TW200948186A - Lighting module - Google Patents

Lighting module Download PDF

Info

Publication number
TW200948186A
TW200948186A TW97116304A TW97116304A TW200948186A TW 200948186 A TW200948186 A TW 200948186A TW 97116304 A TW97116304 A TW 97116304A TW 97116304 A TW97116304 A TW 97116304A TW 200948186 A TW200948186 A TW 200948186A
Authority
TW
Taiwan
Prior art keywords
light
solar cell
storage device
energy storage
insulating substrate
Prior art date
Application number
TW97116304A
Other languages
Chinese (zh)
Inventor
Ga-Lane Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97116304A priority Critical patent/TW200948186A/en
Publication of TW200948186A publication Critical patent/TW200948186A/en

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a lighting module. The lighting module includes at least one lighting element, at least one solar cell unit, and an energy storage device. The solar cell unit includes a front electrode layer, a back electrode layer, and a photovoltaic semiconductor Layer between the front electrode layer and the back electrode layer. The lighting module also includes an insulated substrate being used to separate the lighting element and the solar cell unit. The lighting element and the solar cell unit are respectively defined on the two relative surfaces of the insulated substrate. The front electrode layer and the back electrode are electrically connected to the energy storage device to charge to it. The lighting element is electrically connected to the energy storage device to obtain working voltage.

Description

200948186 〃九、發明說明: .【發明所屬之技術領域】 本發明涉及一發光模組,尤其涉及一具有太陽能電池 (Solar Cell)之發光模組。 【先前技術】 隨著節能之宣導,越來越多綠色能源被開發利用。太 陽能作為最理想之綠色能源越多地被應用於路燈、地燈、 機場照明燈等照明裝置上,為該等照明裝置提供於夜間照 ❿明時所需要之能量。太陽能電池之結構請參閱2006 IEEE 4th World Conference on Photovoltaic Energy Conversion 上 發表之文章 Amorphous-Silicon / Polymer Solar Cells and Key Design Rules for Hybrid Solar Cells。 目前市面上採用太陽能供電之照明裝置如太陽能路燈 等,其結構龐大,一般分開製造太陽能電池板、蓄電裝置 與照明裝置,再分別架設於太陽能路燈之燈桿上。該採用 太陽能供電之照明裝置龐大且架設成本高。 ®【發明内容】 有鑒於此,提供一薄型化之具有太陽能電池之發光模 組實屬必要。 一發光模組,其包括:一絕緣基板,該絕緣基板具有 一第一表面與一與該第一表面相對之第二表面;一能量存 儲裝置;至少一太陽能電池單元,其於該絕緣基板之第一 表面,該至少一太陽能電池單元具有一前電極層、一背電 極層與一位於該前電極與背電極層之間之光伏半導體層, 6 200948186 ’该刖電極層與背電極層與能量存儲裝置電連接以對其充 •電;以及至少一發光組件,其設置於該絕緣基板之第二表 面且與該能量存儲裝置電連接以獲得工作電壓。 本發明提供之發光模組,將至少一發光組件與至少一 太陽能電池單元集成於一起,該太陽能電池單元具有薄型 結構’其厚度於毫米數量級以下,甚至達到微米級,可適 用於很多需要照明薄型化產品上,如行動電話之背光模組 等,且該發光模組薄型化,可一體封裝而成,其製造成本 ⑩亦大大降低。 【實施方式】 下面將結合附圖對本發明作進一步之詳細說明。 請參閱圖1 ’其為本發明第一實施例提供之發光模組 10’其包括:一具有相對之第一表面110a及第二表面110b 之絕緣基板110、一能量存儲裝置120、設於第一表面110a 上之太陽能電池單元130、用於封裝太陽能電池單元130 ❾之透明封裝體124、設於第二表面110b上金屬圖案層123 及設於金屬圖案層上123之複數個發光組件140。本實施例 中,該發光組件140為LED晶片。當然,該發光組件140 亦可為封裝好之LED燈或白熾燈等任何其他通電後可發光 之組件。 該絕緣基板110可由硬板材料或者軟板材料製成。該 軟板材料可為聚酼亞胺(Polyimide)、聚對苯二曱酸乙二酯 (Polythylene terephthalate,PET )、聚石炭酸酯(Polycarbonate, PC )、聚甲基丙烯酸甲酉旨(Polymethyl Methacrylate, 7 200948186 PMMA)、冰片缔(Arton ’即Norbornene )等。該硬板材料 .可為陶瓷、玻璃、石英等。本實施例中,該絕緣基板11〇 由玻璃製成。 該能量存儲裝置120可為鉛蓄電池、鋰/離子電池、鎳/ 金屬氫化物電池或電容器等任何其他能量存儲裝置,本實 • 施例中’該能量存儲裝置120為鋰/離子電池。 請參閱圖2及圖3,該太陽能電池單元13〇包括依次形 成於第一表面ll〇a上之背電極(Back Electrode或者rear ❹ surface electrode)層 130a、光伏半導體層(photovoltaic Semiconductor Layer)132、一透明導電層(Transparent Conductive Layer)134 及一前電極(Front Surface Eletrode) 層 130b 。 該背電極層130a之材料可為銀(Ag),銅(Cu),鉬 (Mo),鋁(A1),銅鋁合金(Cu-Al Alloy),銀銅合金(Ag-Cu Alloy),或者銅鉬合金(Cu-Mo Alloy)等。背電極層130a ❹可採用滅射(Sputtering )或者沉積(Deposition )之方法形 成0 該光伏半導體層132由一 N型半導體層、一 P型半導 體層以及位於其二者之間之PN結(PN junction)層構成。優 選地,該N型半導體層與p型半導體層分別係採用CVD等 方法形成之 N 型 -Si:H(Hydrogenated amorphous silicon, 即氫化非晶矽)或者p型α -Si:H。該PN結層係由該N型半 導體層與P型半導體層之間介面接觸而形成,該PN結層之 實際厚度要比N型半導體層與P型半導體層之厚度小很多。 8 200948186 … 可理解,該光伏半導體層132還可為PIN結構等任何 •其他薄型太陽能電池結構,只要能夠實現光電轉換於其背 電極層130a與前電極層130b之間形成電壓即可。 該透明導電層134可藉由銦錫氧化層(Indium Tin Oxide,ITO)或氧化鋅等材料製成。本實施例中,該透明導 . 電層134由ΙΤΟ製成。 ' 該前電極層130b為金屬柵電極,其材料可為銀、銅、 鉬、鋁、銅鋁合金、銀銅合金、或者銅鉬合金等。 ® 當然,該前電極層130b之形狀不限於此,只要能夠確 保該太陽能電池單元130之光伏半導體層130b能夠吸收足 夠之光即可。 該太陽能電池單元130藉由其前電極層130b及背電極 層130a分別連接到能量存儲裝置120之正負極,從而對能 量存儲裝置120充電。 該透明封裝體124與絕緣基板110之第一表面110a之 ❹周邊黏合以封裝太陽能電池單元130。 請參閱圖4,該金屬圖案層123具有數量與發光組件 140相同之電極片組125。該電極片組125由正電極片125a 及負電極片125b組成。為了便於設置發光組件140,該正 電極片125a及負電極片125b分別具有不同之圖案以區別 正負電極片。 該發光組件140藉由該金屬圖案層123與能量存儲裝 置120電連接以獲得工作電壓。當然,亦可沒有金屬圖案 層123,而係藉由導線將發光組件140與能量存儲裝置120 9 200948186 〃電連接以使該發光組件140獲得工作電壓。 • 該發光模組10之實際製作方法為: 於該絕緣基板110之第一表面110a上依次形成太陽能 電池單元130之背電極層130a、光伏半導體層132、透明 導電層134與前電極層130b ; 將透明封裝體124與絕緣基板110之第一表面110a之 周邊黏合以封裝太陽能電池單元130 ; 於絕緣基板110之第二表面110b上製作金屬圖案層 ❹ 123,並設置複數個發光組件140。 將能量存儲裝置120之正負極分別對應與金屬圖案層 123之正電極片125a及負電極片125b與太陽能電池單元 130之前電極層130b及背電極層130a電連接。 本發明第一實施例提供之發光模組10,將太陽能電池 單元130與發光組件140集成於一體封裝製造,製作簡單, 應用於產品上可實現產品薄型化。 Q 為了滿足實際對電壓之需求,亦可於絕緣基板110之 第一表面110a上形成複數個串聯之太陽能電池單元130。 請參閱圖5,其為本發明第二實施例提供之發光模組 20。該發光模組20與本發明第一實施例之發光模組10大 體上相同,其具有一具有第一表面210a及與第一表面210a 相對之第二表面210b之絕緣基板210、設於第一表面210a 上之太陽能電池單元230及設於第二表面210b上之金屬圖 案層223及設於金屬圖案層223上之至少一發光組件240, 該太陽能電池單元230具有背電極層230a、光伏半導體層 200948186 ,· 232、一透明導電層234及一前電極層230b,不同點在於: •該發光模組20具有串聯之兩太陽能電池單元230。該兩太 陽能電池單元230之背電極層與前電極層互相電接觸使得 該兩太陽能電池單元230串聯。 採用先前技術中光刻之方法於絕緣基板210之第一表 面210a上形成串聯之兩太陽能電池單元230。 具體地,於絕緣基板210之第一表面210a先形成一背 電極層230a,用鐳射刻出一第一隔離區域2102。 ❿ 繼續形成光伏半導體層232,採用鐳射於該隔離區域 2102之附近刻出一第二隔離區域2103。 繼續形成透明導電層234與前電極層230b,採用鐳射 於填充有透明導電物質之第二隔離區域2103内刻出一第三 隔離區域2104以形成串聯之兩太陽能電池單元230。 可理解,於絕緣基板210上形成串聯之兩太陽能電池 單元230之方法不限於此,該太陽能電池單元230之串聯 i^方式亦不限於此,於絕緣基板210上形成串聯之兩太陽能 電池單元230之方法有先前技術手段可實現。 於絕緣基板210之第一表面210a上形成串聯之兩太陽 能電池單元230並封裝,再於其第二表面210b上製作金屬 圖案層223並設置發光組件240。 可理解,採用上述之於絕緣基板210之第一表面210a 上形成串聯之兩太陽能電池單元230之方法亦可於絕緣基 板上形成兩以上串聯之太陽能電池單元。 當然,該發光模組20亦可包括兩以上串聯之太陽能電 11 200948186 ,.池單元230。 . 请參閱圖6,其為本發明第二實施例提供之發光模組 30。該發光模組30與本發明第一實施例之發光模組1Q大 體上相同,其具有能量存儲裝置32〇、太陽能電池單元33〇 及複數個發光組件340,不同點在於:該發光模組3〇進一 步包括一具有相對之第三表面350a及第四表面350b之印 刷電路板350及一設置於第三表面35〇a之充放電控制單元 360 ’該能量存儲裝置320設於第四表面350b。當然,該能 ©量存儲裝置320亦可設置於印刷電路板35〇之第三表面 350a。 該印刷電路板350具有一容置部351以容置太陽能電 池單元330與複數個發光組件340,該容置部351為一孔, 使得太陽能電池單元330與複數個發光組件340分別朝向 該印刷電路板350之兩側。 該充放電控制單元360用於精准控制太陽能電池單元 ❹330對能量存儲裝置320充電之過程與能量存儲裝置320 對發光組件340放電之過程。請參閱圖7,該充放電控制單 元 360 包括一第一 DC/DC 轉換器(DC/DC Converter)362、 一第二 DC/DC 轉換器 364、一 PWM 控制器(pulse widthThe invention relates to a lighting module, and more particularly to a lighting module having a solar cell. [Prior Art] With the promotion of energy conservation, more and more green energy is being exploited. As the most ideal green energy, solar energy is more and more applied to lighting devices such as street lamps, floor lamps, and airport lights, providing the lighting devices with the energy needed for nighttime illumination. For the structure of solar cells, please refer to the article published in the IEEE 4th World Conference on Photovoltaic Energy Conversion 2006 Amorphous-Silicon / Polymer Solar Cells and Key Design Rules for Hybrid Solar Cells. At present, solar-powered lighting devices such as solar street lamps are widely used in the market, and the solar panels, power storage devices and lighting devices are generally separately manufactured, and then mounted on the poles of the solar street lamps. The solar powered lighting device is bulky and costly to set up. ® [Invention] In view of the above, it is necessary to provide a thin-formed light-emitting module having a solar cell. An illuminating module includes: an insulating substrate having a first surface and a second surface opposite to the first surface; an energy storage device; at least one solar cell unit on the insulating substrate a first surface, the at least one solar cell unit has a front electrode layer, a back electrode layer and a photovoltaic semiconductor layer between the front electrode and the back electrode layer, 6 200948186 'The 刖 electrode layer and the back electrode layer and energy The storage device is electrically connected to charge it; and at least one light emitting component is disposed on the second surface of the insulating substrate and electrically connected to the energy storage device to obtain an operating voltage. The light-emitting module provided by the present invention integrates at least one light-emitting component with at least one solar cell unit having a thin structure whose thickness is less than the order of millimeters, even up to the micron level, and is suitable for many types of thin lamps requiring illumination. In the product, such as a backlight module of a mobile phone, and the light-emitting module is thinned, it can be integrally packaged, and the manufacturing cost 10 is also greatly reduced. [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1 , a light-emitting module 10 ′ according to a first embodiment of the present invention includes: an insulating substrate 110 having a first surface 110 a and a second surface 110 b , an energy storage device 120 , and a first A solar cell unit 130 on a surface 110a, a transparent package 124 for encapsulating the solar cell unit 130, a metal pattern layer 123 on the second surface 110b, and a plurality of light-emitting components 140 disposed on the metal pattern layer 123. In this embodiment, the light emitting component 140 is an LED chip. Of course, the light-emitting component 140 can also be any other component that can be illuminated after being energized, such as a packaged LED lamp or an incandescent lamp. The insulating substrate 110 may be made of a hard plate material or a soft plate material. The soft board material may be Polyimide, Polythylene terephthalate (PET), Polycarbonate (PC), Polymethyl Methacrylate. , 7 200948186 PMMA), borne by Arton 'Norbornene, etc. The hard plate material can be ceramic, glass, quartz, or the like. In this embodiment, the insulating substrate 11 is made of glass. The energy storage device 120 can be any other energy storage device such as a lead storage battery, a lithium/ion battery, a nickel/metal hydride battery, or a capacitor. In the present embodiment, the energy storage device 120 is a lithium/ion battery. Referring to FIG. 2 and FIG. 3, the solar cell unit 13 includes a back electrode (rear ❹ surface electrode) layer 130a and a photovoltaic semiconductor layer 132, which are sequentially formed on the first surface 110a. A Transparent Conductive Layer 134 and a Front Surface Eletrode layer 130b. The material of the back electrode layer 130a may be silver (Ag), copper (Cu), molybdenum (Mo), aluminum (A1), copper-aluminum alloy (Cu-Al Alloy), silver-copper alloy (Ag-Cu Alloy), or Copper-molybdenum alloy (Cu-Mo Alloy). The back electrode layer 130a may be formed by sputtering or deposition (deposition). The photovoltaic semiconductor layer 132 is composed of an N-type semiconductor layer, a P-type semiconductor layer, and a PN junction (PN) therebetween. Junction) layer composition. Preferably, the N-type semiconductor layer and the p-type semiconductor layer are respectively N-type:Si:H (hydrogenated amorphous silicon) or p-type α-Si:H formed by a method such as CVD. The PN junction layer is formed by the interface between the N-type semiconductor layer and the P-type semiconductor layer, and the actual thickness of the PN junction layer is much smaller than the thickness of the N-type semiconductor layer and the P-type semiconductor layer. 8 200948186 ... It can be understood that the photovoltaic semiconductor layer 132 can also be any other thin solar cell structure such as a PIN structure, as long as photoelectric conversion can be performed between the back electrode layer 130a and the front electrode layer 130b. The transparent conductive layer 134 can be made of a material such as Indium Tin Oxide (ITO) or zinc oxide. In this embodiment, the transparent conductive layer 134 is made of tantalum. The front electrode layer 130b is a metal gate electrode, and the material thereof may be silver, copper, molybdenum, aluminum, copper-aluminum alloy, silver-copper alloy, or copper-molybdenum alloy. ® Of course, the shape of the front electrode layer 130b is not limited thereto as long as it can be ensured that the photovoltaic semiconductor layer 130b of the solar cell unit 130 can absorb sufficient light. The solar cell unit 130 is connected to the positive and negative electrodes of the energy storage device 120 by its front electrode layer 130b and the back electrode layer 130a, respectively, thereby charging the energy storage device 120. The transparent package 124 is bonded to the periphery of the first surface 110a of the insulating substrate 110 to encapsulate the solar cell unit 130. Referring to FIG. 4, the metal pattern layer 123 has the same number of electrode sheets 125 as the light-emitting assembly 140. The electrode sheet group 125 is composed of a positive electrode sheet 125a and a negative electrode sheet 125b. In order to facilitate the arrangement of the light-emitting assembly 140, the positive electrode sheet 125a and the negative electrode sheet 125b have different patterns to distinguish the positive and negative electrode sheets, respectively. The light emitting component 140 is electrically connected to the energy storage device 120 by the metal pattern layer 123 to obtain an operating voltage. Of course, the metal pattern layer 123 may be omitted, and the light-emitting assembly 140 is electrically connected to the energy storage device 120 9 200948186 by wires to obtain the operating voltage of the light-emitting assembly 140. The actual manufacturing method of the light-emitting module 10 is: sequentially forming a back electrode layer 130a, a photovoltaic semiconductor layer 132, a transparent conductive layer 134 and a front electrode layer 130b of the solar cell 130 on the first surface 110a of the insulating substrate 110; The transparent package 124 is bonded to the periphery of the first surface 110a of the insulating substrate 110 to encapsulate the solar cell unit 130; the metal pattern layer 123 is formed on the second surface 110b of the insulating substrate 110, and a plurality of light emitting components 140 are disposed. The positive and negative electrodes of the energy storage device 120 are electrically connected to the positive electrode sheet 125a and the negative electrode sheet 125b of the metal pattern layer 123 and the front electrode layer 130b and the back electrode layer 130a of the solar cell unit 130, respectively. The light-emitting module 10 according to the first embodiment of the present invention integrates the solar cell unit 130 and the light-emitting component 140 into an integrated package, which is simple to manufacture and can be thinned on the product. In order to meet the actual voltage demand, a plurality of tandem solar cells 130 may be formed on the first surface 110a of the insulating substrate 110. Please refer to FIG. 5, which is a light emitting module 20 according to a second embodiment of the present invention. The illuminating module 20 is substantially the same as the illuminating module 10 of the first embodiment of the present invention, and has an insulating substrate 210 having a first surface 210a and a second surface 210b opposite to the first surface 210a. a solar cell unit 230 on the surface 210a, a metal pattern layer 223 disposed on the second surface 210b, and at least one light emitting component 240 disposed on the metal pattern layer 223. The solar cell unit 230 has a back electrode layer 230a and a photovoltaic semiconductor layer. 200948186, 232, a transparent conductive layer 234 and a front electrode layer 230b, the difference is: • The light-emitting module 20 has two solar cells 230 connected in series. The back electrode layer of the two solar cells 230 and the front electrode layer are in electrical contact with each other such that the two solar cells 230 are connected in series. Two solar cells 230 connected in series are formed on the first surface 210a of the insulating substrate 210 by photolithography in the prior art. Specifically, a back electrode layer 230a is formed on the first surface 210a of the insulating substrate 210, and a first isolation region 2102 is laser-etched. ❿ The photovoltaic semiconductor layer 232 is further formed, and a second isolation region 2103 is carved in the vicinity of the isolation region 2102 by laser. The transparent conductive layer 234 and the front electrode layer 230b are further formed, and a third isolation region 2104 is formed by laser implantation in the second isolation region 2103 filled with the transparent conductive material to form two solar cells 230 in series. It is to be understood that the method of forming the two solar cells 230 in series on the insulating substrate 210 is not limited thereto, and the series connection of the solar cells 230 is not limited thereto, and two solar cells 230 connected in series are formed on the insulating substrate 210. The method is achievable by prior art means. Two solar cells 24 in series are formed on the first surface 210a of the insulating substrate 210 and packaged, and a metal pattern layer 223 is formed on the second surface 210b thereof and the light emitting assembly 240 is disposed. It can be understood that the method of forming the two solar cells 230 in series on the first surface 210a of the insulating substrate 210 can also form two or more solar cells connected in series on the insulating substrate. Of course, the light-emitting module 20 can also include more than two solar cells 11 200948186 in series. Please refer to FIG. 6, which is a light emitting module 30 according to a second embodiment of the present invention. The light-emitting module 30 is substantially the same as the light-emitting module 1Q of the first embodiment of the present invention, and has an energy storage device 32, a solar battery unit 33, and a plurality of light-emitting components 340, except that the light-emitting module 3 The device further includes a printed circuit board 350 having a third surface 350a and a fourth surface 350b opposite to each other and a charge and discharge control unit 360 disposed on the third surface 35A. The energy storage device 320 is disposed on the fourth surface 350b. Of course, the energy storage device 320 can also be disposed on the third surface 350a of the printed circuit board 35A. The printed circuit board 350 has a receiving portion 351 for accommodating the solar battery unit 330 and the plurality of light-emitting components 340. The receiving portion 351 is a hole, such that the solar battery unit 330 and the plurality of light-emitting components 340 are respectively facing the printed circuit. Both sides of the board 350. The charge and discharge control unit 360 is for accurately controlling the process in which the solar battery unit ❹ 330 charges the energy storage device 320 and the process in which the energy storage device 320 discharges the light assembly 340. Referring to FIG. 7, the charge and discharge control unit 360 includes a first DC/DC converter (362), a second DC/DC converter 364, and a PWM controller (pulse width).

Modulation Controller,即脈寬調製控制器)366。 该太%能電池單元330與能量存儲裝置320之間藉由 第一 DC/DC轉換器362電連接,該能量存儲裝置32〇與複 數個發光組件340之間藉由第二DC/DC轉換器364電連接。 該PWM控制器366分別與能量存儲事置320、第一 12 200948186 • · 00/0(:轉換器362、1^0發光組件340以及第二00:/0(:轉 •換器364電連接,其工作方法為: 於充電模式下,該PWM控制器366由能量存儲裝置 320獲得一電壓回饋訊號VF與一電流回饋訊號IF,從而提 供給第一 DC/DC轉換器362 —第一 PWM輸出訊號I以控 制太陽能電池單元330對能量存儲裝置320充電之過程。 於放電模式下,該PWM控制器366由發光組件340 獲得一輝度回饋訊號LF,從而提供給第二DC/DC轉換器 ❾ 364 —第二PWM輸出訊號II以控制發光組件340之輝度。 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化,皆 應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 Q 圖1係本發明第一實施例提供之發光模組之示意圖, 該發光模組具有絕緣基板、太陽能電池單元及金屬圖案層。 圖2係本發明第一實施例提供之發光模組之絕緣基板 與太陽能電池單元之示意圖,該太陽能電池單元具有前電 極層。 圖3係本發明第一實施例提供之發光模組之太陽能電 池之前電極層之示意圖。 圖4係本發明第一實施例提供之發光模組之金屬圖案 層之示意圖。 13 200948186 圖5係本發明第二實施例提供之發光模組之示意圖。 圖6係本發明第三實施例提供之發光模組之示意圖。 圖7係本發明第三實施例提供之發光模組之工作方法 不意圖 【主要組件符號說明】Modulation Controller, ie pulse width modulation controller) 366. The solar cell unit 330 and the energy storage device 320 are electrically connected by a first DC/DC converter 362. The energy storage device 32 is coupled to the plurality of light-emitting components 340 by a second DC/DC converter. 364 electrical connections. The PWM controller 366 is electrically connected to the energy storage device 320, the first 12 200948186 • · 00/0 (: the converter 362, the 1 0 light emitting component 340, and the second 00: / 0 (: converter 364) The working method is as follows: In the charging mode, the PWM controller 366 obtains a voltage feedback signal VF and a current feedback signal IF from the energy storage device 320, thereby providing the first DC/DC converter 362 to the first PWM output. The signal I controls the process of charging the energy storage device 320 by the solar battery unit 330. In the discharge mode, the PWM controller 366 obtains a luminance feedback signal LF from the light-emitting component 340 to provide the second DC/DC converter ❾ 364. The second PWM output signal II controls the luminance of the light-emitting component 340. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above is only a preferred implementation of the present invention. In this way, the scope of the patent application in this case is not limited by this. Any equivalent modifications or variations made by those skilled in the art to the spirit of the present invention should be covered by the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a light emitting module according to a first embodiment of the present invention, the light emitting module having an insulating substrate, a solar cell unit and a metal pattern layer. FIG. 2 is a light emitting provided by the first embodiment of the present invention. A schematic diagram of an insulating substrate and a solar cell unit of the module, the solar cell unit having a front electrode layer. Fig. 3 is a schematic view showing a front electrode layer of a solar cell of the light emitting module according to the first embodiment of the present invention. A schematic diagram of a metal pattern layer of a light-emitting module provided by an embodiment. 13 200948186 FIG. 5 is a schematic diagram of a light-emitting module according to a second embodiment of the present invention. FIG. 6 is a schematic diagram of a light-emitting module according to a third embodiment of the present invention. Figure 7 is a schematic diagram of the operation method of the light-emitting module according to the third embodiment of the present invention. [Main component symbol description]

發光模組 10 、 20 、 30 絕緣基板 110 、 210 第一表面 110a 、 210a 第二表面 110b 、 210b 能量存儲裝置 120 、 320 太陽能電池單元 130 、 230 ' 330 透明封裝體 124 金屬圖案層 123 、 223 發光組件 140 ' 240 ' 340 背電極層 130a、230a 光伏半導體層 132 ' 232 透明導電層 134 、 234 前電極層 130b 、 230b 電極片組 125 正電極片 125a 負電極片 125b 第一隔離區域 2102 第二隔離區域 2103 第三隔離區域 2104 200948186 印刷電路板 350 第三表面 350a 第四表面 350b 充放電控制單元 360 容置部 351 第一 DC/DC轉換器 362 第二DC/DC轉換器 364 PWM控制器 366Light-emitting module 10, 20, 30 Insulating substrate 110, 210 First surface 110a, 210a Second surface 110b, 210b Energy storage device 120, 320 Solar battery unit 130, 230' 330 Transparent package 124 Metal pattern layer 123, 223 Light Component 140 '240' 340 Back electrode layer 130a, 230a Photovoltaic semiconductor layer 132' 232 Transparent conductive layer 134, 234 Front electrode layer 130b, 230b Electrode chip group 125 Positive electrode sheet 125a Negative electrode sheet 125b First isolation region 2102 Second isolation Area 2103 Third isolation area 2104 200948186 Printed circuit board 350 Third surface 350a Fourth surface 350b Charge and discharge control unit 360 accommodating portion 351 First DC/DC converter 362 Second DC/DC converter 364 PWM controller 366

1515

Claims (1)

200948186 十、申請專利範圍: ’其包括:200948186 X. Patent application scope: ‘It includes: 1. 一發光模組,其包括: 一絕緣基板, 第二表面; 一能量存儲裝置; ’其設置於該絕緣基板之第一表A lighting module comprising: an insulating substrate, a second surface; an energy storage device; and a first table disposed on the insulating substrate 至少一太陽能電池單元, 面,該至少一太陽能電池 層與一位於該前雷搞你我 發光組件,其設置於該絕緣基板之第二表面且與該 能量存儲裝置電連接以獲得工作電壓。 、 2·如申請專利範圍第i項所述之發光模組,其中,該絕緣 基板之第二表面形成有一金屬圖案層,其具有數量與該發 光組件相同之電極片組,該電極片組具有正電極片及負電 ❿極片,該發光組件藉由該正電極片及負電極片與該能量存 儲裝置電連接。 3. 如申請專利範圍第i項所述之發光模組,其中,該至少 一太陽能電池單元為複數個太陽能電池單元,相鄰兩太陽 月b電池單元之前電極層與背電極層互相電連接以使得該複 數個太陽能電池單元串聯。 4. 如申请專利範圍第1項所述之發光模組,其中,該光伏 半導體層具有一 N型半導體層、一;P型半導體層以及位於 其二者之間之PN結層。 16 200948186 5:如申μ專利範圍第i項所述之發光模組,其中,該發光 模㈣-步包括-透㈣裝體’其與該絕緣基板匹配黏合 以封裝該至少一太陽能電池單元。 6.如申請專利範圍第w所述之發紐組,其中,該發光 模組進-步包括—印刷電路板與—充放電控制單元,該印 刷電路板板具有-容置部以容置該絕緣基板及其上之太陽 ί電,單元與發光組件,該容置部為-孔,該太陽能電池At least one solar cell unit, the at least one solar cell layer and a front light-emitting component disposed on the second surface of the insulating substrate and electrically connected to the energy storage device to obtain an operating voltage. The illuminating module of claim 1, wherein the second surface of the insulating substrate is formed with a metal pattern layer having the same number of electrode sheets as the light emitting unit, the electrode sheet group having The positive electrode tab and the negative electrode tab are electrically connected to the energy storage device by the positive electrode tab and the negative electrode tab. 3. The illuminating module of claim 1, wherein the at least one solar cell unit is a plurality of solar cell units, and the electrode layer and the back electrode layer are electrically connected to each other before the adjacent two solar cells. The plurality of solar cells are connected in series. 4. The lighting module of claim 1, wherein the photovoltaic semiconductor layer has an N-type semiconductor layer, a P-type semiconductor layer, and a PN junction layer therebetween. The light-emitting module of claim 4, wherein the light-emitting module (four)-step comprises a through-four (substrate) that is adhesively bonded to the insulating substrate to encapsulate the at least one solar cell. 6. The illuminating module of claim 12, wherein the illuminating module further comprises a printed circuit board and a charging and discharging control unit, the printed circuit board having a receiving portion for accommodating the The insulating substrate and the solar cell thereon, the unit and the light emitting component, the receiving portion is a hole, the solar cell 早疋、,發光組件分別朝向該印刷電路板之兩側,該充放 電控制單用力控制該太陽能電池單元對該能量存儲裝置 充電之過程與該能量存儲裝置對發光組件放電之過程,該 充放電控制單元及該能量存儲裝置設置於該印刷電路板 上。 8.如申料利範圍第7項所述之發光模組,其巾,該 ❾基板由陶瓷、玻璃或石英製成。 =如申睛專利範圍第7項所述之發光模組,其中,該柔性 :板由_亞胺、聚對苯酸乙二酯、聚碳酸醋 基丙烯酸〒酯或冰片烯製成。 r 17The light-emitting component is respectively directed to two sides of the printed circuit board, and the charge and discharge control unit controls the process of charging the energy storage device by the solar battery unit and the process of discharging the light-emitting component by the energy storage device. The control unit and the energy storage device are disposed on the printed circuit board. 8. The illumination module of claim 7, wherein the substrate is made of ceramic, glass or quartz. The light-emitting module of claim 7, wherein the flexible: plate is made of imines, polyethylene terephthalate, decyl acrylate or borneol. r 17
TW97116304A 2008-05-02 2008-05-02 Lighting module TW200948186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97116304A TW200948186A (en) 2008-05-02 2008-05-02 Lighting module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97116304A TW200948186A (en) 2008-05-02 2008-05-02 Lighting module

Publications (1)

Publication Number Publication Date
TW200948186A true TW200948186A (en) 2009-11-16

Family

ID=44870488

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97116304A TW200948186A (en) 2008-05-02 2008-05-02 Lighting module

Country Status (1)

Country Link
TW (1) TW200948186A (en)

Similar Documents

Publication Publication Date Title
CN101561105B (en) Lightening module
RU2521219C2 (en) Efficient led array
CN101566303B (en) Illuminating device
US8304798B2 (en) Light-emitting diode module and manufacturing method thereof
US8901581B2 (en) Semiconductor light emitting device having multi-cell array and manufacturing method thereof, light emitting module, and illumination apparatus
CN101533884A (en) Light emitting diode packaging structure and manufacturing method thereof
TW200824138A (en) Solar-powered illuminator
WO2006011525A1 (en) Light-emitting module and light-emitting system
CN108365080A (en) MicroLED or mini LED encapsulation structures
CN1993836A (en) Light-emitting module and light-emitting system
CN101577272B (en) Luminescence module
US7972025B2 (en) Light emitting diode device
TW201126693A (en) Top view type of light emitting diode package structure and fabrication thereof
TW201133961A (en) Pre-casting formation multi-die loading module of leadframe type
TW200948186A (en) Lighting module
CN105870114B (en) Luminescent device and preparation method thereof, light-emitting device
CN201243024Y (en) Non-throwing encapsulation structure of LED
CN2852395Y (en) Red, green, blue chips integrated silicon chip
JP2005116324A (en) Composite battery and electronic equipment containing it
CN208014743U (en) MicroLED or mini LED encapsulation structures
CN201966250U (en) LED (Light Emitting Diode) light emitting module with favorable heat radiation
CN201982991U (en) Light-emitting diode (LED) area light source
TWI355067B (en) Light source device, light source module and metho
CN205014133U (en) Can strengthen LED integrated optical source of reliability
TWI582334B (en) All week LED bulb lights