 如此,進行氧電漿處理之時,適切調整Ar氣體與〇2 氣體之流量比、氧化處理中之氧電漿裝置80內之壓力, 及可變電源電壓之控制模式等者爲佳。 〇 於基板平台8 0a配置含金屬層之層積體之前,例如令 〇2與ΑΓ氣體之流量比(〇2/Ar )爲1以上時,令氧電槳裝 置80內之壓力爲0.02〜0.2Torr。 對此,於層積體之配置後之氧化處塌時,例如令〇2 與Ar氣體之流量比(02/Ar)爲4以上,令氧電漿裝置80 內之壓力爲50mT〇rr程度。又,對於氧化處理時之可變電 源電壓之控制模式而言,令供給電力爲可變之直流,例如 於浮動方式之時,令基板平台80a爲陽極,令附有磁控管 ❹ 之標靶8 0b爲陰極。由此’可令設置於基板平台80a之層 積體之金屬層之一部分可被良好地氧化。 氧自由基注入 進行氧自由基注入之時,例如可採用使用從電漿範圍 所供給之長壽命之自由基的遠控電漿法。具體而言,首先 將氧電漿產生部’定位於層積體中之金屬層之上方約 3 0cm。接著,維持此狀態’經由高頻誘導電流,激發氧電 漿。更且,從此氧電漿得氧自由基’將該氧自由基曝露於 -19- 200948190 金屬層,使金屬層之一部分氧化。 於進行氧自由基注入時,尤其,使氧電漿自層積體遠 離20cm以上加以配置,在於避免對於層積體之離子入射 所造成之損傷之觀點下爲佳。 UV/03處理 UV/03處理乃例如如下加以進行。即,於臭氧室 ,將層積體移動,經由自高壓水銀等之紫外光源所發出之 © 紫外光,分解乾燥空氣中之氧氣體’於臭氧化之環境下’ 曝露金屬層,而氧化金屬層之一部分。 於進行uv/o3處理之時,尤其是爲避免來自高壓水銀 燈等之紫外光源之光線,直接射至層積體,或爲提升紫外 光之照度強度之均勻性,乃將玻璃板、石英板或耐酸性金 屬板等之遮蔽板,介入存在於紫外光源與層積體間者爲佳 。又,如前述使用遮蔽板之時,不使遮蔽板與層積體緊密 化時,可不妨礙臭氧氣體之移動或對層積體表面之供給, 〇 在於提高氧化之均与性之觀點上爲佳。又,在不含水分之 乾燥空氣下進行處理者,在於避免層積體之水分之附著的 觀點下爲佳。 上述氧離子注入、氧電漿處理、氧自由基注入及 UV/〇3處理乃在形成圖1所示頂發射型之有機EL元件下 ,可在形成透明層與半反射鏡之階段使用的具體性金屬之 氧化方法者。對此,於圖1中,在於基板10上已形成有 機EL層34〜42之狀態下,進行金屬層之形成及該氧化處 -20- 200948190 理之故,無法於該氧化處理去適用熱氧化方法。此乃由於 會使有機EL層34〜42曝露於高溫之緣故。 經由如此種種之乾式製程,可得由半反射鏡52及透 明層54所成半透過性層積體50。又,半反射鏡52之厚度 乃1〜10nm者爲佳。經由成爲lnm以上,可使半反射鏡52 確實做爲連續膜加以形成,經由半反射鏡5 2,可使微腔共 振效果在高水準下被顯現。又,經由成爲1 Onm以下,可 © 充分確保半反射鏡52之透過率。 如此,得圖1所示之頂發射型之有機EL元件。然而 ,將金屬層、和第1電極及第2電極中由金屬層之距離爲 大之電極(圖1中爲反射陰極32),配置呈構成增強從有 機發光層38放射之光中特定波長之強度的微小共振器之 光學距離者更佳。根據如此之構成時,更可提高上述微腔 共振效果。 〇 〈實施形態2 &gt; 圖2乃顯示本發明之製造方法所形成底發射型之有機 EL元件的剖面模式圖。同圖所示有機EL元件乃由基板 10、和形成於基板上之半透過性層積體50、和形成於半透 過性層積體50上之有機EL發光部30所構成。以下,詳 述與上述頂發射型之有機EL元件之製造方法之差異點。 於形成底發射型之有機EL元件之時,首先,於基板 1 0上,形成金屬層後,經由進行特定之氧化處理,氧化金 屬層,形成半反射鏡53和透明層54所成之半透過性層積 -21 - 200948190 體50。由此,於半反射鏡52中,使光吸收·散亂變小, 發揮期望之反射率特性’對於透明層54而言’發揮高透 明度特性,做爲整體’成爲半透過性層積體5 0加以工作 。接著,形成透明陽極44 ’順序形成電洞植入層42、電 洞輸送層4 0、有機發光層3 8、電子輸送層3 6、電子植入 層34、及反射陰極32。對於此等各層22〜32之形成方法 ,順序雖爲相反,但可適用與圖1所示頂發射型之有機 EL元件之形成方法完全相同之方法。 然而,於圖2所示底發射型之有機EL元件之形成中 ,與圖1所示頂發射型之有機EL元件之形成不同,於基 板10上未形成有機EL層42〜34之狀態下,進行金屬層 之形成及特定之氧化處理。因此,做爲氧化處理之方法, 除了前述氧離子注入、氧電漿處理、氧自由基注入、及 UV/03處理之外,可適用處理時伴隨高溫狀態之熱氧化處 理。 熱氧化處理 熱氧化處理乃在具有氧化能力之氣體化加熱環境下, 氧化層積於基板10之金屬層。做爲熱氧化處理之具體例 ,可適用高壓水蒸氣氧化法。於高壓水蒸氣氧化法中,做 爲有氧化能力之氣體,使用加熱至 300〜600 °C程度之 2MPa程度的高壓水蒸氣。氧化溫度乃可在不超過基板10 及已形成於基板10上金屬層之耐熱界限之範圍適切加以 選擇。 -22- 200948190 進行熱氧化處理之時,尤其如前所述,使用高壓水蒸 氣氧化法,可在600°C程度以下之玻璃基板之耐熱界限內 ,進行氧化處理之故,是爲較佳。又,於高壓水蒸氣氧化 法所熱氧化處理之工程中,經由成爲Μ P a前後之層級之高 壓,可易於得氧化之均勻性之故,爲較佳者。又,替代溫 度之提升,可經由提高壓力,提高氧化速度之故,在基板 等之耐熱界限內之溫度下,使之可得易於控制氧化膜厚之 〇 氧化速度地,控制壓力及溫度者爲佳。 〔實施例〕 (有機EL元件之形成) (實施例1 ) 形成圖1所示之頂發射型之有機EL元件。於基板10 上(康寧公司製1737玻璃),做爲反射陰極32,令Mg 與Ag之重量比爲9: 1,使之成爲膜厚lOOnm進行共蒸鍍 〇 接著’於反射陰極32上,經由阻抗加熱蒸鍍法,順 序形成有機EL層34〜42。做爲電子植入層34,形成lnm 之Li。電子植入層34爲極薄之lnm之故,非做爲連續膜 ’而是形成呈島狀。做爲電子輸送層36,形成20nm之三 (8-羥基喹啉)鋁錯合物。做爲有機發光層38’形成 25nm之4,4'-雙(2,2_二苯基乙烯基)聯苯(DpVBi)、和 藍色摻雜劑4,4'-雙(2·(4-(Ν,Ν-二苯基胺基)苯基)乙 烯基)聯苯(DPAVBi)之共蒸鍍膜(DPVBi: DPAVBi = -23- 200948190 100: 3(膜厚基準之成分比))。做爲電洞輸送層40,形 成20nm之N,Nf-雙(1-萘基)·Ν,Ν'-二苯基·聯苯基-4,4、 二胺(α-NPD )。做爲電洞植入層42,形成135nm之 4,4',4”-三[(3-甲基苯基)苯胺基]—三苯胺(m-MTDATA )、和 2,3,5,6-四氟-7,7,8,8-四氰基-唾啉二甲烷(F4-TCNQ )之共蒸鍍膜(m-MTDATA : F4-TCNQ = 1 00 : 2(膜 厚基準之成分比))。然而,本發明之「膜厚基準之成分 比」乃指將各成分以單體蒸鍍時所形成之膜厚所表示之比 Q 〇 更且,將在於基板10上形成反射陰極32及有機EL 層32〜42之層積體,導入至DC濺鍍裝置內,將IZO使 用做爲標靶,於氧一氬環境下(氧/ (氧+氬)= 0.02 (分壓 基準),形成220nm之透明陽極44。 接著,經由電子束蒸鏟法,形成15nm之A1所成金屬 層。將含此金屬層之層積體,導入至uv/o3處理裝置( SAMCO公司製UV-300 ),進行5分鐘處理。結果,金屬 © 層被氧化,獲得由不氧化而殘留之半反射鏡52與氧化結 果所產生之透明層54所成半透過性層積體50。經由島津 製作所公司製紫外可視分光光度計UV-2100PC,藉由測定 透過光譜所計測之結果,半反射鏡52之膜厚乃5nm,透 明層54之膜厚乃1 〇nm。如上所述,得圖1所示之頂發射 型之有機EL元件。 (實施例2) -24- 200948190 形成圖2所示之底發射型之有機EL元件。接著,於 基板1〇(康寧公司製1737玻璃)上,經由電子束蒸鍍法 ,形成15nm之A1所成金屬層。將含此金屬層之層積體, 導入至UV/03處理裝置(SAMCO公司製UV-300),進行 5分鐘處理。結果,氧化金屬層,獲得由不氧化而殘留之 半反射鏡52與氧化結果所產生之透明層54所成半透過性 層積體50。經由島津製作所公司製紫外可視分光光度計 〇 UV-2100PC,藉由測定透過光譜所計測之結果,半反射鏡 52之膜厚乃5nm,透明層54之膜厚乃lOnm。 更且,將在於基板10上形成半透過性層積體50之層 積體,導入至DC濺鍍裝置內,將IZO使用做爲標靶,於 氧—氬環境下(氧/ (氧+氬)= 0.02(分壓基準),形成 220nm之透明陽極44。 接著,於透明陽極44上,經由阻抗加熱蒸鍍法,順 序形成有機EL層42〜34。做爲電洞植入層42,形成 O 135nm之4,4、4&quot;-三[(3-甲基苯基)苯胺基]-三苯胺(m-MTDATA )、和2,3,5,6-四氟-7,7,8,8-四氰基-喹啉二甲烷 (F4-TCNQ)之共蒸鍍膜(m-MTDATA : F4-TCNQ = 1 00 : 2(膜厚基準之成分比))。做爲電洞輸送層40,形成 20nm之Ν,Ν、雙(1 -萘基)-N,N、二苯基-聯苯基-4,4、二 胺(〇1以?0)。做爲有機發光層38,形成2511111之4,4、雙 (2,2-二苯基乙烯基)聯苯(〇卩乂8〇 、和藍色摻雜劑 DPAVBi 之共蒸鍍膜(DPVBi: DPAVBi=100: 3(膜厚基 準之成分比))。做爲電子輸送層36,形成20nm之三( -25- 200948190 8 -羥基喹啉)鋁錯合物。做爲電子植入層34,形成1nm 之Li。電子植入層34爲極薄之Inm之故’非做爲連續膜 ,而是形成呈島狀。 接著,做爲反射陰極32,令Mg與Ag之重量比爲9 :1,使之成爲膜厚l〇〇nm進彳了共蒸鎪°如上所述’得圖 2所示之底發射型之有機EL元件。 (實施例3 ) 0 除了做爲替代對於金屬層進行uv/〇3處理,經由使用 圖3所示之離子注入裝置之氧離子注入’氧化金屬層之一 部分之外,與實施例2同樣’形成底發射型之有機EL元 件。在此,使用於氧離子處理之氧離子乃使用經由高頻放 電所產生之氧電漿。又,令氧離子注入時之氧離子之加速 電壓爲5kV,令氧離子注入時間爲5分鐘。 (實施例4) 除了做爲替代對於金屬層進行UV/03處理,經由使用 圖4所示之濺鍍裝置之氧電漿處理,氧化金屬層之一部分 之外,與實施例2同樣,形成底發射型之有機EL元件。 對此,令〇2與Ar氣體之流量比爲4,令氧電漿裝置80內 之壓力爲50mTorr程度,令處理時間爲5分鐘。 (實施例5) 除了做爲替代對於金屬層進行U V / Ο 3處理,經由使用 -26- 200948190 遠控電漿裝置之氧自由基注入,氧化金屬層之一部分之外 ,與實施例2同樣,形成底發射型之有機EL元件。此, 氧自由基注入處理時間爲3分鐘。 (實施例6) 除了做爲替代對於金屬層進行uv/o3處理,經由使用 加壓式加熱爐之高壓水蒸氣氧化法所成之熱氧化處理,氧 0 化金屬層之一部分之外,與實施例2同樣,形成底發射型 之有機EL元件。在此,對於包含使用高壓水蒸氣氧化之 水蒸氣之環境而言,該溫度約300°C,壓力約2MPa。又, 令熱氧化處理時間爲30分鐘。 (比較例1 ) 除了令金屬層之膜厚爲3nm,以及對於金屬層不進行 UV/03處理之外,與實施例1同樣,形成頂發射型之有機 ❿ EL元件。 (比較例2) 除了令金屬層之膜厚爲3nm,以及對於金屬層不進行 UV/03處理之外’與實施例2同樣,形成底發射型之有機 EL元件。 〔評估項目〕 對於如以上所得之實施例1〜6及比較例1、2之各有 -27- 200948190 機EL元件而言 對於(A)半透過性層積體中之未氧化之半反射鏡( 對於各比較例而言’爲未掀化之金屬層)之透過率、 (B) 有機EL元件之正面亮度、以及 (C) 自有機EL元件發出之光譜 加以評估。 對於上述評估項目(A)而言’經由島津製作所公司 製紫外可視分光光度計UV-2100PC ’藉由測定透過光譜’ 〇 計測半反射鏡等之透過率。 對於上述評估項目(B)而言’經由T0PC0N公司製 分光亮度計SR-3及BM-9’計測有機EL·元件之正面亮度 。然而,各例之亮度(cd/m2)乃令實施例1之有機£[元 件之正面亮度爲1〇〇時之相對値。 對於上述評估項目(C)而言,使用TOPC ON公司製 分光亮度計SR-3及BM-9,計測有機EL元件所發光之光 譜,判斷是否得良好之藍色之色度。然而,表中「銳利」 〇 乃指CIE色度座標之y値爲0.25以下時(得良好之藍色 色度之情形),「寬廣」乃指CIE色度座標之y値超過 0.25時(未得良好之藍色色度之情形)。 關於此等之評估項目(A )〜(C )之各計測結果則示 於表1。 -28- 200948190 [表1] 透過率(%) 正面亮度 光 譜 實 施 例 1 70 100 銳 利 實 施 例 2 70 100 銳 利 實 施 例 3 75 95 銳 利 實 施 例 4 75 95 銳 利 實 施 例 5 75 95 銳 利 實 施 例 6 75 95 銳 利 比 較 例 1 90 80 寬 廣 比 較 例 2 90 80 寬 廣 ❹ 根據表1時,對於金屬層而言,對於進行特定乾式製 程之氧化處理(UV/〇3處理(實施例1 ' 2 ) '氧離子注入 (實施例3)、氧電漿處理(實施例4)、氧自由基注入 (實施例5 )及熱氧化處理(實施例6 )之各實施例’則 可得知伴隨得某程度之透過率,可得優異之正面亮度’而 且可得優異光譜之良好藍色色度。此乃可由於氧化金屬層 之一部分成爲透明層,另一方面令做爲非氧化層之半反射 鏡形成成爲極薄之連續膜之故,可經由透明層得某個程度 之透過率的同時,可令經由半反射鏡本來可達成之微腔共 振效果在高層級下被顯現,就結果而言’可得充分之光增 強效果。 對此,對於金屬層而言,對於未進行特定之乾式製程 所成氧化處理之各比較例而言’雖然可由於起因於金屬層 本身之膜厚爲薄而得優異之透過率’但無法得優異之正面 亮度,而且無法得優異光譜之良好藍色色度。這是由於未 氧化金屬層之一部分而形成透明層之故’無法如各實施例 -29- 200948190 ,得透明層所成透過率與半反射鏡所成微腔共振的相乘效 果,進而無法得充分之光增強效果。 [產業上之可利用性] 根據本發明之有機EL元件之製造方法中,經由在於 金屬層適用特定之乾式製程,不但可氧化金屬層之一部分 而成爲透明層,可將做爲非氧化膜之半反射鏡呈極薄之連 續膜而被形成。爲此,可確保透明層所成之透過率,及半 反射鏡所成微腔共振效果,進而實現優異之光增強效果。 因此,本發明可獲得在往後需要高精密且可辨視性之各種 顯示用裝置及照明機器等之製造所需之有機EL元件的部 分上,是爲有希望之發明。 【圖式簡單說明】 [圖1]顯示本發明之製造方法所形成頂發射型之有機 E L元件的剖面模式圖。 [圖2]顯示本發明之製造方法所形成頂發射型之有機 EL元件的剖面模式圖。 [圖3]顯示在於金屬層進行氧離子注入之離子注入裝 置之一例剖面模式圖。 [圖4]顯示在於金屬層進行氧電漿處理之濺鍍裝置之 一例剖面模式圖。 【主要元件符號說明】 -30- 200948190 1 〇 :基板 30 :有機EL發光部 3 2 :反射陰極 3 4 :電子植入層 36 :電子輸送層 38 :有機發光層 4 0 :電洞輸送層 0 42:電洞輸送層 44 :透明陽極 5 0 :半透過性層積體 5 2 :半反射鏡 54 :透明層 〇The optical distance of the minute resonator constituting the light intensity at a specific wavelength among the rays radiated from the light-emitting layer is characteristic. G Here, the semi-transparent reflective layer is also called a half mirror, and a metal monomer containing Ag or A1 as a main component, or these alloys, is formed to have a film thickness of several nm by a sputtering method or a vapor deposition method. Generally. Further, the transparent electrode adjacent to the half mirror is formed of a plurality of indium-based conductive transparent metal oxides such as ITO (In-Sn oxide) and IZO (In-Zn oxide) by sputtering. The film thickness to the extent of several hundred nm is general. Metals used in half mirrors generally have low chemical resistance. In particular, in -6 - 200948190, in the structure in which the film thickness of the transparent electrode is changed per pixel, the etching of the transparent electrode is performed on the semi-transparent reflective layer a plurality of times, and there is a chemical solution which is etched, which is liable to deteriorate the semi-reflection. The problem with the surface of the mirror. In order to solve such a problem, it is proposed to form a protective film by anodizing the surface of the light-reflecting film between the electrode on the substrate side (corresponding to the transparent electrode) and the light-reflecting film (corresponding to the semi-transparent reflective layer). [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. 2006-302748 [Non-Patent Document 1] Advanced Materials, νο1·6, p.491, 1994 (Non-patent) [Document 2] Applied Physics Letters, vol. 64, P.2486, 1994 [Invention] ■ [Problems to be Solved by the Invention] However, in Patent Document 2 described above, there are doubts that include the following undesired matters. First, when the anodization described in Patent Document 2 is performed, there is a fear that the application range of the specific means for performing oxidation is limited due to the use of the solution process. In other words, in the technique disclosed in Patent Document 2, an electrolyte solution having a weak acidity can be used, and a sulfuric acid aqueous solution is used as an electrolytic solution. In the solution process, in the previous process, a laminate formed of elements formed on the substrate was immersed in a liquid. Therefore, the anodic oxidation of the bottom emission -7-200948190 type element will be based on the laminate in which the substrate only forms the light reflection film of the metal layer of the oxidation target, and is immersed in the electrolyte, so that it can be applied, but the top emission type element The anodic oxidation is not suitable for the immersion of the organic EL laminate in the electrolyte. Further, when the anodizing treatment described in Patent Document 2 is carried out, the light reflecting film 氧化 to be oxidized is required to be an anode, and the light reflecting film is required to serve as a wiring and an electrode for anodizing. However, when the light-reflecting film is a film of several nm to several tens of nm, there is a fear that the function as a wiring requiring electrical conductivity and the function as an electrode cannot be sufficiently achieved. Thus, the necessity of sufficient electrical conductivity requires that there is a limit to the material of the light-reflecting film. When the light-reflecting film described in Patent Document 2 is an anode, a voltage drop occurs in the in-plane direction of the film, and there is a concern that the potential distribution may be uneven. In particular, due to the strength of the anodizing treatment, there is a concern that the unevenness of the potential distribution is apparent in the in-plane direction of the film. Further, the light-reflecting film which is described in the anodizing treatment of Patent Document 2, as described above, requires the anodization process of the wiring and the function of the electrode, and the light-reflecting film needs to be formed to be energizable. pattern. Further, in order to ensure conduction from the external power source for the anodizing treatment to the light reflection film on the substrate, a member such as a connection electrode for energization may be required. Therefore, in the technique disclosed in Patent Document 2, the light reflecting film must be a pattern capable of being energized, and depending on the case, there are other doubts that other constituent elements are required. For the above various reasons, in the manufacturing process of the device of the electroluminescent light -8-200948190 described in Patent Document 2, in particular, when a protective film is formed between the electrode on the substrate side and the light-reflecting film, it is difficult to apply the protective film and Oxidation is a film thickness that keeps the film thickness of the light reflecting film working as a half mirror under the metal film in an extremely thin condition. Moreover, the light-reflecting film which is not oxidized and has a certain film thickness remaining under the metal film as a half mirror is completely oxidized, or the film thickness of the metal film which is not oxidized remains too thin, and the half mirror cannot be made continuous. The case where the film is formed. As a result, the reflectance of a half mirror formed as a metal film having an extremely thin film thickness cannot be achieved at a high level, and the effect of achieving the original microcavity resonance effect is insufficient, and the desired result cannot be obtained. Concerns such as light enhancement effects. Accordingly, it is an object of the present invention to provide a half mirror which is formed by uniformly forming a metal film having an extremely thin film thickness, which is excellent in reflection characteristics, permeation characteristics, and high cavity microcavity resonance effect. The light enhancement effect further provides a method of manufacturing an organic EL element having high definition and excellent visibility. ❿ [Means for Solving the Problems] The present invention relates to a process for forming (1) an organic electroluminescence portion for forming a first electrode, an organic electroluminescence layer, and a second electrode in this order on a substrate, and 2) forming a semi-transmissive layer and a semi-transmissive layered body of a transparent layer; engineering (2) comprises: (i) a stage of depositing a metal material to form a metal layer, and (H) causing the metal layer to be in a dry process A method of producing an organic EL device in which a transparent layer of a metal oxide is formed and a half mirror is formed by a metal. The method for producing a light-emitting device of the present invention is applicable to various display devices and illumination devices, and a method for manufacturing such an organic electroluminescence device, so that the engineering (1) is implemented before the project (2) The first electrode can be a reflective electrode (top emission type). In this regard, the project (1) is carried out after the project (2), and the second electrode can be made a reflective electrode (bottom emission type). Moreover, in the method of manufacturing an organic electroluminescence device, the metal material may include at least one selected from the group consisting of silver, aluminum, indium, tin, tungsten 0, molybdenum, vanadium, niobium, tungsten, tantalum, and zinc. A monomer, alloy or metal compound of titanium, strontium, barium, chromium, nickel, iron, strontium, starvation, strontium and copper. Further, the step of forming the metal layer may be carried out by any one of an impedance heating vapor deposition method, an electron beam heating vapor deposition method, a sputtering method, and a CVD method. Further, the step of oxidizing the metal layer may be carried out by any one of thermal oxidation treatment 'oxygen plasma treatment, uv/o3 treatment, oxygen ion implantation, and oxygen radical injection. Further, it is preferable that the thickness of the metal layer is 5 to 30 nm, and the thickness of the half mirror is 1 to 20 nm. Further, in the half mirror, and the first electrode and the second electrode, the electrode having a large distance from the half mirror is arranged to increase light of a specific wavelength emitted from the organic electroluminescence layer. The optical distance of the tiny resonator of intensity is excellent. [Effects of the Invention] In the present invention, a half mirror is appropriately formed by oxidizing a metal layer in a dry process to form a film which is extremely thin and continuous. Therefore, a high-cavity resonance effect can be exhibited between the reflective electrodes forming the surface on the opposite side of the EL luminescent layer of the 挟-held EL luminescent layer, and a desired light enhancement effect can be obtained, thereby obtaining high definition and viewing. An organic EL element excellent in properties. [Embodiment] &lt;Embodiment 1&gt; Fig. 1 is a schematic cross-sectional view showing a top emission type organic ytterbium EL element formed by the production method of the present invention. The organic EL device shown in the figure is composed of a substrate 10, an organic EL light-emitting portion 30 formed on the substrate, and a semi-transmissive laminate 50. The organic EL light-emitting portion 30 is formed as a reflective cathode 32 (first electrode), an electron-implanted layer 34, an electron transport layer 36, an organic light-emitting layer 38, a hole transport layer 40, a hole implant layer 42, and a transparent anode. A laminate of 44 (second electrode) is formed, and these constituent elements 34 to 42 constitute an organic EL layer. The semi-transmissive laminate 50 is formed as a laminate of a half mirror and a transparent layer 54 formed on the organic EL light-emitting portion 30. (Project for forming the first electrode, the organic EL 34 to 42 layers, and the second electrode 44) In the present process, the reflective cathode 32 (first electrode), the organic EL layers 34 to 42 and the transparent anode 44 are formed on the substrate 10 ( The second electrode 44) is formed in this order. The substrate 10 is formed by using a material that can withstand the conditions (solvent -11 - 200948190, temperature, etc.) formed by the reflective cathode 32, the organic EL layers 34 to 42 and the transparent anode 44 laminated thereon. Further, it is preferable to use a material having excellent dimensional stability. Examples of the material of the substrate 10 include glass, various plastics, various films, and the like. The organic EL light-emitting unit 30 of the first embodiment may be configured as shown in Fig. 1, and may have any of the following layer structures. (ΟReflective cathode 32 / organic light-emitting layer 38 / transparent anode 44 (2) Reflective cathode 32 / organic light-emitting layer 38 / hole implant layer 42 / transparent anode 44 ❹ (3) Reflective cathode 32 / electron-implanted layer 34 / Organic Light Emitting Layer 38 / Transparent Anode 44 (4) Reflective Cathode 32 / Electron Implant Layer 34 / Organic Light Emitting Layer 38 / Hole Implant Layer 42 / Transparent Anode 44 (5) Reflective Cathode 32 / Electron Implant Layer 34 / Organic Light Emitting Layer 38 / Hole Transport Layer 40 / Hole Implant Layer 42 / Transparent Anode 44 (6) Reflective Cathode 32 / Electron Implant Layer 34 / Electron Transport Layer 36 / Organic Light Emitting Layer 38 / Hole Transport Layer 40 / Electricity The hole-implanted layer 42/transparent positive electrode 44 is, however, the example shown in Fig. 1 is the form of the above (6). The reflective cathode 32 has a light which is generated by the organic light-emitting layer 38 to be described later, and is introduced into the figure. The function of increasing the light intensity at the top of 1 and the function of the function as the first electrode. The reflective cathode 32 is not particularly limited as long as it has low impedance. For example, a single layer of Mg and Ag can be used. Or such alloys 'or IT0 (indium tin oxide) and antimony (indium zinc oxide), etc. Among them, especially Mg and Ag are used. -12 - 200948190 Gold is better for the reflectivity, conductivity, and part of the work function. However, after the electron implant 34 is disposed adjacent to the reflective cathode 32, a co-evaporated film of a metal doped with a low work function is applied. The reflection cathode 32 may be any one capable of transporting a carrier, and may be, for example, a single layer of Ag, ITO or IZO. The technique in which the reflective cathode 32 can be used in vapor deposition (impedance heating or electron heating) is well known. The film thickness of the reflective cathode 32 is a function of ensuring that the light generated by the organic light-emitting layer 38 is well reflected, preferably 5 Onm or more. Next, an organic EL layer is formed on the reflective cathode 32 ( The electron germination layer 34, the electron transport layer 36, the organic light-emitting layer 38, and the hole transport layer 40 are electrically implanted into the layer 42). The organic EL layers 34 to 42 are such that the organic light-emitting layer is included as an essential component, as described above. The electron in-layer 34 and the hole-implanting layer 42 can be arbitrarily selected. As the material of the organic light-emitting layer 38, a color tone can be selected corresponding to a desired color, for example, blue to blue-green light, and benzothiazole can be used. benzene At least one material of a fluorescent whitening agent such as an imidazole type or a benzoxazole type, a metal chelated oxygen lance compound, a styryl benzene type compound, or an aromatic dimethyl hydrazine type compound. For the main material, the organic light-emitting layer 38 may be formed by adding a dopant. It can be used as a material for the dopant, for example, it can be used as a laser color (blue). As the material of the electron-implanting layer 34, an organometallic complex such as tris(8-quinoline aluminum (Alq3), an oxadiazole derivative, a ruthenium derivative layer or a bundle, 38 implants may be used. The compound is a combination of a pyridine derivative, a pyrimidine derivative, a quinoxaline derivative, a biphenyl hydrazine derivative, a nitro-substituted hydrazine derivative, and the like. Further, in addition to these, an alkali metal and an alkaline earth metal, and such an oxide, a fluoride, a nitride, a boride (e.g., LiF), or the like can be used. As the material of the electron-implanting layer 36, a metal complex such as Alq3, such as an oxadiazole derivative of PBD, TPOB, a triazole derivative such as TAZ, a triazine derivative, or a phenylquinoxaline can be used. Materials such as thiophene derivatives of BMB-2T. As the material of the hole transport layer 40, a star-shaped amine, an aromatic diamine or the like can be used. Further, a material having a triarylamine moiety structure, a carbazole moiety structure, or a oxadiazole moiety structure (for example, TPD, α-NPD, PBD, m-MTDATA, etc.) may be used as the material of the hole implant layer 42. An aromatic amine compound, a stellate amine, a polyaniline of a benzidine amine, a phthalocyanine (Pc) type (including a copper phthalocyanine (CuPc), etc.), an indanthrone compound, etc. are used. Each of the layers 34 to 42 constituting the organic EL layer can be formed by any means known in the art of vapor deposition (resistance heating or electron beam heating). Further, the film thickness of each of the layers 36 to 42 of the electron-implanting layer 34 is excluded, and the film thickness known in the art can be used. In view of this, the film thickness of the electron-implanted layer 34 is suppressed from the effect of improving the electron embedding property caused by the decrease of the electron-implanted barrier layer and the suppression of the voltage drop caused by the film thickness of the electron-implanted layer itself. Preferably, it is preferably 5 nm, more preferably 1 to 2 nm, more preferably 1 nm 200948190. Further, a transparent anode 44 is formed in the hole implant layer 42. The transparent anode 44 has a function of guiding the light generated by the organic light-emitting layer 38 to the upper side of Fig. 1 to increase the light intensity, and a function as a function of the second electrode. As the transparent anode 33, an oxide containing In, Sn, Zn, and Sb, for example, ITO (Indium Tin Oxide) and IZO (Indium Zinc Oxide) are used, and the transmittance, conductivity, work function, and film formation surface are used. The view of flatness is preferred.透明 The transparent anode 44 can be formed by any means known in the art of vapor deposition (impedance heating or electron beam heating). For example, a plasma CVD method and a sputtering method using a film forming method in which a plasma is generated by mixing argon and oxygen gas can be used. Further, a film forming method using a source of oxygen radicals can be used. When a sputtering method is used, it is preferable to use a specific target to form a film in an oxygen-containing environment. For example, a mixed gas of oxygen and argon can be used as the discharge gas. The ratio of the oxygen of the discharge gas is not particularly limited. For example, when the ratio of the oxygen/discharge gas (argon) is 0.01 to 0.05, the transmittance, conductivity, and work function of the transparent anode 〇44 are regarded as Good, and 〇.〇2 is better. (The process of forming the semi-transmissive laminate 50 by the half mirror 52 and the transparent layer 54) In the present process, the semi-transmissive laminated layer 52 and the transparent layer 54 are formed on the organic EL light-emitting portion 30. Body 50. Specifically, 'via (i) depositing a metal material, forming a metal layer, and (ii) oxidizing the metal layer in a dry process to form a transparent layer of a metal oxide, -15-200948190 and a metal At the stage of the half mirror, a semi-transmissive laminate is formed. [Phase of forming a metal layer] A metal material is deposited on the transparent anode 44' to form a metal layer. The metal layer is separated from the half mirror 52 which is close to the transparent anode 44 side (below the lower side of FIG. 1) and the transparent layer 54 which is away from the transparent anode 44 side (above FIG. 1) by a dry process which will be described later. In other words, the semi-transmissive laminate 50 is formed. The material of the metal layer is a part of the half mirror 53, and the transparency is required for the portion to be the transparent layer 54 in order to have a small light absorption/scatter and a desired reflectance. Therefore, as a material for the metal layer and a material satisfying these different requirements, a group selected from the group consisting of silver and aluminum, and alloys and metal compounds containing the same can be used. Further, in addition to the materials, for example, at least one selected from the group consisting of indium 'tin, tungsten, molybdenum, vanadium, niobium, tungsten, niobium, zinc, titanium, chain, bismuth, chromium 'nickel, iron, bismuth, hungry may be included. , 鐯 and copper are grouped together. The method of forming the ruthenium metal layer is not particularly limited as long as it does not damage the substrate 10 and the layers 3 2 to 44 formed on the substrate formed on the substrate 10 . For example, it can be selected by any of an impedance heating vapor deposition method, an electron beam heating vapor deposition method, a sputtering method, and a CVD method. Further, the film thickness of the metal layer is preferably 5 to 30 nm. When the thickness is 5 nm or more, the film thickness of the metal layer itself can be easily controlled, and excessive oxidation of the metal layer can be prevented, and the film thickness of the half mirror 52 as a metal residue can be sufficiently ensured, and the half mirror can be sufficiently fixed. Both 52 and transparent layer 54-16-200948190 provide a good continuous film. For this reason, the reflectance of the half mirror 52 can be appropriately set, and the microcavity resonance effect can be sufficiently exerted. When the thickness is 30 nm or less, the thickness of the transparent layer 52 which is left as a metal can be prevented from becoming excessively large, and the transmittance can be lowered. However, when the film of the metal layer is 10 to 20 nm, this effect can be exerted better. [Phase of forming a transparent layer and a half mirror] 〇 The metal layer thus formed is oxidized by a dry process to form a transparent layer 54 of a metal half mirror 53 and a metal oxide. The method of oxidizing the gold layer is not particularly limited as long as it does not damage the substrate 1 and the layers 3 2 to 44 which are formed on the substrate. For example, oxygen ion implantation, oxygen plasma treatment, oxygen radical injection, and UV/03 can be used. Oxygen ion implantation 〇 Fig. 3 is a schematic cross-sectional view showing an example of ion implantation in which a metal layer is subjected to oxygen ion implantation. In the same figure, reference numeral 60 denotes a substrate platform, a gas introduction portion, 64 is a high frequency plasma generating device, 66 is a tensile electrode, 68 is an acceleration electrode, 70 is a control electrode, and then 72 is a ground electrode. When oxygen ion implantation is performed, first, a surface on which a metal layer of oxygen ions is to be implanted on the substrate stage 60 is opposed to the ground electrode 72, and a laminate (not shown) for forming a metal layer is disposed on the substrate. The oxygen-containing gas which is maintained in such a state is transported to the high-frequency plasma generating device 64 by the gas-conducting device 62, and the high-frequency plasma is applied from the external device 62 to the high-frequency plasma generating device 64. And oxygen plasma is produced. Next, this oxygen plasma is applied between the lower surface of the device 64 and the stretching electrode 66, and a voltage is applied to the stretching electrode 66 by the device 64. Further, the oxygen plasma reaching the drawing electrode 66 is accelerated between the stretching electrode 66 and the accelerating electrode 68 by applying a voltage, and a voltage is applied between the accelerating electrode 68 and the control electrode 70 to be decelerated. Then, the oxygen plasma thus decelerated is injected through the ground electrode 72 into the uppermost metal layer of the laminate provided on the substrate stage 60 to oxidize one of the metal layers. In the case of performing oxygen ion implantation, in particular, it is preferable to make the acceleration voltage lkV to 2 〇 kV in view of the controllability of the oxidation rate. Oxygen plasma treatment Fig. 4 is a schematic cross-sectional view showing a sputtering apparatus in which a metal layer is subjected to an oxygen plasma treatment. In the same figure, the symbol 80 is an oxygen plasma device, 80a is a substrate platform, 80 is a target with a magnetron, 82 is a vacuum pump, 84 is an argon supply, 86 is a gas supply, and then 88 It shows the DC variable power supply. At the time of the oxygen plasma treatment, first, a layered body (not shown) of a metal layer is formed on the substrate platform 80a on the anode side of the oxygen plasma device 80. The pressure inside the oxygen plasma device 80 is set to a specific pressure by the vacuum pump 82, and the Ar gas which is an inert gas from the Ar gas supply unit 84 or the 02 gas which is a reactive gas from the 〇2 gas supply unit 86 is used. Each is introduced into the -18 - 200948190 oxygen plasma unit 80. Next, a voltage is applied between the substrate stage 80a constituting the oxygen plasma device 80 and the target 80b with the magnetron via the DC variable power source 88' to plasma the oxygen. Further, the plasmad oxygen is partially oxidized by impacting the metal layer of the laminate. As described above, when the oxygen plasma treatment is performed, it is preferable to appropriately adjust the flow ratio of the Ar gas to the helium gas, the pressure in the oxygen plasma device 80 in the oxidation treatment, and the control mode of the variable power source voltage. Before the substrate platform 80a is placed in the layered body containing the metal layer, for example, when the flow ratio (〇2/Ar) of the 〇2 to the helium gas is 1 or more, the pressure in the oxygen electric device 80 is 0.02 to 0.2. Torr. On the other hand, when the oxidation site after the arrangement of the laminate is collapsed, for example, the flow ratio (02/Ar) of 〇2 to Ar gas is 4 or more, and the pressure in the oxygen plasma device 80 is about 50 mT 〇rr. Further, in the control mode of the variable power supply voltage during the oxidation treatment, the supply power is a variable direct current, for example, in the floating mode, the substrate platform 80a is an anode, and the target with the magnetron ❹ is attached. 8 0b is the cathode. Thus, a portion of the metal layer provided on the laminate of the substrate stage 80a can be favorably oxidized. Oxygen Radical Injection For the oxygen radical injection, for example, a remote controlled plasma method using a long-lived radical supplied from the plasma range can be employed. Specifically, first, the oxygen plasma generating portion is positioned at about 30 cm above the metal layer in the laminate. Then, this state is maintained. The current is induced by the high frequency to excite the oxygen plasma. Further, oxygen radicals from the oxygen plasma are exposed to the metal layer of -19-200948190 to partially oxidize one of the metal layers. In the case of performing oxygen radical injection, in particular, it is preferable to dispose the oxygen plasma from the layered body by more than 20 cm from the viewpoint of avoiding damage to the ion incident of the laminate. UV/03 treatment The UV/03 treatment is carried out, for example, as follows. That is, in the ozone chamber, the layered body is moved, and the ultraviolet light emitted from the ultraviolet light source such as high-pressure mercury decomposes the oxygen gas in the dry air to expose the metal layer in the ozonized environment, and the metal oxide layer Part of it. When performing uv/o3 treatment, especially to avoid the light from the ultraviolet light source such as high-pressure mercury lamp, directly to the laminate, or to enhance the uniformity of the illumination intensity of the ultraviolet light, the glass plate, the quartz plate or It is preferable that the shielding plate such as an acid-resistant metal plate is interposed between the ultraviolet light source and the laminate. Further, when the shielding plate is used as described above, it is preferable that the movement of the ozone gas or the supply of the surface of the laminate is not hindered when the shielding plate and the laminate are not tight, and it is preferable to improve the uniformity of oxidation. . Further, it is preferable to carry out the treatment in a dry air containing no moisture in order to avoid adhesion of moisture of the laminate. The above oxygen ion implantation, oxygen plasma treatment, oxygen radical injection, and UV/〇3 treatment are specific to the formation of the transparent layer and the half mirror at the stage of forming the top emission type organic EL element shown in FIG. The method of oxidation of metallic metals. On the other hand, in FIG. 1, in the state in which the organic EL layers 34 to 42 have been formed on the substrate 10, the formation of the metal layer and the oxidation of the oxidized portion are not possible, and the oxidation treatment cannot be applied to the thermal oxidation. method. This is because the organic EL layers 34 to 42 are exposed to high temperatures. Through such a dry process, the semi-transmissive laminate 50 formed by the half mirror 52 and the transparent layer 54 can be obtained. Further, it is preferable that the thickness of the half mirror 52 is 1 to 10 nm. By making it 11 nm or more, the half mirror 52 can be surely formed as a continuous film, and the microcavity resonance effect can be visualized at a high level via the half mirror 52. Moreover, the transmittance of the half mirror 52 can be sufficiently ensured by being 1 Onm or less. Thus, the top emission type organic EL element shown in Fig. 1 was obtained. However, the metal layer and the electrode having a large distance from the metal layer in the first electrode and the second electrode (the reflective cathode 32 in FIG. 1) are arranged to enhance a specific wavelength of light emitted from the organic light-emitting layer 38. The optical distance of the tiny resonator of intensity is better. According to such a configuration, the above-described microcavity resonance effect can be further improved. <Embodiment 2> Fig. 2 is a schematic cross-sectional view showing a bottom emission type organic EL element formed by the production method of the present invention. The organic EL element shown in the figure is composed of a substrate 10, a semi-transmissive laminate 50 formed on the substrate, and an organic EL light-emitting portion 30 formed on the semi-transmissive laminate 50. Hereinafter, the difference from the above-described method of manufacturing the top emission type organic EL element will be described in detail. When a bottom emission type organic EL element is formed, first, a metal layer is formed on the substrate 10, and then a specific oxidation treatment is performed to oxidize the metal layer to form a semi-transmissive lens 45 and a transparent layer 54. Sexual stratification-21 - 200948190 Body 50. As a result, in the half mirror 52, the light absorption and scattering are reduced, and the desired reflectance characteristic is exhibited, 'the transparent layer 54' exhibits high transparency characteristics, and the whole is made into the semi-transmissive laminate 5 0 to work. Next, the transparent anode 44' is formed to sequentially form the hole implant layer 42, the hole transport layer 40, the organic light-emitting layer 38, the electron transport layer 36, the electron-implanted layer 34, and the reflective cathode 32. Although the order of formation of these layers 22 to 32 is reversed, the same method as the method of forming the top emission type organic EL element shown in Fig. 1 can be applied. However, in the formation of the bottom emission type organic EL element shown in FIG. 2, unlike the formation of the top emission type organic EL element shown in FIG. 1, in the state where the organic EL layers 42 to 34 are not formed on the substrate 10, The formation of a metal layer and a specific oxidation treatment are performed. Therefore, as the oxidation treatment method, in addition to the aforementioned oxygen ion implantation, oxygen plasma treatment, oxygen radical injection, and UV/03 treatment, thermal oxidation treatment accompanying a high temperature state during the treatment can be applied. Thermal Oxidation Treatment The thermal oxidation treatment is an oxide layer deposited on the metal layer of the substrate 10 in a gasification heating environment having an oxidizing ability. As a specific example of the thermal oxidation treatment, a high-pressure steam oxidation method can be applied. In the high-pressure steam oxidation method, as the oxidizing gas, high-pressure steam heated to a level of 2 MPa of about 300 to 600 °C is used. The oxidation temperature can be selected insofar as it does not exceed the range of heat resistance of the substrate 10 and the metal layer formed on the substrate 10. -22- 200948190 When the thermal oxidation treatment is carried out, it is preferable to carry out oxidation treatment in a heat-resistant limit of a glass substrate of about 600 ° C or less by using a high-pressure water vapor oxidation method as described above. Further, in the thermal oxidation treatment of the high-pressure steam oxidation method, it is preferable to obtain the uniformity of oxidation by the high pressure of the layer before and after the Μ P a . In addition, instead of increasing the temperature, it is possible to increase the pressure and increase the oxidation rate, and at a temperature within the heat-resistant limit of the substrate or the like, it is possible to control the oxidation rate of the oxide film thickness, and to control the pressure and temperature. good. [Examples] (Formation of Organic EL Element) (Example 1) A top emission type organic EL element shown in Fig. 1 was formed. On the substrate 10 (1737 glass manufactured by Corning Incorporated), as the reflective cathode 32, the weight ratio of Mg to Ag is 9:1, and the film thickness is 100 nm for co-evaporation, and then on the reflective cathode 32. The organic EL layers 34 to 42 are sequentially formed by an impedance heating vapor deposition method. As the electron implantation layer 34, Li of 1 nm was formed. The electron-implanting layer 34 is extremely thin, lnm, and is not formed as a continuous film but formed in an island shape. As the electron transport layer 36, a 20 nm tris(8-hydroxyquinoline)aluminum complex was formed. As the organic light-emitting layer 38', 25 nm of 4,4'-bis(2,2-diphenylvinyl)biphenyl (DpVBi), and blue dopant 4,4'-double (2·(4) are formed. A co-evaporated film of -(Ν,Ν-diphenylamino)phenyl)vinyl)biphenyl (DPAVBi) (DPVBi: DPAVBi = -23- 200948190 100: 3 (component ratio of film thickness standard)). As the hole transport layer 40, 20 nm of N, Nf-bis(1-naphthyl)-anthracene, Ν'-diphenyl-biphenyl-4,4, diamine (?-NPD) was formed. As a hole implant layer 42, 4,4',4"-tris[(3-methylphenyl)anilino]-triphenylamine (m-MTDATA) at 135 nm, and 2,3,5,6 are formed. -co-evaporated film of tetrafluoro-7,7,8,8-tetracyano-salrogonic acid (F4-TCNQ) (m-MTDATA: F4-TCNQ = 1 00: 2 (component ratio of film thickness standard) However, the "component ratio of the film thickness standard" of the present invention means that the ratio of the film thickness formed by vapor deposition of each component is more than Q 且, and the reflective cathode 32 is formed on the substrate 10 and A laminate of organic EL layers 32 to 42 is introduced into a DC sputtering apparatus, and IZO is used as a target, and is formed under an oxygen-argon atmosphere (oxygen / (oxygen + argon) = 0.02 (partial pressure reference)). a transparent anode of 220 nm. Next, a metal layer formed of A1 of 15 nm was formed by an electron beam shovel method, and a laminate containing the metal layer was introduced into a uv/o3 processing apparatus (UV-300 manufactured by SAMCO Co., Ltd.). As a result, the metal layer was oxidized to obtain a semi-transmissive laminate 50 which was formed by the half mirror 52 which remained without oxidation and the transparent layer 54 which was produced by the oxidation. The photometer UV-2100PC, by measuring the measurement results of the transmission spectrum, the film thickness of the half mirror 52 is 5 nm, and the film thickness of the transparent layer 54 is 1 〇 nm. As described above, the top emission shown in Fig. 1 is obtained. (Example 2) -24- 200948190 The bottom emission type organic EL element shown in Fig. 2 was formed. Then, on the substrate 1 (1737 glass manufactured by Corning Co., Ltd.), electron beam evaporation was carried out. A layer of A1 was formed in a layer of 15 nm. The laminate containing the metal layer was introduced into a UV/03 treatment apparatus (UV-300 manufactured by SAMCO Co., Ltd.) and treated for 5 minutes. As a result, the metal layer was obtained by The semi-transmissive laminate 50 which is oxidized and remains, and the semi-transmissive laminate 50 which is formed by the transparent layer 54 produced by the oxidation, is measured by measuring the transmission spectrum by a UV-visible spectrophotometer 〇UV-2100PC manufactured by Shimadzu Corporation. As a result, the film thickness of the half mirror 52 is 5 nm, and the film thickness of the transparent layer 54 is lOnm. Further, a laminate of the semi-transmissive laminate 50 formed on the substrate 10 is introduced into the DC sputtering apparatus. Use IZO as a target in an oxygen-argon environment (oxygen / ( + argon) = 0.02 (partial pressure reference), a transparent anode 44 of 220 nm is formed. Next, organic EL layers 42 to 34 are sequentially formed on the transparent anode 44 via an impedance heating vapor deposition method as a hole implantation layer 42. Forming 4,4,4&quot;-tris[(3-methylphenyl)anilino]-triphenylamine (m-MTDATA) at 0 135 nm, and 2,3,5,6-tetrafluoro-7,7, Co-evaporated film of 8,8-tetracyanoquinoline methane (F4-TCNQ) (m-MTDATA: F4-TCNQ = 1 00: 2 (component ratio of film thickness standard)). As the hole transport layer 40, ruthenium, bis(1-naphthyl)-N,N, diphenyl-biphenyl-4,4, diamine (〇1 to ?0) was formed. As the organic light-emitting layer 38, a co-evaporated film of 4,4, bis(2,2-diphenylvinyl)biphenyl (〇卩乂8〇, and blue dopant DPAVBi) of 2511111 (DPVBi: DPAVBi) is formed. =100: 3 (component ratio of the film thickness standard). As the electron transport layer 36, a 20 nm three (-25-200948190 8 -hydroxyquinoline) aluminum complex is formed, which is formed as an electron implantation layer 34. 1 nm of Li. The electron-implanted layer 34 is an extremely thin Inm, which is not formed as a continuous film but is formed in an island shape. Next, as a reflective cathode 32, the weight ratio of Mg to Ag is 9:1, The film was made to have a film thickness of 100 nm. The bottom emission type organic EL element shown in Fig. 2 was obtained as described above. (Example 3) 0 In addition to the metal layer, uv/ In the 〇3 treatment, a bottom emission type organic EL element was formed in the same manner as in Example 2 except that one part of the oxidized metal layer was implanted by oxygen ion implantation using the ion implantation apparatus shown in FIG. 3. Here, it was used for oxygen ion treatment. The oxygen ions are oxygen plasma generated by high-frequency discharge, and the acceleration voltage of oxygen ions during oxygen ion implantation is 5 kV. The oxygen ion implantation time was 5 minutes. (Example 4) Except for the UV/03 treatment of the metal layer instead of the oxidation of the metal layer by using the oxygen plasma treatment of the sputtering apparatus shown in Fig. 4 A bottom emission type organic EL device was formed in the same manner as in Example 2. In this case, the flow ratio of 〇2 to Ar gas was 4, and the pressure in the oxygen plasma device 80 was 50 mTorr, and the treatment time was 5 minutes. (Example 5) The UV/Ο 3 treatment was carried out instead of the metal layer, and the same as in Example 2 except that one part of the metal layer was oxidized by oxygen radical injection using the remote control plasma apparatus of -26-200948190 The bottom emission type organic EL element was formed. Here, the oxygen radical injection treatment time was 3 minutes. (Example 6) In addition to the uv/o3 treatment for the metal layer, high pressure water was used via a pressurized heating furnace. In the thermal oxidation treatment by the vapor oxidation method, a bottom emission type organic EL element is formed in the same manner as in the second embodiment except for the oxygen oxidation metal layer. Here, the environment containing water vapor oxidized by high-pressure steam is used. The temperature was about 300 ° C and the pressure was about 2 MPa. Further, the thermal oxidation treatment time was 30 minutes. (Comparative Example 1) The film thickness of the metal layer was 3 nm, and the metal layer was not subjected to UV/03 treatment. Further, a top emission type organic ytterbium EL element was formed in the same manner as in Example 1. (Comparative Example 2) Except that the film thickness of the metal layer was 3 nm, and the metal layer was not subjected to UV/03 treatment, and Example 2 Similarly, a bottom emission type organic EL device was formed. [Evaluation Items] For the EL elements of Examples 1-6 to 6 and Comparative Examples 1 and 2 obtained as above, (A) semi-transparent The transmittance of the unoxidized half mirror in the laminate (for the unexposed metal layer for each comparative example), (B) the front luminance of the organic EL element, and (C) from the organic EL element The spectrum is evaluated. For the above evaluation item (A), the transmittance of the half mirror or the like was measured by measuring the transmission spectrum by the Shimadzu Corporation UV-Specific Spectrophotometer UV-2100PC. For the above evaluation item (B), the front luminance of the organic EL element was measured by the T0PC0N company's luminance meter SR-3 and BM-9'. However, the brightness (cd/m2) of each example is the relative enthalpy when the front luminance of the element of Example 1 is 1 値. For the above-mentioned evaluation item (C), the spectrum of the light emitted from the organic EL element was measured using the TOCON company's luminometers SR-3 and BM-9, and it was judged whether or not the chromaticity of the blue color was good. However, the term "sharp" in the table refers to the case where the y C of the CIE chromaticity coordinates is 0.25 or less (in the case of a good blue chromaticity), and the "wide" refers to the y C of the CIE chromaticity coordinates exceeding 0.25 (not obtained) Good blue chromaticity). The measurement results of these evaluation items (A) to (C) are shown in Table 1. -28- 200948190 [Table 1] Transmittance (%) Front luminance spectrum Example 1 70 100 Sharp Example 2 70 100 Sharp Example 3 75 95 Sharp Example 4 75 95 Sharp Example 5 75 95 Sharp Example 6 75 95 Sharp Comparison Example 1 90 80 Broad Comparative Example 2 90 80 Wide ❹ According to Table 1, for the metal layer, for the specific dry process oxidation treatment (UV/〇3 treatment (Example 1 ' 2 ) 'Oxygen ion Injecting (Example 3), oxygen plasma treatment (Example 4), oxygen radical injection (Example 5), and thermal oxidation treatment (Example 6), each of the examples can be seen to be accompanied by a certain degree of penetration. Rate, excellent front brightness can be obtained' and good blue chromaticity of excellent spectrum can be obtained. This is because a part of the oxidized metal layer becomes a transparent layer, and on the other hand, the half mirror which is a non-oxidized layer is formed into a very thin film. Because of the continuous film, a certain degree of transmittance can be obtained through the transparent layer, and the microcavity resonance effect which can be achieved by the half mirror can be visualized at a high level, and the result is In other words, for the metal layer, for the comparative examples in which the specific dry process is not oxidized, the thin film thickness of the metal layer itself may be thin. The excellent transmittance is obtained, but excellent front brightness is not obtained, and good blue chromaticity of the excellent spectrum cannot be obtained. This is because a part of the unoxidized metal layer forms a transparent layer, which cannot be as in the embodiment -29- In 200948190, the multiplication effect of the transmittance of the transparent layer and the microcavity resonance of the half mirror is obtained, and the sufficient light enhancement effect cannot be obtained. [Industrial Applicability] The method of manufacturing the organic EL device according to the present invention By applying a specific dry process to the metal layer, not only can one of the metal layers be oxidized to form a transparent layer, but a half mirror which is a non-oxidized film can be formed as a very thin continuous film. The transmittance of the transparent layer and the microcavity resonance effect of the half mirror, thereby achieving an excellent light enhancement effect. Therefore, the present invention can be obtained in the future. It is a promising invention for a part of an organic EL element required for the manufacture of various display devices and illumination devices, and the like. [Fig. 1] shows a manufacturing method of the present invention. Fig. 2 is a schematic cross-sectional view showing a top emission type organic EL element formed by the manufacturing method of the present invention. [Fig. 3] shows a metal layer for oxygen ion implantation. FIG. 4 is a schematic cross-sectional view showing an example of a sputtering apparatus in which a metal layer is subjected to oxygen plasma treatment. [Description of main component symbols] -30- 200948190 1 〇: substrate 30: organic EL light-emitting portion 3 2 : reflective cathode 3 4 : electron-implanted layer 36 : electron-transporting layer 38 : organic light-emitting layer 4 0 : hole transport layer 0 42: hole transport layer 44: transparent anode 5 0 : semi-transmissive laminate 5 2 : half mirror 54: transparent layer 〇

Claims (1)

200948190 七、申請專利範圍: 1· 一種有機電激發光元件之製造方法,其特徵乃於 基板上包含: (1)形成令第1電極、有機電激發光層及第2電極 依此順序含有之有機電激發光部的工程, 和(2)形成半反射鏡及透明層所成半透過性層積體 的工程; 工程(2 )則包含: _ (i)堆積金屬材料形成金屬層之階段,以及 (Π)令該金屬層在乾式製程中被氧化,形成金 屬氧化物所成透明層、和金屬所成半反射鏡的階段。 2.如申請專利範圍第1項之有機電激發光元件之製 造方法’其中’令工程(1)在工程(2)之前實施,令第 1電極爲反射電極者。 3 .如申請專利範圍第1項之有機電激發光元件之製 造方法’其中’令工程(1)在工程(2)之後實施,令第 ❹ 2電極爲反射電極者。 4. 如申請專利範圍第1項至第3項之任一項之有機 電激發光元件之製造方法,其中,前述金屬材料乃包含至 少一·種選自銀、銘、絪、錫、鎢、鉬、釩、釕、鎢、鈮、 鋅、鈦、銶、鉻、鎳、鐵、銥、餓、鐯及銅所成群的單體 、合金或金屬化合物。 5. 如申請專利範圍第1項至第*項之任一項之有機 電激發光元件之製造方法,其中,令形成前述金屬層之階 -32- 200948190 段,經由阻抗加熱蒸鍍法、電子束加熱蒸鍍法、濺鍍法及 CVD法之任一者加以進行。 6. 如申請專利範圍第1項至第5項之任—項之有機 電激發光元件之製造方法,其中,令氧化前述金屬層之階 段,經由熱氧化處理' 氧電漿處理、uv/o3處理、氧離子 注入、及氧自由基注入之任一者加以進行。 7. 如申請專利範圍第1項至第6項之任一項之有機 φ 電激發光元件之製造方法,其中,前述金屬層之厚度爲5 〜30nm,前述半反射鏡之厚度爲1〜ΐ〇ηιη。 8 ·如申請專利範圍第1項至第7項之任一項之有機 電激發光元件之製造方法,其中,令前述半反射鏡、和前 述第1電極及前述第2電極中,自前述半反射鏡之距離爲 大之電極,配置呈構成增加從前述有機電激發光層放射之 特定波長之光強度的微小共振器之光學距離。 ❹ -33-200948190 VII. Patent application scope: 1. A method for manufacturing an organic electroluminescence device, characterized in that the substrate comprises: (1) forming the first electrode, the organic electroluminescence layer and the second electrode in this order; The engineering of the organic electroluminescence portion, and (2) the construction of the semi-transmissive laminate formed by the half mirror and the transparent layer; the engineering (2) includes: _ (i) the stage of depositing the metal material to form the metal layer, And (Π) the step of oxidizing the metal layer in a dry process to form a transparent layer of the metal oxide and a half mirror formed by the metal. 2. The method for producing an organic electroluminescence device according to the first aspect of the patent application, wherein the engineering (1) is carried out before the engineering (2), and the first electrode is a reflective electrode. 3. The method for producing an organic electroluminescence device according to the first application of the patent scope, wherein the engineering (1) is carried out after the engineering (2), and the electrode of the second electrode is a reflective electrode. 4. The method for producing an organic electroluminescent device according to any one of claims 1 to 3, wherein the metal material comprises at least one selected from the group consisting of silver, m, y, tin, tungsten, Monomers, alloys or metal compounds of molybdenum, vanadium, niobium, tungsten, tantalum, zinc, titanium, niobium, chromium, nickel, iron, niobium, starvation, antimony and copper. 5. The method of manufacturing an organic electroluminescent device according to any one of the preceding claims, wherein the step of forming the metal layer is -32-200948190, by means of impedance heating evaporation, electrons The beam heating vapor deposition method, the sputtering method, and the CVD method are performed. 6. The method for producing an organic electroluminescent device according to any one of claims 1 to 5, wherein the step of oxidizing the metal layer is subjected to thermal oxidation treatment, oxy-plasma treatment, uv/o3 Treatment, oxygen ion implantation, and oxygen radical injection are performed. 7. The method of producing an organic φ electroluminescent device according to any one of claims 1 to 6, wherein the metal layer has a thickness of 5 to 30 nm, and the half mirror has a thickness of 1 to ΐ. 〇ηιη. The method of manufacturing an organic electroluminescence device according to any one of claims 1 to 7, wherein the half mirror, the first electrode, and the second electrode are from the half The electrode having a large distance between the mirrors is disposed at an optical distance which constitutes a minute resonator which increases the intensity of light emitted from the organic electroluminescent layer at a specific wavelength. ❹ -33-
TW098104842A 2008-04-02 2009-02-16 Process for producing organic el element TW200948190A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096163 2008-04-02

Publications (1)

Publication Number Publication Date
TW200948190A true TW200948190A (en) 2009-11-16

Family

ID=41135271

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098104842A TW200948190A (en) 2008-04-02 2009-02-16 Process for producing organic el element

Country Status (2)

Country Link
TW (1) TW200948190A (en)
WO (1) WO2009122885A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722604A1 (en) * 2004-03-05 2006-11-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence display device
JP2006294261A (en) * 2005-04-05 2006-10-26 Fuji Electric Holdings Co Ltd Organic el light-emitting element and its manufacturing method
JP4677822B2 (en) * 2005-04-22 2011-04-27 セイコーエプソン株式会社 ELECTROLUMINESCENT DEVICE, ELECTROLUMINESCENT DEVICE MANUFACTURING METHOD, ELECTRONIC DEVICE
JP5116992B2 (en) * 2005-05-27 2013-01-09 富士フイルム株式会社 Organic EL device

Also Published As

Publication number Publication date
WO2009122885A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP4440267B2 (en) High-efficiency organic light-emitting device using a substrate having nano-sized hemispherical recesses and a method for manufacturing the same
TWI485898B (en) Organic light emitting diode device
Cheng et al. Pure Blue and Highly Luminescent Quantum‐Dot Light‐Emitting Diodes with Enhanced Electron Injection and Exciton Confinement via Partially Oxidized Aluminum Cathode
TW200427360A (en) Organic electroluminescent device and method for manufacturing the same
TW200915914A (en) Manufacturing method of organic electro luminescence apparatus
JP3943548B2 (en) Electroluminescence device
TW201308586A (en) Organic light-emitting element
CN110289365B (en) Organic light emitting device using low refractive index dielectric
Lu et al. Solution-processable tandem solid-state light-emitting electrochemical cells
JP2010198921A (en) Organic el element using transparent conductive film laminate, and manufacturing method of these
JP2010165666A (en) Organic light-emitting element, and light-emitting device using the same
Lee et al. A demonstration of solid-state white light-emitting electrochemical cells using the integrated on-chip plasmonic notch filters
US20180175315A1 (en) Gas barrier film, transparent electroconductive member, and organic electroluminescence element, and method for producing gas barrier film, method for producing transparent electroconductive member, and method for producing organic electroluminescence element
US20160204381A1 (en) Devices to increase oled output coupling efficiency with a high refractive index substrate
Shin et al. Efficient green organic light-emitting diodes by plasmonic silver nanoparticles
Zhong et al. Efficient blue phosphorescent organic light-emitting diodes enabled by Ag-nanoparticles-embedded hole transporting layer
JP3891430B2 (en) Organic EL light emitting device and method
TW200948190A (en) Process for producing organic el element
KR100685832B1 (en) inorganic layer and Fabricating method of the same
Kim et al. Synthesis of poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate)-capped silver nanoparticles and their application to blue polymer light-emitting diodes
JP4423589B2 (en) Sputtering apparatus, sputtering method, organic EL light emitting device manufacturing apparatus, and organic EL light emitting device manufacturing method
Chan et al. Device optimization of tris-aluminum (Alq3) based bilayer organic light emitting diode structures
JP5306949B2 (en) Organic electroluminescence device
JP2011040437A (en) Organic electroluminescence element
Varol et al. Optimization of HIL-HTL-free naphthalimide: Isoquinoline TEOLEDs with BZO top electrode