200944890 九、發明說a月 【發明所屬之技術領域】 本發明是有關具備偏光板及相位差板的液晶裝置、具 備該液晶裝置的投影機、該液晶裝置的光學補償方法、及 使用於該液晶裝置的相位差板之技術領域。 【先前技術】 ❿ 此種的液晶裝置,有藉由「VA ( Vertical Alignment )模式」來驅動的方式者被提案。在此,令對比度提升的 技術,有使相位差板對液晶光閥傾斜配置的技術被提案( 參照下記的專利文獻1 )。 〔專利文獻1〕特開2006-1 1 298號公報 【發明內容】 (發明所欲解決的課題) φ 然而,如揭示於專利文獻1的技術一般使相位差板傾 斜配置時,需要對應於液晶分子的配向方向來使相位差板 傾斜。此情況,在投影機的内部,例如依利用空氣的循環 之冷卻效果的觀點等,由於用以使相位差板傾斜的空間受 限,因此會有可能難以提高對比度的技術性問題點。或, 使該相位差板傾斜的機構趨於複雜,在組裝工程中’技術 上使相位差板傾斜的調整變得困難。 本發明是有鑑於例如上述的問題點而硏發者’其課題 是在於提供一種可藉由比較簡單的構成來顯示高對比度的 -5- 200944890 畫像之液晶裝置、具備該液晶裝置的投影機、及該液晶裝 置的光學補償方法。 (用以解決課題的手段) (液晶裝置) 爲了解決上述課題,本發明的第1液晶裝置係具備: 液晶面板,其係於分別具有配向膜的一對的基板之間 ,夾持藉由上述配向膜來賦予預傾(亦即來自法線方向的 傾斜角度)之由液晶分子所構成的垂直配向型的液晶,調 變光; 一對的偏光板,其係夾著上述液晶面板來配置;及 第1相位差板,其係配置於上述一對的偏光板之間, 具有(i)第1基板、及(ii)第1蒸鍍膜,其係保持第1 折射率向異性且上述第1折射率向異性的第1光軸(例如 主折射率nx,但nx>ny>nz)能夠傾斜於消除上述預傾所 造成上述光的特性變化的方向之方式被斜方蒸鍍於上述第 1基板上。 若根據本發明的第1液晶裝置,則例如從光源射出的 光是例如藉由反射鏡及雙色鏡(Dichroic Mirror)等的色 分離光學系來分離成紅色光、綠色光及藍色光。液晶面板 是例如作爲調變各紅色光、綠色光及藍色光的光閥使用。 液晶面板是例如按照資料信號(或畫像信號)來規制各畫 素的液晶分子的配向狀態,在該顯示領域顯示對應於資料 信號的畫像。藉由各液晶面板所顯示的畫像是例如藉由雙 -6- 200944890 色棱鏡(Dichroic Prism)等的色合成光學系來合成’經 由投射透鏡來作爲投影畫像予以投影至螢幕等的投影面。 液晶面板是在一對的基板間夾持液晶。液晶,典型的 是垂直配向型的液晶,亦即 VA ( Vertical Alignment )型 液晶。在一對的基板分別設有配向膜,藉由該配向膜,構 成液晶的液晶分子會被賦予在一定的方向僅以一定的角度 上升的預傾。例如液晶爲VA型液晶時,液晶分子是對於 φ 一對的基板的基板面的法線在一定的方向僅以預傾角傾斜 配向。此液晶分子是在電壓未被施加於液晶面板時,維持 預傾,且在電壓被施加於液晶面板時,以能夠接近液晶面 板的基板的平面方向之方式傾斜。藉此,例如可簡便地實 現垂直配向型的液晶、或正常黑(Normally black)方式 的液晶。另外,被賦予預傾的液晶分子的長軸與一對的基 板的一邊,典型的由一對的基板的法線方向來看,亦可彼 此成爲45度的角度。液晶面板是以夾入一對的偏光板之 φ 間的方式配置。 第1相位差板是具有:保持(i)第1基板及(ii)第 1折射率向異性的同時以第1折射率向異性的第1光軸能 夠傾斜於消除預傾所造成光的特性變化之方式被斜方蒸鍍 於第1基板上的第1蒸鍍膜。在此本發明的「光的特性變 化」是意思行進方向的變化、偏光狀態的變化、頻率或相 位的變化等之光的基本特性參數中至少一個變化。又、本 發明的「消除的方向」是意思理想上必要且可充分地消除 的方向,意思含以如此理想的方向作爲成分的方向。亦即 200944890 ,理想上消除的能力最高的方向,典型的是意思由第1基 板的法線方向來平面性地看,第1折射率向異性的折射率 最大的第1光軸與被賦予預傾的液晶分子的長軸方向交叉 的方向。典型的是第1相位差板的第1蒸鏤膜最好含無機 材料構成。藉此,可有效地防止因爲光的照射或伴隨的溫 度上昇造成第1相位差板劣化,進而能夠構成可靠度佳的 液晶裝置。 第1相位差板是配置於一對的偏光板之間。更具體而 言,第1相位差板是配置於一對的偏光板的其中一方的偏 光板與液晶面板之間、或一對的偏光板的其中另一方的偏 光板與液晶面板之間。換言之,設於一對的偏光板間,對 液晶面板射入光的側或射出光的側。 典型的是以構成第1相位差板的第1折射率向異性媒 質的第1光軸由第1基板的法線方向來看能夠沿著交叉於 被賦予預傾的液晶分子的長軸方向之所定方向的方式,第 1折射率向異性媒質作爲第1蒸鍍膜來斜方蒸鎪於第1基 板。在此,所謂的所定方向是意思第1折射率向異性媒質 的第1光軸與液晶分子的長軸方向交叉之該第1折射率向 異性媒質的第1光軸所延伸的方向。具體而言,此第1折 射率向異性媒質的第1光軸所延伸的方向之所定方向,可 例如以對比度或視野角等液晶裝置的光學特性的水準能夠 例如形成最大値等的所望値之方式,以液晶分子的長軸方 向爲基準,根據實驗、理論、經驗、模擬等來個別具體地 規定。 -8 - 200944890 加上’典型的是以上述第1相位差板的第1折射率向 異性媒質的光軸能夠以所定角度來與第1基板交叉的方式 ’第1折射率向異性媒質作爲第1蒸鍍膜來斜方蒸鍍於第 1基板。在此,所謂的所定角度是意思第1折射率向異性 媒質的光軸與第1基板交叉的角度。此所定角度可換言之 是由90度減去第1基板的法線與對應於第1折射率向異 性媒質的主折射率的光軸之間的角度的値。或,此所定角 0 度可換言之是對應於第1折射率向異性媒質的主折射率的 光軸與上述所定方向之間的角度。具體而言,此第1折射 率向異性媒質的光軸與第1基板交叉的角度的所定角度, 可例如以對比度或視野角等液晶裝置的光學特性的水準能 夠例如形成最大値等的所望値之方式,根據實驗、理論、 經驗、模擬等來個別具體地規定。 藉此,第1相位差板的第1光軸(典型的是nx (但 nx>ny>nz ))會沿著交叉於僅以預傾角傾斜的液晶分子的 φ 長軸方向之所定方向,因此在第1基板的平面方向,第1 相位差板的第1光軸是以使液晶分子的光學向異性能夠朝 向光學向同性的方式補償。加上,第1相位差板的第1光 軸(典型的是nx)會以所定角度來與第1基板交叉,因 此在第1基板的垂直面方向,第1相位差板的第1光軸是 以使液晶分子的光學向異性能夠朝向光學向同性的方式補 償。亦即,藉由液晶分子所形成的折射率橢圓體的長軸與 藉由第1相位差板所形成的折射率橢圓體的長軸會交叉, 因此可使藉由液晶分子及第1相位差板的兩者所形成的折 -9- 200944890 射率橢圓體能夠三次元地接近折射率球體。 因此,可藉由第1相位差板來消除(亦即補償)在液 晶中所產生的相位差(換言之,複折射效果)。其結果, 該液晶裝置的動作時,從光源射出的光例如通過由僅以預 傾角傾斜的液晶分子所構成的液晶而產生之光的相位差, 可藉由第1相位差板來補償。因此,通過液晶面板的光對 於射出側的偏光板,可防止在相位偏離的狀態下射入。其 結果,例如在射出側的偏光板中,原本應該不使通過的光 洩漏的可能性會變小,可防止對比度的降低或視野角的縮 小。 在此,假設使用例如具有單軸性的折射率向異性的相 位差板等之光軸的方向爲沿著厚度方向的相位差板,藉由 使該相位差板傾斜來補償液晶分子的光學向異性時,在液 晶裝置的内部,例如依空氣的循環所產生的冷卻效果的觀 點等,由於供以使相位差板傾斜的空間受限,因此技術上 難以適當防止對比度的降低。或,使該相位差板傾斜的機 構會變得複雜,在組裝工程中,技術上使相位差板傾斜的 調整困難。 然而,本發明是特別如上述般,第1相位差板所具有 的第1蒸鍍膜是以能夠保持第1折射率向異性且第1折射 率向異性的第1光軸能夠傾斜於消除預傾所造成的光的特 性變化的方向之方式斜方蒸鍍於第1基板上。典型的是第 1相位差板的第1折射率向異性的第1光軸是藉由第1蒸 鍍膜的斜方蒸鍍,以能夠補償液晶分子的光學向異性的方 -10- 200944890 式,朝所定方向,以所定角度來與第1基板或第2基板交 叉。因此,藉由第1蒸鍍膜的斜方蒸鍍來調整第1相位差 板的第1折射率向異性的第1光軸所傾斜的方向、及第1 相位差板的第1折射率向異性的第1光軸與第1基板交叉 的角度之下’可谷易且筒精度地補償液晶面板的液晶分子 的光學向異性。並且,爲了補償液晶面板的液晶分子的光 學向異性,幾乎或完全不必使第1相位差板本身對光的射 0 入方向傾斜,因此在組裝工程中,可省略使第1相位差板 傾斜的調整工程,可簡便且低成本地補償液晶分子的光學 向異性,提高對比度。其結果,若利用本發明的液晶裝置 ,則可提高藉由第1相位差板來補償在液晶中所產生的相 位差之效果,進而能夠提高對比度。 如以上說明,若根據本發明的液晶裝置,則在藉由第 1蒸鍍膜的斜方蒸鍍來調整第1相位差板之第1折射率向 異性的第1光軸所傾斜的方向、及第1相位差板之第1折 Φ 射率向異性的第1光軸與第1基板交叉的角度之下,可藉 由第1相位差板來確實地補償在液晶面板中所產生的相位 差。其結果,可取得高對比度高品質的顯示。 爲了解決上述課題,本發明的第2液晶裝置係具備: 液晶面板,其係於分別具有配向膜的一對的基板之間 ,夾持藉由上述配向膜來賦予預傾之由液晶分子所構成的 垂直配向型的液晶,調變光; 一對的偏光板,其係夾著上述液晶面板來配置; 單軸性相位差板(所謂C板),其係配置於上述一對 -11 - 200944890 的偏光板之間’保持單軸性折射率向異性,且上述單軸性 折射率向異性的單軸性光軸係沿著厚度方向;及 第1相位差板’其係配置於上述一對的偏光板之間, 具有(i)第1基板、及(Π)第1蒸鍍膜,其係保持第1 折射率向異性且上述第1折射率向異性的第1光軸(例如 主折射率nx,但nx>ny>nz )能夠傾斜於消除上述預傾所 造成上述光的特性變化的方向之方式被斜方蒸鍍於上述第 1基板上。 ❹ 若根據本發明的第2液晶裝置,則例如從光源射出的 光是例如藉由反射鏡及雙色鏡等的色分離光學系來分離成 紅色光、綠色光及藍色光。液晶面板是例如作爲調變各紅 色光、綠色光及藍色光的光閥使用。液晶面板是例如按照 資料信號(或畫像信號)來規制各畫素的液晶分子的配向 狀態,在該顯示領域顯示對應於資料信號的畫像。藉由各 液晶面板所顯示的畫像是例如藉由雙色稜鏡等的色合成光 學系來合成,經由投射透鏡來作爲投影畫像予以投影至螢 〇 幕等的投影面。 液晶面板是在一對的基板間夾持液晶。液晶,典型的 是垂直配向型的液晶’亦即 VA(Vertical Alignment)型 液晶。在一對的基板分別設有配向膜,藉由該配向膜,構 成液晶的液晶分子會被賦予在一定的方向僅以一定的角度 上升的預傾。例如液晶爲VA型液晶時’液晶分子是對於 一對的基板的基板面的法線在一定的方向僅以預傾角傾斜 配向。此液晶分子是在電壓未被施加於液晶面板時’維持 -12- 200944890 預傾,且在電壓被施加於液晶面板時,以能夠接近液晶面 板的基板的平面方向之方式傾斜。藉此,例如可簡便地實 現垂直配向型的液晶、或正常黑方式的液晶。另外,被賦 予預傾的液晶分子的長軸與一對的基板的一邊,典型的由 一對的基板的法線方向來看,亦可彼此成爲45度的角度 。液晶面板是以夾入一對的偏光板之間的方式配置。 尤其,單軸性相位差板是配置於一對的偏光板之間, φ 保持單軸性折射率向異性的同時單軸性折射率向異性的單 軸性光軸會沿著厚度方向。加上,第1相位差板是被配置 於一對的偏光板之間,具有保持(i )第1基板及(ii )第 1折射率向異性的同時以第1折射率向異性的第1光軸能 夠傾斜於消除預傾所造成光的特性變化之方式被斜方蒸鍍 於第1基板上的第1蒸鏟膜。在此本發明的「光的特性變 化」是意思行進方向的變化、偏光狀態的變化、頻率或相 位的變化等之光的基本特性參數中至少一個變化。又、本 〇 發明的「消除的方向」是意思理想上必要且可充分地消除 的方向,意思含以如此理想的方向作爲成分的方向。亦即 ,理想上消除的能力最高的方向,典型的是意思由第1基 板的法線方向來平面性地看,折射率向異性的折射率最大 的光軸與被賦予預傾的液晶分子的長軸方向交叉的方向。 典型的是第1相位差板的第1蒸鍍膜最好含無機材料構成 。藉此,可有效地防止因爲光的照射或伴隨的溫度上昇造 成第1相位差板劣化,進而能夠構成可靠度佳的液晶裝置 -13- 200944890 典型的是以構成第1相位差板的第1蒸鍍膜的折射率 向異性媒質的第1光軸由第1基板的法線方向來看能夠沿 著交叉於被預傾的液晶分子的長軸方向之所定方向的方式 ,折射率向異性媒質作爲第1蒸鍍膜來斜方蒸鍍於第1基 板。在此,所謂的所定方向是意思第1蒸鍍膜的第1光軸 與液晶分子的長軸方向交叉之該第1蒸鍍膜的第1光軸所 延伸的方向。具體而言,此第1蒸鍍膜的第1光軸所延伸 的方向之所定方向,可例如以對比度或視野角等液晶裝置 的光學特性的水準能夠例如形成最大値等的所望値之方式 ,以液晶分子的長軸方向爲基準,根據實驗、理論、經驗 、模擬等來個別具體地規定。The present invention relates to a liquid crystal device including a polarizing plate and a retardation plate, a projector including the liquid crystal device, an optical compensation method for the liquid crystal device, and a liquid crystal device used in the liquid crystal device. The technical field of the phase difference plate of the device. [Prior Art] 此种 A liquid crystal device of this type is proposed to be driven by the "VA (Vertical Alignment) mode". Here, a technique for increasing the contrast is proposed in which the phase difference plate is disposed obliquely to the liquid crystal light valve (see Patent Document 1 below). [Problem to be Solved by the Invention] However, as disclosed in Patent Document 1, when the phase difference plate is generally disposed obliquely, it is necessary to correspond to liquid crystal. The alignment direction of the molecules causes the phase difference plate to tilt. In this case, in the inside of the projector, for example, depending on the cooling effect by the circulation of the air, the space for tilting the phase difference plate is limited, so that it is difficult to improve the technical problem of contrast. Or, the mechanism for tilting the phase difference plate tends to be complicated, and it is technically difficult to adjust the inclination of the phase difference plate in the assembly process. The present invention has been made in view of the above-mentioned problems, and a problem is to provide a liquid crystal device capable of displaying a high contrast -5-200944890 image by a relatively simple configuration, a projector including the liquid crystal device, And an optical compensation method of the liquid crystal device. (Means for Solving the Problem) (Liquid Crystal Device) In order to solve the above problems, the first liquid crystal device of the present invention includes a liquid crystal panel which is sandwiched between a pair of substrates each having an alignment film, and is sandwiched by the above The alignment film imparts a vertical alignment type liquid crystal composed of liquid crystal molecules to pretilt (that is, an inclination angle from a normal direction), and modulates light; and a pair of polarizing plates are disposed to sandwich the liquid crystal panel; And a first retardation plate disposed between the pair of polarizing plates, comprising (i) a first substrate and (ii) a first vapor deposited film that maintains a first refractive index anisotropy and the first The first optical axis of the refractive index anisotropy (for example, the main refractive index nx, but nx > ny > nz) can be obliquely vapor-deposited on the first aspect so as to be oblique to the direction in which the characteristic change of the light caused by the pretilt is eliminated. On the substrate. According to the first liquid crystal device of the present invention, for example, the light emitted from the light source is separated into red light, green light, and blue light by, for example, a color separation optical system such as a mirror or a dichroic mirror. The liquid crystal panel is used, for example, as a light valve that modulates each of red light, green light, and blue light. The liquid crystal panel regulates the alignment state of the liquid crystal molecules of the respective pixels in accordance with, for example, a material signal (or an image signal), and displays an image corresponding to the data signal in the display field. The image displayed on each liquid crystal panel is a projection surface that is projected onto a screen or the like as a projection image by a projection lens, for example, by a color synthesis optical system such as a double -6-200944890 color prism (Dichroic Prism). The liquid crystal panel sandwiches liquid crystal between a pair of substrates. The liquid crystal is typically a vertical alignment type liquid crystal, that is, a VA (Vertical Alignment) type liquid crystal. An alignment film is provided on each of the pair of substrates, and by the alignment film, liquid crystal molecules constituting the liquid crystal are given a pretilt which rises at a constant angle in a certain direction. For example, when the liquid crystal is a VA liquid crystal, the liquid crystal molecules are inclined at a pretilt angle in a predetermined direction with respect to a normal line of the substrate surface of the φ pair of substrates. This liquid crystal molecule maintains a pretilt when a voltage is not applied to the liquid crystal panel, and is inclined so as to be close to the plane direction of the substrate of the liquid crystal panel when a voltage is applied to the liquid crystal panel. Thereby, for example, a vertical alignment type liquid crystal or a normally black type liquid crystal can be easily realized. Further, the long axis of the liquid crystal molecules to which the pretilt is applied and one side of the pair of substrates are typically angled at 45 degrees from the normal direction of the pair of substrates. The liquid crystal panel is disposed so as to be sandwiched between φ of a pair of polarizing plates. The first retardation film has a characteristic that the (i) first substrate and the (ii) first refractive index are anisotropic, and the first optical axis having the first refractive index to the opposite polarity can be inclined to eliminate the light caused by the pretilt. The mode of the change is obliquely deposited on the first vapor deposited film on the first substrate. Here, the "change in characteristics of light" of the present invention means at least one of changes in the basic characteristic parameters of light such as a change in the traveling direction, a change in the polarization state, and a change in the frequency or phase. Further, the "removed direction" of the present invention is a direction which is ideally necessary and can be sufficiently eliminated, and means a direction in which such a desired direction is a component. In other words, 200944890, the direction in which the ability to be ideally eliminated is the highest, typically means that the first optical axis having the largest refractive index of the first refractive index to the opposite is directly viewed from the normal direction of the first substrate. The direction in which the long axis directions of the tilted liquid crystal molecules intersect. Typically, the first vapor-deposited film of the first retardation film is preferably made of an inorganic material. Thereby, it is possible to effectively prevent the deterioration of the first retardation film due to the irradiation of light or the accompanying temperature rise, and it is possible to constitute a liquid crystal device having excellent reliability. The first phase difference plate is disposed between a pair of polarizing plates. More specifically, the first retardation film is disposed between the polarizing plate of one of the pair of polarizing plates and the liquid crystal panel, or between the other polarizing plate of the pair of polarizing plates and the liquid crystal panel. In other words, it is provided between the pair of polarizing plates, on the side where the liquid crystal panel enters the light or the side where the light is emitted. Typically, the first optical axis constituting the first retardation film is applied to the first optical axis of the anisotropic medium from the normal direction of the first substrate so as to be perpendicular to the long axis direction of the liquid crystal molecules to which the pretilt is applied. In the predetermined direction, the first refractive index is vaporized on the first substrate obliquely as the first vapor deposition film. Here, the predetermined direction means a direction in which the first refractive index intersects the long axis direction of the liquid crystal molecules with respect to the first optical axis of the anisotropic medium, and the first refractive index extends toward the first optical axis of the anisotropic medium. Specifically, the direction in which the first refractive index extends in the direction in which the first optical axis of the anisotropic medium extends can be, for example, a level of optical characteristics of the liquid crystal device such as contrast or viewing angle. The method is individually specified based on experiments, theory, experience, simulation, etc., based on the long-axis direction of the liquid crystal molecules. -8 - 200944890 "Typical first is that the first refractive index of the first retardation plate can be intersected with the first substrate at a predetermined angle to the optical axis of the asymmetrical medium." 1 The vapor deposition film was vapor-deposited on the first substrate. Here, the predetermined angle means an angle at which the optical axis of the first refractive index to the opposite medium intersects with the first substrate. In this case, the angle is obtained by subtracting the angle between the normal line of the first substrate and the optical axis corresponding to the main refractive index of the first refractive index to the opposite medium at 90 degrees. Alternatively, the angle of 0 is in other words an angle between the optical axis corresponding to the main refractive index of the first refractive index to the anisotropic medium and the predetermined direction. Specifically, the angle of the first refractive index to the angle at which the optical axis of the anisotropic medium intersects with the first substrate can be, for example, a maximum level of enthalpy, for example, at a level of optical characteristics of the liquid crystal device such as contrast or viewing angle. The method is individually specified according to experiments, theories, experiences, simulations, and the like. Thereby, the first optical axis of the first retardation film (typically nx (but nx> ny> nz)) is along a predetermined direction crossing the φ long axis direction of the liquid crystal molecules inclined only at the pretilt angle, In the planar direction of the first substrate, the first optical axis of the first retardation film is compensated so that the optical anisotropy of the liquid crystal molecules can be made optically isotropic. Further, since the first optical axis (typically nx) of the first retardation plate intersects the first substrate at a predetermined angle, the first optical axis of the first retardation plate is in the vertical plane direction of the first substrate. This is to compensate the optical anisotropy of the liquid crystal molecules toward the optical isotropy. That is, the long axis of the refractive index ellipsoid formed by the liquid crystal molecules intersects with the long axis of the refractive index ellipsoid formed by the first retardation plate, so that the liquid crystal molecules and the first phase difference can be made. The yoke formed by the two of the plates -9-200944890 can reach the index sphere three times. Therefore, the phase difference (in other words, the birefringence effect) generated in the liquid crystal can be eliminated (i.e., compensated) by the first retardation plate. As a result, in the operation of the liquid crystal device, the light emitted from the light source can be compensated by the first retardation plate, for example, by the phase difference of the light generated by the liquid crystal composed of the liquid crystal molecules inclined only at the pretilt angle. Therefore, the light passing through the liquid crystal panel can be prevented from entering in a state in which the phase is shifted with respect to the polarizing plate on the emission side. As a result, for example, in the polarizing plate on the emission side, the possibility that the passing light should not leak is reduced, and the contrast can be prevented from decreasing or the viewing angle can be reduced. Here, it is assumed that the direction of the optical axis such as a phase difference plate having a uniaxial refractive index is a phase difference plate along the thickness direction, and the optical difference of the liquid crystal molecules is compensated by tilting the phase difference plate. In the case of the opposite sex, in the liquid crystal device, for example, depending on the cooling effect by the circulation of air, etc., since the space for tilting the phase difference plate is limited, it is technically difficult to appropriately prevent the decrease in contrast. Alternatively, the mechanism for tilting the phase difference plate becomes complicated, and it is technically difficult to adjust the inclination of the phase difference plate in the assembly process. However, in the first vapor deposition film of the first retardation film, the first vapor deposition film having the first refractive index and the first refractive index can be inclined to eliminate the pretilt. The direction in which the characteristic of the light changes is obliquely vapor deposited on the first substrate. Typically, the first optical axis of the first retardation film of the first retardation film is an isotropic film deposited by oblique vapor deposition of the first vapor deposition film to compensate for the optical anisotropy of the liquid crystal molecules. The first substrate or the second substrate intersects at a predetermined angle in a predetermined direction. Therefore, the direction in which the first refractive index of the first retardation film is inclined toward the first optical axis and the first refractive index of the first retardation film are adjusted by the oblique vapor deposition of the first vapor deposition film. Below the angle at which the first optical axis intersects the first substrate, the optical anisotropy of the liquid crystal molecules of the liquid crystal panel can be compensated accurately. Further, in order to compensate for the optical anisotropy of the liquid crystal molecules of the liquid crystal panel, it is almost unnecessary to tilt the first phase difference plate itself in the direction in which the light is incident on the light. Therefore, in the assembly process, the first phase difference plate can be omitted. The adjustment project can compensate the optical anisotropy of liquid crystal molecules at a simple and low cost, and improve the contrast. As a result, according to the liquid crystal device of the present invention, the effect of compensating for the phase difference caused in the liquid crystal by the first retardation film can be improved, and the contrast can be improved. As described above, according to the liquid crystal device of the present invention, the first optical axis of the first retardation film is inclined in the direction in which the first optical axis of the first retardation film is inclined by the oblique vapor deposition of the first vapor deposition film, and The first refractive index of the first retardation plate is equal to the angle at which the first optical axis of the opposite phase intersects with the first substrate, and the phase difference generated in the liquid crystal panel can be reliably compensated by the first retardation plate. . As a result, a high-contrast, high-quality display can be obtained. In order to solve the problem, the second liquid crystal device of the present invention includes a liquid crystal panel which is formed by liquid crystal molecules which are provided between a pair of substrates each having an alignment film and which are provided with a pre-tilt by the alignment film. a vertical alignment type liquid crystal, modulated light; a pair of polarizing plates arranged to sandwich the liquid crystal panel; a uniaxial phase difference plate (so-called C plate), which is disposed in the pair -11 - 200944890 The uniaxial refractive index is maintained between the polarizers, and the uniaxial refractive index uniaxial optical axis is along the thickness direction; and the first retardation plate is disposed in the pair (i) a first substrate and a first vapor deposited film between the polarizing plates, wherein the first refractive index is opposite to the first optical axis and the first refractive index is opposite to the first optical axis (for example, a primary refractive index) Nx, but nx > ny > nz ) can be obliquely vapor-deposited on the first substrate so as to be oblique to the direction in which the characteristic change of the light caused by the pretilt is eliminated. In the second liquid crystal device according to the present invention, for example, the light emitted from the light source is separated into red light, green light, and blue light by, for example, a color separation optical system such as a mirror or a dichroic mirror. The liquid crystal panel is used, for example, as a light valve that modulates each of red, green, and blue light. The liquid crystal panel regulates the alignment state of the liquid crystal molecules of the respective pixels in accordance with, for example, a data signal (or an image signal), and displays an image corresponding to the data signal in the display field. The image displayed by each liquid crystal panel is synthesized by, for example, a color synthesis optical system such as a two-color enamel, and projected onto a projection surface such as a scroll screen as a projection image via a projection lens. The liquid crystal panel sandwiches liquid crystal between a pair of substrates. The liquid crystal is typically a vertical alignment type liquid crystal, i.e., a VA (Vertical Alignment) type liquid crystal. An alignment film is provided on each of the pair of substrates, and by the alignment film, liquid crystal molecules constituting the liquid crystal are given a pretilt which rises at a constant angle in a certain direction. For example, when the liquid crystal is a VA liquid crystal, the liquid crystal molecules are aligned obliquely at a pretilt angle in a predetermined direction with respect to a normal line of a substrate surface of a pair of substrates. This liquid crystal molecule is maintained at -12-200944890 when the voltage is not applied to the liquid crystal panel, and is tilted so as to be close to the plane direction of the substrate of the liquid crystal panel when a voltage is applied to the liquid crystal panel. Thereby, for example, a vertical alignment type liquid crystal or a normal black type liquid crystal can be easily realized. Further, the long axis of the liquid crystal molecules to be pretilted and one side of the pair of substrates are typically 45 degrees from each other as viewed in the normal direction of the pair of substrates. The liquid crystal panel is disposed so as to be sandwiched between a pair of polarizing plates. In particular, the uniaxial retardation film is disposed between a pair of polarizing plates, and φ maintains the uniaxial refractive index toward the opposite polarity while the uniaxial refractive index to the opposite uniaxial optical axis is along the thickness direction. In addition, the first retardation film is disposed between the pair of polarizing plates, and has the first (1) first substrate and (ii) the first refractive index is anisotropic and the first refractive index is the first. The optical axis can be obliquely vapor-deposited on the first substrate on the first substrate so as to be oblique to the characteristic change of the light caused by the pretilt. Here, the "change in characteristics of light" of the present invention means at least one of changes in the basic characteristic parameters of light such as a change in the traveling direction, a change in the polarization state, and a change in the frequency or phase. Further, the "removal direction" invented by the present invention is a direction which is ideally necessary and can be sufficiently eliminated, and means a direction in which such an ideal direction is a component. That is, the direction in which the ability to be ideally eliminated is the highest, typically means that the optical axis having the largest refractive index of the refractive index to the opposite polarity and the liquid crystal molecule to which the pretilt is imparted are viewed in a planar manner from the normal direction of the first substrate. The direction in which the long axis direction intersects. Typically, the first vapor deposited film of the first retardation film is preferably made of an inorganic material. Therefore, it is possible to effectively prevent the deterioration of the first retardation film due to the irradiation of light or the accompanying temperature rise, and further, it is possible to constitute a liquid crystal device with good reliability. 13-200944890 Typically, the first phase difference plate is formed. The refractive index of the vapor deposition film is such that the first optical axis of the aforesaid medium can be oriented in a direction perpendicular to the long axis direction of the liquid crystal molecules to be pretilted as viewed from the normal direction of the first substrate, and the refractive index is applied to the anisotropic medium. The first vapor deposition film is vapor-deposited on the first substrate. Here, the predetermined direction is a direction in which the first optical axis of the first vapor deposition film intersects with the first optical axis of the first vapor deposition film and the first optical axis of the first vapor deposition film. Specifically, the predetermined direction of the direction in which the first optical axis of the first vapor deposition film is extended can be, for example, a state in which the optical characteristics of the liquid crystal device such as the contrast or the viewing angle can be maximized, for example, The long-axis direction of the liquid crystal molecules is based on the basis of experiments, theory, experience, simulation, and the like.
加上,典型的是以上述第1蒸鍍膜的第1光軸能夠以 所定角度來與第1基板交叉的方式,折射率向異性媒質作 爲第1蒸鍍膜來斜方蒸鍍於第1基板。在此,所謂的所定 角度是意思第1蒸鍍膜的第1光軸與第1基板交叉的角度 。此所定角度可換言之是由90度減去第1基板的法線與 Q 對應於第1蒸鍍膜的折射率向異性媒質的主折射率的光軸 之間的角度的値。或,此所定角度可換言之是對應於第1 蒸鍍膜的折射率向異性媒質的主折射率的光軸與上述所定 方向之間的角度。具體而言,此第1蒸鍍膜的折射率向異 性媒質的第1光軸與第1基板交叉的角度的所定角度,可 例如以對比度或視野角等液晶裝置的光學特性的水準能夠 例如形成最大値等的所望値之方式,根據實驗、理論、經 驗、模擬等來個別具體地規定。 -14 - 200944890 藉此,構成第1相位差板的第1蒸鍍膜的第1光軸’ 換言之,折射率向異性媒質的主折射率ΠΧ的光軸會沿著 交叉於僅以預傾角傾斜的液晶分子的長軸方向之所定方向 ,因此在第1基板的平面方向,構成第1相位差板的第1 蒸鍍膜的第1光軸是以使液晶分子的光學向異性能夠朝向 光學向同性的方式補償。加上,第1相位差板的光軸會以 蒸鍍角度來與第1基板交叉,因此在第1基板的垂直面方 0 向,第1相位差板的第1光軸是以使液晶分子的光學向異 性能夠朝向光學向同性的方式補償。 更加上,單軸性相位差板的單軸性光軸,換言之,折 射率向異性媒質的主折射率ηχ’(或ny’)的光軸所延伸 的方向會交叉於僅以預傾角傾斜的液晶分子的長軸方向, 因此在單軸性相位差板的平面方向,單軸性相位差板的光 軸的短軸(亦即本發明的單軸性光軸的一具體例)及長軸 是以液晶分子的光學向異性能夠朝向光學向同性的方式補 ❹ 償。 亦即,藉由液晶分子所形成的折射率橢圓體的長軸與 藉由構成第1相位差板的第1蒸鍍膜所形成的折射率橢圓 體的長軸會交叉,因此可使藉由液晶分子及單軸性相位差 板及構成第1相位差板的第1蒸鍍膜等三者所形成的折射 率橢圓體能夠三次元地接近折射率球體。 因此,可藉由單軸性相位差板及第1相位差板來消除 (亦即補償)在液晶中產生的相位差(換言之,複折射效 果)。其結果,該投影機的動作時,從光源射出的光例如 -15- 200944890 通過由僅以預傾角傾斜的液晶分子所構成的液晶而產生之 光的相位差,可藉由單軸性相位差板及第1相位差板來補 償。因此,通過液晶面板的光對於射出側的偏光板’可防 止在相位偏離的狀態下射入。其結果’例如在射出側的偏 光板中,原本應該不使通過的光洩漏的可能性會變小’可 防止對比度的降低或視野角的縮小。 在此,假設使用例如具有單軸性的折射率向異性的相 位差板等之光軸的方向爲沿著厚度方向的相位差板,藉由 使該相位差板傾斜來補償液晶分子的光學向異性時,在液 晶裝置的内部,例如根據空氣的循環所產生的冷卻效果的 觀點等,由於供以使相位差板傾斜的空間受限,因此技術 上難以適當防止對比度的降低。或,使該相位差板傾斜的 機構會變得複雜,在組裝工程中,技術上使相位差板傾斜 的調整困難。 然而,本發明特別是如上述般,單軸性相位差板的單 軸性光軸是以能夠補償液晶分子的光學向異性的方式配置 。特別是如上述般,構成第1相位差板的第1蒸鍍膜是以 能夠保持第1折射率向異性且第1折射率向異性的第1光 軸傾斜於消除預傾所造成的光的特性變化的方向之方式斜 方蒸鍍於第1基板上。典型的是第1蒸鍍膜的第丨光軸是 藉由折射率向異性媒質的斜方蒸鍍,以能夠補償液晶分子 的光學向異性的方式’朝所定方向、所謂蒸鍍方向,以所 定角度、所謂蒸鍍角度來與第1基板交叉。 因此’藉由第1蒸鍍膜的斜方蒸鑛來調整第1相位差 -16- 200944890 板的折射率向異性的光軸所傾斜的方向、及第1相位差板 的折射率向異性的光軸與第1基板交叉的角度之下,可容 易且高精度地補償液晶面板的液晶分子的光學向異性。 藉此,藉由液晶分子所形成的折射率橢圓體的長軸、 及藉由構成第1相位差板的第1蒸鏟膜所形成的折射率橢 圓體的長軸、及藉由單軸性相位差板所形成的折射率橢圓 體的長軸會交叉,因此可使藉由液晶分子、單軸性相位差 φ 板及第1蒸鍍膜的三者所形成的折射率橢圓體能夠三次元 地接近折射率球體。並且,爲了補償液晶面板的液晶分子 的光學向異性,幾乎或完全不必使單軸性相位差板及第1 相位差板本身傾斜,因此在組裝工程中,可省略使單軸性 相位差板及第1相位差板傾斜的調整工程,可簡便且低成 本地補償液晶分子的光學向異性,提高對比度。其結果, 若利用本發明的液晶裝置,則可提高藉由相位差板來補償 在液晶中所產生的相位差之效果,進而能夠提高對比度。 〇 如以上說明,若根據本發明的液晶裝置,則除了藉由 第1蒸鍍膜的斜方蒸鍍來調整第1相位差板之折射率向異 性的光軸所傾斜的方向、及第1相位差板之第1折射率向 異性的第1光軸與第1基板交叉的角度以外,還可在單軸 性相位差板之單軸性折射率向異性的單軸性光軸沿著厚度 方向之下,藉由相位差板來確實地補償在液晶面板中所產 生的相位差。其結果,在本發明的第1投影機中,可取得 高對比度高品質的顯示。 加上’可使第1相位差板與單軸性相位差板配置於別 -17- 200944890 的不同光學位置,或暫時性地卸下單軸性相位差板,因此 可簡便地進行光學調整。加上,在第1相位差板及單軸性 相位差板中,可使製造方法或材質有所不同,因此可以更 低成本來進行光學調整。 爲了解決上述課題,本發明的第3液晶裝置係具備: 液晶面板,其係於分別具有配向膜的一對的基板之間 ,夾持藉由上述配向膜來賦予預傾之由液晶分子所構成的 垂直配向型的液晶,調變光; @ 一對的偏光板,其係夾著上述液晶面板來配置; 第1相位差板,其係配置於上述一對的偏光板之間, 具有(i-a)第1基板、及(ii-a)第1蒸鍍膜,其係保持 第1折射率向異性且上述第1折射率向異性的第1光軸能 夠傾斜於消除上述預傾所造成上述光的特性變化的第1方 向之方式被斜方蒸鍍於上述第1基板上;及 第2相位差板,其係配置於上述一對的偏光板之間, 具有(i-b)第2基板、及(ii-b)第2蒸鍍膜,其係保持 0 第2折射率向異性且上述第2折射率向異性的第2光軸能 夠傾斜於消除上述特性變化且與上述第1方向相異的第2 方向之方式被斜方蒸鍍於上述第2基板上。 若根據本發明的第3液晶裝置,則例如從光源射出的 光是藉由反射鏡及雙色鏡等的色分離光學系來分離成紅色 光、綠色光及藍色光。液晶面板是例如作爲調變各紅色光 、綠色光及藍色光的光閥使用。液晶面板是例如按照資料 信號(或畫像信號)來規制各畫素的液晶分子的配向狀態 -18- 200944890 ,在該顯示領域顯示對應於資料信號的畫像。藉由各液晶 面板所顯示的畫像是例如藉由雙色稜鏡等的色合成光學系 來合成,經由投射透鏡來作爲投影畫像予以投影至螢幕等 的投影面。 液晶面板是在一對的基板間夾持液晶。液晶,典型的 是垂直配向型的液晶,亦即 VA ( Vertical Alignment)型 液晶。在一對的基板分別設有配向膜,藉由該配向膜,構 φ 成液晶的液晶分子會被賦予在一定的方向僅以一定的角度 上升的預傾。例如液晶爲VA型液晶時,液晶分子是對於 一對的基板的基板面的法線在一定的方向僅以預傾角傾斜 配向。此液晶分子是在電壓未被施加於液晶面板時,維持 預傾,且在電壓被施加於液晶面板時,以能夠接近液晶面 板的基板的平面方向之方式傾斜。藉此,例如可簡便地實 現正常黑方式或正常白方式的液晶。另外,被賦予預傾的 液晶分子的長軸與一對的基板的一邊,典型的由一對的基 〇 板的法線方向來看,亦可彼此成爲4 5度的角度。液晶面 板是以夾入一對的偏光板之間的方式配置。 第1相位差板是具有保持(i-a)第1基板及(ii-a) 第1折射率向異性的同時以第1折射率向異性的第1光軸 能夠傾斜於消除預傾所造成光的特性變化之方式被斜方蒸 鍍於第1基板上的第1蒸鍍膜。在此本發明的「光的特性 變化」並非限於光的相位差的變化,還意思行進方向的變 化、偏光狀態的變化、頻率或相位的變化等之光的基本特 性參數中至少一個變化。又、本發明的「消除的方向」是 -19- 200944890 意思理想上必要且可充分地消除的方向,意思含以如此理 想的方向作爲成分的方向。亦即,理想上消除的能力最高 的方向,典型的是意思由第1基板的法線方向來平面性地 看’第1折射率向異性的折射率最大的光軸與被賦予預傾 的液晶分子的長軸方向交叉的方向。典型的是第丨相位差 板的第1蒸鏟膜最好含無機材料構成。藉此,可有效地防 止因爲光的照射或伴隨的溫度上昇造成第1相位差板劣化 ,進而能夠構成可靠度佳的液晶裝置。 典型的是以構成第1相位差板的第1折射率向異性媒 質的第1光軸由第1基板的法線方向來看能夠沿著交叉於 被賦予預傾的液晶分子的長軸方向之第1所定方向的方式 ,第1折射率向異性媒質作爲第1蒸鏟膜來斜方蒸鍍於第 1基板。在此,所謂的所定方向是意思第1折射率向異性 媒質的第1光軸與液晶分子的長軸方向交叉之該第1折射 率向異性媒質的第1光軸所延伸的方向。具體而言,此第 1折射率向異性媒質的第1光軸所延伸的方向之所定方向 ,可例如以對比度或視野角等液晶裝置的光學特性的水準 能夠例如形成最大値等的所望値之方式,以液晶分子的長 軸方向爲基準,根據實驗、理論、經驗、模擬等來個別具 體地規定。 加上,典型的是以上述第1相位差板的第1折射率向 異性媒質的第1光軸能夠以第1所定角度來與第1基板交 叉的方式,第1折射率向異性媒質作爲第1蒸鑛膜來斜方 蒸鍍於第1基板。在此,所謂的第1所定角度是意思第1 -20- 200944890 折射率向異性媒質的光軸與第1基板交叉的角度。此第i 所定角度可換言之是由90度減去第1基板的法線與對應 於第1折射率向異性媒質的主折射率的光軸之間的角度的 値。或,此第1所定角度可換言之是對應於第1折射率向 異性媒質的主折射率的第1光軸與上述第1所定方向之間 的角度。具體而言,此第1折射率向異性媒質的第1光軸 與第1基板交叉的角度的第1所定角度,可例如以對比度 0 或視野角等液晶裝置的光學特性的水準能夠例如形成最大 値等的所望値之方式,根據實驗、理論、經驗、模擬等來 個別具體地規定。 另一方面,第2相位差板是具有保持(i-b)第2基 板及(ii-b )第2折射率向異性的同時以第2折射率向異 性的第2光軸能夠傾斜於消除預傾所造成光的特性變化且 與第1方向相異的第2方向之方式被蒸鍍於第2基板上的 第2蒸鍍膜。 〇 典型的是以構成第2相位差板的第2折射率向異性媒 質的第2光軸由第2基板的法線方向來看能夠沿著交叉於 被賦予預傾的液晶分子的長軸方向的第2所定方向之方式 ,第2折射率向異性媒質作爲第2蒸鍍膜來斜方蒸鍍於第 2基板。在此,所謂第2所定方向是意思第2折射率向異 性媒質的光軸與液晶分子的長軸方向交叉之該折射率向異 性媒質的第2光軸所延伸的方向。具體而言,此第2折射 率向異性媒質的第2光軸所延伸的方向之第2所定方向。 可例如以對比度或視野角等液晶裝置的光學特性的水準能 -21 - 200944890 夠例如形成最大値等的所望値之方式,以液晶分子的長軸 方向爲基準,根據實驗、理論、經驗、模擬等來個別具體 地規定。 加上,典型的是以上述第2相位差板的第2折射率向 異性媒質的第2光軸能夠以第2所定角度來與第2基板交 叉的方式,第2折射率向異性媒質作爲第2蒸鍍膜來斜方 蒸鍍於第2基板。在此,所謂第2所定角度是意思第2折 射率向異性媒質的第2光軸與第2基板交叉的角度。此第 2所定角度可換言之是由90度減去第2基板的法線與對 應於第2折射率向異性媒質的主折射率的第2光軸之間的 角度的値。或,此第2所定角度可換言之是對應於第2折 射率向異性媒質的主折射率的第2光軸與上述第2所定方 向之間的角度。具體而言,此第2折射率向異性媒質的第 2光軸與第2基板交叉的角度的第2所定角度,可例如以 對比度或視野角等液晶裝置的光學特性的水準能夠例如形 成最大値等的所望値之方式,根據實驗、理論、經驗、模 擬等來個別具體地規定。 藉此,第1相位差板的光軸(典型的是nx ’(但 nX’>ny’>nZ’))會沿著交叉於僅以預傾角傾斜的液晶分 子的長軸方向之第1所定方向,因此在第1基板的平面方 向,第1相位差板的第1光軸是以使液晶分子的光學向異 性能夠朝向光學向同性的方式補償。加上,第1相位差板 的第1光軸(典型的是nx)會以第1所定角度來與第1 基板交叉,因此在第1基板的垂直面方向,第1相位差板 -22- 200944890 的第1光軸是以使液晶分子的光學向異性能夠朝向光學向 同性的方式補償。亦即,藉由液晶分子所形成的第1折射 率橢圓體的長軸與藉由第1相位差板所形成的第1折射率 橢圓體的長軸會交叉,因此可使藉由液晶分子及第1相位 差板的兩者所形成的第1折射率橢圓體能夠三次元地接近 折射率球體。 加上,第2相位差板的光軸(典型的是nx’ ’(但、 ^ nx’’>ny’’>nz”))會沿著交叉於僅以預傾角傾斜的液晶 分子的長軸方向之第2所定方向,因此在第2基板的平面 方向,第2相位差板的第2光軸是以使液晶分子的光學向 異性能夠朝向光學向同性的方式補償。加上,第2相位差 板的第2光軸(典型的是nx)會以第2所定角度來與第2 基板交叉,因此在第2基板的垂直面方向,第2相位差板 的第2光軸是以使液晶分子的光學向異性能夠朝向光學向 同性的方式補償。亦即,藉由液晶分子所形成的第2折射 Ο 率橢圓體的長軸與藉由第2相位差板所形成的第2折射率 橢圓體的長軸會交叉,因此可使藉由液晶分子及第2相位 差板的兩者所形成的第2折射率橢圓體能夠三次元地接近 折射率球體。 因此,可藉由第1及第2相位差板來消除(亦即補償 )在液晶中產生的相位差(換言之,複折射效果)。其結 果,該液晶裝置的動作時,從光源射出的光通過例如由僅 以預傾角傾斜的液晶分子所構成的液晶而產生之光的相位 差’可藉由第1及第2相位差板來補償。因此,通過液晶 -23- 200944890 面板的光對於射出側的偏光板,可防止在相位偏離@ #態、 下射入。其結果,例如在射出側的偏光板中,原本應胃^ 使通過的光洩漏的可能性會變小,可防止對比度的降低、$ 視野角的縮小。 加上,第1相位差板及第2相位差板是配置於一對的 偏光板之間。更具體而言,相位差板是配置於一對的偏光 板的其中一方的偏光板與液晶面板之間、或一對的偏光板 的其中另一方的偏光板與液晶面板之間。換言之,一對的 @ 偏光板間,設在對液晶面板射入光的側或射出光的側° 在此,假設使用例如具有單軸性的折射率向異性的相 位差板等之光軸的方向爲沿著厚度方向的相位差板’藉由 使該相位差板傾斜來補償液晶分子的光學向異性時’在液 晶裝置的内部,例如依空氣的循環所產生的冷卻效果的觀 點等,由於供以使相位差板傾斜的空間受限,因此技術上 難以適當防止對比度的降低。或,使該相位差板傾斜的機 構會變得複雜,在組裝工程中,技術上使相位差板傾斜的 〇 調整困難。 然而,本發明是特別如上述般,第1相位差板所具有 的第1蒸鍍膜是以能夠保持第1折射率向異性且第1折射 率向異性的光軸能夠傾斜於消除預傾所造成的光的特性變 化的第1方向之方式斜方蒸鍍於第1基板上。典型的是第 1相位差板的第1折射率向異性的第1光軸是藉由第1蒸 鍍膜的斜方蒸鍍,以能夠補償液晶分子的光學向異性的方 式,朝第1所定方向,以第1所定角度來與第1基板交叉 -24- 200944890 。因此,藉由第1蒸鍍膜的斜方蒸鍍來調整第1相位差板 的第1折射率向異性的第1光軸所傾斜的第1方向、及第 1相位差板的第1折射率向異性的第1光軸與第1基板交 叉的第1角度之下,可容易且高精度地補償液晶面板的液 晶分子的光學向異性。 加上,本發明是特別如上述般,第2相位差板所具有 的第2蒸鍍膜是以能夠保持第2折射率向異性且第2折射 0 率向異性的光軸能夠傾斜於消除預傾所造成的光的特性變 化且與第1方向相異的第2方向之方式斜方蒸鍍於第2基 板上。典型的是第2相位差板的第2折射率向異性的第2 光軸是藉由第2蒸鍍膜的斜方蒸鍍,以能夠補償液晶分子 的光學向異性的方式,朝第2所定方向,以第2所定角度 來與第2基板交叉。 因此,藉由第2蒸鍍膜的斜方蒸鍍來調整第2相位差 板的第2折射率向異性的第2光軸所傾斜的第2方向、及 φ 第2相位差板的第2折射率向異性的第2光軸與第2基板 交叉的第2角度之下,可容易且高精度地補償液晶面板的 液晶分子的光學向異性。 特別是在如此2種類的相位差板各別地補償液晶分子 的光學向異性之下,可使其補償的效果顯著提升。典型的 是在調整上述2個的參數、亦即第1方向及第2方向等更 多的物理量之下,可更高精度地補償液晶分子的光學向異 性。 並且,爲了補償液晶面板的液晶分子的光學向異性, -25- 200944890 幾乎或完全不必使相位差板本身對光的射入方向傾斜,因 此在組裝工程中,可省略使相位差板傾斜的調整工程,可 簡便且低成本地補償液晶分子的光學向異性,提高對比度 。其結果,若利用本發明的液晶裝置,則可提高藉由相位 差板來補償在液晶中所產生的相位差之效果,進而能夠提 高對比度。 如以上說明那樣,若利用本發明的液晶裝置,則藉由 第1蒸鍍膜的斜方蒸鍍來調整第1相位差板的第1折射率 向異性的第1光軸所傾斜的第1方向、及藉由第2蒸鍍膜 的斜方蒸鍍來調整第2相位差板的第2折射率向異性的第 2光軸所傾斜的第2方向之下,可藉由第1及第2相位差 板來確實地補償在液晶面板所產生的相位差。其結果,可 取得高對比度高品質的顯示。 爲了解決上述課題,本發明的第4液晶裝置係具備: 液晶面板,其係於分別具有配向膜的一對的基板之間 ,夾持藉由上述配向膜來賦予預傾之由液晶分子所構成的 垂直配向型的液晶,調變光; 一對的偏光板,其係夾著上述液晶面板來配置; 第1相位差板,其係配置於上述一對的偏光板之間, 具有(i-a)第1基板、(ii-a)垂直蒸鎪膜,其係保持單 軸性的折射率向異性且上述單軸性的折射率向異性的單軸 性光軸能夠沿著厚度方向之方式被垂直蒸鍍於上述第1基 板上、及(iii-a)第1蒸鎪膜,其係保持第1折射率向異 性且上述第1折射率向異性的第1光軸能夠傾斜於消除上 -26- 200944890 述預傾所造成上述光的特性變化的第1方向之方式被斜方 蒸鏟於上述垂直蒸鍍膜上;及 第2相位差板,其係配置於上述一對的偏光板之間, 具有(i-b)第2基板、及(ii-b)第2蒸鍍膜,其係保持 第2折射率向異性且上述第2折射率向異性的第2光軸能 夠傾斜於消除上述特性變化且與上述第1方向相異的第2 方向之方式被斜方蒸鍍於上述第2基板上。 φ 若根據本發明的第4液晶裝置,則例如從光源射出的 光是藉由反射鏡及雙色鏡等的色分離光學系來分離成紅色 光、綠色光及藍色光。液晶面板是例如作爲調變各紅色光 、綠色光及藍色光的光閥使用。液晶面板是例如按照資料 信號(或畫像信號)來規制各畫素的液晶分子的配向狀態 ,在該顯示領域顯示對應於資料信號的畫像。藉由各液晶 面板所顯示的畫像是例如藉由雙色稜鏡等的色合成光學系 來合成,經由投射透鏡來作爲投影畫像予以投影至螢幕等 〇 的投影面。 液晶面板是在一對的基板間夾持液晶。液晶,典型的 是垂直配向型的液晶,亦即VA( Vertical Alignment)型 液晶。在一對的基板分別設有配向膜,藉由該配向膜,構 成液晶的液晶分子會被賦予在一定的方向僅以一定的角度 上升的預傾。例如液晶爲V A型液晶時,液晶分子是對於 —對的基板的基板面的法線在一定的方向僅以預傾角傾斜 配向。此液晶分子是在電壓未被施加於液晶面板時,維持 預傾,且在電壓被施加於液晶面板時,以能夠接近液晶面 -27- 200944890 板的基板的平面方向之方式傾斜。藉此,例如可簡便地實 現正常黑方式或正常白方式的液晶。另外,被賦予預傾的 液晶分子的長軸與一對的基板的一邊,典型的由一對的基 板的法線方向來看,亦可彼此成爲45度的角度。液晶面 板是以夾入一對的偏光板之間的方式配置。 構成第1相位差板的垂直蒸鍍膜是保持單軸性的折射 率向異性的同時以單軸性的折射率向異性的單軸性光軸能 夠沿著厚度方向的方式被垂直蒸鍍於第1基板上。加上, _ 構成第1相位差板的第1蒸鑛膜是保持第1折射率向異性 的同時以第1折射率向異性的第1光軸能夠傾斜於消除預 傾所造成光的特性變化之方式被斜方蒸鍍於垂直蒸鍍膜上 。在此本發明的「光的特性變化」並非限於光的相位差的 變化,還意思行進方向的變化、偏光狀態的變化、頻率或 相位的變化等之光的基本特性參數中至少一個變化。又、In a typical example, the first optical axis of the first vapor-deposited film can intersect the first substrate at a predetermined angle, and the refractive index is vapor-deposited on the first substrate as a first vapor-deposited film. Here, the predetermined angle means an angle at which the first optical axis of the first vapor deposition film intersects with the first substrate. In other words, the predetermined angle is obtained by subtracting the normal line of the first substrate from 90 degrees and the angle Q between the refractive index of the first vapor-deposited film and the optical axis of the main refractive index of the anisotropic medium. Alternatively, the predetermined angle may be an angle corresponding to the optical axis of the refractive index of the first vapor-deposited film to the principal refractive index of the anisotropic medium and the predetermined direction. Specifically, the refractive index of the first vapor-deposited film can be, for example, at a predetermined angle of the angle at which the first optical axis of the anisotropic medium intersects with the first substrate, for example, at a level of optical characteristics of the liquid crystal device such as contrast or viewing angle. The way you look at it, according to experiments, theory, experience, simulations, etc., is specified individually. -14 - 200944890 Thereby, the first optical axis ′ of the first vapor deposition film constituting the first retardation plate is, in other words, the optical axis of the refractive index to the principal refractive index 异 of the anisotropic medium is inclined along the intersection only with the pretilt angle Since the liquid crystal molecules have a predetermined direction in the long-axis direction, the first optical axis of the first vapor-deposited film constituting the first retardation film in the planar direction of the first substrate is such that the optical anisotropy of the liquid crystal molecules can be made optically isotropic. Mode compensation. Further, since the optical axis of the first retardation plate crosses the first substrate at the vapor deposition angle, the first optical axis of the first retardation plate is the liquid crystal molecule in the vertical direction of the first substrate. The optical anisotropy can be compensated for in an optically isotropic manner. Furthermore, the uniaxial optical axis of the uniaxial phase difference plate, in other words, the direction in which the refractive index extends toward the optical axis of the principal refractive index ηχ' (or ny') of the anisotropic medium will cross the inclination only at the pretilt angle. Since the long axis direction of the liquid crystal molecules is in the plane direction of the uniaxial phase difference plate, the short axis of the optical axis of the uniaxial phase difference plate (that is, a specific example of the uniaxial optical axis of the present invention) and the long axis The optical anisotropy of liquid crystal molecules can be compensated for toward optical isotropy. In other words, the long axis of the refractive index ellipsoid formed by the liquid crystal molecules intersects with the long axis of the refractive index ellipsoid formed by the first vapor deposited film constituting the first retardation film, so that liquid crystal can be used. The refractive index ellipsoid formed by the molecules, the uniaxial retardation plate, and the first vapor deposition film constituting the first retardation film can be three-dimensionally close to the refractive index spherical body. Therefore, the phase difference (in other words, the complex refraction effect) generated in the liquid crystal can be eliminated (i.e., compensated) by the uniaxial retardation plate and the first retardation plate. As a result, in the operation of the projector, the light emitted from the light source, for example, -15-200944890, can be phase-diffused by the uniaxial phase by the phase difference of the light generated by the liquid crystal composed of the liquid crystal molecules tilted only by the pretilt angle. The board and the first phase difference plate are compensated. Therefore, the light passing through the liquid crystal panel can be prevented from entering in a state in which the phase is shifted with respect to the polarizing plate ' on the emission side. As a result, for example, in the polarizing plate on the emission side, the possibility that the passing light should not be leaked is small, and the decrease in contrast or the reduction in the viewing angle can be prevented. Here, it is assumed that the direction of the optical axis such as a phase difference plate having a uniaxial refractive index is a phase difference plate along the thickness direction, and the optical difference of the liquid crystal molecules is compensated by tilting the phase difference plate. In the case of the opposite sex, it is technically difficult to appropriately prevent a decrease in contrast in the inside of the liquid crystal device, for example, from the viewpoint of the cooling effect by the circulation of air, etc., because the space for tilting the phase difference plate is limited. Alternatively, the mechanism for tilting the phase difference plate becomes complicated, and it is technically difficult to adjust the inclination of the phase difference plate in the assembly process. However, in the present invention, as described above, the uniaxial optical axis of the uniaxial retardation film is disposed so as to compensate for the optical anisotropy of the liquid crystal molecules. In particular, as described above, the first vapor deposition film constituting the first retardation film is characterized in that the first optical axis that can maintain the first refractive index to the opposite polarity and the first refractive index to the opposite polarity is inclined to the light caused by the pre-tilt elimination. The direction of the change is obliquely evaporated on the first substrate. Typically, the first optical axis of the first vapor deposited film is an oblique deposition of the refractive index to the anisotropic medium, so as to compensate for the optical anisotropy of the liquid crystal molecules, in a predetermined direction, a so-called vapor deposition direction, at a predetermined angle. The vapor deposition angle intersects with the first substrate. Therefore, the oblique direction of the first vapor deposition film is used to adjust the direction in which the refractive index of the first retardation-16-200944890 plate is inclined to the optical axis of the opposite phase, and the refractive index of the first retardation film is opposite. Under the angle at which the shaft intersects the first substrate, the optical anisotropy of the liquid crystal molecules of the liquid crystal panel can be easily and accurately compensated. Thereby, the major axis of the refractive index ellipsoid formed by the liquid crystal molecules, and the major axis of the refractive index ellipsoid formed by the first vapor deposition film constituting the first retardation film, and uniaxiality Since the long axis of the refractive index ellipsoid formed by the phase difference plate intersects, the refractive index ellipsoid formed by the liquid crystal molecules, the uniaxial phase difference φ plate, and the first vapor deposition film can be three-dimensionally Close to the refractive index sphere. Further, in order to compensate for the optical anisotropy of the liquid crystal molecules of the liquid crystal panel, it is almost unnecessary to tilt the uniaxial phase difference plate and the first phase difference plate itself. Therefore, in the assembly process, the uniaxial phase difference plate and the uniaxial phase difference plate can be omitted. The adjustment process of the inclination of the first retardation plate can compensate the optical anisotropy of the liquid crystal molecules easily and at low cost, and improve the contrast. As a result, according to the liquid crystal device of the present invention, the effect of compensating for the phase difference generated in the liquid crystal by the phase difference plate can be improved, and the contrast can be improved. As described above, according to the liquid crystal device of the present invention, the direction in which the refractive index of the first retardation film is inclined to the optical axis of the opposite phase and the first phase are adjusted by the oblique vapor deposition of the first vapor deposited film. In addition to the angle at which the first refractive index of the difference plate intersects the first optical axis and the first substrate, the uniaxial refractive index of the uniaxial phase difference plate may be along the thickness direction of the uniaxial optical axis of the opposite polarity. Next, the phase difference generated in the liquid crystal panel is surely compensated by the phase difference plate. As a result, in the first projector of the present invention, high contrast and high quality display can be obtained. In addition, the first retardation plate and the uniaxial retardation plate can be disposed at different optical positions of -17-200944890, or the uniaxial retardation plate can be temporarily removed, so that optical adjustment can be easily performed. In addition, in the first retardation plate and the uniaxial retardation plate, the manufacturing method or material can be made different, so that the optical adjustment can be performed at a lower cost. In order to solve the problem, the third liquid crystal device of the present invention includes a liquid crystal panel which is formed by liquid crystal molecules which are provided between a pair of substrates each having an alignment film and which are provided with a pre-tilt by the alignment film. a vertical alignment type liquid crystal, modulated light; @ a pair of polarizing plates arranged to sandwich the liquid crystal panel; a first phase difference plate disposed between the pair of polarizing plates, having (ia a first substrate and (ii-a) a first vapor deposition film, wherein the first optical axis that maintains the first refractive index to the opposite polarity and the first refractive index to the opposite polarity can be inclined to eliminate the light caused by the pretilt The first direction of the characteristic change is vapor deposited on the first substrate obliquely; and the second retardation plate is disposed between the pair of polarizing plates, and has (ib) the second substrate and ( Ii-b) a second vapor deposition film which is capable of being inclined to a second optical axis having an anisotropy of the second refractive index and having an anisotropy of the second refractive index, and being inclined to a second optical axis which is different from the first direction The direction is vapor-deposited on the second substrate. According to the third liquid crystal device of the present invention, for example, the light emitted from the light source is separated into red light, green light, and blue light by a color separation optical system such as a mirror or a dichroic mirror. The liquid crystal panel is used, for example, as a light valve that modulates each of red light, green light, and blue light. The liquid crystal panel is, for example, aligning the alignment state of the liquid crystal molecules of the respective pixels in accordance with the data signal (or the image signal) -18-200944890, and displays an image corresponding to the data signal in the display field. The image displayed by each liquid crystal panel is synthesized by, for example, a color synthesis optical system such as a two-color enamel, and projected onto a projection surface such as a screen as a projection image via a projection lens. The liquid crystal panel sandwiches liquid crystal between a pair of substrates. The liquid crystal is typically a vertical alignment type liquid crystal, that is, a VA (Vertical Alignment) type liquid crystal. Each of the pair of substrates is provided with an alignment film, and by the alignment film, the liquid crystal molecules which constitute the liquid crystal are imparted with a pretilt which rises at a constant angle in a certain direction. For example, when the liquid crystal is a VA liquid crystal, the liquid crystal molecules are aligned obliquely at a pretilt angle in a predetermined direction with respect to a normal line of a substrate surface of a pair of substrates. This liquid crystal molecule maintains a pretilt when a voltage is not applied to the liquid crystal panel, and is inclined so as to be close to the plane direction of the substrate of the liquid crystal panel when a voltage is applied to the liquid crystal panel. Thereby, for example, a liquid crystal of a normal black mode or a normal white mode can be easily realized. Further, the long axis of the liquid crystal molecules to which the pretilt is applied and one side of the pair of substrates may be angled at 45 degrees as viewed from the normal direction of the pair of base plates. The liquid crystal panel is disposed so as to be sandwiched between a pair of polarizing plates. The first retardation film has a first optical axis that maintains (ia) the first substrate and (ii-a) the first refractive index is anisotropic, and the first optical axis that is opposite to the first refractive index can be inclined to eliminate light caused by the pretilt. The manner in which the characteristics are changed is vapor-deposited on the first vapor-deposited film on the first substrate. The "change in characteristics of light" of the present invention is not limited to a change in the phase difference of light, but also means at least one of the basic characteristic parameters of light such as a change in the traveling direction, a change in the polarization state, and a change in the frequency or phase. Further, the "removal direction" of the present invention is -19-200944890, which is a direction which is ideally necessary and can be sufficiently eliminated, and means a direction in which the desired direction is a component. In other words, the direction in which the ability to be ideally eliminated is the highest, typically means that the optical axis having the largest refractive index of the first refractive index to the opposite polarity and the liquid crystal to which the pretilt is applied are viewed in a planar manner from the normal direction of the first substrate. The direction in which the long axis directions of the molecules intersect. Typically, the first steaming membrane of the second phase difference plate is preferably made of an inorganic material. Thereby, it is possible to effectively prevent the deterioration of the first retardation film due to the irradiation of light or the accompanying temperature rise, and it is possible to constitute a liquid crystal device having excellent reliability. Typically, the first optical axis constituting the first retardation film is applied to the first optical axis of the anisotropic medium from the normal direction of the first substrate so as to be perpendicular to the long axis direction of the liquid crystal molecules to which the pretilt is applied. In the first predetermined direction, the first refractive index is vapor-deposited on the first substrate as the first steaming blade film. Here, the predetermined direction means a direction in which the first refractive index of the first refractive index intersects the long axis direction of the liquid crystal molecules, and the first refractive index extends toward the first optical axis of the anisotropic medium. Specifically, the direction in which the first refractive index extends in the direction in which the first optical axis of the anisotropic medium extends can be, for example, a level of optical characteristics of the liquid crystal device such as contrast or viewing angle. The method is individually specified based on experiments, theory, experience, simulation, etc., based on the long-axis direction of the liquid crystal molecules. In addition, it is typical that the first refractive index of the first retardation film can intersect the first substrate at a first predetermined angle with respect to the first optical axis of the anisotropic medium, and the first refractive index is the same as the first refractive index. 1 The evaporated film is vapor deposited on the first substrate obliquely. Here, the first predetermined angle means an angle at which the refractive index of the first to -20-200944890 crosses the optical axis of the anisotropic medium to the first substrate. In other words, the angle set by the ith is, in other words, the angle between the normal line of the first substrate and the optical axis corresponding to the main refractive index of the first refractive index to the anisotropic medium is subtracted from 90 degrees. Alternatively, the first predetermined angle may be an angle between the first optical axis corresponding to the primary refractive index of the first refractive index and the first predetermined direction. Specifically, the first predetermined angle of the first refractive index to the angle at which the first optical axis of the anisotropic medium intersects with the first substrate can be, for example, maximized at a level of optical characteristics of the liquid crystal device such as contrast 0 or viewing angle. The way you look at it, according to experiments, theory, experience, simulations, etc., is specified individually. On the other hand, the second retardation film has a second optical axis that retains (ib) the second substrate and (ii-b) the second refractive index is anisotropic, and the second optical axis that is oriented to the second refractive index can be inclined to eliminate the pretilt. The second vapor deposition film deposited on the second substrate is vapor-deposited in such a manner that the characteristics of the light change and the second direction is different from the first direction. Specifically, the second optical axis constituting the second retardation film is applied to the second optical axis of the anisotropic medium so as to be perpendicular to the long axis direction of the liquid crystal molecules to which the pretilt is applied, as viewed from the normal direction of the second substrate. In the second predetermined direction, the second refractive index is vapor-deposited on the second substrate as a second vapor deposition film. Here, the second predetermined direction means a direction in which the second refractive index crosses the optical axis of the asymmetrical medium and the long axis direction of the liquid crystal molecules, and the refractive index extends toward the second optical axis of the anisotropic medium. Specifically, the second refractive index is in a second predetermined direction in a direction in which the second optical axis of the anisotropic medium extends. For example, the level of the optical characteristics of the liquid crystal device such as the contrast or the viewing angle can be, for example, a method of forming a maximum enthalpy, etc., based on the long-axis direction of the liquid crystal molecules, based on experiments, theory, experience, and simulation. Etc. Individually specified. In addition, it is typical that the second refractive index of the second retardation film can intersect the second substrate at a second predetermined angle with respect to the second optical axis of the anisotropic medium, and the second refractive index is the same as the second refractive index. 2 The vapor deposition film was vapor-deposited on the second substrate. Here, the second predetermined angle means an angle at which the second refractive index intersects the second optical axis of the second optical axis of the anisotropic medium. In the second predetermined angle, in other words, the angle between the normal line of the second substrate and the second optical axis corresponding to the main refractive index of the second refractive index to the anisotropic medium is subtracted from 90 degrees. Alternatively, the second predetermined angle may be an angle between the second optical axis corresponding to the main refractive index of the second refractive index to the anisotropic medium and the second predetermined direction. Specifically, the second predetermined angle of the second refractive index to the angle at which the second optical axis of the anisotropic medium intersects with the second substrate can be, for example, formed at a maximum level by the optical characteristics of the liquid crystal device such as the contrast or the viewing angle. The way of waiting for it, according to experiments, theory, experience, simulations, etc., is specified individually. Thereby, the optical axis of the first retardation plate (typically nx '(but nX'>ny'>nZ')) will follow the long axis direction of the liquid crystal molecules which are inclined only at the pretilt angle. Since the predetermined direction is one, the first optical axis of the first retardation film is compensated in such a manner that the optical anisotropy of the liquid crystal molecules can be made optically isotropic in the planar direction of the first substrate. Further, since the first optical axis (typically nx) of the first retardation plate crosses the first substrate at the first predetermined angle, the first retardation plate 22- in the vertical plane direction of the first substrate The first optical axis of 200944890 is compensated so that the optical anisotropy of liquid crystal molecules can be made optically isotropic. In other words, the long axis of the first refractive index ellipsoid formed by the liquid crystal molecules intersects with the long axis of the first refractive index ellipsoid formed by the first retardation plate, so that liquid crystal molecules and The first refractive index ellipsoid formed by both of the first retardation plates can approach the refractive index sphere three times. In addition, the optical axis of the second phase difference plate (typically nx' '(but, ^ nx''>ny''> nz")) will follow the liquid crystal molecules that are crossed at only the pretilt angle. In the second predetermined direction of the long axis direction, the second optical axis of the second retardation film is compensated in such a manner that the optical anisotropy of the liquid crystal molecules can be optically isotropic in the planar direction of the second substrate. Since the second optical axis (typically nx) of the second phase difference plate intersects the second substrate at the second predetermined angle, the second optical axis of the second phase difference plate is in the vertical plane direction of the second substrate. The optical anisotropy of the liquid crystal molecules can be compensated for optically isotropic, that is, the long axis of the second refractive index ellipsoid formed by the liquid crystal molecules and the second refraction formed by the second retardation plate Since the long axis of the rate ellipsoid intersects, the second refractive index ellipsoid formed by both the liquid crystal molecules and the second retardation film can be three-dimensionally close to the refractive index sphere. Therefore, the first refractive index sphere can be obtained. And a second phase difference plate to eliminate (ie, compensate) the phase difference generated in the liquid crystal In other words, the birefringence effect is obtained. As a result, in the operation of the liquid crystal device, the phase difference ' of the light generated by the liquid crystal composed of liquid crystal molecules tilted only by the pretilt angle, for example, can be obtained by the first The second phase difference plate is compensated. Therefore, the light passing through the liquid crystal of the liquid crystal -23-200944890 can prevent the phase shift from being shifted in the @# state and the lower side of the polarizing plate on the emission side. As a result, for example, the polarizing plate on the emission side. In the first place, the first phase difference plate and the second phase difference plate are arranged in a pair, and the possibility of leakage of light passing through is reduced, and the contrast is reduced and the viewing angle is reduced. More specifically, the phase difference plate is disposed between one of the polarizing plates of the pair of polarizing plates and the liquid crystal panel, or the other of the pair of polarizing plates and the liquid crystal panel In other words, a pair of @ polarizers are provided on the side where light is incident on the liquid crystal panel or on the side where light is emitted. Here, it is assumed that light such as a phase difference plate having a uniaxial refractive index anisotropy is used. The direction of the axis is The retardation plate along the thickness direction 'compensates for the optical anisotropy of the liquid crystal molecules by tilting the phase difference plate', and the inside of the liquid crystal device, for example, the cooling effect by the circulation of air, etc. Since the space for tilting the phase difference plate is limited, it is technically difficult to appropriately prevent the contrast from being lowered. Or, the mechanism for tilting the phase difference plate becomes complicated, and the adjustment of the phase difference plate is technically adjusted in the assembly process. In the present invention, the first vapor deposition film included in the first retardation film is capable of maintaining the first refractive index to the opposite polarity and the optical axis of the first refractive index toward the opposite side to be inclined to eliminate the pretilt. The first direction of the change in the characteristics of the light caused by the first direction is obliquely deposited on the first substrate. Typically, the first optical axis of the first retardation plate of the first retardation film is the first vapor film by the first vapor deposition film. The oblique vapor deposition is performed so as to compensate the optical anisotropy of the liquid crystal molecules, and intersects the first substrate at the first predetermined angle in the first predetermined direction -24-200944890. Therefore, the first direction in which the first refractive index of the first retardation film is inclined to the first optical axis of the opposite phase and the first refractive index of the first retardation plate are adjusted by oblique vapor deposition of the first vapor deposition film. Under the first angle at which the first optical axis of the opposite sex intersects with the first substrate, the optical anisotropy of the liquid crystal molecules of the liquid crystal panel can be easily and accurately compensated. In addition, in the second vapor deposition film of the second retardation film, the optical vapor axis capable of maintaining the second refractive index to the opposite polarity and the second refractive index 0 to the opposite polarity can be inclined to eliminate the pretilt. The characteristic of the light changed and the second direction different from the first direction is vapor-deposited on the second substrate. Typically, the second optical axis of the second retardation film of the second retardation film is an oblique vapor deposition of the second vapor deposition film so as to compensate the optical anisotropy of the liquid crystal molecules, and is oriented in the second predetermined direction. The second substrate is crossed at a second predetermined angle. Therefore, the second direction in which the second refractive index of the second retardation film is inclined to the second optical axis of the opposite phase and the second refractive index of the second retardation plate of φ are adjusted by the oblique vapor deposition of the second vapor deposition film. The optical anisotropy of the liquid crystal molecules of the liquid crystal panel can be easily and accurately compensated under the second angle at which the second optical axis of the anisotropy intersects with the second substrate. In particular, when the two types of phase difference plates compensate the optical anisotropy of the liquid crystal molecules, the effect of compensation can be remarkably improved. Typically, the optical anisotropy of the liquid crystal molecules can be compensated with higher precision by adjusting the above two parameters, i.e., the physical quantities of the first direction and the second direction. Further, in order to compensate for the optical anisotropy of the liquid crystal molecules of the liquid crystal panel, -25-200944890 almost or completely does not have to tilt the phase difference plate itself in the incident direction of the light, so that the adjustment of tilting the phase difference plate can be omitted in the assembly process. The project can compensate the optical anisotropy of liquid crystal molecules easily and at low cost, and improve the contrast. As a result, according to the liquid crystal device of the present invention, the effect of compensating for the phase difference generated in the liquid crystal by the phase difference plate can be improved, and the contrast can be improved. As described above, in the liquid crystal device of the present invention, the first refractive index of the first retardation film is adjusted to the first direction in which the first optical axis of the first retardation film is inclined by the oblique vapor deposition of the first vapor deposition film. And adjusting the second refractive index of the second retardation film to be lower than the second direction in which the second optical axis of the opposite phase is inclined by the oblique vapor deposition of the second vapor deposition film, and the first and second phases can be used. The difference plate reliably compensates for the phase difference generated in the liquid crystal panel. As a result, a high-contrast, high-quality display can be obtained. In order to solve the problem, the fourth liquid crystal device of the present invention includes a liquid crystal panel which is formed by liquid crystal molecules which are provided between a pair of substrates each having an alignment film and which are provided with a pre-tilt by the alignment film. a vertical alignment type liquid crystal that modulates light; a pair of polarizing plates arranged to sandwich the liquid crystal panel; and a first phase difference plate disposed between the pair of polarizing plates, having (ia) The first substrate and the (ii-a) vertical vapor-deposited film are characterized in that the uniaxial refractive index is anisotropic and the uniaxial refractive index of the uniaxial property is perpendicular to the thickness direction. And vapor-deposited on the first substrate and (iii-a) the first vapor-deposited film, wherein the first optical axis that maintains the first refractive index to the opposite polarity and the first refractive index to the opposite polarity can be inclined to the upper side -26 - 200944890 The first direction of the change in the characteristics of the light caused by the pretilt is obliquely steamed on the vertical vapor deposition film; and the second retardation plate is disposed between the pair of polarizing plates. (ib) second substrate, and (ii-b) second vapor deposited film, The second optical axis that maintains the second refractive index to the opposite polarity and the second refractive index to the opposite polarity can be obliquely vapor-deposited to the second aspect so as to be inclined to the second direction that is different from the first direction in that the characteristic change is eliminated. On the substrate. φ According to the fourth liquid crystal device of the present invention, for example, the light emitted from the light source is separated into red light, green light, and blue light by a color separation optical system such as a mirror or a dichroic mirror. The liquid crystal panel is used, for example, as a light valve that modulates each of red light, green light, and blue light. The liquid crystal panel regulates the alignment state of the liquid crystal molecules of the respective pixels in accordance with, for example, a data signal (or an image signal), and displays an image corresponding to the data signal in the display field. The image displayed by each liquid crystal panel is synthesized by, for example, a color synthesis optical system such as a two-color enamel, and projected onto a projection surface such as a screen as a projection image via a projection lens. The liquid crystal panel sandwiches liquid crystal between a pair of substrates. The liquid crystal is typically a vertical alignment type liquid crystal, that is, a VA (Vertical Alignment) type liquid crystal. An alignment film is provided on each of the pair of substrates, and by the alignment film, liquid crystal molecules constituting the liquid crystal are given a pretilt which rises at a constant angle in a certain direction. For example, when the liquid crystal is a V A type liquid crystal, the liquid crystal molecules are aligned obliquely at a pretilt angle in a certain direction with respect to the normal line of the substrate surface of the pair of substrates. This liquid crystal molecule is maintained at a pretilt when the voltage is not applied to the liquid crystal panel, and is inclined so as to be close to the plane direction of the substrate of the liquid crystal panel -27-200944890 when the voltage is applied to the liquid crystal panel. Thereby, for example, a liquid crystal of a normal black mode or a normal white mode can be easily realized. Further, the long axis of the liquid crystal molecules to which the pretilt is applied and one side of the pair of substrates may be angled at 45 degrees as viewed from the normal direction of the pair of substrates. The liquid crystal panel is disposed so as to be sandwiched between a pair of polarizing plates. The vertical vapor deposition film constituting the first retardation film is vertically vapor-deposited so as to maintain the uniaxial refractive index anisotropy while the uniaxial optical axis of the uniaxial refractive index can be perpendicular to the thickness direction. 1 on the substrate. In addition, the first vapor-deposited film constituting the first retardation film maintains the first refractive index and the first optical axis of the first refractive index can be inclined to the characteristic change of the light caused by the pre-tilting. The method is obliquely evaporated on the vertical vapor deposition film. The "change in characteristics of light" of the present invention is not limited to the change in the phase difference of light, but also means at least one of the basic characteristic parameters of light such as a change in the traveling direction, a change in the polarization state, and a change in the frequency or phase. also,
本發明的「消除的方向」是意思理想上必要且可充分地消 除的方向,意思含以如此理想的方向作爲成分的方向。亦 Q 即,理想上消除的能力最高的方向,典型的是意思由第1 基板的法線方向來平面性地看,第1折射率向異性的折射 率最大的光軸與被賦予預傾的液晶分子的長軸方向交叉的 方向。典型的是第1相位差板的第1蒸鍍膜或垂直蒸鍍膜 最好含無機材料構成。藉此,可有效地防止因爲光的照射 或伴隨的溫度上昇造成第1相位差板劣化,進而能夠構成 可靠度佳的液晶裝置。 典型的是以構成第1相位差板的第1折射率向異性媒 -28- 200944890 質的第1光軸由第1基板的法線方向來看能夠沿著交叉於 被賦予預傾的液晶分子的長軸方向之第1所定方向的方式 ,第1折射率向異性媒質作爲第1蒸鍍膜來斜方蒸鍍於第 1基板。在此,所謂的所定方向是意思第1折射率向異性 媒質的第1光軸與液晶分子的長軸方向交叉之該折射率向 異性媒質的第1光軸所延伸的方向。具體而言,此第1折 射率向異性媒質的第1光軸所延伸的方向之第1所定方向 0 ,可例如以對比度或視野角等液晶裝置的光學特性的水準 能夠例如形成最大値等的所望値之方式,以液晶分子的長 軸方向爲基準,根據實驗、理論、經驗、模擬等來個別具 體地規定。 加上,典型的是以上述第1相位差板的第1折射率向 異性媒質的第1光軸能夠以第1所定角度來與第1基板交 叉的方式,第1折射率向異性媒質作爲第1蒸鍍膜來斜方 蒸鍍於第1基板。在此,所謂的第1所定角度是意思第1 Q 折射率向異性媒質的光軸與第1基板交叉的角度。此第1 所定角度可換言之是由90度減去第1基板的法線與對應 於第1折射率向異性媒質的主折射率的光軸之間的角度的 値。或’此第1所定角度可換言之是對應於第1折射率向 異性媒質的主折射率的第1光軸與上述第1所定方向之間 的角度。具體而言,此第1折射率向異性媒質的第1光軸 與第1基板交叉的角度的第1所定角度,可例如以對比度 或視野角等液晶裝置的光學特性的水準能夠例如形成最大 値等的所望値之方式’根據實驗、理論、經驗、模擬等來 -29- 200944890 個別具體地規定。 亦即,藉由液晶分子所形成之折射率橢圓體的長軸、 及藉由構成第1相位差板的第1蒸鍍膜所形成之折射率橢 圓體的長軸、及藉由構成第1相位差板的垂直蒸鍍膜所形 成之折射率橢圓體的長軸會交叉,因此可使藉由液晶分子 、垂直蒸鍍膜及第1蒸鍍膜等三者所形成的折射率橢圓體 能夠三次元地接近至折射率球體。 另一方面,第2相位差板是具有保持(i-b)第2基 板及(ii-b )第2折射率向異性的同時以第2折射率向異 性的第2光軸能夠傾斜於消除預傾所造成光的特性變化且 與第1方向相異的第2方向之方式被蒸鑛於第2基板上的 第2蒸鍍膜。 典型的是以構成第2相位差板的第2折射率向異性媒 質的第2光軸由第2基板的法線方向來看能夠沿著交叉於 被賦予預傾的液晶分子的長軸方向的第2所定方向之方式 ,第2折射率向異性媒質作爲第2蒸鍍膜來斜方蒸鍍於第 2基板。在此,所謂第2所定方向是意思第2折射率向異 性媒質的光軸與液晶分子的長軸方向交叉之該折射率向異 性媒質的第2光軸所延伸的方向。具體而言’此第2折射 率向異性媒質的第2光軸所延伸的方向之第2所定方向。 可例如以對比度或視野角等液晶裝置的光學特性的水準能 夠例如形成最大値等的所望値之方式’以液晶分子的長軸 方向爲基準,根據實驗、理論、經驗、模擬等來個別具體 地規定。 -30- 200944890 加上,典型的是以上述第2相位差板的第2折射率向 異性媒質的第2光軸能夠以第2所定角度來與第2基板交 叉的方式’第2折射率向異性媒質作爲第2蒸鍍膜來斜方 蒸鍍於第2基板。在此,所謂第2所定角度是意思第2折 射率向異性媒質的第2光軸與第2基板交叉的角度。此第 2所定角度可換言之是由90度減去第2基板的法線與對 應於第2折射率向異性媒質的主折射率的第2光軸之間的 φ 角度的値。或,此第2所定角度可換言之是對應於第2折 射率向異性媒質的主折射率的第2光軸與上述第2所定方 向之間的角度。具體而言,此第2折射率向異性媒質的第 2光軸與第2基板交叉的角度的第2所定角度,可例如以 對比度或視野角等液晶裝置的光學特性的水準能夠例如形 成最大値等的所望値之方式,根據實驗、理論、經驗、模 擬等來個別具體地規定。 藉此,第1相位差板的第1光軸(典型的是nx’(但 φ nx’>ny’>nz’))會沿著交叉於僅以預傾角傾斜的液晶分 子的長軸方向之第1所定方向,因此在第1基板的平面方 向,第1相位差板的第1光軸是以使液晶分子的光學向異 性能夠朝向光學向同性的方式補償。加上’第1相位差板 的第1光軸(典型的是ηχ’)會以第1所定角度來與第1 基板交叉,因此在第1基板的垂直面方向’第1相位差板 的第1光軸是以使液晶分子的光學向異性能夠朝向光學向 同性的方式補償。亦即,藉由液晶分子所形成的第1折射 率橢圓體的長軸與藉由第1相位差板所形成的第1折射率 -31 - 200944890 橢圓體的長軸會交叉,因此可使藉由液晶分子及第1相位 差板所形成的第1折射率橢圓體能夠三次元地接近折射率 球體。 加上,第2相位差板的第2光軸(典型的是nx’’(但 nx ’ ’ >ny ’ ’ >nz ’ ’))會沿著交叉於僅以預傾角傾斜的液晶 分子的長軸方向之第2所定方向,因此在第2基板的平面 方向,第2相位差板的第2光軸是以使液晶分子的光學向 異性能夠朝向光學向同性的方式補償。加上,第2相位差 @ 板的第2光軸(典型的是nx’’)會以第2所定角度來與第 2基板交叉,因此在第2基板的垂直面方向,第2相位差 板的第2光軸是以使液晶分子的光學向異性能夠朝向光學 向同性的方式補償。亦即,藉由液晶分子所形成的第2折 射率橢圓體的長軸與藉由第2相位差板所形成的第2折射 率橢圓體的長軸會交叉,因此可使藉由液晶分子及第2相 位差板所形成的第2折射率橢圓體能夠三次元地接近折射 率球體。 0 因此,可藉由第1及第2相位差板來消除(亦即補償 )在液晶中產生的相位差(換言之,複折射效果)。其結 果,該液晶裝置的動作時,從光源射出的光通過例如由僅 以預傾角傾斜的液晶分子所構成的液晶而產生之光的相位 差,可藉由第1及第2相位差板來補償。因此,通過液晶 面板的光對於射出側的偏光板,可防止在相位偏離的狀態 下射入。其結果,例如在射出側的偏光板中,原本應該不 使通過的光洩漏的可能性會變小,可防止對比度的降低或 -32- 200944890 視野角的縮小。 加上,第1相位差板及第2相位差板是配置於一對的 偏光板之間。更具體而言,相位差板是配置於一對的偏光 板的其中一方的偏光板與液晶面板之間、或一對的偏光板 的其中另一方的偏光板與液晶面板之間。換言之,一對的 偏光板間,設在對液晶面板射入光的側或射出光的側。 在此,假設使用例如具有單軸性的折射率向異性的相 φ 位差板等之光軸的方向爲沿著厚度方向的相位差板,藉由 使該相位差板傾斜來補償液晶分子的光學向異性時,在液 晶裝置的内部,例如依空氣的循環所產生的冷卻效果的觀 點等,由於供以使相位差板傾斜的空間受限,因此技術上 難以適當防止對比度的降低。或,使該相位差板傾斜的機 構會變得複雜,在組裝工程中,技術上使相位差板傾斜的 調整困難。 然而,本發明是特別如上述般,構成第1相位差板的 〇 垂直蒸鍍膜的單軸性的折射率向異性的單軸性的光軸,換 言之,折射率向異性媒質的主折射率nxc’(或nyc’)的 光軸所延伸的方向會交叉於僅以預傾角傾斜的液晶分子的 長軸方向,因此在垂直蒸鍍膜(或第1基板)的平面方向 ,構成第1相位差板的垂直蒸鍍膜的光軸的短軸(亦即本 發明的單軸性的光軸的一具體例)及長軸是以使液晶分子 的光學向異性能夠朝向光學向同性的方式補償。 加上,本發明是特別如上述般,第1相位差板所具有 的第1蒸鍍膜是以能夠保持第1折射率向異性且第1折射 -33- 200944890 率向異性的光軸能夠傾斜於消除預傾所造成的光的特性變 化的第1方向之方式斜方蒸鍍於第1基板上。典型的是第 1相位差板的第1折射率向異性的第1光軸是藉由第1蒸 鍍膜的斜方蒸鍍,以能夠補償液晶分子的光學向異性的方 式,朝第1所定方向,以第1所定角度來與第1基板交叉 。因此,藉由第1蒸銨膜的斜方蒸鑛來調整第1相位差板 的第1折射率向異性的第1光軸所傾斜的第1方向、及第 1相位差板的第1折射率向異性的第1光軸與第1基板交 叉的第〗角度之下,可容易且高精度地補償液晶面板的液 晶分子的光學向異性。 更加上,本發明是特別如上述般,第2相位差板所具 有的第2蒸鍍膜是以能夠保持第2折射率向異性且第2折 射率向異性的光軸能夠傾斜於消除預傾所造成的光的特性 變化且與第1方向相異的第2方向之方式斜方蒸鍍於第2 基板上。典型的是第2相位差板的第2折射率向異性的第 2光軸是藉由第2蒸鍍膜的斜方蒸鍍,以能夠補償液晶分 子的光學向異性的方式,朝第2所定方向,以第2所定角 度來與第2基板交叉。因此,藉由第2蒸鎪膜的斜方蒸鏟 來調整第2相位差板的第2折射率向異性的第2光軸所傾 斜的第2方向、及第2相位差板的第2折射率向異性的第 2光軸與第2基板交叉的第2角度之下,可容易且高精度 地補償液晶面板的液晶分子的光學向異性。 特別是在上述單軸性的折射率向異性、第1折射率向 異性及第2折射率向異性的3種類的折射率向異性各別補 -34- 200944890 償液晶分子的光學向異性之下,可使其補償的效果顯著提 升。典型的是在調整上述3個的參數,亦即單軸性的折射 率、第1方向及第2方向等更多的物理量之下,可更高精 度地補償液晶分子的光學向異性。 並且,爲了補償液晶面板的液晶分子的光學向異性, 幾乎或完全不必使第1相位差板本身對光的射入方向傾斜 ,因此在組裝工程中,可省略使第1相位差板傾斜的調整 0 工程,可簡便且低成本地補償液晶分子的光學向異性,提 高對比度。其結果,若利用本發明的液晶裝置,則可提高 藉由第1相位差板來補償在液晶中所產生的相位差之效果 ,進而能夠提高對比度。 如以上說明,若根據本發明的液晶裝置,則根據垂直 蒸鏟膜的單軸性的折射率、第1蒸鍍膜的斜方蒸鍍來調整 第1相位差板之第1折射率向異性的第1光軸所傾斜的第 1方向、及藉由第2蒸鍍膜的斜方蒸鍍來調整第2相位差 〇 板之第2折射率向異性的第2光軸所傾斜的第2方向之下 ,可藉由第1及第2相位差板來確實地補償在液晶面板中 所產生的相位差。其結果,可取得高對比度高品質的顯示 〇 就本發明的液晶裝置之一形態而言,由上述第1相位 差板之上述光的射出側來看,正面方向的相位差之正面相 位差,係將上述第1光軸設爲X軸時’根據上述X軸方 向的折射率(nx ) 、Y軸方向的折射率(ny ) 、Z軸方向 的折射率(nz )、及上述第1相位差板的厚度來設定。 -35- 200944890 若根據此形態,則正面相位差是藉由使該等複數的參 數變化來調節。藉此,使該等複數的參數變化,使藉由第 1相位差板所產生的正面相位差更大變化,在將液晶裝置 裝入投影機的工程中,使第1相位差板以光所射入的射入 方向作爲旋轉軸來旋轉,藉此可在高精度設定實現可能的 對比度時,使第1相位差板的旋轉角度限於所定範圍(例 如±5度的範圍)。因而,使第1相位差板在所限制的所 定範圍内旋轉,所以該投影機的機能上,可更簡便地調節 成爲最大的對比度。 就本發明的液晶裝置的其他形態而言,上述第1折射 率向異性,係將上述第1光軸設爲X軸時,具有上述X 軸方向的折射率(nx )比上述Y軸方向的折射率(ny ) 大,且上述Y軸方向的折射率比上述Z軸方向的折射率 (η z )大之大小關係。 若根據此形態,則藉由第1蒸鍍膜的斜方蒸鍍,在第 1相位差板中,調整第1折射率向異性的X軸方向的光軸 所傾斜的方向、及第1折射率向異性的X軸方向的光軸 與第1基板交叉的角度,藉此可使與液晶分子的長軸方向 正交的方向的成分更大。其結果,可使藉由液晶分子及第 1相位差板的兩者所形成的折射率橢圓體能夠三次元地確 實接近折射率球體。 就本發明的液晶裝置的其他形態而言,上述第1相位 差板,係將設有上述第1基板的側與未設有上述第1基板 的側作比較,使能夠接近上述液晶面板的方式配置。 200944890 若根據此形態,則在第1相位差板中,可依照是否使 光的射入側位於設有第1基板的側,或是否使第1相位差 板配置於液晶面板的射入側或射出側,來調整第1相位差 板的第1折射率向異性的第1光軸所傾斜的方向、及第1 相位差板的第1折射率向異性的第1光軸與第1基板交叉 的角度之下,可容易且高精度地補償液晶面板的液晶分子 的光學向異性。 0 就本發明的液晶裝置的其他形態而言,上述第1相位 差板,係將設有上述第1基板的側與未設有上述第1基板 的側作比較,使能夠接近上述一對的偏光板之任一方的方 式配置。 若根據此形態,則在第1相位差板中,可依照是否使 光的射入側位於設有第1基板的側,或是否使第1相位差 板配置於液晶面板的射入側或射出側,來調整第1相位差 板的第1折射率向異性的第1光軸所傾斜的方向、及第1 〇 相位差板的第1折射率向異性的第1光軸與第1基板交叉 的角度之下,可容易且高精度地補償液晶面板的液晶分子 的光學向異性。 就本發明的液晶裝置的其他形態而言,上述一對的偏 光板之一對的透過軸係互相正交,且由上述第1基板的法 線方向來看,與被賦予上述預傾的液晶分子的長軸方向分 別形成45度的角度,在上述第1相位差板,上述第1光 軸係沿著上述一對的透過軸之任一方的方向。 若根據此形態,則可將第1相位差板更簡便地裝入液 -37- 200944890 晶裝置。 本發明的液晶裝置的其他形態’上述單軸性相位差板 的厚度及上述單軸性相位差板的厚度方向的折射率,係以 由上述一對的偏光板之中位於上述光的射出側之一偏光板 的正面來看的情形下爲〇度時之顯示視線的角度的極角爲 30度的情形下的相位差能夠爲20 ( nm : nanometer )以下 (例如10〜20 (nm))之方式設定。. 若根據此形態,則可高精度地調節起因於單軸性相位 差板的相位差。 就本發明的液晶裝置的其他形態而言,上述單軸性相 位差板,係與上述第1相位差板作比較,配置於離上述液 晶面板較遠的位置》 一般,例如C板等的單軸性相位差板在其製造工程中 會發生微小的氣泡,在單軸性相位差板内或多或少含有。 相對的,本形態是使單軸性相位差板與第1相位差板作比 較,配置於離液晶面板最遠的距離。藉此,可使聚焦於單 軸性相位差板中所含的氣泡的程度顯著地降低。藉此,可 有效地抑止單軸性相位差板中所含的氣泡被投射而使投射 影像遭到不良影響。 爲了解決上述課題,本發明的第5液晶裝置係具備: 液晶面板,其係於分別具有配向膜的一對的基板之間 ,夾持藉由上述配向膜來賦予預傾(亦即來自法線方向的 傾斜角度)之由液晶分子所構成的垂直配向型的液晶,調 變光; -38- 200944890 一對的偏光板,其係夾著上述液晶面板來配置;及 第1相位差板,其係配置於上述一對的偏光板之間, 具有(i)第1基板、(ii)垂直蒸鍍膜,其係保持單軸性 的折射率向異性且上述單軸性的折射率向異性的單軸性光 軸能夠沿著厚度方向之方式被垂直蒸鏟於上述第1基板上 、及(iii)第1蒸鍍膜,其係保持第1折射率向異性且上 述第1折射率向異性的第1光軸(例如主折射率nx,但 0 nx>ny>nz )能夠傾斜於消除上述預傾所造成上述光的特性 變化的方向之方式被斜方蒸鍍於上述垂直蒸鍍膜上。 若根據本發明的第5液晶裝置,則與上述本發明的液 晶裝置大槪同樣,例如從光源射出的光是例如藉由反射鏡 及雙色鏡等的色分離光學系來分離成紅色光、綠色光及藍 色光。液晶面板是例如作爲調變各紅色光、綠色光及藍色 光的光閥使用。液晶面板是例如按照資料信號(或畫像信 號)來規制各畫素的液晶分子的配向狀態,在該顯示領域 〇 顯示對應於資料信號的畫像。藉由各液晶面板所顯示的畫 像是例如藉由雙色稜鏡等的色合成光學系來合成,經由投 射透鏡來作爲投影畫像予以投影至螢幕等的投影面。 特別是構成第1相位差板的垂直蒸鍍膜是以能夠保持 單軸性折射率向異性且單軸性折射率向異性的單軸性光軸 會沿著厚度方向的方式來垂直蒸鍍於第1基板上。加上, 構成第1相位差板的第1蒸鍍膜是以能夠保持第1折射率 向異性且第1折射率向異性的第1光軸會傾斜於消除預傾 所造成的光的特性變化的方向之方式來斜方蒸鍍於垂直蒸 -39- 200944890 鍍膜上。 且,第1相位差板是配置於一對的偏光板之間。更具 體而言,第1相位差板是配置於一對的偏光板的其中一方 的偏光板與液晶面板之間、或一對的偏光板的其中另一方 的偏光板與液晶面板之間。換言之,設於一對的偏光板間 ,對液晶面板射入光的側或射出光的側。 典型的是以構成第1相位差板的第1蒸鍍膜之折射率 向異性媒質的第1光軸由垂直蒸鍍膜的法線方向來看能夠 Q 沿著交叉於被賦予預傾的液晶分子的長軸方向之所定方向 的方式,折射率向異性媒質作爲第1蒸鍍膜來斜方蒸鍍於 垂直蒸鍍膜。 加上,典型的是以上述第1蒸鍍膜的第1光軸能夠以 所定角度來與第1基板交叉的方式,折射率向異性媒質作 爲第1蒸鍍膜來斜方蒸鍍於垂直蒸鍍膜。 藉此,構成第1相位差板的第1蒸鍍膜的第1光軸,The "removed direction" of the present invention is a direction which is ideally necessary and can be sufficiently eliminated, and means a direction in which such a desired direction is a component. Also, Q, that is, the direction in which the ability to be ideally eliminated is the highest, typically means that the optical axis having the largest refractive index of the first refractive index to the opposite is directly viewed from the normal direction of the first substrate. The direction in which the long-axis directions of the liquid crystal molecules intersect. Typically, the first vapor deposited film or the vertical vapor deposited film of the first retardation film is preferably made of an inorganic material. Thereby, it is possible to effectively prevent the deterioration of the first retardation film due to the irradiation of light or the accompanying temperature rise, and it is possible to constitute a liquid crystal device having excellent reliability. Typically, the first optical axis constituting the first retardation film is a first optical axis of the heterogeneous medium -28-200944890. The first optical axis of the first substrate can be crossed along the liquid crystal molecule to which the pretilt is applied. In the first predetermined direction of the long axis direction, the first refractive index is vapor-deposited on the first substrate as the first vapor deposition film. Here, the predetermined direction means a direction in which the first refractive index intersects the long axis direction of the liquid crystal molecules in the first optical axis of the anisotropic medium, and the refractive index extends in the first optical axis of the anisotropic medium. Specifically, the first predetermined refractive index of the first refractive index in the direction in which the first optical axis of the anisotropic medium extends can be, for example, a maximum level of the optical characteristics of the liquid crystal device such as the contrast or the viewing angle. The method of the desired method is individually specified based on experiments, theory, experience, simulation, etc., based on the long-axis direction of the liquid crystal molecules. In addition, it is typical that the first refractive index of the first retardation film can intersect the first substrate at a first predetermined angle with respect to the first optical axis of the anisotropic medium, and the first refractive index is the same as the first refractive index. 1 The vapor deposition film was vapor-deposited on the first substrate. Here, the first predetermined angle means an angle at which the first Q refractive index intersects the first substrate with respect to the optical axis of the anisotropic medium. In this first predetermined angle, in other words, the angle between the normal line of the first substrate and the optical axis corresponding to the main refractive index of the first refractive index to the anisotropic medium is subtracted from 90 degrees. Alternatively, the first predetermined angle may be an angle between the first optical axis corresponding to the primary refractive index of the first refractive index and the first predetermined direction. Specifically, the first predetermined angle of the first refractive index to the angle at which the first optical axis of the anisotropic medium intersects with the first substrate can be, for example, formed at a maximum level by the optical characteristics of the liquid crystal device such as the contrast or the viewing angle. The way of waiting for it is 'specified according to experiments, theory, experience, simulations, etc. -29- 200944890. That is, the long axis of the refractive index ellipsoid formed by the liquid crystal molecules, the long axis of the refractive index ellipsoid formed by the first vapor deposited film constituting the first retardation film, and the first phase Since the long axis of the refractive index ellipsoid formed by the vertical vapor deposition film of the differential plate crosses, the refractive index ellipsoid formed by the liquid crystal molecules, the vertical vapor deposition film, and the first vapor deposition film can be three-dimensionally approximated. To the refractive index sphere. On the other hand, the second retardation film has a second optical axis that retains (ib) the second substrate and (ii-b) the second refractive index is anisotropic, and the second optical axis that is oriented to the second refractive index can be inclined to eliminate the pretilt. The second vapor deposition film on the second substrate is vapor-deposited so that the characteristics of the light change and the second direction is different from the first direction. Typically, the second optical axis constituting the second retardation film is directed to the second optical axis of the anisotropic medium so as to be perpendicular to the long axis direction of the liquid crystal molecules to which the pretilt is applied, as viewed from the normal direction of the second substrate. In the second predetermined direction, the second refractive index is vapor-deposited on the second substrate as a second vapor deposition film. Here, the second predetermined direction means a direction in which the second refractive index crosses the optical axis of the asymmetrical medium and the long axis direction of the liquid crystal molecules, and the refractive index extends toward the second optical axis of the anisotropic medium. Specifically, the second refractive index is in a second predetermined direction in a direction in which the second optical axis of the anisotropic medium extends. For example, the level of the optical characteristics of the liquid crystal device such as the contrast or the viewing angle can be, for example, a method of forming a maximum enthalpy, etc., based on the long-axis direction of the liquid crystal molecules, and individually, based on experiments, theories, experiences, simulations, and the like. Provisions. -30-200944890. The second refractive index of the second retardation plate is typically the second optical axis of the asymmetrical medium that can intersect the second substrate at a second predetermined angle. The anisotropic medium is vapor-deposited on the second substrate as a second vapor deposition film. Here, the second predetermined angle means an angle at which the second refractive index intersects the second optical axis of the second optical axis of the anisotropic medium. In the second predetermined angle, in other words, the φ angle between the normal line of the second substrate and the second optical axis corresponding to the main refractive index of the second refractive index to the anisotropic medium is subtracted from 90 degrees. Alternatively, the second predetermined angle may be an angle between the second optical axis corresponding to the main refractive index of the second refractive index to the anisotropic medium and the second predetermined direction. Specifically, the second predetermined angle of the second refractive index to the angle at which the second optical axis of the anisotropic medium intersects with the second substrate can be, for example, formed at a maximum level by the optical characteristics of the liquid crystal device such as the contrast or the viewing angle. The way of waiting for it, according to experiments, theory, experience, simulations, etc., is specified individually. Thereby, the first optical axis of the first retardation plate (typically nx' (but φ nx'>ny'> nz')) is along the long axis of the liquid crystal molecules which are inclined at only the pretilt angle. Since the first optical axis of the first retardation film is in the planar direction of the first substrate, the first optical axis of the first retardation film is compensated so that the optical anisotropy of the liquid crystal molecules can be optically isotropic. In addition, the first optical axis (typically ηχ') of the first retardation plate intersects with the first substrate at the first predetermined angle. Therefore, the first retardation plate of the first substrate is in the vertical direction of the first substrate. The optical axis is compensated in such a manner that the optical anisotropy of the liquid crystal molecules can be made optically isotropic. In other words, the long axis of the first refractive index ellipsoid formed by the liquid crystal molecules intersects with the long axis of the first refractive index -31 - 200944890 ellipsoid formed by the first retardation plate, so that it can be borrowed The first refractive index ellipsoid formed of the liquid crystal molecules and the first retardation film can approach the refractive index sphere three times. In addition, the second optical axis of the second phase difference plate (typically nx'' (but nx ' ' >ny ' ' > nz ' ')) will follow the liquid crystal molecules that are crossed at only the pretilt angle. Since the second optical axis of the second retardation plate is in the planar direction of the second substrate, the second optical axis of the second retardation film is compensated so that the optical anisotropy of the liquid crystal molecules can be made optically isotropic. Further, since the second optical axis (typically nx'') of the second phase difference@plate intersects with the second substrate at the second predetermined angle, the second phase difference plate is formed in the vertical plane direction of the second substrate. The second optical axis is compensated for such that the optical anisotropy of the liquid crystal molecules can be made optically isotropic. In other words, the long axis of the second refractive index ellipsoid formed by the liquid crystal molecules intersects with the long axis of the second refractive index ellipsoid formed by the second retardation plate, so that liquid crystal molecules and The second refractive index ellipsoid formed by the second retardation film can approach the refractive index sphere three times. Therefore, the phase difference (in other words, the birefringence effect) generated in the liquid crystal can be eliminated (that is, compensated) by the first and second phase difference plates. As a result, in the operation of the liquid crystal device, the light emitted from the light source can be phase-diffused by light, for example, liquid crystal composed of liquid crystal molecules inclined only at a pretilt angle, and can be made by the first and second retardation plates. make up. Therefore, the light passing through the liquid crystal panel can be prevented from entering in a state in which the phase is shifted with respect to the polarizing plate on the emission side. As a result, for example, in the polarizing plate on the emission side, the possibility that the passing light should not leak is reduced, and the contrast can be prevented from being lowered or the viewing angle of -32-200944890 can be reduced. Further, the first phase difference plate and the second phase difference plate are disposed between a pair of polarizing plates. More specifically, the phase difference plate is disposed between the polarizing plate of one of the pair of polarizing plates and the liquid crystal panel, or between the other polarizing plate of the pair of polarizing plates and the liquid crystal panel. In other words, a pair of polarizers are provided on the side where the liquid crystal panel enters light or the side where light is emitted. Here, it is assumed that, for example, a direction of an optical axis such as a φ phase difference plate having a uniaxial refractive index is used as a phase difference plate along a thickness direction, and the phase difference plate is tilted to compensate for liquid crystal molecules. In the case of the optical anisotropy, the space for tilting the phase difference plate is limited in the liquid crystal device, for example, from the viewpoint of the cooling effect by the circulation of air, etc., and therefore it is technically difficult to appropriately prevent the decrease in contrast. Alternatively, the mechanism for tilting the phase difference plate becomes complicated, and it is technically difficult to adjust the inclination of the phase difference plate in the assembly process. However, the present invention is a uniaxial optical axis having a uniaxial refractive index which is a uniaxial refractive index of the 〇 vertical vapor deposited film which constitutes the first retardation film, in other words, in other words, a refractive index to the opposite refractive index of the anisotropic medium nxc The direction in which the optical axis of '(or nyc') extends intersects the long-axis direction of the liquid crystal molecules inclined only at the pretilt angle, so that the first phase difference plate is formed in the plane direction of the vertical vapor deposition film (or the first substrate). The short axis of the optical axis of the vertical vapor-deposited film (that is, a specific example of the uniaxial optical axis of the present invention) and the major axis are compensated in such a manner that the optical anisotropy of the liquid crystal molecules can be made optically isotropic. In the present invention, the first vapor deposition film included in the first retardation film can be inclined to the optical axis capable of maintaining the first refractive index to the opposite polarity and the first refractive index -33-200944890 to the opposite sex. The first direction in which the change in the characteristics of light due to the pretilt is removed is obliquely vapor deposited on the first substrate. In the first optical axis of the first retardation film, the first optical axis of the first retardation film is obliquely vapor-deposited by the first vapor deposition film so as to compensate the optical anisotropy of the liquid crystal molecules, and is oriented in the first direction. And intersecting the first substrate at the first predetermined angle. Therefore, the first direction in which the first refractive index of the first retardation film is inclined to the first optical axis of the opposite phase and the first refraction of the first retardation plate are adjusted by the orthorhombic vapor deposition of the first vaporized film. The optical anisotropy of the liquid crystal molecules of the liquid crystal panel can be easily and accurately compensated for under the yaw angle at which the first optical axis of the anisotropy intersects with the first substrate. Further, in the second vapor deposition film of the second retardation film, the optical vapor axis capable of maintaining the second refractive index to the opposite polarity and the second refractive index to the opposite polarity can be inclined to eliminate the pretilt. The characteristic of the light that changes and the second direction different from the first direction is vapor-deposited on the second substrate. The second optical axis of the second retardation film of the second retardation film is typically an oblique vapor deposition of the second vapor deposition film so as to compensate the optical anisotropy of the liquid crystal molecules, and is oriented in the second direction. The second substrate is crossed at a second predetermined angle. Therefore, the second direction in which the second refractive index of the second retardation film is inclined to the second optical axis of the opposite phase and the second refractive index of the second retardation plate are adjusted by the oblique steaming blade of the second vapor deposition film The optical anisotropy of the liquid crystal molecules of the liquid crystal panel can be easily and accurately compensated under the second angle at which the second optical axis of the anisotropy intersects with the second substrate. In particular, in the above-mentioned uniaxial refractive index anisotropy, the first refractive index anisotropy, and the second refractive index to the opposite three kinds of refractive index to the opposite sex, respectively, the optical anisotropy of the liquid crystal molecules is compensated for -34-200944890 , the effect of its compensation can be significantly improved. Typically, the optical anisotropy of the liquid crystal molecules can be compensated with higher precision by adjusting the above three parameters, i.e., the uniaxial refractive index, the first direction, and the second direction. Further, in order to compensate for the optical anisotropy of the liquid crystal molecules of the liquid crystal panel, it is almost unnecessary to tilt the first retardation film itself in the incident direction of the light. Therefore, in the assembly process, the adjustment of tilting the first retardation plate can be omitted. 0 Engineering, which can compensate the optical anisotropy of liquid crystal molecules easily and at low cost, and improve contrast. As a result, according to the liquid crystal device of the present invention, the effect of compensating for the phase difference generated in the liquid crystal by the first retardation film can be improved, and the contrast can be improved. As described above, according to the liquid crystal device of the present invention, the first refractive index of the first retardation film is adjusted to the opposite phase according to the uniaxial refractive index of the vertical vapor film and the oblique vapor deposition of the first vapor deposited film. The first direction in which the first optical axis is inclined, and the second direction in which the second optical axis of the second retardation plate is inclined to the second optical axis of the opposite phase by the oblique vapor deposition of the second vapor deposition film Then, the phase difference generated in the liquid crystal panel can be reliably compensated by the first and second retardation plates. As a result, it is possible to obtain a high-contrast and high-quality display. In one aspect of the liquid crystal device of the present invention, the front phase difference of the phase difference in the front direction is different from the light-emitting side of the light of the first retardation film. When the first optical axis is the X-axis, the refractive index (nx) in the X-axis direction, the refractive index (ny) in the Y-axis direction, the refractive index (nz) in the Z-axis direction, and the first phase are The thickness of the difference plate is set. -35- 200944890 According to this aspect, the front phase difference is adjusted by changing the parameters of the plural. Thereby, the plurality of parameters are changed to cause a larger change in the front phase difference caused by the first retardation film, and the first phase difference plate is made to be light when the liquid crystal device is incorporated in the projector. The incident direction of the injection is rotated as a rotation axis, whereby the rotation angle of the first retardation plate can be limited to a predetermined range (for example, a range of ±5 degrees) when the possible contrast is achieved with high precision. Therefore, since the first retardation plate is rotated within the predetermined range, the function of the projector can be more easily adjusted to the maximum contrast. In another aspect of the liquid crystal device of the present invention, the first refractive index is anisotropic, and when the first optical axis is the X-axis, the refractive index (nx) in the X-axis direction is larger than the Y-axis direction. The refractive index (ny) is large, and the refractive index in the Y-axis direction is larger than the refractive index (η z) in the Z-axis direction. According to this aspect, in the first retardation film, the direction in which the optical axis of the first refractive index in the X-axis direction of the opposite polarity is inclined and the first refractive index are adjusted by oblique vapor deposition of the first vapor deposition film. The angle at which the optical axis in the X-axis direction of the opposite sex intersects with the first substrate can make the composition in the direction orthogonal to the long-axis direction of the liquid crystal molecules larger. As a result, the refractive index ellipsoid formed by both the liquid crystal molecules and the first retardation film can be made to be close to the refractive index sphere three-dimensionally. In another aspect of the liquid crystal device of the present invention, the first retardation film is a method in which the side on which the first substrate is provided is compared with a side on which the first substrate is not provided, so that the liquid crystal panel can be accessed. Configuration. According to this aspect, in the first retardation film, whether or not the light incident side is located on the side where the first substrate is provided, or whether the first retardation film is disposed on the incident side of the liquid crystal panel or On the emission side, the first refractive index of the first retardation plate is adjusted to the direction in which the first optical axis of the opposite polarity is inclined, and the first optical axis of the first retardation plate of the first retardation plate is crossed to the first substrate. The optical anisotropy of the liquid crystal molecules of the liquid crystal panel can be easily and accurately compensated. In another aspect of the liquid crystal device of the present invention, the first retardation film is such that the side on which the first substrate is provided is compared with the side on which the first substrate is not provided, so that the pair can be accessed. Configured in either way as a polarizing plate. According to this aspect, in the first retardation film, whether or not the light incident side is located on the side where the first substrate is provided, or whether the first retardation film is disposed on the incident side or the liquid crystal panel On the side, the first refractive index of the first retardation plate is adjusted to the direction in which the first optical axis of the opposite polarity is inclined, and the first optical axis of the first refractive index of the first retardation retardation plate is crossed to the first substrate. The optical anisotropy of the liquid crystal molecules of the liquid crystal panel can be easily and accurately compensated. In another aspect of the liquid crystal device of the present invention, the transmission axes of the pair of the polarizing plates are orthogonal to each other, and the liquid crystal to which the pretilt is applied is viewed from the normal direction of the first substrate. The long axis directions of the molecules form an angle of 45 degrees, and in the first phase difference plate, the first optical axis is along one of the pair of transmission axes. According to this aspect, the first retardation plate can be more easily charged into the liquid-37-200944890 crystal device. In another aspect of the liquid crystal device of the present invention, the thickness of the uniaxial phase difference plate and the refractive index in the thickness direction of the uniaxial phase difference plate are located on the emission side of the light from the pair of polarizing plates. In the case where the front side of one of the polarizing plates is viewed, the phase difference in the case where the polar angle of the display line of sight is 30 degrees in the case of twist can be 20 (nm : nanometer ) or less (for example, 10 to 20 (nm)) The way to set. According to this aspect, the phase difference caused by the uniaxial retardation plate can be adjusted with high precision. In another aspect of the liquid crystal device of the present invention, the uniaxial retardation film is disposed at a position farther from the liquid crystal panel than the first retardation film, for example, a single plate such as a C plate. The axial phase difference plate generates minute bubbles in its manufacturing process and is more or less contained in the uniaxial phase difference plate. In contrast, in the present embodiment, the uniaxial retardation plate is compared with the first retardation plate and disposed at the farthest distance from the liquid crystal panel. Thereby, the degree of focusing on the bubbles contained in the uniaxial phase difference plate can be remarkably lowered. Thereby, it is possible to effectively suppress the bubbles contained in the uniaxial retardation film from being projected and adversely affect the projected image. In order to solve the above problems, a fifth liquid crystal device according to the present invention includes: a liquid crystal panel which is provided between a pair of substrates each having an alignment film, and is provided with a pretilt by the alignment film (that is, from a normal line) a vertical alignment type liquid crystal composed of liquid crystal molecules, modulated light; -38- 200944890 a pair of polarizing plates disposed with the liquid crystal panel interposed therebetween; and a first phase difference plate Arranged between the pair of polarizing plates, (i) a first substrate, and (ii) a vertical vapor deposition film, which maintains a uniaxial refractive index anisotropy and the uniaxial refractive index is anisotropic The axial optical axis can be vertically shoveled on the first substrate along the thickness direction, and (iii) the first vapor deposition film, which maintains the first refractive index to the opposite polarity and the first refractive index to the opposite polarity The optical axis (e.g., the main refractive index nx, but 0 nx > ny > nz) can be obliquely vapor-deposited on the vertical vapor-deposited film so as to be oblique to the direction in which the characteristic change of the light caused by the pretilt is eliminated. According to the fifth liquid crystal device of the present invention, similarly to the above-described liquid crystal device of the present invention, for example, light emitted from a light source is separated into red light or green by, for example, a color separation optical system such as a mirror or a dichroic mirror. Light and blue light. The liquid crystal panel is used, for example, as a light valve that modulates each of red light, green light, and blue light. The liquid crystal panel regulates the alignment state of the liquid crystal molecules of the respective pixels in accordance with, for example, a material signal (or an image signal), and displays an image corresponding to the data signal in the display field. The image displayed by each liquid crystal panel is synthesized by, for example, a color synthesis optical system such as a two-color enamel, and projected onto a projection surface such as a screen as a projection image via a projection lens. In particular, the vertical vapor deposition film constituting the first retardation film is vertically vapor-deposited so as to maintain the uniaxial refractive index in the uniaxial refractive index and the uniaxial optical axis in the thickness direction. 1 on the substrate. In addition, the first vapor deposition film constituting the first retardation film is inclined such that the first optical axis that can maintain the first refractive index to the opposite polarity and the first refractive index to the opposite polarity is inclined to the characteristic change of the light caused by the elimination of the pretilt. The direction of the direction is obliquely evaporated on a vertical steam-39-200944890 coating. Further, the first phase difference plate is disposed between the pair of polarizing plates. More specifically, the first retardation film is disposed between the polarizing plate of one of the pair of polarizing plates and the liquid crystal panel, or between the other polarizing plate of the pair of polarizing plates and the liquid crystal panel. In other words, it is provided between the pair of polarizing plates, and the liquid crystal panel enters the side of the light or the side where the light is emitted. Typically, the refractive index of the first vapor deposition film constituting the first retardation film is directed to the first optical axis of the anisotropic medium from the normal direction of the vertical vapor deposition film, and Q can be crossed along the liquid crystal molecules to which the pretilt is applied. In a manner of a predetermined direction in the long axis direction, the refractive index is vapor-deposited to the vertical vapor deposition film as a first vapor deposition film. In addition, it is typical that the first optical axis of the first vapor-deposited film can intersect the first substrate at a predetermined angle, and the refractive index is obliquely vapor-deposited on the vertical vapor-deposited film as the first vapor-deposited film. Thereby, the first optical axis of the first vapor deposition film constituting the first retardation film is
換言之,折射率向異性媒質的主折射率nx的光軸會沿著 Q 交叉於僅以預傾的角度傾斜的液晶分子的長軸方向之所定 方向,因此在垂直蒸鍍膜(或第1基板)的平面方向,構 成第1相位差板的第1蒸鍍膜的第1光軸是以使液晶分子 的光學向異性能夠朝光學向同性的方式來補償。加上,第 1相位差板的光軸會以蒸鍍角度來與垂直蒸鍍膜(或第1 基板)交叉,因此在垂直蒸鍍膜的垂直面方向,第1相位 差板的第1光軸是以液晶分子的光學向異性能夠朝光學向 同性的方式來補償。 -40- 200944890 更加上,構成第1相位差板的垂直蒸鍍膜的單軸性光 軸,換言之,折射率向異性媒質的主折射率nx’(或ny’ )的光軸所延伸的方向會交叉於僅以預傾的角度傾斜的液 晶分子的長軸方向,因此在垂直蒸鍍膜(或第1基板)的 平面方向,構成第1相位差板的垂直蒸鍍膜的光軸的短軸 (亦即本發明的單軸性光軸的一具體例)及長軸是以液晶 分子的光學向異性能夠朝光學向同性的方式來補償。 0 亦即,藉由液晶分子所形成的折射率橢圓體的長軸、 及藉由構成第1相位差板的第1蒸鍍膜所形成的折射率橢 圓體的長軸、及藉由構成第1相位差板的垂直蒸鍍膜所形 成的折射率橢圓體的長軸會交叉,因此可使藉由液晶分子 、垂直蒸鍍膜及第1蒸鍍膜的三者所形成的折射率橢圓體 能夠三次元地接近折射率球體。 因此,可藉由第1相位差板來消除(亦即補償)在液 晶中所產生的相位差(換言之,複折射效果)。其結果, 〇 該液晶裝置的動作時,從光源射出的光例如通過由僅以預 傾角傾斜的液晶分子所構成的液晶而產生之光的相位差, 可藉由第1相位差板來補償。因此,通過液晶面板的光對 於射出側的偏光板,可防止在相位偏離的狀態下射入。其 結果,例如在射出側的偏光板中,原本應該不使通過的光 洩漏的可能性會變小,可防止對比度的降低或視野角的縮 小。 在此,假設使用例如具有單軸性的折射率向異性的相 位差板等之光軸的方向爲沿著厚度方向的相位差板,藉由 -41 - 200944890 使該相位差板傾斜來補償液晶分子的光學向異性時,在液 晶裝置的内部,例如依空氣的循環所產生的冷卻效果的觀 點等,由於供以使相位差板傾斜的空間受限,因此技術上 難以適當防止對比度的降低。或,使該相位差板傾斜的機 構會變得複雜,在組裝工程中,技術上使相位差板傾斜的 調整困難。 然而,本發明是特別如上述般,構成第1相位差板的 垂直蒸鍍膜的單軸性光軸是以能夠補償液晶分子的光學向 異性的方式來垂直蒸鍍於第1基板。並且特別是如上述般 ,構成第1相位差板的第1蒸鍍膜是以能夠保持第1折射 率向異性且第1折射率向異性的第1光軸會傾斜於消除預 傾所造成的光的特性變化的方向之方式被斜方蒸鍍於第1 基板上。典型的是第1蒸鏟膜的第1光軸是藉由折射率向 異性媒質的斜方蒸鍍,以能夠補償液晶分子的光學向異性 的方式,朝所定方向、所謂蒸鍍方向,以所定角度、所謂 蒸鍍角度來與第1基板交叉。 因此,藉由第1蒸鏟膜的斜方蒸鏟來調整第1相位差 板的折射率向異性的光軸所傾斜的方向、及第1相位差板 的折射率向異性的光軸與第1基板交叉的角度之下,可容 易且高精度地補償液晶面板的液晶分子的光學向異性。 藉此,藉由液晶分子所形成的折射率橢圓體的長軸、 及藉由構成第1相位差板的第1蒸鍍膜所形成的折射率橢 圓體的長軸、及藉由構成第1相位差板的垂直蒸鍍膜所形 成的折射率橢圓體的長軸會交叉,因此可使藉由液晶分子 -42- 200944890 ,垂直蒸鍍膜及第1蒸鍍膜的三者所形成的折射率橢圓體 能夠三次元地接近折射率球體。並且,爲了補償液晶面板 的液晶分子的光學向異性,幾乎或完全不必使第1相位差 板本身對光的射入方向傾斜,因此在組裝工程中,可省略 使第1相位差板傾斜的調整工程,可簡便且低成本地補償 液晶分子的光學向異性,提高對比度。其結果,若利用本 發明的液晶裝置,則可提高藉由第1相位差板來補償在液 Φ 晶中所產生的相位差之效果,進而能夠提高對比度。 如以上說明,若根據上述本發明的液晶裝置,則除了 藉由第1蒸鏟膜的斜方蒸鍍來調整第1相位差板之折射率 向異性的光軸所傾斜的方向、及第1相位差板之第1折射 率向異性的第1光軸與第1基板交叉的角度以外,還可在 構成相位差板之垂直蒸鍍膜被垂直蒸鍍之下,藉由相位差 板來確實地補償在液晶面板中所產生的相位差。其結果, 可取得高對比度高品質的顯示。 〇 另外,在本發明的第5相位差板中亦可適宜採用與上 述本發明的液晶裝置之各種形態同樣的形態。 爲了解決上述課題,本發明的第6液晶裝置係具備: 液晶面板,其係於分別具有配向膜的一對的基板之間 ,夾持藉由上述配向膜來賦予預傾之由液晶分子所構成的 垂直配向型的液晶,調變光; 一對的偏光板,其係夾著上述液晶面板來配置;及 相位差板,其係配置於上述一對的偏光板之間,具有 (i)第1基板、(Π)垂直蒸鍍膜,其係保持單軸性的折 -43- 200944890 射率向異性且上述單軸性的折射率向異性的單軸性光軸能 夠沿著厚度方向之方式被垂直蒸鍍於上述第1基板的一方 側、及(iii )第1蒸鍍膜,其係保持第1折射率向異性且 上述第1折射率向異性的第1光軸能夠傾斜於消除上述預 傾所造成上述光的特性變化的方向之方式被斜方蒸鍍於上 述第1基板的另一方側。 假設,例如在被斜方蒸鍍的第1蒸鍍膜上藉由濺射手 法來形成C板等的垂直蒸鍍膜時,在C板等的垂直蒸鍍 膜上藉由斜方蒸鍍手法來形成第1蒸鍍膜時,該形成處理 時,水分會混入垂直蒸鍍膜,會有此垂直蒸鍍膜的品質降 低的技術性問題點發生。 相對的,若根據第6實施形態,則例如將C板等的垂 直蒸鍍膜形成於第1基板的一方的面,且使第1蒸鍍膜形 成於第1基板的另一方的面。藉此,在利用濺射手法來形 成C板等的垂直蒸鍍膜時,可使水分混入垂直蒸鍍膜的程 度減輕,因此可使該垂直蒸鍍膜的品質更爲提升。 就本發明的液晶裝置的其他形態而言,上述垂直蒸鍍 膜,係與上述第1蒸鍍膜作比較,配置於離上述液晶面板 較遠的位置。 一般,例如C板等的垂直蒸鑛膜在其製造工程中會發 生微小的氣泡,在垂直蒸鍍膜内或多或少含有。相對的, 本形態是使垂直蒸鍍膜與第1蒸鍍膜作比較,配置於離液 晶面板最遠的距離。藉此,可使聚焦於垂直蒸鍍膜中所含 的氣泡的程度顯著地降低。藉此,可有效地抑止垂直蒸鍍 -44- 200944890 膜中所含的氣泡被投射而使投射影像遭到不良影響。 就本發明的液晶裝置的其他形態而言,至少上述第1 折射率向異性爲二軸性。典型的是第1折射率向異性及第 2折射率向異性的其中至少第1折射率向異性爲二軸性。 若根據此形態,則藉由第1蒸鍍膜的斜方蒸鍍,在第 1相位差板中,調整二軸性的第1折射率向異性的第1光 軸所傾斜的方向、及第1相位差板的第1折射率向異性的 Q 第1光軸與第1基板交叉的角度之下,可使與液晶分子的 長軸方向正交的方向的成分更大。其結果,可使藉由液晶 分子及第1相位差板的兩者所形成的折射率橢圓體能夠三 次元地確實接近折射率球體。 就本發明的液晶裝置的其他形態而言,上述第1方向 與上述第2方向是處於夾著被上述預傾的液晶分子的長軸 方向之位置關係,加上或取而代之,上述第1方向與上述 第2方向所形成的角度之關係角係70度〜110度。 Ο 若根據此形態,則可使液晶分子的長軸方向與沿著第 1方向延伸的第1折射率向異性的第1光軸所交叉的角度 擴大,且可使液晶分子的長軸方向與沿著第2方向延伸的 第2折射率向異性的第2光軸所交叉的角度擴大。藉此, 可使藉由液晶分子與第1及第2相位差板所形成的折射率 橢圓體能夠三次元地接近折射率球體,因此以使液晶分子 的光學向異性能夠朝光學向同性的方式來適甞地補償,可 取得更高對比度且更高品質的顯示。 加上或取而代之,根據此形態,可使藉由合成第1折 -45- 200944890 射率向異性及第2折射率向異性所形成的折射率向異性形 成2軸性。典型的是根據本發明者的硏究,關係角爲70 度〜1 1 0度可實現更高對比度、理想的是90。藉此,以使 液晶分子的光學向異性能夠朝光學向同性的方式來適當地 補償,可取得更高對比度且更高品質的顯示。 就本發明的液晶裝置的其他形態而言,上述第1折射 率向異性,係將上述第1光軸設爲X軸時,具有X軸方 向的折射率(例如nx’)比Y軸方向的折射率(例如ny’ )大,且上述Y軸方向的折射率比Z軸方向的折射率( 例如nz ’)大之大小關係,加上或取而代之,上述第2折 射率向異性,係將上述第2光軸設爲X軸時,具有X軸 方向的折射率(例如nx’’)比Y軸方向的折射率(例如 ny’’)大,且上述Y軸方向的折射率比Z軸方向的折射率 大(例如nz’’)之大小關係。 若根據此形態,則在第1相位差板中,調整第1折射 率向異性的X軸方向的光軸所傾斜的第1方向,加上或 取而代之,在第2相位差板中,調整第2折射率向異性的 X軸方向的光軸所傾斜的第2方向之下,可使與液晶分子 的長軸方向正交的方向的成分更大。其結果,可使藉由液 晶分子及第1及第2相位差板所形成的折射率橢圓體能夠 三次元地確實接近折射率球體。 就本發明的液晶裝置的其他形態而言,上述第1相位 差板的正面方向的相位差之第1正面相位差,與上述第2 相位差板的正面方向的相位差之第2正面相位差相異。 46 - 200944890 若根據此形態,則在2種類的相位差板各別地補償液 晶分子的光學向異性之下,可使其補償的效果顯著地提升 。典型的是除了上述2個參數的第1方向及第2方向以外 ,還調整第1正面相位差及第2正面相位差等更多的物理 量之下,可更高精度地補償液晶分子的光學向異性。另外 ,第1正面相位差可依據第1相位差板的厚度來設定,第 2正面相位差可依據第2相位差板的厚度來設定。 Φ 典型的是使被第1正面相位差及與該第1正面相位差 相異的第2正面相位差所影響之一對的偏光板中位於光的 射出側的一偏光板的正面方向的相位差之正面相位差變化 更大,藉此在將液晶裝置安裝於投影機的工程中,藉由使 相位差板以光所射入的射入方向作爲旋轉軸來旋轉,可在 高精度設定實現可能的對比度時,將相位差板的旋轉角度 限制於所定範圍(例如±5度的範圍)。因而,可使相位 差板旋轉於所被限制的所定範圍内,所以在該投影機的機 φ 能上,可更簡便地調節最大的對比度。 就本發明的液晶裝置的其他形態而言,上述一對的偏 光板之一對的透過軸係互相正交,且由上述第1基板或上 述第2基板的法線方向來看,與被賦予上述預傾的液晶分 子的長軸方向分別成45度的角度, 在上述第1相位差板,上述第1光軸係沿著上述一對 的透過軸之一方的方向,且 在上述第2相位差板,上述第2光軸係沿著上述一對 的透過軸之另一方的方向。 -47- 200944890 若根據此形態,可將第1及第2 入液晶裝置。 就本發明的液晶裝置的其他形態 膜的厚度及上述垂直蒸鍍膜的厚度方 上述一對的偏光板之中位於上述光的 正面來看的情形下爲0度時之顯示 30°的情形下的相位差能夠爲20nm ^ nm ))之方式設定。 若根據此形態,則可高精度調節 相位差。 爲了解決上述課題,本發明的第 液晶面板,其係於分別具有配向 ,夾持藉由上述配向膜來賦予預傾之 垂直配向型的液晶,調變光; 一對的偏光板,其係夾著上述液 第1相位差板,其係配置於上述 具有(i-a)第1基板、及(ii-a)第 第1折射率向異性且上述第1折射率 夠傾斜於消除上述預傾所造成上述光 向之方式被斜方蒸鍍於上述第1基板 第2相位差板,其係配置於上述 具有(i-b)第2基板、及(ii-b)第 第2折射率向異性且上述第2折射率 夠傾斜於消除上述預傾所造成上述光 相位差板更簡便地裝 而言,上述垂直蒸鍍 向的折射率,係以由 射出側之一偏光板的 視線的角度的極角爲 又下(例如1 〇〜2 0 ( 起因於垂直蒸鍍膜的 7液晶裝置係具備: 膜的一對的基板之間 由液晶分子所構成的 晶面板來配置; 一對的偏光板之間, 1蒸鍍膜,其係保持 向異性的第1光軸能 的特性變化的第1方 上; 一對的偏光板之間, 2蒸鍍膜,其係保持 向異性的第2光軸能 的特性變化且與上述 -48- 200944890 第1方向相異的第2方向之方式被斜方蒸鍍於上述第2基 板上;及 單軸性相位差板(所謂C板),其係配置於上述一對 的偏光板之間,保持單軸性折射率向異性,且上述單軸性 的折射率向異性的單軸性光軸係沿著厚度方向。 若根據本發明的第7液晶裝置,則與上述本發明的液 晶裝置大槪同樣,例如從光源射出的光是例如藉由反射鏡 φ 及雙色鏡等的色分離光學系來分離成紅色光、綠色光及藍 色光。液晶面板是例如作爲調變各紅色光、綠色光及藍色 光的光閥使用。液晶面板是例如按照資料信號(或畫像信 號)來規制各畫素的液晶分子的配向狀態,在該顯示領域 顯示對應於資料信號的畫像。藉由各液晶面板所顯示的畫 像是例如藉由雙色稜鏡等的色合成光學系來合成,經由投 射透鏡來作爲投影畫像予以投影至螢幕等的投影面。 特別是第1相位差板是配置於一對的偏光板之間,具 〇 有(i-a)第1基板、及(ii-a)第1蒸鍍膜,其係保持第 1折射率向異性且第1折射率向異性的第1光軸能夠傾斜 於消除預傾所造成光的特性變化的第1方向之方式被斜方 蒸鍍於第1基板上。第2相位差板是配置於一對的偏光板 之間,具有(i-b)第2基板、及(ii-b)第2蒸鍍膜,其 係保持第2折射率向異性且第2折射率向異性的第2光軸 能夠傾斜於消除預傾所造成光的特性變化且與第1方向相 異的第2方向之方式被斜方蒸銨於第2基板上。單軸性相 位差板是配置於一對的偏光板之間,保持單軸性折射率向 -49- 200944890 異性,且單軸性的折射率向異性的單軸性光軸係沿著厚度 方向a 如以上說明那樣,若根據本發明的液晶裝置,則藉由 第1蒸鍍膜的斜方蒸鏟來調整第1相位差板的第1折射率 向異性的第1光軸所傾斜的方向、及該第1光軸與第1基 板交叉的角度。加上,藉由第2蒸鍍膜的斜方蒸鍍來調整 第2相位差板的第2折射率向異性的第2光軸所傾斜的方 向、及該第2光軸與第2基板交叉的角度。加上,單軸性 相位差板的單軸性的折射率向異性的單軸性光軸沿著厚度 方向’可藉由第1及第2相位差板、以及單軸性相位差板 來確實地補償在液晶面板中所產生的相位差。其結果,可 取得高對比度高品質的顯示。 特別是可使第1相位差板、第2相位差板及單軸性相 位差板配置於別的相異光學位置,或暫時性地卸下第1及 第2相位差板以及單軸性相位差板的其中至少一個,因此 可簡便地進行光學調整。加上,在第1及第2相位差板以 及單軸性相位差板中,可使製造方法或材質有所不同,因 此可以更低成本來進行光學調整。 另外’在本發明的第7液晶裝置中,亦可適當採用與 上述本發明的液晶裝置的各種形態同樣的形態。 爲了解決上述課題’本發明的第8液晶裝置係具備: 液晶面板,其係於分別具有配向膜的一對的基板之間 ,夾持藉由上述配向膜來賦予預傾之由液晶分子所構成的 垂直配向型的液晶,調變光; -50- 200944890 一對的偏光板,其係夾著上述液晶面板來配置; 第1相位差板,其係配置於上述一對的偏光板之間, 具有(i-a)第1基板、(ii-a)垂直蒸鍍膜,其係保持單 軸性的折射率向異性且上述單軸性的折射率向異性的單軸 性光軸能夠沿著厚度方向之方式被垂直蒸鍍於上述第1基 板的一方側、及(iii )第1蒸鏟膜,其係保持第1折射率 向異性且上述第1折射率向異性的第1光軸能夠傾斜於消 φ 除上述預傾所造成上述光的特性變化的方向之方式被斜方 蒸鍍於上述第1基板的另一方側;及 第2相位差板,其係配置於上述一對的偏光板之間, 具有(i-b)第2基板、及(ii-b)第2蒸鍍膜,其係保持 第2折射率向異性且上述第2折射率向異性的第2光軸能 夠傾斜於消除上述特性變化且與上述第1方向相異的第2 方向之方式被斜方蒸鍍於上述第2基板上。 假設,例如在被斜方蒸鍍的第1蒸鍍膜上藉由濺射手 〇 法來形成C板等的垂直蒸鍍膜時,在C板等的垂直蒸鏟 膜上藉由斜方蒸鏟手法來形成第1蒸鏟膜時,該形成處理 時’水分會混入垂直蒸鍍膜,會有此垂直蒸鍍膜的品質降 低的技術性問題點發生。 相對的,若根據第8實施形態,則例如將C板等的垂 直蒸鍍膜形成於第1基板的一方的面,且使第1蒸鍍膜形 成於第1基板的另一方的面。藉此,在利用濺射手法來形 成C板等的垂直蒸鍍膜時,可使水分混入垂直蒸鍍膜的程 度減輕,因此可使該垂直蒸鍍膜的品質更爲提升。 -51 - 200944890 就本發明的液晶裝置的其他形態而言,至少上述第i 蒸鍍膜係含無機材料來構成。 若根據此形態,則例如藉由Ta2 0 5等的無機材料, 可有效防止因光的照射或伴隨的溫度上昇造成第1相位差 板劣化’可構成可靠度佳的液晶裝置。典型的構成是可在 第1蒸鍍膜及第2蒸鍍膜的其中至少第1蒸鏟膜含無機材 料。 就本發明的液晶裝置的其他形態而言,至少上述第i 相位差板係將上述第1相位差板的法線方向設爲旋轉軸而 旋轉可能。 若根據此形態’則可在使第1相位差板以上述法線方 向作爲旋轉軸來旋轉之下,調整第1相位差板的第1折射 率向異性的第1光軸所傾斜的方向、及第1相位差板的第 1折射率向異性的第1光軸與第1基板交叉的角度,藉此 可容易且高精度地補償液晶面板的液晶分子的光學向異性 。典型的是第1相位差板及第2相位差板的其中至少第i 相位差板是以使第1相位差板的法線方向能夠成爲旋轉軸 旋轉的方式構成。或,第2相位差板是以使第2相位差板 的法線方向能夠成爲旋轉軸旋轉的方式構成。 就本發明的液晶裝置的其他形態而言,至少加上或取 代上述第1蒸鍍膜的膜厚,至少上述第1蒸鎪膜所被斜方 蒸鍍的角度之蒸鍍角度,係設定成Ο由上述第1相位差 板之上述光的射出側來看正面方向的相位差之正面相位差 會位於第1所定範圍内,加上設定成(ii)由和上述第1 -52- 200944890 相位差板的法線方向相異且沿著上述第1蒸鍍膜所被斜方 蒸鍍的方向的蒸鑛方向之第1方向射入上述光時發生的第 1相位差、與由以上述法線方向作爲基準和上述第1方向 對稱的方向之第2方向射入上述光時發生的第2相位差的 比會位於第2所定範圍内。 若根據此形態,則加上或取代第1蒸鍍膜的膜厚,可 將第1蒸鍍膜所被斜方蒸鍍的角度之蒸鍍角度設定成i) 0 由第1相位差板之光的射出側來看正面方向的相位差之正 面相位差會位於第1所定範圍内。再者,加上或取代第1 蒸鍍膜的膜厚,可將蒸鍍角度設定成(ii)由和第1相位 差板的法線方向相異且沿著第1蒸鏟膜所被斜方蒸鍍的方 向的蒸鍍方向之第1方向射入光時發生的第1相位差、與 沿著以法線方向作爲基準來和第1方向對稱的方向之第2 方向射入時發生的第2相位差的比會位於第2所定範圍内 。在此,所謂本發明的第1所定範圍是意思以使從液晶裝 〇 置射出的光的對比度能夠更大之方式,根據理論、實驗、 經驗、或模擬等來個別具體地規定的正面相位差的範圍。 又,所謂本發明的第2所定範圍是意思以使從液晶裝置射 出的光的對比度能夠更大之方式,根據理論、實驗、經驗 、或模擬等來個別具體地規定的第1相位差與第2相位差 的比的値的範圍。典型的是除了第1蒸鍍膜以外,連有關 第2蒸鍍膜也可設定成位於上述第1所定範圍内及第2所 定範圍内。 其結果,藉由加上或取代第1蒸鍍膜的膜厚,使蒸鍍 -53- 200944890 角度對應於位在第1所定範圍内的正面相位差及位在第2 所定範圍内的第1相位差與第2相位差的比來設定成適當 的値,可更簡便地實現能夠提升液晶裝置的對比度之第1 相位差板。換言之,除了直接規定第1相位差板的性質或 性能的變數或參數以外,加上藉由間接規定第1相位差板 的性質或性能的變數或參數等更多種類的變數或參數來規 定第1相位差板的性質或性能之下,可使液晶裝置的對比 度更高精度地提升。 就本發明的液晶裝置的其他形態而言,上述膜厚及上 述蒸鍍角度,係設定成(i)隨著上述正面相位差變大, 至少使上述第1相位差板對以上述法線方向作爲旋轉軸來 旋轉時的旋轉角度的單位變化量之對比度的變化量會變大 ,加上或取而代之,(ii )隨著上述正面相位差變小,對 上述單位變化量之上述對比度的變化量會變小。 若根據此形態,則除了上述第1相位差與第2相位差 的比的設定以外,再加上將正面相位差設定成適當的値, 在投影機的製造的組裝工程中,或使用者的調整動作中, 可簡便且適當地決定成爲所望的第1相位差板(典型的是 第1相位差板及第2相位差板的其中至少第1相位差板) 的調整角度的範圍,因此實踐上非常有利。典型的是在投 影機的製造的組裝工程中,膜厚及蒸鍍角度隨著正面相位 差變大,將第1相位差板設定成對以法線方向作爲旋轉軸 來使旋轉時的旋轉角度的單位變化量之對比度的變化量會 變大時,由於對比度的變化量大,因此可確實且迅速地檢 -54- 200944890 測變化量。藉此,可更迅速地決定設定可實現最大的對比 度之第1相位差板的旋轉角度。或’典型的是在使用者的 調整動作中,膜厚及蒸鍍角度是隨著正面相位差變小’設 定成對單位變化量的對比度的變化量會變小時,由於對比 度的變化量小,因此可使能夠實現最大的對比度之第1相 位差板的旋轉角度更廣範圍。藉此,例如根據使用者的視 認也可更簡便地決定設定能夠實現最大的對比度之第1相 Q 位差板的旋轉角度。 (投影機) 爲了解決上述課題,本發明之投影機的特徵係具備: 上述的液晶裝置(但,包含各種的形態); 光源,其係射出上述光;及 投射光學系,其係投射上述被調變的光。 若利用本發明的投影機,則從光源射出的光是例如藉 ❹ 由反射鏡及雙色鏡等的色分離光學系來分離成紅色光、綠 色光及藍色光。上述液晶面板是例如作爲分別調變紅色光 、綠色光及藍色光的光閥使用。液晶面板是例如按照資料 信號(或畫像信號)來規制各畫素的液晶分子的配向狀態 ,在其顯示領域顯示對應於資料信號的畫像。藉由各液晶 面板所顯示的畫像是在投射光學系中,例如藉由雙色稜鏡 等的色合成光學系來合成,經由投射透鏡來作爲投影畫像 投影至螢幕等的投影面。 與上述本發明的液晶裝置大槪同樣,在藉由第1相位 -55 · 200944890 差板之第1蒸鍍膜的斜方蒸鏟來調整第1相位差板之第1 折射率向異性的第1光軸所傾斜的方向、及第1相位差板 之第1折射率向異性的第1光軸與第1基板交叉的角度之 下’可藉由第1相位差板來確實地補償在液晶面板中所產 生的相位差。其結果,在本發明的投影機中,可取得高對 比度筒品質的顯TfC。 另外,在本發明的投影機中,亦可適宜採用與上述本 發明的液晶裝置之各種形態同樣的形態。 (液晶裝置的光學補償方法) 爲了解決上述課題,本發明之液晶裝置的光學補償方 法,係進行上述的液晶裝置(但,包含各種的形態)的光 學補償之光學補償方法,其特徵係具備: 第1光學調整步驟,其係將上述第1相位差板的法線 方向設爲旋轉軸,使至少上述第1相位差板旋轉;及 第2光學調整步驟,其係將上述法線方向設爲旋轉軸 ,使上述一對的偏光板的至少一方旋轉。 若利用本發明的液晶裝置的光學補償方法,則在第1 光學調整步驟中,在上述本發明的液晶裝置中裝入光源、 偏光板及第1相位差板的工程中,例如使第1相位差板及 第2相位差板的其中至少第1相位差板以射入光的射入方 向之液晶面板的法線方向作爲旋轉軸來旋轉。藉此,調整 第1相位差板的第1光軸與液晶分子的長軸方向的相對位 置關係,可實現更高的對比度。加上在調節第1相位差板 -56- 200944890 的正面相位差之下,以能夠位於所定範圍 相位差板的旋轉角度,進而使第1相位差 定範圍内旋轉,可更簡便地調節對比度。 在第2光學調整步驟中,在上述本發 裝入光源、偏光板及第1相位差板的工程 光板以第1相位差板的法線方向作爲旋轉 ,可簡便地實現例如垂直配向型的液晶、 0 液晶。 另外,在本發明的液晶裝置的光學補 宜採用與上述本發明的液晶裝置之各種形 (相位差板) 爲了解決上述課題,本發明之第1相 晶面板及一對的偏光板一起被使用,配置 光板之間的相位差板,該液晶面板係於分 〇 一對的基板之間,夾持藉由上述配向膜來 晶分子所構成的垂直配向型的液晶,調變 光板係夾著上述液晶面板來配置; 其特徵係具有: (i )第1基板;及 (Π)第1蒸鏟膜,其係保持第1折 述第1折射率向異性的第1光軸能夠傾斜 所造成上述光的特性變化的方向之方式被 第1基板上。 的方式限制第1 板在被限制的所 明的液晶裝置中 中,使一對的偏 軸來旋轉。藉此 或正常黑方式的 償方法中亦可適 態同樣的形態。 位差板,係與液 於上述一對的偏 別具有配向膜的 賦予預傾之由液 光;該一對的偏 射率向異性且上 於消除上述預傾 斜方蒸鍍於上述 -57- 200944890 若利用本發明的第1相位差板,則與上述本發明的液 晶裝置大槪同樣’在藉由相位差板之第1蒸鍍膜的斜方蒸 鍍來調整相位差板之第1折射率向異性的第1光軸所傾斜 的方向、及相位差板之第1折射率向異性的第1光軸與第 1基板交叉的角度之下’藉由相位差板來確實地補償在液 晶面板中所產生的相位差。其結果,在本發明的投影機中 ,可取得高對比度高品質的顯示。 另外,在本發明的第1相位差板中亦可適宜採用與上 述本發明的液晶裝置之各種形態同樣的形態。 爲了解決上述課題,本發明之第2相位差板,係與液 晶面板及一對的偏光板一起被使用,配置於上述一對的偏 光板之間的相位差板,該液晶面板係於分別具有配向膜的 一對的基板之間,夾持藉由上述配向膜來賦予預傾之由液 晶分子所構成的垂直配向型的液晶,調變光;該一對的偏 光板係夾著上述液晶面板來配置; 其特徵係具有: (i )第1基板; (Π)垂直蒸鍍膜,其係保持單軸性的折射率向異性 且上述單軸性的折射率向異性的單軸性光軸能夠沿著厚度 方向之方式被垂直蒸鍍於上述第1基板上;及 (iii )第1蒸鍍膜,其係保持第1折射率向異性且上 述第1折射率向異性的第1光軸能夠傾斜於消除上述預傾 所造成上述光的特性變化的方向之方式被斜方蒸鍍於上述 垂直蒸鍍膜上。 -58- 200944890 若利用本發明的第2相位差板,則與上述本發 晶裝置大槪同樣,除了藉由第1蒸鍍膜的斜方蒸鍍 相位差板之折射率向異性的光軸所傾斜的方向、及 板之第1折射率向異性的第1光軸與第1基板交叉 以外,還可在構成相位差板之垂直蒸鍍膜被垂直蒸 ,藉由相位差板來確實地補償在液晶面板中所產生的 差。其結果,在本發明的第1投影機中,可取得高對 局品質的顯7K。 另外,在本發明的第2相位差板中亦可適宜採用 述本發明的液晶裝置之各種形態同樣的形態。 本發明的作用及其他的利益可由其次說明之實施 最佳形態得知。 【實施方式】 (第1實施形態) Φ 圖1是本發明的實施形態之液晶投影機的槪略構 。投影機10是在設於前方的螢幕11投射影像的前方 型的投影機。投影機10是具備:光源12、雙色鏡π 、液晶光閥15〜17、投射光學系18、交叉雙色稜鏡 及中繼系20。 光源1 2是以供給含紅色光、綠色光及藍色光的 超高壓水銀燈所構成。雙色鏡13是形成使來自光源 紅色光LR透過且將綠色光LG及藍色光LB反射的構 並且,雙色鏡14是形成使反射於雙色鏡13的綠色5 的液 調整 位差 角度 之下 相位 比度 與上 用的In other words, the optical axis of the refractive index to the primary refractive index nx of the anisotropic medium crosses along the Q in a direction perpendicular to the long axis direction of the liquid crystal molecules inclined only at the pretilt angle, and thus the vertical vapor deposited film (or the first substrate) In the planar direction, the first optical axis of the first vapor deposition film constituting the first retardation film is compensated so that the optical anisotropy of the liquid crystal molecules can be optically isotropic. Further, since the optical axis of the first retardation film crosses the vertical vapor deposition film (or the first substrate) at the vapor deposition angle, the first optical axis of the first retardation film is in the vertical plane direction of the vertical vapor deposition film. The optical anisotropy of liquid crystal molecules can be compensated for in an optically isotropic manner. -40- 200944890 Further, the uniaxial optical axis of the vertical vapor deposition film constituting the first retardation film, in other words, the direction in which the refractive index extends toward the optical axis of the main refractive index nx' (or ny') of the anisotropic medium Crossing the long axis direction of the liquid crystal molecules inclined only at the pretilt angle, the short axis of the optical axis of the vertical vapor deposition film of the first retardation film is formed in the plane direction of the vertical vapor deposition film (or the first substrate) (also That is, a specific example of the uniaxial optical axis of the present invention and the major axis are compensated for such that the optical anisotropy of the liquid crystal molecules can be optically isotropic. That is, the long axis of the refractive index ellipsoid formed by the liquid crystal molecules, and the long axis of the refractive index ellipsoid formed by the first vapor deposited film constituting the first retardation film, and the first Since the long axis of the refractive index ellipsoid formed by the vertical vapor deposition film of the phase difference plate crosses, the refractive index ellipsoid formed by the liquid crystal molecules, the vertical vapor deposition film, and the first vapor deposition film can be three-dimensionally Close to the refractive index sphere. Therefore, the phase difference (in other words, the birefringence effect) generated in the liquid crystal can be eliminated (i.e., compensated) by the first retardation plate. As a result, in the operation of the liquid crystal device, the light emitted from the light source can be compensated by the first retardation plate, for example, by the phase difference of the light generated by the liquid crystal composed of the liquid crystal molecules inclined only at the pretilt angle. Therefore, the light passing through the liquid crystal panel can be prevented from entering in a state in which the phase is shifted with respect to the polarizing plate on the emission side. As a result, for example, in the polarizing plate on the emission side, the possibility that the passing light should not leak is reduced, and the contrast can be prevented from decreasing or the viewing angle can be reduced. Here, it is assumed that the direction of the optical axis such as the phase difference plate having the uniaxial refractive index anisotropy is the phase difference plate along the thickness direction, and the phase difference plate is tilted by -41 - 200944890 to compensate the liquid crystal. In the case of the optical anisotropy of the molecule, the space for tilting the phase difference plate is limited in view of the cooling effect by the circulation of air, for example, in the liquid crystal device. Therefore, it is technically difficult to appropriately prevent the decrease in contrast. Alternatively, the mechanism for tilting the phase difference plate becomes complicated, and it is technically difficult to adjust the inclination of the phase difference plate in the assembly process. However, in the present invention, the uniaxial optical axis of the vertical vapor deposition film constituting the first retardation film is vertically vapor-deposited on the first substrate so as to compensate the optical anisotropy of the liquid crystal molecules. In particular, as described above, the first vapor deposition film constituting the first retardation film is inclined such that the first optical axis that can maintain the first refractive index to the opposite polarity and the first refractive index to the opposite polarity is inclined to eliminate the pretilt. The direction in which the characteristics change is obliquely evaporated on the first substrate. Typically, the first optical axis of the first steaming blade film is formed by vapor deposition of the refractive index into the anisotropic medium to compensate the optical anisotropy of the liquid crystal molecules, and is determined in a predetermined direction and a so-called vapor deposition direction. The angle and the vapor deposition angle intersect with the first substrate. Therefore, the direction of inclination of the refractive index of the first retardation film to the optical axis of the opposite phase and the optical axis of the refractive index of the first retardation film to the opposite phase are adjusted by the oblique shovel of the first steaming blade film. Under the angle at which the substrates are crossed, the optical anisotropy of the liquid crystal molecules of the liquid crystal panel can be easily and accurately compensated. Thereby, the long axis of the refractive index ellipsoid formed by the liquid crystal molecules, the long axis of the refractive index ellipsoid formed by the first vapor deposited film constituting the first retardation film, and the first phase are formed Since the long axis of the refractive index ellipsoid formed by the vertical vapor deposition film of the difference plate crosses, the refractive index ellipsoid formed by the liquid crystal molecules -42-200944890, the vertical vapor deposition film, and the first vapor deposition film can be used. The refractive index sphere is approached three times. Further, in order to compensate for the optical anisotropy of the liquid crystal molecules of the liquid crystal panel, it is almost unnecessary to tilt the first retardation film itself in the incident direction of the light. Therefore, in the assembly process, the adjustment of tilting the first retardation plate can be omitted. The project can compensate the optical anisotropy of liquid crystal molecules easily and at low cost, and improve the contrast. As a result, according to the liquid crystal device of the present invention, the effect of compensating for the phase difference generated in the liquid crystal by the first retardation film can be improved, and the contrast can be improved. As described above, according to the liquid crystal device of the present invention, the direction in which the refractive index of the first retardation film is inclined to the optical axis of the opposite phase is adjusted by the oblique vapor deposition of the first vapor film, and the first In addition to the angle at which the first refractive index of the retardation plate intersects the first optical axis and the first substrate, the vertical vapor deposition film constituting the phase difference plate may be vertically vapor-deposited, and the phase difference plate may be used to reliably The phase difference generated in the liquid crystal panel is compensated. As a result, a high-contrast, high-quality display can be obtained. Further, in the fifth retardation film of the present invention, the same embodiment as the above-described liquid crystal device of the present invention can be suitably employed. In order to solve the problem, the liquid crystal panel of the present invention includes a liquid crystal panel which is formed by liquid crystal molecules which are provided between a pair of substrates each having an alignment film and which are provided with a pre-tilt by the alignment film. a vertical alignment type liquid crystal that modulates light; a pair of polarizing plates arranged to sandwich the liquid crystal panel; and a phase difference plate disposed between the pair of polarizing plates, having (i) 1 substrate, (Π) vertical vapor-deposited film, which maintains a uniaxial fold-43-200944890, and the uniaxial optical axis of the above-mentioned uniaxial refractive index to the opposite polarity can be along the thickness direction. Vertically vapor-deposited on one side of the first substrate and (iii) the first vapor-deposited film, wherein the first optical axis that maintains the first refractive index to the opposite polarity and the first refractive index to the opposite polarity can be inclined to eliminate the pretilt The form in which the direction of the change in the characteristics of the light is caused is vapor-deposited on the other side of the first substrate. For example, when a vertical vapor deposition film such as a C plate is formed by a sputtering method on a first vapor deposition film which is vapor-deposited by oblique evaporation, a vertical vapor deposition film such as a C plate is formed by oblique vapor deposition. In the case of the vapor deposition film, water is mixed into the vertical vapor deposition film during the formation treatment, and the technical problem of the quality of the vertical vapor deposition film is lowered. In contrast, in the sixth embodiment, for example, a vertical vapor deposition film such as a C plate is formed on one surface of the first substrate, and the first vapor deposition film is formed on the other surface of the first substrate. As a result, when a vertical vapor deposition film such as a C plate is formed by a sputtering method, the degree of mixing of moisture into the vertical vapor deposition film can be reduced, so that the quality of the vertical vapor deposition film can be further improved. In another aspect of the liquid crystal device of the present invention, the vertical vapor deposition film is disposed at a position far from the liquid crystal panel as compared with the first vapor deposition film. In general, a vertical vaporized film such as a C plate may generate minute bubbles in its manufacturing process and may be contained more or less in the vertical vapor deposition film. In contrast, in the present embodiment, the vertical vapor deposition film is placed at a distance farthest from the liquid crystal panel as compared with the first vapor deposition film. Thereby, the degree of focusing on the bubbles contained in the vertical vapor deposition film can be remarkably lowered. Thereby, vertical vapor deposition can be effectively suppressed -44- 200944890 The bubbles contained in the film are projected to adversely affect the projected image. In another aspect of the liquid crystal device of the present invention, at least the first refractive index is biaxial to the opposite polarity. Typically, at least the first refractive index of the first refractive index and the second refractive index to the opposite polarity are biaxial to the opposite polarity. According to this aspect, in the first retardation film, the direction in which the first refractive index of the biaxial property is inclined to the first optical axis of the opposite polarity and the first direction are adjusted by the oblique vapor deposition of the first vapor deposition film. The first refractive index of the retardation plate is greater than the angle at which the Q first optical axis of the opposite phase intersects with the first substrate, so that the component in the direction orthogonal to the long axis direction of the liquid crystal molecules can be made larger. As a result, the refractive index ellipsoid formed by both the liquid crystal molecules and the first retardation film can surely approach the refractive index sphere in a three-dimensional manner. In another aspect of the liquid crystal device of the present invention, the first direction and the second direction are in a positional relationship in which a direction of a long axis of the liquid crystal molecules to be pretilted is interposed, and the first direction and the first direction are The angle of the angle formed by the second direction is 70 degrees to 110 degrees.根据 According to this aspect, the longitudinal direction of the liquid crystal molecules and the first refractive index extending along the first direction can be increased at an angle intersecting the first optical axis of the opposite polarity, and the long-axis direction of the liquid crystal molecules can be made. The angle at which the second refractive index extending in the second direction intersects the second optical axis of the opposite sex increases. Thereby, the refractive index ellipsoid formed by the liquid crystal molecules and the first and second retardation plates can be three-dimensionally close to the refractive index spherical body, so that the optical anisotropy of the liquid crystal molecules can be optically isotropic. Appropriate compensation for higher contrast and higher quality display. Alternatively or alternatively, according to this aspect, it is possible to form a biaxiality by a refractive index formed by synthesizing the first refractive index -45-200944890 to the opposite polarity and the second refractive index to the opposite polarity. Typically, according to the inventors' research, a relative angle of 70 degrees to 110 degrees can achieve a higher contrast ratio, ideally 90. Thereby, the optical anisotropy of the liquid crystal molecules can be appropriately compensated for optically isotropic, and a higher contrast and higher quality display can be obtained. In another aspect of the liquid crystal device of the present invention, the first refractive index is anisotropic, and when the first optical axis is the X-axis, the refractive index (for example, nx') in the X-axis direction is greater than the Y-axis direction. The refractive index (for example, ny') is large, and the refractive index in the Y-axis direction is larger than the refractive index in the Z-axis direction (for example, nz '), or the second refractive index is anisotropic. When the second optical axis is the X-axis, the refractive index (for example, nx'') in the X-axis direction is larger than the refractive index (for example, ny'') in the Y-axis direction, and the refractive index in the Y-axis direction is larger than the Z-axis direction. The magnitude of the refractive index is large (for example, nz''). According to this aspect, in the first retardation plate, the first direction in which the optical axis in the X-axis direction of the first refractive index is inclined is adjusted, and the second retardation plate is adjusted or replaced. 2 The refractive index is lower than the second direction in which the optical axis in the X-axis direction of the opposite polarity is inclined, and the component in the direction orthogonal to the long-axis direction of the liquid crystal molecules can be made larger. As a result, the refractive index ellipsoid formed by the liquid crystal molecules and the first and second retardation plates can be surely approached to the refractive index sphere three times. In another aspect of the liquid crystal device of the present invention, the first front phase difference of the phase difference in the front direction of the first retardation film and the second front phase difference of the phase difference in the front direction of the second phase difference plate are different Different. 46 - 200944890 According to this aspect, the compensation effect of the liquid crystal molecules can be significantly improved by separately correcting the optical anisotropy of the liquid crystal molecules in the two types of phase difference plates. In addition to the first and second directions of the above two parameters, the physical quantity of the liquid crystal molecules can be compensated with higher precision by adjusting the physical quantity of the liquid crystal molecules with higher precision than the first and second front phase differences. opposite sex. Further, the first front phase difference can be set in accordance with the thickness of the first retardation plate, and the second front retardation can be set in accordance with the thickness of the second retardation plate. Φ is typically a phase in the front direction of a polarizing plate located on the light emitting side of the polarizing plate which is affected by the first front phase difference and the second front phase difference different from the first front phase difference. In the process of attaching the liquid crystal device to the projector, the phase difference plate is rotated by the incident direction in which the light is incident as the rotation axis, and the setting can be realized with high precision. In the case of possible contrast, the angle of rotation of the phase difference plate is limited to a predetermined range (for example, a range of ±5 degrees). Therefore, the phase difference plate can be rotated within the predetermined range to be limited, so that the maximum contrast can be more easily adjusted on the machine φ of the projector. In another aspect of the liquid crystal device of the present invention, the transmission axes of the pair of the polarizing plates are orthogonal to each other, and are provided by the normal direction of the first substrate or the second substrate. The long-axis directions of the pre-tilted liquid crystal molecules are respectively at an angle of 45 degrees, and in the first retardation plate, the first optical axis is in a direction along one of the pair of transmission axes, and in the second phase In the difference plate, the second optical axis is along the other direction of the pair of transmission axes. -47- 200944890 According to this aspect, the first and second liquid crystal devices can be incorporated. In the case where the thickness of the other aspect film of the liquid crystal device of the present invention and the thickness of the vertical vapor deposition film are 30 degrees when the polarizing plate of the pair of the polarizing plates is located at the front side of the light, the display is 30 degrees. The phase difference can be set in the manner of 20 nm ^ nm )). According to this aspect, the phase difference can be adjusted with high precision. In order to solve the above problems, the liquid crystal panel of the present invention has a vertical alignment type liquid crystal which is provided with an alignment film by the alignment film, and a modulated light beam; a pair of polarizing plates, and a clip. The liquid first retardation plate is disposed on the (ia) first substrate and the (ii-a) first first refractive index anisotropy and the first refractive index is inclined to eliminate the pretilt The light-emitting method is obliquely vapor-deposited on the first substrate second retardation plate, and is disposed on the (ib) second substrate and the (ii-b) second refractive index anisotropy and the first 2. The refractive index is sufficiently inclined to eliminate the above-described pretilt, and the optical retardation plate is more easily mounted. The refractive index of the vertical vapor deposition direction is a polar angle of an angle of the line of sight of one of the polarizing plates on the emission side. Further, (for example, 1 〇 to 2 0 (the liquid crystal device which is caused by the vertical vapor deposition film) is provided with a crystal plate composed of liquid crystal molecules between a pair of substrates of the film; a pair of polarizing plates, 1 a vapor deposited film that maintains the first optical axis energy of the opposite polarity The first side of the characteristic change; the second vapor deposition film between the pair of polarizing plates, which maintains the characteristic change of the second optical axis energy of the opposite polarity and the second direction different from the first direction of -48-200944890 The method is performed by obliquely vapor-depositing on the second substrate; and a uniaxial retardation plate (so-called C plate) is disposed between the pair of polarizing plates to maintain a uniaxial refractive index anisotropy, and The uniaxial refractive index-to-heterotropic uniaxial optical axis is along the thickness direction. According to the seventh liquid crystal device of the present invention, the light emitted from the light source is, for example, similar to the liquid crystal device of the present invention. For example, it is separated into red light, green light, and blue light by a color separation optical system such as a mirror φ and a dichroic mirror. The liquid crystal panel is used, for example, as a light valve that modulates each of red light, green light, and blue light. For example, the alignment state of the liquid crystal molecules of the respective pixels is regulated in accordance with the data signal (or the image signal), and an image corresponding to the data signal is displayed in the display field. The image displayed by each liquid crystal panel is, for example, by a two-color prism. The color synthesis optical system is combined and projected onto a projection surface such as a screen as a projection image via a projection lens. In particular, the first phase difference plate is disposed between a pair of polarizing plates, and has an ia (ia) The first substrate and the (ii-a) first vapor-deposited film are capable of being inclined to the first optical axis having the first refractive index and the first refractive index to be opposite to the first optical axis capable of eliminating the change in the characteristics of the light caused by the pretilt. The direction of the direction is vapor-deposited on the first substrate. The second phase difference plate is disposed between the pair of polarizing plates, and has (ib) a second substrate and (ii-b) a second vapor deposited film. The second optical axis that maintains the second refractive index to the opposite polarity and the second refractive index to the opposite polarity can be inclined to the obliquely vaporized ammonium in a manner that eliminates the characteristic change of the light caused by the pretilt and is different from the first direction. On the second substrate. The uniaxial phase difference plate is disposed between a pair of polarizing plates, and maintains a uniaxial refractive index to -49-200944890, and a uniaxial refractive index anisotropic uniaxial optical axis system along the thickness direction In the liquid crystal device according to the present invention, the first refractive index of the first retardation film is adjusted to the direction in which the first optical axis of the first retardation film is inclined by the oblique steaming blade of the first vapor deposition film. And an angle at which the first optical axis intersects with the first substrate. In addition, the direction in which the second refractive index of the second retardation film is inclined toward the second optical axis of the opposite phase and the second optical axis intersect with the second substrate are adjusted by oblique vapor deposition of the second vapor deposition film. angle. In addition, the uniaxial refractive index of the uniaxial phase difference plate can be confirmed by the first and second phase difference plates and the uniaxial phase difference plate along the thickness direction of the uniaxial optical axis of the opposite direction. The ground phase difference generated in the liquid crystal panel is compensated. As a result, a high-contrast, high-quality display can be obtained. In particular, the first phase difference plate, the second phase difference plate, and the uniaxial phase difference plate may be disposed at another different optical position, or the first and second phase difference plates and the uniaxial phase may be temporarily removed. At least one of the difference plates can be easily optically adjusted. In addition, in the first and second retardation plates and the uniaxial retardation plate, the manufacturing method or material can be made different, so that optical adjustment can be performed at a lower cost. Further, in the seventh liquid crystal device of the present invention, the same aspects as the various aspects of the liquid crystal device of the present invention described above can be suitably employed. In order to solve the above-mentioned problem, the eighth liquid crystal device of the present invention includes a liquid crystal panel which is formed by liquid crystal molecules which are provided between a pair of substrates each having an alignment film and which are provided with a pre-tilt by the alignment film. a vertical alignment type liquid crystal, modulated light; -50- 200944890 a pair of polarizing plates arranged to sandwich the liquid crystal panel; and a first phase difference plate disposed between the pair of polarizing plates; (ia) a first substrate and (ii-a) a vertical vapor deposition film which maintains a uniaxial refractive index anisotropy and the uniaxial refractive index of the uniaxial optical axis can be along a thickness direction The method is vertically vapor-deposited on one side of the first substrate, and (iii) the first steaming blade film, wherein the first optical axis that maintains the first refractive index to the opposite polarity and the first refractive index to the opposite polarity can be inclined φ is deposited obliquely on the other side of the first substrate in addition to the direction in which the characteristic change of the light is caused by the pretilt; and the second retardation plate is disposed between the pair of polarizing plates , having (ib) second substrate and (ii-b) second steam In the plating film, the second optical axis that maintains the second refractive index anisotropy and the second refractive index is anisotropic can be obliquely vapor-deposited so as to be inclined to the second direction that is different from the first direction in that the characteristic change is eliminated. On the second substrate. For example, when a vertical vapor deposition film such as a C plate is formed by a sputtering hand rubbing method on a first vapor deposited film which is vapor-deposited by an oblique side, a vertical steaming blade method such as a C plate is used by a diagonal steaming method. When the first steaming blade film is formed, the water is mixed into the vertical vapor deposition film during the forming process, and the technical problem of the quality of the vertical vapor deposition film is lowered. In the eighth embodiment, for example, a vertical vapor deposition film such as a C plate is formed on one surface of the first substrate, and the first vapor deposition film is formed on the other surface of the first substrate. As a result, when a vertical vapor deposition film such as a C plate is formed by a sputtering method, the degree of mixing of moisture into the vertical vapor deposition film can be reduced, so that the quality of the vertical vapor deposition film can be further improved. -51 - 200944890 In another aspect of the liquid crystal device of the present invention, at least the i-th vapor deposition film is made of an inorganic material. According to this aspect, for example, by using an inorganic material such as Ta2 0 5 , it is possible to effectively prevent deterioration of the first retardation film due to irradiation of light or accompanying temperature rise, and it is possible to constitute a liquid crystal device having excellent reliability. In a typical configuration, at least the first vapor deposition film may contain an inorganic material in the first vapor deposition film and the second vapor deposition film. In another aspect of the liquid crystal device of the present invention, at least the i-th phase difference plate may be rotated by using a normal direction of the first retardation plate as a rotation axis. According to this aspect, when the first retardation plate is rotated by the normal direction as the rotation axis, the direction in which the first refractive index of the first retardation film is inclined to the first optical axis of the opposite phase is adjusted. Further, the first refractive index of the first retardation plate is at an angle at which the first optical axis of the opposite polarity intersects with the first substrate, whereby the optical anisotropy of the liquid crystal molecules of the liquid crystal panel can be easily and accurately compensated. Typically, at least the i-th phase difference plate of the first retardation plate and the second retardation plate is configured such that the normal direction of the first retardation plate can be rotated as a rotation axis. Alternatively, the second retardation plate is configured such that the normal direction of the second retardation plate can be rotated as a rotation axis. In another aspect of the liquid crystal device of the present invention, at least the film thickness of the first vapor deposition film is added or replaced, and at least the vapor deposition angle of the angle at which the first vapor deposition film is vapor-deposited is set to Ο. The front phase difference of the phase difference in the front direction when the light is emitted from the first retardation plate is located within the first predetermined range, and is set to (ii) the phase difference from the first -52 to 200944890. The first phase difference generated when the normal direction of the plate is different and the light is incident in the first direction of the vapor deposition direction in the direction in which the first vapor deposition film is vapor-deposited, and the normal direction is The ratio of the second phase difference which occurs when the light enters the light in the second direction in which the first direction is symmetrical is located within the second predetermined range. According to this aspect, the vapor deposition angle of the angle at which the first vapor deposition film is obliquely vapor-deposited can be set to i) 0 plus or minus the film thickness of the first vapor deposition film. The front phase difference of the phase difference in the front direction from the exit side is within the first predetermined range. Further, in addition to or in place of the film thickness of the first vapor deposition film, the vapor deposition angle can be set to (ii) beside the normal direction of the first retardation film and be inclined along the first steaming blade film. The first phase difference that occurs when light is incident in the first direction in the vapor deposition direction in the vapor deposition direction, and the first phase difference that occurs when the light is incident in the second direction that is symmetric with the first direction in the normal direction. The ratio of the 2 phase differences will be within the second predetermined range. Here, the first predetermined range of the present invention means that the contrast of the light emitted from the liquid crystal mounting device can be made larger, and the frontal phase difference is specifically specified according to theory, experiment, experience, simulation, or the like. The scope. In addition, the second predetermined range of the present invention means that the contrast ratio of the light emitted from the liquid crystal device can be made larger, and the first phase difference and the first specific phase are specifically determined according to theory, experiment, experience, simulation, or the like. 2 The range of the ratio of the phase difference is 値. Typically, in addition to the first vapor deposition film, the second vapor deposition film may be set to be within the first predetermined range and within the second predetermined range. As a result, by adding or replacing the film thickness of the first vapor deposition film, the vapor deposition rate -53 - 200944890 corresponds to the front phase difference in the first predetermined range and the first phase in the second predetermined range. The ratio of the difference to the second phase difference is set to an appropriate level, and the first phase difference plate capable of improving the contrast of the liquid crystal device can be realized more easily. In other words, in addition to variables or parameters that directly define the properties or performance of the first phase difference plate, a plurality of variables or parameters such as variables or parameters that indirectly define the properties or performance of the first phase difference plate are used to define the first Under the nature or performance of the phase difference plate, the contrast of the liquid crystal device can be improved with higher precision. In another aspect of the liquid crystal device of the present invention, the film thickness and the vapor deposition angle are set to (i) at least the first phase difference plate pair is in the normal direction as the front phase difference is increased. The amount of change in the contrast of the unit change amount of the rotation angle when the rotation axis is rotated is increased, or (ii) the amount of change in the contrast with respect to the unit change amount is small as the front phase difference is small. It will become smaller. According to this aspect, in addition to the setting of the ratio of the first phase difference to the second phase difference, the front phase difference is set to an appropriate 値, in the assembly process of the manufacture of the projector, or the user's In the adjustment operation, it is possible to easily and appropriately determine the range of the adjustment angle of the first phase difference plate (typically at least the first phase difference plate of the first phase difference plate and the second phase difference plate) which is desired, and thus practice Very good. Typically, in the assembly process for manufacturing a projector, the film thickness and the vapor deposition angle increase with the front phase difference, and the first retardation plate is set to a rotation angle when the normal direction is the rotation axis. When the amount of change in the contrast of the unit change amount becomes large, since the amount of change in the contrast is large, the amount of change can be reliably and quickly detected -54-200944890. Thereby, the rotation angle of the first retardation plate which can achieve the maximum contrast can be determined more quickly. Or 'typically, in the user's adjustment operation, the film thickness and the vapor deposition angle are smaller as the front phase difference becomes smaller. 'The amount of change in the contrast set to the unit change amount is small, and the amount of change in contrast is small. Therefore, the rotation angle of the first phase difference plate capable of achieving the maximum contrast can be made wider. Thereby, for example, the rotation angle of the first phase Q difference plate capable of achieving the maximum contrast can be determined more easily based on the user's viewing. (Projector) In order to solve the above problems, the projector of the present invention is characterized in that: the liquid crystal device described above (including various forms); a light source that emits the light; and a projection optical system that projects the image Modulated light. According to the projector of the present invention, the light emitted from the light source is separated into red light, green light, and blue light by, for example, a color separation optical system such as a mirror or a dichroic mirror. The liquid crystal panel is used, for example, as a light valve that modulates red light, green light, and blue light, respectively. The liquid crystal panel regulates the alignment state of the liquid crystal molecules of the respective pixels in accordance with, for example, a data signal (or an image signal), and displays an image corresponding to the data signal in the display field. The image displayed by each liquid crystal panel is synthesized in a projection optical system by, for example, a color synthesis optical system such as a two-color ray, and projected onto a projection surface such as a projection image as a projection image via a projection lens. In the same manner as the above-described liquid crystal device of the present invention, the first refractive index of the first retardation film is adjusted to the first half of the first phase by the oblique steaming blade of the first vapor deposition film of the first phase -55 · 200944890. The direction in which the optical axis is inclined and the angle at which the first refractive index of the first retardation plate intersects the first optical axis and the first substrate can be reliably compensated for in the liquid crystal panel by the first retardation plate. The phase difference produced in . As a result, in the projector of the present invention, the apparent TfC of the high contrast cylinder quality can be obtained. Further, in the projector of the present invention, the same embodiment as the above-described various aspects of the liquid crystal device of the present invention can be suitably employed. (Optical Compensation Method of Liquid Crystal Device) In order to solve the above-described problems, the optical compensation method of the liquid crystal device of the present invention is an optical compensation method for optical compensation of the liquid crystal device described above (including various forms), and is characterized in that: a first optical adjustment step of rotating at least the first retardation plate by using a normal direction of the first retardation plate as a rotation axis, and a second optical adjustment step of setting the normal direction The rotating shaft rotates at least one of the pair of polarizing plates. According to the optical compensation method of the liquid crystal device of the present invention, in the first optical adjustment step, in the above-described liquid crystal device of the present invention, in the process of incorporating the light source, the polarizing plate, and the first retardation film, for example, the first phase is used. At least the first retardation film of the difference plate and the second retardation plate rotates as a rotation axis in a normal direction of the liquid crystal panel in which the incident light is incident. Thereby, the relative positional relationship between the first optical axis of the first retardation film and the long-axis direction of the liquid crystal molecules is adjusted, and a higher contrast can be realized. In addition, under the adjustment of the front phase difference of the first retardation plate -56-200944890, the contrast can be more easily adjusted by rotating the angle of the retardation plate within the predetermined range and further rotating within the first phase difference range. In the second optical adjustment step, the engineering light panel in which the light source, the polarizing plate, and the first retardation film are incorporated in the present invention is rotated in the normal direction of the first retardation film, whereby a vertical alignment type liquid crystal can be easily realized. , 0 LCD. Further, in the liquid crystal device of the present invention, various types of liquid crystal devices of the present invention (phase difference plate) are used. In order to solve the above problems, the first phase crystal panel of the present invention and a pair of polarizing plates are used together. a phase difference plate between the light plates, wherein the liquid crystal panel is sandwiched between the pair of substrates, and the vertical alignment type liquid crystal formed by the crystal molecules of the alignment film is sandwiched, and the modulation light plate is sandwiched between The liquid crystal panel is configured to have: (i) a first substrate; and (Π) a first steaming blade film that is capable of tilting the first optical axis in which the first refractive index to the first refractive index is inclined The direction in which the characteristics of light change is on the first substrate. The method of restricting the first board is to rotate the pair of off-axises in the limited liquid crystal device. This or the normal black mode of compensation can also be applied to the same form. The differential plate is a liquid light that imparts a pretilt with an alignment film on the pair of liquids; and the polarized light of the pair is anisotropic and vapor-deposited on the pre-tilt side. 200944890 When the first retardation film of the present invention is used, the first refractive index of the retardation film is adjusted by oblique vapor deposition of the first vapor deposition film of the retardation film in the same manner as the liquid crystal device of the present invention. The direction in which the first optical axis of the opposite polarity is inclined and the angle between the first refractive index of the phase difference plate and the first optical axis intersecting the first substrate are reliably compensated by the phase difference plate in the liquid crystal panel. The phase difference produced in . As a result, in the projector of the present invention, high contrast and high quality display can be obtained. Further, in the first retardation film of the present invention, the same embodiment as the above-described liquid crystal device of the present invention can be suitably employed. In order to solve the problem, the second phase difference plate of the present invention is used together with a liquid crystal panel and a pair of polarizing plates, and is disposed in a phase difference plate between the pair of polarizing plates, and the liquid crystal panel has Between the pair of substrates of the alignment film, a vertical alignment type liquid crystal composed of liquid crystal molecules which is pretilted by the alignment film is sandwiched, and the light is modulated; the pair of polarizing plates sandwich the liquid crystal panel The feature is: (i) a first substrate; (Π) a vertical vapor deposition film capable of maintaining a uniaxial refractive index anisotropy and the uniaxial refractive index anisotropic uniaxial optical axis capable of The first vapor deposition film is vertically vapor-deposited on the first substrate; and (iii) the first vapor deposition film is capable of tilting the first optical axis in which the first refractive index is opposite to the first refractive index and the first refractive index is opposite to the opposite polarity The manner in which the direction of the change in the characteristics of the light caused by the pretilt is removed is obliquely vapor-deposited on the vertical vapor deposition film. -58- 200944890 When the second retardation film of the present invention is used, the refractive index of the phase difference plate of the first vapor deposition film is increased to the optical axis of the opposite side, similarly to the above-described crystal growth apparatus. The direction of the inclination and the first optical axis of the first refractive index of the sheet intersect with the first substrate, and the vertical vapor deposition film constituting the phase difference plate may be vertically vaporized, and the phase difference plate may be used to reliably compensate The difference produced in the LCD panel. As a result, in the first projector of the present invention, the display 7K of high-competition quality can be obtained. Further, in the second retardation film of the present invention, the same aspect as the various aspects of the liquid crystal device of the present invention can be suitably employed. The effects and other benefits of the present invention will be apparent from the best mode of practice described. [Embodiment] (First Embodiment) Fig. 1 is a schematic view showing a schematic configuration of a liquid crystal projector according to an embodiment of the present invention. The projector 10 is a front type projector that projects an image on the screen 11 provided on the front side. The projector 10 includes a light source 12, a dichroic mirror π, liquid crystal light valves 15 to 17, a projection optical system 18, an intersecting dichroic ridge, and a relay system 20. The light source 12 is composed of an ultrahigh pressure mercury lamp that supplies red light, green light, and blue light. The dichroic mirror 13 is configured to transmit the red light LR from the light source and reflect the green light LG and the blue light LB, and the dichroic mirror 14 is formed to reflect the phase ratio below the liquid adjustment angle of the green color 5 of the dichroic mirror 13. Degree and use
成圖 投影 I > 14 19、 光之 12的 成。 t LG -59- 200944890 及藍色光LB中的藍色光LB透過且將綠色光LG反射的構 成。如此,雙色鏡13、14是構成使從光源12射出的光分 離成紅色光LR、綠色光LG及藍色光LB的色分離光學系 。在雙色鏡13與光源12之間,從光源12起依序配置積 算器(Integrator) 21及偏光變換元件22。積算器21*是 使從光源12照射的光之照度分布均一化。偏光變換元件 22是將來自光源12的光例如變換成s偏光那樣具有特定 的振動方向之偏光。 液晶光閥15是按照畫像信號來調變透過雙色鏡13而 反射於反射鏡23的紅色光LR之透過型的液晶裝置(光 電裝置)。液晶光閥15是具備:第1偏光板15b、液晶 面板15c、第1相位差板15a、第2相位差板15e、及第2 偏光板15d。 在此,射入液晶光閥15的紅色光LR是透過第1偏 光板1 5b來例如調變成s偏光。液晶面板1 5c是藉由按照 畫像信號的調變來將射入的s偏光變換成p偏光(若是中 間調,則爲圓偏光或橢圓偏光)。而且,第2偏光板15d 是遮斷s偏光來使p偏光透過的偏光板。因此,液晶光閥 15是形成按照畫像信號來調變紅色光LR,將調變後的紅 色光LR朝向交叉雙色稜鏡19射出的構成。 液晶光閥16是使在雙色鏡13反射後反射於雙色鏡 14的綠色光LG按照畫像信號來調變綠色光LG,將調變 後的綠色光LG朝向交叉雙色稜鏡19射出之透過型的液 晶裝置。液晶光閥1 6是與液晶光閥1 5同樣具備:第1偏 -60- 200944890 光板1 6b、液晶面板1 6c、第1相位差板16a、第2相位 差板16e、及第2偏光板16d。 液晶光閥17是使在雙色鏡13反射,透過雙色鏡14 後經由中繼系20的藍色光LB按照畫像信號來調變,將 調變後的藍色光LB朝向交叉雙色稜鏡19射出之透過型 的液晶裝置。液晶光閥1 7是與液晶光閥1 5、1 6同樣具備 :第1偏光板17b、液晶面板17c、第1相位差板17a、 φ 及第2相位差板17e、第2偏光板17d。 中繼系20是具備中繼透鏡24a、24b及反射鏡25a、 25b。中繼透鏡24a、2 4b是爲了防止藍色光LB的光路長 所造成的光損失而設置者。中繼透鏡24a是配置於雙色鏡 14與反射鏡25a之間。中繼透鏡24b是配置於反射鏡25a 、25b之間。反射鏡25a是以使透過雙色鏡14來從中繼 透鏡24a射出的藍色光LB能夠朝向中繼透鏡24b反射的 方式配置。反射鏡25b是以使從中繼透鏡24b射出的藍色 〇 光LB能夠朝向液晶光閥1 7反射的方式配置。 交叉雙色稜鏡19是將2個的雙色膜19a、19b正交配 置成X字型的色合成光學系。雙色膜19a是反射藍色光 LB而透過綠色光LG。雙色膜19b是反射紅色光LR而透 過綠色光LG。因此,交叉雙色稜鏡19是合成在各個液晶 光閥15〜17所被調變的紅色光LR、綠色光LG及藍色光 LB,以能夠朝向投射光學系18射出的方式構成。投射光 學系18是具有投影透鏡(圖示略).,以能夠將在交叉雙 色稜鏡19所被合成的光投射至螢幕11的方式構成。 -61 - 200944890 另外,在紅色用及藍色用的液晶光閥15,17設置λ/2 相位差板,將從該等的液晶光閥15,17射入至交叉雙色 稜鏡19的光設爲s偏光,在液晶光閥16不設置λ/2相位 差板的構成,亦可採用將從液晶光閥16射入至交叉雙色 棱鏡19的光設爲ρ偏光的構成。在將射入至交叉雙色稜 鏡19的光設爲不同種類的偏光之下,可構成考量雙色膜 19a、19b的反射特性來最適化的色合成光學系。一般, 雙色(dichroic)膜19a、19b是s偏光的反射特性佳,因 此如上述般可將反射於雙色膜19a、19b的紅色光LR及 藍色光LB設爲s偏光,將透過雙色膜19a、19b的綠色光 LG設爲ρ偏光。 (液晶光閥) 其次,說明有關液晶光閥(液晶裝置)15〜17。 液晶光閥15〜17是僅調變之光的波長領域相異,其 基本的構成是相同。因此在以下是以液晶面板15c及具備 彼之液晶光閥15爲例來進行說明。 圖2是本實施形態的液晶面板的全體構成圖(圖2( a))及沿著該圖2 ( a)的H-H’線的剖面構成圖(圖2 ( b ))。圖3是表示本實施形態的液晶光閥的構成說明圖 。圖4是表示圖3的各構成構件的光學軸配置圖。 液晶面板15c是如圖2所示具備彼此對向配置的對向 基板31及TFT陣列基板32,隔著密封材33來使兩者貼 合的構成。在被對向基板31、TFT陣列基板32、及密封 -62- 200944890 材33所包圍的領域内封入液晶層34。液晶層34是由具 有負的介電常數向異性的液晶所構成,本實施形態的液晶 面板15c是如圖3所示,液晶分子51會在配向膜43、98 之間具有所定的傾斜度(預傾角)而垂直配向的構成。 液晶面板1 5 c是具有被密封於以T F T陣列基板3 2、 對向基板3 1及密封材3 3所區劃的領域中的液晶層34。 在液晶面板15c中密封材33的形成領域的内側形成有成 φ 爲框緣或周邊遮蔽的遮光膜35。在密封材33的外周側的 角部配設有用以取得TFT陣列基板32與對向基板31的 電性導通之基板間導通材57。 在TFT陣列基板32中平面視成爲密封材33的形成 領域的外側之領域中形成有資料線驅動電路71及外部電 路安裝端子75、以及2個的掃描線驅動電路73。而且, 在TFT陣列基板32的上述領域中亦形成有用以連接設於 上述畫像顯示領域兩側的掃描線驅動電路73之間的複數 〇 條配線74。亦可取代在TFT陣列基板3 2上形成資料線驅 動電路71及掃描線驅動電路73,例如經由向異性導電膜 來電性及機械性連接安裝有驅動用 LSI的TAB ( Tape Automated Bonding )基板與TFT陣列基板32的周邊部所 形成的端子群。 對向基板31是如圖2(b)所示,具有被平面地配列 的複數個微透鏡之微透鏡基板(聚光基板)。對向基板 31是以基板92、樹脂層93及罩蓋玻璃94爲主體構成。 基板92及罩蓋玻璃94是由玻璃等所構成的透明基板 -63- 200944890 ,亦可使用由石英或硼矽酸玻璃、鹼石灰玻璃(藍板玻璃 )、冕牌玻璃(白板玻璃)等所構成的基板。在基板92 的液晶層34側(圖示下面側)形成有複數的凹部(微透 鏡)9 5。微透鏡9 5是將從與液晶層3 4相反的側射入基板 92的光予以聚光,然後射出至液晶層34側。 樹脂層93是由基板92的微透鏡95上充塡的樹脂材 料所構成的層,使用可透過光的樹脂材料、例如丙烯醛基 系樹脂等來形成。樹脂層93是覆蓋基板92的一面側’以 能夠充塡微透鏡95的凹狀的内部之方式設置。樹脂層93 的上面是形成平坦面,在該平坦面貼附罩蓋玻璃94。 在微透鏡基板36的液晶層34側的面形成有遮光膜 35、共通電極97、及配向膜98。遮光膜35是平面視大略 成格子狀,形成於罩蓋玻璃94上。微透鏡95是位於遮光 膜35之間,在液晶面板15c的畫素領域(畫素電極42的 形成領域)平面視重疊的領域分別配置。配向膜98是使 構成液晶層34的液晶分子對基板面配向成大略垂直的垂 直配向膜,例如藉由斜方蒸鍍來形成具有柱狀構造的矽氧 化物膜、或施以配向處理的聚醯亞胺膜等所構成者。 TFT陣列基板32是以由玻璃或石英等所構成的透明 基板41、形成於基板41的液晶層34側面的畫素電極42 、驅動畫素電極的TFT4 4、及配向膜43爲主體構成。 畫素電極42是例如由ITO等的透明導電材料所構成 的平面視大略矩形狀的導電膜,如圖2(a)所示,在基 板4 1上配列成平面視矩陣狀,在平面視與微透鏡95重疊 -64- 200944890 的領域形成。 TFT44雖圖示簡略化,但實際是對應於各個畫素電極 42來形成於基板41上’通常是在平面視與對向基板31 側的遮光膜35重疊的領域(非顯示領域 '遮光領域)配 置。 覆蓋畫素電極42而形成的配向膜43是先前的配向膜 98同樣,藉由斜方蒸鍍來形成的矽氧化物膜等所構成的 0 垂直配向膜。 配向膜43、98是以彼此的配向方向(柱狀構造物的 配向方向)能夠平面視大致形成平行的方式形成,使構成 液晶層3 4的液晶分子對基板面具有所定的傾斜度而配向 成大致垂直,且使液晶分子的傾斜方向在基板面方向應成 爲一樣的機能。 另外,在基板41的液晶層34側的表面中平面視成爲 密封材33的形成領域的内側之領域中形成有連接畫素電 Φ 極42或TFT44的資料線(圖示略)或掃描線(圖示略) 。資料線及掃描線是形成於平面視與遮光膜35重叠的領 域。而且,藉由遮光膜35、TFT44、資料線、掃描線來加 邊的領域是成爲液晶面板1 5c的畫素領域。然後,複數的 畫素領域配列成平面視矩陣狀而構成畫像顯示領域。 (偏光板及第1及第2相位差板) 如圖3所示,液晶光閥15是藉由:上述液晶面板 15c、及配置於液晶面板15c的對向基板31的外側之第1 -65- 200944890 偏光板15b、及配置於TFT陣列基板32的外側之第1相 位差板15a、及配置於第1相位差板15a的外側之第2相 位差板1 5 e、及配置於第2相位差板1 5 e的外側之第2偏 光板15d所構成。 另外,本實施形態的液晶光閥15是配設有第1偏光 板15b的側(圖示上側)爲光射入側,配設有第2偏光板 1 5 d的側爲光射出側。 在液晶面板15c中,夾持液晶層34而對向的配向膜 0 43,98是例如由偏離基板法線方向50°程度的斜方向來蒸 鍍矽氧化物而形成。膜厚皆爲40nm程度。由附在圖3的 配向膜43,98的箭號所示的配向方向43a、98a是在形成 時的蒸鍍方向之中在基板面内的方向一致。配向膜43的 配向方向43a與配向膜98的配向方向98a是互相平行。Mapping projection I > 14 19, the formation of light 12 . t LG -59- 200944890 and the blue light LB in the blue light LB is transmitted and reflects the green light LG. As described above, the dichroic mirrors 13 and 14 constitute a color separation optical system that separates the light emitted from the light source 12 into red light LR, green light LG, and blue light LB. Between the dichroic mirror 13 and the light source 12, an integrator 21 and a polarization conversion element 22 are sequentially disposed from the light source 12. The totalizer 21* uniformizes the illuminance distribution of the light irradiated from the light source 12. The polarization conversion element 22 is a polarization having a specific vibration direction such that the light from the light source 12 is converted into s-polarized light, for example. The liquid crystal light valve 15 is a transmissive liquid crystal device (photoelectric device) that modulates the red light LR that is transmitted through the dichroic mirror 13 and is reflected by the mirror 23 in accordance with the image signal. The liquid crystal light valve 15 includes a first polarizing plate 15b, a liquid crystal panel 15c, a first retardation film 15a, a second retardation plate 15e, and a second polarizing plate 15d. Here, the red light LR incident on the liquid crystal light valve 15 is, for example, modulated by the first polarizing plate 15b to be converted into s-polarized light. The liquid crystal panel 15c converts the incident s-polarized light into p-polarized light (or circularly polarized light or elliptically polarized light if it is a middletone) in accordance with the modulation of the image signal. Further, the second polarizing plate 15d is a polarizing plate that blocks the s-polarized light and transmits the p-polarized light. Therefore, the liquid crystal light valve 15 is configured to modulate the red light LR in accordance with the image signal and to emit the modulated red light LR toward the intersecting two-color 稜鏡19. The liquid crystal light valve 16 is a transmissive type in which the green light LG reflected by the dichroic mirror 13 and reflected by the dichroic mirror 14 is modulated by the green light LG in accordance with the image signal, and the modulated green light LG is emitted toward the intersecting bicolor 稜鏡19. Liquid crystal device. Similarly to the liquid crystal light valve 15, the liquid crystal light valve 16 includes a first bias -60 - 200944890 light plate 16b, a liquid crystal panel 16c, a first phase difference plate 16a, a second phase difference plate 16e, and a second polarizing plate. 16d. The liquid crystal light valve 17 is reflected by the dichroic mirror 13 and transmitted through the dichroic mirror 14 and then modulated by the blue light LB of the relay system 20 in accordance with the image signal, and the modulated blue light LB is emitted toward the intersecting two-color pupil 19. Type of liquid crystal device. The liquid crystal light valve 17 includes the first polarizing plate 17b, the liquid crystal panel 17c, the first retardation plates 17a and φ, the second retardation plate 17e, and the second polarizing plate 17d, similarly to the liquid crystal light valves 15 and 16. The relay system 20 includes relay lenses 24a and 24b and mirrors 25a and 25b. The relay lenses 24a and 24b are provided to prevent light loss caused by the long optical path of the blue light LB. The relay lens 24a is disposed between the dichroic mirror 14 and the mirror 25a. The relay lens 24b is disposed between the mirrors 25a and 25b. The mirror 25a is disposed such that the blue light LB emitted from the relay lens 24a through the dichroic mirror 14 can be reflected toward the relay lens 24b. The mirror 25b is disposed such that the blue neon light LB emitted from the relay lens 24b can be reflected toward the liquid crystal light valve 17. The intersecting dichroic cymbal 19 is a color synthesizing optical system in which two dichroic films 19a and 19b are orthogonally arranged in an X shape. The two-color film 19a reflects the blue light LB and transmits the green light LG. The two-color film 19b reflects the red light LR and passes through the green light LG. Therefore, the crossed dich 19 is formed by combining the red light LR, the green light LG, and the blue light LB modulated by the respective liquid crystal light valves 15 to 17, so as to be able to be emitted toward the projection optical system 18. The projection optical system 18 has a projection lens (not shown) so as to be capable of projecting the light synthesized by the intersecting dichroic cymbal 19 onto the screen 11. -61 - 200944890 In addition, λ/2 retardation plates are provided for liquid crystal light valves 15 and 17 for red and blue, and light is incident from the liquid crystal light valves 15 and 17 to the cross two-color 稜鏡19. In the case where the liquid crystal light valve 16 is not provided with the λ/2 retardation plate, the light incident from the liquid crystal light valve 16 to the crossed dichroic prism 19 may be ρ-polarized. When the light incident on the intersecting dichroic prism 19 is set to a different type of polarized light, a color synthesizing optical system which is optimized in consideration of the reflection characteristics of the dichroic films 19a and 19b can be constructed. In general, since the dichroic films 19a and 19b have excellent reflection characteristics of s-polarized light, the red light LR and the blue light LB reflected on the two-color films 19a and 19b can be s-polarized as described above, and the two-color film 19a can be transmitted through the two-color film 19a. The green light LG of 19b is set to ρ polarized light. (Liquid Crystal Light Valve) Next, the liquid crystal light valves (liquid crystal devices) 15 to 17 will be described. The liquid crystal light valves 15 to 17 are different in the wavelength range of the modulated light only, and the basic configuration is the same. Therefore, the liquid crystal panel 15c and the liquid crystal light valve 15 having the same will be described below as an example. Fig. 2 is a cross-sectional structural view (Fig. 2(b)) showing the entire configuration of the liquid crystal panel of the embodiment (Fig. 2(a)) and the line H-H' along the line (a) of Fig. 2; Fig. 3 is a view showing the configuration of a liquid crystal light valve of the embodiment. Fig. 4 is a view showing an optical axis arrangement of each component of Fig. 3; As shown in Fig. 2, the liquid crystal panel 15c has a configuration in which the opposing substrate 31 and the TFT array substrate 32 which are opposed to each other are disposed to each other via a sealing member 33. The liquid crystal layer 34 is sealed in a region surrounded by the opposite substrate 31, the TFT array substrate 32, and the sealing material - 62 - 200944890. The liquid crystal layer 34 is composed of a liquid crystal having a negative dielectric constant and anisotropy. As shown in FIG. 3, the liquid crystal panel 15c of the present embodiment has a predetermined inclination between the alignment films 43 and 98 ( Pretilt angle) and vertical alignment. The liquid crystal panel 15 c is a liquid crystal layer 34 which is sealed in a field partitioned by the FT array substrate 3 2, the counter substrate 31 and the sealing material 3 3 . In the liquid crystal panel 15c, a light shielding film 35 is formed on the inner side of the formation region of the sealing member 33 so that φ is a frame edge or a periphery. An inter-substrate conductive member 57 for obtaining electrical conduction between the TFT array substrate 32 and the counter substrate 31 is disposed at a corner portion on the outer peripheral side of the sealing member 33. A data line driving circuit 71, an external circuit mounting terminal 75, and two scanning line driving circuits 73 are formed in the field of the TFT array substrate 32 which is planarly formed outside the field of forming the sealing member 33. Further, in the above-described field of the TFT array substrate 32, a plurality of plural wirings 74 for connecting between the scanning line driving circuits 73 provided on both sides of the image display area are also formed. Instead of forming the data line driving circuit 71 and the scanning line driving circuit 73 on the TFT array substrate 3, for example, a TAB (Tape Automated Bonding) substrate and a TFT in which a driving LSI is electrically and mechanically connected to the opposite conductive film may be used. A terminal group formed by the peripheral portion of the array substrate 32. The counter substrate 31 is a microlens substrate (concentrating substrate) having a plurality of microlenses arranged in a plane as shown in Fig. 2(b). The counter substrate 31 is mainly composed of a substrate 92, a resin layer 93, and a cover glass 94. The substrate 92 and the cover glass 94 are transparent substrates made of glass or the like -63-200944890, and may be made of quartz or borosilicate glass, soda lime glass (blue plate glass), or enamel glass (whiteboard glass). The substrate is constructed. On the liquid crystal layer 34 side (the lower side shown in the drawing) of the substrate 92, a plurality of concave portions (microlenses) 915 are formed. The microlens 9 5 condenses light incident on the substrate 92 from the side opposite to the liquid crystal layer 34, and then emits it to the liquid crystal layer 34 side. The resin layer 93 is a layer made of a resin material filled on the microlens 95 of the substrate 92, and is formed using a light-permeable resin material such as an acrolein-based resin. The resin layer 93 is provided so as to cover one side of the substrate 92 so as to be able to fill the concave interior of the microlens 95. The upper surface of the resin layer 93 is formed into a flat surface, and the cover glass 94 is attached to the flat surface. A light shielding film 35, a common electrode 97, and an alignment film 98 are formed on the surface of the microlens substrate 36 on the liquid crystal layer 34 side. The light-shielding film 35 is formed in a lattice shape in plan view and formed on the cover glass 94. The microlenses 95 are disposed between the light-shielding films 35, and are disposed in the field of the pixel region of the liquid crystal panel 15c (the area in which the pixel electrodes 42 are formed) in a plane view. The alignment film 98 is a vertical alignment film in which liquid crystal molecules constituting the liquid crystal layer 34 are aligned substantially perpendicularly to the substrate surface, for example, by forming a tantalum oxide film having a columnar structure by oblique vapor deposition or by performing alignment treatment. A constituent of a quinone imine film or the like. The TFT array substrate 32 is mainly composed of a transparent substrate 41 made of glass or quartz or the like, a pixel electrode 42 formed on the side surface of the liquid crystal layer 34 of the substrate 41, a TFT 4 4 for driving the pixel electrode, and an alignment film 43. The pixel electrode 42 is, for example, a substantially rectangular conductive film made of a transparent conductive material such as ITO. As shown in FIG. 2(a), the pixel electrode 42 is arranged in a planar view in a matrix view. The microlens 95 is formed by overlapping the field of -64-200944890. Although the TFT 44 is simplified in figure, it is actually formed on the substrate 41 corresponding to each of the pixel electrodes 42. The field of the light-shielding film 35 on the side of the planar substrate and the opposite substrate 31 is usually overlapped (non-display field 'shading field') Configuration. The alignment film 43 formed by covering the pixel electrode 42 is a 0-alignment film composed of a tantalum oxide film or the like formed by oblique vapor deposition, similarly to the previous alignment film 98. The alignment films 43 and 98 are formed so that the alignment directions of the columnar structures (the alignment direction of the columnar structures) can be substantially parallel in plan view, and the liquid crystal molecules constituting the liquid crystal layer 34 are aligned to the substrate mask to be aligned. It is substantially perpendicular, and the tilt direction of the liquid crystal molecules should be the same function in the direction of the substrate surface. Further, in the field on the liquid crystal layer 34 side of the substrate 41, a data line (not shown) or a scanning line connecting the pixel electric Φ 42 or the TFT 44 is formed in a field in which the plane is formed inside the sealing material 33. The illustration is abbreviated). The data line and the scanning line are formed in a region where the planar view and the light shielding film 35 overlap. Further, the field of being added by the light-shielding film 35, the TFT 44, the data line, and the scanning line is a field of pixels which becomes the liquid crystal panel 15c. Then, the plural pixel regions are arranged in a planar view matrix to form an image display field. (Polarizing Plate, First and Second Phase Difference Plates) As shown in FIG. 3, the liquid crystal light valve 15 is the first to the outside of the opposite substrate 31 disposed on the liquid crystal panel 15c and the liquid crystal panel 15c. - 200944890 The polarizing plate 15b and the first retardation plate 15a disposed outside the TFT array substrate 32, and the second retardation plate 15e disposed on the outer side of the first retardation plate 15a, and the second phase The second polarizing plate 15d on the outer side of the difference plate 15e is formed. In the liquid crystal light valve 15 of the present embodiment, the side on which the first polarizing plate 15b is disposed (the upper side in the drawing) is the light incident side, and the side on which the second polarizing plate 15d is disposed is the light emitting side. In the liquid crystal panel 15c, the alignment film 0, 129, which is opposed to the liquid crystal layer 34, is formed by vapor-depositing cerium oxide in an oblique direction which is about 50 degrees from the normal direction of the substrate. The film thickness is about 40 nm. The alignment directions 43a and 98a indicated by the arrows attached to the alignment films 43 and 98 of Fig. 3 coincide with each other in the direction of the substrate in the vapor deposition direction at the time of formation. The alignment direction 43a of the alignment film 43 and the alignment direction 98a of the alignment film 98 are parallel to each other.
而且,藉由配向膜43,98的配向規制力,液晶分子 51是在離基板法線2°〜8°程度傾斜的狀態下配向,且以 液晶分子51的指向矢(director )的方向(預傾方向P) Q 能夠在基板面方向形成沿著配向方向43a、98a的方向之 方式配向。 第1偏光板15b及第2偏光板15d皆是具備以2片保 護膜152來夾入偏光元件151的三層構造,該2片保護膜 152是由TAC (三醋酸纖維素,Triacetyl Cellulose)所構 成,該偏光元件151是由被染色的PVA (聚乙烯醇)所構 成。如圖4所示,第1偏光板15b的透過軸151b、及第2 偏光板15d的透過軸151d是正交配置。該等的偏光板 -66 - 200944890 15b、15d的透過軸151b、151d的方向是對液晶面板15c 的配向膜43的配向方向(蒸鍍方向)43a平面視大略形 成偏移45°的方向。 第1相位差板15a的構成是具備:(i )第1基板 1501a、( ii )被垂直蒸鍍有保持單軸性的折射率向異性 的折射率向異性媒質255 c之垂直蒸鍍膜1501c、(iii) 被斜方蒸鍍有保持第1折射率向異性的折射率向異性媒質 0 之第1蒸鍍膜1503a、及(iv)第3基板1502a。 在圖3的第1相位差板1 5 a的第1蒸鍍膜1 5 0 3 a的側 方顯示有此折射率向異性媒質25 5 a的折射率橢圓體的光 軸方向的主折射率。在本實施形態,主折射率nx’、ny’、 nz’是形成滿足1^’>1^’>112’的關係之構成。亦即,從基板 1501a或基板1 502a的法線方向傾斜的方向的折射率nx’ 比其他方向的折射率ny’、nz’大,折射率橢圓體是形成米 粒型。 〇 在圖3的第1相位差板15a的垂直蒸鑛膜1501c的側 方,模式地顯示垂直蒸鍍膜1501c的折射率向異性媒質 25 5c的平均折射率橢圓體。在該圖中,nxc’、nyc’是分別 表示垂直蒸鍍膜1501c的面方向的主折射率,nzc’是表示 垂直蒸鍍膜1501c的厚度方向的主折射率。在本實施形態 ,主折射率1^(:’、115^’、1^£:’是形成滿足11\(;’=11}^’>112£:’ 的關係之構成。亦即,厚度方向的折射率nzc’比其他方向 的折射率小,折射率橢圓體是形成圓盤型。此折射率向異 性媒質255 c的折射率橢圓體是對垂直蒸鍍膜1501c的板 -67- 200944890 面平行配向,垂直蒸鍍膜1501c的光軸方向(折射率橢圓 體的短軸方向)是與板面法線方向平行。 第2相位差板15e的構成是具備:(i)第2基板 1 50 1 e、( ii )被斜方蒸鍍有保持折射率向異性的折射率 向異性媒質255e之第2蒸鍍膜1503e、及(iii)第4基 板1 502e。在圖3的第2相位差板15e的側方顯示有該折 射率向異性媒質255e的折射率橢圓體的光軸方向的主折 射率。在本實施形態,主折射率nx’’、ny’’、nz’’是形成 滿足1^’’>1^’’>112’’的關係之構成。亦即,從第2基板 1501e或第4基板1 502e的法線方向傾斜的方向的折射率 nx’’比其他方向的折射率ny’’、nz”大,折射率橢圓體是 形成米粒型。 特別是由第2相位差板1 5e (或第1相位差板1 5a ) 的法線方向來看,最好第2相位差板15e的主折射率nx” 的光軸所傾斜的方向與上述第1相位差板15a的主折射率 nx’的光軸所傾斜的方向是正交。另外,有關該等第1相 位差板15a及第2相位差板15e的詳細會在往後敘述。 具體而言,該等折射率向異性媒質255a (或折射率 向異性媒質255e)的典型例可舉二軸板。 (第1及第2相位差板的詳細構成) 在此,參照圖5〜圖7來說明有關本實施形態的第1 及第2相位差板的詳細構成。在此,圖5是表示規定構成 本實施形態的第1相位差板的折射率向異性媒質與對應於 -68- 200944890 第1相位差板的基板的相對位置關係之蒸鍍方向及蒸鍍角 度的外觀立體圖(圖5(a)),及表示規定構成第2相 位差板的折射率向異性媒質與對應於第2相位差板的基板 的相對位置關係之蒸鍍方向及蒸鍍角度的外觀立體圖(圖 5(b)),以及表示將構成第1相位差板的折射率向異性 媒質與構成第2相位差板的折射率向異性媒質予以合成的 折射率向異性媒質與基板的相對位置關係的外觀立體圖( 0 圖5(c))。圖6是表示構成本實施形態的第1及第2 相位差板的折射率向異性媒質的光軸與構成液晶面板的液 晶分子的光軸的相對位置關係的平面圖(圖6 ( a ))及 立面圖(圖6(b))。圖7是槪念性地顯示將構成本實 施形態的第1相位差板的折射率向異性媒質與構成第2相 位差板的折射率向異性媒質予以合成的折射率向異性媒質 的光學向異性與構成液晶面板的液晶分子的光學向異性所 被合成而實現光學向同性的狀態模式圖。 φ 如圖5 ( a )所示,在構成第1相位差板15a的垂直 蒸鑛膜1 5 0 1 c中,折射率向異性媒質2 5 5 c是如上述般被 垂直蒸鍍於第1基板1501a。具體而言,如上述般,垂直 蒸鑛膜1501c的主折射率1^(;’、1^(:’、112(:’是形成滿足 nxc’=nyc’>nzc’的關係之構成。 加上,如圖5 ( a )所示,構成第1相位差板1 5 a @ 折射率向異性媒質255a是作爲第1蒸鍍膜I5 03 a沿著第 1所定方向,亦即第1蒸鍍方向來斜方蒸鍍於第1基$ 1501a。本實施形態的第1蒸鍍方向是連結3點及9點@ -69- 200944890 方向。藉此,折射率向異性媒質25 5a的主折射率nx’是沿 著連結3點及9點的方向來延伸。另外,本實施形態的方 向是依據時鐘的短針方向來表現。具體而言,所謂1點 30分的方向是表示放置於圖5(a)的第1基板或第2基 板的平面之時鐘爲顯示1點30分的情況時的短針方向。 加上,折射率向異性媒質255 a是以對應於折射率向 異性媒質255a的主折射率nx’的光軸能夠與第1基板 1501a的平面方向具有第1所定角度,亦即第1蒸鍍角度 的方式來斜方蒸鎪。此第1蒸鍍角度可換言之是由90度 減去基板1501a的法線與對應於折射率向異性媒質25 5 a 的主折射率nx’的光軸之間的角度的値。或,此第1蒸鍍 角度可換言之是對應於折射率向異性媒質255 a的主折射 率nx’的光軸與第1蒸鏟方向之間的角度。 如圖5 ( b )所示,構成第2相位差板1 5 e的折射率 向異性媒質255e是作爲第2蒸鍍膜1503e,沿著第2所 定方向,亦即第2蒸鍍方向來斜方蒸鍍於基板150 le。本 實施形態的第2蒸鏟方向是連結0點與6點的方向。藉此 ,折射率向異性媒質25 5 e的主折射率nx”是沿著連結0 點與6點的方向來延伸。加上,折射率向異性媒質255e 是以對應於折射率向異性媒質25 5 e的主折射率nx”的光 軸能夠與第2基板1501e的平面方向具有第2所定角度, 亦即第2蒸鎪角度的方式來斜方蒸鍍。此第2蒸鍍角度可 換言之是由90度減去第1基板1501e的法線與對應於折 射率向異性媒質255e的主折射率nx’’的光軸之間的角度 200944890 的値。或,此第2蒸鍍角度可換言之是對應於折射率向異 性媒質255e的主折射率nx”的光軸與第2蒸鍍方向之間 的角度。 如圖5 ( c )所示,將構成第1相位差板15a的折射 率向異性媒質與構成第2相位差板15e的折射率向異性媒 質合成之折射率向異性媒質255ae的主折射率nx’”是沿 著連結4點30分與10點30分的方向來延伸。原因是上 Q 述沿著連結3點與9點的方向延伸的折射率向異性媒質 2 5 5 a的主折射率nx ’與上述沿著連結0點與6點的方向延 伸的折射率向異性媒質2 5 5 e的主折射率nx ’’被合成。 ''加上,藉由構成第1相位差板1 5 a的垂直蒸鍍膜 1501c所形成的折射率向異性媒質25 5c的單軸性的光軸 所延伸的方向,亦即主折射率nzc’的方向是第1基板 1501a或第1基板1501a的平面的法線方向。 詳細是著眼於封入液晶面板15c的液晶分子51、及 〇 構成第1相位差板15a的折射率向異性媒質25 5a、及構 成第2相位差板15e的折射率向異性媒質2 55e的相對位 置關係,則如圖6(a)所示,由第1基板1501a (或第2 基板1501e)的法線方向來平面性地看,被斜方蒸鍍於第 1相位差板15a的基板1501a的折射率向異性媒質255a 的主折射率nx’的光軸所延伸的方向、與被賦予預傾的液 晶分子的長軸方向是處於例如以45度附近的角度交叉的 位置關係。加上,由第2基板1501e (或第1基板1501a )的法線方向來平面性地看,被斜方蒸鍍於第2相位差板 -71 - 200944890 15e的基板1501e的折射率向異性媒質25 5 e的主折射率 nx’’的光軸所延伸的方向、與被賦予預傾的液晶分子的長 軸方向是處於例如以45度附近的角度來交叉的位置關係 6 圖 在 外 另 長 的 子 分 晶 液 的 傾 預 予 賦 被 中 〇 軸方向是所謂明視方向的1點30分的方向。又,液晶分 子的長軸方向是意思液晶分子的長軸的2個頂點的其中接 近光射入側的軸的頂點所朝向的方向。 如圖6(b)所示,由第1基板1501a的垂直平面方 向來立面性地看,折射率向異性媒質255a的主折射率ηχ’ 的光軸是以第1所定角度、亦即第1蒸鍍角度(未圖示) 來與第1基板1501a的平面交叉。加上,由第2基板 1501e的垂直平面方向來立面性地看,折射率向異性媒質 255e的主折射率nx’’的光軸是以第2所定角度、亦即第2 蒸鍍角度(圖示)來與第2基板1501e的平面交叉。換言 之,折射率向異性媒質2 5 5 a的主折射率nx ’的光軸與折射 率向異性媒質255e的主折射率nx’’的光軸可處於扭曲的 位置關係。或,折射率向異性媒質255a的主折射率nx,的 光軸與液晶分子的長軸方向可處於扭曲的位置關係。或, 折射率向異性媒質2 5 5 e的主折射率nx ’’的光軸與液晶分 子的長軸方向可處於扭曲的位置關係。另外,該等的第1 蒸鍍角度或第2蒸鍍角度可比由90度來減去液晶分子的 預傾角度的角度更小。 藉此,第1相位差板1 5 a的光軸,亦即折射率向異性 -72- 200944890 媒質255a的主折射率nx’的光軸所延伸的方向會交叉於僅 以預傾的角度傾斜的液晶分子51的長軸方向’因此在第 1基板1501a的平面方向及垂直平面方向,第1相位差板 15a的光軸會以使液晶分子51的光學向異性能夠朝光學 向同性的方式補償。 加上,第2相位差板1 5e的光軸,亦即折射率向異性 媒質255e的主折射率nx”的光軸所延伸的方向會交·叉於 0 僅以預傾的角度傾斜的液晶分子51的長軸方向,因此在 第2基板1501e的平面方向及垂直平面方向,第2相位差 板15e的光軸會以使液晶分子51的光學向異性能夠朝光 學向同性的方式補償。 更具體而言,如圖7所示,藉由液晶分子51所形成 的折射率橢圓體的長軸與藉由合成構成第1相位差板15a 的折射率向異性媒質及構成第2相位差板1 5e的折射率向 異性媒質之折射率向異性媒質255ae所形成的折射率橢圓 G 體的長軸會交叉,因此可使藉由液晶分子與第1及第2相 位差板所形成的折射率橢圓體能夠三次元地接近折射率球 體。另外,藉由合成構成第1相位差板15a的折射率向異 性媒質與構成第2相位差板1 5e的折射率向異性媒質之折 射率向異性媒質2 5 5 ae來近似性地實現所謂〇板。 更加上’上述構成第1相位差板15a的垂直蒸鍍膜 1 5 0 1 c的單軸性的光軸(亦即本發明的單軸性光軸的一具 體例),換言之,折射率向異性媒質25 5c的主折射率 nxc’(或主折射率nyc’)的光軸所延伸的方向,亦即垂直 -73- 200944890 蒸鍍膜1501c的平面方向會交叉於僅以預傾的角度傾斜的 液晶分子51的長軸方向。藉此,可使藉由液晶分子51、 垂直蒸鍍膜1501c、第1蒸鍍膜1503a、及第2蒸鍍膜 1 503e的四者所形成的折射率橢圓體能夠三次元地接近折 射率球體。 因此,可藉由第1相位差板15a及第2相位差板15 e 來消除(亦即補償)在液晶中所產生的相位差(換言之, 複折射效果)。其結果,該投影機的動作時,從光源射出 的光例如通過由僅以預傾角傾斜的液晶分子所構成的液晶 而產生之光的相位差,可藉由第1相位差板15a及第2相 位差板15e來補償。因此,通過液晶面板的光對於射出側 的偏光板,可防止在相位偏離的狀態下射入。其結果,例 如在射出側的偏光板中,原本應該不使通過的光洩漏的可 能性會變小,可防止對比度的降低或視野角的縮小。 在此,假設在液晶光閥15中,未具備該等的第1相 位差板15a及第2相位差板15e時,封入液晶面板15c的 液晶層34是顯示光學的正單軸性,液晶分子51的指向矢 方向的折射率比其他方向的折射率大。亦即液晶層3 4是 如上述圖3顯示平均的折射率橢圓體250a那樣,具有橄 欖球型的折射率橢圓體者。在此,液晶層34的液晶分子 51是沿著預傾方向P來傾斜配向,在黒顯示時產生残留 相位差,且由斜方向來觀察時的橢圓形狀相異,因此具有 視角依存的相位差。此相位差會形成黒顯示的光漏原因, 使液晶面板的對比度降低。 -74- 200944890 或,假設使用例如具有C板或單軸性的折射率向異性 的相位差板等之光軸的方向爲沿著厚度方向的相位差板, 藉由使該相位差板傾斜來補償液晶分子的光學向異性時, 在投影機的内部,例如依空氣的循環所產生的冷卻效果的 觀點等,由於供以使相位差板傾斜的空間受限,因此技術 上難以適當防止對比度的降低。^,使該相位差板傾斜的 機構會變得複雜,在組裝工程中,技術上使相位差板傾斜 0 的調整困難。 而且’本實施形態是特別是如上述般,第1相位差板 15a的光軸是藉由折射率向異性媒質25 5 a的蒸鍍,以能 夠補償液晶分子5 1的光學向異性之方式,朝第1所定方 向、所謂第1蒸鍍方向’以第1所定角度、所謂第1蒸鍍 角度來與第1基板1501a交叉。因此,在調整構成第1相 位差板15a的折射率向異性媒質255a所被蒸鍍的第1蒸 鍍方向及第1蒸鍍角度之下,可容易且高精度地補償液晶 〇 面板的液晶分子5 1的光學向異性。 加上,如上述般,第2相位差板I5e的光軸是藉由折 射率向異性媒質255e的蒸鍍,以能夠補償液晶分子51的 光學向異性之方式’朝第2所定方向、所謂第2蒸鍍方向 ’以第2所定角度、所謂第2蒸鍍角度來與第2基板 1501e交叉。因此,在調整構成第2相位差板15e的折射 率向異性媒質255e所被蒸鑛的第2蒸鍍方向及第2蒸鑛 角度之下’可容易且高精度地補償液晶面板的液晶分子 5 1的光學向異性。 -75- 200944890 更加上,如上述般,構成第1相位差板15a的垂直蒸 鍍膜1 50 1 c的光軸的短軸及長軸是以能夠補償液晶分子 51的光學向異性之方式垂直蒸鍍於基板i5〇ia。因此,在 調整構成第1相位差板15a的垂直蒸鍍膜1501C的單軸性 光軸的主折射率之下,可容易且高精度地補償液晶面板的 液晶分子5 1的光學向異性。 特別是在上述折射率向異性媒質25 5c、折射率向異 性媒質2 5 5 a、及折射率向異性媒質2 5 5 e等3種類的折射 率向異性媒質個別地補償液晶分子的光學向異性之下,可 使其補償的效果顯著地提升。典型的是在調整上述3個的 參數,亦即折射率向異性媒質2 5 5 c的單軸性光軸的主折 射率、折射率向異性媒質25 5 a的第1蒸鍍方向及第1蒸 鍍角度、以及折射率向異性媒質255e的第2蒸鍍方向及 第2蒸鍍角度等更多的物理量之下,可更高精度地補償液 晶分子的光學向異性。 並且,爲了補償液晶面板的液晶分子51的光學向異 性,幾乎或完全不必使第1相位差板1 5 a及第2相位差板 1 5 e傾斜,因此在組裝工程中,可省略使第1相位差板 1 5 a及第2相位差板1 5 e傾斜的調整工程,可簡便且低成 本地補償液晶分子的光學向異性,提高對比度。其結果, 若利用本實施形態的投影機,則可提高藉由第1相位差板 1 5 a及第2相位差板1 5 e來補償在液晶中所產生的相位差 之效果,進而能夠提高對比度。 如以上說明,若根據本實施形態的投影機,則(i ) -76- 200944890 調整構成第1相位差板1 5 a的折射率向異性媒質2 5 5 a所 被斜方蒸鍍的第1蒸鍍方向及第1蒸鍍角度、(ii)調整 構成第2相位差板15e的折射率向異性媒質25 5e所被斜 方蒸鍍的第2蒸鍍方向及第2蒸鍍角度、(iii)調整構成 第1相位差板1 5 a的折射率向異性媒質2 5 5 c的單軸性光 軸的主折射率之其中至少一個的調整。藉此,可藉由第1 相位差板1 5a及第2相位差板1 5e來確實地補償在液晶中 〇 所產生的相位差。其結果,可取得高對比度高品質的顯示 〇 特別是藉由以能夠夾著僅以預傾的角度傾斜的液晶分 子51的長軸方向之方式來調整構成第1相位差板15a的 折射率向異性媒質所被斜方蒸鍍的第1蒸鑛方向及第1蒸 鍍角度、及構成第2相位差板1 5e的折射率向異性媒質所 被斜方蒸鍍的第2蒸鍍方向及第2蒸鍍角度,以液晶分子 5 1的光學向異性能夠朝光學向同性的方式來更適當地補 〇 償,進而能夠取得更高對比度且更高品質的顯示。根據本 發明者的硏究得知,藉由將第1蒸鍍方向與第2蒸鍍方向 所成的角度形成於約70度〜約110度的範圍内,可更提 高對比度。加上,如後述般,使第1相位差板1 5a以該第 1相位差板1 5 a的法線方向作爲旋轉軸來旋轉的同時,使 第2相位差板15e以該第2相位差板15e的法線方向作爲 旋轉軸來旋轉之下,可使僅以預傾的角度傾斜的液晶分子 51的長軸方向與第1蒸鍍方向及第2蒸鍍方向的相對位 置關係,以能夠取得更高的對比度之方式來更高精度地調 -77- 200944890 節。具體而言,除了上述4個的參數,亦即第1蒸鍍方向 、第1蒸鍍角度、第2蒸鏟方向及第2蒸鍍角度等的4個 物理量以外,還加上調整傾斜的液晶分子51的長軸方向 與第1蒸鍍方向之間的角度、及傾斜的液晶分子51的長 軸方向與第2蒸鍍方向之間的角度之下,可藉由更多參數 的調整來更高精度地補償液晶分子51的光學向異性。 特別是折射率向異性媒質所被斜方蒸鍍的蒸鍍膜,例 如利用Ta205等的無機材料,可有效地防止因爲光的照 $ 射或所伴隨的溫度上昇造成第1相位差板1 5 a或第2相位 差板15e劣化,進而能夠構成可靠度佳的投影機。 (起因於第1及第2相位差板的膜厚之對比度改善的定量 分析) 其次,參照圖8來說明有關起因於本實施形態的第1 及第2相位差板的膜厚之對比度改善的定量分析。在此,Further, by the alignment regulating force of the alignment films 43, 98, the liquid crystal molecules 51 are aligned in a state of being inclined by 2 to 8 degrees from the normal line of the substrate, and in the direction of the director of the liquid crystal molecules 51 (pre- The tilting direction P) Q can be aligned in the direction of the substrate surface along the directions of the alignment directions 43a and 98a. Each of the first polarizing plate 15b and the second polarizing plate 15d has a three-layer structure in which the polarizing element 151 is sandwiched by two protective films 152. The two protective films 152 are made of TAC (Triacetyl Cellulose). In this configuration, the polarizing element 151 is made of dyed PVA (polyvinyl alcohol). As shown in FIG. 4, the transmission axis 151b of the first polarizing plate 15b and the transmission axis 151d of the second polarizing plate 15d are arranged orthogonally. The direction of the transmission axes 151b and 151d of the polarizing plates -66 - 200944890 15b, 15d is a direction in which the alignment direction (vapor deposition direction) 43a of the alignment film 43 of the liquid crystal panel 15c is slightly shifted by 45 degrees. The first retardation film 15a is configured to include: (i) the first substrate 1501a, (ii) is vertically vapor-deposited, and the vertical vapor deposition film 1501c which maintains the uniaxial refractive index to the opposite polarity to the anisotropic medium 255c is vertically vapor-deposited, (iii) The first vapor deposited film 1503a and the (iv) third substrate 1502a which maintain the refractive index of the first refractive index to the opposite polarity to the anisotropic medium 0 are vapor-deposited. The main refractive index in the optical axis direction of the refractive index ellipsoid of the refractive index to the anisotropic medium 25 5 a is displayed on the side of the first vapor deposition film 1 5 0 3 a of the first retardation film 15 5 a of Fig. 3 . In the present embodiment, the principal refractive indices nx', ny', and nz' are formed so as to satisfy the relationship of 1^'>1^'>112'. That is, the refractive index nx' in the direction inclined from the normal direction of the substrate 1501a or the substrate 1 502a is larger than the refractive indices ny' and nz' in the other directions, and the refractive index ellipsoid is formed into a rice type. 〇 On the side of the vertical vapor-deposited film 1501c of the first retardation film 15a of Fig. 3, the average refractive index ellipsoid of the refractive index of the vertical vapor-deposited film 1501c to the anisotropic medium 25 5c is schematically shown. In the figure, nxc' and nyc' are principal refractive indices respectively indicating the surface direction of the vertical deposited film 1501c, and nzc' is a principal refractive index indicating the thickness direction of the vertical deposited film 1501c. In the present embodiment, the principal refractive index 1^(:', 115^', 1^£:' is formed to satisfy the relationship of 11\(;'=11}^'>112£:'. The refractive index nzc' in the thickness direction is smaller than the refractive index in other directions, and the refractive index ellipsoid is formed into a disk shape. The refractive index ellipsoid of the refractive index to the anisotropic medium 255 c is a plate for the vertical vapor-deposited film 1501c-67-200944890 In the parallel alignment, the optical axis direction of the vertical vapor deposition film 1501c (the short-axis direction of the refractive index ellipsoid) is parallel to the normal direction of the plate surface. The second phase difference plate 15e has the following configuration: (i) the second substrate 1 50 1 e, ( ii ) a second vapor deposition film 1503e for maintaining a refractive index anisotropic refractive index to the anisotropic medium 255e, and (iii) a fourth substrate 1 502e are obliquely deposited. The second phase difference plate of FIG. The main refractive index of the refractive index ellipsoid of the refractive index to the anisotropic medium 255e is shown on the side of 15e. In the present embodiment, the principal refractive indices nx'', ny'', and nz'' are formed to satisfy 1 The structure of the relationship of ^''>1^''>112'', that is, the method from the second substrate 1501e or the fourth substrate 1 502e The refractive index nx'' in the direction in which the line direction is inclined is larger than the refractive indices ny'' and nz" in the other direction, and the refractive index ellipsoid is formed into a rice grain type. In particular, the second phase difference plate 15e (or the first phase difference) In the normal direction of the plate 15a), it is preferable that the optical axis of the main refractive index nx" of the second retardation plate 15e is inclined and the optical axis of the main refractive index nx' of the first retardation plate 15a. The direction of the inclination is orthogonal. The details of the first retardation plate 15a and the second retardation plate 15e will be described later. Specifically, the refractive index is oriented to the anisotropic medium 255a (or the refractive index direction). A typical example of the heterogeneous medium 255e) is a two-axis plate. (Detailed configuration of the first and second phase difference plates) Here, the first and second phase difference plates according to the present embodiment will be described with reference to Figs. 5 to 7 . Here, FIG. 5 is a view showing a vapor deposition direction in which the relative positional relationship between the refractive index of the first retardation film of the first embodiment and the substrate corresponding to the first retardation plate of -68-200944890 is defined. And an external perspective view of the vapor deposition angle (Fig. 5(a)), and a predetermined composition of the second phase An external perspective view (Fig. 5(b)) of the vapor deposition direction and the vapor deposition angle of the refractive index of the plate to the relative positional relationship between the refractive index and the substrate corresponding to the second retardation plate, and the first phase difference plate An external perspective view of the relative positional relationship between the refractive index of the refractive index and the refractive index of the anisotropic medium and the asymmetric medium forming the second retardation film to the anisotropic medium and the substrate (Fig. 5(c)). Fig. 6 shows the constitution A plan view (Fig. 6 (a)) and an elevational view (Fig. 6 (a)) and an elevational view of the relative positional relationship between the refractive index of the first and second retardation plates of the embodiment and the optical axis of the liquid crystal molecules constituting the liquid crystal panel. (b)). FIG. 7 is a view showing the optical anisotropy of the refractive index of the first retardation film of the present embodiment to the heterogeneous medium and the refractive index of the second retardation plate to the anisotropic medium. A state pattern diagram in which optical anisotropy of liquid crystal molecules constituting the liquid crystal panel is synthesized to realize optical isotropy. φ As shown in Fig. 5 (a), in the vertical vaporized film 1 5 0 1 c constituting the first retardation film 15a, the refractive index to the anisotropic medium 2 5 5 c is vertically vapor-deposited as described above. Substrate 1501a. Specifically, as described above, the main refractive index of the vertical vaporized film 1501c is 1; (', 1^(:', 112 (: ' is formed to satisfy the relationship of nxc'=nyc'>nzc'. As shown in Fig. 5 (a), the first retardation film 1 5 a @ refractive index is formed as the first vapor deposition film I5 03 a along the first predetermined direction, that is, the first vapor deposition. The direction is obliquely vapor-deposited on the first base $1501a. The first vapor deposition direction of the present embodiment is connected to the three-point and nine-point @-69-200944890 directions, whereby the refractive index of the refractive index to the anisotropic medium 25 5a is the main refractive index. Nx' extends in a direction connecting 3 points and 9 points. The direction of the present embodiment is expressed in accordance with the short needle direction of the clock. Specifically, the direction of 1 minute and 30 minutes means that it is placed in FIG. 5 ( The clock of the plane of the first substrate or the second substrate of a) is a short needle direction when 1 minute and 30 minutes are displayed. The refractive index to the anisotropic medium 255a is a main refraction corresponding to the refractive index to the anisotropic medium 255a. The optical axis of the rate nx' can be inclined to the first predetermined angle, that is, the first vapor deposition angle, in the plane direction of the first substrate 1501a. This first vapor deposition angle is, in other words, subtracted from the angle between the normal of the substrate 1501a and the optical axis corresponding to the refractive index of the refractive index to the principal refractive index nx' of the anisotropic medium 25 5 a by 90 degrees. The first vapor deposition angle is, in other words, an angle between the optical axis corresponding to the main refractive index nx' of the refractive index to the anisotropic medium 255a and the first steaming blade direction. As shown in FIG. 5(b), the composition The refractive index of the phase difference plate 1 5 e is the second vapor deposition film 1503e, and is vapor-deposited on the substrate 150 le along the second predetermined direction, that is, the second vapor deposition direction. The second steaming blade direction is a direction connecting 0 o'clock and 6 o'clock. Thereby, the main refractive index nx" of the refractive index to the anisotropic medium 25 5 e extends in a direction connecting 0 o'clock and 6 o'clock. The rate-oriented anisotropic medium 255e has a second predetermined angle, that is, a second distillation angle, in an optical axis corresponding to the principal refractive index nx" of the refractive index to the anisotropic medium 25 5 e and the planar direction of the second substrate 1501e. The second vapor deposition angle is, in other words, subtracted from the normal of the first substrate 1501e by 90 degrees and corresponds to The angle of the refractive index to the optical axis of the main refractive index nx'' of the anisotropic medium 255e is 200944890. Alternatively, the second evaporation angle may correspond to the main refractive index nx of the refractive index to the anisotropic medium 255e. The angle between the optical axis and the second vapor deposition direction is as shown in Fig. 5 (c), and the refractive index of the first retardation film 15a and the refractive index of the second retardation film 15e are made to the opposite phase. The synthesized refractive index to the anisotropic medium 255ae has a main refractive index nx'" extending in a direction of 4:30 and 10:30. The reason is that the upper Q describes the refractive index of the anisotropic medium 2 5 5 a extending along the direction of the 3 points and 9 points, and the refractive index of the opposite direction extending along the 0 point and the 6 point. The principal refractive index nx '' of the medium 2 5 5 e is synthesized. ''Additional, the refractive index formed by the vertical vapor-deposited film 1501c constituting the first retardation film 15 5 a extends in the direction of the uniaxial optical axis of the asymmetrical medium 25 5c, that is, the main refractive index nzc' The direction is the normal direction of the plane of the first substrate 1501a or the first substrate 1501a. Specifically, attention is paid to the liquid crystal molecules 51 sealed in the liquid crystal panel 15c, and the relative positions of the refractive index of the first retardation film 15a to the anisotropic medium 25 5a and the refractive index of the second retardation film 15e to the anisotropic medium 2 55e. As shown in FIG. 6(a), the relationship is planarly viewed from the normal direction of the first substrate 1501a (or the second substrate 1501e), and is vapor-deposited on the substrate 1501a of the first retardation film 15a. The direction in which the refractive index extends toward the optical axis of the main refractive index nx' of the anisotropic medium 255a and the long-axis direction of the liquid crystal molecules to which the pretilt is applied are, for example, in a positional relationship at an angle of around 45 degrees. When viewed from the normal direction of the second substrate 1501e (or the first substrate 1501a), the refractive index of the substrate 1501e which is vapor-deposited on the second retardation plate -71 - 200944890 15e is anisotropic medium. The direction in which the optical axis of the main refractive index nx'' of 25 5 e extends, and the long-axis direction of the liquid crystal molecules to which the pretilt is applied is, for example, a positional relationship that intersects at an angle of around 45 degrees. The tilting pre-precipitation of the sub-dispersing liquid is oriented in the direction of the mid-axis direction of 1 minute and 30 minutes in the so-called clear viewing direction. Further, the long-axis direction of the liquid crystal molecules means a direction in which the apexes of the axes of the two apexes of the long axis of the liquid crystal molecules are close to the light incident side. As shown in FIG. 6(b), the optical axis of the refractive index to the principal refractive index η' of the anisotropic medium 255a is the first predetermined angle, that is, the first surface, as viewed from the vertical plane direction of the first substrate 1501a. A vapor deposition angle (not shown) intersects the plane of the first substrate 1501a. When viewed from the vertical plane direction of the second substrate 1501e, the optical axis of the refractive index of the principal refractive index nx'' of the anisotropic medium 255e is the second predetermined angle, that is, the second vapor deposition angle ( The figure crosses the plane of the second substrate 1501e. In other words, the optical axis of the refractive index to the primary refractive index nx ' of the anisotropic medium 2 5 5 a and the optical axis of the refractive index to the principal refractive index nx' of the anisotropic medium 255e may be in a distorted positional relationship. Alternatively, the optical axis of the refractive index to the principal refractive index nx of the anisotropic medium 255a may be in a distorted positional relationship with the long-axis direction of the liquid crystal molecules. Alternatively, the optical axis of the refractive index to the principal refractive index nx '' of the anisotropic medium 2 5 5 e may be in a distorted positional relationship with the long-axis direction of the liquid crystal molecule. Further, the first vapor deposition angle or the second vapor deposition angle may be smaller than the angle at which the pretilt angle of the liquid crystal molecules is subtracted from 90 degrees. Thereby, the optical axis of the first retardation film 15 a, that is, the direction in which the refractive index extends toward the optical axis of the principal refractive index nx' of the opposite-72-200944890 medium 255a, crosses at an angle of only the pretilt angle. Therefore, the long-axis direction of the liquid crystal molecules 51 is such that the optical axis of the first retardation film 15a can compensate optically isotropic of the liquid crystal molecules 51 in the plane direction and the vertical plane direction of the first substrate 1501a. . In addition, the optical axis of the second retardation plate 15e, that is, the direction in which the refractive index extends toward the optical axis of the principal refractive index nx" of the anisotropic medium 255e, is crossed by a liquid crystal which is inclined only at a pretilt angle. Since the optical axis of the second retardation film 15e is in the planar direction and the vertical plane direction of the second substrate 1501e, the optical anisotropy of the liquid crystal molecules 51 can be compensated for optically isotropic. Specifically, as shown in FIG. 7 , the long axis of the refractive index ellipsoid formed by the liquid crystal molecules 51 and the refractive index constituting the first retardation film 15 a by the synthesis are applied to the anisotropic medium and the second retardation plate 1 is formed. The refractive index of the refractive index of the refractive index elliptical G body which is formed by the refractive index of 5e to the heterogeneous medium 255ae crosses, so that the refractive index ellipse formed by the liquid crystal molecules and the first and second phase difference plates can be formed. The body can be close to the refractive index sphere in a three-dimensional manner. Further, the refractive index of the first retardation film 15a is synthesized to the refractive index of the anisotropic medium and the refractive index constituting the second retardation film 15e to the heterogeneous medium to the anisotropic medium 2 5 5 ae to approximate Further, the uniaxial optical axis of the vertical vapor deposition film 1 5 0 1 c constituting the first retardation film 15a (that is, a specific example of the uniaxial optical axis of the present invention), in other words, The direction in which the refractive index extends toward the optical axis of the main refractive index nxc' (or the main refractive index nyc') of the anisotropic medium 25 5c, that is, the vertical -73-200944890, the plane direction of the deposited film 1501c crosses only the pretilt The long axis direction of the liquid crystal molecules 51 inclined at an angle. Thereby, the refractive index ellipsoid formed by the liquid crystal molecules 51, the vertical vapor deposition film 1501c, the first vapor deposition film 1503a, and the second vapor deposition film 1 503e can be formed. The refractive index sphere can be approached three times. Therefore, the phase difference (in other words, the birefringence effect) generated in the liquid crystal can be eliminated (that is, compensated) by the first retardation plate 15a and the second retardation plate 15e. As a result, in the operation of the projector, the light emitted from the light source can pass through the first phase difference plate 15a and the first phase difference plate 15a and the first phase, for example, by the phase difference of the light generated by the liquid crystal composed of only the liquid crystal molecules inclined at the pretilt angle. 2 phase difference plate 15e to compensate. Therefore, The light passing through the liquid crystal panel can prevent the phase of the polarizing plate on the emission side from being incident in a state in which the phase is shifted. As a result, for example, in the polarizing plate on the emitting side, the possibility that the passing light should not leak is reduced. In the liquid crystal light valve 15, when the first retardation film 15a and the second retardation film 15a are not provided, the liquid crystal layer 34 of the liquid crystal panel 15c is sealed. It is the positive uniaxiality of the display optics, and the refractive index of the liquid crystal molecules 51 in the director direction is larger than that of the other directions. That is, the liquid crystal layer 34 is a football having the average refractive index ellipsoid 250a as shown in FIG. Type of refractive index ellipsoid. Here, the liquid crystal molecules 51 of the liquid crystal layer 34 are obliquely aligned along the pretilt direction P, and have a residual phase difference at the time of 黒 display, and have different elliptical shapes when viewed from an oblique direction, and thus have a phase-dependent phase difference. . This phase difference forms a cause of light leakage in the 黒 display, which lowers the contrast of the liquid crystal panel. -74- 200944890 Or, it is assumed that the direction of the optical axis such as a phase difference plate having a C-plate or a uniaxial refractive index is a phase difference plate along the thickness direction, by tilting the phase difference plate. When compensating for the optical anisotropy of the liquid crystal molecules, it is technically difficult to appropriately prevent the contrast because the space for tilting the phase difference plate is limited in the inside of the projector, for example, depending on the cooling effect by the circulation of air. reduce. ^, the mechanism for tilting the phase difference plate becomes complicated, and in the assembly process, it is technically difficult to adjust the phase difference plate by 0. In the present embodiment, as described above, the optical axis of the first retardation film 15a is vapor-deposited by the refractive index to the anisotropic medium 25 5 a, so that the optical anisotropy of the liquid crystal molecules 51 can be compensated. The first predetermined direction and the so-called first vapor deposition direction ' intersect with the first substrate 1501a at the first predetermined angle and the so-called first vapor deposition angle. Therefore, it is possible to easily and accurately compensate the liquid crystal molecules of the liquid crystal germanium panel by adjusting the refractive index of the first retardation film 15a to the first vapor deposition direction and the first vapor deposition angle to which the anisotropic medium 255a is vapor-deposited. 5 1 optical anisotropy. In addition, as described above, the optical axis of the second retardation film I5e is vapor-deposited by the refractive index to the anisotropic medium 255e, so that the optical anisotropy of the liquid crystal molecules 51 can be compensated for, in the second predetermined direction, the so-called 2 The vapor deposition direction 'crosses the second substrate 1501e at the second predetermined angle and the second vapor deposition angle. Therefore, it is possible to easily and accurately compensate the liquid crystal molecules of the liquid crystal panel by adjusting the refractive index of the second retardation film 15e to the second vapor deposition direction and the second vaporization angle of the vaporization of the anisotropic medium 255e. 1 optical anisotropy. Further, as described above, the short axis and the long axis of the optical axis of the vertical vapor deposition film 1501c constituting the first retardation film 15a are vertically vaporized in such a manner as to compensate the optical anisotropy of the liquid crystal molecules 51. Plated on the substrate i5〇ia. Therefore, under the primary refractive index of the uniaxial optical axis of the vertical vapor deposition film 1501C constituting the first retardation film 15a, the optical anisotropy of the liquid crystal molecules 51 of the liquid crystal panel can be easily and accurately compensated. In particular, the optical refractive index of the liquid crystal molecules is individually compensated for the refractive index of the refractive index to the anisotropic medium 25 5c, the refractive index to the anisotropic medium 2 5 5 a, and the refractive index to the heterogeneous medium 2 5 5 e to the heterogeneous medium. Underneath, the effect of its compensation can be significantly improved. Typically, the above three parameters are adjusted, that is, the primary refractive index of the uniaxial optical axis of the refractive index to the anisotropy medium 2 5 5 c, the first vapor deposition direction of the refractive index to the anisotropic medium 25 5 a, and the first The vapor deposition angle and the refractive index are more than the physical quantities such as the second vapor deposition direction and the second vapor deposition angle of the anisotropic medium 255e, and the optical anisotropy of the liquid crystal molecules can be compensated with higher precision. Further, in order to compensate for the optical anisotropy of the liquid crystal molecules 51 of the liquid crystal panel, the first retardation film 15a and the second retardation film 15e are not necessarily inclined at all, and therefore the first step can be omitted in the assembly process. The adjustment process of the inclination of the phase difference plate 1 5 a and the second phase difference plate 1 5 e can compensate the optical anisotropy of the liquid crystal molecules at a simple and low cost, and improve the contrast. As a result, according to the projector of the present embodiment, the effect of compensating for the phase difference generated in the liquid crystal by the first retardation plate 15a and the second retardation plate 15e can be improved, and the image can be improved. Contrast. As described above, according to the projector of the present embodiment, (i) -76 - 200944890 adjusts the first refractive index of the first phase difference plate 15 5 a to the opposite side of the anisotropic medium 2 5 5 a. The vapor deposition direction and the first vapor deposition angle, and (ii) the second vapor deposition direction and the second vapor deposition angle at which the refractive index of the second phase difference plate 15e is obliquely vapor-deposited to the anisotropic medium 25 5e, and (iii) The adjustment of at least one of the refractive indices of the uniaxial optical axes constituting the first phase difference plate 15 5 a to the eccentric medium 2 5 5 c is adjusted. Thereby, the phase difference caused by 〇 in the liquid crystal can be reliably compensated by the first retardation plate 15a and the second retardation plate 15e. As a result, it is possible to obtain a high-contrast and high-quality display, in particular, by adjusting the refractive index of the first retardation film 15a so as to be able to sandwich the long-axis direction of the liquid crystal molecules 51 inclined only at the pretilt angle. The first vapor-deposited direction and the first vapor-deposited angle in which the anisotropic medium is vapor-deposited, and the second vapor-deposited direction in which the refractive index of the second retardation film 15e is formed by oblique evaporation of the anisotropic medium and 2 The vapor deposition angle can more accurately compensate for the optical anisotropy of the liquid crystal molecules 51, and can achieve higher contrast and higher quality display. According to the study of the inventors of the present invention, it is known that the angle formed by the first vapor deposition direction and the second vapor deposition direction is in the range of about 70 to about 110 degrees, whereby the contrast can be further improved. In addition, as will be described later, the first retardation film 15a is rotated by the normal direction of the first retardation plate 15a as the rotation axis, and the second retardation film 15e is caused by the second phase difference. When the normal direction of the plate 15e is rotated as a rotation axis, the relative positional relationship between the long-axis direction of the liquid crystal molecules 51 inclined only at the pretilt angle and the first vapor deposition direction and the second vapor deposition direction can be adjusted. A way to achieve higher contrast is to adjust -77-200944890 more accurately. Specifically, in addition to the above four parameters, that is, four physical quantities such as the first vapor deposition direction, the first vapor deposition angle, the second steaming direction, and the second vapor deposition angle, a liquid crystal for adjusting the tilt is added. The angle between the major axis direction of the molecule 51 and the first vapor deposition direction, and the angle between the long axis direction of the inclined liquid crystal molecules 51 and the second vapor deposition direction can be further adjusted by more parameters. The optical anisotropy of the liquid crystal molecules 51 is compensated with high precision. In particular, a vapor deposited film in which the refractive index is vapor-deposited to the anisotropic medium, for example, an inorganic material such as Ta205, can effectively prevent the first retardation film 1 5 a from being caused by the irradiation of light or the accompanying temperature rise. The second retardation plate 15e is deteriorated, and further, a projector having high reliability can be constructed. (Quantitative Analysis of Contrast Improvement of Film Thickness of First and Second Phase Difference Plates) Next, the contrast improvement of the film thickness of the first and second phase difference plates according to the present embodiment will be described with reference to FIG. Quantitative analysis. here,
圖8是表示本實施形態的第1及第2相位差板的膜厚與第 U 1相位差板及第2相位差板的組合的關係的棒狀圖(圖8 (a)),以及定量顯示本實施形態的第1及第2相位差 板的膜厚與光的對比度的相關關係的圖表(圖8(b)) 。另外,圖8(a)的橫軸是表示第1相位差板與第2相 位差板的組合,縱軸是表示第1及第2相位差板的膜厚。 圖8(b)的橫軸是表示第1相位差板與第2相位差板的 組合,縱軸是表示對比度的大小。特別是加上該圖8 ( b ),在後述的圖9、圖13、圖15、圖22、或圖24(b) -78 - 200944890 等中,對比度的値本身是按照測定對比度時所使用的液晶 面板的種類或型式或性能等而有所不同。換言之,在圖8 (b)及後述的圖9、圖13、圖15、圖22、或圖24(b) 等中,相對性地比較對比度的大小,證明本實施形態的有 利性。 特別是第1相位差板的厚度方向的折射率可依上述主 折射率11\’、113^’、1^’及第1蒸鍍角度以及構成第1相位 Q 差板的折射率向異性媒質255a的材質來定義。大槪同樣 ,第2相位差板的厚度方向的折射率可依上述主折射率 nx’’、ny’,' nz’’及第2蒸鑛角度以及構成第2相位差板 的折射率向異性媒質25 5e的材質來定義。 如圖8 ( b )所示,第1相位差板的厚度及第2相位 差板的厚度的偏差位於〇.3μιη〜0·6μιη之間的比例’在比 較大標準、中標準、小標準的標本化集合SI、S2、S3時 ,第1相位差板的厚度及第2相位差板的厚度的偏差位於 G 〇.3μιη〜0.6μηι之間的比例爲大標準的標本化集合S1中’ 明確對比度皆超過5 000,可實現更高的對比度。 具體而言,如圖8(a)所示,該第1相位差板的厚 度及第2相位差板的厚度的偏差位於0.3 μηι〜0.6 μιη之間 的比例爲大標準的標本化集合S 1,像(樣品X、樣品Υ ) 那樣來表示對應於第1相位差板的樣品X及對應於第2 相位差板的樣品Υ的組合時,是藉由其次的6個組合所 構成。亦即,標本化集合S1是(樣品A、樣品Β)、( 樣品B、樣品C )、(樣品B、樣品D )、(樣品A、樣 -79- 200944890 品D )、(樣品C、樣品D )、(樣品A、樣品C )。另 外,樣品A是厚度0.55μιη,樣品B是厚度0.45μιη,樣品 C是厚度0.40μιη,樣品D是厚度〇·30μιη。 大槪同樣,第1相位差板的厚度及第2相位差板的厚 度的偏差位於〇.3μιη〜0·6μιη之間的比例爲中標準的標本 化集合S2是藉由其次的8個組合所構成。亦即、(樣品 D、樣品Ε)、(樣品D、樣品F)、(樣品Α、樣品G) 、(樣品A、樣品Ε )、(樣品C、樣品E )、(樣品D ^ ❹ 、樣品G )、(樣品A、樣品F )及(樣品C、樣品F ) 。另外,樣品E是厚度0·60μπι,樣品F是厚度0·20μιη, 樣品G是厚度0.70μιη。 大槪同樣,第1相位差板的厚度及第2相位差板的厚 度的偏差位於〇·3μιη〜0·6μιη之間的比例爲小標準的標本 化集合S 3是藉由其次的7個組合所構成。亦即、(樣品 G、樣品Η )、(樣品A、樣品Η )、(樣品Β、樣品Η ) 、(樣品D、樣品Η )、(樣品C、樣品Η )、(樣品F Q 、樣品Η )及(樣品Ε、樣品Η )。另外,樣品Η是厚度 0.8 5 μηι。 以上的結果,可知隨著第1相位差板的厚度及第2相 位差板的厚度的偏差位於〇.3μπι〜0.6μπι之間的比例爲大 標準,對比度有變大的傾向。 (起因於第1及第2相位差板的膜厚及蒸鑛角度之相位差 變化的定量分析) -80- 200944890 其次,參照圖9及圖10來說明有關起因於本實施形 態的第1及第2相位差板的膜厚及構成第1及第2相位差 板的折射率向異性媒質的第1及第2蒸鍍角度之相位差變 化的定量分析。在此,圖9是定量顯示構成本實施形態的 第1及第2相位差板之折射率向異性媒質對第1基板的蒸 鍍角度與對比度的相關關係的圖表。另外,圖9的縱軸是 表示對比度的大小,橫軸是表示蒸鍍角度。圖1〇是定量 Q 顯示以本實施形態的第1及第2相位差板的膜厚及構成相 位差板的折射率向異性媒質的蒸鍍角度作爲變數時之第1 及第2相位差與極角的相關關係的圖表(圖10(a)及圖 10(b))。另外,圖10(a)是對應於膜厚爲0·5μιη時 ,圖10(b)是對應於膜厚爲〇·8μπι時。並且,在圖10( a)及圖10(b)中,實線的曲線是表示蒸鍍角度爲50度 時的相位差的變化,一點鎖線的曲線是表示蒸鍍角度爲 57度時的相位差的變化,點線的曲線是表示蒸鍍角度爲 〇 64度時的相位差的變化。並且,相位差是將單位設爲「 nm ( nanometer )」來顯示,以光的波長除此nm,累計 3 60度,藉此可顯示弧度。另外,有關起因於第1相位差 板及第2相位差板的膜厚及蒸鍍角度之相位差變化的定量 性大致相同,因此爲了方便起見,針對第1相位差板來說 明。 根據本發明者的硏究,統計分析的結果,如依照圖9 所示其一例那樣,爲了使對比度大於1 20000,較理想是 構成第1相位差板的折射率向異性媒質對第1基板的第1 -81 - 200944890 蒸鍍角度位於50度〜70度之間的範圍。此第1蒸鍍角度 ,如上述般,是意思折射率向異性媒質2 5 5 a被斜方蒸鏟 於第1基板1501a時,對應於折射率向異性媒質25 5 a的 主折射率nx’的光軸與第1基板1501a的平面方向的角度 。此第1蒸鍍角度可換言之是由90度減去第1基板 1501a的法線與對應於折射率向異性媒質255a的主折射 率nx’的光軸之間的角度的値。或,此第1蒸鍍角度可換 言之是對應於折射率向異性媒質255a的主折射率nx’的光 @ 軸與折射率向異性媒質2 5 5a被斜方蒸鍍於第1基板 1501a時的蒸鍍方向之間的角度。 又,如圖10(a)所示,在膜厚爲〇·5μιη的條件下, 按照使極角(表示將由液晶光閥15的正面來看時設爲〇 度時的視線角度)從負50度變換至正50度,可使藉由第 1相位差板15a所產生的相位差從40nm( nanometer)附 近變換至〇nm。具體而言,如圖10(a)的實線的曲線所 示,可知將第1蒸鍍角度設爲50度時,極角爲零時的相 ◎ 位差、所謂正面相位差是在1 5nm附近。並且,可知極角 在30度附近,相位差爲零。又,如圖10(a)的一點鎖 線的曲線所示,可知將第1蒸鍍角度設爲57度時’極角 爲零時的相位差、所謂正面相位差是在20nm附近。並且 ,可知極角在40度附近’相位差爲零。又’如圖l〇(a )的點線的曲線所示,可知將第1蒸鍍角度設爲64度時 ,極角爲零時的相位差、所謂正面相位差是在25nm附近 。並且,可知極角在50度附近’相位差爲零。 -82- 200944890 大槪同樣,如圖10 ( b )所示,在膜厚爲0.8 μιη 件下,按照使極角從負50度變換至正50度,可使藉 1相位差板15a所產生的相位差從65nm附近變換至 。具體而言,如圖10 ( b )的實線的曲線所示,可知 1蒸鍍角度設爲50度時,極角爲零時的相位差、所 面相位差是在25nm附近。並且,可知極角在30度 ,相位差爲零。又,如圖10(b)的一點鎖線的曲線 0 ,可知將第1蒸鍍角度設爲57度時,極角爲零時的 差、所謂正面相位差是在3 5nm附近。並且,可知極 40度附近,相位差爲零。又,如圖1 0 ( b )的點線的 所示,可知將第1蒸鍍角度設爲64度時,極角爲零 相位差、所謂正面相位差是在40nm附近。並且,可 角在5 0度附近,相位差爲零。 如此,藉由使第1相位差板的膜厚及構成第1相 板的折射率向異性媒質的第1蒸鍍角度從約50度變 Ο 約70度,可高精度地控制例如正面相位差等由第1 差板15a所產生的相位差。藉此,在將本實施形態的 光閥15組裝於投影機的工程中,藉由使第1相位 15a以光所射入的射入方向作爲旋轉軸來旋轉,可在 度設定實現可能的對比度時,將第1相位差板15a的 角度限制於所定範圍。因而,可使第1相位差板1 5 a 於所被限制的所定範圍内,所以可更簡便地調節對比 (第2實施形態) 的條 由第 0 nm 將第 謂正 附近 所示 相位 角在 曲線 時的 知極 位差 化至 相位 液晶 差板 高精 旋轉 旋轉 度。 -83- 200944890 其次’參照圖11〜圖14來說明有關第2實施形態》 圖11是本發明的第2實施形態的液晶投影機的槪略構成 圖。另外,圖11中,對於和上述第1實施形態大槪同樣 的構成要素賦予同一符號,該等的說明適宜省略。圖12 是表示本發明的第2實施形態的相位差板之相位差板的種 類、相位差及極角的相關關係圖表。另外,所謂極角是如 上述般表示將由液晶光閥15的正面來看時爲〇度時的視 線角度。圖13是表示本發明的第2實施形態的相位差板 之相位差板的種類及對比度的相關關係圖表。另外,圖 1 3中塗黒的棒狀圖是對應於液晶分子的預傾的角度爲5 度時’圖13中空白的棒狀圖是對應於液晶分子的預傾的 角度爲4度時。圖14是表示圖11的各構成構件的光學軸 配置圖。 如圖1 1所示,第2實施形態的液晶投影機是取代上 述第1實施形態的液晶投影機的第1相位差板15a而具備 第1相位差板15al、及第3相位差板15f(亦即本發明的 單軸性相位差板之一具體例)來構成者。另外,第3相位 差板15f可藉由折射率向異性媒質255c的垂直蒸鍍來構 成,或藉由光學薄膜來構成。並且,藉由第1相位差板 15al來構成本發明的第1相位差板的其他具體例。而且 ’藉由第3相位差板15f來構成本發明的第3相位差板之 —的具體例。 第1相位差板15al是具備(i)第1基板i501a、及 (Π)被斜方蒸鍍有保持第1折射率向異性的折射率向異 -84- 200944890 性媒質之第1蒸鍍膜1503a、及(iii)第3基板15 02a來 構成者。在圖1 1的第1相位差板1 5al的側方是顯示該折 射率向異性媒質25 5a的折射率橢圓體的光軸方向的主折 射率。在本實施形態,主折射率nx’,ny’,nz’是形成滿 足1^’>1^’>1^’的關係之構成。亦即,從第1基板15013 或第2基板1 5 0 2的法線方向傾斜的方向的折射率ηχ ’比 其他方向的折射率ny’,ηζ’大,折射率橢圓體是形成米粒 0 型。具體而言,此折射率向異性媒質25 5a的典型例可舉 二軸板。 第2相位差板15e是如上述具備(i)第2基板1501e 、及(ii)被斜方蒸鍍有保持折射率向異性的折射率向異 性媒質255e之第2蒸鍍膜1503e、及(iii)第4基板 1 502e來構成者。 在圖1 1的第3相位差板1 5 f的側方,模式性地顯示 第3相位差板15f之平均的折射率橢圓體255c。在此圖中 〇 ,nxc’、nyc’是分別表示第3相位差板15f的面方向的主 折射率,nzc’是表示第3相位差板15f的厚度方向的主折 射率。在本實施形態,主折射率nxc’、nyc’、nzc’是形成 滿足1^(:’=115^’>112<;’的關係之構成。亦即,厚度方向的折 射率nzc ’比其他方向的折射率小,折射率橢圓體是形成圓 盤型。此折射率橢圓體25 5c是對第3相位差板15f的板 面平行配向,第3相位差板15f的光軸方向(折射率橢圓 體的短軸方向)是與板面法線方向平行。具體而言,第3 相位差板1 5 f可使用負的C板,在本實施形態是使用利用 -85- 200944890 盤狀液晶(Discotic Liquid Crystals)的C板,但除此以 外,亦可使用利用無延伸的纖維素醚薄膜(例如無延伸的 三醋酸纖維素(Triacetyl Cellulose ; TAC )、無延伸的纖 維素醋酸丙酸醋(Cellulose Acetate Propionate ; CAP ) 等)、二軸延伸的降冰片烯系樹脂等的光學薄膜。 特別是第3相位差板15f典型的亦可採用以交替積層 具有相對性高的折射率之折射率向異性媒質及具有相對性 低的折射率之折射率向異性媒質的蒸鍍膜所構成的C板。 在使如此積層的蒸鍍膜的厚度變化之下,可實現光的行進 方向的變化、偏光狀態的變化、頻率或相位的變化等之光 的特性變化。 具體而言,第3相位差板15f較理想是極角爲30度 時,相位差約爲 10〜20 (nm: nanometer)。藉此可使對 比度更高。另外,附註,依照光的波長,相位差的寬有若 干的容許誤差。具體而言,如圖12所示,第3相位差板 15f是極角爲30度時之相位差的値可分類成10(nm)的 NR10,20 ( nm)的 NR20,30 ( nm)的 NR30,35 ( nm) 的 NR35,40 ( nm)的 NR40,60 ( nm)的 NR60,及 90 (nm )的NR90。而且,如圖13所示,第3相位差板15f 的種類,基於使對比度更高的觀點,較理想是採用NR 10 、NR15及NR2 0。具體而言,液晶分子的預傾角度爲4度 時,第3相位差板15f的種類,採用NR10、NR15及 NR20時,可使對比度大於1600。又,液晶分子的預傾角 度爲5度時,第3相位差板15f的種類,採用NR10、 200944890 NR15及NR20時,可使對比度大於1300。 如上述般’第2實施形態的液晶投影機的構成是取代 第1實施形態的液晶投影機的第1相位差板15a,而具備 第1相位差板15al及第3相位差板l5f。藉此,可使第1 相位差板1 5 a 1、第2相位差板1 5 e、及第3相位差板i 5 f 配置於別的不同光學位置,或暫時性地卸下第1〜第3相 位差板的其中至少一個,因此可簡便地進行光學調整。加 0 上’在第1〜第3相位差板中,可使製造方法或材質有所 不同,因此可以更低成本來進行光學調整。更加上,採用 C板作爲相位差板15e時,對於附MLA的面板、或射入 側的F値小的投影機,可一面對應於繞射現象或焦點位置 與標準値比較近時,一面更提高對比度。 具體而言,如圖14所示,第2實施形態的投影機的 液晶光閥15的光學調整,可藉由第1光學調整步驟,加 上或取而代之,藉由第2光學調整步驟來實施,該第1光 〇 學調整步驟是進行第1相位差板15al的旋轉角調整,該 第1相位差板15al是設成可移動於以液晶面板15C的基 板法線作爲旋轉軸的軸周圍,該第2光學調整步驟是進行 第2相位差板1 5e的旋轉角調整,該第2相位差板1 5 e是 設成可移動於以液晶面板15c的基板法線作爲旋轉軸的軸 周圍。另外,有關該等的第1光學調整步驟及第2光學調 整步驟的詳細會在往後敘述。 (起因於第1〜第3相位差板的旋轉之對比度改善的定量 -87- 200944890 分析) 其次,除了圖15及圖16以外’還適當參照上述圖 1 4或圖4來說明有關以第1〜第3相位差板的基板法線作 爲旋轉軸的旋轉,對比度的改善。在此’圖15是定量性 顯示在本實施形態的第1〜第3相位差板所實現的對比度 與在比較例的相位差板所實現的對比度的相關關係的條狀 圖表。圖1 6是表示本實施形態及比較例的相位差板所被 適用之液晶面板的亮度偏差的分布圖(圖16(a)及圖16 ^ (b) ) 〇FIG. 8 is a bar graph showing the relationship between the film thickness of the first and second retardation plates of the present embodiment and the combination of the U 1 phase difference plate and the second phase difference plate ( FIG. 8( a )), and A graph showing the correlation between the film thickness of the first and second retardation plates of the present embodiment and the contrast of light (Fig. 8(b)). Further, the horizontal axis of Fig. 8(a) indicates the combination of the first retardation plate and the second phase difference plate, and the vertical axis indicates the film thickness of the first and second retardation plates. The horizontal axis of Fig. 8(b) indicates the combination of the first retardation plate and the second retardation plate, and the vertical axis indicates the magnitude of the contrast. In particular, in addition to FIG. 8(b), in the following FIG. 9, FIG. 13, FIG. 15, FIG. 22, or FIG. 24(b) -78 - 200944890, etc., the contrast 値 itself is used in accordance with the measurement contrast. The type, type, or performance of the liquid crystal panel varies. In other words, in Fig. 8(b) and Fig. 9, Fig. 13, Fig. 15, Fig. 22, Fig. 24(b) and the like which will be described later, the magnitude of the contrast is relatively compared, and the advantage of the present embodiment is proved. In particular, the refractive index in the thickness direction of the first retardation film may be based on the above-mentioned main refractive index 11\', 113^', 1^', and the first vapor deposition angle and the refractive index of the first phase Q difference plate. The material of 255a is defined. Similarly, the refractive index in the thickness direction of the second retardation plate may be different from the above-mentioned main refractive index nx'', ny', 'nz'' and the second vaporization angle and the refractive index constituting the second retardation plate. The material of the medium 25 5e is defined. As shown in Fig. 8 (b), the deviation between the thickness of the first retardation film and the thickness of the second retardation plate is in the range of 〇.3μιη to 0·6μηη, in comparison with the large standard, the medium standard, and the small standard. When the samples are set to SI, S2, and S3, the difference between the thickness of the first retardation plate and the thickness of the second retardation plate is set to be larger than the ratio of G 〇.3μιη to 0.6μηι in the large standard sample set S1. Contrast exceeds 5,000 for higher contrast. Specifically, as shown in FIG. 8(a), the ratio of the thickness of the first retardation film to the thickness of the second retardation film is between 0.3 μm and 0.6 μm, which is a large standard sample set S 1 . When the combination of the sample X corresponding to the first retardation plate and the sample 对应 corresponding to the second retardation plate is shown as (sample X, sample Υ), it is composed of the next six combinations. That is, the sample set S1 is (sample A, sample Β), (sample B, sample C), (sample B, sample D), (sample A, sample -79- 200944890 product D), (sample C, sample D), (Sample A, Sample C). Further, Sample A was a thickness of 0.55 μm, Sample B was a thickness of 0.45 μm, Sample C was a thickness of 0.40 μm, and Sample D was a thickness of 〇·30 μm. Similarly, the difference between the thickness of the first retardation plate and the thickness of the second retardation plate is between 〇.3μιη and 0·6μηη, and the standard standard set S2 is by the next eight combinations. Composition. That is, (sample D, sample Ε), (sample D, sample F), (sample Α, sample G), (sample A, sample Ε), (sample C, sample E), (sample D ^ ❹, sample G), (Sample A, Sample F) and (Sample C, Sample F). Further, the sample E was a thickness of 0·60 μm, the sample F was a thickness of 0·20 μm, and the sample G was a thickness of 0.70 μm. Similarly, the difference between the thickness of the first retardation plate and the thickness of the second retardation plate is between 〇3μιη and 0·6μηη, and the standardization set S 3 of the small standard is by the next seven combinations. Composition. That is, (sample G, sample Η), (sample A, sample Η), (sample Β, sample Η), (sample D, sample Η), (sample C, sample Η), (sample FQ, sample Η) And (sample Ε, sample Η). In addition, the sample Η is 0.8 5 μηι thick. As a result of the above, it is understood that the ratio of the thickness of the first retardation film to the thickness of the second phase difference plate is between μ3 μm and 0.6 μm, which is a large standard, and the contrast tends to be large. (Quantitative analysis of the change in the phase difference between the film thickness and the vaporization angle of the first and second retardation plates) -80- 200944890 Next, the first and the first embodiment of the present embodiment will be described with reference to FIGS. 9 and 10. The film thickness of the second retardation film and the quantitative analysis of the phase difference of the first and second vapor deposition angles of the first and second retardation plates to the first and second vapor deposition angles of the anisotropic medium. Here, Fig. 9 is a graph showing quantitatively the correlation between the vapor deposition angle and the contrast of the refractive index of the first and second retardation plates of the present embodiment to the first substrate. Further, the vertical axis of Fig. 9 indicates the magnitude of the contrast, and the horizontal axis indicates the vapor deposition angle. 1A is a quantitative Q showing the first and second phase differences when the film thickness of the first and second phase difference plates of the present embodiment and the vapor deposition angle of the refractive index of the phase difference plate to the anisotropic medium are variables. A graph of the correlation of polar angles (Fig. 10(a) and Fig. 10(b)). Further, Fig. 10(a) corresponds to a film thickness of 0.5 μm, and Fig. 10(b) corresponds to a film thickness of 〇·8 μm. Further, in FIGS. 10( a ) and 10 ( b ), the solid line curve indicates the change in the phase difference when the vapor deposition angle is 50 degrees, and the curve of the one-point lock line indicates the phase when the vapor deposition angle is 57 degrees. The change in the difference is a change in the phase difference when the vapor deposition angle is 〇64 degrees. Further, the phase difference is displayed by setting the unit to "nm (nanometer)", and by dividing the wavelength of the light by this nm, the total of 3 60 degrees is displayed, whereby the radians can be displayed. In addition, the quantitative change of the phase difference between the film thickness and the vapor deposition angle of the first retardation plate and the second retardation plate is substantially the same. Therefore, the first phase difference plate is described for the sake of convenience. According to the results of the present inventors, as a result of the statistical analysis, as in the case of the example shown in FIG. 9, in order to make the contrast greater than 120,000, it is preferable that the refractive index of the first retardation film is applied to the first substrate. 1 -81 - 200944890 The evaporation angle is in the range of 50 degrees to 70 degrees. As described above, the first vapor deposition angle is a main refractive index nx' corresponding to the refractive index to the anisotropic medium 25 5 a when the refractive index is slanted to the first substrate 1501a by the anisotropic medium 2 5 5 a. The angle between the optical axis and the plane direction of the first substrate 1501a. In this first vapor deposition angle, in other words, the angle between the normal line of the first substrate 1501a and the optical axis corresponding to the refractive index of the primary refractive index nx' of the anisotropic medium 255a is subtracted from 90 degrees. Alternatively, the first vapor deposition angle may be, in other words, when the light @axis corresponding to the refractive index of the refractive index 255a of the asymmetrical medium 255a and the refractive index to the anisotropic medium 255a are obliquely deposited on the first substrate 1501a. The angle between the evaporation directions. Further, as shown in Fig. 10 (a), under the condition that the film thickness is 〇·5 μm, the polar angle (the line of sight when the thickness is set to the front side of the liquid crystal light valve 15 is shown) is minus 50. When the degree is changed to plus 50 degrees, the phase difference generated by the first retardation plate 15a can be changed from the vicinity of 40 nm (nanometer) to 〇nm. Specifically, as shown by the solid line curve in FIG. 10( a ), when the first vapor deposition angle is 50 degrees, the phase ◎ difference when the polar angle is zero, and the so-called front phase difference is 15 nm. nearby. Further, it can be seen that the polar angle is around 30 degrees and the phase difference is zero. Further, as shown by the curve of the one-point lock line in Fig. 10(a), the phase difference when the first vapor deposition angle is 57 degrees and the polar angle is zero, the so-called front phase difference is around 20 nm. Further, it can be seen that the polar angle is around 40 degrees, and the phase difference is zero. Further, as shown by the curve of the dotted line in Fig. 10(a), when the first vapor deposition angle is 64 degrees, the phase difference when the polar angle is zero and the so-called front phase difference are around 25 nm. Further, it can be seen that the polar angle is near 50 degrees, and the phase difference is zero. -82- 200944890 In the same way, as shown in Fig. 10 (b), in the case of a film thickness of 0.8 μm, the polar angle can be changed from minus 50 degrees to plus 50 degrees, which can be generated by the phase difference plate 15a. The phase difference is changed from around 65 nm. Specifically, as shown by the solid line curve in Fig. 10(b), it is understood that when the vapor deposition angle is 50 degrees, the phase difference when the polar angle is zero and the phase difference are about 25 nm. Moreover, it can be seen that the polar angle is 30 degrees and the phase difference is zero. Further, as shown by the curve 0 of the one-point lock line in Fig. 10(b), when the first vapor deposition angle is 57 degrees, the difference in the polar angle is zero, and the front-end phase difference is in the vicinity of 35 nm. Further, it can be seen that the phase difference is zero near the extreme 40 degrees. Further, as shown by the dotted line in Fig. 10 (b), it is understood that when the first vapor deposition angle is 64 degrees, the polar angle is zero phase difference, and the front phase difference is in the vicinity of 40 nm. Also, the angle is around 50 degrees and the phase difference is zero. By changing the film thickness of the first retardation film and the refractive index of the first phase plate to the first vapor deposition angle of the anisotropic medium from about 50 degrees to about 70 degrees, for example, the front phase difference can be controlled with high precision. The phase difference generated by the first difference plate 15a. Therefore, in the process of assembling the light valve 15 of the present embodiment to the projector, the first phase 15a can be rotated by the incident direction in which the light is incident as the rotation axis, thereby achieving a possible contrast at the degree setting. At this time, the angle of the first phase difference plate 15a is limited to a predetermined range. Therefore, since the first retardation plate 15a can be within the predetermined range to be limited, it is possible to more easily adjust the contrast (the second embodiment) of the strip from the 0 nm to the phase angle shown in the vicinity of the first positive The phase difference of the curve is high to the high precision rotation of the phase liquid crystal difference plate. -83-200944890 Next, a second embodiment of the liquid crystal projector according to the second embodiment of the present invention will be described with reference to FIG. 11 to FIG. In addition, in FIG. 11, the same components as those of the above-described first embodiment are denoted by the same reference numerals, and the description thereof will be appropriately omitted. Fig. 12 is a graph showing the correlation between the type, phase difference, and polar angle of the phase difference plate of the phase difference plate according to the second embodiment of the present invention. In addition, the polar angle is a line angle when the temperature is abrupt when viewed from the front of the liquid crystal light valve 15 as described above. Fig. 13 is a graph showing the correlation between the type and contrast of the phase difference plate of the phase difference plate according to the second embodiment of the present invention. Further, the bar graph of the ruthenium in Fig. 13 is such that the angle of pretilt corresponding to the liquid crystal molecules is 5 degrees. The bar graph in Fig. 13 has a pretilt angle corresponding to liquid crystal molecules of 4 degrees. Fig. 14 is a view showing an optical axis arrangement of each constituent member of Fig. 11; As shown in FIG. 11, the liquid crystal projector of the second embodiment includes the first retardation film 15a1 and the third retardation film 15f instead of the first retardation film 15a of the liquid crystal projector of the first embodiment. That is, a specific example of the uniaxial phase difference plate of the present invention is constructed. Further, the third retardation film 15f can be formed by vertical vapor deposition of the refractive index to the anisotropic medium 255c or by an optical film. Further, another specific example of the first retardation film of the present invention is constituted by the first retardation film 15a1. Further, a specific example of the third phase difference plate of the present invention is constituted by the third retardation plate 15f. The first retardation film 15a1 is provided with (i) the first substrate i501a and the first vapor-deposited film 1503a which is vapor-deposited to maintain the refractive index of the first refractive index to the opposite-84-200944890 medium. And (iii) the third substrate 205a is constructed. On the side of the first retardation plate 15 5 a in Fig. 11 is a main refractive index showing the refractive index ellipsoid in the optical axis direction of the heterogeneous medium 25 5a. In the present embodiment, the principal refractive indices nx', ny', nz' are formed so as to satisfy the relationship of 1^'>1^'>1^'. That is, the refractive index η ′ ' in a direction inclined from the normal direction of the first substrate 15013 or the second substrate 150 2 is larger than the refractive index ny′ in other directions, ηζ′, and the refractive index ellipsoid is formed into a rice type 0 . Specifically, a typical example of the refractive index-to-isotropy medium 25 5a is a biaxial plate. The second retardation film 15e is provided with (i) the second substrate 1501e and (ii) the second vapor-deposited film 1503e which is vapor-deposited to maintain the refractive index anisotropic refractive index to the anisotropic medium 255e, and (iii) The fourth substrate 1 502e is constructed. On the side of the third retardation plate 15f of Fig. 11, the average refractive index ellipsoid 255c of the third retardation film 15f is schematically shown. In the figure, 〇, nxc' and nyc' are main refractive indices indicating the surface direction of the third retardation film 15f, respectively, and nzc' is a main refractive index indicating the thickness direction of the third retardation film 15f. In the present embodiment, the principal refractive indices nxc', nyc', and nzc' are formed so as to satisfy the relationship of 1^(:'=115^'>112<;', that is, the refractive index nzc' ratio in the thickness direction. The refractive index in the other direction is small, and the refractive index ellipsoid is formed into a disk shape. The refractive index ellipsoid 25 5c is aligned parallel to the plate surface of the third retardation plate 15f, and the optical axis direction of the third retardation plate 15f (refraction) The short-axis direction of the ellipsoid is parallel to the normal direction of the plate surface. Specifically, the third phase difference plate 15f can use a negative C plate, and in the present embodiment, the disk-shaped liquid crystal using -85-200944890 is used. (Cisco plate of Discotic Liquid Crystals), but in addition to this, it is also possible to use a cellulose ether film without extension (for example, triacetyl cellulose (TAC) without extension, cellulose acetate vinegar without extension) (Cellulose Acetate Propionate; CAP), etc., an optical film such as a biaxially stretched norbornene-based resin. In particular, the third retardation film 15f may typically employ a refractive index having a relatively high refractive index by alternately laminating layers. To the opposite sex medium and have A C plate composed of a refractive index of a low refractive index to a vapor deposited film of an anisotropic medium. Under the change of the thickness of the vapor deposited film thus laminated, a change in the traveling direction of the light, a change in the polarization state, a frequency or Specifically, the third phase difference plate 15f preferably has a phase difference of about 10 to 20 (nm: nanometer) when the polar angle is 30 degrees, thereby making the contrast higher. In addition, it is noted that there is a certain allowable error in the width of the phase difference depending on the wavelength of light. Specifically, as shown in Fig. 12, the third phase difference plate 15f is a class of phase difference when the polar angle is 30 degrees. 10 (nm) NR10, 20 (nm) NR20, 30 (nm) NR30, 35 (nm) NR35, 40 (nm) NR40, 60 (nm) NR60, and 90 (nm) NR90 Further, as shown in Fig. 13, the type of the third retardation film 15f is preferably NR 10 , NR 15 and NR 2 0 based on the viewpoint of higher contrast. Specifically, the liquid crystal molecules have a pretilt angle of 4 When the degree of the third retardation plate 15f is NR10, NR15, and NR20, the contrast ratio can be made greater than 1600. When the pretilt angle of the liquid crystal molecules is 5 degrees, the type of the third retardation film 15f is NR10, 200944890 NR15 and NR20, and the contrast ratio can be made larger than 1300. The liquid crystal projector of the second embodiment is configured as described above. The first retardation film 15a1 and the third retardation film 15f are provided in place of the first retardation film 15a of the liquid crystal projector of the first embodiment. Thereby, the first retardation plate 15a, the second retardation plate 15e, and the third retardation plate i5f can be disposed at different optical positions, or the first to the first to be removed. At least one of the third phase difference plates can be easily optically adjusted. In the first to third phase difference plates, the manufacturing method or material can be different, so that the optical adjustment can be performed at a lower cost. Further, when the C plate is used as the phase difference plate 15e, the projector attached to the MLA or the projector having a small F値 on the incident side can be more closely related to the diffraction phenomenon or the focus position and the standard 値. Increase the contrast. Specifically, as shown in FIG. 14, the optical adjustment of the liquid crystal light valve 15 of the projector of the second embodiment can be performed by the second optical adjustment step by adding or replacing the first optical adjustment step. In the first optical adjustment step, the rotation angle of the first retardation film 15a1 is adjusted, and the first retardation film 15a1 is provided so as to be movable around the axis of the substrate normal line of the liquid crystal panel 15C as a rotation axis. In the second optical adjustment step, the rotation angle of the second phase difference plate 15 e is adjusted, and the second phase difference plate 15 e is provided so as to be movable around the axis of the substrate normal line of the liquid crystal panel 15 c as a rotation axis. The details of the first optical adjustment step and the second optical adjustment step will be described later. (Quantification of contrast improvement due to rotation of the first to third phase difference plates - 87 - 200944890) Next, in addition to FIG. 15 and FIG. 16 , the first reference to FIG. 14 or FIG. The substrate normal line of the third phase difference plate is rotated as a rotation axis, and the contrast is improved. Here, Fig. 15 is a bar graph showing quantitatively the correlation between the contrast achieved by the first to third retardation plates of the present embodiment and the contrast achieved by the phase difference plate of the comparative example. Fig. 16 is a distribution diagram showing the luminance deviation of the liquid crystal panel to which the phase difference plate of the embodiment and the comparative example is applied (Fig. 16 (a) and Fig. 16 (b)) 〇
本實施形態的投影機的液晶光閥1 5的光學調整,可 藉由第1光學調整步驟,加上或取而代之,藉由第2光學 調整步驟來實施,該第1光學調整步驟是進行第1相位差 板15al的旋轉角調整,該第1相位差板15al是設成可移 動於以液晶面板15c的基板法線作爲旋轉軸的軸周圍,該 第2光學調整步驟是進行第2相位差板15e的旋轉角調整 ,該第2相位差板15e是設成可移動於以液晶面板15c的 Q 基板法線作爲旋轉軸的軸周圍。 此第1光學調整步驟,如上述圖14所示,有關對向 於液晶面板15c配置的第1相位差板15al,將其旋轉軸 8 1 a設定成沿著第1相位差板1 5 a 1 (及液晶面板1 5 c )的 法線方向之方向。而且,使第1相位差板15al旋轉於以 該旋轉軸81a作爲中心的軸周圍來調整旋轉角0a之下, 高精度地調整上述第1相位差板15al的光軸,亦即折射 率向異性媒質255a的主折射率nx’的光軸的方向與僅以預 -88- 200944890 傾的角度傾斜的液晶分子51的長軸方向之間的角度。加 上或取而代之,有關對向於液晶面板15c配置的第2相位 差板15e,將其旋轉軸81e設定成沿著第2相位差板15e (及液晶面板1 5 c )的法線方向之方向。而且,使第2相 位差板15e旋轉於以該旋轉軸81e作爲中心的軸周圍來調 整旋轉角0e之下,高精度地調整上述第2相位差板15e 的光軸,亦即折射率向異性媒質255e的主折射率nx’’的 φ 光軸的方向與僅以預傾的角度傾斜的液晶分子51的長軸 方向之間的角度。 具體而言,如上述般,除了 5個的參數,亦即第3相 位差板1 5 f的單軸性光軸的主折射率、第1蒸鍍方向、第 1蒸鍍角度、第2蒸鍍方向及第2蒸鍍角度等5個的物理 量以外,還加上調整對應於傾斜的液晶分子51的長軸方 向與第1蒸鍍方向之間的角度的旋轉角0a、及對應於傾 斜的液晶分子51的長軸方向與第2蒸鍍方向之間的角度 φ 的旋轉角θε,可利用更多的參數調整來更高精度地補償 液晶分子5 1的光學向異性。 以上的結果,可使藉由液晶分子及第1〜3相位差板 的四者所形成的折射率橢圓體更接近折射率球體,取得所 望的對比度。 具體而言,如圖1 5所示,若根據本實施形態的投影 機,則在使用第1相位差板15al、第2相位差板15e〜第 3相位差板15f時,對比度可超過2750,相較於比較例, 可簡便地實現更高的對比度。具體而言,比較例之例如使 -89- 200944890 用光學單元cell材質的相位差板的投影機、或例如使用光 學薄膜等的一軸相位差板的投影機、或例如使C板等的光 軸的方向沿著厚度方向的相位差板僅2°〜4°及12°傾斜的 投影機等是對比度小於2500。相對的’若根據本實施形 態的投影機,則不使第1相位差板1 5 a 1、第2相位差板 1 5 e、及第3相位差板1 5 f傾斜,而使第1相位差板1 5 a 1 旋轉於以旋轉軸81a作爲中心的軸周圍來調整旋轉角0a ,加上或取而代之,使第2相位差板15e旋轉於以旋轉軸 0The optical adjustment of the liquid crystal light valve 15 of the projector of the present embodiment can be performed by a second optical adjustment step by adding or replacing the first optical adjustment step, and the first optical adjustment step is performed first. The rotation angle of the phase difference plate 15a1 is set so as to be movable around the axis of the substrate normal line of the liquid crystal panel 15c as a rotation axis, and the second optical adjustment step is to perform the second phase difference plate. The rotation angle of 15e is adjusted, and the second retardation plate 15e is provided so as to be movable around the axis of the Q substrate normal line of the liquid crystal panel 15c as a rotation axis. In the first optical adjustment step, as shown in FIG. 14 described above, the first retardation film 15a1 disposed on the liquid crystal panel 15c is set so that the rotation axis 8 1 a is along the first retardation plate 1 5 a 1 . (and the direction of the normal direction of the liquid crystal panel 1 5 c ). Further, the first retardation film 15a1 is rotated around the axis around the rotation axis 81a to adjust the rotation angle 0a, and the optical axis of the first phase difference plate 15a1 is adjusted with high precision, that is, the refractive index is anisotropic. The angle between the direction of the optical axis of the principal refractive index nx' of the medium 255a and the long-axis direction of the liquid crystal molecules 51 inclined only at an angle of pre-88-200944890. In addition, the second retardation plate 15e disposed on the liquid crystal panel 15c is set such that the rotation axis 81e is along the normal direction of the second retardation plate 15e (and the liquid crystal panel 15c). . In addition, the second retardation film 15e is rotated around the axis around the rotation axis 81e to adjust the rotation angle 0e, and the optical axis of the second phase difference plate 15e is adjusted with high precision, that is, the refractive index is opposite. The angle between the direction of the φ optical axis of the main refractive index nx'' of the medium 255e and the long-axis direction of the liquid crystal molecules 51 which are inclined only at the pretilt angle. Specifically, as described above, in addition to the five parameters, that is, the main refractive index of the uniaxial optical axis of the third retardation plate 15 f, the first vapor deposition direction, the first vapor deposition angle, and the second vaporization In addition to the physical quantities of five such as the plating direction and the second vapor deposition angle, a rotation angle 0a corresponding to an angle between the long axis direction of the inclined liquid crystal molecules 51 and the first vapor deposition direction, and a tilt angle corresponding to the tilt are added. The rotation angle θε of the angle φ between the long-axis direction of the liquid crystal molecules 51 and the second vapor deposition direction can compensate the optical anisotropy of the liquid crystal molecules 51 with more precision by more parameter adjustment. As a result of the above, the refractive index ellipsoid formed by the liquid crystal molecules and the first to third retardation plates can be closer to the refractive index spherical body, and the desired contrast can be obtained. Specifically, as shown in FIG. 15, when the first phase difference plate 15a1 and the second phase difference plate 15e to the third phase difference plate 15f are used, the contrast ratio can exceed 2,750. Higher contrast can be easily achieved compared to the comparative example. Specifically, for example, a projector using a phase difference plate made of an optical unit cell of -89-200944890, or a projector using a one-axis phase difference plate such as an optical film, or an optical axis such as a C plate or the like, for example, The direction of the phase difference plate along the thickness direction is only 2° to 4° and the inclination of 12° is equal to 2500. According to the projector of the present embodiment, the first phase difference plate 15a, the second phase difference plate 15e, and the third phase difference plate 15f are not inclined, and the first phase is made The difference plate 1 5 a 1 is rotated around the axis centered on the rotation axis 81a to adjust the rotation angle 0a, and instead or instead, the second phase difference plate 15e is rotated to the rotation axis 0
81e作爲中心的軸周圍來調整旋轉角0e。藉此,高精度地 調整上述第1相位差板15al的光軸的方向與僅以預傾的 角度傾斜的液晶分子5 1的長軸方向之間的角度,所望的 對比度可藉由簡便的調整來取得的同時,高精度地調整上 述第2相位差板1 5e的光軸的方向與僅以預傾的角度傾斜 的液晶分子51的長軸方向之間的角度,所望的對比度可 藉由簡便的調整來取得。並且,在本實施形態中,液晶面 板與第1及第2相位差板之間的空間,由於不必使第1及 Q 第2相位差板傾斜,因此構成不會妨礙空氣的循環,藉此 可將液晶面板1 5c與第1及第2相位差板之間熱停滯的情 況壓到最小限度,亦有助於抑止液晶面板及相位差板的劣 化。 又,如圖1 6 ( b )所示,若根據本實施形態,則在液 晶面板中顯示極角約爲30度的白點線的圓的内部,可有 效地防止亮度的偏差,所謂亮度不均發生。具體而言,圖 1 6 ( a )所示之未使用相位差板的比較例的液晶面板中顯 -90- 200944890 示極角約爲30度的白點線的圓的内部的左下方, 生亮度不均。另外,在圖16(a)中,可知起因於 傾的角度傾斜的液晶分子5 1的長軸方向,以液晶: 的長軸作爲對稱軸,液晶面板的亮度不均爲線對稱 生。相對的,若根據本實施形態的投影機,則第1 板15al的光軸,亦即折射率向異性媒質255 a的主 ιιχ’的光軸所延伸的方向會以一角度交叉於僅以預 φ 度傾斜的液晶分子5 1的長軸方向,且第2相位差 的光軸,亦即折射率向異性媒質25 5e的主折射率 光軸所延伸的方向會以其他的角度交叉於僅以預傾 傾斜的液晶分子51的長軸方向。加上,在第3相 15f的平面方向,折射率橢圓體255c的光軸的主 nxc 5 S. nyc,存在。 其結果得知,可藉由第1相位差板1 5 a的光軸 相位差板15e的光軸及第3相位差板15f的光軸來 〇 度不均線對稱性地發生,有效地防止亮度不均的發 特別是上述折射率向異性媒質25 5 a的典型例 二軸板時,因爲主折射率nx’、ny’、nz’滿足ηχ’>ι 的關係,所以如上述圖14所示,使第1相位差板 轉於以延伸於基板的法線方向的旋轉軸8 1 a作爲中 周圍來調整旋轉角0a。加上或取而代之,上述折 異性媒質255 e的典型例,採用二軸板時,因爲主 11乂’’、117’’、112’’滿足11\’’>117’’>112’’的關係,所以 圖14所示,使第2相位差板15e旋轉於以延伸於 可知發 僅以預 分子51 性地發 相位差 折射率 傾的角 板15e nx,’ 的 的角度 位差板 折射率 、第2 消除亮 生。 ,採用 iy5 >nz 5 15al 旋 心的軸 射率向 折射率 如上述 基板的 -91 - 200944890 法線方向的旋轉軸81e作爲中心的軸周圍來調整旋轉角 0e ° 藉此’可分別一面對應一茴變更第1及第2相位差板 15al、15e的光軸與偏光板15b、15d或液晶面板15c的 光軸的位置關係,使第1及第2相位差板i5ai、I5e的位 置最適化。具體而言,在使第1或第2相位差板15al、 15e旋轉下,可使第1及第2相位差板i5al、i5e與第1 及第2偏光板15b、15d的位置關係,例如以A板等的主 折射率nx’ ny,nz能夠具有滿足nx = ny>nz的關係之成分 的方式來構成,因此可補償第1及第2偏光板15b、15d 的相位差、或微透鏡95的繞射影響所產生的相位差。特 別是除了第1及第2相位差板15al、15e的旋轉調整以外 ,還加上調節第1及第2相位差板1 5 a 1、1 5 e的正面相位 差之下,可更有效地補償第1及第2偏光板15b、15d的 相位差、或微透鏡95的繞射影響所產生的相位差。 另外,以上述法線方向作爲旋轉軸81a來使該第1相 位差板15al (或15a)旋轉,藉此構成本發明的「光學調 整步驟」之一具體例。又,以上述法線方向作爲旋轉軸 81e來使第2相位差板15e旋轉,藉此構成本發明的「光 學調整步驟」的其他具體例。 又,如上述般藉由使第1相位差板15a 1的膜厚及構 成第1相位差板15al的折射率向異性媒質的第1蒸鍍角 度變化,來使藉由第1相位差板1 5 a 1所產生的正面相位 差變化更大,藉此在將本實施形態的液晶光閥15安裝於 -92- 200944890 投影機的工程中,藉由使第1相位差板1 5 a 1以光所射入 的射入方向作爲旋轉軸來旋轉,可在高精度設定實現可能 的對比度時,將第1相位差板15al的旋轉角度限制於所 定範圍(例如±5度的範圍)。因此,使第1相位差板 1 5 a 1旋轉於所被限制的所定範圍内,所以在該投影機的 機能上,可更簡便地調節最大的對比度。 大槪同樣,如上述般藉由使第2相位差板的膜厚及構 φ 成第2相位差板的折射率向異性媒質的第2蒸鍍角度變化 ,來使藉由第2相位差板1 5e所產生的正面相位差變化更 大,藉此在將本實施形態的液晶光閥15安裝於投影機的 工程中,藉由使第2相位差板15e以光所射入的射入方向 作爲旋轉軸來旋轉,可在高精度設定實現可能的對比度時 ,將第2相位差板1 5 e的旋轉角度限於所定範圍(例如± 5 度的範圍)。因而,使第2相位差板1 5 e旋轉爲所被限制 的所定範圍内,因此在該投影機的機能上,可更簡便地調 〇 節最大的對比度。特別是第1相位差板1 5al的旋轉角度 的調整、及第2相位差板15e的旋轉角度的調整,可考量 兩者對對比度的影響,同時進行,或前後進行。 另外,第1相位差板15al的光學調整、及第2相位 差板1 5 e的光學調整,較理想是一面實際測定對比度(或 黒顯示的亮度)一面實施。一般,偏光板的保護膜152的 面方向的光軸並非是設定於一定的方向,且即使在同一偏 光板,光軸也會有在面内產生偏差的情況。因此,無法將 第1相位差板15al的旋轉角0a、及第2相位差板15e的 -93- 200944890 旋轉角ee設定於一定角度,所以較理想是以實際最大對 比度所能取得的位置或黒位準成爲最低的位置來作爲第1 相位差板1 5a及第2相位差板1 5e的最適位置。加上,在 上述圖14中,使偏光板以上述法線方向作爲旋轉軸來旋 轉之下,可更提高對比度。 一般,藉由斜方蒸鍍來作成相位差板時,有可能光軸 發生偏離所望的蒸鍍角度或蒸鍍方向的軸偏離。特別是本 實施形態使被斜方蒸鍍的2種類的相位差板分別旋轉而來 進行光學調整之下,比起使1種類的相位差板或一體化的 相位差板旋轉來進行光學調整時,更能抑止軸偏離所造成 的影響。藉此,可彌補相位差板之製造上的光學特性的偏 差。 (第1〜第3相位差板的配置) 其次,參照圖1 7〜圖1 9來說明有關本實施形態之第 1及第2相位差板的配置。在此,圖17是表示本實施形 態的液晶光閥1 5的構成構件的配置形態的槪略圖(圖1 7 (a)〜圖17(i))。圖18是表示具有合成本實施形態 的第1相位差板的第1折射率向異性與第2相位差板的第 2折射率向異性的折射率向異性的折射率向異性媒質、此 折射率向異性媒質的蒸鍍方向、第3相位差板的單軸性的 折射率向異性、及構成液晶面板的液晶分子之相對位置關 係的一模式圖。圖19是表示具有合成本實施形態的第1 相位差板的第1折射率向異性與第2相位差板的第2折射 -94- 200944890 率向異性的折射率向異性的折射率向異性媒質、 向異性媒質的蒸鍍方向、第3相位差板的單軸性 向異性、及構成液晶面板的液晶分子之相對位置 他模式圖。 (射入側的相位差板) 圖1 7 ( a )是在光被射入至液晶面板1 5 c的側 φ 1相位差板15al,以被蒸鍍此第1相位差板15al 蒸鍍膜1 5 0 3 a之第1基板1 5 0 1 a的側能夠往液晶语 接近之方式配置。且,第1相位差板15al的光軸 與明視方向的〇點〇分同一方向的形態。另外,: (a)〜圖17(g)中,第1偏光板15b會被配置 最上部,且第2偏光板15d會被配置於圖中最下部 加上,在光被射入至液晶面板1 5c的側,在比 1相位差板1 5a接近液晶面板1 5c的側配置第2相 〇 15e,以被蒸鍍此第2相位差板15e的第2蒸鍍腹 之第2基板1501e的側能夠往液晶面板15c接近之 置。且,第2相位差板1 5e的光軸爲沿著與明視戈 點〇分同一方向的形態。 更加上,在上述第2相位差板1 5 e與液晶面板 間配置第3相位差板1 5f的形態。特別是如圖1 7 示,亦可將第3相位差板15f的配置位置,成爲第 板15b與第1相位差板15al之間的配置位置P1, 第1相位差板1 5 a 1與第2相位差板1 5 e之間的配 折射率 折射率 係的其 配置第 的第1 ί 板 1 5 c 爲沿著 生圖17 於圖中 〇 上述第 位差板 :1503e 方式配 •向的9 15c之 (g)所 1偏光 或成爲 cpa /丄 PSd 置位置 -95- 200944890 P2,或成爲液晶面板15c與第2偏光板15d之間的配置位 置P3。 有關顯示於該圖17(a)的配置形態的情況,具體而 言,如圖1 8所示,(i )沿著明視方向的1 〇點3 0分來傾 斜的液晶分子5 1的長軸方向與(ii )藉由具有沿著與明 視方向的〇點〇分同一方向的第1光軸之第1相位差板 15a及具有沿著與明視方向的9點0分同一方向的第2光 軸之第2相位差板15e所形成的折射率向異性媒質255ae 的光軸的主折射率nx’’’會交叉,因此第1相位差板15al 、第2相位差板1 5e及第3相位差板1 5f會以使液晶分子 51的光學向異性能夠朝光學向同性的方式來三次元地補 償。 圖17(b)是在上述圖17(a)所示的配置形態中, 更換第1相位差板15al及第2相位差板15e來配置的形 態。 更加上,在上述第2相位差板1 5 e與液晶面板1 5 c之 間配置第3相位差板1 5 f的形態。 圖1 7 ( c )是在往液晶面板1 5 c射入光的側,配置光 軸沿著與明視方向的〇點〇分同一方向的第1相位差板 15a,以此第1相位差板15al之被蒸鍍第1蒸鍍膜1 503a 的第1基板1501al側能夠接近液晶面板15c的方式配置 。同時,在從液晶面板1 5 c射出光的側,配置光軸沿著與 明視方向的9點0分同一方向的第2相位差板1 5 e,以此 第2相位差板15e之被蒸鍍第2蒸鑛膜1503e的第2基板 200944890 1501e側能夠遠離液晶面板15c的方式配置。同時,第2 相位差板1 5 e的光軸爲沿著與明視方向的9點0分同一方 向的形態。 更加上,在上述第1相位差板15al與液晶面板15c 之間配置第3相位差板1 5 f的形態。特別是如圖i 7 ( h ) 所示,可將第3相位差板1 5f的配置位置設爲第!偏光板 1 5 b與第1相位差板1 5 a 1之間的配置位置p 4,或液晶面 0 板15c與第2相位差板15e之間的配置位置P5,或液晶 面板1 5 c與第2偏光板1 5 d之間的配置位置P 6。 圖17(d)〜圖17(f)是在上述第2相位差板15e 與液晶面板1 5 c之間配置第3相位差板1 5 f,且在往液晶 面板1 5c射入光的側配置第1相位差板1 5a及第2相位差 板15e,該等分別對應的第1基板1501a及第2基板 1501e會以液晶面板15c作爲基準,以能夠形成近或形成 遠的方式來配置之形態。具體而言,圖17(d)是以第1 〇 相位差板15a之被蒸鍍第1蒸鑛膜1503a的第1基板 1 5 0 1 a側能夠遠離液晶面板1 5 c的方式配置。同時,以第 2相位差板15e之被蒸鍍第2蒸鍍膜1 503 e的第2基板 1 5 0 1 e側能夠接近液晶面板1 5 c的方式配置。圖1 7 ( e ) 是以第1相位差板15a之被蒸鑛第1蒸鍍膜1503a的第1 基板1 5 0 1 a側能夠接近液晶面板1 5 c的方式配置。同時, 以第2相位差板15e之被蒸鍍第2蒸鍍膜1503e的第2基 板1501e側能夠遠離液晶面板15c的方式配置。圖17(f )是以第1相位差板15a之被蒸鍍第1蒸鍍膜1503a的第 -97- 200944890 1基板1501a側能夠遠離液晶面板15c的方式配置。同時 ,以第2相位差板15e之被蒸鍍第2蒸鍍膜I503e的第2 基板1501e側能夠遠離液晶面板15c的方式配置。 (射出側的相位差板) 圖17(g)是在從液晶面板15c射出光的側配置第1 相位差板1 5 a及第2相位差板1 5 e的形態。特別是以該射 出側爲基準配置的第1相位差板1 5 a及第2相位差板1 5 e ^ 可大槪同樣地取以上述射入側爲基準的各種形態。 有關顯示於此圖17(g)的配置形態的情況,具體而 言,如圖1 9所示,(i )沿著明視方向的1 0點3 0分來傾 斜的液晶分子5 1的長軸方向與(i i )藉由具有沿著與明 視方向的〇點〇分同一方向的第1光軸之第1相位差板 1 5 a及具有沿著與明視方向的9點0分同一方向的第2光 軸之第2相位差板15e所形成的折射率向異性媒質255 ae 的光軸的主折射率nx’’’會交叉,因此第1相位差板15al Q 、第2相位差板1 5 e及第3相位差板1 5 f會以使液晶分子 5 1的光學向異性能夠朝光學向同性的方式三次元地補償 〇 在本發明的投影機中,除了圖17所示的種類的形態 以外,亦可採用由該等9種類的形態所衍生的各種形態。 另一方面,若採用圖1 7 ( g )的形態,則由於在液晶 面板1 5c的光射出側配置第1相位差板15al、第2相位 差板15e及第3相位差板15f,因此可對透過液晶面板 -98- 200944890 1 5c的光全體補償,進而能夠取得更良好的光學補償效果 。又,若採用圖1 7 ( g )的形態,則由於在液晶面板1 5 c 的光射出側配置第1相位差板1 5 a 1、第2相位差板1 5 e 及第3相位差板15f,因此可使該等第1相位差板15 al、 第2相位差板15e及第3相位差板15f遠離光源,有效地 防止因爲光的照射或伴隨的溫度上昇造成第1相位差板 15al、第2相位差板15e及第3相位差板15f劣化,成爲 0 可靠度佳的投影機。 若採用圖17(a)、圖17(b)、圖17(d)〜圖17 (f)的形態,則由於在液晶面板1 5c的光射入側配置第1 相位差板15al、第2相位差板15e及第3相位差板15f, 因此可在對來自光源的光實施適當的相位差的調整後,使 光往液晶面板1 5 c射入。 特別是若液晶分子的長軸方向例如爲明視方向的1點 3 0分等其他的方向,則當然對應於此,第1相位差板 〇 15al及第2相位差板15e的光軸所延伸的方向也變化。 (第3實施形態) 其次,參照圖20及圖21來說明有關第3實施形態的 相位差板。在此,圖20是第3實施形態的相位差板的平 面圖(圖20(a))及擴大圖20(a)中的H-H’剖面的擴 大剖面圖。圖2 1是第3實施形態的相位差板的外觀立體 圖(圖21(a))、及定量顯示第3實施形態的正面相位 差與2個相位差的比之圖(圖21(b))。另外,圖20( -99- 200944890 a) '圖20 (b)及圖21(a)中所示的X方 Z方向是共通。 如圖20(a)及圖20(b)所示,第3 述相位差板1 5 a是具備:例如由透明的玻璃 的第1基板1501、及形成於第1基板1501 膜 1 503a。 第1蒸鍍膜1503a是對第1基板1501 蒸鏟Ta2 05等的無機物至第1基板1501, 1基板1501上。 在此,如圖20 (b)所示,第1蒸鍍膜 性地看,則具有包含形成有無機物沿著斜方 的柱狀構造的部份之膜構造。具有如此的構 起因於其微細構造而或多或少發生相位差。 所具備的第1蒸鑛膜1503a是具有剖面上微 板1 5 0 1中,沿著無機物所被斜方蒸鍍的斜: 柱狀部份1 503at。 特別是如圖21 ( a )所示,規定測定光 定方向的極角Θ是對基板面15as的法線方 度。典型的極角是將由相位差板的正面來看 的視線角度。本實施形態是將從法線方向 傾斜的極角Θ設爲負,將相反傾斜的極角Θ 定義。另外,測定光的相位差的測定方向的 亦即基板面15as内的面内方向,爲了使說 機物所被斜方蒸鍍的斜方向D —致於投影: 向、Y方向及 實施形態的上 基板等所構成 上的第1蒸鍍 由斜方向D來 藉此形成於第 1 503 a若微視 向D來成長 造之無機膜是 相位差板1 5 a 視,在第1基 与向D延伸的 的相位差的測 向P傾斜的角 時設爲〇度時 P往斜方向D 設爲正來予以 方位角方向, 明簡便,使無 g基板面15as -100- 200944890 的方向,換言之’ γ方向。典型的是上述蒸鍍角度與極角 Θ可在同一平面15ah上。藉此,在同一設定上述蒸鍍角 度與極角Θ時,可按照無機物本身所具有的相位差來掌握 液晶裝置的對比度的提升程度。 第3實施形態的2個相位差的比是意思將極角設爲變 數的2個相位差間的比。典型的是以將極角設爲「3 0度 」時的相位差作爲基準時,將極角設爲「30度」時的相 0 位差與將極角設爲「-3 0度」時的相位差的比,即比 R[30]是根據其次的式(1)來規定。 R[30] = Re ( -30 ) / Re ( 30 ) ...... ( 1 ) 在此,Re(30)是意思將極角設爲「30度」時的相 位差,Re(-30)是將極角設爲「-30度」時的相位差。具 體而言,如圖21 (b)所示,將極角設爲「30度」時的相 位差爲9 ( nm),將極角設爲「-30度」時的相位差爲54 (nm )時,將「9」代入式(1 )中的Re ( 30 )的同時, φ 將「54」代入Re ( -30),藉此可取得比R[30]=「6」。 特別是在第3實施形態中說明有關以法線方向作爲基 準而形成對稱的2個極角爲變數的2個相位差間的比,但 本實施形態並非限於此。第3實施形態的2個相位差的比 ,例如可爲將極角設爲「30度」時的相位差與將極角設 爲「-2 0度」時的相位差的比等以法線方向作爲基準而形 成不對稱的2個極角爲變數的2個相位差間的比。或,本 實施形態的相位差的比,例如可爲將極角設爲「〇度」時 的相位差、所謂正面相位差與將極角設爲^ -30度」時的 -101 - 200944890 相位差的比等以法線方向作爲基準而不對稱的2個極角爲 變數的2個相位差間的比。總而言之’只要是至少以相異 的2個極角作爲變數的相異的2個相位差間的比,便可根 據理論、實驗、經驗、或模擬等來規定與後述的正面相位 差合併對對比度的相關關係。 (起因於正面相位差、蒸鍍角度及相位差的比之對比度改 善的定量分析) 其次,參照圖22及圖23來說明有關起因於第3實施 形態的相位差板的正面相位差、蒸鍍角度及相位差的比之 對比度改善的定量分析。在此,圖22是表示第3實施形 態的相位差板的正面相位差與相位差比及對比度之間的定 量相關關係的圖表。另外,在圖22中所示的@、令'〇 、□、及▽是分別對應於對比度的「17〇〇〜18〇〇」、「 1600 〜1700」、「1500 〜1600」、「1400 〜1500」、及 Γ 1 3 00〜1 400」。圖23是表示將第3實施形態的相位差板 的厚度設爲同一的相位差、極角及蒸鍍角度的定量相關關 係的圖表(圖23(a)),顯示第3實施形態的蒸鍍角度 的大小關係的模式圖(圖23 ( b )),以及將第3實施形 態的相位差板的蒸鎪角度設爲同一時的相位差、極角及相 位差板的厚度的定量相關關係的圖表(圖23(c))。另 外,圖23(a)及圖23(c)中的橫軸是表示極角,縱軸 是表示相位差。 根據本發明者的硏究,如依圖22中的@及領域A1 -102- 200944890 所示,爲了實現對比度爲「1 700〜1 800」的範圍之相對高 的對比度,較理想是使相位差的比R[3〇]形成約「1.5」〜 約「3.2」之間的範圍 YA1,且使正面相位差形成約「20 」〜約「30」之間的範圍XA1。或,如依圖22中的@及 領域A2所示,爲了實現對比度爲「17 00〜1800」的範圍 之相對高的對比度,而使相位差的比R[3〇]形成約^ 6.5」 〜約「9.5」之間的範圍 YA2,且使正面相位差形成約「 0 15」〜約「17」之間的範圍XA2。 詳細,根據本發明者的硏究,如圖23(a)及圖23 ( b )所示,例如將相位差板1 5 a的厚度設爲同一時,明確 隨著蒸鍍角度變大,換言之,隨著蒸鍍時的斜方向接近法 線方向,蒸鍍時的極角接近零,極角的每一定角度的相位 差的變化量會變小。藉此,明確隨著蒸鎪角度變大,相位 差的比R[30]是接近「1」的値。或,根據本發明者的硏 究,如圖23 ( a )及圖23 ( b )所示,例如將相位差板 〇 15a的厚度設爲同一時,明確隨著蒸鍍角度變小,換言之 ,隨著蒸鍍時的斜方向遠離法線方向,蒸鍍時的極角大於 零,極角的每一定角度的相位差的變化量會變大。藉此, 明確隨著蒸鍍角度變小,相位差的比R[30]是大幅度離開 「1」的値。 加上,根據本發明者的硏究,如圖23(c)所示,例 如將蒸鍍角度設爲同一時,明確隨著相位差板15a的厚度 變大,將極角設爲「0度」時的相位差、所謂正面相位差 會變大。或,根據本發明者的硏究,如圖23(c)所示, -103- 200944890 例如將蒸鍍角度設爲同一時’明確隨著相位差板 度變小,正面相位差會變小。具體而言,粗線是 位差板的厚度相對大時,點線是對應於相位差板 對小時。 如此,藉由使蒸鍍角度及相位差板的膜厚適 ,可以對比度能夠形成最大的方式來分別設定相 及正面相位差。換言之,以上述第1實施形態的 作爲變數參數,加上或取而代之,以相位差的比 參數,可使相位差板的對比度更大。 另外,依照該等的正面相位差的範圍XAl I 構成本發明的第1所定範圍之一及其他的具體例 照該等的相位差的比YA1及YA2來構成本發明 定範圍之一及其他的具體例。 (正面相位差及相位差板的旋轉角度的範圍與對 關關係) 其次,參照圖24來說明有關本實施形態的 差及相位差板的旋轉角度的範圍(以下稱爲「調 範圍」)與對比度的相關關係。在此,圖24是 施形態的正面相位差與調整角度之定量性的相關 表(圖24(a))、及本實施形態的正面相位差 板的調整角度與對比度之定量性的相關關係的 24(b) ) 〇 如圖24 ( a )所示,隨著正面相位差變大, 15a的厚 對應於相 的厚度相 當地變化 位差的比 蒸鍍角度 作爲變數 i XA2 來 。又,依 的第2所 比度的相 正面相位 整角度的 表示本實 關係的圖 及相位差 圖表(圖 可縮小最 -104- 200944890 大的對比度所能取得爲止的相位差板1 5 a的調整角度。換 言之,隨著正面相位差變小,可擴大最大的對比度所能取 得爲止的相位差板1 5a的調整角度。具體而言,如圖24 (a )所示,當正面相位差Re ( 0 )爲「3 0 ( nm )」時’ 可使相位差板1 5 a的調整角度例如形成3度,當正面相位 差Re(0)爲「15(nm)」時,可使相位差板15a的調整 角度例如形成5度。 φ 加上,如圖24 ( b )所示,隨著正面相位差變大,可 擴大相位差板15a的調整角度的每單位角度的對比度的變 化量。換言之,隨著正面相位差變小,可縮小相位差板 15a的調整角度的每單位角度的對比度的變化量。具體而 言,如圖24(b)所示,當正面相位差Re(0)爲「30( nm )」時,使相位差板1 5 a的調整角度形成3度時,可 取得最大的對比度。並且,當正面相位差Re (0)爲「15 (nm)」時,使相位差板15a的調整角度形成5度時, 〇 可取得最大的對比度。加上,正面相位差Re(o)爲「30 (nm)」時之相位差板15a的調整角度的每單位角度的 對比度的變化量可比正面相位差Re ( 0 )爲「1 5 ( nm )」 時之相位差板15a的調整角度的每單位角度的對比度的變 化量更大,在圖24(b)是顯示陡哨的曲線。 若根據第3實施形態,則除了上述2個相位差的比値 的設定以外,還將正面相位差的値設定於適當的値,藉此 在投影機的製造組裝工程中,或使用者的調整動作中,可 簡便且適當地決定所望的相位差板15a的調整角度的範圍 -105- 200944890 ,因此實踐上非常有利。 (第4實施形態) 其次,參照圖25及圖26來說明有關第4實施形態的 偏光板及相位差板。在此’圖25是表示第4實施形態的 液晶光閥的構成說明圖。另外’在第4實施形態中’對於 和上述實施形態大槪同樣的構成要素賦予同一符號’該等 的說明適當省略。 如圖2 5所示,第4實施形態的相位差板1 5 a (亦即 ,本發明的第1相位差板的其他具體例)是依遠離液晶面 板15c的配置順序,具備:被垂直蒸鑛有保持折射率向異 性的折射率向異性媒質255c之垂直蒸鍍膜1501c、第1 基板1501、被斜方蒸鍍有保持折射率向異性的折射率向 異性媒質255a之第1蒸鍍膜1503a、及第2基板1502。 一般,例如C板等的垂直蒸鏟膜1501c是在其製造工 程中發生微小的氣泡,在垂直蒸鍍膜1501c内或多或少含 有。相對的,本實施形態是使垂直蒸鍍膜1 5 0 1 c與第1基 板1501、第1蒸鑛膜1503a及第2基板1502作比較,配 置於離液晶面板15c最遠的距離。藉此,可使聚焦於垂直 蒸鍍膜1501c中所含的氣泡的程度顯著地降低。藉此,可 有效地抑止垂直蒸鍍膜1501c中所含的氣泡被投射而使投 射影像遭到不良影響。 (相位差板的詳細構成) -106- 200944890 在此,參照圖26來說明有關本實施形態的相位差板 的詳細構成。在此,圖26是圖示規定構成第4實施形態 的相位差板之2種類的折射率向異性媒質與相位差板的第 1基板的相對位置關係之蒸鍍方向及蒸鍍角度的外觀立體 圖。 如圖26所示,在構成相位差板15a的第1蒸鍍膜 1501c中,折射率向異性媒質255c是從圖26中的下側往 Q 上側垂直蒸鏟於第1基板1501。具體而言,如上述般, 第1蒸鍍膜1501C的主折射率nx’、ny’、nz’是形成滿足 nx’=ny’>nz’的關係之構成。 加上,在構成相位差板15a的第1蒸鍍膜1503a中, 折射率向異性媒質255a是沿著所定方向,亦即蒸鍍方向 ,從圖26中的上側往下側來被斜方蒸鍍於第1基板1501 。加上,折射率向異性媒質2 5 5 a是以對應於折射率向異 性媒質2 5 5 a的主折射率nx的光軸能夠具有與第丨基板 〇 1501的平面方向所定角度,亦即蒸鍍角度的方式來斜方 蒸鍍。此蒸鍍角度可換言之是由90度減去第1基板1501 的法線與對應於折射率向異性媒質255a的主折射率nx的 光軸之間的角度的値。或,此蒸鍍角度可換言之是對應於 折射率向異性媒質25 5 a的主折射率nx的光軸與蒸鍍方向 之間的角度。 假設,例如在被斜方蒸鍍的第1蒸鍍膜1 5 03 a上藉由 濺射手法來形成C板等的垂直蒸鍍膜1501c時,在C;K 等的垂直蒸鍍膜1501c上藉由斜方蒸鍍手法來形成第1蒸 -107- 200944890 鍍膜1503a時,該形成處理時,水分會混入垂直蒸鍍膜 1 5 0 1 c,會有此垂直蒸鑛膜1 5 0 1 c的品質降低的技術性問 題點發生。 相對的,若根據第4實施形態,則例如將C板等的垂 直蒸鍍膜1501c形成於第1基板1501的一方的面,且使 第1蒸鏟膜1503a形成於第1基板1501的另一方的面。 藉此,在利用濺射手法來形成C板等的垂直蒸鍍膜1501c 時,可使水分混入垂直蒸鍍膜1501c的程度減輕,因此可 使該垂直蒸鍍膜1501c的品質更爲提升。 (第5實施形態) 其次,參照圖27來說明有關第5實施形態的偏光板 及相位差板。在此,圖27是表示第5實施形態的液晶光 閥的構成說明圖。 如圖27所示,第5實施形態的液晶光閥15是藉由: 上述的液晶面板1 5 c、配置於液晶面板1 5 c的對向基板3 1 的外側之第1偏光板15b、配置於TFT陣列基板32的外 側之相位差板1 5a、及配置於相位差板1 5a的外側之第2 偏光板15d所構成。 另外,就本實施形態的液晶光閥1 5而言,配設第1 偏光板15b的側(圖示上側)爲光射入側,配設第2偏光 板15d的側爲光射出側。 在液晶面板15c中,夾持液晶層34而對向的配向膜 43,98是例如由偏離基板法線方向50°程度的斜方向來蒸 -108- 200944890 鍍矽氧化物而形成。膜厚皆是4〇nm程度。由附在漘 的配向膜43,98的箭號所示的配向方向43a、98a是 成時的蒸鍍方向之中在基板面内的方向一致。配向 的配向方向43a與配向膜98的配向方向98a是互相 〇 而且,藉由配向膜43,98的配向規制力’液晶 51是在離基板法線2°〜8°程度傾斜的狀態下配向’ ❹ 液晶分子51的指向矢的方向(預傾方向P)能夠在 面方向形成沿著配向方向43a、98a的方向之方式配向 第1偏光板15b及第2偏光板15d皆是具備以2 護膜152來夾入偏光元件151的三層構造,該2片保 152 是由 TAC (三醋酸纖維素,Triacetyl Cellulose) 成,該偏光元件151是由被染色的PVA (聚乙烯醇) 成。如圖4所示,第1偏光板15b的透過軸151b、及 偏光板15d的透過軸151d是正交配置。該等的偏 Q 15b、15d的透過軸151b、151d的方向是對液晶面板 的配向膜43的配向方向(蒸鍍方向)43 a平面視大 成偏移45°的方向。 相位差板15a的構成是具備:被斜方蒸鍍有保持 率向異性的折射率向異性媒質之第1蒸鍍膜1503a、 基板1501、及第2基板15 02。在圖27的側方顯示有 射率向異性媒質255a的折射率橢圓體的光軸方向的 射率。在本實施形態,主折射率nx,ny,nz是形成 nx>ny>nz的關係之構成。亦即,從第1基板1501或 i 27 在形 I 43 平行 分子 且以 基板 〇 片保 護膜 所構 所構 第2 光板 15c 略形 折射 第1 該折 主折 滿足 第2 -109- 200944890 基板1502的法線方向傾斜的方向的折射率nx比其他方向 的折射率ny,nz大,折射率橢圓體是形成米粒型。具體 而言,該折射率向異性媒質255a的典型例可舉二軸板。 若根據本實施形態,則在藉由第1蒸銨膜的斜方蒸鑛 來調整第1相位差板之第1折射率向異性的第1光軸所傾 斜的方向、及第1相位差板之第1折射率向異性的第1光 軸與第1基板交叉的角度之下,可藉由第1相位差板來確 實地補償在液晶面板中所產生的相位差。其結果,可取得 高對比度尚品質的顯不。 (第6實施形態) 其次,參照圖28來說明有關第6實施形態的偏光板 及相位差板。在此,圖28是表示第6實施形態的液晶光 閥的構成說明圖。 如圖2 8所示,第6實施形態的液晶光閥1 5是藉由: 上述的液晶面板15c、配置於液晶面板15c的對向基板31 的外側之第1偏光板15b、配置於TFT陣列基板32的外 側之相位差板15a、及配置於相位差板15a的外側之第2 偏光板1 5 d所構成。 另外,就本實施形態的液晶光閥15而言’配設第1 偏光板15b的側(圖示上側)爲光射入側,配設第2偏光 板1 5 d的側爲光射出側。 在液晶面板15c中,夾持液晶層34而對向的配向膜 43,98是例如由偏離基板法線方向50。程度的斜方向來蒸 -110- 200944890 鑛矽氧化物而形成。膜厚皆是40nm程度。由附在圖28 的配向膜43,98的箭號所示的配向方向43a、98a是在形 成時的蒸鍍方向之中在基板面内的方向一致。配向膜43 的配向方向43a與配向膜98的配向方向98a是互相平行 〇 而且,藉由配向膜43,98的配向規制力,液晶分子 5 1是在離基板法線2°〜8°程度傾斜的狀態下配向,且以 φ 液晶分子51的指向矢的方向(預傾方向P )能夠在基板 面方向形成沿著配向方向43a、98a的方向之方式配向。 第1偏光板15b及第2偏光板15d皆是具備以2片保 護膜152來夾入偏光元件151的三層構造,該2片保護膜 152是由TAC (三醋酸纖維素,Triacetyl Cellulose)所構 成,該偏光元件151是由被染色的PVA (聚乙烯醇)所構 成。如圖4所示,第1偏光板15b的透過軸151b、及第2 偏光板15d的透過軸151d是正交配置。該等的偏光板 Q 15b、I5d的透過軸151b、151d的方向是對液晶面板15c 的配向膜43的配向方向(蒸鍍方向)43a平面視大略形 成偏移45°的方向。 相位差板1 5a (亦即本發明的第1相位差板的一具體 例)是具備:第1基板1501、及垂直蒸鍍有保持折射率 向異性的折射率向異性媒質255c之垂直蒸鍍膜1501c、 及被斜方蒸鏟有保持折射率向異性的折射率向異性媒質 255a之第1蒸鍍膜1503a、及第2基板1502。 在圖28的垂直蒸鍍膜1501c的側方,模式地顯示垂 -111 - 200944890 直蒸鍍膜1501c的折射率向異性媒質255c的平均折射率 橢圓體。在該圖中,nx’、ny’是分別表示垂直蒸鍍膜 1501c的面方向的主折射率,nz’是表示垂直蒸鍍膜1501c 的厚度方向的主折射率。在本實施形態’主折射率nx’、 1^’、112’是形成滿足1^’=115^’>1^’的關係之構成。亦即, 厚度方向的折射率nz’比其他方向的折射率小’折射率橢 圓體是形成圓盤型。該折射率橢圓體255c是對垂直蒸鍍 膜1501c的板面平行配向,垂直蒸鍍膜1501c的光軸方向 (折射率橢圓體的短軸方向)是與板面法線方向平行。 在圖28的第1蒸鍍膜1503a的側方顯示有折射率向 異性媒質255a的折射率橢圓體的光軸方向的主折射率。 在本實施形態,主折射率 nx,ny,nz是形成滿足 nx>ny>nz的關係之構成。亦即,從第1基板1501或第2 基板1502的法線方向傾斜的方向的折射率nx比其他方向 的折射率ny,nz大,折射率橢圓體是形成米粒型。 若根據本實施形態,則除了藉由第1蒸鍍膜的斜方蒸 鍍來調整第1相位差板之折射率向異性的光軸所傾斜的方 向、及第1相位差板之第1折射率向異性的第1光軸與第 1基板交叉的角度以外,還可在單軸性相位差板之單軸性 折射率向異性的單軸性光軸沿著厚度方向之下,藉由相位 差板來確實地補償在液晶面板中所產生的相位差。其結果 ,可取得高對比度高品質的顯示。 (第7實施形態) -112- 200944890 其次,參照圖29來說明有關第7實施形態的偏光板 及相位差板。在此,圖29是表示第7實施形態的液晶光 閥的構成說明圖。 如圖29所示,第7實施形態的液晶光閥1 5是由:上 述的液晶面板1 5 c、配置於液晶面板1 5 c的對向基板3 1 的外側之第1偏光板15b、配置於TFT陣列基板32的外 側之第1相位差板1 5 a、配置於第1相位差板1 5 a的外側 之第2相位差板15e、及配置於第2相位差板15e的外側 之第2偏光板1 5 d所構成。 另外,就本實施形態的液晶光閥15而言,配設第1 偏光板15b的側(圖示上側)爲光射入側,配設第2偏光 板1 5 d的側爲光射出側。 在液晶面板15c中,夾持液晶層34而對向的配向膜 43,98是例如由偏離基板法線方向50°程度的斜方向來蒸 鍍矽氧化物而形成。膜厚皆爲40nm程度。由附在圖29 的配向膜43,98的箭號所示的配向方向43a、98a是在形 成時的蒸鍍方向之中在基板面内的方向一致。配向膜43 的配向方向43a與配向膜98的配向方向98a是互相平行 〇 而且,藉由配向膜43,98的配向規制力,液晶分子 51是在離基板法線2°〜8°程度傾斜的狀態下配向,且以 液晶分子5 1的指向矢的方向(預傾方向P )能夠在基板 面方向形成沿著配向方向43a、98a的方向之方式配向。 第1偏光板15b及第2偏光板15d皆是具備以2片保 -113- 200944890 護膜152來夾入偏光元件151的三層構造,該2片保護膜 152是由TAC (三醋酸纖維素,Tri acetyl Cellulose )所構 成,該偏光元件151是由被染色的PVA (聚乙烯醇)所構 成。如圖4所示,第1偏光板15b的透過軸151b、及第2 偏光板15d的透過軸151d是正交配置。該等的偏光板 15b、15d的透過軸151b、151d的方向是對液晶面板15c 的配向膜43的配向方向(蒸鍍方向)43a平面視大略形 成偏移45°的方向。 第1相位差板15a的構成是具備:被斜方蒸鍍有保持 折射率向異性的折射率向異性媒質之第1蒸鍍膜1 503a、 基板1501a、及基板15 02a»在圖29的第1相位差板15a 的側方顯示有該折射率向異性媒質255a的折射率橢圓體 的光軸方向的主折射率。在本實施形態,主折射率nx ’、 11>^、112’是形成滿足1^’>117’>112’的關係之構成。亦即, 從基板1501a或基板1 5 02a的法線方向傾斜的方向的折射 率nx’比其他方向的折射率ny’、nz’大,折射率橢圓體是 形成米粒型。 第2相位差板15e的構成是具備:被斜方蒸鍍有保持 折射率向異性的折射率向異性媒質之第2蒸鍍膜1 503e、 基板1501e、及基板150 2e。在圖29的第2相位差板15e 的側方顯示有該折射率向異性媒質25 5 e的折射率橢圓體 的光軸方向的主折射率。在本實施形態,主折射率nx ’’、 1^’’、11乙’’是形成滿足11\,’>117’’>112’’的關係之構成。亦即 ,從基板1501e或基板1 502e的法線方向傾斜的方向的折 -114- 200944890 射率nx’’比其他方向的折射率ny’’、nz’’大,折射率橢圓 體是形成米粒型。 特別是由第2相位差板1 5e (或第1相位差板1 5a ) 的法線方向來看,最好第2相位差板15e的主折射率nx,, 的光軸所傾斜的方向與上述第1相位差板1 5 a的主折射率 ηχ’的光軸所傾斜的方向是正交。 具體而言,該等折射率向異性媒質2 5 5 a (或折射率 φ 向異性媒質255e)的典型例可舉二軸板。 若根據本實施形態,則在藉由第1蒸鍍膜的斜方蒸鍍 來調整第1相位差板之第1折射率向異性的第1光軸所傾 斜的方向、及藉由第2蒸鍍膜的斜方蒸鍍來調整第2相位 差板之第2折射率向異性的第2光軸所傾斜的第2方向之 下,可藉由第1及第2相位差板來確實地補償在液晶面板 中所產生的相位差。其結果,可取得高對比度高品質的顯 不 ° φ 另外,本發明的實施形態的第1相位差板15a (或 15al)及第2相位差板15e的其他具體例,例如可爲具備 由在對相位差板的板面傾斜的狀態下配向(傾角配向)的 盤狀液晶所構成的光學向異性層者。該等的相位差板是可 在三醋酸纖維素(Triacetyl Cellulose; TAC)等的支持體 上設置配向膜,在該配向膜上塗佈三亞苯(triphenylene )衍生物等的盤狀液晶來製作。更詳細是準備:在1組的 支持體的表面形成聚醯亞胺等的配向膜者,在一方的支持 體上塗佈盤狀液晶後,藉由另一方的支持體來夾入盤狀液 -115- 200944890 晶。然後,藉由加熱處理來使盤狀向列(ND )相形成後 ,藉由紫外線等來重合而使配向狀態固定化。在此ND相 的形成時,盤狀液晶是藉由配向膜來賦予預傾,形成光軸 傾斜的狀態。有關光軸的傾角是可藉由配向膜的配向處理 (面磨等)來控制。 或,本發明的實施形態的第1相位差板15a (或15al )及第2相位差板15e的其他具體例,亦可藉由對聚碳酸 酯(Polycarbonate)或降冰片儲(norbornene)樹脂等施 加剪應力來延伸製作。此情況,是在將材料樹脂加熱至玻 璃轉移點附近的狀態下由2方向延伸,夾入予以加熱的一 對基板間。然後,一邊由一方的基板的外側來對材料樹脂 施加壓力,一邊使一對的基板彼此錯開於相反方向。藉此 ,在材料樹脂的上下面彼此相反方向施加剪應力,構成材 料樹脂的光學體的光軸方向會傾斜。光軸的傾角可根據剪 應力的大小來控制。 本發明並非限於上述實施形態,在不違反由申請專利 範圍及說明書全體所讀取的發明要旨或思想的範圍內可適 當變更,隨著如此的變更之液晶裝置、投影機及液晶裝置 的光學補償方法亦含於本發明的技術範圍。 【圖式簡單說明】 圖1是本發明的實施形態的液晶投影機的槪略構成圖 〇 圖2是本實施形態的液晶面板的全體構成圖(圖2( -116- 200944890 a) )及沿著該圖2 ( a)的H-H’線的剖面構成圖(圖2 ( b) ) 〇 圖3是表示本實施形態的液晶光閥的構成說明圖。 圖4是表示本實施形態的圖3的各構成構件的光學軸 配置圖。 圖5是表示規定構成本實施形態的第1相位差板的折 射率向異性媒質與對應於第1相位差板的基板的相對位置 關係之蒸鍍方向等的外觀立體圖(圖5(a)),及表示 規定構成第2相位差板的折射率向異性媒質與對應於第2 相位差板的基板的相對位置關係之蒸鏟方向等的外觀立體 圖(圖5(b)),以及表示將構成第1相位差板的折射 率向異性媒質與構成第2相位差板的折射率向異性媒質予 以合成的折射率向異性媒質與基板的相對位置關係的外觀 立體圖(圖5 ( c))。 圖6是表示構成本實施形態的第1及第2相位差板的 折射率向異性媒質的光軸與構成液晶面板的液晶分子的光 軸的相對位置關係的平面圖(圖6(a))及立面圖(圖6 (b) ) ° 圖7是槪念性地顯示將構成本實施形態的第1相位差 板的折射率向異性媒質與構成第2相位差板的折射率向異 性媒質予以合成的折射率向異性媒質的光學向異性與構成 液晶面板的液晶分子的光學向異性所被合成而實現光學向 同性的狀態模式圖。 圖8是表示本實施形態的第1及第2相位差板的膜厚 -117- 200944890 與第1相位差板及第2相位差板的組合的關係的棒狀圖( 圖8(a)),以及定量顯示本實施形態的第1及第2相 位差板的膜厚與光的對比度的相關關係的圖表(圖8(b ))。 圖9是定量顯示構成本實施形態的第1及第2相位差 板之折射率向異性媒質對第1基板的蒸鍍角度與對比度的 相關關係的圖表。 圖10是定量顯示以本實施形態的第1及第2相位差 板的膜厚及構成相位差板的折射率向異性媒質的蒸鍍角度 作爲變數時之第1及第2相位差與極角的相關關係的圖表 (圖 10(a)及圖 10(b))。 圖11是表示本發明的第2實施形態的液晶光閥的槪 略構成圖。 圖12是表示本發明的第2實施形態的相位差板之相 位差板的種類、相位差及極角的相關關係的圖表。 圖13是表示本發明的第2實施形態的相位差板之相 位差板的種類及對比度的相關關係的圖表。 圖14是表示圖11的各構成構件的光學軸配置圖。 圖1 5是定量性顯示在本實施形態的第1〜第3相位 差板所實現的對比度與在比較例的相位差板所實現的對比 度的相關關係的條狀圖表。 圖16是表示適用本實施形態及比較例的相位差板之 液晶面板的亮度偏差的分布圖(圖16(a)及圖16(b) -118- 200944890 圖17是表示本實施形態的液晶光閥15的構成構件的 配置形態的槪略圖(圖17(a)〜圖i7(i))。 圖18是表示具有合成本實施形態的第1相位差板的 第1折射率向異性與第2相位差板的第2折射率向異性的 折射率向異性的折射率向異性媒質、此折射率向異性媒質 的蒸鍍方向、第3相位差板的單軸性的折射率向異性、及 構成液晶面板的液晶分子之相對位置關係的一模式圖。 U 圖19是表示具有合成本實施形態的第1相位差板的 第1折射率向異性與第2相位差板的第2折射率向異性的 折射率向異性的折射率向異性媒質、此折射率向異性媒質 的蒸鍍方向、第3相位差板的單軸性的折射率向異性、及 構成液晶面板的液晶分子之相對位置關係的其他模式圖。 圖20是本發明的第3實施形態的相位差板的平面圖 (圖20 ( a))及擴大圖20 ( a)中的H-H’剖面的擴大剖 面圖。 Q 圖21是本發明的第3實施形態的相位差板的外觀立 體圖(圖21(a))、及定量顯示第3實施形態的正面相 位差與2個相位差的比之圖(圖21(b))。 圖22是表示第3實施形態的相位差板的正面相位差 與相位差比及對比度之間的定量相關關係的圖表。 圖23是表示將第3實施形態的相位差板的厚度設爲 同一的相位差、極角及蒸鍍角度的定量相關關係的圖表( 圖23(a)),顯示第3實施形態的蒸鍍角度的大小關係 的模式圖(圖2 3 ( b )),以及將第3實施形態的相位差 -119- 200944890 板的蒸鍍角度設爲同一時的相位差、極角及相位差板的厚 度的定量相關關係的圖表(圖23(c))。 圖24是表示本實施形態的正面相位差與調整角度之 定量性的相關關係的圖表(圖24(a))、及本實施形態 的正面相位差及相位差板的調整角度與對比度之定量性的 相關關係的圖表(圖24 ( b))。 圖25是表示第4實施形態的液晶光閥的構成說明圖 〇 圖26是圖示規定構成第4實施形態的相位差板之2 種類的折射率向異性媒質與相位差板的第1基板的相對位 置關係之蒸鏟方向及蒸鍍角度的外觀立體圖。 圖27是表示第5實施形態的液晶光閥的構成說明圖 〇 圖28是表示第6實施形態的液晶光閥的構成說明圖 〇 圖29是表示第7實施形態的液晶光閥的構成說明圖 【主要元件符號說明】 I 〇 :投影機 II :螢幕 1 2 :光源 1 5、1 6、1 7、2 1 5 :液晶裝置 15a、15al、16a、17a:第 1 相位差板 -120- 200944890 15as :基板面 15 ah :平面 17d :偏光板 15b、16b、17b、15d、16d、 15c 、 16c 、 17c :液晶面板 15e、16e、17e:第 2 相位差 1 5 f :第3相位差板 31 :對向基板 32 : TFT陣列基板 43a、98a:配向方向 43、98 :配向膜 5 1 :液晶分子 8 1 a :旋轉軸 81e :旋轉軸 25 5 a :折射率向異性媒質 25 5e :折射率向異性媒質 25 5c :折射率向異性媒質 1 5 0 1 a :第1基板 1 5 0 1 e :第2基板 1501c :垂直蒸鍍膜 1 502a :第2基板 1 502e :第4基板 1 5 03 a :第1蒸鍍膜 1 5 03 e :第2蒸鍍膜 1 503 at :柱狀部份 -121 200944890 D : A1、 LB : LG : LR : P : 斜方向 A 2 :領域 藍色光 綠色光 紅色光 預傾方向 -122-The angle of rotation 0e is adjusted around 81. Thereby, the angle between the direction of the optical axis of the first retardation film 15a1 and the long-axis direction of the liquid crystal molecules 51 which are inclined only at the pretilt angle is adjusted with high precision, and the desired contrast can be easily adjusted. At the same time, the angle between the direction of the optical axis of the second retardation plate 15e and the long-axis direction of the liquid crystal molecules 51 inclined only at the pretilt angle can be adjusted with high precision, and the desired contrast can be simplified. The adjustment was made. Further, in the present embodiment, since the space between the liquid crystal panel and the first and second retardation plates does not have to be inclined by the first and second second retardation plates, the configuration does not hinder the circulation of air. The thermal stagnation between the liquid crystal panel 15c and the first and second retardation plates is minimized, and the deterioration of the liquid crystal panel and the retardation plate is also suppressed. Further, as shown in Fig. 16 (b), according to the present embodiment, the inside of the circle of the white dotted line having a polar angle of about 30 degrees is displayed on the liquid crystal panel, and the variation in luminance can be effectively prevented. All happen. Specifically, in the liquid crystal panel of the comparative example in which the phase difference plate is not shown in Fig. 16. (a), the lower left side of the inside of the circle of the white dotted line having a polar angle of about 30 degrees is shown. Uneven brightness. Further, in Fig. 16(a), it is understood that the long axis direction of the liquid crystal molecules 51 which are inclined at the tilt angle is the symmetry axis of the liquid crystal: the luminance of the liquid crystal panel is not linearly symmetric. In contrast, according to the projector of the present embodiment, the optical axis of the first plate 15a, that is, the direction in which the refractive index extends toward the optical axis of the main ι' of the anisotropic medium 255a, intersects at an angle only The long axis direction of the liquid crystal molecules 51 having an φ degree inclination, and the optical axis of the second phase difference, that is, the direction in which the refractive index extends toward the main refractive index optical axis of the anisotropic medium 25 5e intersects at other angles only The long axis direction of the liquid crystal molecules 51 which are pretilted obliquely. In addition, in the plane direction of the third phase 15f, the main nxc 5 S of the optical axis of the refractive index ellipsoid 255c. Nyc, exist. As a result, it is understood that the optical axis of the optical axis retardation plate 15e of the first retardation plate 15a and the optical axis of the third retardation plate 15f can be generated symmetrically with respect to the unevenness of the unevenness, thereby effectively preventing the luminance. In particular, when the unevenness is the typical two-axis plate of the refractive index-to-isotropy medium 25 5 a, since the main refractive indices nx', ny', and nz' satisfy the relationship of ηχ'> ι, as shown in Fig. 14 above. The first retardation plate is rotated to adjust the rotation angle 0a by rotating the rotation axis 8 1 a extending in the normal direction of the substrate as the middle periphery. In addition or instead, a typical example of the above-mentioned ambiguous medium 255 e adopts a two-axis plate because the main 11 乂 '', 117'', 112'' satisfies 11\''>117''>112'' In the relationship shown in Fig. 14, the second retardation plate 15e is rotated to be refracted by an angular plate which extends from the gusset 15e nx, ' which is inclined by the phase difference of the pre-molecular phase 51. Rate, the second elimination of bright. By using the iy5 >nz 5 15al centering ratio of the center of rotation, the rotation angle 81e around the axis of rotation of the substrate 91-200944890 in the normal direction is adjusted to a rotation angle of 0e °. The positional relationship between the optical axes of the first and second retardation plates 15a1 and 15e and the optical axes of the polarizing plates 15b and 15d or the liquid crystal panel 15c is changed, and the positions of the first and second retardation plates i5ai and I5e are optimized. . Specifically, when the first or second retardation plates 15a1 and 15e are rotated, the positional relationship between the first and second retardation plates i5al and i5e and the first and second polarizing plates 15b and 15d can be made, for example, Since the main refractive index nx' ny, nz of the A plate or the like can be configured to have a component satisfying the relationship of nx = ny > nz, the phase difference between the first and second polarizing plates 15b and 15d can be compensated, or the microlens 95 can be compensated. The diffraction effect affects the phase difference. In particular, in addition to the rotation adjustment of the first and second retardation plates 15a1 and 15e, it is possible to more effectively adjust the front phase difference between the first and second retardation plates 1 5 a 1 and 15 5 e. The phase difference caused by the phase difference between the first and second polarizing plates 15b and 15d or the diffraction effect of the microlens 95 is compensated. Further, the first phase difference plate 15a1 (or 15a) is rotated by the normal axis direction as the rotation axis 81a, thereby constituting one specific example of the "optical adjustment step" of the present invention. Further, the second retardation plate 15e is rotated by the normal axis direction as the rotation axis 81e, thereby constituting another specific example of the "optical adjustment step" of the present invention. In addition, as described above, the first retardation plate 1 is changed by changing the film thickness of the first retardation film 15a1 and the refractive index of the first retardation film 15a1 to the first vapor deposition angle of the anisotropic medium. The change in the front-end phase difference generated by 5 a 1 is larger, whereby the liquid crystal light valve 15 of the present embodiment is mounted in the projector of the -92-200944890 projector, by making the first phase difference plate 1 5 a 1 The incident direction in which the light is incident is rotated as a rotation axis, and when the possible contrast is achieved with high precision, the rotation angle of the first retardation plate 15a1 can be limited to a predetermined range (for example, a range of ±5 degrees). Therefore, since the first retardation plate 15 5 1 is rotated within the predetermined range to be limited, the maximum contrast can be more easily adjusted in the function of the projector. Similarly, as described above, the second retardation plate is changed by changing the film thickness of the second retardation film and the refractive index of the second retardation film to the second vapor deposition angle of the anisotropic medium. In the process of attaching the liquid crystal light valve 15 of the present embodiment to the projector, the second retardation plate 15e is incident on the light, and the incident direction of the second retardation plate 15e is incident on the projector. Rotation as a rotation axis can limit the rotation angle of the second phase difference plate 15 e to a predetermined range (for example, a range of ± 5 degrees) when high-precision setting is possible to achieve a possible contrast. Therefore, since the second retardation plate 15 e is rotated within the predetermined range to be limited, the maximum contrast can be more easily adjusted in the function of the projector. In particular, the adjustment of the rotation angle of the first retardation film 15a and the adjustment of the rotation angle of the second retardation film 15e can be performed simultaneously or in advance, taking into consideration the influence of both on the contrast. Further, it is preferable that the optical adjustment of the first retardation film 15a1 and the optical adjustment of the second retardation film 15e are performed while actually measuring the contrast (or the brightness of the display). In general, the optical axis in the surface direction of the protective film 152 of the polarizing plate is not set to a constant direction, and even if the same polarizing plate is used, the optical axis may vary in the plane. Therefore, since the rotation angle 0a of the first retardation plate 15a1 and the rotation angle ee of the -93-200944890 of the second retardation plate 15e cannot be set to a constant angle, it is preferable to obtain the position or the 最大 which is the actual maximum contrast. The position at which the level is the lowest is the optimum position of the first retardation plate 15a and the second retardation plate 15e. Further, in Fig. 14, in the above, the polarizing plate is rotated under the above-described normal direction as a rotation axis, and the contrast can be further improved. In general, when a phase difference plate is formed by oblique vapor deposition, there is a possibility that the optical axis deviates from the desired vapor deposition angle or the axial direction of the vapor deposition direction. In particular, in the present embodiment, when two kinds of phase difference plates which are subjected to oblique vapor deposition are respectively rotated and optically adjusted, the optical retardation is performed by rotating one type of phase difference plate or an integrated phase difference plate. It can suppress the influence of the axis deviation. Thereby, the deviation of the optical characteristics in the manufacture of the phase difference plate can be compensated for. (Arrangement of First to Third Phase Difference Plates) Next, the arrangement of the first and second phase difference plates according to the present embodiment will be described with reference to Figs. Here, Fig. 17 is a schematic diagram showing an arrangement of constituent members of the liquid crystal light valve 15 of the present embodiment (Fig. 17 (a) to Fig. 17 (i)). 18 is a refractive index-to-isotropy medium having an index of the first refractive index of the first retardation film of the first phase difference plate and the second refractive index of the second retardation plate. A pattern diagram showing the relative positional relationship between the vapor deposition direction of the anisotropic medium, the uniaxial refractive index of the third retardation plate, and the relative positional relationship of the liquid crystal molecules constituting the liquid crystal panel. Fig. 19 is a view showing the first refractive index anisotropy of the first retardation film of the present embodiment and the second refractive index of the second retardation plate -94-200944890. The pattern of the relative position of the liquid crystal molecules constituting the liquid crystal panel in the vapor deposition direction of the anisotropic medium, the uniaxial anisotropy of the third phase difference plate, and the uniaxiality. (phase difference plate on the incident side) Fig. 1 (a) is a phase difference plate 15a1 in which light is incident on the liquid crystal panel 15c to vapor-deposit the first phase difference plate 15a. The side of the first substrate 1 5 0 1 a of 5 0 3 a can be arranged in such a manner that the liquid crystal language is close to each other. Further, the optical axis of the first retardation plate 15al is divided into the same direction as the defect in the clear viewing direction. Further, in (a) to (g), the first polarizing plate 15b is disposed at the uppermost portion, and the second polarizing plate 15d is disposed at the lowermost portion in the drawing, and the light is incident on the liquid crystal panel. On the side of the 15c side, the second phase 15e is disposed on the side closer to the liquid crystal panel 15c than the first phase difference plate 15a, and the second substrate 1501e of the second vapor deposition abdomen of the second retardation plate 15e is vapor-deposited. The side can be placed close to the liquid crystal panel 15c. Further, the optical axis of the second retardation plate 15e is in the same direction as the bright-view point. Further, a form of the third retardation film 15f is disposed between the second retardation film 15e and the liquid crystal panel. In particular, as shown in Fig. 17, the arrangement position of the third phase difference plate 15f may be the arrangement position P1 between the first plate 15b and the first phase difference plate 15a1, and the first phase difference plate 1 5 a 1 and 2 The phase difference plate 1 5 e between the refractive index refractive index system is arranged. The first 1st plate 1 5 c is along the living chart 17 in the figure 〇 the above-mentioned first difference plate: 1503e way (1) (1) (1) polarized light or cpa / 丄 PSd is set to -95 - 200944890 P2, or is the arrangement position P3 between the liquid crystal panel 15c and the second polarizing plate 15d. Regarding the case of the arrangement shown in Fig. 17 (a), specifically, as shown in Fig. 18, (i) the length of the liquid crystal molecules 5 1 which are inclined at 1 〇 point in the clear direction. The axial direction and (ii) the first retardation plate 15a having the first optical axis in the same direction as the pupil point in the clear view direction and the same direction in the direction of 9 o'clock in the clear view direction The refractive index formed by the second retardation plate 15e of the second optical axis intersects with the main refractive index nx'' of the optical axis of the asymmetrical medium 255ae, and thus the first retardation plate 15a1 and the second retardation plate 15e and The third retardation film 1 5f is compensated three-dimensionally so that the optical anisotropy of the liquid crystal molecules 51 can be optically isotropic. Fig. 17 (b) shows a state in which the first retardation film 15a1 and the second retardation film 15e are replaced by the arrangement shown in Fig. 17(a). Further, a form of the third retardation film 1 5 f is disposed between the second retardation film 15 e and the liquid crystal panel 15 c. Fig. 1 (c) is a first phase difference plate 15a in which the optical axis is incident on the side of the liquid crystal panel 15c, and the optical axis is in the same direction as the defect in the clear direction, and the first phase difference is obtained. The first substrate 1501al side of the vapor deposition first vapor deposition film 1 503a of the plate 15a1 can be disposed close to the liquid crystal panel 15c. At the same time, the second phase difference plate 15 e is disposed on the side from which the light is emitted from the liquid crystal panel 15 c, along the same direction as 9:0 in the clear direction, whereby the second phase difference plate 15e is The second substrate 200944890 1501e side on which the second vaporized film 1503e is vapor-deposited can be disposed away from the liquid crystal panel 15c. At the same time, the optical axis of the second phase difference plate 15 e is in the same direction as 9 o'clock in the clear view direction. Further, a form of the third retardation film 15f is disposed between the first retardation film 15a1 and the liquid crystal panel 15c. In particular, as shown in Fig. 7 (h), the arrangement position of the third phase difference plate 15f can be set to the first! The arrangement position p 4 between the polarizing plate 15b and the first phase difference plate 15a, or the arrangement position P5 between the liquid crystal panel 0c and the second phase difference plate 15e, or the liquid crystal panel 15c and The arrangement position P 6 between the second polarizing plates 1 5 d. 17(d) to 17(f) show a third phase difference plate 15f disposed between the second retardation plate 15e and the liquid crystal panel 15c, and a side where light is incident on the liquid crystal panel 15c. The first phase difference plate 15a and the second phase difference plate 15e are disposed, and the first substrate 1501a and the second substrate 1501e corresponding to the first substrate 1501a and the second substrate 1501e are arranged so as to be near or far from each other with reference to the liquid crystal panel 15c. form. Specifically, Fig. 17 (d) is disposed such that the first substrate 1 5 0 1 a side on which the first vapor-deposited film 1503a is vapor-deposited from the first 相位 retardation plate 15a can be separated from the liquid crystal panel 15 c. At the same time, the second substrate 1 50 1 e side on which the second vapor deposition film 1 503 e is vapor-deposited by the second retardation film 15e can be disposed close to the liquid crystal panel 15 c. In the first step of the vapor deposition first vapor deposition film 1503a of the first retardation film 15a, the first substrate 1 5 0 1 a side can be disposed close to the liquid crystal panel 15 c. At the same time, the second substrate 1501e side on which the second vapor deposition film 1503e is vapor-deposited by the second retardation film 15e can be disposed away from the liquid crystal panel 15c. Fig. 17 (f) is a state in which the first vapor deposition film 15a of the first retardation film 15a is vapor-deposited from the -97 to 200944890 1 substrate 1501a side away from the liquid crystal panel 15c. At the same time, the second substrate 1501e side on which the second vapor deposition film I503e is vapor-deposited by the second retardation film 15e can be disposed away from the liquid crystal panel 15c. (Phase Difference Plate on the Output Side) FIG. 17(g) shows a configuration in which the first retardation film 15a and the second retardation film 15e are disposed on the side from which the liquid crystal panel 15c emits light. In particular, the first retardation plate 15a and the second retardation plate 15e, which are disposed on the basis of the emission side, can be similarly obtained in various forms based on the incident side. Regarding the case of the arrangement shown in Fig. 17(g), specifically, as shown in Fig. 19, (i) the length of the liquid crystal molecules 5 1 which are inclined along 10 to 30 minutes in the bright view direction. The axial direction and (ii) have the first retardation plate 15 a having the first optical axis in the same direction as the pupil in the clear direction, and have the same 9 o'clock along the clear view direction. The refractive index formed by the second retardation plate 15e on the second optical axis in the direction intersects with the main refractive index nx'' of the optical axis of the asymmetrical medium 255 ae, and thus the first retardation plate 15al Q and the second phase difference The plate 1 5 e and the third phase difference plate 1 5 f are three-dimensionally compensated in such a manner that the optical anisotropy of the liquid crystal molecules 51 can be optically isotropic in the projector of the present invention, except for the one shown in FIG. In addition to the form of the species, various forms derived from the nine types of forms may be employed. On the other hand, when the first phase difference plate 15a1, the second phase difference plate 15e, and the third phase difference plate 15f are disposed on the light emission side of the liquid crystal panel 15c, the first phase difference plate 15a1 can be disposed on the light emission side of the liquid crystal panel 15c. By compensating for the entire light transmitted through the liquid crystal panel -98- 200944890 1 5c, a better optical compensation effect can be obtained. Further, in the embodiment of Fig. 17 (g), the first retardation film 1 5 a 1 , the second retardation film 15 e and the third phase difference plate are disposed on the light emitting side of the liquid crystal panel 15 c. In the case of 15f, the first retardation film 15 a1, the second retardation film 15e, and the third retardation film 15f can be separated from the light source, thereby effectively preventing the first retardation plate 15al from being irradiated with light or accompanying temperature rise. The second retardation plate 15e and the third retardation plate 15f are deteriorated, and the projector is excellent in reliability. In the embodiment of Fig. 17 (a), Fig. 17 (b), and Fig. 17 (d) to Fig. 17 (f), the first retardation film 15a1 and the second phase are disposed on the light incident side of the liquid crystal panel 15c. Since the phase difference plate 15e and the third phase difference plate 15f are configured to adjust the appropriate phase difference to the light from the light source, the light is incident on the liquid crystal panel 15c. In particular, when the long-axis direction of the liquid crystal molecules is, for example, 1 o 30 minutes in the normal viewing direction, the optical axis of the first retardation plate 15a and the second retardation plate 15e is extended. The direction also changes. (Third Embodiment) Next, a phase difference plate according to a third embodiment will be described with reference to Figs. 20 and 21 . Here, Fig. 20 is an enlarged cross-sectional view showing a plan view of the phase difference plate of the third embodiment (Fig. 20 (a)) and an enlarged view of the H-H' section of Fig. 20 (a). Fig. 21 is an external perspective view of the phase difference plate according to the third embodiment (Fig. 21 (a)), and a ratio of the ratio of the front phase difference to the two phase differences in the third embodiment (Fig. 21 (b)). . Further, Fig. 20 (-99-200944890 a) 'the X-direction Z directions shown in Fig. 20 (b) and Fig. 21 (a) are common. As shown in Fig. 20 (a) and Fig. 20 (b), the third phase difference plate 15 5 a includes a first substrate 1501 made of, for example, transparent glass, and a film 1 503a formed on the first substrate 1501. The first vapor deposited film 1503a is an inorganic material such as a steamer Ta2 05 on the first substrate 1501 to the first substrate 1501 and the first substrate 1501. Here, as shown in Fig. 20 (b), the first vapor deposition film has a film structure including a portion having a columnar structure in which an inorganic substance is formed obliquely. Such a structure has a phase difference more or less due to its fine structure. The first vaporized ore film 1503a provided is a slope having a cross section of the microplate 10.5, which is vapor-deposited along the oblique direction of the inorganic material: a columnar portion 1 503 at. In particular, as shown in Fig. 21 (a), the polar angle 规定 for specifying the measurement direction is a normal angle to the substrate surface 15as. A typical polar angle is the line of sight angle that will be viewed from the front of the phase difference plate. In the present embodiment, the polar angle 倾斜 which is inclined from the normal direction is set to be negative, and the polar angle 相反 which is inclined obliquely is defined. Further, in the measurement direction of the phase difference of the light, that is, the in-plane direction in the substrate surface 15as, the oblique direction D in which the object is obliquely vapor-deposited is projected: the direction, the Y direction, and the embodiment. The first vapor deposition on the upper substrate or the like is formed in the first direction by the oblique direction D. The inorganic film which is grown in the microscopic direction D is a phase difference plate 1 5 a, and the first base and the direction are When the angle of inclination of the phase difference P extended by D is set to the 〇 degree, the direction of the diagonal direction D is positive, and the direction of the azimuth direction is made simple, so that the direction of the substrate surface 15as-100-200944890 without g, in other words, ' γ direction. Typically, the above vapor deposition angle and polar angle Θ can be on the same plane 15ah. Thereby, when the vapor deposition angle and the polar angle Θ are set in the same manner, the degree of improvement in the contrast of the liquid crystal device can be grasped in accordance with the phase difference of the inorganic material itself. The ratio of the two phase differences in the third embodiment is a ratio between two phase differences in which the polar angle is a variable. Typically, when the phase difference when the polar angle is "30 degrees" is used as the reference, the phase 0 difference when the polar angle is "30 degrees" and the polar angle is "-3 0 degrees". The ratio of the phase differences, that is, the ratio R[30] is defined according to the second equation (1). R[30] = Re ( -30 ) / Re ( 30 ) . . . . . . (1) Here, Re (30) means a phase difference when the polar angle is "30 degrees", and Re (-30) is a phase difference when the polar angle is "-30 degrees". Specifically, as shown in FIG. 21(b), the phase difference when the polar angle is "30 degrees" is 9 (nm), and the phase difference when the polar angle is "-30 degrees" is 54 (nm). When substituting "9" into Re (30) in equation (1), φ substituting "54" into Re (-30), thereby obtaining ratio R[30] = "6". In particular, in the third embodiment, the ratio between the two phase differences in which the two polar angles which are symmetrical with respect to the normal direction is a variable is described. However, the present embodiment is not limited thereto. The ratio of the two phase differences in the third embodiment can be, for example, a ratio of a phase difference when the polar angle is "30 degrees" and a phase difference when the polar angle is "-2 0 degrees". The direction is used as a reference to form a ratio between two phase differences in which the two asymmetric polar angles are variable. Alternatively, the ratio of the phase difference in the present embodiment may be, for example, a phase difference when the polar angle is "twist", a front phase difference, and a polar angle of -30 degrees. -101 - 200944890 The ratio of the difference is equal to the ratio between the two phase differences of the variable two polar angles with the normal direction as the reference. In short, as long as it is a ratio between two phase differences that differs by at least two different polar angles as a variable, it is possible to define contrast with a frontal phase difference described later based on theory, experiment, experience, or simulation. Relevant relationship. (Quantitative analysis of contrast improvement due to difference in front phase difference, vapor deposition angle, and phase difference) Next, the front phase difference and vapor deposition of the phase difference plate according to the third embodiment will be described with reference to FIGS. 22 and 23 . Quantitative analysis of contrast improvement over angle and phase difference. Here, Fig. 22 is a graph showing the quantitative correlation between the front phase difference, the phase difference ratio, and the contrast of the phase difference plate of the third embodiment. In addition, @,令'〇, □, and ▽ shown in Fig. 22 are "17〇〇~18〇〇", "1600~1700", "1500~1600", and "1400~" corresponding to the contrast, respectively. 1500", and Γ 1 3 00~1 400". FIG. 23 is a graph showing the quantitative correlation between the phase difference, the polar angle, and the vapor deposition angle in the thickness of the phase difference plate according to the third embodiment (FIG. 23(a)), and shows the vapor deposition in the third embodiment. A pattern diagram of the relationship between the angles of the angles (Fig. 23 (b)) and the quantitative correlation between the phase difference, the polar angle, and the thickness of the phase difference plate when the vapor deposition angle of the phase difference plate of the third embodiment is the same Chart (Figure 23(c)). Further, in Figs. 23(a) and 23(c), the horizontal axis represents the polar angle, and the vertical axis represents the phase difference. According to the inventors' research, as shown in @ and the fields A1 - 102 - 200944890 in Fig. 22, in order to achieve a relatively high contrast ratio in the range of "1 700 to 1 800", it is desirable to make the phase difference The ratio R[3〇] forms about "1. 5"~ about "3. The range between 2 and YA1 is such that the front phase difference forms a range XA1 between about "20" and about "30". Alternatively, as shown by @ and the field A2 in Fig. 22, in order to achieve a relatively high contrast ratio in the range of "17 00 to 1800", the phase difference ratio R[3〇] is formed to be about 6. 5" ~ about "9. The range between 5" and YA2 is such that the front phase difference forms a range XA2 between about "0 15" and about "17". In detail, as shown in FIG. 23(a) and FIG. 23(b), for example, when the thickness of the phase difference plate 15a is the same, it is clear that the vapor deposition angle becomes larger, in other words, As the oblique direction at the time of vapor deposition approaches the normal direction, the polar angle at the time of vapor deposition approaches zero, and the amount of change in the phase difference per constant angle of the polar angle becomes small. Thereby, it is clear that the phase difference R[30] is close to "1" as the distillation angle becomes larger. Alternatively, as shown in FIG. 23(a) and FIG. 23(b), for example, when the thickness of the phase difference plate 15a is the same, it is clear that the vapor deposition angle is small, in other words, As the oblique direction in the vapor deposition is away from the normal direction, the polar angle at the time of vapor deposition is larger than zero, and the amount of change in the phase difference per constant angle of the polar angle becomes large. Therefore, it is clear that the ratio R[30] of the phase difference is a large deviation from "1" as the vapor deposition angle becomes smaller. According to the inventors of the present invention, as shown in FIG. 23(c), for example, when the vapor deposition angle is the same, it is clear that the thickness of the phase difference plate 15a is increased, and the polar angle is set to "0 degree". The phase difference and the so-called front phase difference become large. Alternatively, according to the inventors of the present invention, as shown in Fig. 23(c), -103-200944890, for example, when the vapor deposition angle is the same, it is clear that as the phase difference plate becomes smaller, the front phase difference becomes smaller. Specifically, when the thick line is a relatively large thickness of the difference plate, the dotted line corresponds to the phase difference plate to the hour. In this manner, by making the vapor deposition angle and the film thickness of the retardation plate appropriate, the phase and front phase difference can be set separately so that the contrast can be maximized. In other words, the contrast of the phase difference plate can be made larger by using the ratio parameter of the phase difference as the variable parameter in the first embodiment described above. Further, one of the first predetermined ranges of the present invention and the other specific examples of the phase difference ratios YA1 and YA2 according to the first aspect of the present invention constitute one of the ranges of the present invention and others. Specific examples. (The front phase difference and the range of the rotation angle of the phase difference plate are related to each other.) Next, the range of the rotation angle of the difference and the phase difference plate according to the present embodiment (hereinafter referred to as "tuning range") will be described with reference to FIG. The correlation of contrast. Here, FIG. 24 is a correlation table between the quantitative difference between the front phase difference and the adjustment angle in the embodiment (FIG. 24(a)), and the correlation between the adjustment angle of the front retardation plate and the quantitative contrast of the front embodiment. 24(b)) 〇 As shown in Fig. 24 (a), as the front phase difference becomes larger, the thickness of 15a corresponds to the thickness of the phase, and the difference in the difference is the ratio of the vapor deposition angle as the variable i XA2 . In addition, the phase of the positive phase of the second aspect of the phase indicates the map of the real relationship and the phase difference chart (the figure can be reduced by -104-200944890. In addition, as the front phase difference becomes smaller, the adjustment angle of the phase difference plate 15a up to the maximum contrast can be increased. Specifically, as shown in Fig. 24 (a), when the front phase difference is Re When (0) is "3 0 (nm)", the adjustment angle of the phase difference plate 15 5 a can be formed, for example, by 3 degrees. When the front phase difference Re(0) is "15 (nm)", the phase difference can be made. The adjustment angle of the plate 15a is, for example, 5 degrees. When φ is added, as shown in Fig. 24(b), as the front phase difference is increased, the amount of change in contrast per unit angle of the adjustment angle of the phase difference plate 15a can be increased. In other words, as the front phase difference becomes smaller, the amount of change in contrast per unit angle of the adjustment angle of the phase difference plate 15a can be reduced. Specifically, as shown in FIG. 24(b), when the front phase difference is Re(0) When it is "30 ( nm )", when the adjustment angle of the phase difference plate 1 5 a is formed to 3 degrees, When the front phase difference Re (0) is "15 (nm)", when the adjustment angle of the phase difference plate 15a is 5 degrees, the maximum contrast can be obtained. When the Re(o) is "30 (nm)", the angle of change of the contrast per unit angle of the adjustment angle of the phase difference plate 15a can be different from the phase difference plate when the front phase difference Re (0) is "1 5 (nm)". The amount of change in the contrast per unit angle of the adjustment angle of 15a is larger, and the curve of the steep whistle is shown in Fig. 24(b). According to the third embodiment, in addition to the setting of the ratio 値 of the two phase differences described above, By setting the front phase difference 値 to an appropriate 値, it is possible to easily and appropriately determine the range of the adjustment angle of the desired phase difference plate 15a in the manufacturing assembly process of the projector or the user's adjustment operation - 105-200944890, it is very advantageous in practice. (Fourth Embodiment) Next, a polarizing plate and a retardation plate according to a fourth embodiment will be described with reference to Figs. 25 and 26. Here, Fig. 25 shows a fourth embodiment. An illustration of the composition of the liquid crystal light valve. In the fourth embodiment, the same components as those of the above-described embodiment are denoted by the same reference numerals. The description of the same reference numerals will be omitted as appropriate. As shown in Fig. 25, the phase difference plate of the fourth embodiment is 15 a (also In other words, the other specific example of the first retardation film of the present invention includes a vertical vapor deposition film 1501c that is vertically vapor-deposited and has a refractive index that is opposite in refractive index to the anisotropic medium 255c. The first substrate 1501 is vapor-deposited with a first vapor deposited film 1503a that maintains a refractive index anisotropic refractive index to the anisotropic medium 255a, and a second substrate 1502. In general, the vertical shovel film 1501c such as a C plate is minute bubbles generated in the manufacturing process, and is more or less contained in the vertical vapor deposition film 1501c. On the other hand, in the present embodiment, the vertical vapor deposition film 1 50 1 c is compared with the first substrate 1501, the first vapor-deposited film 1503a, and the second substrate 1502, and is disposed at a distance farthest from the liquid crystal panel 15c. Thereby, the degree of focusing on the bubbles contained in the vertical vapor-deposited film 1501c can be remarkably lowered. Thereby, it is possible to effectively suppress the bubbles contained in the vertical vapor deposition film 1501c from being projected and adversely affect the projected image. (Detailed Configuration of Phase Difference Plate) -106- 200944890 Here, a detailed configuration of the phase difference plate according to the present embodiment will be described with reference to Fig. 26 . Here, FIG. 26 is an external perspective view showing a vapor deposition direction and a vapor deposition angle in which the relative positional relationship between the refractive index of the two types of the phase difference plates of the fourth embodiment and the first substrate of the phase difference plate is defined. . As shown in Fig. 26, in the first vapor deposition film 1501c constituting the retardation film 15a, the refractive index-oriented anisotropic medium 255c is vertically shoveled from the lower side to the upper side of the second substrate 1501 on the first substrate 1501. Specifically, as described above, the main refractive indices nx', ny', and nz' of the first vapor deposited film 1501C are configured to satisfy the relationship of satisfying nx' = ny' > nz'. In the first vapor deposition film 1503a constituting the retardation film 15a, the refractive index to the anisotropic medium 255a is obliquely vapor-deposited from the upper side to the lower side in the predetermined direction, that is, in the vapor deposition direction. On the first substrate 1501. In addition, the refractive index-to-heterotropic medium 2 5 5 a is an optical axis corresponding to the principal refractive index nx of the refractive index to the anisotropic medium 2 5 5 a, and can have an angle with the plane direction of the second substrate 1501, that is, steam. The angle of plating is used for oblique evaporation. This vapor deposition angle is, in other words, a value obtained by subtracting the angle between the normal line of the first substrate 1501 and the optical axis corresponding to the refractive index of the principal refractive index nx of the anisotropic medium 255a by 90 degrees. Alternatively, the vapor deposition angle may be an angle corresponding to the optical axis of the main refractive index nx of the refractive index to the anisotropic medium 25 5 a and the vapor deposition direction. For example, when a vertical vapor deposition film 1501c such as a C plate is formed by a sputtering method on the first vapor deposition film 1053a which is vapor-deposited by oblique evaporation, the vertical vapor deposition film 1501c of C; K or the like is inclined by When the first vapor-107-200944890 coating 1503a is formed by the square vapor deposition method, moisture is mixed into the vertical vapor deposition film 1 50 1 c during the formation treatment, and the quality of the vertical vaporized film 1 5 0 1 c is lowered. A technical problem occurs. In the fourth embodiment, for example, a vertical vapor deposition film 1501c such as a C plate is formed on one surface of the first substrate 1501, and the first vapor deposition film 1503a is formed on the other of the first substrate 1501. surface. As a result, when the vertical vapor deposition film 1501c such as a C plate is formed by a sputtering method, the degree of mixing of moisture into the vertical vapor deposition film 1501c can be reduced, so that the quality of the vertical vapor deposition film 1501c can be further improved. (Fifth Embodiment) Next, a polarizing plate and a retardation plate according to a fifth embodiment will be described with reference to Fig. 27 . Here, Fig. 27 is a view showing the configuration of a liquid crystal light valve according to a fifth embodiment. As shown in FIG. 27, the liquid crystal light valve 15 of the fifth embodiment is configured by: the liquid crystal panel 15c, and the first polarizing plate 15b disposed on the outer side of the counter substrate 3 1 of the liquid crystal panel 15c. The phase difference plate 15a on the outer side of the TFT array substrate 32 and the second polarizing plate 15d disposed on the outer side of the phase difference plate 15a are formed. In the liquid crystal light valve 15 of the present embodiment, the side on which the first polarizing plate 15b is disposed (upper side in the drawing) is the light incident side, and the side on which the second polarizing plate 15d is disposed is the light emitting side. In the liquid crystal panel 15c, the alignment film 4398 which is opposed to the liquid crystal layer 34 is formed by evaporating -108-200944890 ruthenium oxide in an oblique direction which is about 50 degrees from the normal direction of the substrate. The film thickness is about 4 〇 nm. The alignment directions 43a and 98a indicated by the arrows of the alignment films 43 and 98 attached to the 漘 are aligned in the direction of the substrate in the vapor deposition direction at the time of formation. The alignment direction 43a of the alignment direction and the alignment direction 98a of the alignment film 98 are mutually entangled, and the alignment regulating force 'the liquid crystal 51 of the alignment films 43 and 98 is aligned in a state of being inclined by 2 to 8 degrees from the normal line of the substrate'.方向 The direction of the director of the liquid crystal molecules 51 (pretilt direction P) can be aligned with the first polarizing plate 15b and the second polarizing plate 15d so as to form the direction along the alignment directions 43a and 98a in the plane direction. The three-layer structure of the polarizing element 151 is sandwiched by 152, which is made of TAC (Triacetyl Cellulose), which is made of dyed PVA (polyvinyl alcohol). As shown in Fig. 4, the transmission axis 151b of the first polarizing plate 15b and the transmission axis 151d of the polarizing plate 15d are arranged orthogonally. The directions of the transmission axes 151b and 151d of the offsets Q15b and 15d are directions which are shifted by 45° in the plane direction (vapor deposition direction) 43a of the alignment film 43 of the liquid crystal panel. The phase difference plate 15a is configured to include a first vapor deposition film 1503a, a substrate 1501, and a second substrate 152 which are vapor-deposited with a refractive index anisotropic refractive index to an anisotropic medium. On the side of Fig. 27, the luminosity in the optical axis direction of the refractive index ellipsoid of the anisotropic medium 255a is shown. In the present embodiment, the principal refractive indices nx, ny, and nz are structures forming a relationship of nx > ny > nz. That is, the first substrate 1501 or i 27 is in parallel with the shape I 43 and the second light plate 15c is configured to be refracted by the second light plate 15c. The first fold is satisfied to satisfy the second -109-200944890 substrate 1502. The refractive index nx in the direction in which the normal direction is inclined is larger than the refractive indices ny, nz in the other directions, and the refractive index ellipsoid is formed into a rice grain type. Specifically, a typical example of the refractive index to the anisotropic medium 255a is a biaxial plate. According to the present embodiment, the direction in which the first refractive index of the first retardation plate is inclined to the first optical axis and the first retardation plate are adjusted by oblique ore distillation of the first vaporized film. The angle difference between the first refractive index and the first optical axis intersecting the first substrate is such that the phase difference generated in the liquid crystal panel can be reliably compensated by the first retardation film. As a result, high contrast and quality can be achieved. (Sixth embodiment) Next, a polarizing plate and a retardation plate according to a sixth embodiment will be described with reference to Fig. 28 . Here, Fig. 28 is a view showing the configuration of a liquid crystal light valve according to a sixth embodiment. As shown in FIG. 28, the liquid crystal light valve 15 of the sixth embodiment is disposed on the TFT array 15c, the first polarizing plate 15b disposed outside the counter substrate 31 of the liquid crystal panel 15c, and the TFT array. The phase difference plate 15a on the outer side of the substrate 32 and the second polarizing plate 15d disposed on the outer side of the phase difference plate 15a are formed. In the liquid crystal light valve 15 of the present embodiment, the side on which the first polarizing plate 15b is disposed (upper side in the drawing) is the light incident side, and the side on which the second polarizing plate 15d is disposed is the light emitting side. In the liquid crystal panel 15c, the alignment film 4398 which is opposed to the liquid crystal layer 34 is, for example, offset from the substrate normal direction 50. The degree of oblique direction is steamed -110- 200944890 formed by mineral oxides. The film thickness is about 40 nm. The alignment directions 43a and 98a indicated by the arrows attached to the alignment films 43 and 98 of Fig. 28 coincide with each other in the direction of the substrate in the vapor deposition direction at the time of formation. The alignment direction 43a of the alignment film 43 and the alignment direction 98a of the alignment film 98 are parallel to each other, and by the alignment regulating force of the alignment films 43, 98, the liquid crystal molecules 51 are inclined by 2 to 8 degrees from the substrate normal. In the state of the φ liquid crystal molecules 51, the direction of the director (pretilt direction P) can be aligned in the direction of the alignment direction 43a, 98a in the substrate surface direction. Each of the first polarizing plate 15b and the second polarizing plate 15d has a three-layer structure in which the polarizing element 151 is sandwiched by two protective films 152. The two protective films 152 are made of TAC (Triacetyl Cellulose). In this configuration, the polarizing element 151 is made of dyed PVA (polyvinyl alcohol). As shown in FIG. 4, the transmission axis 151b of the first polarizing plate 15b and the transmission axis 151d of the second polarizing plate 15d are arranged orthogonally. The directions of the transmission axes 151b and 151d of the polarizing plates Q 15b and I5d are directions in which the alignment direction (vapor deposition direction) 43a of the alignment film 43 of the liquid crystal panel 15c is slightly shifted by 45°. The phase difference plate 15a (that is, a specific example of the first phase difference plate of the present invention) includes a first substrate 1501 and a vertical vapor deposition film that vertically vapor-deposits a refractive index-converting refractive index to an anisotropic medium 255c. The 1501c and the inclined steamer have a first vapor deposition film 1503a that maintains a refractive index anisotropic refractive index to the anisotropic medium 255a, and a second substrate 1502. On the side of the vertical vapor deposition film 1501c of Fig. 28, the average refractive index ellipsoid of the refractive index of the straight vapor deposition film 1501c to the anisotropic medium 255c is schematically shown. In the figure, nx' and ny' are principal refractive indices respectively indicating the surface direction of the vertical deposited film 1501c, and nz' is a principal refractive index indicating the thickness direction of the vertical deposited film 1501c. In the present embodiment, the principal refractive indices nx', 1^', and 112' are formed so as to satisfy the relationship of 1^'=115^'>1^'. That is, the refractive index nz' in the thickness direction is smaller than the refractive index in the other direction, and the refractive index ellipsoid is formed into a disk shape. The refractive index ellipsoid 255c is aligned parallel to the plane of the vertical vapor-deposited film 1501c, and the optical axis direction of the vertical deposited film 1501c (the short-axis direction of the refractive index ellipsoid) is parallel to the normal direction of the plate surface. The main refractive index of the refractive index ellipsoid in the optical axis direction of the refractive index 255a is shown on the side of the first vapor deposited film 1503a of Fig. 28. In the present embodiment, the principal refractive indices nx, ny, and nz are configured to form a relationship satisfying nx > ny > nz. That is, the refractive index nx in the direction inclined from the normal direction of the first substrate 1501 or the second substrate 1502 is larger than the refractive index ny, nz in the other direction, and the refractive index ellipsoid is formed into a rice grain type. According to the present embodiment, the direction in which the refractive index of the first retardation film is inclined toward the optical axis of the opposite phase and the first refractive index of the first retardation film are adjusted by the oblique vapor deposition of the first vapor deposited film. In addition to the angle at which the first optical axis of the opposite sex intersects with the first substrate, the uniaxial refractive index of the uniaxial phase difference plate may be lower than the uniaxial optical axis of the opposite side in the thickness direction by the phase difference. The board reliably compensates for the phase difference generated in the liquid crystal panel. As a result, a high-contrast, high-quality display can be obtained. (Seventh embodiment) - 112 - 200944890 Next, a polarizing plate and a phase difference plate according to a seventh embodiment will be described with reference to Fig. 29 . Here, Fig. 29 is a view showing the configuration of a liquid crystal light valve according to a seventh embodiment. As shown in FIG. 29, the liquid crystal light valve 15 of the seventh embodiment is composed of the above-described liquid crystal panel 15c and the first polarizing plate 15b disposed on the outer side of the counter substrate 3 1 of the liquid crystal panel 15 c. The first retardation film 15a outside the TFT array substrate 32, the second retardation film 15e disposed outside the first retardation film 15a, and the outer side disposed on the outer side of the second retardation plate 15e 2 The polarizing plate is composed of 1 5 d. Further, in the liquid crystal light valve 15 of the present embodiment, the side on which the first polarizing plate 15b is disposed (upper side in the drawing) is the light incident side, and the side on which the second polarizing plate 15d is disposed is the light emitting side. In the liquid crystal panel 15c, the alignment film 4398 which is opposed to the liquid crystal layer 34 is formed by evaporating cerium oxide in an oblique direction which is about 50 degrees from the normal direction of the substrate. The film thickness is about 40 nm. The alignment directions 43a and 98a indicated by the arrows attached to the alignment films 43 and 98 of Fig. 29 coincide with each other in the direction of the substrate in the vapor deposition direction at the time of formation. The alignment direction 43a of the alignment film 43 and the alignment direction 98a of the alignment film 98 are parallel to each other, and by the alignment regulating force of the alignment films 43, 98, the liquid crystal molecules 51 are inclined at an angle of 2 to 8 degrees from the substrate normal. In the state of alignment, the direction of the director of the liquid crystal molecules 51 (pretilt direction P) can be aligned in the direction of the alignment direction 43a, 98a in the substrate surface direction. Each of the first polarizing plate 15b and the second polarizing plate 15d has a three-layer structure in which the polarizing element 151 is sandwiched by two sheets of the protective film 152, which is made of TAC (cellulose triacetate). It is composed of Tri acetyl Cellulose, and the polarizing element 151 is composed of dyed PVA (polyvinyl alcohol). As shown in FIG. 4, the transmission axis 151b of the first polarizing plate 15b and the transmission axis 151d of the second polarizing plate 15d are arranged orthogonally. The directions of the transmission axes 151b and 151d of the polarizing plates 15b and 15d are directions in which the alignment direction (vapor deposition direction) 43a of the alignment film 43 of the liquid crystal panel 15c is slightly shifted by 45°. The first retardation film 15a is configured to include a first vapor deposited film 1 503a, a substrate 1501a, and a substrate 15 02a» which are vapor-deposited to maintain a refractive index anisotropic refractive index to an anisotropic medium. The main refractive index of the refractive index ellipsoid in the optical axis direction of the refractive medium 255a is displayed on the side of the phase difference plate 15a. In the present embodiment, the principal refractive indices nx', 11 > ^, 112' are formed so as to satisfy the relationship of 1^' > 117' > 112'. That is, the refractive index nx' in the direction inclined from the normal direction of the substrate 1501a or the substrate 153a is larger than the refractive indices ny' and nz' in the other directions, and the refractive index ellipsoid is formed into a rice grain type. The second retardation film 15e has a structure in which a second vapor deposition film 1 503e, a substrate 1501e, and a substrate 150 2e which are formed by a refractive index anisotropic refractive index to an anisotropic medium are obliquely deposited. The main refractive index in the optical axis direction of the refractive index ellipsoid of the refractive index to the anisotropic medium 25 5 e is displayed on the side of the second retardation plate 15e of Fig. 29 . In the present embodiment, the principal refractive indices nx ’', 1^'', and 11B'' are formed so as to satisfy the relationship of 11\, '>117''>112''. That is, the refractive index nx'' in the direction inclined from the normal direction of the substrate 1501e or the substrate 1 502e is larger than the refractive indices ny'', nz'' in the other directions, and the refractive index ellipsoid is formed into rice grains. type. In particular, when the second retardation film 15e (or the first retardation film 15a) is viewed in the normal direction, it is preferable that the main refractive index nx of the second retardation film 15e is inclined by the optical axis. The direction in which the optical axis of the principal refractive index ηχ' of the first retardation film 15 a is inclined is orthogonal. Specifically, a typical example of the refractive index to the anisotropic medium 2 5 5 a (or the refractive index φ to the anisotropic medium 255e) is a biaxial plate. According to the present embodiment, the first refractive index of the first retardation film is adjusted in the direction in which the first optical axis of the first retardation film is inclined by the oblique vapor deposition of the first vapor deposition film, and the second vapor deposition film is used. By the oblique vapor deposition, the second refractive index of the second retardation plate is adjusted to be lower than the second direction in which the second optical axis of the opposite polarity is inclined, and the liquid crystal can be reliably compensated by the first and second retardation plates. The phase difference produced in the panel. As a result, it is possible to obtain high-contrast and high-quality display φφ. Further, other specific examples of the first retardation film 15a (or 15al) and the second retardation plate 15e according to the embodiment of the present invention may be provided, for example. An optically anisotropic layer composed of a disk-shaped liquid crystal that is aligned (inclination) in a state where the plate surface of the phase difference plate is inclined. These retardation plates are formed by providing an alignment film on a support such as Triacetyl Cellulose (TAC), and applying a discotic liquid crystal such as a triphenylene derivative to the alignment film. More specifically, it is prepared to form an alignment film such as polyimide or the like on the surface of a support of one set, and apply a discotic liquid crystal to one of the supports, and then insert the discotic liquid by the other support. -115- 200944890 Crystal. Then, after the disc-shaped nematic (ND) phase is formed by heat treatment, the alignment state is fixed by overlapping with ultraviolet rays or the like. At the time of formation of the ND phase, the discotic liquid crystal is pretilted by the alignment film to form a state in which the optical axis is inclined. The inclination of the optical axis can be controlled by the alignment treatment (face grinding, etc.) of the alignment film. Alternatively, other specific examples of the first retardation film 15a (or 15al) and the second retardation film 15e according to the embodiment of the present invention may be obtained by using a polycarbonate (polycarbonate) or a norbornene resin. Shear stress is applied to extend the fabrication. In this case, the material resin is stretched in the two directions while being heated to the vicinity of the glass transition point, and sandwiched between the pair of substrates to be heated. Then, while applying pressure to the material resin from the outside of one of the substrates, the pair of substrates are shifted from each other in the opposite direction. Thereby, shear stress is applied to the upper and lower surfaces of the material resin in opposite directions to each other, and the optical axis direction of the optical body constituting the material resin is inclined. The inclination of the optical axis can be controlled according to the magnitude of the shear stress. The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the scope of the invention or the spirit of the invention as described in the entire scope of the application, and the optical compensation of the liquid crystal device, the projector, and the liquid crystal device. The method is also included in the technical scope of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a configuration of a liquid crystal projector according to an embodiment of the present invention. FIG. 2 is a view showing a general configuration of a liquid crystal panel according to an embodiment of the present invention (FIG. 2 (-116-200944890 a)) and along FIG. 2 is a cross-sectional view of the liquid crystal light valve of the embodiment of the present invention. FIG. Fig. 4 is a view showing an optical axis arrangement of each component of Fig. 3 in the embodiment. FIG. 5 is an external perspective view showing a vapor deposition direction and the like in which the relative refractive index of the first retardation film of the first embodiment of the present embodiment is different from that of the substrate corresponding to the first retardation plate (FIG. 5(a)). And an external perspective view (Fig. 5(b)) showing the relative positional relationship between the refractive index constituting the second retardation plate and the substrate corresponding to the second retardation plate (Fig. 5(b)), and An external perspective view showing the relative positional relationship between the refractive index of the first phase difference plate and the refractive index of the asymmetrical medium and the refractive index constituting the second phase difference plate to the anisotropic medium and the substrate (Fig. 5(c)). 6 is a plan view showing a relative positional relationship between the refractive index of the first and second retardation plates of the first embodiment and the optical axis of the liquid crystal molecules constituting the liquid crystal panel (FIG. 6(a)); The elevational view (Fig. 6 (b)) is shown in Fig. 7 as a commemorative display of the refractive index of the first retardation film of the present embodiment to the anisotropic medium and the refractive index of the second retardation plate. A state pattern diagram in which the optical refractive index of the synthesized refractive index to the anisotropic medium and the optical anisotropy of the liquid crystal molecules constituting the liquid crystal panel are combined to realize optical isotropy. 8 is a bar graph showing the relationship between the thickness of the first and second retardation plates of the first embodiment and the first retardation plate and the second retardation plate (FIG. 8(a)). And a graph showing the correlation between the film thickness of the first and second retardation plates of the present embodiment and the contrast of light (Fig. 8(b)). Fig. 9 is a graph showing quantitatively the correlation between the vapor deposition angle and the contrast of the refractive index of the first and second retardation plates of the present embodiment to the first substrate. FIG. 10 is a view showing quantitatively the first and second phase differences and polar angles when the film thickness of the first and second retardation plates of the present embodiment and the vapor deposition angle of the refractive index of the phase difference plate are changed to the anisotropic medium. A diagram of the correlation (Figures 10(a) and 10(b)). Fig. 11 is a schematic block diagram showing a liquid crystal light valve according to a second embodiment of the present invention. Fig. 12 is a graph showing the relationship between the type, the phase difference, and the polar angle of the phase difference plate of the phase difference plate according to the second embodiment of the present invention. Fig. 13 is a graph showing the correlation between the type and the contrast of the phase difference plate of the phase difference plate according to the second embodiment of the present invention. Fig. 14 is a view showing an optical axis arrangement of each component of Fig. 11; Fig. 15 is a bar graph showing quantitatively the correlation between the contrast achieved by the first to third retardation plates of the present embodiment and the contrast achieved by the phase difference plate of the comparative example. FIG. 16 is a distribution diagram showing luminance variations of the liquid crystal panel to which the retardation film of the present embodiment and the comparative example are applied (FIG. 16(a) and FIG. 16(b) -118 - 200944890. FIG. 17 is a view showing the liquid crystal light of the embodiment. A schematic diagram of the arrangement of the components of the valve 15 (Fig. 17 (a) to Fig. i7 (i)). Fig. 18 is a view showing the first refractive index anisotropy and the second phase of the first retardation plate of the present embodiment. The refractive index of the second refractive index of the retardation plate to the opposite polarity to the anisotropic medium, the refractive index to the vapor deposition direction of the anisotropic medium, and the uniaxial refractive index of the third retardation plate to the opposite phase, and the composition A schematic diagram showing the relative positional relationship of the liquid crystal molecules of the liquid crystal panel. U FIG. 19 is a view showing the first refractive index anisotropy of the first retardation film of the present embodiment and the second refractive index anisotropy of the second retardation plate. The refractive index of the opposite polarity to the anisotropic medium, the refractive index to the vapor deposition direction of the anisotropic medium, the uniaxial refractive index of the third retardation plate, the anisotropy, and the relative positional relationship of the liquid crystal molecules constituting the liquid crystal panel Other mode diagrams. Figure 20 is a view of the present invention. 3 is a plan view of the phase difference plate of the embodiment (Fig. 20 (a)) and an enlarged cross-sectional view of the H-H' section of Fig. 20 (a). Fig. 21 is a phase difference plate according to a third embodiment of the present invention. The external appearance perspective view (Fig. 21 (a)) and the ratio of the front phase difference and the two phase differences in the third embodiment are quantitatively shown (Fig. 21 (b)). Fig. 22 shows the phase difference of the third embodiment. A graph showing the quantitative correlation between the front phase difference and the phase difference ratio and the contrast ratio of the panel. Fig. 23 is a view showing the phase difference, the polar angle, and the vapor deposition angle of the thickness of the phase difference plate according to the third embodiment. The correlation diagram (Fig. 23(a)) shows a schematic diagram of the magnitude relationship of the vapor deposition angle in the third embodiment (Fig. 23(b)), and the phase difference of the third embodiment -119-200944890 The vapor deposition angle is a graph showing the quantitative correlation between the phase difference, the polar angle, and the thickness of the phase difference plate at the same time (Fig. 23(c)). Fig. 24 is a view showing the quantitative determination of the front phase difference and the adjustment angle in the present embodiment. Graph of sexual correlation (Fig. 24(a)), and frontal phase difference and phase of the present embodiment Fig. 25 is a view showing a configuration of a liquid crystal light valve according to a fourth embodiment. Fig. 25 is a view showing a configuration of a liquid crystal light valve according to a fourth embodiment. Fig. 26 is a view showing a configuration of a liquid crystal light valve according to a fourth embodiment. Fig. 27 is a perspective view showing the appearance of the relative positional relationship between the refractive index of the two types of the phase difference plate and the first substrate of the phase difference plate, and the vapor deposition angle. Fig. 27 is a view showing the liquid crystal light valve of the fifth embodiment. FIG. 28 is a view showing a configuration of a liquid crystal light valve according to a sixth embodiment. FIG. 29 is a view showing a configuration of a liquid crystal light valve according to a seventh embodiment. [Description of main components and symbols] I 〇: Projector II : Screen 1 2 : Light source 1 5, 1 6 , 1 7 , 2 1 5 : Liquid crystal device 15a, 15al, 16a, 17a: 1st phase difference plate - 120 - 200944890 15as : Substrate surface 15 ah : Plane 17d: Polarizer 15b, 16b, 17b, 15d, 16d, 15c, 16c, 17c: liquid crystal panels 15e, 16e, 17e: second phase difference 1 5 f : third phase difference plate 31: opposite substrate 32: TFT array substrates 43a, 98a : alignment direction 43, 98: alignment film 5 1 : liquid crystal molecule 8 1 a : rotation 81e: rotation axis 25 5 a : refractive index to the anisotropic medium 25 5e : refractive index to the anisotropy medium 25 5c : refractive index to the anisotropy medium 1 5 0 1 a : first substrate 1 5 0 1 e : second substrate 1501c: vertical The vapor deposition film 1 502a : the second substrate 1 502e : the fourth substrate 1 5 03 a : the first vapor deposition film 1 5 03 e : the second vapor deposition film 1 503 at : the columnar portion - 121 200944890 D : A1 , LB : LG : LR : P : Oblique direction A 2 : Field blue light Green light Red light Pre-tilt direction -122-