TW200946843A - Solar collector - Google Patents

Solar collector Download PDF

Info

Publication number
TW200946843A
TW200946843A TW97116246A TW97116246A TW200946843A TW 200946843 A TW200946843 A TW 200946843A TW 97116246 A TW97116246 A TW 97116246A TW 97116246 A TW97116246 A TW 97116246A TW 200946843 A TW200946843 A TW 200946843A
Authority
TW
Taiwan
Prior art keywords
solar collector
layer
carbon nanotube
lower substrate
substrate
Prior art date
Application number
TW97116246A
Other languages
Chinese (zh)
Other versions
TWI378217B (en
Inventor
Peng Liu
Pi-Jin Chen
Liang Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97116246A priority Critical patent/TWI378217B/en
Publication of TW200946843A publication Critical patent/TW200946843A/en
Application granted granted Critical
Publication of TWI378217B publication Critical patent/TWI378217B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Laminated Bodies (AREA)

Abstract

The present invention relates to a solar collector. The solar collector includes an upper substrate, a lower substrate, a decalescence layer, a bracket and a number of supporters. The upper substrate is disposed corresponding to the lower substrate. The bracket is disposed between the upper substrate and the lower substrate. The upper substrate, the lower substrate, and the bracket define an inner space. The decalescence layer is disposed on a surface of the lower substrate, which is facing to the upper substrate. A number of supporters are arranged in the inner space, and are respectively in contact with the upper substrate and the decalescence layer. The decalescence layer is a carbon nanotube composite layer.

Description

200946843 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種太陽能集熱器。 【先前技術】 、㈣^ 社會的發展,人類社會對於資源和能 ❹ 賴曰益加強。而眾所周知’地球上的資源和能源係 有限的,故於各種經濟、政治、科學研究活動中,資源和 能源的問題成了首要問題。而由於部分資源可以通過一些 人t的過程加以回收再利用,因此’能源的問題更為突出。 太陽能係人類可以利用的最豐富的能源,也係最廉價的, 最潔淨的,最有發展前途的能源。太陽能電池和太陽能集 熱β係直接利用和吸收太陽能的主要方式。與太陽能電池 相比較,太陽能集熱n的效率較高’遠高於其他太陽能利 用的方式。但目前太陽能集熱器由於受結構和材料等方面 的因素局限,應用範圍和領域還比較窄。 ❹ 目刖廣泛應用的太陽能集熱器分為太陽能管式隼孰器 (請參見“真空管太陽能家用熱水器及其東 放置的比較”,太陽能學報,吳家慶等,ν〇19, Ρ396-405(1988))和太陽能板式集熱器兩種。請參閱圖工, 為先前技術中太陽能管式集熱器300,包含一放置於地面 上的座體30、一裝設於該座體30 —側的儲水桶32、及連 接所述座體30另一侧與所述儲水桶32之間的真空吸熱管 34。當該真空吸熱管34接收到太陽能後,利用冷水比熱水 比重大的原理,而產生冷水下流、熱水上升現象,進而使 7 200946843 所述真空吸熱管34内的液體達到自然對流循環加埶,具有 =好溫性。然而’當太陽光照射到所述真空吸埶管34 吸熱管34的圓管曲線排布,造成有效集熱 故需要㈣清潔、歸,輯持良好的熱料料成,=曰 費時而且費力。 太陽能板式集熱器的出現克服了所述太陽能管式 》器300中出現的問題。請參閱圖2,先前技術中的太陽能 板式集熱器500包含一上基板5〇、一下基板52、邊框支架 56和複數個支撐物58。其中,所述上基板5〇為一透光基 板,由玻璃、塑膠等透明材料製成。下基板52為一吸熱板, -由銅、鋁合金(優選防銹鋁)、不銹鋼、鋅等材料製成。所 •述上基板50和下基板52構成一空腔60,該空腔6〇的兩 侧設有邊框支架56。所述上基板50和下基板52之間設置 有複數個支撐物58。 ❹ 然而’為防止所述下基板52於製備的過程中被氧化, 該下基板52需要於較高的真空絕熱環境下進行製備,並要 加熱到較高的溫度,生產工藝複雜。因此,使得下基板52 的製備過程中的成本較高,從而相應地使得所述太陽能板 式集熱器500的成本較高,不適於大面積普及推廣應用。 另外’所述太陽能板式集熱器500中下基板52本身也作為 吸熱層,故下基板52材料的選擇受到限制,必須係吸熱材 料’而採用銅、鋁合金等吸熱材料製成的下基板52,由於 該下基板52的吸熱表面積較小同時對太陽光的反射較 200946843 • ♦ 大,故,對太陽能的轉化效率較低。 ' 有鑒於此,提供一種具有較高的轉化效率且下基板材 料的選擇不受限制的太陽能集熱器實為必要。 【發明内容】 一種太陽能集熱器包括一上基板、一下基板、一吸熱 層、一邊框支架和複數個支撐物。所述上基板和所述下基 板相對設置。所述邊框支架設置於所述上基板和下基板之 間。所述上基板、下基板及邊框支架共同構成一空腔。所 ®述吸熱層設置於所述下基板位於所述空腔内的上表面。所 述複數個支撐物間隔地設置於所述空腔内,並分別與所述 上基板和吸熱層相接觸。所述吸熱層為一奈米碳管複合材 料層。 與先前技術相比較,所述太陽能集熱器具有以下優 點:其一,由於奈米碳管具有良好的吸熱性,故,採用奈 米碳管複合材料層作吸熱層,可提高太陽能集熱器對太陽 @能的能量轉化效率,對太陽能吸收均勻。其二,由於採用 奈米碳管複合材料層作為吸熱層,故下基板材料的選擇不 受限制。 【實施方式】 以下將結合附圖詳細說明本技術方案太陽能集熱器。 請參閱圖3及圖4,本技術方案實施例提供一種太陽 能集熱器100包括一上基板10、一下基板12、一吸熱層 14、一邊框支架16和複數個支撐物18。所述上基板10和 所述下基板12相對設置。所述邊框支架16設置於所述上 200946843 • * .基板10和下基板12之間。所述上基板10、下基板12及 邊才〔支架16、同構成一空腔2〇。所述吸熱層設置於位 於所述空腔2G内的崎述下基板12的上表面121。所述複 數個支撐物18間隔地設置於所述空腔2〇 β,並分別與所 述上基板ίο和吸熱層14相接觸。所述吸熱層14包括一奈 米碳管複合材料層。 所述上基板10為一透光基板,用於透過太陽光。該上 基板10採用透明材料製成,如玻璃、塑膠、透明陶瓷、高 分子透明材料等。所述上基板10的厚度為100微米〜5毫 米,優選為3毫米。所述上基板1〇的形狀不限,可以係三 角形、六邊形、四邊形等,可依據需求製成任意形狀。 所述下基板12與上基板1〇相對設置。該下基板12 為一集熱基板’用於收集並傳遞太陽光的能量。該下基板 12可採用玻璃製成,或者採用導熱性能較好的材料製成, 如鋅、铭或者不銹鋼等。所述下基板12的厚度為1〇〇微米 ❹〜5毫米’優選為3毫米。所述下基板12的形狀不限,可 以係三角形、六邊形、四邊形等,可依據需求製成任意形 狀。 所述邊框支架16可採用玻璃等材料製成。所述邊框支 架16的高度為1〇〇微米〜500微米,優選為150微米〜250 微米。 所述空腔20内為真空絕熱環境,抑制空氣的自然對 流’從而減少所述太陽能集熱器100中對流換熱的損失, 起到保溫作用,從而大大提高所述太陽能集熱器100的熱 200946843 效率。另外’所述空腔20内也可以不採取真空的環境,可 以於所述空腔20中填充一種能夠透光且保溫的間隔層(圖 未示),該間隔層填充整個空腔,可以由透明的泡沫型材料 如耐熱塑膠製成,也可以採用一些導熱效果較差的氣體如 氮氣充當間隔層。 所述吸熱層14包括一奈米碳管複合材料層,該奈米碳 管複合材料層包括複數個奈米碳管和黑色不透光材料。該 黑色不透光材料為碳顆粒或者石墨乳等。該奈米碳管於^ ❹述奈米碳管複合材料層中無序排列且均勻分佈。所述奈米 碳管複合材料層中奈米碳管的質量百分含量為8〇%以 黑色不透光材料的質量百分含量為2〇%以下。 ‘ 本實施例中所述吸熱層14的製備方法包括以下步驟: 首先,提供一奈米碳管漿料。所述奈米碳管漿料包括 奈米碳f、黑色不透光材料及有機載體。本實施例優選5〇% 的奈米碳管、20%的碳顆粒及3〇%的有機載體。所述有機 ❹,體包括作為主要溶劑的松油醇、料增塑劑的少量鄰位 苯二甲酸二丁醋及作為穩定劑的少量乙基纖維素。將各成 份按比例混合後,可通過超聲震盪的方法使各成份於聚料 中均勻分散而得到均勻穩定的漿料。 然後將上述奈米碳管聚料通過絲網印刷或者直接塗布 方法涂覆於位於所述空腔2G内的所述下基板12的上表面 12ί’並去除奈米碳管㈣斗中的有機載體, 14。去除有機載體可㈣烘乾或者自_乾的方法。 所述奈米碳管複合材料層中奈米碳管可為單壁奈米碳 11 200946843 •管、雙壁奈米碳管或者多壁奈米碳管。當奈米碳管複合材 料層中的奈米碳管為單壁奈米碳管時,該單壁奈米碳管的 直徑2 0.5奈米〜50奈米。當奈米碳管複合材料層中的奈 米碳管為雙壁奈米碳管時,該雙壁奈求碳管的直徑為 奈米〜50奈米。當奈米碳管複合材料層中的奈米碳管為多 壁奈米碳管時,該多壁奈米碳管的直徑為15奈米〜5〇奈 所述奈米碳管複合材料層包括黑色的奈米材料即奈: 碳管,奈米碳管具有良好的吸光特性和導熱率高的優異特 f"生故,所述奈米碳官複合材料層對於太陽光有較好的吸 收特性。且通過絲網印刷或者直接塗布方法就可製成奈米 碳管複合材料層,製備方法簡單,成本較低,適於大面積 -普及推廣應用。所述太陽能集熱器1〇〇中吸熱層 .光的吸收效率隨吸熱層14厚度的增加而增=二= 層14的厚度越厚,對於太陽光的吸收效率越高。所述吸熱 層14的厚度為3微米〜2毫米。 Ο 所述複數個支樓物18用於抵抗大氣壓力,加強所述太 陽能集熱器100的牢固性。所述支撐物18的高度和所述邊 框支架16的高度相同。所述支撐物18係由吸熱性較弱的 材料製成,如玻璃。該支撐物18的形狀不限,可以為小珠 狀或者細絲狀等。 所述太陽能集熱器100為一平板型結構。另外,所述 太陽能集熱器100還可製成其他的各種形狀,比如柱面、 球面等多種曲面形式。所述太陽能集熱器100可以廣泛應 用於建築結構的外牆上,從而實現為建築物内部的供暖。 12 200946843 > * •所述太陽能集熱HUH)的上基板1〇和下基板12可以方便 地製成各種形狀,起到裝飾的作用。 所述f陽能集熱器100進-步包括一反射層22,該反 射層22設置於所述上基板1〇位於空腔2〇内的下表面 101 ’厚度為10奈米〜i微米…個理想的太陽能集熱器 100應能最大限度地吸收人射其表面的太陽能,而同時又 要盡可能地減少其自身的輻射熱損,這樣才可能最大程度 地將太陽能轉化為熱能。,所述太陽能集熱·謂於可 見光及近紅外光波段反射率低即吸收比高,而於中、遠紅 外光波段反射率高即發射率低。這就需要於所述太陽能集 熱器100内設置一反射層22。該反射層22為一紅外反射 -層,如氧化銦錫薄膜或者一奈米碳管結構。該奈米碳管結 .構包括無序奈米碳管層、有序奈米碳管層或者奈米碳管複 合材料層。所述反射層22對於可見光及近紅外光係透明 的,具有非常好的透過可見光及近紅外光、並反射中、遠 ❿=外光的特點,從而可以減少所述太陽能集熱器100對太 陽能能量的輻射損失,增大該太陽能集熱器100對太陽能 的能量轉化效率。所述反射層22和所述吸熱層14可以均 為奈米碳管結構,但所述反射層22的厚度比所述吸熱層 14的厚度小,以保證大部分可見光及近紅外光透過該反射 層22。 進一步’還可以將一循環液流層24設置於所述太陽能 集熱器100的下基板12的下表面122’如將溫度較低的水 或者乙二醇等液體作為循環液。所述太陽能集熱器100可 13 200946843 以直接把水加熱作為熱水使用,或者將熱量帶走作為其他 '的應用’比如海水淡化、製冷、發電等。 ❹ 所述太陽能集熱器100於太陽光透過所述透光的上基 板10後照射到所述吸熱層14。由於該吸熱層包括累色 的奈米材料即奈米碳管’所述吸熱層14對於太陽光的^見 光及近紅外光波段都具有比較好的吸收’轉變為熱能,然 後通過所述集熱的下基板12將熱能傳給所述循環液流層 24。由於吸熱層14中的奈米碳管具有穩定性好和導熱率高 的優異特性,可提高吸熱層14將熱能傳給所述循環液流層 24的效率。另外,所述吸熱層14吸收太陽能後溫度升高, 而後吸熱層14作為一熱源也會向外輻射熱量。所述反射層 22的設置可將這部分熱輻射反射回所述空腔内,可以 減少所述太陽能集熱器100的熱量散失,進一步提高所述 太陽能集熱器100的工作效率。 ❹ 所述太陽能集熱器具有以下優點.f 典胃女白紅 另乂 Μ愛點.其一,由於奈米碳 &具有良好㈣熱性,故,採用奈米碳管複合材料層作吸 熱層,可提南太陽能集熱器對太陽能的能量轉化效率 太陽能吸收均勾。其三,由於採用奈米碳管複 為吸熱層’故下基板材料的選擇不受限制。 , ,上所述,本發明確已符合發明專利之要件,遂依法 知:出專利申請。惟’以上所述去200946843 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a solar collector. [Prior Art], (4) ^ The development of society, the human society has strengthened resources and energy. It is well known that the resources and energy systems on the earth are limited. Therefore, in various economic, political and scientific research activities, the issue of resources and energy has become a top priority. And because some of the resources can be recycled through some people's processes, the problem of 'energy' is more prominent. Solar energy is the most abundant energy available to humans, and it is also the cheapest, cleanest, and most promising source of energy. Solar cells and solar collectors are the primary means of direct utilization and absorption of solar energy. Compared with solar cells, the efficiency of solar heat collection n is much higher than that of other solar energy sources. However, due to the limitations of structure and materials, solar collectors are still narrow in scope and field of application.太阳能 Widely used solar collectors are divided into solar tube type vessels (please refer to “Comparison of vacuum tube solar domestic water heaters and their east placement”, Journal of Solar Energy, Wu Jiaqing, etc., ν〇19, Ρ396-405 (1988) )) and solar panel collectors. Referring to the drawing, the solar tube collector 300 of the prior art includes a seat body 30 placed on the ground, a water storage bucket 32 mounted on the side of the seat body 30, and a connecting body 30. A vacuum heat absorbing tube 34 between the other side and the water storage tank 32. When the vacuum heat absorbing tube 34 receives the solar energy, the cold water flow and the hot water rise phenomenon are generated by utilizing the principle that the cold water is more important than the hot water, so that the liquid in the vacuum heat absorbing tube 34 of the above-mentioned 2009200943 is convected by natural convection. , with = good temperature. However, when the sunlight is irradiated onto the circular tube curve of the heat absorbing tube 34 of the vacuum suction tube 34, it is necessary to (4) clean, return, and maintain a good hot material formation, which is time consuming and laborious. The advent of solar panel collectors overcomes the problems that arise in the solar tube 300. Referring to FIG. 2, the solar panel collector 500 of the prior art includes an upper substrate 5, a lower substrate 52, a frame holder 56, and a plurality of supports 58. The upper substrate 5 is a transparent substrate and is made of a transparent material such as glass or plastic. The lower substrate 52 is a heat absorbing plate, made of a material such as copper, aluminum alloy (preferably rustproof aluminum), stainless steel, zinc or the like. The upper substrate 50 and the lower substrate 52 constitute a cavity 60, and the frame holder 56 is provided on both sides of the cavity 6''. A plurality of supports 58 are disposed between the upper substrate 50 and the lower substrate 52. ❹ However, in order to prevent the lower substrate 52 from being oxidized during the preparation process, the lower substrate 52 needs to be prepared in a high vacuum adiabatic environment, and is heated to a higher temperature, and the production process is complicated. Therefore, the cost in the preparation process of the lower substrate 52 is made higher, so that the cost of the solar panel collector 500 is correspondingly high, and it is not suitable for popularization and application in a large area. In addition, the lower substrate 52 itself of the solar panel type collector 500 also serves as a heat absorbing layer, so that the selection of the material of the lower substrate 52 is limited, and the heat absorbing material must be used, and the lower substrate 52 made of a heat absorbing material such as copper or aluminum alloy is used. Since the heat absorption surface area of the lower substrate 52 is small and the reflection of sunlight is larger than 200946843 ♦, the conversion efficiency to solar energy is low. In view of this, it is necessary to provide a solar collector having a high conversion efficiency and an unlimited selection of the underlying sheet material. SUMMARY OF THE INVENTION A solar collector includes an upper substrate, a lower substrate, a heat absorbing layer, a frame support, and a plurality of supports. The upper substrate and the lower substrate are disposed opposite each other. The frame bracket is disposed between the upper substrate and the lower substrate. The upper substrate, the lower substrate and the frame bracket together form a cavity. The heat sink layer is disposed on an upper surface of the lower substrate within the cavity. The plurality of supports are disposed in the cavity at intervals and are in contact with the upper substrate and the heat absorbing layer, respectively. The heat absorbing layer is a carbon nanotube composite material layer. Compared with the prior art, the solar collector has the following advantages: First, since the carbon nanotube has good heat absorption, the solar collector composite layer is used as the heat absorption layer, and the solar collector can be improved. For the energy conversion efficiency of the sun @能, the solar energy is absorbed evenly. Second, since the carbon nanotube composite layer is used as the heat absorbing layer, the selection of the material of the lower substrate is not limited. [Embodiment] Hereinafter, a solar collector of the present technical solution will be described in detail with reference to the accompanying drawings. Referring to FIG. 3 and FIG. 4, the embodiment of the present invention provides a solar energy collector 100 including an upper substrate 10, a lower substrate 12, a heat absorbing layer 14, a frame support 16, and a plurality of supports 18. The upper substrate 10 and the lower substrate 12 are disposed opposite to each other. The frame holder 16 is disposed between the substrate 10 and the lower substrate 12. The upper substrate 10, the lower substrate 12, and the side [the holder 16 form a cavity 2". The heat absorbing layer is disposed on the upper surface 121 of the lower substrate 12 located in the cavity 2G. The plurality of supports 18 are spaced apart from the cavity 2〇β and are in contact with the upper substrate ίο and the heat absorbing layer 14, respectively. The heat absorbing layer 14 includes a carbon nanotube composite layer. The upper substrate 10 is a light transmissive substrate for transmitting sunlight. The upper substrate 10 is made of a transparent material such as glass, plastic, transparent ceramic, high molecular transparent material or the like. The upper substrate 10 has a thickness of 100 μm to 5 mm, preferably 3 mm. The shape of the upper substrate 1〇 is not limited, and may be a triangle, a hexagon, a quadrangle, etc., and may be formed into an arbitrary shape according to requirements. The lower substrate 12 is disposed opposite to the upper substrate 1 . The lower substrate 12 is a heat collecting substrate 'for collecting and transmitting energy of sunlight. The lower substrate 12 may be made of glass or made of a material having a good thermal conductivity such as zinc, indium or stainless steel. The thickness of the lower substrate 12 is 1 〇〇 μm ❹ 5 5 mm', preferably 3 mm. The shape of the lower substrate 12 is not limited, and may be a triangle, a hexagon, a quadrangle or the like, and may be formed into any shape according to requirements. The frame bracket 16 may be made of a material such as glass. The height of the frame support 16 is from 1 μm to 500 μm, preferably from 150 μm to 250 μm. The cavity 20 is a vacuum insulation environment, which suppresses the natural convection of the air, thereby reducing the loss of convective heat transfer in the solar collector 100, and maintaining the heat, thereby greatly improving the heat of the solar collector 100. 200946843 Efficiency. In addition, the cavity 20 may not be in a vacuum environment, and the cavity 20 may be filled with a spacer layer (not shown) capable of transmitting light and being insulated. The spacer layer fills the entire cavity and may be Transparent foam-type materials such as heat-resistant plastics can also be used as a spacer layer by using a less thermally conductive gas such as nitrogen. The heat absorbing layer 14 comprises a carbon nanotube composite layer comprising a plurality of carbon nanotubes and a black opaque material. The black opaque material is carbon particles or graphite milk. The carbon nanotubes are randomly arranged and uniformly distributed in the layer of the carbon nanotube composite material. The mass percentage of the carbon nanotubes in the carbon nanotube composite layer is 8〇%, and the mass percentage of the black opaque material is 2% or less. The preparation method of the heat absorption layer 14 in this embodiment includes the following steps: First, a carbon nanotube slurry is provided. The carbon nanotube slurry comprises a nanocarbon f, a black opaque material, and an organic vehicle. In this embodiment, preferably 5% by mole of carbon nanotubes, 20% of carbon particles, and 3% by weight of an organic vehicle. The organic oxime body includes terpineol as a main solvent, a small amount of dibutyl phthalate orthophthalic acid as a plasticizer, and a small amount of ethyl cellulose as a stabilizer. After the components are mixed in proportion, the components can be uniformly dispersed in the polymer by ultrasonic vibration to obtain a uniform and stable slurry. Then, the above carbon nanotube aggregate is applied to the upper surface 12 of the lower substrate 12 in the cavity 2G by screen printing or direct coating method and the organic carrier in the carbon nanotube (four) bucket is removed. , 14. The method of removing the organic vehicle can be (4) drying or self-drying. The carbon nanotubes in the carbon nanotube composite layer may be single-walled nanocarbons 11 200946843 • tubes, double-walled carbon nanotubes or multi-walled carbon tubes. When the carbon nanotubes in the carbon nanotube composite layer are single-walled carbon nanotubes, the diameter of the single-walled carbon nanotubes is from 0.5 nm to 50 nm. When the carbon nanotubes in the carbon nanotube composite layer are double-walled carbon nanotubes, the double-walled carbon nanotubes have a diameter of nanometers to 50 nanometers. When the carbon nanotubes in the carbon nanotube composite layer are multi-walled carbon nanotubes, the diameter of the multi-walled carbon nanotubes is 15 nm to 5 Å. The carbon nanotube composite layer includes The black nano-material is the carbon nanotube, the carbon nanotube has good absorption characteristics and high thermal conductivity. The nano-carbon composite layer has good absorption properties for sunlight. . The nano carbon tube composite material layer can be prepared by screen printing or direct coating method, and the preparation method is simple, the cost is low, and the utility model is suitable for large-area popularization and application. The solar collector 1 has a heat absorbing layer. The absorption efficiency of light increases as the thickness of the heat absorbing layer 14 increases. = 2 = The thicker the layer 14, the higher the absorption efficiency for sunlight. The heat absorbing layer 14 has a thickness of 3 μm to 2 mm. Ο The plurality of branches 18 are used to resist atmospheric pressure and enhance the robustness of the solar collector 100. The height of the support 18 is the same as the height of the side frame bracket 16. The support 18 is made of a material that is less heat absorbing, such as glass. The shape of the support 18 is not limited and may be a bead shape or a filament shape. The solar collector 100 is a flat type structure. In addition, the solar collector 100 can be formed into various other shapes, such as a cylindrical surface, a spherical surface, and the like. The solar collector 100 can be widely applied to the outer wall of a building structure to achieve heating of the interior of the building. 12 200946843 > * The upper substrate 1 〇 and the lower substrate 12 of the solar heat collecting HUH can be conveniently formed into various shapes to serve as a decoration. The positron collector 100 further includes a reflective layer 22 disposed on the lower surface 101 of the upper substrate 1 空腔 in the cavity 2 ' having a thickness of 10 nm to 1 μm... An ideal solar collector 100 should be able to absorb solar energy from the surface of the human body to the maximum extent, while at the same time reducing its own radiant heat loss, so as to maximize the conversion of solar energy into heat. The solar heat collection means that the reflectance of the visible light and the near-infrared light band is low, that is, the absorption ratio is high, and the reflectance is high in the medium and far red light bands, that is, the emissivity is low. This requires a reflective layer 22 to be disposed within the solar collector 100. The reflective layer 22 is an infrared reflective layer, such as an indium tin oxide film or a carbon nanotube structure. The carbon nanotube structure comprises a disordered carbon nanotube layer, an ordered carbon nanotube layer or a carbon nanotube composite layer. The reflective layer 22 is transparent to visible light and near-infrared light, and has excellent characteristics of transmitting visible light and near-infrared light, and reflecting medium and far-reaching = external light, thereby reducing the solar collector 100 to solar energy. The radiation loss of energy increases the energy conversion efficiency of the solar collector 100 to solar energy. The reflective layer 22 and the heat absorbing layer 14 may both be carbon nanotube structures, but the thickness of the reflective layer 22 is smaller than the thickness of the heat absorbing layer 14 to ensure that most of visible light and near-infrared light pass through the reflection. Layer 22. Further, a circulating fluid layer 24 may be disposed on the lower surface 122' of the lower substrate 12 of the solar collector 100, such as a lower temperature water or a liquid such as ethylene glycol as a circulating liquid. The solar collector 100 can be used to directly use water as hot water, or to take heat away as other 'applications' such as seawater desalination, refrigeration, power generation, and the like. The solar collector 100 is irradiated to the heat absorbing layer 14 after the sunlight passes through the light-transmitting upper substrate 10. Since the heat absorbing layer comprises a tired color nanomaterial, that is, a carbon nanotube, the heat absorbing layer 14 has a relatively good absorption for sunlight and a near-infrared light band, and is converted into heat energy, and then passes through the set. The hot lower substrate 12 transfers thermal energy to the circulating flow layer 24. Since the carbon nanotubes in the heat absorbing layer 14 have excellent characteristics of good stability and high thermal conductivity, the efficiency with which the heat absorbing layer 14 transfers thermal energy to the circulating fluid layer 24 can be improved. In addition, the heat absorbing layer 14 absorbs solar energy and the temperature rises, and the heat absorbing layer 14 as a heat source also radiates heat outward. The arrangement of the reflective layer 22 can reflect the portion of the thermal radiation back into the cavity, which can reduce the heat loss of the solar thermal collector 100, and further improve the working efficiency of the solar thermal collector 100. ❹ The solar collector has the following advantages: f 典 gastric female white red and another love point. First, because nano carbon & has good (four) heat, so the carbon nanotube composite layer is used as the heat absorbing layer The energy absorption efficiency of the solar energy collector of the solar energy collector can be hooked up. Third, since the carbon nanotube is used as the heat absorbing layer, the choice of the substrate material is not limited. As described above, the present invention has indeed met the requirements of the invention patent, and is legally known to: issue a patent application. But the above mentioned

自不能以此限制本案之申性直 — J 之人明專利趟圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作 蓋於以下审Μ 4效修飾或變化,皆應涵 蓋於以下甲睛專利範圍内。 200946843 ,【圖式簡單說明】 圖1係先前技術中的太陽能管式集熱器的結構示意 圖。 圖。 圖2係先前技術中的太陽能板式集熱器的結構示意 厂立圖3係本技術方案實施例的太陽能集熱器的側視結構 不*^圖〇 Φ示意^係本技術方案實施例的太陽能集熱器的俯視結構Since this can not limit the nature of the case directly - J people know the patent range. Anyone who is familiar with the skill of the present invention shall, in accordance with the spirit of the present invention, be modified or changed in the following paragraphs, and shall be covered by the following patents. 200946843, [Simplified Schematic Description] Fig. 1 is a schematic structural view of a solar tube type collector in the prior art. Figure. 2 is a schematic diagram of a structure of a solar panel type collector in the prior art. FIG. 3 is a side view of a solar collector of an embodiment of the present technical solution. FIG. 2 is a schematic view of the solar energy of the embodiment of the present technical solution. Top view structure of the collector

Q 15 200946843 » 【主要元件符號說明】 上基板 太陽能集熱器 上基板的下表面 下基板 下基板的上表面 下基板的下表面 吸熱層 ®邊框支架 支撐物 空腔 .反射層 循環液流層 座體 儲水桶 ◎真空吸熱管 太陽能管式集熱器 太陽能板式集熱器 10, 50 100 101 12, 52 121 122 14 16, 56 18, 58 20, 60 22 24 30 32 34 300 500 16Q 15 200946843 » [Main component symbol description] Upper substrate solar collector upper substrate lower surface lower substrate upper surface lower substrate heat absorption layer ® frame bracket support cavity. reflective layer circulating liquid layer seat Body storage bucket ◎ vacuum heat pipe solar tube collector solar panel collector 10, 50 100 101 12, 52 121 122 14 16, 56 18, 58 20, 60 22 24 30 32 34 300 500 16

Claims (1)

200946843 * 十、申請專利範圍 1· 一種太陽能集熱器,其包括: 一上基板; 一下基板,該下基板與所述上基板相對設置; 一邊框支架,該邊框支架設置於所述上基板和下基板 之間,並與所述上基板和下基板共同構成一空腔; 複數個支撐物,該複數個支撐物間隔地設置於所述空 腔内,並分別與所述上基板和下基板相接觸; 蠓 其改良在於,所述太陽能集熱器進一步包括一吸熱 層,該吸熱層設置於下基板位於所述空腔内的上表 面,該吸熱層包括一奈米碳管複合材料層。 2. 如申請專利範圍第1項所述的太陽能集熱器,其中, 所述奈米碳管複合材料層包括複數個奈米碳管和黑 色不透光材料。 3. 如申請專利範圍第2項所述的太陽能集熱器,其中, 所述奈米碳管複合材料層中奈米碳管的質量百分含 量為80%以上,黑色不透光材料的質量百分含量為 20%以下。 4·如申請專利範圍第2項所述的太陽能集熱器,其中, 所述複數個奈米碳管於所述奈米碳管複合材料層中 無序排列且均勻分佈。 5. 如申請專利範圍第2項所述的太陽能集熱器,其中, 所述黑色不透光材料為碳顆粒或者石墨乳。 6. 如申請專利範圍第1項所述的太陽能集熱器,其中, 17 200946843 . 所述吸熱層的厚度為3微米〜2毫米。 7. 如申請專利範圍第i項所述的太陽能集熱器,其中, 所述太陽能集熱器進一步包括一反射層,該反射層設 置於所述上基板位於空腔内的下表面。 8. 如申請專利範圍第7項所述的太陽能集熱器,其中, 所述反射層的厚度為10奈米〜1微米。 9. 如申請專利範圍第7項所述的太陽能集熱器,其中, ❹ 所述反射層為氧化銦錫薄膜或者奈米碳管結構。 10·如申请專利範圍第9項所述的太陽能集熱器,其中, ^述奈米奴管結構包括無序奈米碳管層、有序奈米碳 管層或者奈米碳管複合材料層。 基板的厚度為1〇〇微米〜5毫米。 .11.如申凊專利範圍第i項所述的太陽能集熱器,其中, 所述上基板的材料為玻璃、塑膠、透明陶瓷或者言八 子透明材料,該上基板的厚度為100微米〜5毫来"。刀 12.如申請專利範圍第u所述的太陽能集熱器,其中, ❹料下基板的材料為玻璃、鋅、㉟或者不_鋼,該下 ^熟器,其中, 100微米〜500 13.如中請專㈣圍第:項所述的太陽能集熱 所述邊框支架的材料為玻璃,高度為1〇〇 微米。200946843 * X. Patent application scope 1 1. A solar thermal collector comprising: an upper substrate; a lower substrate, the lower substrate is disposed opposite to the upper substrate; a frame bracket, the frame bracket is disposed on the upper substrate and Forming a cavity between the lower substrate and the upper substrate and the lower substrate; a plurality of supports disposed at intervals in the cavity and respectively associated with the upper substrate and the lower substrate The solar collector further includes a heat absorbing layer disposed on an upper surface of the lower substrate in the cavity, the heat absorbing layer comprising a carbon nanotube composite layer. 2. The solar collector of claim 1, wherein the carbon nanotube composite layer comprises a plurality of carbon nanotubes and a black opaque material. 3. The solar collector according to claim 2, wherein a mass percentage of the carbon nanotubes in the carbon nanotube composite layer is 80% or more, and a quality of the black opaque material The percentage is 20% or less. 4. The solar collector according to claim 2, wherein the plurality of carbon nanotubes are disorderly arranged and uniformly distributed in the carbon nanotube composite layer. 5. The solar collector according to claim 2, wherein the black opaque material is carbon particles or graphite milk. 6. The solar collector according to claim 1, wherein 17 200946843. The heat absorbing layer has a thickness of 3 micrometers to 2 millimeters. 7. The solar collector of claim 1, wherein the solar collector further comprises a reflective layer disposed on a lower surface of the upper substrate within the cavity. 8. The solar collector according to claim 7, wherein the reflective layer has a thickness of 10 nm to 1 μm. 9. The solar collector according to claim 7, wherein the reflective layer is an indium tin oxide film or a carbon nanotube structure. 10. The solar collector according to claim 9, wherein the nanotube structure comprises a disordered carbon nanotube layer, an ordered carbon nanotube layer or a carbon nanotube composite layer. . The thickness of the substrate is 1 〇〇 micrometer to 5 mm. The solar collector according to claim i, wherein the material of the upper substrate is glass, plastic, transparent ceramic or a transparent material, and the thickness of the upper substrate is 100 micrometers to 5 Come to " The solar collector according to claim 5, wherein the material of the lower substrate is glass, zinc, 35 or non-steel, wherein the lower substrate is 100 micrometers to 500. The material of the frame bracket of the solar collector according to the item (4) is the glass, and the height is 1 〇〇 micrometer. 形狀為小珠狀或者細絲 如申請專利範圍第i項所述 所述支撐物的材料為玻璃, ’其中, 狀。 如申請專利範圍第1 1項所述的太陽能集熱器, 18 200946843 該太陽能集熱器進一步包括一間隔層,該間隔層填充 於所述太陽能集熱器的空腔中,材料為塑膠或者氮 氣0The shape is a bead or a filament. The material of the support as described in the scope of claim i is glass, in which it is shaped. The solar collector according to claim 1 , 18 200946843 The solar collector further comprises a spacer layer filled in a cavity of the solar collector, the material is plastic or nitrogen 0 1919
TW97116246A 2008-05-02 2008-05-02 Solar collector TWI378217B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97116246A TWI378217B (en) 2008-05-02 2008-05-02 Solar collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97116246A TWI378217B (en) 2008-05-02 2008-05-02 Solar collector

Publications (2)

Publication Number Publication Date
TW200946843A true TW200946843A (en) 2009-11-16
TWI378217B TWI378217B (en) 2012-12-01

Family

ID=44870148

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97116246A TWI378217B (en) 2008-05-02 2008-05-02 Solar collector

Country Status (1)

Country Link
TW (1) TWI378217B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114623605B (en) * 2020-12-14 2023-08-22 清华大学 Solar heat collector and solar water heater
CN114621621A (en) 2020-12-14 2022-06-14 清华大学 Light absorber prefabricated liquid and preparation method thereof

Also Published As

Publication number Publication date
TWI378217B (en) 2012-12-01

Similar Documents

Publication Publication Date Title
CN101561194B (en) Solar energy heat collector
CN101814867B (en) Thermoelectric generator
Bai et al. High-efficiency solar steam generation based on blue brick-graphene inverted cone evaporator
CN101526272B (en) Solar thermal collector
CN101561189B (en) Solar energy heat collector
TWM349433U (en) Solar electricity generating device
CN101556088B (en) Solar thermal collector
CN106568215A (en) Carbon black-carbon nanotube solar absorbing agent applied to solar water heater
CN101556089B (en) Solar thermal collector
TWI473309B (en) Thermoelectric power generation apparatus
Shao et al. Popcorn-derived porous carbon based adipic acid composite phase change materials for direct solar energy storage systems
Han et al. Review on solar-driven evaporator: Development and applications
Qu et al. Heat-transfer analysis of interfacial solar evaporation and effect of surface wettability on water condensation and collection
TW200946843A (en) Solar collector
Fan et al. A scalable phase change material-based system enhanced by multi-walled carbon nanotubes and fins for efficient solar water heating applications
Lan et al. Transferring heat downward from the evaporation interface to accelerate solar vapor generation
US8695586B2 (en) Solar collector and solar heating system using same
Peng et al. Fabric composites inspired by the structure of polar bear hair for collecting solar thermal energy
TWI378216B (en) Solar collector
TWI387713B (en) Solar collector
TW200940920A (en) Solar collector
TWI386609B (en) Solar collector
CN201434527Y (en) Straight-through photothermal conversion compound pipe
Martinez et al. Carbon nanotube dry spinnable sheets for solar selective coatings by lamination
CN201819462U (en) Full glass sheet type vacuum solar thermal collector