TW200947319A - Image data transmission system - Google Patents

Image data transmission system Download PDF

Info

Publication number
TW200947319A
TW200947319A TW97116776A TW97116776A TW200947319A TW 200947319 A TW200947319 A TW 200947319A TW 97116776 A TW97116776 A TW 97116776A TW 97116776 A TW97116776 A TW 97116776A TW 200947319 A TW200947319 A TW 200947319A
Authority
TW
Taiwan
Prior art keywords
light
emitting units
image
image data
data transmission
Prior art date
Application number
TW97116776A
Other languages
Chinese (zh)
Inventor
Min-Xiang Huang
Ming-Zhi Lu
qi-zhang Huang
Wei-Yan Wang
Chen-Jian Xu
Ying-Yu Lu
Original Assignee
Ming-Zhi Lu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ming-Zhi Lu filed Critical Ming-Zhi Lu
Priority to TW97116776A priority Critical patent/TW200947319A/en
Publication of TW200947319A publication Critical patent/TW200947319A/en

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

This invention provides an image data transmission system comprising a light encoding device having a plurality of light emitting units arranged in a predetermined sequence for generating light signals of a plurality of variances, a driving unit for converting a set of input signal into a plurality of control signals to control the on/off states of the light emitting units, an image recognition device having an image capturing unit for capturing a picture including the images of the light emitting units, and a calculating unit for recognizing the images of the light emitting units in the picture and generating a set of output signals. This invention also provides an image data transmission method.

Description

200947319 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種影像數據傳輸系統與方法,特别 是一種利用影像辨識技術進行遠距數據傳輸之影像數 傳輸系統與方法。 【先前技術】 山坡地容易受地震或其他自然災害的影響而產生坡 地移動的現象,當坡地移動時會造成地貌的變化,並造 成龐大的財產與生命的損失。因此,對於坡地災害的研 九與防制係為目别環境保護工作中重要的一環。 目前有關坡地災害的防治與監測,都把攝影機當做 基本配置,用以監視待測區坡地的地形地貌的變化情 形。再設置不同的量測儀器用以觀察坡地的各項數值^ 化,例如設置地滑計以量測坡地滑動的位移詈,势罢藤200947319 IX. Description of the Invention: [Technical Field] The present invention relates to an image data transmission system and method, and more particularly to an image number transmission system and method for remote data transmission using image recognition technology. [Prior Art] Hillside land is susceptible to the movement of slopes due to earthquakes or other natural disasters. When the slopes move, it will cause changes in landforms and cause huge loss of property and life. Therefore, the research and control system for slope disasters is an important part of the environmental protection work. At present, the prevention and monitoring of sloping land disasters all use the camera as a basic configuration to monitor the changes in the topography of the slopes in the area to be tested. Then set different measuring instruments to observe the numerical values of the slopes. For example, set the ground sliding gauge to measure the displacement of the slopes.

然在使用上較為方便 私響而損毁。^鱗的ϋ訊網路雖 ’但無線通訊設備運作時所需電力 200947319 十分龐大,且其設備亦較為複雜,因此當在各個 置上设置無線通訊設備時易受電力以及設置成的= 制,因而無法達到預期的成效。 、义 右想把1測數據顯示於影像晝面中,就必須 同系統的規格,建立彼此可以互通的協定。若其他系 想要分享所S集的數據時,則又必廳定資料的格f 使得目前各種研究計晝或整治計晝,只要執行單 ❹ ❹ 樣’所用設備不同,所寫程式語言不同,都無法直 成自動化資料共享的功能。 70 【發明内容】 本發明之目的在㈣遠距方式即時監測坡地的 =’:如地滑位移量、地下水位、降雨量或坡地傾斜 度等’ Μ贼目坡地移動所造紅災害 數值對於坡地的影響。 人匕綠谷種 本發明之另—目的在於提供—種可 測裝置所產生數值的_數據傳齡統,哺低 較簡易的維護需求進行傳輸系統的設置。 與 為^上述目的’本發明係提供—種影像數據傳輸 系統,包括:-燈光編碼裝置,具有複數個依預設 單元用以產生具有複數種變化之光訊號,以 = 組輪入訊號轉為複數個控制訊號 用以控制則輕數個發光單元的明滅;以及 3元ίί像ϋ摘取單元用以擷取包含前述複數個發 ίΠί:晝面’以及一計算單元用以辨識前述書 面中複數個發光單元的影像並產生—組輸出訊號。- 200947319 為制上述目的,本㈣復提供—郷像數據傳輸 方法,包括H組輸人訊號,鱗換為複數個控制 訊號;根據前述複數個控制訊號控制複數個依預設順序 排列之發光單元的明滅;擷取包含前述複數個發光單元 之影像的晝面;辨識前述晝面中前述複數個發光單元的 影像之光訊號;以及根據所辨識的光訊號產生一组輸 訊號。 综上所述,本發明之影像數據傳輸系統與方法可在 罾 坡地的各感測裝置設置燈光編碼裝置,例如燈光柱,將 感測裝置所測得數值轉換為燈光編碼,並在遠端的影像 辨識裝置以影像辨識的方式將該燈光編碼裝置的燈光編 碼還原為感測裝置所測得數值,且利用該影像辨識裝置 可進一步觀察坡地的地表變化,致使影像擷取單元所拍 攝的影像晝面,把原本只做地形地貌監看的功能,提升 到以影像晝面完成數據通訊的應用。 ^ 【實施方式】 雖然本發明將參閱含有發明較佳實施例之所 附圖式予以充分描述,但在此描述之前應瞭解熟 悉本行技藝之人士可修改本文中所插述之發明, 同時獲致本發明之功效。因此,需瞭解以下之描 述對熟悉本行技藝之人士而言為一廣泛之揭示, 且其内容不在於限制本創作。 本發明可將各種量測儀器量測待測區坡地所 得的量測值轉換成光訊號,並以不同顏色的高輝 度LED分別代表邏輯1和邏輯〇,再藉由影像擷取 7 200947319 裝置’例如攝影機,擷取包含該等高輝度LED的 影像畫面’提供遠端管理員以影像辨識的方法辨 1该影像畫面所擷取的光訊號,以同時完成影像 監看與量測數據通訊傳遞的功能。 /參考第一圖為本發明一實施例之影像數據傳 輸系統與方法的系統架構圖,包括複數個燈光編 碼褒置10、一影像辨識裝置20與複數個轉換裝置 . 30。其中,每一燈光編碼裝置1〇係經由對應的轉 換裝置30與複數個感測裝置4〇電性耦合,以將該 等感測裝置40所輸出感測訊號轉換並輸出具有複 數種變化之光訊號,而該影像辨識裝置20則擷取 包含該等燈光編碼裝置10的畫面,並對該晝面進 行影像辨識,以將該等燈光編碼裝置1〇所產生的 光訊號轉換為一輸出數位訊號。 該影像辨識裝置20係可包括一計算單元(圖中 未顯=)與一影像擷取單元(圖中未顯示)。該影像 魯 揭取單元可為攝影機、相機或一般影像擷取裝置 即可擷取包含該等影像編碼裝置1〇的晝面,再由 該計算單元以一般習知影像辨識技術即可辨識該 晝面中該等燈光編碼裝置1〇的光訊號,並轉換為 一輪出數位訊號,其中由於影像辨識技術為—^ 展純熟之習知技術,因此本發明在影像辨 即不再予贅述。 。丨刀 、 而該等感測裝置40係架設於待測區坡地,用 以偵測待測區坡地的各項數值變化,以提供管理 員作為監測及預防坡地災害的依據。其中,^等 200947319 感測f置40包括地滑計用以量測坡地滑動的位移 量’壓力式水位計用以監測地下水位的高低及升 降速度,雨量計用以量測地表上的降雨量、或傾 斜量測儀、時域反射儀等分別測量所需之坡地次 訊。 貝 參考第二圖為本發明一實施例之燈光編碼裝 置1〇與轉換裝置30的功能方塊圖。由於各種量測 儀器的量測原理及處理電路的不同,使得其輸出方 ❹ 式也不相同。目前各種量測儀器輸出信號的種類, 主要可以分電壓輸出、電流輸出、脈波輸出與數位 值輸出等四大類。本發明即採取二進制編&的方 式’將各感測裝置40的輸出信號,都轉換成二進 制編碼的形式’以利用最少的高輝度led得到最 大的編碼值。 參考第二圖中的轉換裝置30,包括二進碼輸 入埠31、電壓輸入埠32、電流輸入埠33、脈波輸 入琿34以及BCD碼輸入槔35。其中,該二進碼‘ 入蜂31係用以在感測裝置4 0輸出二進制編碼的量 測數據時直接將該量測數據傳送至該燈光編碼裝 置10,該電壓輸入埠32係用以在感測震置出 電壓形式的量測數據時’將電壓經由—類比^^立 轉換器(ADC)38轉換為一二進制編碼的數位訊 號;該脈波輸入瑋34則用以在感測裝置輸出電 流形式的量測數據時’先將電流提供至一電^ Rs 以產生對應之電壓’再將該電壓傳送至該類比數S 位轉換器38’以轉換為一二進制編碼的數位訊 200947319 號;該脈波輸入埠34係用以在感測裝置4〇輸出脈 波形式的量測數據時,先將脈波由頻率電壓轉換 器(IF/VC)36做頻率與電壓的轉換,再將轉換後的 電壓送至該類比數位轉換器38,以轉換為一'二進 制編碼的數位訊號;而該BCD碼輸入'35 ^ 在感測裝置40輸出BCD碼形式的量測數據^,直 接經由一 BCD碼對二進制碼轉換器37將BCD碼 轉換為二進制編碼的數位訊號再傳送至該燈光編 譬 碼裝置10。 因此,藉由轉換裝置30將不同輸出類型的感 測裝置40 #輸出信號全部轉換成二進制編碼的數 位訊號,致使該燈光編碼裝置1〇可顯示單一規格 之—進制編碼的影像圖形。 復參考第二圖中的燈光編碼裝置1〇,每一燈 光編碼裝置10係包含一燈光編碼柱u與一驅動$ 元12。該燈光編碼柱u係包括複數個依預設順序 Φ ^列之發光單元111 ’用以提供複數種變化的光訊 號,而該驅動單元12則接收該等感測裝置3〇所提 ,之數位訊號,並根據該數位訊號驅動該等發光 單元Π1的明滅,以產生該光訊號。 在本發明一實施例中,每一個發光單元丨1丨係 包含一紅色與一藍色高輝度LED,用以分別代表 邏輯1,和邏輯〇,且該等發光單元lu係採直線排 列並形成以紅光與藍光為組成的燈光編碼柱。燈 光,碼柱所發出的紅光或藍光,咢對應到量測值 的二進制編碼,則於影像畫面上將顯示燈光編碼 200947319 柱的影像圖形,此時只要以紅色、藍色做為判讀 的依據,便能得知所對應量測值。且該等發光單 元111進一步可以定電流源為驅動電源,致使每個 發光單元111所產生之光源照度相同,以增加該影 像辨識裝置20在影像辨識時的準確度。 而在本發明一實施例中,可進一步將該燈光 編碼柱11的發光單元111之間距設定為可因該影 像辨識裝置20的攝影距離的遠近而調整,.致使每 ❹ 一個燈光編碼柱11的發光單元在該影像辨識裝置 20所擷取的晝面中佔據相同的像素面積,由於該 等燈光編碼裝置10在設置完成之後,在影像辨識 裝置20所擷取之晝面中的像素位置即為固定,因 此本發明之影像辨識裝置20即以辨認框的方式在 晝面中僅針對特定像素位置進行影像辨識,以降 低計算單元在影像辨識所需之計算成本。 參考第三圖為本發明一實施例調整辨認框之 示意圖。在該影像辨識裝置20所擷取的晝面中設 ® 置一可任意調整長、寬並自由移動的辨認框,將辨 認框移到燈光編碼柱Π影像圖形所在的位置,並 調整辨認框的長、寬尺寸,使每一個燈光編碼裝柱 11的影像圖形,都位於所設定的辨認框之中,如第 四圖所示。而設定好每一組辨認框以後,該影像辨 識裝置20的計算單元即可直接針對各辨認框進行 影像辨識,以將各燈光編碼柱11的光訊號轉換為 輸出數位訊號。 參考第三圖甲影像辨識裝置20所擷取的晝 11 200947319 面,位置p〇所形成的長條形為空白的辨認框,具 有移位功能,致使辨認框可移到晝面的任何位置 上,並且以改變辨認框的大小,例如上拉、下拉、 左拉、右拉等設定功能。致使該影像辨識裝置20 可依實際燈光編碼柱11的影像圖形大小,調整辨 認框的所涵蓋的面積。則各位置所設定的辨認框長 條形(PI、P2、P3、P4),將有其固定的座標值,可 用以代表該儀器所對應的確認編號(ID碼),而其光 ❹ 訊號所對應的數位訊號,則為各儀器量測結果的二 進碼。 而該影像辨識裝置20有了辨認框的設定功能 後,就不必做全晝面的影像圖形辨識,而是只針對 固定位置,固定面積的影像資料,做顏色和亮度的 比較,且已先有最小解析度的確認,所以確定可以 快速的取得其正確的二進碼而得知該ID碼對應的 感測裝置40的量測數據。 在本發明一實施例中,該等燈光編碼裝置10 ® 與該影像辨識裝置20可經由適度調整,致使該等 燈光編碼柱11的影像圖形出現於該影像辨識裝置 20所擷取影像的外圍區域,以避免影響管理員經 由該晝面監視待測區坡地的地表情形。However, it is more convenient to use and is damaged. Although the network of the scales is 'but the power required for the operation of the wireless communication equipment 200947319 is very large, and the equipment is also complicated, so when the wireless communication equipment is set up in each setting, it is susceptible to power and set to =, Therefore, the expected results cannot be achieved. Righteousness, if you want to display the 1 test data in the image, you must establish the agreement that can communicate with each other. If other departments want to share the data of the S set, then the data f of the required data will make the current research or rectification of the various studies, as long as the device used is different, the programming language is different. Can not directly become an automatic data sharing function. [Summary of the Invention] The object of the present invention is to (4) remotely monitor the slope of the slope = ': such as ground sliding displacement, groundwater level, rainfall or slope inclination, etc. Impact. Human Green Valley Seeds Another object of the present invention is to provide a data ageing system for the values produced by the measurable device, and to facilitate the setting of the transmission system with relatively simple maintenance requirements. And an image data transmission system provided by the present invention for the above purpose, comprising: - a light coding device having a plurality of preset units for generating optical signals having a plurality of variations, wherein the group turn signals are converted to A plurality of control signals are used to control the extinction of the light-emitting units; and a 3-element ϋ ϋ ϋ ϋ 单元 撷 包含 包含 包含 包含 包含 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及 以及The image of the illumination unit generates a set of output signals. - 200947319 In order to achieve the above purposes, the present (4) re-supplied - image data transmission method, including H group input signals, scales are converted into a plurality of control signals; and a plurality of light-emitting units arranged in a predetermined order are controlled according to the plurality of control signals The image of the image of the plurality of light-emitting units is identified; the light signal of the image of the plurality of light-emitting units in the front surface is identified; and a set of signal signals is generated based on the identified light signal. In summary, the image data transmission system and method of the present invention can provide a light coding device, such as a light column, on each sensing device on the slope land, and convert the value measured by the sensing device into a light code, and at the far end. The image recognition device restores the light code of the light coding device to the value measured by the sensing device by means of image recognition, and the image recognition device can further observe the surface change of the slope, and cause the image captured by the image capturing unit. In the face, the function of monitoring only the terrain and terrain is upgraded to the application of data communication with image scanning. The present invention will be fully described with reference to the accompanying drawings in which the preferred embodiments of the invention are described, but it should be understood that those skilled in the art can modify the inventions disclosed herein and obtain The efficacy of the invention. Therefore, it is to be understood that the following description is a broad disclosure of those skilled in the art and is not intended to limit the invention. The invention can convert various measurement instruments to measure the measured value of the slope of the area to be tested into an optical signal, and represent the logic 1 and the logic 以 with high-intensity LEDs of different colors respectively, and then capture the image by the image 7 200947319 device' For example, the camera captures the image of the high-intensity LED, and provides the remote administrator with the image recognition method to identify the optical signal captured by the image, so as to complete the image monitoring and measurement data communication at the same time. Features. The first diagram is a system architecture diagram of an image data transmission system and method according to an embodiment of the present invention, including a plurality of lighting coding devices 10, an image recognition device 20, and a plurality of conversion devices. Each of the light encoding devices 1 is electrically coupled to the plurality of sensing devices 4 via the corresponding converting device 30 to convert the sensing signals output by the sensing devices 40 and output light having a plurality of changes. a signal, and the image recognition device 20 captures a picture including the light coding device 10, and performs image recognition on the surface to convert the optical signal generated by the light coding device 1 into an output digital signal. . The image recognition device 20 can include a calculation unit (not shown in the figure) and an image capture unit (not shown). The image-removing unit can capture a side surface of the image-encoding device for a camera, a camera or a general image capturing device, and the computing unit can recognize the image by using a conventional image recognition technology. The optical signal of the light-coding device is turned into a round of digital signal, and since the image recognition technology is a well-known technique, the invention will not be described in the image. . The squeegee and the sensing devices 40 are erected on the slope of the area to be tested to detect various numerical changes in the slope of the area to be tested to provide the administrator with the basis for monitoring and preventing sloping ground disasters. Among them, ^, etc. 200947319 Sensing f set 40 includes a ground slide meter to measure the displacement of the slope of the slope. 'Pressure type water level gauge is used to monitor the height and speed of the groundwater level. The rain gauge is used to measure the rainfall on the surface. Or tilt gauges, time domain reflectometers, etc., respectively, to measure the required slope information. Referring to the second figure, a functional block diagram of a light encoding device 1 and a conversion device 30 according to an embodiment of the present invention is shown. Due to the measurement principle and processing circuit of various measuring instruments, the output method is different. At present, the types of output signals of various measuring instruments can be divided into four categories: voltage output, current output, pulse wave output and digital value output. The present invention adopts a binary editing & method to convert the output signals of the sensing devices 40 into a binary encoded form to obtain the largest encoded value with a minimum of high luminance LEDs. Referring to the conversion device 30 of the second figure, a binary input port 31, a voltage input port 32, a current input port 33, a pulse wave input port 34, and a BCD code input port 35 are included. The binary code 'into bee 31 is used to directly transmit the measurement data to the light encoding device 10 when the sensing device 40 outputs the binary encoded measurement data, and the voltage input port 32 is used to When the sensed data in the form of a voltage is sensed, the voltage is converted into a binary coded digital signal via an analog converter (ADC) 38; the pulse input 玮 34 is used to output at the sensing device. When measuring data in the form of current, 'first supply current to a voltage ^ Rs to generate a corresponding voltage' and then transfer the voltage to the analog-to-digital S-bit converter 38' to be converted into a binary coded digital bit 200947319; The pulse input port 34 is configured to convert the pulse wave into a frequency and voltage by a frequency voltage converter (IF/VC) 36 when the sensing device 4 outputs the measurement data in the form of a pulse wave, and then converts the pulse wave. The subsequent voltage is supplied to the analog-to-digital converter 38 for conversion to a 'binary coded digital signal; and the BCD code input '35^ outputs the measurement data in the form of a BCD code at the sensing device 40, directly via a BCD. Code pair binary code converter 37 will BCD Is converted to binary coded digital signal before passing the light coding apparatus 10 codes Pi. Therefore, all of the output signals of the different output types are converted into binary coded digital signals by the conversion device 30, so that the light encoding device 1 can display a single-coded image image. Referring back to the light encoding device 1 in the second figure, each of the light encoding devices 10 includes a light encoding column u and a driving $120. The light coding column u includes a plurality of light-emitting units 111 ′ according to a preset sequence Φ ^ column for providing a plurality of changed optical signals, and the driving unit 12 receives the digital signals provided by the sensing devices 3 a signal, and driving the illumination of the illumination unit Π1 according to the digital signal to generate the optical signal. In an embodiment of the invention, each of the light-emitting units 包含1 includes a red and a blue high-brightness LED for respectively representing a logic 1, and a logic 〇, and the light-emitting units are linearly arranged and formed. A light-coded column consisting of red and blue light. The red light or blue light emitted by the code column and the binary code corresponding to the measured value will display the image pattern of the light code 200947319 column on the image screen. At this time, the red and blue colors are used as the basis for interpretation. , you can know the corresponding measured value. The illuminating unit 111 further determines that the current source is the driving power source, so that the illuminance of the light source generated by each of the illuminating units 111 is the same, so as to increase the accuracy of the image recognizing device 20 during image recognition. In an embodiment of the present invention, the distance between the light-emitting units 111 of the light-coded column 11 can be further adjusted to be close to the photographic distance of the image recognition device 20, so that each light-coded column 11 is The light-emitting unit occupies the same pixel area in the facet captured by the image recognition device 20. After the light-encoding device 10 is set, the pixel position in the face captured by the image recognition device 20 is Therefore, the image recognition device 20 of the present invention performs image recognition only for a specific pixel position in the facet in the manner of the recognition frame, so as to reduce the calculation cost required for the image recognition of the calculation unit. Referring to the third figure, a schematic diagram of adjusting an identification frame according to an embodiment of the present invention is shown. In the kneading surface captured by the image recognition device 20, an identification frame which can adjust the length, width and free movement is set, and the recognition frame is moved to the position where the light coding column image is located, and the identification frame is adjusted. The length and width dimensions are such that the image pattern of each of the light-coded pillars 11 is located in the set identification frame, as shown in the fourth figure. After each set of recognition frames is set, the calculation unit of the image recognition device 20 can directly perform image recognition on each of the recognition frames to convert the optical signals of the respective light code columns 11 into output digital signals. Referring to the 昼11 200947319 surface captured by the image recognition device 20 of the third figure, the long strip formed by the position p〇 is a blank identification frame, and has a shift function, so that the recognition frame can be moved to any position on the fascia. And to change the size of the recognition frame, such as pull-up, pull-down, pull-up, right-pull, etc. The image recognition device 20 is caused to adjust the area covered by the identification frame according to the size of the image pattern of the actual light code column 11. The length of the recognition frame (PI, P2, P3, P4) set in each position will have its fixed coordinate value, which can be used to represent the confirmation number (ID code) corresponding to the instrument, and its optical signal signal The corresponding digital signal is the binary code of each instrument measurement result. After the image recognition device 20 has the function of setting the recognition frame, it is not necessary to perform full-face image recognition, but only for fixed position, fixed-area image data, and color and brightness comparison, and The confirmation of the minimum resolution is determined, so that it is determined that the correct binary code can be quickly obtained and the measurement data of the sensing device 40 corresponding to the ID code is known. In an embodiment of the present invention, the light-coding device 10 ® and the image recognition device 20 can be appropriately adjusted, so that the image patterns of the light-coded columns 11 appear in the peripheral region of the image captured by the image recognition device 20 . In order to avoid affecting the surface condition of the administrator to monitor the slope of the area to be tested.

在本發明一實施例中,該影像辨識裝置20更 可藉由在晝面中設置辨認框,監測燈光編碼柱上每 一個高輝度LED是否正常,或是燈光編碼柱已傾 斜或倒掉,如第五圖所示,其中A係表示正常的燈 光編碼柱11的影像圖形出現在辨認框的狀態,B 12 200947319 即表示傾斜的燈光編碼柱u的影像圖形出現在辨 認框的狀態’而c則表示故障、完全傾倒或移位的 燈光編碼柱11的影像圖形出現在辨認框的狀態。 當發生狀B或C時,則管理員即需派遣人員至該 燈光編碼柱11所對應之位置進行修復。 在本發明一實施例中,該等燈光編碼柱11的 發光單元111係由紅光與藍光的高輝度LED所組In an embodiment of the present invention, the image recognition device 20 can monitor whether each high-luminance LED on the light-coded column is normal or not, or the light-coded column has been tilted or fallen, by setting an identification frame in the facet. As shown in the fifth figure, the A picture indicates that the image pattern of the normal light code column 11 appears in the state of the recognition frame, and B 12 200947319 indicates that the image pattern of the tilted light code column u appears in the state of the recognition frame' and c The image pattern of the light code column 11 indicating a failure, a complete dump or displacement appears in the state of the recognition frame. When the occurrence of B or C occurs, the administrator needs to dispatch personnel to the position corresponding to the light code column 11 for repair. In an embodiment of the invention, the light-emitting units 111 of the light-coded columns 11 are composed of high-brightness LEDs of red and blue light.

每—個發光單元111可經由選擇發出紅光 先光源,致使燈光編碼柱u可利用複數個發 先早凡111的發光組合形成二進制的光訊號。 ,本發明-實施例中,該等燈光編碼柱n的 :先:? 111進一步可包含3種輸出變化的光源, 3成三進制的光訊號編碼,以提供該燈光編碼 大數值的變化’或在相同數值變化之下減 >該燈光編碼柱11的發光單元ηι數量。 圖即為本發明一實施例具有3種輸出 .二:早70 U1之結構示意圖。在該實施例 光單元iut含紅光、綠光與藍光等 ^ 〇,且具有紅光(R)、綠光(G)或藍光 1,dm化’其中紅色就代表2,綠色代表 的⑽# 要將二進制的編碼轉換成三進制 Ξ二: 個LED在同-數值時,都只 有種顏色的LED發光, 組合即可得知對應的數值。’以號的發九 在第六圖所示實施例φ ,、,。 化的發光單元m做i中:丄個f有3種輸出變 —進制編碼(38),此時可較2 13 200947319 種輸出變化的發光單元111 (28)為多,因此便能以 較少的發光單元111代表相同數值,致使該影像辨 識裝置20所擷取晝面中能安排更多的燈光編碼影 像圖形,使得同一台攝影機,能完成更多資料傳送 的功能。 參考第七圖為本發明一實施例具有3種輸出變 化的發光單元111之燈光編碼裝置1〇與感測裝置 3〇的功能方塊圖。當該燈光編碼裝置1〇的燈光編 碼柱111係採用具有3種輸出變化的發光單元U1 時’該燈光編碼裝置1 〇加上二進制轉三進制的處 理,亦即在驅動單元12與該轉換裝置30之間加入 一二進制轉三進制單元13,將原本該轉換裝置3〇 輸出的二進制數位訊號轉換為三進制的輸位訊 號,便能由三顏色高輝度LED的發光單元111做 正確的光訊號顯示。 然而由於背景光的照度不同(白天、黑夜或陰 晴、雨天)會產生不同顯像效果。白天時因有陽光 照射而使得相對亮度降低,夜間或陰天、雨天反面 使相對亮度增加。因此在第六圖所示實施例中,該 燈光編碼裝置10設置一照度偵測單元14與一電流 控制單元15,其中該照度偵測單元14係用以偵測 當時的照度的大小,據以自動調整該電流控制單元 15的輸出信號,使得該驅動單元12的輸出電流能 依不同照度而調整該等發光單元1U輸出光源的亮 度’致使該影像辨識裝置20所擷取晝面中所看到 母個燈光編碼柱11的影像圖形的亮度都保持在同 200947319 冗度祐圍,以增加影像辨識的準確性。 由於該燈光編碼柱11的各發光單元m之間 的間距可依攝影距離而調整,且該等發光單元m 的照度亦可依環境光的照度而調整,因此使 ::識裝置20在擷取晝面後’所得到各燈光編碼/ 裝置10的燈光編碼柱11皆佔有相同的像素面積以 及相同的像素對比度,並增加該影像辨識裝置2〇 在影像辨識時的準確性。 ❹ 參考第八圖,在本發明另一實施例中,由於 該等燈光編碼裝置10係架設於3〇空間的、 因,燈光編碼柱11可設計為圓柱體,將每一個發 光早7G 111設計為圓盤狀,使得影像辨識裝置Μ 不管從哪—個肢皆可辨識祕光編雜11所產 生之光訊號。 因此本發明之影像數據傳輸系統與方法除 可利用攝影機執行地形地貌的監看,並可藉由所 擷取的晝面得知各量測儀器的量測數值大小,把 ,測數值顯示於影像畫面上,或由其他通訊系統 (網路通訊、微波通訊),把影像晝面上傳到數百 公里外的監控中心,致使所有裝設在待測區坡地 的量測儀器,不必另外架設有線或無線通訊裝 置,就能把監視範圍内所有量測數據,以燈光排 列的影像圖形,完成監視和通訊的功能。 在詳細5兒明本發明的較佳實施例之後,熟悉 ,項技術領域者可清楚的瞭解,在不脫離下述申 凊專利範圍與精神下進行各種變化與改變,且本 15 200947319 發明亦不受限於說明書中所舉實施例的實施方 式。Each of the light-emitting units 111 can emit a red light source by selecting, so that the light code column u can form a binary light signal by using a plurality of light-emitting combinations of the first and the first. In the present invention - in the embodiment, the light coding column n: first: ? 111 further may include three kinds of output change light sources, and a ternary optical signal code to provide a change in the large value of the light code 'or decrease under the same value change> light-emitting unit ηι of the light code column 11 Quantity. The figure shows a structure of three kinds of outputs according to an embodiment of the present invention. In this embodiment, the light unit iut contains red, green, and blue light, and has red (R), green (G), or blue light, and dm is 'where red represents 2, and green represents (10)# To convert the binary code into ternary Ξ two: When the LEDs are in the same-value, only the LEDs of the color are illuminated, and the corresponding values can be obtained by combination. The number of the ninth is shown in the sixth figure in the embodiment φ, ,,. The illuminating unit m is made in i: 丄f has three kinds of output hexadecimal codes (38), at this time, there are more illuminating units 111 (28) than the output of 2 13 200947319, so The fewer light-emitting units 111 represent the same value, so that the image recognition device 20 can arrange more light-coded image patterns in the captured surface, so that the same camera can perform more data transfer functions. Reference is made to the seventh block, which is a functional block diagram of a light encoding device 1 and a sensing device 3 of a light-emitting unit 111 having three kinds of output changes according to an embodiment of the present invention. When the light coding column 111 of the light coding device 1 is a light-emitting unit U1 having three kinds of output changes, the light coding device 1 〇 is added with binary to ternary processing, that is, at the driving unit 12 and the conversion A binary to ternary unit 13 is added between the devices 30, and the binary digit signal outputted by the conversion device 3〇 is converted into a ternary input signal, so that the illumination unit 111 of the three-color high-luminance LED can be correctly The light signal is displayed. However, due to the different illumination of the background light (day, night or cloudy, rainy days), different imaging effects will be produced. The relative brightness is reduced during the day due to sunlight, and the relative brightness is increased at night or on cloudy or rainy days. Therefore, in the embodiment shown in FIG. 6, the light encoding device 10 is provided with an illuminance detecting unit 14 and a current control unit 15, wherein the illuminance detecting unit 14 is configured to detect the magnitude of the illuminance at that time. Automatically adjusting the output signal of the current control unit 15 so that the output current of the driving unit 12 can adjust the brightness of the output light source of the light emitting unit 1U according to different illumination levels, so that the image recognition device 20 reads the image The brightness of the image pattern of the mother light code column 11 is kept at the same level as 200947319 to increase the accuracy of image recognition. The spacing between the light-emitting units m of the light-coded column 11 can be adjusted according to the photographic distance, and the illuminance of the light-emitting units m can also be adjusted according to the illuminance of the ambient light, so that: the identification device 20 is capturing The light-coded columns 11 of each of the light-coding/devices 10 obtained after the facet occupy the same pixel area and the same pixel contrast, and increase the accuracy of the image recognition device 2 in image recognition. ❹ Referring to the eighth figure, in another embodiment of the present invention, since the light coding devices 10 are installed in the space of 3〇, the light coding column 11 can be designed as a cylinder, and each of the illuminations is designed to be 7G 111 early. It is disc-shaped, so that the image recognition device can recognize the optical signal generated by the secret light pattern 11 no matter where it is. Therefore, the image data transmission system and method of the present invention can perform the monitoring of the topography and the like by using the camera, and can obtain the measured value of each measuring instrument by using the captured surface, and display the measured value in the image. On the screen, or by other communication systems (network communication, microwave communication), upload the image to the monitoring center hundreds of kilometers away, so that all the measuring instruments installed on the slope of the area to be tested do not need to be equipped with additional lines or The wireless communication device can complete the monitoring and communication functions of all the measurement data in the monitoring range and the image patterns arranged in the light. It will be apparent to those skilled in the art of the present invention that various changes and modifications can be made without departing from the scope and spirit of the inventions described herein. It is limited to the embodiments of the embodiments set forth in the specification.

16 200947319 【圖式簡單說明】 第一圖為本發明一實施例之影像數據傳輸系統 與方法的系統架構圖。 第二圖為本發明一實施例之燈光編碼裝置與轉 換裝置的功能方塊圖。 第三圖為本發明一實施例調整辨認框之示意 圖。 第四圖為本發明一實施例由該影像辨識裝置所 ❹ 擷取包含該等燈光編碼柱的影像之示意圖。 第五圖為本發明一實施例在影像的辨認框中判 斷燈光編碼柱狀態的示意圖。 第六圖為本發明一實施例具有3種輸出變化的 發光單元之結構示意圖。 第七圖為本發明一實施例具有3種輸出變化的 發光單元之燈光編碼裝置與轉換裝置的功能方塊 圖。 第八圖為本發明一實施例之燈光編碼柱的結構 ® 示意圖。 元件符號說明: 10— 燈光編碼裝置 11— 燈光編碼柱 111…發光單元 12— 驅動早兀 13…二進制轉三進制單元 14…照度偵測單元 17 200947319 15—電流控制早兀 20…影像辨識裝置 30…轉換裝置 31— 二進碼輸入璋 32— 電壓輸入璋 33— 電流輸入蜂 34— 脈波輸入谭 35— --BCD碼輸入璋 〇 36…頻率電壓轉換器 37---BCD碼對二進制碼轉換器 38…類比數位轉換器 40…感測裝置16 200947319 BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a system architecture diagram of an image data transmission system and method according to an embodiment of the present invention. The second figure is a functional block diagram of a light encoding device and a converting device according to an embodiment of the present invention. The third figure is a schematic view of an adjustment frame according to an embodiment of the present invention. The fourth figure is a schematic diagram of an image of the light-coded column captured by the image recognition device according to an embodiment of the invention. The fifth figure is a schematic diagram for judging the state of the light code column in the image recognition frame according to an embodiment of the present invention. Fig. 6 is a block diagram showing the structure of a light-emitting unit having three kinds of output changes according to an embodiment of the present invention. Fig. 7 is a functional block diagram of a light encoding device and a converting device of a light emitting unit having three kinds of output changes according to an embodiment of the present invention. Figure 8 is a schematic view of the structure of a light-coded column according to an embodiment of the present invention. Component symbol description: 10—light coding device 11—light code column 111...light unit 12—drive early 13...binary to ternary unit 14...illumination detection unit 17 200947319 15—current control early 20...image recognition device 30...conversion device 31 - binary input 璋32 - voltage input 璋33 - current input bee 34 - pulse input tam 35 - - BCD code input 璋〇 36... frequency voltage converter 37---BCD code pair binary Code converter 38... analog to digital converter 40... sensing device

1818

Claims (1)

200947319 十、申請專利範圍: 1.—種影像數據傳輸系統,包括: —燈,編碼裝置,具有複數個依預設順序排列 之發光單元用以產生具有複數種變化之光訊號, 、及驅動單元用以將一組輸入數位訊號轉為複 數個控制訊號用以控制前述複數個發光單元的明 滅,以及 一影像辨識裝置,具有一影像擷取單元用以擷 取包含前述複數個發光單元之影像的晝面,以及 一計算單元用以辨識前述晝面中複數個發光單元 的影像並產生一組輸出數位訊號。 2·如申1專利範圍第1項之影像數據傳輸系統, 其中刚述燈光編碼裝置係接收一感測裝置之减 測訊號為前述輸入訊號。 3·如申請專利範圍第2項之影像數據傳輸系統, 其中感測裝置為地滑計、水位計、雨量計、傾 斜測量儀或時域反射儀。 4·如申請專利範圍第1項之影像數據傳輸系統, 其中前述每一個發光單元具有2種顏色輸出, 且前述每一個發光單元在單一時間僅產生1種 顏色輸出,致使前述光訊號所產生之輸出數位 訊號為二進制編碼格式。 5.如申請專利範圍第1項之影像數據傳輸系統, 其中前述每一個發光單元具有3種顏色輸出, 且別述每一個發光單元在單一時間僅產生1種 顏色輸出’致使前述光訊號所產生之輸出數位 19200947319 X. Patent application scope: 1. An image data transmission system, comprising: a lamp, an encoding device, having a plurality of light-emitting units arranged in a predetermined order for generating optical signals having a plurality of variations, and a driving unit The image capturing device is configured to convert a set of input digital signals into a plurality of control signals for controlling the plurality of light emitting units, and an image capturing unit for capturing images of the plurality of light emitting units And a computing unit for identifying images of the plurality of light emitting units in the front surface and generating a set of output digital signals. 2. The image data transmission system of claim 1, wherein the light coding device receives the attenuation signal of a sensing device as the input signal. 3. The image data transmission system of claim 2, wherein the sensing device is a ground slide meter, a water level gauge, a rain gauge, a tilt gauge or a time domain reflectometer. 4. The image data transmission system of claim 1, wherein each of the foregoing light-emitting units has two color outputs, and each of the light-emitting units generates only one color output in a single time, so that the optical signals are generated. The output digital signal is in binary encoding format. 5. The image data transmission system according to claim 1, wherein each of the foregoing light-emitting units has three color outputs, and each of the light-emitting units generates only one color output at a single time to cause the optical signals to be generated. Output digit 19 11 200947319 訊號為三進制編碼格式。 申請專利範圍第1項之影像數據傳輸系統, /、中前述發光單元為高輝度LED燈。 7·2申請專利範圍第〗項之影像數據傳輸系統, :、中前述驅動單元係以定電流為驅動源驅 述發光單元。 專利範圍第i項之影像數據傳輸系統, 八中别述燈光編碼裝置的複數個發光單元之排 列2距係可調,致使前述影像辨識裝置所擷取 之旦面中前述複數個發光單元的影像之面積可 保持在一預設大小。 專利範圍$ 1項之影像數據傳輸系統, 二中刚述影像辨識裝置所擷 i個發單元的影像之位置係固定 二ί刖述汁算單元在前述畫面中僅對前述辨 涊框進行影像辨識。 利範圍第1項之影像數據傳輸系統, ^ _刖乂燈光編碼裝置進一步具有一照度偵測 照二2:偵測環境照度大小’再根據環境的 ;T述驅動單元的控制訊號的值,以控 制則述發光單元發光之亮度。 種影像數據傳輸方法,包括: 制.組輸入數位訊號,並轉換為複數個控 20 200947319 擷取包含前述複數個發光單元之影像的晝 面; 辨識前述晝面中前述複數個發光單元的影像 之光訊號;以及 根據所辨識的光訊號產生一組輸出數位訊 號。 12·如申請專利範圍第n項之影像數據傳輸方法, 其中所接收之輸入數位訊號係為一種感測訊 號。 如申請專利範圍第12項之影像數據傳輸方法, 其中感測訊號係來自一地滑計、水位計、雨量 計、傾斜測量儀或時域反射儀。 14. 如申請專利範圍第u項之影像數據傳輸方法, 其:前述每一個發光單元具有2種顏色輸出, 且前述每一個發光單元在單一時間僅產生丨種 顏色輸出,致使前述光訊號所產生之輸出數位 訊號為二進制編碼格式。 15. 如申請專利範圍第n項之影像數據傳輸方法, 其=前述每一個發光單元具有3種顏色輸出, 且前述每一個發光單元在單一時間僅產生1種 顏色輸出,致使前述光訊號所產生之輸出訊號 為三進制編碼格式。 16·如申請專利範圍第n項之影像數據傳輸方法, 其中前述發光單元為高輝度LED燈。 17.如申請專利範圍第11項之影像數據傳輸方法, 其中在控制複數個依預設順序排列之發光單元 21 200947319 的步驟中係以定電流源驅動前述發光單元的明 滅0 18. 如申請專利範圍第11項之影像數據傳輸方法, 其中^述複數個發光單元之排列間距係可調, 致使前述所擷取之晝面中前述複數個發光單元 的影像之面積可保持在一預設大小。11 200947319 The signal is in ternary encoding format. In the image data transmission system of claim 1, the light-emitting unit is a high-intensity LED lamp. In the image data transmission system of the Japanese Patent Application No. 7.2, the driving unit drives the light-emitting unit with a constant current as a driving source. In the image data transmission system of the i-th patent of the patent range, the arrangement of the plurality of light-emitting units of the light-coding device in the eighth embodiment is adjustable, so that the image of the plurality of light-emitting units in the surface of the image recognition device is obtained. The area can be kept at a preset size. The image data transmission system of the patent range of $1, the position of the image of the hair unit of the image recognition device is fixed. The image calculation unit only performs image recognition on the aforementioned frame in the aforementioned picture. . The image data transmission system of the first item of the benefit range, ^ _ 刖乂 刖乂 刖乂 刖乂 进一步 进一步 进一步 刖乂 刖乂 刖乂 二 二 : : : : : : : : : : : 照 照 照 照 照 照 照 照 照 照 照 照 照 照 照 照 照 照 照The control describes the brightness of the illumination of the illumination unit. The method for transmitting image data includes: inputting a digital signal into a group and converting it into a plurality of controls 20 200947319 extracting a face including an image of the plurality of light emitting units; and identifying an image of the plurality of light emitting units in the facet An optical signal; and generating a set of output digital signals based on the identified optical signals. 12. The image data transmission method of claim n, wherein the received input digital signal is a sensing signal. For example, the image data transmission method of claim 12, wherein the sensing signal is from a ground slide meter, a water level gauge, a rain gauge, a tilt gauge or a time domain reflectometer. 14. The image data transmission method according to claim 5, wherein: each of the foregoing light-emitting units has two color outputs, and each of the foregoing light-emitting units generates only a plurality of color outputs at a single time, so that the optical signals are generated. The output digital signal is in binary encoding format. 15. The image data transmission method of claim n, wherein each of the foregoing light-emitting units has three color outputs, and each of the foregoing light-emitting units generates only one color output at a single time, so that the optical signals are generated. The output signal is in ternary encoding format. 16. The image data transmission method of claim n, wherein the light-emitting unit is a high-intensity LED lamp. 17. The image data transmission method according to claim 11, wherein in the step of controlling a plurality of light-emitting units 21 200947319 arranged in a predetermined order, the constant current source is used to drive the light-emitting unit of the light-emitting unit. The image data transmission method of the eleventh item, wherein the arrangement pitch of the plurality of light-emitting units is adjustable, so that the area of the image of the plurality of light-emitting units in the captured surface can be maintained at a predetermined size. 19. 如申請專利範圍第n項之影像數據傳輸方法, 其中前述複數個發光單元係設置於一固定位 置,致使所擷取畫面中前述複數個發光單元 =像之位置制定於-辨認框,且在辨識前述 I面的步驟中僅對前述辨認框進行影像 2〇士申請專利範圍第U項之影像數據傳輪方法, 其中在控制複數個依預設順序排列之發— 的明滅的步驟之前進一步包含偵測環境照二^ 小,用以控制前述發光單元發光之亮度。“、、又19. The image data transmission method of claim n, wherein the plurality of light-emitting units are disposed at a fixed position, such that the plurality of light-emitting units=image positions in the captured image are defined in the recognition frame, and In the step of recognizing the aforementioned I plane, only the image recognition method of the U.S. Patent Application No. U is applied to the above-mentioned identification frame, wherein the step of controlling a plurality of transmissions arranged in a predetermined order is further performed. The detection environment is included to control the brightness of the light emitting unit. ",,also 22twenty two
TW97116776A 2008-05-07 2008-05-07 Image data transmission system TW200947319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97116776A TW200947319A (en) 2008-05-07 2008-05-07 Image data transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97116776A TW200947319A (en) 2008-05-07 2008-05-07 Image data transmission system

Publications (1)

Publication Number Publication Date
TW200947319A true TW200947319A (en) 2009-11-16

Family

ID=44870303

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97116776A TW200947319A (en) 2008-05-07 2008-05-07 Image data transmission system

Country Status (1)

Country Link
TW (1) TW200947319A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4152C1 (en) * 2010-01-19 2012-09-30 ШКИЛЁВ Думитру Method for marking and recording the identification tag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4152C1 (en) * 2010-01-19 2012-09-30 ШКИЛЁВ Думитру Method for marking and recording the identification tag

Similar Documents

Publication Publication Date Title
CN1982857B (en) Method for automatically measuring luminescent device
CN100388173C (en) Method for determining location on display surface and interactive display system
CN104041191B (en) Use remotely the visible light communication luminaire of control, remote control unit, system and method
CN102835115B (en) For the color mask of the imageing sensor of vehicle camera
SE510810C2 (en) Motion Analysis System
CN104769389A (en) Method and device for determining three-dimensional coordinates of an object
WO2006036693A3 (en) Uniformity and brightness measurement in oled displays
CN103365491A (en) Position detecting device
CN111103579A (en) Visible light indoor positioning system and method based on mobile phone camera
CN103780832A (en) System and method for determination and adjustment of camera parameters using multi-gain images
US11328136B2 (en) Optical communication device and method for transmitting and receiving information
CN103703768A (en) Surveillance camera device
US10990774B2 (en) Optical communication device and system, and corresponding information transmitting and receiving methods
CN102768017A (en) Line width measuring device and method
CN108072664A (en) A kind of appearance detecting system and method
CN102609696A (en) Image recognition-based method for detecting faults of lighting equipment
JP4463388B2 (en) Visual status measurement device
CN204834000U (en) Photochromic homogeneity correcting unit of LED display screen
TW200947319A (en) Image data transmission system
CN112697050A (en) Night side slope displacement monitoring system based on luminous body
US6788412B2 (en) Process and device for the optical marking of a target region of a color measuring device on a measurement surface
CN212206438U (en) Indicator diagram measuring equipment and system based on visual identification technology
US20130155232A1 (en) Surveillance camera, surveillance system and method for configuring an or the surveillance camera
TWI572224B (en) A network camera structure and method for detecting the strength of wireless network signals
CN111664980A (en) Indicator diagram measuring equipment, indicator diagram measuring method and indicator diagram measuring system based on visual identification technology