JP3924955B2 - Liquid crystal display device in which retardation film is arranged - Google Patents
Liquid crystal display device in which retardation film is arranged Download PDFInfo
- Publication number
- JP3924955B2 JP3924955B2 JP29829298A JP29829298A JP3924955B2 JP 3924955 B2 JP3924955 B2 JP 3924955B2 JP 29829298 A JP29829298 A JP 29829298A JP 29829298 A JP29829298 A JP 29829298A JP 3924955 B2 JP3924955 B2 JP 3924955B2
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- retardation film
- film
- crystal cell
- axis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
- Laminated Bodies (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、位相差フィルムを配置することで、視野角特性、特に、表示コントラスト及び階調反転の視野角特性が改善された液晶表示装置に関するものである。
【0002】
【従来の技術】
液晶表示装置(以下LCD)として現在最もよく用いられているものは、吸収軸が直交となるように配置された一対の直線偏光フィルムの間に、透明電極を形成した一対のガラス基板の間にガラス基板法線方向に螺旋軸を有し、そのネジレ角度が約90度であるような配向構造を有したネマチック液晶を挟持した液晶セルを挟んだ、ノーマリホワイト(以下NW)モードのツイステッドネマチック型LCD(以下TN−LCD)である。
【0003】
NWモードのTN−LCDは、電圧を印加しない状態では入射した直線偏光が液晶セルの旋光性により90度回転して出射されるため白状態となり、電圧を印加した状態では液晶分子がガラス基板に対して起き上がり、旋光性が消失して、入射した直線偏光はその状態を保ったまま出射されるため黒状態となる。また、この白状態、黒状態とその中間状態を利用することで、階調表示を行っている。
【0004】
しかし、LCDに用いられるネマチック液晶は、分子構造が棒状をしており、分子軸方向の屈折率が大きい正の屈折率異方性を示すものであり、LCDを斜めに通過する光の偏光状態の変化はこの液晶の屈折率異方性による位相差のためにLCDの法線方向とは異なったものとなる。このため、LCD法線方向から外れた角度から表示を見た場合、コントラストが低下したり、階調表示が逆転する階調反転などの現象が起こったりするという視野角特性を示す。
【0005】
この視野角特性は液晶分子の屈折率異方性が原因であることから、液晶分子の屈折率異方性による位相差を補償するための、液晶とは逆の屈折率異方性を示す位相差フィルムを用いた改良が検討されている。
【0006】
視野角特性の改良は、主として黒表示、即ち電圧印加状態における視野角特性を改良することで、大きな効果が得られる。電圧印加状態では液晶分子はガラス基板に垂直に近い状態に配向していることから、この状態をガラス基板法線方向に光学軸を有する正の屈折率異方体とみなし、これを補償する位相差フィルムとしてフィルム法線方向に光学軸を有しかつ負の屈折率異方性を有する位相差フィルムを用いる方法が特開平2−015239号公報や特開平3−103823号公報などに開示されている。しかしながら、実際のLCDにおいては、電圧印加状態にあってもガラス基板付近の液晶分子は基板の配向膜の拘束力によってガラス基板に近い部分では傾斜状態のままであるため、フィルム法線方向に光学軸を有しかつ負の屈折率異方性を有する位相差フィルムでは液晶セルによりもたらされる偏光状態を十分に補償することは難しい。
【0007】
このような傾斜状態の液晶分子をも併せて補償するため、位相差フィルムの光学軸がフィルム法線方向から傾斜した方向にありかつ負の屈折率異方性を有する位相差フィルムを用いる方法も特開昭63−239421号公報や特開平6−214116号公報などに記載されている。しかし、これらの方法では電圧印加状態の液晶セルに対する補償状態は改善されるものの、印加電圧がより低いために傾斜状態の液晶部分が増加してより複雑な配向形態をとる中間階調表示状態においては補償が不完全となるため、表示コントラストの視野角は改善されるが、階調反転現象を改善することは困難であり、結果として不完全な視野角特性しか得ることができない。
【0008】
また別の方法として、液晶と同じ正の屈折率異方性を持ちながらも、光学軸をフィルム法線方向から傾斜させた状態とした位相差板を用いても視野角特性を改良できることが、特開平5−080323号公報、特開平7−306406号公報やWO96/10773号公報などに記載されている。これらの報告では、正の屈折率異方性を有しかつ光学軸をフィルム法線方向から傾斜させた状態とした位相差板を用いることが、液晶セルの階調反転を抑制するのに有効であることが示されているものの、どのような光学特性の位相差板をいかなる形態で使用した場合にその効果が発現されるのかに関しては、具体的に言及されていない。
【0009】
【発明が解決しようとする課題】
このようにTN−LCDの視野角特性の改良に用いられる光学補償板については、表示コントラストのみならず階調反転も併せたトータルでの視野角特性を飛躍的に改善できるものは見いだされていない状況にあった。かかる状況に鑑み、本発明者らが鋭意検討した結果、3つの主屈折率nx、ny 及びnzがnx>ny>nzなる関係を満足する二軸配向性を有しかつX軸と光学軸のなす角度が20〜70°であるような屈折率異方性を有する物質が、Y軸を傾斜軸としてZ軸とフィルム法線方向のなす角度が20〜70°となるように傾斜配向しており、フィルムの光学軸がフィルム面となす角度が20〜70°である位相差フィルムを、傾斜配向していない他の位相差フィルムと積層して用いることにより、表示コントラストと階調反転の両方の視野角特性を大幅に改善できることを見い出し、本発明を完成するに至った。
【0010】
【課題を解決するための手段】
すなわち本発明は、ツイスト角が略90°のねじれネマチック型液晶セル及びこのセルの両側に配置された2枚の偏光板からなるノーマリーホワイトモードの液晶表示装置において、
液晶セルとその両側の偏光板との間にはそれぞれ位相差フィルムが配置されており、
該位相差フィルムは、
3つの主屈折率nx、ny 及びnzがnx>ny>nzなる関係を満足する二軸配向性を有しかつX軸と光学軸のなす角度が20〜70°であるような屈折率異方性を有する物質が、Y軸を傾斜軸としてZ軸とフィルム法線方向のなす角度が20〜70°となるように傾斜配向しており、フィルムの光学軸がフィルム面となす角度が20〜70°である位相差フィルム(A)と、
フィルム面内に屈折率異方性が殆ど存在せず、フィルム厚み方向の屈折率が面内の屈折率より小さい特性を有する少なくとも1枚の位相差フィルム(B)と
が積層された構成の積層位相差フィルムであり、
偏光板/位相差フィルム(B)/位相差フィルム(A)/液晶セル/位相差フィルム
(A)/位相差フィルム(B)/偏光板の順に積層され、かつ
液晶セルの光出射側から見た場合に、位相差フィルム(A)の光学軸の上側になる方向が、液晶セルの光入射側及び光出射側においてそれぞれに近い側の液晶セル基板に隣接する液晶分子の光学軸の上側になる方向に対して、略+180°の関係になるように配置されていることを特徴とする液晶表示装置を提供するものである。
【0011】
また、本発明は、ツイスト角が略90°のねじれネマチック型液晶セル及びこのセルの両側に配置された2枚の偏光板からなるノーマリーホワイトモードの液晶表示装置において、
液晶セルとその両側の偏光板との間にはそれぞれ位相差フィルムが配置されており、
該位相差フィルムは、
3つの主屈折率n x 、n y 及びn z がn x >n y >n z なる関係を満足する二軸配向性を有しかつX軸と光学軸のなす角度が20〜70°であるような屈折率異方性を有する物質が、Y軸を傾斜軸としてZ軸とフィルム法線方向のなす角度が20〜70°となるように傾斜配向しており、フィルムの光学軸がフィルム面となす角度が20〜70°である位相差フ ィルム(A)と、
フィルム面内に屈折率異方性が殆ど存在せず、フィルム厚み方向の屈折率が面内の屈折率より小さい特性を有する少なくとも1枚の位相差フィルム(B)と、
光学的に正の屈折率異方性を有する一軸配向性の少なくとも1枚の位相差フィルム
(C)と
が積層された構成の積層位相差フィルムであり、
偏光板/位相差フィルム(B)/位相差フィルム(A)/位相差フィルム(C)/液晶セル/位相差フィルム(C)/位相差フィルム(A)/位相差フィルム(B)/偏光板の順に積層され、
液晶セルの光出射側から見た場合に、位相差フィルム(A)の光学軸の上側になる方向が、液晶セルの光入射側及び光出射側においてそれぞれに近い側の液晶セル基板に隣接する液晶分子の光学軸の上側になる方向に対して、略+180°の関係になるように配置され、かつ
位相差フィルム(C)の遅相軸の方向が、液晶セルの光入射側及び光出射側においてそれぞれに近い側の液晶セル基板のラビング方向に対して略垂直の関係になるよう設定されていることを特徴とする液晶表示装置をも提供するものである。
【0012】
【発明の実施の形態】
本発明における、3つの主屈折率nx 、ny 及びnzがnx>ny>nzなる関係を満足する二軸配向性を有しかつX軸と光学軸のなす角度が20〜70°であるような屈折率異方性を有する物質が、Y軸を傾斜軸としてZ軸とフィルム法線方向のなす角度が20〜70°となるように傾斜配向しており、フィルムの光学軸がフィルム面となす角度が20〜70°である位相差フィルム(A)は、必要な光学特性を満たすものであれば特に限定されるものでなく、例えば、特開平4−120512号公報、特開平6−222213号公報に記載されている熱可塑性樹脂を電場や磁場印加あるいは異周速圧延により配向させた傾斜配向シートや、特開平7−152035号公報、特開平7−191216号公報に記載されているような電場や磁場等の印加下あるいは配向膜による配向制御下での配向固定による液晶性重合体の傾斜配向層、光反応性置換基を含む樹脂層等に平行光照射して得られる光学異方体、また、WO96/10773号公報に記載されている透明基板上への無機誘電体等の斜方蒸着による光学異方性層等を用いることができる。
【0013】
位相差フィルム(A)の光学特性としては、傾斜配向して位相差フィルム(A)を形成している光学異方性を有する物質の3つの主屈折率nx、ny 及びnzがnx>ny>nzなる関係を満足する二軸配向性を有しており、そのX軸と光学異方性物質の光学軸のなす角度(θ1)が特定の角度範囲内にあり、この光学異方性物質がY軸を傾斜軸としてZ軸とフィルム法線方向のなす角度(θ2)が特定の角度範囲内になるよう傾斜しており、かつフィルムの光学軸がフィルム面となす角度(θ3)が特定の角度範囲内にあることが必要である。位相差フィルム(A)の光学特性は、上記3つの角度θ1、θ2、θ3、及び補償層正面から測定した場合のレターデーション値(RA )により規定される。これらの値は位相差フィルム(A)と組み合わせて用いる傾斜配向していない他の位相差フィルムの光学特性、使用する液晶セルの光学特性、及び最終的に必要とされる視野角特性により適宜選択されるが、θ1=20〜70°、θ2=20〜70°、θ3=40〜70°、RA =20〜200nmの範囲が好ましく、さらに好ましくはθ1=45〜65°、θ2=40〜65°、θ3=50〜70°、RA =20〜100nmである。3つの主屈折率nx、ny 及びnzにおいて、nxとnyとは通常0.0005以上異なり、nyとnzとは通常0.0005以上異なる。
【0014】
本発明に用いる、フィルム面内に屈折率異方性が殆ど存在せず、フィルム厚み方向の屈折率が面内の屈折率より小さい特性を有する位相差フィルム(B)は、必要な光学特性を満たすものであれば特に限定されるものでなく、例えば、溶剤キャスト法による製膜時の高分子の配向により、フィルム面内のレターデーションが小さく、かつフィルム厚み方向の屈折率(nt )がフィルム面内の平均屈折率(np )よりも小さいという屈折率構造を持たせた透明高分子のキャストフィルムや、透明高分子の二軸延伸フィルム、特開平5−196819号公報に記載されている無機層状化合物を用いた位相差板、特開平5−249457号公報に記載されている屈折率の異なる物質の交互多層薄膜による補償板等を用いることができる。
【0015】
フィルム面内に屈折率異方性が殆ど存在せず、フィルム厚み方向の屈折率が面内の屈折率より小さい特性を有する位相差フィルム(B)の光学特性は、面内のレターデーション値(RB )、及び厚み方向のレターデーション値(RB'=(np−nt)×d、d:フィルム厚み)により規定される。これらの値は使用する位相差フィルム(A)の光学特性、液晶セルの光学特性、及び最終的に必要とされる視野角特性により適宜選択されるが、RB =0〜100nm、RB'=30〜250nmの範囲が好ましく、さらに好ましくはRB =3〜30nm、RB'=40〜180nmである。
【0016】
本発明に用いる、光学的に正の屈折率異方性を有する一軸配向性の位相差フィルム
(C)は、必要な光学特性を満たすものであれば特に限定されるものでなく、例えば、一般的に位相差板として用いられている熱可塑性樹脂の一軸延伸フィルムや、液晶性物質の面内一軸配向層等を用いることができる。
【0017】
光学的に正の屈折率異方性を有する一軸配向性の位相差フィルム(C)の光学特性は、補償層面内のレターデーション値(RC )により規定され、この値は使用する位相差フィルム(A)の光学特性、位相差フィルム(B)の光学特性、液晶セルの光学特性、及び最終的に必要とされる視野角特性により適宜選択されるが、RC =10〜100nmの範囲が好ましく、さらに好ましくはRC =30〜70nmである。
【0018】
本発明の位相差フィルム(A)は、傾斜配向していない他の位相差フィルムと組み合わせて用いることに適したものであるが、その視野角改良効果は、特定の光学異方性を有する位相差フィルムと特定の順序で積層した場合により多く発現する。視野角改良効果の大きい積層構成の1つは、ツイスト角が略90°のねじれネマチック型液晶セル及びこのセルの両側に配置された2枚の偏光板からなるノーマリーホワイトモードの液晶表示装置において、位相差フィルム(A)と、少なくとも1枚のフィルム面内に屈折率異方性が殆ど存在せず、フィルム厚み方向の屈折率が面内の屈折率より小さい特性を有する位相差フィルム(B)を、液晶セルとその両側の偏光板との間に偏光板/位相差フィルム(B)/位相差フィルム(A)/液晶セル/位相差フィルム(A)/位相差フィルム(B)/偏光板の順に積層するものである。
【0019】
視野角改良効果の大きい別の積層構成は、ツイスト角が略90°のねじれネマチック型液晶セル及びこのセルの両側に配置された2枚の偏光板からなるノーマリーホワイトモードの液晶表示装置において、位相差フィルム(A)と、少なくとも1枚のフィルム面内に屈折率異方性が殆ど存在せず、フィルム厚み方向の屈折率が面内の屈折率より小さい特性を有する位相差フィルム(B)と、少なくとも1枚の光学的に正の屈折率異方性を有する一軸配向性の位相差フィルム(C)とを、液晶セルとその両側の偏光板との間に、偏光板/位相差フィルム(B)/位相差フィルム(A)/位相差フィルム(C)/液晶セル/位相差フィルム(C)/位相差フィルム(A)/位相差フィルム(B)/偏光板の順に積層するものである。
【0020】
各々の位相差フィルム(A)、(B)及び(C)は、それぞれ1枚ずつであってもよいし、必要であれば同種の複数の位相差フィルムを積層して用いてもよい。
【0021】
これらの位相差フィルムを液晶セルに搭載する場合には、液晶セルの光入射側及び光出射側の各基板のラビング方向と、各々の側に配置される位相差フィルム(A)の光学軸の方向との関係が、視野角特性の改良効果に大きな影響を与える。光学軸の方向は使用する液晶セルの光学特性、及び最終的に必要とされる視野角特性により適宜選択されるが、位相差フィルム(A)の光学軸の液晶セルの光出射側から見た場合に上側になる方向が、液晶セルの光入射側及び光出射側においてそれぞれに近い側の液晶セル基板に隣接する液晶分子の光学軸の液晶セルの光出射側から見た場合に上側になる方向に対して、液晶セルの光出射側から見て左回りの方向を正とした場合に略+180°の関係になるよう設定した場合、視野角改良効果が最も大きく発現する。
【0022】
かかる構成においては、背面側に配置された位相差フィルム(A)は、その光学軸の前面側向き成分の面内への射影と、液晶セルの背面側の基板に隣接する液晶分子の光学軸の前面側向き成分の面内への射影とが概ね+180°で交わるように配置され、前面側に配置された位相差フィルム(A)は、その光学軸の前面側向き成分の面内への射影と、液晶セルの前面側の基板に隣接する液晶分子の光学軸の前面側向き成分の面内への射影とが概ね+180°で交わるように配置された構成になる。
【0023】
さらに、本発明の積層位相差フィルムの積層構成においては、液晶セルの光入射側及び光出射側の各基板のラビング方向と、光学的に正の屈折率異方性を有する一軸配向性の位相差フィルム(C)の遅相軸の方向の関係が、視野角特性の改良効果に大きな影響を与える。遅相軸の方向は使用する液晶セルの光学特性、及び最終的に必要とされる視野角特性により適宜選択されるが、液晶セルの光入射側及び光出射側においてそれぞれに近い側の液晶セル基板のラビング方向に対して略垂直の関係になるよう設定した場合、視野角改良効果がより大きく発現する。
【0024】
かかる構成においては、背面側に配置された位相差フィルム(A)は、その光学軸の前面側向き成分の面内への射影と、液晶セルの背面側の基板に隣接する液晶分子の光学軸の前面側向き成分の面内への射影とが概ね+180°で交わるように配置され、背面側に配置された位相差フィルム(C)は、その遅相軸の方向が背面側基板のラビング方向に対して概ね垂直となるように配置され、前面側に配置された位相差フィルム(A)は、その光学軸の前面側向き成分の面内への射影と、液晶セルの前面側の基板に隣接する液晶分子の光学軸の前面側向き成分の面内への射影とが概ね+180°で交わるように配置され、前面側に配置された位相差フィルム(C)は、その遅相軸の方向が前面側の基板のラビング方向に対して概ね垂直となるように配置された構成となる。
【0025】
セル両側に配置される偏光板の吸収軸の方向は、最終的に必要とされるLCDの光学特性に応じて、光入射側及び光出射側のいずれもそれぞれに近い側の液晶セル基板のラビング方向に対して略垂直(Eモード)あるいは略平行(Oモード)のいずれかより選択される。
【0026】
なお、本発明における位相差フィルムのレターデーション値(RA、RB、RB'、RC )及び軸の傾斜方向は、当業者においては常法に基づく測定により得られるものである。
【0027】
【発明の効果】
本発明により、表示コントラスト及び階調反転の視野角特性が著しく改善されたTN−LCDを得ることができる。
【0028】
【実施例】
以下、実施例により本発明を詳細に説明するが、本発明はこれに限定されるものではない。
【0029】
実施例1
フィルム面内に屈折率異方性が殆ど存在せず、フィルム厚み方向の屈折率が面内の屈折率より小さい特性を有する位相差フィルムB1として、面内のレターデーション値(RB)=6nm、厚み方向のレターデーション値(RB')=58nmであるトリアセチルセルロースフィルムを作製した。
【0030】
バッチ式真空蒸着装置を用いて、このトリアセチルセルロースフィルム上に五酸化タンタルの斜方蒸着膜を形成した。この斜方蒸着膜は、五酸化タンタルの斜方カラム構造により3つの主屈折率nx、ny 及びnzがそれぞれnx=1.6650、ny=1.6322、nz=1.5028であり、nx>ny>nzなる関係を満足する二軸配向性を有しており、そのX軸と斜方カラムの光学軸のなす角度(θ1)=65°、斜方カラムがY軸を傾斜軸としてZ軸とフィルム法線方向のなす角(θ2)=41°になるよう傾斜しており、かつフィルムの光学軸がフィルム面となす角(θ3)=66°、補償層正面から測定した場合のレターデーション値(RA )=33nmであった。この斜方蒸着層を位相差フィルムA1とした。
【0031】
光学的に正の屈折率異方性を有する一軸配向性の位相差フィルムとして、ポリカーボネートフィルムを一軸延伸して面内のレターデーション値(RC )=50nmである位相差フィルムC1を作製した。
【0032】
日本電気(株)製のノートパソコン(PC9821 La10)を構成するカラー液晶ディスプレイ装置(TFT−TN型)の背面側直線偏光板と液晶セルとの間、及び前面側直線偏光板と液晶セルとの間にそれぞれ位相差フィルムB1、位相差フィルムA1、位相差フィルムC1を、偏光板/B1/A1/C1/液晶セル/C1/A1/B1/偏光板の順に積層して、TN型液晶表示装置を作製した。このとき、液晶セルの光出射側から見た場合に、位相差フィルムA1の光学軸の上側になる方向が、液晶セルの光入射側及び光出射側においてそれぞれに近い側の液晶セル基板に隣接する液晶分子の光学軸の上側になる方向に対して+180°の関係になり、かつ、位相差フィルムC1の遅相軸の方向が液晶セルの光入射側及び光出射側においてそれぞれに近い側の液晶セル基板のラビング方向に対して垂直の関係になり、しかも直線偏光板の吸収軸の方向が液晶セルの光入射側及び光出射側においてそれぞれ近い側の液晶セルの基板のラビング方向に対して平行の関係(O−モード)になるように設定した。
【0033】
このTN−LCDにおいては、表示コントラスト及び階調反転の視野角特性は、上下左右すべての方向で良好であり、従来のTN−LCDと比較して優れたものであった。
【0034】
実施例2
実施例1のノートパソコンの液晶セルとその両側の偏光板との間に、位相差フィルムB1と位相差フィルムA1を、偏光板/B1/A1/液晶セル/A1/B1/偏光板の順に積層して、TN−LCDを作製した。このとき、液晶セルの光出射側から見た場合に、位相差フィルムA1の光学軸の上側になる方向が、液晶セル基板に隣接する液晶分子の光学軸の上側になる方向に対して+180°の関係になり、しかも直線偏光板の吸収軸の方向が、液晶セルの光入射側及び光出射側においてそれぞれ近い側の液晶セルの基板のラビング方向に対して平行の関係(O−モード)になるように設定した。
【0035】
このTN−LCDにおいては、表示コントラスト及び階調反転の視野角特性は、上下左右すべての方向で良好であり、従来のTN−LCDと比較して優れたものであった。
【0036】
実施例3
フィルム面内に屈折率異方性が殆ど存在せず、フィルム厚み方向の屈折率が面内の屈折率より小さい特性を有する位相差フィルムB2として、面内のレターデーション値(RB)=5nm、厚み方向のレターデーション値(RB')=49nmであるトリアセチルセルロースの連続フィルムを作製した。
【0037】
連続式真空蒸着装置を用いて、このトリアセチルセルロース連続フィルム上に二酸化チタンの斜方蒸着膜を形成した。この斜方蒸着膜は、二酸化チタンの斜方カラム構造により3つの主屈折率nx、ny 及びnzがnx>ny>nzなる関係を満足する二軸配向性を有しており、そのX軸と斜方カラムの光学軸のなす角度(θ1)=58°、斜方カラムがY軸を傾斜軸としてZ軸とフィルム法線方向のなす角度(θ2)=29°になるよう傾斜しており、かつフィルムの光学軸がフィルム面となす角度(θ3)=61°、補償層正面から測定した場合のレターデーション値(RA )=27nmであった。この斜方蒸着層を位相差フィルムA2とした。
【0038】
シャープ(株)製のTFT−TN液晶テレビ(CRYSTALTRON、4E−L1)の液晶セルとその両側の偏光板との間に、位相差フィルムB2と位相差フィルムA2を、偏光板/B2/A2/液晶セル/A2/B2/偏光板の順に積層して、TN−LCDを作製した。このとき、液晶セルの光出射側から見た場合に、位相差フィルムA2の光学軸の上側になる方向が、液晶セルの光入射側及び光出射側においてそれぞれに近い側の液晶セル基板に隣接する液晶分子の光学軸の上側になる方向に対して+180°の関係になるように設定した。
【0039】
このTN−LCDにおいては、表示コントラスト及び階調反転の視野角特性は、上下左右すべての方向で良好であり、従来のTN−LCDと比較して優れたものであった。
【0040】
実施例4
光学補償層の積層順序を、偏光板/C1/A1/B1/液晶セル/B1/A1/C1/偏光板の順にしたほかは実施例1と同様にして、3種の光学補償層を積層したTN−LCDを作製した。
【0041】
このTN−LCDにおいては、左右及び下方向の表示コントラストの視野角は良好であった。
【図面の簡単な説明】
【図1】 実施例1の液晶表示装置における偏光板の吸収軸、液晶セルの基板のラビング方向、液晶セルの基板に隣接する液晶分子の光学軸方向、及びそれぞれの位相差フィルムの光学軸の設定を示す模式図である。
【図2】 実施例2の液晶表示装置における偏光板の吸収軸、液晶セルの基板のラビング方向、液晶セルの基板に隣接する液晶分子の光学軸方向、及びそれぞれの位相差フィルムの光学軸の設定を示す模式図である。
【符号の説明】
11,21: 液晶セル上側の偏光板
12,22: 液晶セル下側の偏光板
13,23: 液晶セル上側の位相差フィルムB1
14,24: 液晶セル下側の位相差フィルムB1
15,25: 液晶セル上側の位相差フィルムA1
16,26: 液晶セル下側の位相差フィルムA1
17: 液晶セル上側の位相差フィルムC1
18: 液晶セル下側の位相差フィルムC1
19,29: 液晶セル
111,211: 液晶セル上側偏光板の吸収軸方向
121,221: 液晶セル下側偏光板の吸収軸方向
151,251: 液晶セル上側の位相差フィルムA1の光学軸方向
161,261: 液晶セル下側の位相差フィルムA1の光学軸方向
171: 液晶セル上側の位相差フィルムC1の光学軸方向
181: 液晶セル下側の位相差フィルムC1の光学軸方向
191,291: 液晶セルの上側基板に隣接する液晶分子の光学軸方向
192,292: 液晶セルの下側基板に隣接する液晶分子の光学軸方向
193,293: 液晶セルの上側基板の内側のラビング方向
194,294: 液晶セルの下側基板の内側のラビング方向[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal display device in which viewing angle characteristics, in particular, display contrast and viewing angle characteristics of gradation inversion are improved by arranging a retardation film .
[0002]
[Prior art]
The most commonly used liquid crystal display device (hereinafter referred to as LCD) is between a pair of glass substrates on which a transparent electrode is formed between a pair of linearly polarizing films arranged so that their absorption axes are orthogonal to each other. A normally white (NW) mode twisted nematic with a liquid crystal cell sandwiched between nematic liquid crystals having a helical axis in the normal direction of the glass substrate and a twist angle of about 90 degrees. Type LCD (hereinafter referred to as TN-LCD).
[0003]
In the TN-LCD in NW mode, when no voltage is applied, the incident linearly polarized light is rotated 90 degrees due to the optical rotation of the liquid crystal cell and is emitted, and in a state where the voltage is applied, the liquid crystal molecules are applied to the glass substrate. On the other hand, it rises, the optical rotation disappears, and the incident linearly polarized light is emitted while maintaining this state, so that it becomes a black state. Further, gradation display is performed by utilizing the white state, the black state, and the intermediate state.
[0004]
However, nematic Ji click liquid crystal used in the LCD has the molecular structure is rod-shaped, which shows a positive refractive index anisotropy greater refractive index of the molecular axis direction, the light passing through the LCD obliquely The change in polarization state differs from the normal direction of the LCD due to the phase difference due to the refractive index anisotropy of the liquid crystal. Therefore, it is shown when viewing the display from an angle off the LCD normal direction, or the contrast decreases, the viewing angle characteristic of gradation display or Tsu Oko phenomenon such as tone reversal to reverse.
[0005]
Since this viewing angle characteristic is caused by the refractive index anisotropy of the liquid crystal molecules , it has a refractive index anisotropy opposite to that of the liquid crystal to compensate for the phase difference due to the refractive index anisotropy of the liquid crystal molecules. Improvements using phase difference films are being studied.
[0006]
Improvement of viewing angle characteristics are primarily black display, i.e., to improve the viewing angle characteristics in the voltage applied state, a large effect is obtained. Since the liquid crystal molecules are aligned in a state that is nearly perpendicular to the glass substrate when a voltage is applied, this state is regarded as a positive refractive index anisotropic body having an optical axis in the normal direction of the glass substrate, and this is compensated. A method of using a retardation film having an optical axis in the normal direction of the film and having negative refractive index anisotropy as a retardation film is disclosed in JP-A-2-015239 and JP-A-3-103823. Yes. However, in the actual LCD, since the liquid crystal molecules near the glass substrate even in the voltage applied state at the portion close to the glass substrate by the restraining force of the alignment film of the substrate remains inclined state, the optical to the film normal direction In a retardation film having an axis and negative refractive index anisotropy, it is difficult to sufficiently compensate the polarization state caused by the liquid crystal cell.
[0007]
In order to compensate for such tilted liquid crystal molecules, there is also a method using a retardation film in which the optical axis of the retardation film is in a direction inclined from the normal direction of the film and has negative refractive index anisotropy. It is described in JP-A-63-239421 and JP-A-6-214116. However, in these methods, although the compensation state for the liquid crystal cell in the voltage application state is improved, since the applied voltage is lower, the liquid crystal portion in the inclined state is increased, and in a halftone display state in which a more complicated alignment form is adopted. since the compensation is imperfect, but the viewing angle of the display contrast is improved, it is difficult to improve the gradation inversion phenomenon, it is only possible to obtain an incomplete viewing angle characteristics as a result.
[0008]
As another method, while having the same positive refractive index anisotropy as liquid crystal, the viewing angle characteristics can be improved even by using a retardation plate in which the optical axis is inclined from the film normal direction. It is described in JP-A-5-080323, JP-A-7-306406, WO96 / 10773, and the like. In these reports, use of a positive refractive index has anisotropy and retardation plate and a state of tilting the optical axis from the film normal direction, effective to inhibit the gradation inversion of the liquid crystal cell although it has been shown that it is, with respect to the phase difference plate of any optical properties whether the effect is expressed when used in any form, not specifically saying及.
[0009]
[Problems to be solved by the invention]
Thus, no optical compensator used for improving the viewing angle characteristics of the TN-LCD has been found to dramatically improve the total viewing angle characteristics including not only display contrast but also gradation inversion. Was in the situation. In view of these circumstances, the present inventors have studied intensively, three principal refractive indices n x, and has a biaxial orientation which n y and n z satisfies n x> n y> n z the relationship the angle of the X-axis and the optical axis is a substance having a refractive index anisotropy such that 20 to 70 °, the angle of the Z axis and the film normal direction on the Y axis as an inclined axis and 20 to 70 ° and tilting aligned so that an optical axis film surface angle degree 20 to 70 ° der Ru phase difference film of the film, by using laminated with other retardation film not inclined orientation , it found that can significantly improve the viewing angle characteristics of both display contrast and gray scale inversion, thereby completing the present invention.
[0010]
[Means for Solving the Problems]
That is, the present invention relates to a normally white mode liquid crystal display device comprising a twisted nematic liquid crystal cell having a twist angle of approximately 90 ° and two polarizing plates disposed on both sides of the cell.
Retardation films are arranged between the liquid crystal cell and the polarizing plates on both sides,
The retardation film is
Three main refractive indices n x, n y and n z are n x> n y> n z becomes a biaxially oriented to satisfy the relation and the angle of the X-axis and the optical axis is 20 to 70 ° material having a refractive index anisotropy as is, is inclined orientation as the angle of the Z axis and the film normal direction is 20 to 70 ° as the inclination axis Y-axis, the optical axis of the film is the film plane and the angle of the Ru 20 to 70 ° der phase difference film and (a),
Hardly exist refractive index anisotropy in the off Irumu plane, the refractive index of the film thickness direction of at least one retardation film having a smaller characteristic than the refractive index in the plane (B) and is configurations stacked a laminated phase difference film,
Polarizing plate / retardation film (B) / retardation film (A) / liquid crystal cell / retardation film
Laminated in the order of (A) / retardation film (B) / polarizing plate; and
When viewed from the light exit side of the liquid crystal cell, a direction in which the upper side of the optical axis of the retardation film (A), adjacent to the side the liquid crystal cell substrate near each the light incident side and the light outgoing side of the liquid crystal cell with respect to the direction facing upward side of the optical axis of the liquid crystal molecules, it is intended to provide a liquid crystal display device according to claim which is arranged such that a relation of approximately + 180 °.
[0011]
The present invention also relates to a normally white mode liquid crystal display device comprising a twisted nematic liquid crystal cell having a twist angle of approximately 90 ° and two polarizing plates arranged on both sides of the cell.
Retardation films are arranged between the liquid crystal cell and the polarizing plates on both sides,
The retardation film is
Three main refractive indices n x, n y and n z are n x> n y> n z becomes a biaxially oriented to satisfy the relation and the angle of the X-axis and the optical axis is 20 to 70 ° Such a material having refractive index anisotropy is tilted so that the angle formed between the Z axis and the film normal direction is 20 to 70 ° with the Y axis as the tilt axis, and the optical axis of the film is the film surface. a phase difference off Irumu (a) angle is 20 to 70 ° formed between,
At least one retardation film (B) having almost no refractive index anisotropy in the film plane and having a characteristic that the refractive index in the film thickness direction is smaller than the refractive index in the plane;
At least one uniaxially oriented retardation film having optically positive refractive index anisotropy
(C) and
Is a laminated retardation film having a laminated structure,
Polarizing plate / retardation film (B) / retardation film (A) / retardation film (C) / liquid crystal cell / retardation film (C) / retardation film (A) / retardation film (B) / polarizing plate Are stacked in this order,
When viewed from the light exit side of the liquid crystal cell, a direction in which the upper side of the optical axis of the retardation film (A), adjacent to the side the liquid crystal cell substrate near each the light incident side and the light outgoing side of the liquid crystal cell with respect to the direction facing upward side of the optical axis of the liquid crystal molecules are arranged so that the relationship of approximately + 180 °, and the direction of the slow axis of the retardation film (C) is, the light incident side of the liquid crystal cell and Another object of the present invention is to provide a liquid crystal display device which is set so as to have a substantially vertical relationship with respect to the rubbing direction of the liquid crystal cell substrate on the light exit side.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, 20 to three main refractive indices n x, n y and n z are n x> n y> n z becomes a biaxially oriented to satisfy the relation and the angle of the X-axis and the optical axis material having a refractive index anisotropy such that 70 ° is, are inclined orientation as the angle of the Z axis and the film normal direction is 20 to 70 ° as the inclination axis Y-axis, of the film optical axis position the film surface and the angle of the Ru 20 to 70 ° der retardation film (a) is rather limited in particular as long as it satisfies the required optical characteristics, for example, JP-4- No. 120512, JP-A-6-222213, and an inclined orientation sheet obtained by orienting a thermoplastic resin by applying an electric field, a magnetic field, or different peripheral speed rolling, and JP-A-7-152035 and JP-A-7- Electric field and magnetic field as described in Japanese Patent No. 191216 An optically anisotropic body obtained by irradiating parallel light on a tilted alignment layer of a liquid crystalline polymer by applying alignment or under alignment control by an alignment film, a resin layer containing a photoreactive substituent, and the like. An optically anisotropic layer or the like by oblique vapor deposition of an inorganic dielectric or the like on a transparent substrate described in Japanese Patent No. 10773 can be used.
[0013]
As the optical characteristics of the retardation film (A), the three main refractive indexes nx , ny and nz of the substance having optical anisotropy which is tilted to form the retardation film (A) are n. Biaxial orientation satisfying the relationship of x > ny > nz , and the angle (θ1) formed by the X axis and the optical axis of the optically anisotropic substance is within a specific angle range. optically anisotropic substance is inclined to the Z axis and the film normal direction of angle degrees (.theta.2) is within a specified angular range as the tilt axis on the Y axis, and the optical axis of the film makes with the film surface angles (.theta.3) is required to be within a certain angular range. The optical properties of the retardation film (A) are defined by the three angles θ1, θ2, θ3 and the retardation value (RA) when measured from the front of the compensation layer. These values are appropriately selected according to the optical characteristics of other non-tilt retardation films used in combination with the retardation film (A), the optical characteristics of the liquid crystal cell used, and the finally required viewing angle characteristics. However, θ1 = 20 to 70 °, θ2 = 20 to 70 °, θ3 = 40 to 70 °, and RA = 20 to 200 nm are preferable, and θ1 = 45 to 65 ° and θ2 = 40 to 65 are more preferable. °, θ3 = 50-70 °, RA = 20-100 nm. Three principal refractive indices n x, the n y and n z, unlike normal 0.0005 and n x and n y, different usually 0.0005 or more and n y and n z.
[0014]
The retardation film (B ) used in the present invention has almost no refractive index anisotropy in the plane of the film, and the refractive index in the film thickness direction is smaller than the refractive index in the plane. meet those value, if one is rather than to any particular limitation, for example, by the orientation of the polymer during film by the solvent casting method, a small retardation in the film plane, and the refractive index of the film thickness direction (nt) is A transparent polymer cast film having a refractive index structure smaller than the average refractive index (np) in the film plane, a biaxially stretched film of transparent polymer, and Japanese Patent Application Laid-Open No. 5-196919. A retardation plate using an inorganic layered compound, a compensation plate made of alternating multilayer thin films of substances having different refractive indexes, and the like described in JP-A-5-249457 can be used.
[0015]
The optical properties of the retardation film (B), which has almost no refractive index anisotropy in the film plane and the refractive index in the film thickness direction is smaller than the refractive index in the plane, are the retardation value ( RB) and the retardation value in the thickness direction (RB ′ = (np−nt) × d, d: film thickness). These values are appropriately selected depending on the optical characteristics of the retardation film (A) to be used, the optical characteristics of the liquid crystal cell, and the finally required viewing angle characteristics. RB = 0 to 100 nm, RB '= 30 The range of ˜250 nm is preferred, more preferably RB = 3 to 30 nm and RB ′ = 40 to 180 nm.
[0016]
Used in the present invention, the uniaxial orientation of the retardation film having an optically positive refractive index anisotropy (C) is rather limited in particular as long as it satisfies the required optical characteristics, e.g., A uniaxially stretched thermoplastic resin film generally used as a retardation plate, an in-plane uniaxial alignment layer of a liquid crystalline substance, or the like can be used.
[0017]
The optical characteristics of the uniaxially oriented retardation film (C) having an optically positive refractive index anisotropy are defined by the retardation value (RC) in the compensation layer surface, and this value is the retardation film used ( The optical properties of A), the optical properties of the retardation film (B), the optical properties of the liquid crystal cell, and the finally required viewing angle properties are selected as appropriate, but a range of RC = 10 to 100 nm is preferable. More preferably, RC = 30 to 70 nm.
[0018]
The retardation film (A) of the present invention, but is suitable for the use in combination with other retardation film not inclined orientation, the viewing angle improving effect may position having specific optical anisotropy It appears more when laminated with a phase difference film in a specific order. One of the laminated structures having a large effect of improving the viewing angle is a normally white mode liquid crystal display device comprising a twisted nematic liquid crystal cell having a twist angle of approximately 90 ° and two polarizing plates disposed on both sides of the cell. The retardation film (A) and the retardation film (B) having almost no refractive index anisotropy in the plane of at least one film and having a refractive index in the film thickness direction smaller than the refractive index in the plane. ) Between the liquid crystal cell and the polarizing plates on both sides thereof, polarizing plate / retardation film ( B ) / retardation film ( A ) / liquid crystal cell / retardation film ( A ) / retardation film ( B ) / polarization They are laminated in the order of the plates.
[0019]
Another layered configuration having a large viewing angle improving effect, the liquid crystal display device of a normally white mode in which the twist angle is comprised of approximately 90 ° twisted nematic liquid crystal cell and two polarizing plates disposed on both sides of the cell The retardation film (A) and the retardation film (B) having almost no refractive index anisotropy in the plane of at least one film and having a refractive index in the film thickness direction smaller than the refractive index in the plane. and), and a uniaxial orientation of the retardation film having at least one optically positive refractive index anisotropy (C), between the liquid crystal cell and its both sides of the polarizing plate, a polarizing plate / retardation film (B) / the retardation film (a) / the retardation film (C) / liquid crystal cell / retardation film (C) / the retardation film (a) / the retardation film (B) / polarizer which sequentially stacked It is.
[0020]
Each of the retardation films (A), (B) and (C) may be one each, or a plurality of the same kind of retardation films may be laminated and used if necessary.
[0021]
When these retardation films are mounted on a liquid crystal cell, the rubbing direction of each substrate on the light incident side and the light emission side of the liquid crystal cell and the optical axis of the retardation film (A) disposed on each side thereof. The relationship with the direction greatly affects the effect of improving the viewing angle characteristics. The direction of the optical axis is appropriately selected according to the optical characteristics of the liquid crystal cell to be used and the finally required viewing angle characteristics, but is viewed from the light exit side of the liquid crystal cell of the optical axis of the retardation film (A). In this case, the upper direction is the upper side when viewed from the light exit side of the liquid crystal cell on the optical axis of the liquid crystal molecule adjacent to the liquid crystal cell substrate closer to the light incident side and light exit side of the liquid crystal cell. When the counterclockwise direction when viewed from the light emitting side of the liquid crystal cell is set to be positive with respect to the direction, the viewing angle improvement effect is maximized.
[0022]
In such a configuration, the retardation film (A) disposed on the back side is projected onto the surface of the front-side component of the optical axis and the optical axis of the liquid crystal molecules adjacent to the substrate on the back side of the liquid crystal cell. The phase difference film (A) arranged on the front side is arranged so that the projection of the front side component of the front side of the surface intersects at approximately + 180 °. and projection, the arrangement configurations so as to intersect with the projection and is almost + 180 ° of the front side of the substrate into the surface of the front side-facing components of the optical axis of the liquid crystal molecules adjacent the liquid crystal cell.
[0023]
Further, in the laminated structure of the laminated retardation film of the present invention, the rubbing direction of each substrate on the light incident side and the light emitting side of the liquid crystal cell and the uniaxial orientation level having optically positive refractive index anisotropy. The relationship of the direction of the slow axis of the phase difference film (C) greatly affects the effect of improving the viewing angle characteristics. The direction of the slow axis is appropriately selected according to the optical characteristics of the liquid crystal cell to be used and the finally required viewing angle characteristics, but the liquid crystal cell on the side closer to each of the light incident side and the light emitting side of the liquid crystal cell When it is set so as to have a substantially perpendicular relationship with the rubbing direction of the substrate, the effect of improving the viewing angle is exhibited more greatly.
[0024]
In such a configuration, the retardation film (A) disposed on the back side is projected onto the surface of the front-side component of the optical axis and the optical axis of the liquid crystal molecules adjacent to the substrate on the back side of the liquid crystal cell. The retardation film (C) is arranged so that the projection of the component facing the front side into the plane intersects at approximately + 180 °, and the retardation film (C) arranged on the back side has the slow axis direction in the rubbing direction of the back side substrate. The retardation film (A) arranged so as to be substantially perpendicular to the front surface side is projected onto the surface of the front-side component of the optical axis and the substrate on the front side of the liquid crystal cell. The retardation film (C) arranged on the front side is arranged so that the projection of the adjacent liquid crystal molecules to the front side component of the optical axis of the optical axis intersects at approximately + 180 °, and the direction of the slow axis is Is almost perpendicular to the rubbing direction of the front substrate. It becomes the composition arranged in.
[0025]
The direction of the absorption axis of the polarizing plate arranged on both sides of the cell is determined by rubbing the liquid crystal cell substrate on the side closer to both the light incident side and the light output side, depending on the optical characteristics of the LCD that is finally required. It is selected from either substantially perpendicular (E mode) or substantially parallel (O mode) to the direction.
[0026]
The retardation values (RA, RB, RB ', RC) and the axis inclination direction of the retardation film in the present invention are obtained by those skilled in the art by measurements based on ordinary methods.
[0027]
【The invention's effect】
According to the present invention, it is possible to obtain a TN-LCD in which display contrast and viewing angle characteristics of gradation inversion are remarkably improved.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this.
[0029]
Example 1
In-plane retardation value (RB) = 6 nm as retardation film B1 having almost no refractive index anisotropy in the film plane and having a refractive index in the film thickness direction smaller than the refractive index in the plane. A triacetyl cellulose film having a thickness direction retardation value (RB ′) = 58 nm was produced.
[0030]
Using a batch type vacuum evaporation apparatus to form a oblique deposition film of tantalum pentoxide on the triacetyl cellulose film. The oblique deposition film, five three principal refractive indices n x by an oblique columnar structure of tantalum oxide, n y and n z are each n x = 1.6650, n y = 1.6322, n z = 1. is 5028, n x> n y> n has a biaxial orientation which satisfies z the relationship, the angle of the optical axis of the X-axis and the oblique column (θ1) = 65 °, the oblique column Is tilted so that the angle (θ2) between the Z axis and the film normal direction is 41 ° with the Y axis as the tilt axis , and the angle (θ3) = 66 ° between the optical axis of the film and the film surface is compensated The retardation value (RA) when measured from the front of the layer was 33 nm. This obliquely deposited layer was used as a retardation film A1.
[0031]
As a uniaxially oriented retardation film having optically positive refractive index anisotropy, a polycarbonate film was uniaxially stretched to produce a retardation film C1 having an in-plane retardation value (RC) = 50 nm.
[0032]
Between the back side linear polarizing plate and the liquid crystal cell of the color liquid crystal display device (TFT-TN type) constituting the notebook computer (PC9821 La10) manufactured by NEC Corporation, and between the front side linear polarizing plate and the liquid crystal cell. each retardation film B1 between, the retardation film A1, a retardation film C1, are laminated in this order polarizer / B1 / A1 / C1 / liquid crystal cell / C1 / A1 / B1 / polarizing plate, TN type liquid crystal display device Was made. At this time, when viewed from the light exit side of the liquid crystal cell, a direction in which the upper side of the optical axis of the retardation film A1 is, on the side the liquid crystal cell substrate near each the light incident side and the light outgoing side of the liquid crystal cell becomes a relationship of + 180 ° relative to the direction in which the upper side of the optical axes of the adjacent liquid crystal molecules, and the direction of the slow axis of the retardation film C1 is closer to, respectively, in the light incident side and the light outgoing side of the liquid crystal cell The direction of the absorption axis of the linearly polarizing plate is perpendicular to the rubbing direction of the liquid crystal cell substrate on the side, and the direction of the absorption axis of the linear polarizing plate is close to the rubbing direction of the liquid crystal cell substrate on the light incident side and light emitting side, respectively. It was set so as to have a parallel relationship (O-mode).
[0033]
In this TN-LCD, the display contrast and the viewing angle characteristics of gradation inversion are good in all directions , up and down, left and right, and are superior to the conventional TN-LCD.
[0034]
Example 2
A retardation film B1 and a retardation film A1 are laminated in the order of polarizing plate / B1 / A1 / liquid crystal cell / A1 / B1 / polarizing plate between the liquid crystal cell of the notebook computer of Example 1 and the polarizing plates on both sides thereof. Thus , a TN-LCD was manufactured. At this time, when viewed from the light exit side of the liquid crystal cell, a direction in which the upper side of the optical axis of the retardation film A1 is, with respect to a direction in which the upper side of the optical axis of the liquid crystal molecules adjacent to the liquid crystal cell substrate + becomes 180 ° relationship, moreover the direction of the absorption axis of the linear polarizing plate, parallel relationship with respect to the rubbing direction of the substrate of the liquid crystal cells of the respective side close the light incident side and the light outgoing side of the liquid crystal cell (O-mode ).
[0035]
In this TN-LCD, the display contrast and the viewing angle characteristics of gradation inversion are good in all directions , up and down, left and right, and are superior to the conventional TN-LCD.
[0036]
Example 3
In-plane retardation value (RB) = 5 nm as retardation film B2 having almost no refractive index anisotropy in the film plane and having a refractive index in the film thickness direction smaller than the refractive index in the plane. A continuous film of triacetyl cellulose having a retardation value in the thickness direction (RB ′) = 49 nm was produced.
[0037]
Using a continuous type vacuum evaporation apparatus to form a oblique deposition film of titanium dioxide in the triacetylcellulose continuous film. This obliquely deposited film has a biaxial orientation that satisfies the relationship of three principal refractive indexes nx , ny, and nz: nx > ny > nz due to the oblique column structure of titanium dioxide. cage, its angle of the optical axis of the X-axis and oblique columns (θ1) = 58 °, the oblique column Z axis and the film normal direction of the angle of the tilt axis Y-axis (θ2) = 29 ° so as we are inclined, and the optical axis of the film is the film surface and the angle of (θ3) = 61 °, the retardation value as measured from the compensation layer front (RA) = was 27 nm. This obliquely deposited layer was used as a retardation film A2.
[0038]
Between the liquid crystal cell of the TFT-TN liquid crystal television (CRYSTALTRON, 4E-L1) manufactured by Sharp Corporation and the polarizing plate on both sides thereof, the retardation film B2 and the retardation film A2 are connected to the polarizing plate / B2 / A2 / A liquid crystal cell / A2 / B2 / polarizing plate was laminated in this order to produce a TN-LCD. At this time, when viewed from the light exit side of the liquid crystal cell, a direction in which the upper side of the optical axis of the retardation film A2 is, on the side the liquid crystal cell substrate near each the light incident side and the light outgoing side of the liquid crystal cell was set to be in a relationship of + 180 ° relative to the direction in which the upper side of the optical axes of the adjacent liquid crystal molecules.
[0039]
In this TN-LCD, the display contrast and the viewing angle characteristics of gradation inversion are good in all directions , up , down, left , and right, and are superior to the conventional TN-LCD.
[0040]
Example 4
Three optical compensation layers were laminated in the same manner as in Example 1 except that the lamination order of the optical compensation layers was changed to the order of polarizing plate / C1 / A1 / B1 / liquid crystal cell / B1 / A1 / C1 / polarizing plate. A TN-LCD was produced.
[0041]
In this TN-LCD, the viewing angle of the display contrast in the left and right and lower directions was good.
[Brief description of the drawings]
1 shows an absorption axis of a polarizing plate, a rubbing direction of a substrate of a liquid crystal cell, an optical axis direction of liquid crystal molecules adjacent to the substrate of the liquid crystal cell , and an optical axis of each retardation film in the liquid crystal display device of Example 1. FIG. It is a schematic diagram which shows a setting.
2 shows an absorption axis of a polarizing plate, a rubbing direction of a substrate of a liquid crystal cell, an optical axis direction of liquid crystal molecules adjacent to the substrate of the liquid crystal cell , and an optical axis of each retardation film in the liquid crystal display device of Example 2. FIG. It is a schematic diagram which shows a setting.
[Explanation of symbols]
11, 21: Polarizing
14, 24: Retardation film B1 on the lower side of the liquid crystal cell
15, 25: Retardation film A1 on the upper side of the liquid crystal cell
16, 26: Retardation film A1 on the lower side of the liquid crystal cell
17: Retardation film C1 on the upper side of the liquid crystal cell
18: Retardation film C1 on the lower side of the liquid crystal cell
19, 29:
Claims (2)
液晶セルとその両側の偏光板との間にはそれぞれ位相差フィルムが配置されており、
該位相差フィルムは、
3つの主屈折率nx、ny 及びnzがnx>ny>nzなる関係を満足する二軸配向性を有しかつX軸と光学軸のなす角度が20〜70°であるような屈折率異方性を有する物質が、Y軸を傾斜軸としてZ軸とフィルム法線方向のなす角度が20〜70°となるように傾斜配向しており、フィルムの光学軸がフィルム面となす角度が20〜70°である位相差フィルム(A)と、
フィルム面内に屈折率異方性が殆ど存在せず、フィルム厚み方向の屈折率が面内の屈折率より小さい特性を有する少なくとも1枚の位相差フィルム(B)と
が積層された構成の積層位相差フィルムであり、
偏光板/位相差フィルム(B)/位相差フィルム(A)/液晶セル/位相差フィルム
(A)/位相差フィルム(B)/偏光板の順に積層され、かつ
液晶セルの光出射側から見た場合に、位相差フィルム(A)の光学軸の上側になる方向が、液晶セルの光入射側及び光出射側においてそれぞれに近い側の液晶セル基板に隣接する液晶分子の光学軸の上側になる方向に対して、略+180°の関係になるように配置されていることを特徴とする
液晶表示装置。 In a normally white mode liquid crystal display device comprising a twisted nematic liquid crystal cell having a twist angle of approximately 90 ° and two polarizing plates disposed on both sides of the cell,
Retardation films are arranged between the liquid crystal cell and the polarizing plates on both sides,
The retardation film is
Three main refractive indices n x, n y and n z are n x> n y> n z becomes a biaxially oriented to satisfy the relation and the angle of the X-axis and the optical axis is 20 to 70 ° material having a refractive index anisotropy as is, is inclined orientation as the angle of the Z axis and the film normal direction is 20 to 70 ° as the inclination axis Y-axis, the optical axis of the film is the film plane and the angle of the Ru 20 to 70 ° der phase difference film and (a),
At least one retardation film (B) having almost no refractive index anisotropy in the plane of the film and having a refractive index in the film thickness direction smaller than the refractive index in the plane;
Is a laminated retardation film having a laminated structure,
Polarizing plate / retardation film (B) / retardation film (A) / liquid crystal cell / retardation film
Laminated in the order of (A) / retardation film (B) / polarizing plate; and
When viewed from the light output side of the liquid crystal cell, the direction above the optical axis of the retardation film (A) is adjacent to the liquid crystal cell substrate on the side closer to the light incident side and light output side of the liquid crystal cell. It is arranged so as to have a relationship of approximately + 180 ° with respect to the direction above the optical axis of the liquid crystal molecules.
Liquid crystal display device .
液晶セルとその両側の偏光板との間にはそれぞれ位相差フィルムが配置されており、
該位相差フィルムは、
3つの主屈折率n x 、n y 及びn z がn x >n y >n z なる関係を満足する二軸配向性を有しかつX軸と光学軸のなす角度が20〜70°であるような屈折率異方性を有する物質が、Y軸を傾斜軸としてZ軸とフィルム法線方向のなす角度が20〜70°となるように傾斜配向しており、フィルムの光学軸がフィルム面となす角度が20〜70°である位相差フィルム(A)と、
フィルム面内に屈折率異方性が殆ど存在せず、フィルム厚み方向の屈折率が面内の屈折率より小さい特性を有する少なくとも1枚の位相差フィルム(B)と、
光学的に正の屈折率異方性を有する一軸配向性の少なくとも1枚の位相差フィルム
(C)と
が積層された構成の積層位相差フィルムであり、
偏光板/位相差フィルム(B)/位相差フィルム(A)/位相差フィルム(C)/液晶セル/位相差フィルム(C)/位相差フィルム(A)/位相差フィルム(B)/偏光板の順に積層され、
液晶セルの光出射側から見た場合に、位相差フィルム(A)の光学軸の上側になる方向が、液晶セルの光入射側及び光出射側においてそれぞれに近い側の液晶セル基板に隣接する液晶分子の光学軸の上側になる方向に対して、略+180°の関係になるように配置され、かつ
位相差フィルム(C)の遅相軸の方向が、液晶セルの光入射側及び光出射側においてそれぞれに近い側の液晶セル基板のラビング方向に対して略垂直の関係になるよう設定されていることを特徴とする
液晶表示装置。 In a normally white mode liquid crystal display device comprising a twisted nematic liquid crystal cell having a twist angle of approximately 90 ° and two polarizing plates disposed on both sides of the cell,
Retardation films are arranged between the liquid crystal cell and the polarizing plates on both sides,
The retardation film is
Three main refractive indices n x, n y and n z are n x> n y> n z becomes a biaxially oriented to satisfy the relation and the angle of the X-axis and the optical axis is 20 to 70 ° Such a material having refractive index anisotropy is tilted so that the angle formed between the Z axis and the film normal direction is 20 to 70 ° with the Y axis as the tilt axis, and the optical axis of the film is the film surface. A retardation film (A) having an angle of 20 to 70 °,
At least one retardation film (B) having almost no refractive index anisotropy in the film plane and having a characteristic that the refractive index in the film thickness direction is smaller than the refractive index in the plane;
At least one uniaxially oriented retardation film having optically positive refractive index anisotropy
(C) and
Is a laminated retardation film having a laminated structure,
Polarizing plate / retardation film (B) / retardation film (A) / retardation film (C) / liquid crystal cell / retardation film (C) / retardation film (A) / retardation film (B) / polarizing plate Are stacked in this order,
When viewed from the light output side of the liquid crystal cell, the direction above the optical axis of the retardation film (A) is adjacent to the liquid crystal cell substrate on the side closer to the light incident side and light output side of the liquid crystal cell. Arranged so as to have a relationship of approximately + 180 ° with respect to the direction above the optical axis of the liquid crystal molecules, and
The direction of the slow axis of the retardation film (C) is set so as to be substantially perpendicular to the rubbing direction of the liquid crystal cell substrate on the side closer to the light incident side and the light emitting side of the liquid crystal cell. It is characterized by
Liquid crystal display device .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29829298A JP3924955B2 (en) | 1998-10-20 | 1998-10-20 | Liquid crystal display device in which retardation film is arranged |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29829298A JP3924955B2 (en) | 1998-10-20 | 1998-10-20 | Liquid crystal display device in which retardation film is arranged |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000121831A JP2000121831A (en) | 2000-04-28 |
JP3924955B2 true JP3924955B2 (en) | 2007-06-06 |
Family
ID=17857762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29829298A Expired - Fee Related JP3924955B2 (en) | 1998-10-20 | 1998-10-20 | Liquid crystal display device in which retardation film is arranged |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3924955B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4145535B2 (en) | 2002-03-08 | 2008-09-03 | シャープ株式会社 | Method for setting retardation of liquid crystal display device |
JP3983574B2 (en) | 2002-03-08 | 2007-09-26 | シャープ株式会社 | Method for setting retardation of liquid crystal display device |
KR100915235B1 (en) * | 2002-12-23 | 2009-09-02 | 삼성전자주식회사 | Transmissive and reflective type liquid crystal display |
JP4736330B2 (en) * | 2004-02-20 | 2011-07-27 | コニカミノルタオプト株式会社 | Retardation film, polarizing plate protective film, elliptical polarizing plate, and display device |
JP5262387B2 (en) * | 2007-11-20 | 2013-08-14 | セイコーエプソン株式会社 | Liquid crystal device, projector, and optical compensation method for liquid crystal device |
JP5552728B2 (en) * | 2007-11-20 | 2014-07-16 | セイコーエプソン株式会社 | Liquid crystal device, projector, optical compensation method for liquid crystal device, and retardation plate |
JP5262388B2 (en) * | 2007-11-20 | 2013-08-14 | セイコーエプソン株式会社 | Liquid crystal device, projector, and optical compensation method for liquid crystal device |
JP5552727B2 (en) * | 2007-11-20 | 2014-07-16 | セイコーエプソン株式会社 | Liquid crystal device, projector, optical compensation method for liquid crystal device, and retardation plate |
TWI499835B (en) * | 2007-11-20 | 2015-09-11 | Seiko Epson Corp | Liquid crystal device, projector and liquid crystal device |
WO2010092926A1 (en) | 2009-02-13 | 2010-08-19 | 日東電工株式会社 | Laminate optical body, optical film, liquid crystal display device using said optical film, and method for manufacturing laminate optical body |
JPWO2010100993A1 (en) * | 2009-03-05 | 2012-09-06 | コニカミノルタアドバンストレイヤー株式会社 | Retardation film |
JP5538062B2 (en) * | 2009-05-18 | 2014-07-02 | 富士フイルム株式会社 | Twisted orientation mode liquid crystal display |
JP5427595B2 (en) * | 2009-12-25 | 2014-02-26 | 富士フイルム株式会社 | Twisted orientation mode liquid crystal display |
-
1998
- 1998-10-20 JP JP29829298A patent/JP3924955B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000121831A (en) | 2000-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1702233B1 (en) | In-plane switching liquid crystal display comprising compensation film for angular field of view using negative biaxial retardation film and (+) c-plate | |
JP3071204B2 (en) | Liquid crystal display device | |
US8767151B2 (en) | In-plane switching liquid crystal display | |
EP2693243B1 (en) | Integrated O Film for Improving viewing angle of TN-LCD, and Polarizer Plate and TN-LCD including the same | |
KR20050049137A (en) | In-plane switching liquid crystal display comprising compensation film for angular field of view using positive biaxial retardation film | |
CN1203329C (en) | Optical film, polarization apparatus and display equipment | |
JP2010537227A (en) | Optical film and method for adjusting wavelength dispersion characteristic of optical film | |
JP3924955B2 (en) | Liquid crystal display device in which retardation film is arranged | |
US6208396B1 (en) | Normally white mode twisted nematic liquid crystal display device having improved viewing angle characteristics | |
JP3663783B2 (en) | Liquid crystal display | |
JP2003015134A (en) | Liquid crystal display device | |
JPH0545520A (en) | Polarizing plate and liquid crystal display device | |
JP2767382B2 (en) | Optical compensation sheet | |
KR100485430B1 (en) | Liquid crystal display device | |
WO2009072815A9 (en) | Integrated wide viewing film and in-plan switching liquid crystal display with the same | |
JP3830456B2 (en) | Liquid crystal display | |
JPH10133195A (en) | Liquid crystal display | |
JP2006292787A (en) | Liquid crystal display panel and device | |
JP2803820B2 (en) | Liquid crystal display device | |
JP3118054B2 (en) | Liquid crystal display device | |
JPH04101119A (en) | lcd display panel | |
JPH10123322A (en) | Retardation film | |
JP2000347165A (en) | Liquid crystal display device | |
KR100863410B1 (en) | An optical film, a manufacturing method thereof, a liquid crystal display device having the optical film, and a manufacturing method of the liquid crystal display device | |
JP2001194669A (en) | LCD panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061031 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070206 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070219 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100309 Year of fee payment: 3 |
|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D05 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110309 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120309 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130309 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130309 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140309 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |