TW200947071A - Liquid crystal display screen - Google Patents

Liquid crystal display screen Download PDF

Info

Publication number
TW200947071A
TW200947071A TW97117200A TW97117200A TW200947071A TW 200947071 A TW200947071 A TW 200947071A TW 97117200 A TW97117200 A TW 97117200A TW 97117200 A TW97117200 A TW 97117200A TW 200947071 A TW200947071 A TW 200947071A
Authority
TW
Taiwan
Prior art keywords
layer
liquid crystal
crystal display
carbon nanotube
alignment layer
Prior art date
Application number
TW97117200A
Other languages
Chinese (zh)
Other versions
TWI377415B (en
Inventor
Wei-Qi Fu
Liang Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97117200A priority Critical patent/TWI377415B/en
Publication of TW200947071A publication Critical patent/TW200947071A/en
Application granted granted Critical
Publication of TWI377415B publication Critical patent/TWI377415B/en

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

The present invention relates to a liquid crystal display screen. The liquid crystal display screen includes a first base, a second base, a liquid crystal layer, a first alignment layer, and a second alignment layer. The first base is spaced from the second base. The first alignment layer is disposed on a surface of the first base, and a number of parallel first grooves are formed on the surface of the first alignment layer. The second alignment layer is disposed on a surface of the second base, and a number of parallel second grooves are formed on the surface of the second alignment layer. The liquid crystal layer is arranged between the first alignment layer and the second alignment layer. Extending directions of the first grooves are perpendicular to that of the second grooves. Further, at least one of the first and second alignment layers includes a carbon nanotube layer and a fixed layer. The carbon nanotube layer includes a number of carbon nanotube yarns. The fixed layer is disposed on a surface of the carbon nanotube layer and the base.

Description

200947071 九、發明說明: .【發明所屬之技術領域】 本發明涉及一種液晶顯示屏,尤其涉及一種採用奈米 碳管的液晶顯示屏。 【先前技術】 液晶配向技術係决定液晶顯不屏優劣的關鍵技術之 一,因爲液晶配向技術的好壞會直接影響最終液晶顯示屏 的品質。尚質量的液晶顯不屏要求液晶有穩定及均勻的初 〇 始排列,而具有誘導液晶定向排列作用的薄層稱爲液晶配 向層。 先前技術已知供液晶顯示屏使用的配向層材料有聚苯 乙烯及其衍生物、聚醯亞胺、聚乙烯醇、聚酯、環氧樹脂、 聚胺酯、聚矽烷等,最常見的為聚醯亞胺。這些材料經膜 磨擦法,傾斜蒸鍍51(^膜法及對膜進行微溝槽處理法(請參 見 “Atomic-beam alignment of inorganic materials for liquid-crystal displays”,P. Chaudhari, et al·,Nature, vol ◎ 411,p56 (2001))等方法處理後,可形成複數個溝槽,該溝 槽可使液晶分子定向排列。 請參閱圖1中所示的液晶顯示屏100,其包括第一基體 104、第二基體112及夾於第一基體104及第二基體112之間 的液晶層118。 所述第一基體104與第二基體112相對設置。所述液晶 層118包括複數個長棒狀的液晶分子1182。所述第一基體 104靠近液晶層118的表面依次設置一第一透明電極層106 及一第一配向層108,且第一基體104的遠離液晶層118的表 7 200947071 面設置一第一偏光片102。所述第二基體112靠近液晶層118 的表面依次設置一第二透明電極層114及一第二配向層 116,且第二基體112的遠離液晶層118的表面設置一第二偏 光片110。 所述第一配向層108靠近液晶層118的表面形成有複數 個相互平行的第一溝槽1082。所述第二配向層116靠近液晶 層118的表面形成有複數個相互平行的第二溝槽1162。所述 第一溝槽1082及第二溝槽1162的排列方向相互垂直,從而 ❹可對液晶層118中的液晶分子1182進行定向,即使靠近第一 溝槽1082及第二溝槽1162的液晶分子1182分別沿著第一溝 槽1082及第二溝槽1162的方向定向排列。從而使得液晶分 子1182的排列由上而下自動旋轉90度。 其中,所述第一偏光片102及第二偏光片110可對光線 進行偏振;第一透明電極層106及第二透明電極層114於液 晶顯示屏100中可起到導電的作用。但上述的複數個片層結 構及其界面的存在將增加液晶顯示屏1〇〇的厚度、複雜程度 ❿以及製作成本,降低背光源所提供光線的透過率,並影響 顯示質量。 另,爲使上述的液晶顯示屏100具有複數像素顯示的功 能,通常把第二透明電極層114設置成公共電極層,第一透 明電極層106設置成具有行電極及列電極的電極層。行電極 與列電極垂直分佈於第一透明電極層106上,從而使得所述 第一透明電極層106具有複數個單元區域,即第一透明電極 層106具有複數個像素電極。通過行電極與列電極來控制及 改變任意一個像素電極上的電壓,從而改變像素電極與公 8 200947071 共電極層之間的液晶分子的旋光狀態。液晶分子的作用類 .似于個個小的光閥,每一像素電極即爲一個像素點。但 -上述行電極及列電極㈣置使得液晶顯示屏1GG的結構較 爲複雜。 有鑒于此,提供一種結構簡單、具有較佳的配向品質 且可實現複數像素顯示的液晶顯示屏實為必要。 【發明内容】 一種液晶顯示屏,其包括:一第一基體;一第二基體, 所述第一基體與所述第二基體相對設置;一液晶層,設置 於所述第一基體與所述第二基體之間;一第一配向層,該 第二配向層^置於所述第一基體的靠近液晶層的表面,且 第一配向層罪近液晶層的表面包括複數個平行的第一溝 槽,及一第二配向層,該第二配向層設置於所述第二基體 的靠近液晶層的表面,且第二配向層靠近液晶層的表面包 括複數個平行的第二溝槽,所述第二配向層的第二溝槽延 ❹伸方向與第一配向層的第一溝槽延伸方向垂直;其中,所 述液晶顯示屏中至少一個配向層包括一奈米碳管層及一固 ,層,該奈米碳管層包括複數個平行且緊密排列的奈米碳 管長線,所述固定層設置於所述奈米碳管層靠近液晶層的 表面。 與先前技術相比較,本技術方案實施例所述的液晶顯 示屏具有以下優點:其一,由於所述奈米碳管層包括複數 個平行且緊密排列設置的奈米碳管長線,從而所述奈米碳 管層具有良好的導電性能,故,奈米碳管層可代替先前技 9 .200947071 術中的透明電極層起到導電作用,同時能起到配向的作 .用、。^本實施例中的液晶顯示屏採用含有奈求碳管長線的 .奈米碳管層的配向層時,無需額外增加透明電極層,從而 可使得液晶顯示屏具有較薄的厚度,簡化液晶顯示屏的結 構及製造成本’提高背光源的利用率,改善顯示品質。其 二’所述奈米碳管長線設置於基體域不需要進行機械刷 磨或者其他處理,不會產生靜電及粉塵,從而使所述液晶 ❹顯示屏具有較佳的配向品質。其三,覆蓋一固定層於所述 奈米碳管層的表面,可使得所述用作配向層的奈米碳管層 於與液晶材料長時間接觸時,不脫落,從而使得所述液晶 顯不屏具有較長的使用壽命及較好的配向品質。其四,由 於奈米碳管層具有很好的柔韌性,故’採用奈米碳管層的 液晶顯示屏可以做成柔性的液晶顯示屏。 【實施方式】 以下將結合附圖詳細說明本技術方案的液晶顯示屏。 ❹ 請參閱圖2,圖3及圖4,本技術方案實施例所提供一 種液晶顯示屏300,其包括一第一基體3〇2; —第二基體 322 ’所述第一基體302與所述第二基體322相對設置;一 液晶層338’設置於所述第一基體302與所述第二基體322 之間;一第一配向層304,該第一配向層304設置於所述 第基體302的葬近液晶層338的表面,且第一配向層304 罪近液晶層338的表面包括複數個平行的第一溝槽308 ; 及一第二配向層324 ’該第二配向層324設置於所述第二 基體322的靠近液晶層338的表面,且第二配向層324靠 .200947071 近液晶層338的表面包括複數個平行的第二溝槽328,所 . 述第二配向層324的第二溝槽328延伸方向與第一配向層 304的第一溝槽308延伸方向垂直。 所述第一基體302與第二基體322可選用硬性或柔性 的透明材料,如玻璃、石英、金剛石或塑膠等。本實施例 中,所述第一基體302及第二基體322的材料為三乙酸纖 維素(cellulose triacetate,CTA)等柔性材料。優選地,第一 基體302及第二基體322的材料均為CTA材料形成。可以 ❹ 理解,所述第一基體302與第二基體322的材料可以相同, 也可以不同。 所述液晶層338包括複數個長棒狀的液晶分子。所述 液晶層338的液晶材料為先前技術中常用的液晶材料。所 述液晶顯示屏300中至少一個配向層包括一個奈米碳管層 及一個固定層,該固定層設置於所述奈米碳管層靠近液晶 層338的表面。當所述液晶顯示屏300中的第一配向層304 Q 或第二配向層324中的一個配向層為本實施例所述的奈米 碳管層及固定層時,另一個配向層可採用先前技術的配向 層。優選地,為了使所述的液晶顯示屏300具有更好的配 向品質及簡單的結構,第一配向層304及第二配向層324 均採用奈米碳管層及固定層的結構。所述第一配向層304 包括一第一奈米碳管層304a及一第一固定層304b,所述 第二配向層324包括一第二奈米碳管層324a及一第二固定 層324b。所述第一固定層304b及第二固定層324b分別設 置于第一配向層304及第二配向層324靠近液晶層338的 11 200947071 表面。由於第一配向層304中的第一奈米碳管層304a及第 二配向層324中的第二奈米碳管層324a靠近液晶層338200947071 IX. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display, and more particularly to a liquid crystal display using a carbon nanotube. [Prior Art] The liquid crystal alignment technology is one of the key technologies for determining the advantages and disadvantages of liquid crystal display, because the quality of the liquid crystal alignment technology directly affects the quality of the final liquid crystal display. A still-quality liquid crystal display screen requires a stable and uniform initial alignment of the liquid crystal, and a thin layer having a liquid crystal alignment effect is called a liquid crystal alignment layer. Prior art known alignment layer materials for liquid crystal display panels are polystyrene and its derivatives, polyimine, polyvinyl alcohol, polyester, epoxy resin, polyurethane, polydecane, etc., the most common is polyfluorene. Imine. These materials are subjected to film rubbing, oblique vapor deposition 51 (method method and micro-groove treatment of the film (see "Atomic-beam alignment of inorganic materials for liquid-crystal displays", P. Chaudhari, et al., After treatment by a method such as Nature, vol ◎ 411, p56 (2001), etc., a plurality of trenches can be formed, which can align the liquid crystal molecules. Please refer to the liquid crystal display 100 shown in FIG. The substrate 104, the second substrate 112, and the liquid crystal layer 118 sandwiched between the first substrate 104 and the second substrate 112. The first substrate 104 is disposed opposite to the second substrate 112. The liquid crystal layer 118 includes a plurality of long rods. Liquid crystal molecules 1182. The first substrate 104 is disposed adjacent to the surface of the liquid crystal layer 118, and a first transparent electrode layer 106 and a first alignment layer 108 are disposed, and the surface of the first substrate 104 away from the liquid crystal layer 118 is 200947071. A first polarizer 102 is disposed. A second transparent electrode layer 114 and a second alignment layer 116 are disposed on the surface of the second substrate 112 adjacent to the liquid crystal layer 118, and a surface of the second substrate 112 away from the liquid crystal layer 118 is disposed. Second polarized light 110. The first alignment layer 108 is formed with a plurality of first trenches 1082 that are parallel to each other near the surface of the liquid crystal layer 118. The second alignment layer 116 is formed adjacent to the surface of the liquid crystal layer 118 by a plurality of second parallel sides. The first trench 1082 and the second trench 1162 are arranged perpendicular to each other, so that the liquid crystal molecules 1182 in the liquid crystal layer 118 can be aligned even if the first trench 1082 and the second trench are adjacent to each other. The liquid crystal molecules 1182 of 1162 are aligned along the direction of the first trenches 1082 and the second trenches 1162, respectively, so that the arrangement of the liquid crystal molecules 1182 is automatically rotated by 90 degrees from top to bottom. wherein the first polarizer 102 and The second polarizer 110 can polarize the light; the first transparent electrode layer 106 and the second transparent electrode layer 114 can function as a conductive layer in the liquid crystal display panel 100. However, the above plurality of slice structures and the existence of the interface thereof It will increase the thickness, complexity, and manufacturing cost of the liquid crystal display, reduce the transmittance of light provided by the backlight, and affect the display quality. In addition, in order to make the above liquid crystal display 100 have The function of the complex pixel display is generally that the second transparent electrode layer 114 is disposed as a common electrode layer, and the first transparent electrode layer 106 is disposed as an electrode layer having a row electrode and a column electrode. The row electrode and the column electrode are vertically distributed on the first transparent electrode. The layer 106 is such that the first transparent electrode layer 106 has a plurality of unit regions, that is, the first transparent electrode layer 106 has a plurality of pixel electrodes. The row electrode and the column electrode are used to control and change the voltage on any one of the pixel electrodes, thereby changing the optical state of the liquid crystal molecules between the pixel electrode and the common electrode layer of 200947071. The role of liquid crystal molecules. Like a small light valve, each pixel electrode is a pixel. However, the above-mentioned row electrode and column electrode (four) are arranged so that the structure of the liquid crystal display 1GG is relatively complicated. In view of this, it is necessary to provide a liquid crystal display panel which has a simple structure, a good alignment quality, and can realize a multi-pixel display. SUMMARY OF THE INVENTION A liquid crystal display panel includes: a first substrate; a second substrate, the first substrate is disposed opposite to the second substrate; a liquid crystal layer disposed on the first substrate and the Between the second substrates; a first alignment layer, the second alignment layer is disposed on a surface of the first substrate adjacent to the liquid crystal layer, and the surface of the first alignment layer adjacent to the liquid crystal layer includes a plurality of parallel first a trench, and a second alignment layer, the second alignment layer is disposed on a surface of the second substrate adjacent to the liquid crystal layer, and the surface of the second alignment layer adjacent to the liquid crystal layer includes a plurality of parallel second trenches. The second trench extension direction of the second alignment layer is perpendicular to the first trench extension direction of the first alignment layer; wherein at least one alignment layer of the liquid crystal display panel comprises a carbon nanotube layer and a solid layer The layer, the carbon nanotube layer comprises a plurality of parallel and closely arranged carbon nanotube long lines, the fixed layer being disposed on a surface of the carbon nanotube layer adjacent to the liquid crystal layer. Compared with the prior art, the liquid crystal display device described in the embodiments of the present technical solution has the following advantages: First, since the carbon nanotube layer includes a plurality of long and parallel aligned carbon nanotube long lines, The carbon nanotube layer has good electrical conductivity. Therefore, the carbon nanotube layer can replace the transparent electrode layer in the prior art of 9.200947071 to conduct electricity, and at the same time can function as an alignment. ^ When the liquid crystal display panel of the embodiment adopts the alignment layer of the carbon nanotube layer containing the long carbon wire of the carbon nanotube, the transparent electrode layer is not required to be added, so that the liquid crystal display panel has a thin thickness and simplifies the liquid crystal display. The structure and manufacturing cost of the screen 'improves the utilization of the backlight and improves the display quality. The second carbon nanotubes are disposed in the substrate body without mechanical brushing or other treatment, and do not generate static electricity and dust, so that the liquid crystal display has better alignment quality. Thirdly, covering a fixed layer on the surface of the carbon nanotube layer, the carbon nanotube layer used as the alignment layer does not fall off when it is in contact with the liquid crystal material for a long time, so that the liquid crystal display No screen has a long service life and good alignment quality. Fourth, because the carbon nanotube layer has good flexibility, the liquid crystal display using the carbon nanotube layer can be made into a flexible liquid crystal display. [Embodiment] Hereinafter, a liquid crystal display of the present technical solution will be described in detail with reference to the accompanying drawings. Referring to FIG. 2, FIG. 3 and FIG. 4, a liquid crystal display panel 300 includes a first substrate 3〇2; a second substrate 322 'the first substrate 302 and the The second substrate 322 is disposed opposite to each other; a liquid crystal layer 338 ′ is disposed between the first substrate 302 and the second substrate 322 ; a first alignment layer 304 , the first alignment layer 304 is disposed on the first substrate 302 . The surface of the first alignment layer 304 is adjacent to the surface of the liquid crystal layer 338, and the surface of the liquid crystal layer 338 includes a plurality of parallel first trenches 308; and a second alignment layer 324 'the second alignment layer 324 is disposed in the The second substrate 322 is adjacent to the surface of the liquid crystal layer 338, and the second alignment layer 324 is adjacent to the surface of the liquid crystal layer 338. The surface of the liquid crystal layer 338 includes a plurality of parallel second trenches 328, and the second alignment layer 324 is second. The trench 328 extends in a direction perpendicular to the direction in which the first trench 308 of the first alignment layer 304 extends. The first substrate 302 and the second substrate 322 may be made of a hard or flexible transparent material such as glass, quartz, diamond or plastic. In this embodiment, the material of the first substrate 302 and the second substrate 322 is a flexible material such as cellulose triacetate (CTA). Preferably, the materials of the first substrate 302 and the second substrate 322 are all formed of a CTA material. It can be understood that the materials of the first substrate 302 and the second substrate 322 may be the same or different. The liquid crystal layer 338 includes a plurality of long rod-shaped liquid crystal molecules. The liquid crystal material of the liquid crystal layer 338 is a liquid crystal material commonly used in the prior art. At least one alignment layer of the liquid crystal display panel 300 includes a carbon nanotube layer and a fixed layer disposed on a surface of the carbon nanotube layer adjacent to the liquid crystal layer 338. When one of the first alignment layer 304 Q or the second alignment layer 324 in the liquid crystal display panel 300 is the carbon nanotube layer and the fixed layer described in the embodiment, the other alignment layer may be previously used. The alignment layer of the technology. Preferably, in order to make the liquid crystal display panel 300 have better alignment quality and a simple structure, the first alignment layer 304 and the second alignment layer 324 are both constructed of a carbon nanotube layer and a fixed layer. The first alignment layer 304 includes a first carbon nanotube layer 304a and a first fixed layer 304b. The second alignment layer 324 includes a second carbon nanotube layer 324a and a second fixed layer 324b. The first pinned layer 304b and the second pinned layer 324b are respectively disposed on the surface of the first alignment layer 304 and the second alignment layer 324 adjacent to the liquid crystal layer 338. Since the first carbon nanotube layer 304a in the first alignment layer 304 and the second carbon nanotube layer 324a in the second alignment layer 324 are adjacent to the liquid crystal layer 338

V 的表面分別具有複數個平行且均勻分佈的間隙,故,所述 第一固定層304b及第二固定層324b分別覆蓋於第一奈米 碳管層304a及第二奈米碳管層324a靠近液晶層338的表 面時,會於第一固定層304b及第二固定層324b的表面形 成複數個平行且均勻分佈的溝槽;該溝槽可用作第一配向 層304及第二配向層324的第一溝槽308及第二溝槽328。 ❹ 當所述第一固定層304b及第二固定層324b的材料為 類金剛石的氫化物、氮化石夕、不定型梦的氫化物、碳化石夕、 二氧化矽、氧化鋁、氧化鈽、氧化錫、鈦酸鋅或鈦酸銦時, 可採用蒸發、濺射或者電漿增強化學氣相沈積(PECVD)生 長的方法附著於第一奈米礙管層304a及第二奈米礙管層 324a的表面。當所述第一固定層304b及第二固定層324b 的材料為聚乙烯醇、聚醯亞胺、聚曱基丙烯酸甲酯或聚碳 0 酸酯時,可採用甩膠法附著於第一奈米碳管層304a及第二 奈米碳管層324a的表面。所述第一固定層304b及第二固 定層324b的厚度為20奈米〜2微米。 所述第一奈米碳管層304a與第二奈米碳管層324a結 構相同。下面僅以第一奈米碳管層304a為例進行說明。所 述第一奈米碳管層304a包括複數個平行且緊密排列設置 的奈米碳管長線310。請參見圖5,所述奈米碳管長線310 包括由複數個首尾相連的奈米碳管束平行地組成的束狀結 構或由複數個首尾相連的奈米碳管束相互扭轉組成的絞線 12 200947071 結構。該相鄰的奈米碳管束之間通過凡德瓦爾力緊密結 合,該奈米碳管束包括複數個首尾相連且定向排列的奈米 _碳管。所述奈米碳管長線310的直徑為i奈米〜1〇〇微米, 其長度不限。所述奈米碳管長線之間,奈米碳管長線 310中的奈米碳管束之間以及奈米碳管之間具有複數個平 行且均勻分佈的間隙。 所述奈米碳管長線310中的奈米碳管包括單壁奈米碳 ❹管、雙壁奈米碳管及多壁奈米碳管中的一種或幾種。所述 單壁奈米碳管的直徑為0.5奈来〜1〇奈米,雙壁奈米碳管 的直徑為1.0奈米〜15奈米,多壁奈求碳管的直徑為15奈 米〜50奈米。 本實施例中,所述第一奈米碳管層3〇4a及第二奈米碳 管層324a分別包括複數個平行且緊密排列的奈米碳管長 線,且第一奈米碳管層304a的奈米碳管長線31〇的伸展方 向與所述第二奈米碳管層324a的奈米碳管長線32〇的伸展 ❾方向垂直,從而使得第-配向層3〇4的第一溝槽3〇8盘第 二配向層324的第二溝槽328的延伸方向垂直,以對液晶 層338中的液晶分子進行配向。具體地,第一配向層 中的第一溝槽308沿X軸方向延伸,且複數個第一溝& 3〇8 平行排列;第二配向層324中的第二溝槽328沿2轴3方向 延伸,且複數個第二溝槽328平行排列。所述的第一配向 層304及第二配向層324的厚度範圍分別為⑽米〜5〇微 米。 此外,由於所述第一奈米碳管層304&及第二奈米碳管 13 .200947071 層324a分別包括複數個平行且緊密排列設置的奈米碳管 .長線,且該奈米碳管長線包括複數個首尾相連且定向排列 ,的奈米碳管’從而所述奈米碳管層具有良好的導電性能, 可作為透明電極層,同時作為配向層起到配向作用。故本 實施例中的液晶顯示屏300採用含有奈米碳管層的配向層 時’無需額外增加透明電極層,從而可使得液晶顯示屏剔 具有較薄的厚度,簡化液晶顯示屏的結構及製造成本,提 ❹高背光源的利用率,改善顯示品質。此外,所述第一奈米 碳管層304a及第二奈米碳管層324a設置於基體上後不需 要進行機械刷磨或者其他處理以產生溝槽,其本身具有溝 槽,不會產生靜電及粉塵,從而使所述液晶顯示屏goo具 有較佳的配向品質。另,由於所述第一奈米碳管層3〇物 及第二奈米碳管層32如具有較好的柔韌性,故,該液晶顯 示屏300可以做成柔性液晶顯示屏。 進一步’分別覆蓋第一固定層304b及第二固定層32朴 ❹於所述第一奈米碳管層304a及第二奈米碳管層324a的表 面,可使得所述第一奈米碳管層304a及第二奈米碳管層 324a與液晶材料長時間接觸時,不脫落,從而使得所述液 晶顯示屏300具有較長的使用壽命及較好的配向品質。可 以理解’當沒有第一固定層304b及第二固定層324b覆蓋 於所述第一奈米碳管層304a及第二奈米碳管層324a的表 面時’由於所述第一奈米碳管層304a及第二奈米碳管層 324a的長期浸泡於液晶材料中,很容易脫落。而脫落的奈 米碳管摻雜於液晶層338中會導致液晶層338導電,使第 .200947071 一配向層304及第二配向層324短路,從而使液晶顯示屏 .300無法正常工作。 , 所述第一奈采碳管層304 a及第二奈米碳管層324 a中 的複數個奈米碳管長線係平行排列的,故所述第一奈米碳 管層304a及第二奈米碳管層324a具有對自然光的偏振作 用,從而可以代替先前技術中的偏振片起到偏振作用。為 了使得液晶顯示屏300具有更好的偏振效果,還可於第一 基體322及/或第二基體302遠離液晶層338的表面設置至 少一個偏振片(未示出)。 進一步,所述液晶顯示屏300還包括至少兩個引出電 極(圖中未顯示)分別與第一奈米碳管層304a及第二奈米 碳管層324a電連接。該引出電極用來對液晶顯示屏300 的第一配向層304及第二配向層324之間施加電壓,從而 使得位於第一配向層304及第二配向層324之間的液晶分 子發生偏轉。 Q 可以理解,本技術方案說明的液晶顯示屏300僅為單 像素。進一步,還可以將複數個該單像素的液晶顯示屏300 按照預定規律排列設置,如點陣設置,用於複數像素的液 晶顯示屏。可以理解,該複數像素的液晶顯示屏可以採用 共用基體的方式,採用相同的大面積的第一基體302與第 二基體322。或者,也可以將複數個液晶顯示屏300以不 共用基體的方式直接組裝於一起。 以下結合圖6與圖7對本實施例液晶顯示屏300的工 作過程進行說明。 15 .200947071 如圖6所示,當沒有電壓施加於第一配向層3〇4及第 配白層324之間時,液晶分子的排列會依照第一配向層 -304及第二配向層324的配向而定。本實施例的液晶顯示 屏300中,所述第一配向層304及第二配向層324的配向 方向形成90度,故,液晶層338中的液晶分子的排列由上 而下會自動旋轉90度。當入射的光線[經過第一配向層 304時’由於第一配向層3〇4的穿透軸沿z軸方向,故, ❹只有偏振方向與穿透軸平行的偏振光通過。當偏振光 L1通過液晶分子時’由於液晶分子總共旋轉了 度故, 當偏振光L1到達第二配向層324時,偏振光L1的偏振方 向恰好轉了 90度。由於第二配向層324的穿透軸沿X軸 方向,即.偏振光L1的偏振方向因轉了 90度而與穿透軸 平行’從而可以順利的通過第二配向層324,此時,本實 施例的液晶顯示屏3〇〇處於通光的狀態。 如圖7所示,當有電壓施加於第一配向層304及第二 〇配向層324之間時,液晶分子受電場的影響,其排列方向 會傾向平行於電場方向而變成與第一基體3〇2垂直的狀 態。此時通過第一配向層3〇4的偏振光Li經過液晶分子 時便不會改變偏振方向,故,就無法通過第二配向層324, 此時’本實施例的液晶顯示屏3〇〇處於遮光的狀態。 綜上所述’本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 16 200947071 蓋於以下申請專利範圍内。 .【圖式簡單說明】 圖1為一種先前技術的液晶顯示屏的立體結構示意 圖。 圖2為本技術方案實施例的液晶顯示屏的立體結構示 意圖。 圖3為沿圖2所示的線III-III的剖視圖。 圖4為沿圖2所示的線IV-IV的剖視圖。 ❹ 圖5為本技術方案實施例的液晶顯示屏的奈米碳管長 線的掃描電鏡照片。 圖6為本技術方案實施例的液晶顯示屏處於通光狀態 的立體結構示意圖。 圖7為本技術方案實施例的液晶顯示屏處於遮光狀態 的立體結構示意圖。 【主要元件符號說明】 液晶顯不屏 100, 300 第一偏光片 102 第一基體 104, 302 第一透明電極層 106 第一配向層 108, 304 第一溝槽 1082, 308 第二偏光片 110 第二基體 112, 322 17 200947071 第二透明電極層 114 第二配向層 116, 324 第二溝槽 1162, 328 液晶層 118, 338 液晶分子 1182 第一奈米碳管層 304a 第一固定層 304b 第二奈米碳管層 324a 第二固定層 324b 第一奈米碳管層中的奈米礙管長線 310 第二奈米碳管層中的奈米碳管長線 320The surfaces of V respectively have a plurality of parallel and evenly distributed gaps. Therefore, the first fixed layer 304b and the second fixed layer 324b cover the first carbon nanotube layer 304a and the second carbon nanotube layer 324a, respectively. When the surface of the liquid crystal layer 338 is formed, a plurality of parallel and uniformly distributed trenches are formed on the surfaces of the first fixed layer 304b and the second fixed layer 324b; the trench may be used as the first alignment layer 304 and the second alignment layer 324. The first trench 308 and the second trench 328. ❹ When the materials of the first fixed layer 304b and the second fixed layer 324b are diamond-like hydride, nitrite, amorphous hydride, carbonized carbide, cerium oxide, aluminum oxide, cerium oxide, oxidation When tin, zinc titanate or indium titanate is used, it may be attached to the first nano tube layer 304a and the second nano tube layer 324a by evaporation, sputtering or plasma enhanced chemical vapor deposition (PECVD) growth. s surface. When the material of the first fixing layer 304b and the second fixing layer 324b is polyvinyl alcohol, polyimine, polymethyl methacrylate or polycarbonate, the first coating can be attached to the first naphthalene by a silicone method. The surface of the carbon nanotube layer 304a and the second carbon nanotube layer 324a. The first fixed layer 304b and the second fixed layer 324b have a thickness of 20 nm to 2 μm. The first carbon nanotube layer 304a is identical in structure to the second carbon nanotube layer 324a. Hereinafter, only the first carbon nanotube layer 304a will be described as an example. The first carbon nanotube layer 304a includes a plurality of carbon nanotube long lines 310 arranged in parallel and closely arranged. Referring to FIG. 5, the carbon nanotube long line 310 includes a bundle structure consisting of a plurality of end-to-end connected carbon nanotube bundles in parallel or a twisted pair of a plurality of end-to-end connected carbon nanotube bundles twisted to each other. 200947071 structure. The adjacent carbon nanotube bundles are tightly bonded by a van der Waals force, and the bundle of carbon nanotubes includes a plurality of end-to-end aligned carbon nanotubes. The diameter of the long carbon nanotube 310 is i nanometers to 1 micrometer, and the length thereof is not limited. Between the long lines of the carbon nanotubes, there are a plurality of parallel and evenly distributed gaps between the carbon nanotube bundles in the long carbon nanotubes 310 and between the carbon nanotubes. The carbon nanotubes in the long carbon nanotube 310 of the carbon nanotubes include one or more of a single-walled carbon nanotube tube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 Ny to 1 〇 nanometer, the diameter of the double-walled carbon nanotube is 1.0 nm to 15 nm, and the diameter of the multi-walled carbon tube is 15 nm~ 50 nm. In this embodiment, the first carbon nanotube layer 3〇4a and the second carbon nanotube layer 324a respectively comprise a plurality of parallel and closely arranged carbon nanotube long lines, and the first carbon nanotube layer 304a The extension direction of the long carbon wire 31〇 of the carbon nanotube is perpendicular to the direction of the extension of the long carbon wire 32〇 of the second carbon nanotube layer 324a, so that the first groove of the first alignment layer 3〇4 The extending direction of the second trench 328 of the 3 〇 8 disk second alignment layer 324 is perpendicular to align the liquid crystal molecules in the liquid crystal layer 338. Specifically, the first trench 308 in the first alignment layer extends in the X-axis direction, and the plurality of first trenches & 3〇8 are arranged in parallel; the second trench 328 in the second alignment layer 324 is along the 2 axis 3 The direction extends and a plurality of second trenches 328 are arranged in parallel. The thickness of the first alignment layer 304 and the second alignment layer 324 ranges from (10) m to 5 μm, respectively. In addition, since the first carbon nanotube layer 304 & and the second carbon nanotube 13 .200947071 layer 324a respectively comprise a plurality of parallel and closely arranged carbon nanotubes. Long lines, and the carbon nanotube long line The utility model comprises a plurality of carbon nanotubes which are connected end to end and oriented, so that the carbon nanotube layer has good electrical conductivity and can serve as a transparent electrode layer and at the same time function as an alignment layer. Therefore, when the liquid crystal display panel 300 of the embodiment adopts an alignment layer containing a carbon nanotube layer, there is no need to additionally add a transparent electrode layer, thereby making the liquid crystal display screen have a thin thickness, simplifying the structure and manufacture of the liquid crystal display panel. Cost, improve the utilization of high backlights, and improve display quality. In addition, the first carbon nanotube layer 304a and the second carbon nanotube layer 324a are disposed on the substrate without mechanical brushing or other processing to create a groove, which itself has a groove and does not generate static electricity. And dust, so that the liquid crystal display goo has better alignment quality. In addition, since the first carbon nanotube layer 3 and the second carbon nanotube layer 32 have better flexibility, the liquid crystal display panel 300 can be made into a flexible liquid crystal display. Further, the first fixed layer 304b and the second fixed layer 32 are respectively covered on the surfaces of the first carbon nanotube layer 304a and the second carbon nanotube layer 324a, so that the first carbon nanotube can be made. When the layer 304a and the second carbon nanotube layer 324a are in contact with the liquid crystal material for a long time, they do not fall off, so that the liquid crystal display panel 300 has a long service life and a good alignment quality. It can be understood that 'when the first fixed layer 304b and the second fixed layer 324b are not covered on the surfaces of the first carbon nanotube layer 304a and the second carbon nanotube layer 324a' due to the first carbon nanotube The layer 304a and the second carbon nanotube layer 324a are immersed in the liquid crystal material for a long period of time and are easily peeled off. The doping of the carbon nanotubes in the liquid crystal layer 338 causes the liquid crystal layer 338 to conduct electricity, short-circuiting the .200947071 alignment layer 304 and the second alignment layer 324, so that the liquid crystal display screen 300 does not work normally. The plurality of carbon nanotube layers 304a and the second carbon nanotube layer 324a are arranged in parallel, so the first carbon nanotube layer 304a and the second layer The carbon nanotube layer 324a has a polarizing effect on natural light, so that it can be polarized instead of the polarizing plate of the prior art. In order to make the liquid crystal display panel 300 have a better polarization effect, at least one polarizing plate (not shown) may be disposed on the surface of the first substrate 322 and/or the second substrate 302 away from the liquid crystal layer 338. Further, the liquid crystal display panel 300 further includes at least two extraction electrodes (not shown) electrically connected to the first carbon nanotube layer 304a and the second carbon nanotube layer 324a, respectively. The extraction electrode is used to apply a voltage between the first alignment layer 304 and the second alignment layer 324 of the liquid crystal display 300 such that liquid crystal molecules located between the first alignment layer 304 and the second alignment layer 324 are deflected. Q It can be understood that the liquid crystal display 300 illustrated in the technical solution is only a single pixel. Further, a plurality of the single-pixel liquid crystal display panels 300 may be arranged in a predetermined pattern, such as a dot matrix setting, for a liquid crystal display screen of a plurality of pixels. It can be understood that the liquid crystal display of the plurality of pixels can adopt the same basic large-area first substrate 302 and second substrate 322 by using a common substrate. Alternatively, a plurality of liquid crystal displays 300 may be directly assembled together without sharing the substrate. The working process of the liquid crystal display panel 300 of the present embodiment will be described below with reference to Figs. 6 and 7. 15.200947071 As shown in FIG. 6, when no voltage is applied between the first alignment layer 3〇4 and the first white layer 324, the alignment of the liquid crystal molecules is in accordance with the first alignment layer-304 and the second alignment layer 324. Depending on the orientation. In the liquid crystal display panel 300 of the embodiment, the alignment directions of the first alignment layer 304 and the second alignment layer 324 are formed at 90 degrees, so that the arrangement of the liquid crystal molecules in the liquid crystal layer 338 is automatically rotated by 90 degrees from top to bottom. . When the incident light [passes through the first alignment layer 304] is in the z-axis direction due to the transmission axis of the first alignment layer 3〇4, only the polarized light whose polarization direction is parallel to the transmission axis passes. When the polarized light L1 passes through the liquid crystal molecules, since the liquid crystal molecules are rotated in total, when the polarized light L1 reaches the second alignment layer 324, the polarization direction of the polarized light L1 is just rotated by 90 degrees. Since the transmission axis of the second alignment layer 324 is along the X-axis direction, that is, the polarization direction of the polarized light L1 is parallel to the transmission axis by turning 90 degrees, and thus can smoothly pass through the second alignment layer 324, at this time, The liquid crystal display panel 3 of the embodiment is in a light-passing state. As shown in FIG. 7, when a voltage is applied between the first alignment layer 304 and the second alignment layer 324, the liquid crystal molecules are affected by the electric field, and the alignment direction thereof tends to be parallel to the electric field direction and becomes the first substrate 3. 〇 2 vertical state. At this time, the polarized light Li passing through the first alignment layer 3〇4 does not change the polarization direction when passing through the liquid crystal molecules, so that the second alignment layer 324 cannot pass through, and the liquid crystal display panel 3 of the present embodiment is Shading state. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic perspective view showing a prior art liquid crystal display. Fig. 2 is a perspective view showing the structure of a liquid crystal display according to an embodiment of the present invention. Figure 3 is a cross-sectional view taken along line III-III shown in Figure 2 . Figure 4 is a cross-sectional view taken along line IV-IV shown in Figure 2 . ❹ FIG. 5 is a scanning electron micrograph of a carbon nanotube long line of a liquid crystal display according to an embodiment of the present technical solution. FIG. 6 is a schematic perspective structural view of a liquid crystal display panel in a light-passing state according to an embodiment of the present disclosure. FIG. 7 is a schematic perspective structural view of a liquid crystal display panel in a light blocking state according to an embodiment of the present disclosure. [Main component symbol description] Liquid crystal display screen 100, 300 First polarizer 102 First substrate 104, 302 First transparent electrode layer 106 First alignment layer 108, 304 First trench 1082, 308 Second polarizer 110 Two substrates 112, 322 17 200947071 second transparent electrode layer 114 second alignment layer 116, 324 second trench 1162, 328 liquid crystal layer 118, 338 liquid crystal molecules 1182 first carbon nanotube layer 304a first fixed layer 304b second Nano carbon tube layer 324a Second fixed layer 324b Nano tube in the first carbon nanotube layer long line 310 Carbon nanotube long line 320 in the second carbon nanotube layer

1818

Claims (1)

.200947071 十、申請專利範圍 1· 一種液晶顯示屏,其包括: 一第一基體; 一第二基體,所述第一基體與所述第二基體相對設置; 一液晶層’設置於所述第一基體與所述第二基體之間; 一第一配向層,該第一配向層設置於所述第一基體的 靠近液晶層的表面,且第一配向層靠近液晶層的表面 包括複數個平行的第一溝槽;及 第一配向層,該第二配向層設置於所述第二基體的 靠近液晶層的表面,且第二配向層靠近液晶層的表面 包括複數個平行的第二溝槽,所述第二配向層的第二 溝槽延伸方向與第一配向層的第一溝槽延伸方向垂 直; 其改良在於,所述液晶顯示屏中至少一個配向層包括 一奈米碳管層及一固定層,該奈米碳管層包括複數個 平行且緊密排列的奈米碳管長線,所述固定層設置於 所述奈米碳管層靠近液晶層的表面。 2·如申請專利範圍第1項所述的液晶顯示屏,其中,所 述奈米碳管長線的直徑為1奈米〜1〇〇微米。 3.如申請專利範圍第1項所述的液晶顯示屏,其中,所 述奈米碳管長線包括由複數個首尾相連的奈米碳管束 紐·成的束狀結構或絞線結構。 4·如申請專利範圍第3項所述的液晶顯示屏,其_,所 述相鄰的奈米碳管束之間通過凡德瓦爾力緊密結合, 19 ,200947071 每奈米碳官束包括複數個首尾相連且定向排列的奈 • 未碳管。 • 5·如申請專利範圍第i項所述的液晶顯示屏,其中,所 述不米碳管長線之間具有複數個平行且均勻分佈的間 隙。 6·如申請專利範圍第5項所述的液晶顯示屏,其中,所 述固定層具有與奈米碳管層中的間隙相對應的溝槽, 〇 且該溝槽組成第一配向層的第一溝槽或第二配向層的 第二溝槽。 如申明專利範圍第1項所述的液晶顯示屏,其中,所 述固定層的材料為氫化的類金剛石#氮化物、氣化 矽不疋型矽的氫化物、碳化矽、二氧化矽、氧化鋁、 氧化鈽、氧化錫、鈦酸鋅或鈦酸錮。 如申明專利範圍第1項所述的液晶顯示屏,其中,所 ^固^層的材料為聚乙烯醇、聚酿亞胺、聚甲基丙稀 11 酸甲酯或聚碳酸酯。 如申叫專利範圍第1項所述的液晶顯示屏,其十,所 述固定層的厚度為20奈米〜2微米。 〇.如申請專利範圍帛i項所述的液晶顯示屏,其中,所 述第一配向層及第二配向層分別包括一奈米碳管層及 —固定層,且第-配向層中的奈米碳管長線的伸展方 向與第二配向層中的奈米碳管長線的伸展方向垂直。 •如申請專利範圍第10項所述的液晶顯示屏,其中,所 述奈米碳管長線之間具有複數個平行且均勻分佈的間 20 .200947071 =’所述固疋層具有與奈米碳管層#㈣隙相對應的 ^槽且該溝槽分別組成第_配向層的第—溝槽及第 一配向層的第二溝槽。 12.如申請專利範圍第1項所述的液晶顯示屏,其中,所 述第配向層或第二配向層的厚度為工微米〜%微米。 、申明專利範圍第1項所述的液晶顯示屏,其中,所 第基體及第—基體的材料為柔性或硬性的透明材 ❹ #戶/f述柔性透明材料為三乙酸纖維素,所述硬性透 明材料為玻璃、石英、金剛石或塑膠。 14·如申請專利範圍第i項所述的液晶顯示屏,其中,該 液晶顯示屏進一步包括至少一個偏振片,該偏振片設 置於第一基體或/及第二基體遠離液晶層的表面。 •如申請專利範圍第i項所述的液晶顯示屏,其中,該 液晶顯示屏進-步包括至少-個引出電極與該奈米碳 管層電連接。 〇 21.200947071 X. Patent Application Range 1· A liquid crystal display panel comprising: a first substrate; a second substrate, the first substrate is disposed opposite to the second substrate; and a liquid crystal layer is disposed on the first Between a substrate and the second substrate; a first alignment layer disposed on a surface of the first substrate adjacent to the liquid crystal layer, and the surface of the first alignment layer adjacent to the liquid crystal layer includes a plurality of parallel a first trench; and a first alignment layer disposed on a surface of the second substrate adjacent to the liquid crystal layer, and the surface of the second alignment layer adjacent to the liquid crystal layer includes a plurality of parallel second trenches The second trench extending direction of the second alignment layer is perpendicular to the first trench extending direction of the first alignment layer; and the improvement is that at least one alignment layer of the liquid crystal display panel comprises a carbon nanotube layer and A fixed layer, the carbon nanotube layer comprising a plurality of parallel and closely arranged carbon nanotube long lines, the fixed layer being disposed on a surface of the carbon nanotube layer adjacent to the liquid crystal layer. 2. The liquid crystal display according to claim 1, wherein the long diameter of the carbon nanotubes is from 1 nm to 1 μm. 3. The liquid crystal display according to claim 1, wherein the long carbon nanotube line comprises a bundle structure or a stranded structure formed by a plurality of end-to-end carbon nanotube bundles. 4. The liquid crystal display according to claim 3, wherein the adjacent carbon nanotube bundles are closely combined by van der Waals force, 19, 200947071 per nanometer carbon official bundle includes a plurality of End-to-end and oriented naf-free carbon tubes. The liquid crystal display of claim i, wherein the plurality of carbon nanotube long lines have a plurality of parallel and evenly distributed gaps. 6. The liquid crystal display according to claim 5, wherein the fixed layer has a groove corresponding to a gap in the carbon nanotube layer, and the groove constitutes a first alignment layer a trench or a second trench of the second alignment layer. The liquid crystal display according to claim 1, wherein the material of the fixed layer is hydrogenated diamond-like #nitride, hydride of vaporized ruthenium-free ruthenium, ruthenium carbide, ruthenium dioxide, oxidation Aluminum, cerium oxide, tin oxide, zinc titanate or barium titanate. The liquid crystal display according to claim 1, wherein the material of the layer is polyvinyl alcohol, polyacrylonitrile, polymethyl methacrylate or polycarbonate. The liquid crystal display panel of claim 1, wherein the fixed layer has a thickness of 20 nm to 2 μm. The liquid crystal display of claim 1, wherein the first alignment layer and the second alignment layer respectively comprise a carbon nanotube layer and a fixed layer, and the nano layer in the first alignment layer The extension direction of the long carbon nanotube tube is perpendicular to the extension direction of the long carbon nanotube line in the second alignment layer. The liquid crystal display according to claim 10, wherein the carbon nanotube long lines have a plurality of parallel and evenly distributed spaces 20 . 200947071 = 'the solid layer has a carbon nanoparticle The tube layer #(4) corresponds to the groove and the groove respectively constitutes the first groove of the first alignment layer and the second groove of the first alignment layer. 12. The liquid crystal display of claim 1, wherein the thickness of the first alignment layer or the second alignment layer is in the range of micrometers to micrometers. The liquid crystal display of claim 1, wherein the material of the first substrate and the first substrate is a flexible or rigid transparent material, and the flexible transparent material is cellulose triacetate. The transparent material is glass, quartz, diamond or plastic. The liquid crystal display of claim 1, wherein the liquid crystal display further comprises at least one polarizing plate disposed on a surface of the first substrate or/and the second substrate away from the liquid crystal layer. The liquid crystal display of claim i, wherein the liquid crystal display further comprises at least one extraction electrode electrically connected to the carbon nanotube layer. 〇 21
TW97117200A 2008-05-09 2008-05-09 Liquid crystal display screen TWI377415B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97117200A TWI377415B (en) 2008-05-09 2008-05-09 Liquid crystal display screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97117200A TWI377415B (en) 2008-05-09 2008-05-09 Liquid crystal display screen

Publications (2)

Publication Number Publication Date
TW200947071A true TW200947071A (en) 2009-11-16
TWI377415B TWI377415B (en) 2012-11-21

Family

ID=44870222

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97117200A TWI377415B (en) 2008-05-09 2008-05-09 Liquid crystal display screen

Country Status (1)

Country Link
TW (1) TWI377415B (en)

Also Published As

Publication number Publication date
TWI377415B (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4960155B2 (en) Liquid crystal display
JP4874759B2 (en) Liquid crystal display device and manufacturing method thereof
TWI297088B (en) Liquid crystal display and its manufacturing method
CN101526695B (en) Liquid crystal display screen
JP5065326B2 (en) Liquid crystal display
JP4922327B2 (en) LCD panel
CN101566760B (en) Liquid crystal display
CN101498864A (en) Lcd
CN101515091B (en) Method for manufacturing liquid crystal display screen
TWI356251B (en) Liquid crystal display screen
US10082703B2 (en) Composite substrate and methods for fabricating the same, and liquid crystal display panel
CN100426064C (en) LCD device
TWI356253B (en) Liquid crystal display screen
US9841632B2 (en) Liquid crystal display panel, composite substrate and method for fabricating the same
TW200947071A (en) Liquid crystal display screen
TWI356252B (en) Liquid crystal display screen
TWI356230B (en) Liquid crystal display screen
TWI330739B (en) Liquid crystal display
TWI412846B (en) Liquid crystal display screen
TWI356250B (en) Method for making liquid crystal display screen
TWI356234B (en) Liquid crystal screen