TW200944886A - Transflective display unit and driving method thereof - Google Patents

Transflective display unit and driving method thereof Download PDF

Info

Publication number
TW200944886A
TW200944886A TW97114259A TW97114259A TW200944886A TW 200944886 A TW200944886 A TW 200944886A TW 97114259 A TW97114259 A TW 97114259A TW 97114259 A TW97114259 A TW 97114259A TW 200944886 A TW200944886 A TW 200944886A
Authority
TW
Taiwan
Prior art keywords
region
reflective
electrode
substrate
voltage
Prior art date
Application number
TW97114259A
Other languages
Chinese (zh)
Other versions
TWI371625B (en
Inventor
Yi-Chin Lee
Chan-Hao Yang
Chien-Hong Chen
Original Assignee
Chi Mei Optoelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chi Mei Optoelectronics Corp filed Critical Chi Mei Optoelectronics Corp
Priority to TW097114259A priority Critical patent/TWI371625B/en
Publication of TW200944886A publication Critical patent/TW200944886A/en
Application granted granted Critical
Publication of TWI371625B publication Critical patent/TWI371625B/en

Links

Abstract

A transflective display unit and the driving method thereof are provided. The transflective display unit includes a first reflecting region and a transmitting region, wherein the transmitting region includes a second reflecting region. The region ratio between the first reflecting region and the transmitting region is adjusted so as to the reflecting rate accords with a curve related the transmitting rate vary with a driving voltage.

Description

200944886200944886

』Z1TW 23516twf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是關於一種半穿反顯示器(Transflective Display),且特別是關於一種液晶厚度相同之半穿反顯示 器之顯示單元。 【先前技術】BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a transflective display, and more particularly to a display unit for a transflective display having the same liquid crystal thickness. [Prior Art]

一般液晶顯示器可分為穿透式、反射式,以及半穿透 半反射式三大類。其中半穿透半反射式液晶顯示器可同時 在光線充足與光線不足的情形下使用,因此可應用的範圍 較廣。Generally, liquid crystal displays can be classified into three types: transmissive, reflective, and transflective. The transflective liquid crystal display can be used in both light and low light, so it can be applied in a wide range.

在牛芽反液晶顯示器中,通常會在一個晝素内分成穿 透區和反射區。穿透區的光源來自背光板,反射區的光源 則來自環境光。當外加電壓於液晶層,改變液晶層對相位 的延遲量,再通過偏光板而有亮暗的變化。由於光線在反 射區的液晶層中的傳輸距離大約是光線在穿透區的液晶層 中的傳輸距離的兩倍,因此自反射區及穿親的液晶層對 光線造成不_相位輯量,所以反射區亮度對電壓變化 ΐΐίΪΪί區不同。如圖1所示’ ® 1為根據傳統技術 壓關係曲線。此液晶為垂直配向,其中曲 ,但是穿透率僅到6〇%:二=已; 半反射式液巧㈤的顯树果種1♦料+穿透 因此右欲達到較佳的顯示效果,•將反射區與穿 200944886 -1Z1TW 23516twf.doc/n 透區的光線強度曲線調整至相近的位置,使其與 化關係相近。 ' 【發明内容】 卞發明提供-種半穿反顯示單元,適用於半穿反顯示 器,藉由在反射區增加一層絕緣層與在穿透區增加新的反 射區來調整光線反射率,使其與光線穿透率^壓關係相 近。 、 本發明提供-種半穿反顯示單元之驅動方法,利用電 壓耦合的方式,調整反射區的液晶跨壓,使反射率與穿 率與電壓之間的關係曲線相近,以改善顯示品質。 本發明提出-種半穿反顯示單元,包括第一反射區與 穿透區,其中穿透區中具有-第二反射區。第—反射區用、 以顯示一第一影像,穿透區則用以顯示一第二影像,其中 第一反射區至少包括第一反射電極以及一第一絕緣層,、其 中上述第-反射電極形成於第—基板之上,該第一ς緣ς 則形成於該第一反射電極的上下兩侧或形成於該第一反身^ 電極與該第一基板之間。穿透區至少包括透明電極與第二 反射電極,上述透明電極與第二反射電極相鄰並形成於第 :基板之上。其中,第一反射區與穿透區分別具有一第 二基板、一共同電極以及一液晶層,該共同電極形成於該 第二基板之上並鄰近於該液晶層,該液晶層位於該共同電 極與該第一基板之間,該第一反射區與該穿透區相鄰且 該第一反射電極形成一第二反射區。 在本發明一實施例中,上述穿透區更包括一第二絕緣 200944886 J.In a bull's-eye reverse liquid crystal display, it is usually divided into a transmissive area and a reflective area in one element. The light source in the penetrating zone comes from the backlight, and the light source in the reflecting zone comes from ambient light. When a voltage is applied to the liquid crystal layer, the retardation amount of the liquid crystal layer to the phase is changed, and then there is a change in brightness and darkness through the polarizing plate. Since the transmission distance of the light in the liquid crystal layer of the reflection area is about twice the transmission distance of the light in the liquid crystal layer of the penetration area, the self-reflection area and the liquid crystal layer of the wearing side cause a phase imbalance of the light, so The brightness of the reflective area is different for the voltage change ΐΐίΪΪί. As shown in Figure 1, '® 1 is a pressure curve according to the conventional technique. The liquid crystal is vertically aligned, in which the curvature is only 6〇%: two = already; the semi-reflective liquid (5) of the fruit tree species 1 material + penetration so that the right to achieve a better display effect, • Adjust the light intensity curve of the reflection zone and the through hole of the 200944886 -1Z1TW 23516twf.doc/n to a similar position to make it similar to the chemical relationship. The invention provides a transflective display unit for a transflective display, which adjusts the light reflectance by adding an insulating layer in the reflective area and adding a new reflective area in the transmissive area. It is similar to the light penetration rate. The present invention provides a driving method for a transflective display unit. The liquid crystal cross-over of the reflective region is adjusted by means of voltage coupling, so that the relationship between the reflectance and the transmittance and the voltage is similar to improve the display quality. The present invention provides a transflective display unit comprising a first reflective region and a transmissive region, wherein the transmissive region has a second reflective region. The first reflective region is configured to display a first image, and the transparent region is configured to display a second image, wherein the first reflective region includes at least a first reflective electrode and a first insulating layer, wherein the first reflective electrode The first crucible edge is formed on the upper and lower sides of the first reflective electrode or between the first reflex electrode and the first substrate. The penetrating region includes at least a transparent electrode and a second reflective electrode, and the transparent electrode is adjacent to the second reflective electrode and formed on the substrate. The first reflective area and the transparent area respectively have a second substrate, a common electrode and a liquid crystal layer. The common electrode is formed on the second substrate and adjacent to the liquid crystal layer, and the liquid crystal layer is located at the common electrode. The first reflective region is adjacent to the penetrating region and the first reflective electrode forms a second reflective region. In an embodiment of the invention, the penetrating region further comprises a second insulation 200944886 J.

rZITW 23516twf.doc/n 層與一共同電極’上述第二絕緣層形成於第一基板與透明 電極之間。 在本發明另一實施例中’上述第二反射電極由鋁所形 成,而第二基板由彩色濾光片所形成。 在本發明另一實施例中’上述第一反射區與穿透區的 液晶厚度相同,且穿透區操作於一第一電壓區間,第一反rZITW 23516twf.doc/n layer and a common electrode The second insulating layer is formed between the first substrate and the transparent electrode. In another embodiment of the invention, the second reflective electrode is formed of aluminum and the second substrate is formed of a color filter. In another embodiment of the present invention, the liquid crystal thickness of the first reflective region and the penetrating region is the same, and the penetrating region operates in a first voltage interval, the first

射區操作於第二電壓區間’第二電麼區間之電壓差小於第 一電壓區間之電壓差。 ^在本發明另一實施例中,上述第一反射區的相位延遲 畺為四分之一個光波長。上述穿透區的相位延遲量為二分 之一個光波長。 從另-個觀點來看,本案又提出—種半穿反液晶顯示 裝置L包括第一基板與第二基板,其中第—基板包括一反 射顯不區與一穿透顯示區。反射顯示區包括第一反射電 極二而穿透顯示區則包括透明電極與第二反射電極,其中The emitter operates in the second voltage interval and the voltage difference between the second voltage section is less than the voltage difference of the first voltage interval. In another embodiment of the invention, the phase retardation 上述 of the first reflective region is a quarter of a wavelength of light. The phase delay amount of the above-mentioned penetration region is one-half of the wavelength of light. From another point of view, the present invention further proposes that the transflective liquid crystal display device L comprises a first substrate and a second substrate, wherein the first substrate comprises a reflective display region and a transmissive display region. The reflective display area includes a first reflective electrode 2 and the transparent display electrode includes a transparent electrode and a second reflective electrode, wherein

第二反射電極位於透明電極之中。第二基板包括一共同電 =及-液晶層’上述液晶層形成於第—基板2 <間0 在本發明一實施例中,上述第一基板 :與㈡二射電極的上下兩侧或形成於二= 用於上述顯ί驅動方法,可應 動方法反顯不早减及—般半穿反_單元,此驅 動方法包括下列步驟:提供—晝素驅動電壓 7 200944886The second reflective electrode is located in the transparent electrode. The second substrate includes a common electric and/or liquid crystal layer. The liquid crystal layer is formed on the first substrate 2. In an embodiment of the present invention, the first substrate: the upper and lower sides of the (two) two-electrode are formed or formed. In the second = for the above-mentioned display driving method, the active method can be reversed and the half-through anti-cell is not reduced early. The driving method includes the following steps: providing - the halogen driving voltage 7 200944886

:1Z1TW 23516twf.doc/n 一反射區;提供一耦合電壓,經由儲存電容耦合至第一反 射區;以及調整耦合電壓,以調整第一反射區兩端之電壓 差。 在本發明一實施例中,上述之驅動方法,其中在調整 该耦合電壓之步驟中包括:當晝素驅動電壓為正極性驅動 時,使該耦合電壓小於共用電壓;以及當晝素驅動電壓為 負極性驅動時,使耦合電壓大於共用電壓。: 1Z1TW 23516twf.doc / n a reflective region; providing a coupling voltage coupled to the first reflective region via the storage capacitor; and adjusting the coupling voltage to adjust the voltage difference across the first reflective region. In an embodiment of the present invention, the driving method, wherein the step of adjusting the coupling voltage comprises: when the pixel driving voltage is positive polarity driving, causing the coupling voltage to be less than a common voltage; and when the pixel driving voltage is When the negative polarity is driven, the coupling voltage is made larger than the common voltage.

在本發明一實施例中,上述之驅動方法,其中在調整 1耦合電壓之步驟中包括:當晝素驅動電壓為正極性驅動 日守,使該耦合電壓大於共用電壓;以及當畫素驅動電壓為 負極性驅動時,使耗合電壓小於共用電壓。 在本發明一實施例中,上述之驅動方法,其令在提供 輕合電壓之步财,更包括提供?透區搞合電壓,經由穿 透區耦合電容,耦合至穿透區。 本發明在原先穿透區的部分面積鍍上鋁板,增加一個In an embodiment of the present invention, the driving method, wherein the step of adjusting a coupling voltage comprises: when the pixel driving voltage is a positive polarity driving day, the coupling voltage is greater than a common voltage; and when the pixel driving voltage is When driving for the negative polarity, the consumption voltage is made smaller than the common voltage. In an embodiment of the present invention, the driving method described above provides for the step of providing a light and voltage, and more includes providing? The through-area engages the voltage and is coupled to the penetration region via the through-region coupling capacitor. The invention is plated with an aluminum plate in a part of the area of the original penetration zone, adding one

一反射區,再藉著第二反射區和原先設計相位延遲量為 λ/4^;λ為光波長)的第—反射區,以不同的面積比例,來 ^貝反射率對電壓關係的巾間亮度部份,使其更符合穿透 2電壓關侧’進而達到改善半穿反液晶顯示器的顯示 效果。 為讓本發明之上述和其他目的、特徵和優點能更明顯 心、,’下域舉本發日狀較佳實施例,並配合所附圖式, 作砰細說明如下。 【實施方式】 8 200944886ziTw 23516twf.doc/n 第一實施例 圖2A為根據本發明第一實施例之半穿反顯示單元之 結構示意圖。半穿反顯示單元200包括第一反射區2〇1與 穿透區203,其中穿透區203中具有第二反射區2〇4。第二 反射區201由第一基板210、第一反射電極22〇、絕緣層 230、液晶層260、共同電極270以及第二基板28〇所構成。 第一反射電極220形成於第一基板210之上,絕緣層230 形成於第一反射電極22〇之上,而液晶層260則配置於絕 緣層230與共同電極270之間,共同電極270形成於第二 基板280之上。穿透區203由第一基板21〇、絕緣層24〇、 透明電極250、液晶層260、共同電極27〇以及第二基板 280所構成。絕緣層240形成於第一基板21〇與透明^極 250之間,而液晶層260配則置於透明電極25〇與共同電 極270之間,共同電極270形成於第二基板28〇之上。此 外’透明電極250之區域中更包括一第二反射電極225以 形成第二反射區204。 ⑩ 此外’值得注意的是’絕緣層23〇可形成於第一反射 電極220的上下兩側或开>成於第—反射電極與第一基 板210之間。絕緣層230、240則可利用同一道製程形成或 是利用不同道製程來形成,也就是說,絕緣層23〇、24〇 可為同-層絕緣層或獨立形成之絕緣層,本實施例並不 • 限。 在本實施例中’第二基板280與第-基板210例如為 玻璃基板,第二基板280則可由彩色遽光片(c〇1〇r ㈣(未 200944886a reflective region, and then through the second reflective region and the original design phase retardation amount of λ / 4 ^; λ is the light-wavelength of the first - reflection region, with different area ratio, to reflect the reflectivity versus voltage The inter-luminance part makes it more in line with the penetration voltage side of '2' and thus improves the display effect of the transflective liquid crystal display. The above and other objects, features, and advantages of the present invention will become more apparent. [Embodiment] 8 200944886ziTw 23516twf.doc/n First Embodiment Fig. 2A is a schematic view showing the structure of a transflective display unit according to a first embodiment of the present invention. The transflective display unit 200 includes a first reflective area 2〇1 and a transmissive area 203, wherein the transmissive area 203 has a second reflective area 2〇4 therein. The second reflective region 201 is composed of a first substrate 210, a first reflective electrode 22, an insulating layer 230, a liquid crystal layer 260, a common electrode 270, and a second substrate 28A. The first reflective electrode 220 is formed on the first substrate 210, the insulating layer 230 is formed on the first reflective electrode 22, and the liquid crystal layer 260 is disposed between the insulating layer 230 and the common electrode 270. The common electrode 270 is formed on the common electrode 270. Above the second substrate 280. The penetration region 203 is composed of a first substrate 21, an insulating layer 24, a transparent electrode 250, a liquid crystal layer 260, a common electrode 27A, and a second substrate 280. The insulating layer 240 is formed between the first substrate 21 and the transparent electrode 250, and the liquid crystal layer 260 is disposed between the transparent electrode 25A and the common electrode 270, and the common electrode 270 is formed on the second substrate 28A. Further, a second reflective electrode 225 is further included in the region of the transparent electrode 250 to form the second reflective region 204. Further, it is noted that the insulating layer 23 can be formed on the upper and lower sides of the first reflective electrode 220 or open between the first reflective electrode and the first substrate 210. The insulating layers 230 and 240 may be formed by the same process or by different processes, that is, the insulating layers 23, 24 may be the same layer insulating layer or the independently formed insulating layer. Not limited. In the present embodiment, the second substrate 280 and the first substrate 210 are, for example, a glass substrate, and the second substrate 280 is made of a color light-emitting sheet (c〇1〇r (4) (not 200944886).

•1Z1TW 23516twf.doc/n 繪示)的玻璃基板所取代’共同電極270可直接形成在彩色 濾光片之玻璃基板上,並鄰近於液晶層。絕緣層230例如 為透明材質,光線可穿透絕緣層230,再經由第一反射電 極220反射後’再經過液晶層260顯示相對應的光線強度。 共同電極270與透明電極250則例如是銦錫氧化QJQ)或是 透明的導電材質(如:IT0、Ti02、Ti及TiN等材料),其中 共同電極270通常麵接至共同電壓(common v〇itage,或簡稱為 馨 VCOM)。第一反射電極220與在第二反射區域2〇4中之第二 反射電極225則例如是鋁板。第二反射電極225的面積大小則 可依設計需求而定,經由調整第二反射電極225與第一反射電 極220的面積比例,即可調整反射區所造成的光線強度與電壓 關係曲線,即反射率。 穿透區203的光源來自背光板(未繪示),第一反射 區201的光源則來自環境光。當外加電壓於液晶層時,會 改變液晶層的相位延遲量(retardation),再通過上偏光板 (通常設置在第二基板280之上)而有亮暗的變化。光線的 〇 行進路線則如圖2A中之箭號所標示一般,在穿透區203 中直接由背光源穿透液晶層260。在第一反射區201與第 二反射區204,光線則經由反射所形成。 由於絕緣層230會使得第一反射區2〇1中的液晶層 260所受到的實質跨壓(共同電極270至絕緣層23〇表面 的電壓差)下降’因此在相同的驅動電壓(通常由資.剩_線· 所提供之晝素驅動電壓)下,其反射率較低。而結合反射 率較南的第二反射區’所形成的反射率則可與穿透區的光 」Z1TW 23516twf.doc/n 200944886 線穿透率具有相近的電壓關係曲線。 在本實施例中,將反射區(包括第一反射區201與第 二反射區204)所產生的光線相對強度與電壓的關係稱之 為反射率,將穿透區(扣除第二反射區204的穿透區203) - 所產生的光線相對強度與電壓的關係稱之為穿透率。請參 照圖2B,圖2B為根據圖2A之光線相對強度與電壓關係 . 曲線圖。曲線C201表示第一反射區201的光線反射率與 鲁 電壓之間的關係曲線,曲線C204則表示第二反射區204 所造成的反射率與電壓之間的關係曲線,而曲線C2〇則表 示綜合第一反射區201與第二反射區204之光線反射率與 電壓之間的關係曲線。曲線C203則表示穿透區203之光 線穿透率與電壓之間的關係曲線。由於本實施例中,在透 明電極250上,利用鋁板形成第二反射電極225,因此增 加了光線反射的效果。综合第一反射區2〇1與第二反射區 204的光線強度所形成的曲線C2〇,其與電壓之間的變化 曲線相近於曲線C203(虛線部分”換言之,在所需的電壓 ❹ 猶區Μ,+歧顯科it ❾反料與f透率相近, 其顯不品質較為佳。 在本實施例中,穿透區2〇3與第一反射區2〇1的液晶 厚度相同,絕緣層230可使第一反射區2〇丨中的液晶層26〇 產生較小的相位延遲量,例如為穿透區203的一半。由於 ,線在第-反射區2〇1中需要穿越兩次液晶層26。,因此 ·#令光波長為λ’則可設計穿透區2()3的相位延遲量為 边,第-反射區201的相位延遲量為λ/4,如此便可使第 200944886• The glass substrate of 1Z1TW 23516twf.doc/n is replaced by the 'common electrode 270' which can be formed directly on the glass substrate of the color filter and adjacent to the liquid crystal layer. The insulating layer 230 is, for example, a transparent material. The light can penetrate the insulating layer 230 and be reflected by the first reflective electrode 220 to display the corresponding light intensity through the liquid crystal layer 260. The common electrode 270 and the transparent electrode 250 are, for example, indium tin oxide QJQ) or a transparent conductive material (such as materials such as IT0, TiO2, Ti, and TiN), wherein the common electrode 270 is normally connected to a common voltage (common v〇itage) Or simply referred to as Xin VCOM). The first reflective electrode 220 and the second reflective electrode 225 in the second reflective region 2〇4 are, for example, aluminum plates. The area of the second reflective electrode 225 can be adjusted according to the design requirements. By adjusting the ratio of the area of the second reflective electrode 225 and the first reflective electrode 220, the relationship between the intensity of the light and the voltage caused by the reflective region can be adjusted, that is, the reflection. rate. The light source of the penetrating region 203 is from a backlight (not shown), and the light source of the first reflecting region 201 is derived from ambient light. When a voltage is applied to the liquid crystal layer, the phase retardation of the liquid crystal layer is changed, and there is a change in light and dark by the upper polarizing plate (generally disposed on the second substrate 280). The 行进 travel path of the light is generally indicated by the arrow in Fig. 2A, and the liquid crystal layer 260 is directly penetrated by the backlight in the penetration region 203. In the first reflective region 201 and the second reflective region 204, light is formed by reflection. Since the insulating layer 230 causes the substantial cross-voltage (the voltage difference between the common electrode 270 and the surface of the insulating layer 23) of the liquid crystal layer 260 in the first reflective region 2〇1 to decrease, the same driving voltage (usually by the capital) The remaining _ line · the supplied pixel drive voltage) has a low reflectance. The reflectance formed by the second reflective region ′ in combination with the south reflectance can have a similar voltage relationship with the light transmittance of the penetrating region "Z1TW 23516twf.doc/n 200944886". In this embodiment, the relationship between the relative intensity of the light generated by the reflective region (including the first reflective region 201 and the second reflective region 204) and the voltage is referred to as the reflectance, and the penetration region is subtracted (excluding the second reflective region 204). Penetration zone 203) - The relationship between the relative intensity of light produced and the voltage is called the penetration rate. Please refer to FIG. 2B. FIG. 2B is a graph showing the relationship between the relative intensity of light and the voltage according to FIG. 2A. The curve C201 represents the relationship between the light reflectance of the first reflection region 201 and the Lu voltage, the curve C204 represents the relationship between the reflectance and the voltage caused by the second reflection region 204, and the curve C2〇 indicates the synthesis. A relationship between light reflectance and voltage of the first reflective region 201 and the second reflective region 204. Curve C203 shows the relationship between the light transmittance of the penetrating region 203 and the voltage. In the present embodiment, the second reflective electrode 225 is formed on the transparent electrode 250 by the aluminum plate, thereby increasing the effect of light reflection. A curve C2 形成 formed by combining the light intensity of the first reflection area 2〇1 and the second reflection area 204 is similar to the curve C203 (dotted line portion), in other words, at the required voltage 犹 Jujube Μ, 歧 显 it it it it it it 与 与 与 与 与 与 与 与 与 与 f f f f f f f f f f f f f f f f f f f + + + 在 在 在 在 在 在 在 在 在230 may cause the liquid crystal layer 26 in the first reflective region 2 to produce a smaller amount of phase retardation, for example, half of the penetrating region 203. Since the line needs to pass through the liquid crystal twice in the first reflecting region 2? The layer 26. Therefore, the wavelength of the light is λ', the phase retardation amount of the penetration region 2()3 can be designed as the edge, and the phase retardation amount of the first reflection region 201 is λ/4, so that the 200944886 can be made.

irZITW 23516twf.doc/n 一反射區201與穿透區203所造成的相位延遲量相同進 而使穿透率與反射率兩者對電壓的關係一致。此外,藉由 調整第二反射區204與第一反射區201的面積比例,^改 變半穿反顯示單元200整體的反射率,而第二反射區204 的配置並不限定於圖2B中之位置及其數量,亦可由多個 分散區域所形成,同樣具有調整反射率的功效。 由於不同的晝素設計會對應到不同的晝素結構,同時 也會設置對應的開關元件(如電晶體)以及儲存電容,因此 找圖2A僅_畫素結構中之主要電容結構^以= 本實施例主要之技術手段,也就是在穿透區中設置第二反 射區。本實施例並不限定於上述圖2A之架構,本實施例 "T配a不同之畫素设§十,在穿透區中設置所需的第二反射 區。 接下來,請參照圖2C,圖2C為根據本發明第一實施 例之半穿反顯示單元之結構示意圖。圖2C與圖2A主要不 同在於更進一步繪示電晶體厘別丨與儲存電容CST的設置 位置以及更詳細繪示第一反射區電容CR1、絕緣層電容 COG、第二反射區電容CR2、穿透區電容cr以及儲存電 容CST1在實際製程中的結構。 第一反射區201的第一反射電極220是由第三金屬層 (例如銘板)M3所形成,並位於絕緣層230之中(即絕緣層 230形成於第一反射電極的220的上下兩侧),可藉由第一 反射電極220形成的位置調整絕緣層電容COG的電容 值同時也可以調整第一反射區201中的液晶跨壓(即第一 12 1Z1TW 23516twf.doc/n 200944886 反射區電容CRl兩端的電壓差)與資料線dl所傳送的書素 驅動電壓之間的比例關係。當第一反射電極22〇與液晶層 260之間的絕緣層230越薄時,第一反射區電容CR1兩端 的電壓差(可由電場分佈以及液晶層260的厚度推知)則越 • 接近資料線DL所傳送的晝素驅動電壓,藉由調整第一反 射電極220與液晶層260之間的絕緣層230厚度亦可調整 • 第一反射區201中的反射率。 參 第一反射電極225同樣由第三金屬層m3所形成並電 性連接至透明電極250,用以在穿透區203中形成第二反 射區204,其中第二反射電極225與透明電極250因為相 互電性連接而具有相同的電位。當掃描線SL導通電晶體 M201時,資料線DL會經由電晶體M2〇1傳送晝素驅動電 壓至半穿反顯示單元290並使第一反射電極22〇、第二反 射電極225以及透明電極250具有相同的晝素驅動電壓。 在本實施例中’可利用第二反射電極225的面積大小來調 整半穿反顯示單元290的反射率與穿透率,使兩者的電壓 © 變化曲線較為相近以提高畫面顯示品質。 在半穿反顯示單元的晝素驅動電路方面,電晶體M2〇i 的閘極端GT耦接於掃描線’其沒極端DT輕接於資料線, 其源極端則經由第二金屬層M2、第三金屬層m3電性連接 至第一反射電極220、第二反射電極225以及透明電極 25〇。而儲存電容CST的端點P1除了可耦接於共同電壓以 . 外’亦可應用於改善半穿反顯示單元的驅動效果,例如將 儲存電容CST的端點P1耗接於耗合電壓,經由調整輕合 13 .1Z1TW 23516twf.doc/n 電壓以達到於過驅動(0verdriving)的驅動效果。 此外,值得注意的是,上述利用第二反射電極225的 面積大小與調整第一反射電極220與液晶層260之間的絕 緣層230厚度兩種技術手段可單獨使用或合併使用,可更 . 有效調整半穿反顯示單元290的反射率與穿透率。 , 圖2D為根據圖2C之等效晝素電路圖。以下說明請同 柃參照圖2A、圖2C,畫素電路295包括電晶體M201、第 φ 一反射區電容CR卜絕緣層電容COG、第二反射區電容 CR2、穿透區電容CT以及儲存電容CST。第一反射區2〇1 主要包括第一反射區電容CR1以及絕緣層電容c〇G,穿 透區203主要包括穿透區電容CT。在一般液晶顯示面板的 製程中,電晶體M201與儲存電容CST通常由第一金屬層 Ml、第二金屬層 M2、半導體層(semic〇nduct〇r electr〇de,簡 稱SE)以及隔離層(insuiator)所構成,如圖2C所示。 其中第二反射區電容CR2、穿透區電容CT以及儲存 電谷CST的一端(即共同電極270)耦接於共同電壓 ❹ VC0M,另一端(即第一反射電極220、第二反射電極225 以及透明電極250)耦接於電晶體M2〇1,第一反射區電容 CR1與絕緣層電容c〇G則串聯耦接於電晶體M2〇1與共同 電壓VC0M之間。電晶體M201耦接於資料線DL ^描 線SL,當電晶體Μ201被掃描線SL導通時,資料線DL ' 可經由電晶體對晝素電路295中的電容充電。 • 對應圖2D與圖2C,因為第一反射電極220與共同電 極270之間具有絕緣層230與液晶層260,因此形成絕緣 200944886 ---------1Z1TW 23516twf.doc/n 層電容COG與第一反射區電容CRl。透明電極25〇與共 同電極270則形成穿透區電容CT,第二反射電極225與^ 同電極270則形成第二反射區電容CR2。關於圖2]〇與^ 2C中元件的對應位置,請直接參照圖中標示與元件名稱, • 在此不再詳細描述。 在本實施例中,半穿反顯示單元200表示一液晶顯示 _ 面板中的一個晝素結構,其中第一反射區201用以顯示一 ❹ 第一影像’而穿透區203則用以顯示一第二影像,結合第 一影像與第二影像則形成一個晝素影像。由於穿透區2〇3 中尚包括一第一反射區204 ’因此可用來加強整體書素的 反射效果。就畫素結構而言,可將第一反射電極視為一反 射顯示區,而透明電極與第二反射電極則視為一穿透顯示 區。 第二實施例 圖3A為根據本發明第二實施例之半穿反顯示單元之 結構示意圖。在本實施例中之半穿反顯示單元3〇〇同樣包 Ο 括穿透區203與第一反射區201,且穿透區203中尚包括 第二反射區204。圖3A與圖2C主要差異在於圖3A中的 第一反射區20與1穿透區203分別由電晶體M301、M303 所控制’且第一反射電極220設置於絕緣層230之上,因 此在第一反射區201中沒有等效的絕緣層電容。 • 穿透區203的穿透區電容CT、第二反射區電容CR2 以及儲存電容CST2的一端會耦接於電晶體M3〇3的源極 端,而第一反射區201中的第一反射區電容CR1與儲存電 15 200944886 ------—1Z1TW 23516twf.doc/n 容CST1的一端會耦接於電晶體M3〇1的源極端。電晶體 M3(H、M303的没極端DT耦接於資料線,其閘極端GT 則均耦接於掃描線。換言之,即是將半穿反顯示單元3〇〇 分為兩個子晝素結構,分別為第一反射區2〇1與穿透區 . 203。因為第一反射區201與穿透區2〇3兩區域的晝素電極 由電曰日體M301、M303分開’因此可藉由儲存電容CST1 與CST2分別調整其驅動時的液晶跨壓。其中儲存電容 CST1、CST2可由液晶面板製程中之第一金屬層m與第 二金屬層M2所構成。 〃 當掃描線致能時,電晶體M301、M303會導通,資料 線便可對第一反射區電容CR1、儲存電容CST1、穿透區 電谷ct、第二反射區電容以及儲存電容CST2進行充電。 本實施例可藉由調整第二反射電極222的面積大小來調整 整個半穿反顯示單元300的平均反射率,使其與穿透率的 電壓變化曲線相近。此外,由於第一反射區2〇1與穿透區 203分別由電晶體M301、M303所控制,因此本實施例亦 ❹ 可分別經由儲存電容CST1、CST2的端點P2、P3調整第 一反射區201與穿透區203中之液晶跨壓,使半穿反顯示 單元300的反射率與穿透率相近。 接下來,請同時參照圖3A、圖3B,圖3B為根據圖 3A之等效畫素電路圖。晝素電路31〇包括電晶體M3〇1、 M303 ’第:一反射區電容CR1、儲存電容CST1、穿透區電 容CT、第二反射區電容CR2以及儲存電容CST2。其中第 一反射區電容CR1、儲存電容CST1表示第一反射區2〇1 16 200944886 1 ,ΓΖΙ TW 23516twf.doc/n 中之等效電路,穿透區電容CT、第二反射區電容CR2以 及儲存電容CST2表示穿透區203中之等效電路。圖3a 與圖3B中元件的對應位置請直接參照圖中標號與元件名 稱,在此不再詳細描述。 電晶體M301耦接於第一反射區電容cri、儲存電容 CST1與資料線DL之間,電晶體M303則耦接於穿透區^ 容ct、第二反射區電容CR2、儲存電容CST2與資料線 DL之間’電晶體M301、M303的閘極均耦接於掃描線SL。 第一反射區電容CR1的另一端(共同電極27〇)耦接於共同 電壓VCOM,儲存電容CST1的另一端(端點p2)則耦^二 耦合電壓vst。穿透區電容CT與第二反射區電容CR2的 另一端(共同電極270)均耦接於共同電壓VCOM,而儲存 電容CST2的另一端(端點P3)則同樣耦接於共同電壓 VCOM。 在本實施例中,除了可利用第二反射區2〇4的設置面 積來調整反射率之外,也可利用耦合電壓VST來調整第一 反射區201的反射率。經由儲存電容CST1,耦合電壓vst 可耦合至第一反射區201中的晝素電極,以調整其驅動電 壓V2。藉此’便可調整第一反射區2〇1中之光線相對強度 與電壓關係曲線(即反射率),使反射率與穿透率的關係曲 線相近,以提高晝面顯示品質。此外,因為實際的畫素結 構會因液晶面板製程、陣列(array)設計而有所不同,因此 本發明並不限定於上述圖2C與圖3A之結構。且關於上述 圖2C與圖3A中其餘結構細節,在本技術領域具有通常知 17 200944886irZITW 23516twf.doc/n The amount of phase delay caused by a reflection region 201 and the penetration region 203 is the same, so that the relationship between the transmittance and the reflectance is consistent with the voltage. In addition, by adjusting the ratio of the area of the second reflective area 204 to the first reflective area 201, the reflectivity of the entire transflective display unit 200 is changed, and the configuration of the second reflective area 204 is not limited to the position in FIG. 2B. And the number thereof can also be formed by a plurality of dispersed regions, and has the effect of adjusting the reflectance. Since different pixel designs correspond to different pixel structures, and corresponding switching elements (such as transistors) and storage capacitors are also set, look for the main capacitor structure in Figure 2A only in the pixel structure ^ The main technical means of the embodiment is to provide a second reflection zone in the penetration zone. The embodiment is not limited to the above-mentioned structure of FIG. 2A. In this embodiment, a different pixel is set to § ten, and a required second reflection area is disposed in the penetration area. Next, please refer to FIG. 2C, which is a schematic structural view of a transflective display unit according to a first embodiment of the present invention. 2C is different from FIG. 2A in that the position of the transistor and the storage capacitor CST are further illustrated, and the first reflective region capacitance CR1, the insulating layer capacitance COG, the second reflective region capacitance CR2, and the penetration are shown in more detail. The structure of the area capacitor cr and the storage capacitor CST1 in the actual process. The first reflective electrode 220 of the first reflective region 201 is formed by a third metal layer (for example, a nameplate) M3 and is located in the insulating layer 230 (ie, the insulating layer 230 is formed on the upper and lower sides of the first reflective electrode 220). The position of the first reflective electrode 220 can be adjusted to adjust the capacitance of the insulating layer capacitor COG, and the liquid crystal cross-over voltage in the first reflective region 201 can also be adjusted (ie, the first 12 1Z1TW 23516twf.doc/n 200944886 reflective region capacitance CRl The voltage difference between the two ends is proportional to the pixel driving voltage transmitted by the data line dl. When the insulating layer 230 between the first reflective electrode 22 and the liquid crystal layer 260 is thinner, the voltage difference across the first reflective region capacitance CR1 (which can be inferred from the electric field distribution and the thickness of the liquid crystal layer 260) is closer to the data line DL. The transmitted pixel driving voltage can also be adjusted by adjusting the thickness of the insulating layer 230 between the first reflective electrode 220 and the liquid crystal layer 260. • The reflectance in the first reflective region 201. The first reflective electrode 225 is also formed by the third metal layer m3 and electrically connected to the transparent electrode 250 for forming the second reflective region 204 in the transmissive region 203, wherein the second reflective electrode 225 and the transparent electrode 250 are They are electrically connected to each other and have the same potential. When the scan line SL conducts the crystal M201, the data line DL transmits the pixel driving voltage to the transflective display unit 290 via the transistor M2〇1 and causes the first reflective electrode 22, the second reflective electrode 225, and the transparent electrode 250. Has the same pixel drive voltage. In the present embodiment, the reflectance and the transmittance of the transflective display unit 290 can be adjusted by the area of the second reflective electrode 225 so that the voltages of the two are relatively close to each other to improve the picture display quality. In the semiconductor driving circuit of the transflective display unit, the gate terminal GT of the transistor M2〇i is coupled to the scan line 'there is no extreme DT lightly connected to the data line, and the source terminal is via the second metal layer M2. The three metal layers m3 are electrically connected to the first reflective electrode 220, the second reflective electrode 225, and the transparent electrode 25A. The terminal P1 of the storage capacitor CST can be used to improve the driving effect of the transflective display unit, for example, by connecting the common voltage to the external voltage. For example, the end point P1 of the storage capacitor CST is consumed by the consumption voltage. Adjust the light voltage of 13.1Z1TW 23516twf.doc/n to achieve the driving effect of overdrive (0 verdriving). In addition, it should be noted that the above-mentioned two methods of using the second reflective electrode 225 and the thickness of the insulating layer 230 between the first reflective electrode 220 and the liquid crystal layer 260 can be used alone or in combination, which can be more effective. The reflectance and transmittance of the transflective display unit 290 are adjusted. 2D is an equivalent pixel circuit diagram according to FIG. 2C. Referring to FIG. 2A and FIG. 2C, the pixel circuit 295 includes a transistor M201, a φ-th reflection region capacitor CR, an insulation layer capacitor COG, a second reflection region capacitor CR2, a penetration region capacitor CT, and a storage capacitor CST. . The first reflective region 2〇1 mainly includes a first reflective region capacitor CR1 and an insulating layer capacitor c〇G, and the through region 203 mainly includes a penetrating region capacitor CT. In the process of a general liquid crystal display panel, the transistor M201 and the storage capacitor CST are generally composed of a first metal layer M1, a second metal layer M2, a semiconductor layer (semitted by SE), and an isolation layer (insuiator). The composition is as shown in Fig. 2C. The second reflective region capacitor CR2, the transmissive region capacitor CT, and one end of the storage valley CST (ie, the common electrode 270) are coupled to the common voltage ❹VC0M, and the other end (ie, the first reflective electrode 220, the second reflective electrode 225, and The transparent electrode 250) is coupled to the transistor M2〇1, and the first reflective region capacitor CR1 and the insulating layer capacitor c〇G are coupled in series between the transistor M2〇1 and the common voltage VC0M. The transistor M201 is coupled to the data line DL ^ trace SL. When the transistor 201 is turned on by the scan line SL, the data line DL ' can charge the capacitor in the pixel circuit 295 via the transistor. Corresponding to FIG. 2D and FIG. 2C, since the first reflective electrode 220 and the common electrode 270 have an insulating layer 230 and a liquid crystal layer 260, an insulation 200944886 ---------1Z1TW 23516twf.doc/n layer capacitance is formed. COG and first reflection area capacitance CR1. The transparent electrode 25A and the common electrode 270 form a penetration area capacitance CT, and the second reflection electrode 225 and the same electrode 270 form a second reflection area capacitance CR2. For the corresponding positions of the components in Figure 2] ^ and ^ 2C, please refer directly to the labels and component names in the figure, and will not be described in detail here. In the present embodiment, the transflective display unit 200 represents a pixel structure in a liquid crystal display panel, wherein the first reflective area 201 is used to display a first image and the transmissive area 203 is used to display a The second image combines the first image with the second image to form a pixel image. Since the first reflecting area 204' is also included in the penetrating area 2〇3, it can be used to enhance the reflection effect of the overall book. In the case of a pixel structure, the first reflective electrode can be regarded as a reflective display region, and the transparent electrode and the second reflective electrode are regarded as a penetrating display region. SECOND EMBODIMENT Fig. 3A is a schematic view showing the structure of a transflective display unit according to a second embodiment of the present invention. The transflective display unit 3 in the present embodiment also includes a transmissive region 203 and a first reflective region 201, and the transmissive region 203 further includes a second reflective region 204. The main difference between FIG. 3A and FIG. 2C is that the first reflective region 20 and the 1 penetrating region 203 in FIG. 3A are controlled by the transistors M301 and M303, respectively, and the first reflective electrode 220 is disposed on the insulating layer 230, so There is no equivalent insulating layer capacitance in a reflective region 201. The one end of the penetration area capacitor CT, the second reflection area capacitor CR2, and the storage capacitor CST2 of the penetration region 203 is coupled to the source terminal of the transistor M3〇3, and the first reflection area capacitor in the first reflection area 201 CR1 and stored electricity 15 200944886 ------—1Z1TW 23516twf.doc/n One end of the CST1 is coupled to the source terminal of the transistor M3〇1. The transistor M3 (H, M303 has no extreme DT coupled to the data line, and its gate terminal GT is coupled to the scan line. In other words, the half-transflective display unit 3 is divided into two sub-cell structures. , respectively, the first reflective region 2〇1 and the transmissive region. 203. Because the first reflective region 201 and the transmissive region 2〇3 are separated from the electroporation bodies M301 and M303, The storage capacitors CST1 and CST2 respectively adjust the liquid crystal crossover voltage during driving. The storage capacitors CST1 and CST2 may be composed of the first metal layer m and the second metal layer M2 in the liquid crystal panel process. 〃 When the scan line is enabled, the electricity is The crystals M301 and M303 are turned on, and the data line can charge the first reflection area capacitor CR1, the storage capacitor CST1, the penetration area electric valley ct, the second reflection area capacitance, and the storage capacitor CST2. The area of the two reflective electrodes 222 is adjusted to adjust the average reflectance of the entire transflective display unit 300 to be similar to the voltage variation curve of the transmittance. Further, since the first reflective area 2〇1 and the transmissive area 203 are respectively The transistors M301 and M303 are controlled, so this The liquid crystal cross-over in the first reflective region 201 and the transmissive region 203 can be adjusted via the endpoints P2 and P3 of the storage capacitors CST1 and CST2, respectively, so that the reflectivity of the transflective display unit 300 is similar to the transmittance. Next, please refer to FIG. 3A and FIG. 3B simultaneously, and FIG. 3B is an equivalent pixel circuit diagram according to FIG. 3A. The pixel circuit 31 includes a transistor M3〇1, M303': a reflection area capacitor CR1, a storage capacitor CST1, penetrating region capacitor CT, second reflecting region capacitor CR2, and storage capacitor CST2, wherein the first reflective region capacitor CR1 and the storage capacitor CST1 represent the first reflective region 2〇1 16 200944886 1 , TW TW 23516twf.doc/n The equivalent circuit, the penetration area capacitance CT, the second reflection area capacitance CR2, and the storage capacitance CST2 represent the equivalent circuit in the penetration area 203. The corresponding positions of the components in Fig. 3a and Fig. 3B should refer directly to the reference numerals and components in the figure. The name is not described in detail here. The transistor M301 is coupled between the first reflection area capacitor cri, the storage capacitor CST1 and the data line DL, and the transistor M303 is coupled to the penetration area ct and the second reflection area. Capacitor CR2, storage capacitor CST2 and data line DL The gates of the inter-cells M301 and M303 are all coupled to the scan line SL. The other end of the first reflective region capacitor CR1 (common electrode 27A) is coupled to the common voltage VCOM, and the other end of the storage capacitor CST1 (end point p2) And coupling the two coupling voltages vst. The other end of the penetrating region capacitor CT and the second reflecting region capacitor CR2 (the common electrode 270) are coupled to the common voltage VCOM, and the other end of the storage capacitor CST2 (the end point P3) The same is also coupled to the common voltage VCOM. In the present embodiment, in addition to the adjustment of the reflectance by the arrangement area of the second reflection regions 2〇4, the reflectance of the first reflection region 201 can be adjusted by the coupling voltage VST. Via the storage capacitor CST1, the coupling voltage vst can be coupled to the pixel electrode in the first reflection region 201 to adjust its driving voltage V2. Thereby, the relative intensity versus voltage curve (i.e., reflectance) of the light in the first reflection region 2〇1 can be adjusted to make the relationship between the reflectance and the transmittance similar, so as to improve the display quality of the facet. Further, since the actual pixel structure differs depending on the liquid crystal panel process and the array design, the present invention is not limited to the above-described structures of Figs. 2C and 3A. And with regard to the remaining structural details in FIG. 2C and FIG. 3A above, it is generally known in the art. 17 200944886

-1Z1TW 23516twf.doc/n 識者’經由本發明之揭露應可輕易推知,在此不加累述。 第三實施例-1Z1TW 23516twf.doc/n Applicant's disclosure by the present invention should be readily inferred and will not be described here. Third embodiment

從另一個觀點來看,上述實施例可歸納出一種改善半 穿反顯示單元反射率與穿透率不對稱之驅動方法。圖4A • 為根據本發明第三實施例之半穿反顯示單元之驅動方法。 本實施例之驅動方法適用於驅動上述圖3A實施例中之半 穿反顯示單元300。本驅動方法包括下列步驟:步驟S41〇 ❹ 提供畫素驅動電壓至穿透區與第一反射區;步驟S420提 供耦合電壓,經由儲存電容耦合至第一反射區,以及步驟 S430調整耦合電壓,以調整第一反射區之液晶跨壓。 調整耦合電壓主要的用意在於使半穿反顯示單元3〇〇 的反射率與穿透率在同樣的晝素驅動電壓下相近。因此, 配合半穿反顯示單元300的結構,步驟S43〇調整耦合電 壓之步驟中更包括:當晝素驅動電壓為正極性驅動時,使 該輕合電壓小於-共用電壓;以及當畫素驅動電壓為負極 性驅動時,使搞合電壓大於共用電壓。共用電壓為穿透區 ❹ 2G3與第—反射區201在驅動時的共同電壓位準,可為一 特定電壓位準或是接地電壓位準。在相同的晝素驅動電壓 下,藉由調整耦合電壓,可改變第一反射區2〇1中的液曰 跨壓’使半穿反顯示單元300的穿透率與反射率兩者^ 壓的_ —致。在本發明另—實施射,亦可經由穿透區 的耦合電容(端點P3),提供耦合電壓至穿透區的晝素電極 • 以調整穿透區中的液晶跨壓’將穿透率調整至接近反射 率。_合電壓的大小’則根據穿透率與反射率原先的曲 200944886 ---------1Z1TW 23516twf.doc/n 線位置而定,在本技術領域具有通常知識者,經由本發明 之揭露應可輕易推知,在此不加累述。 為更清楚S兒明本實施例之驅動方法,以下說明請同時 參照圖3A、3B。在面板中,半穿反顯示單元通常以陣列 式排列,圖3B中則僅以單一半穿反顯示單元的等效畫素 電路。在資料線DL輸出晝素驅動電壓至第一反射區2〇1 與穿透區203的畫素電極(即第一反射電極220、第二反射 電極225以及透明電極250)之後,掃描線SL會關閉電晶 體M301、M303。此時’耦合電壓VST會隨著書辛驅動雷 壓的驅動極性,改變其電壓位準,使第=== 兩端的電壓差小於穿透區電容CT兩端的電壓差。當書素 驅動電壓為正極性驅動時’搞合電壓VST會小於共用電壓 VCOM,當畫素驅動電壓為負極性驅動時,輕合電壓vst 會大於共用電壓VCOM,而輕合電壓改變的量會影 響驅動電壓V2,可以下式表示: av2 AV.From another point of view, the above embodiment can be summarized as a driving method for improving the asymmetry of the reflectance and the transmittance of the transflective display unit. 4A is a driving method of a transflective display unit according to a third embodiment of the present invention. The driving method of this embodiment is suitable for driving the transflective display unit 300 in the above-described embodiment of Fig. 3A. The driving method includes the following steps: step S41: providing a pixel driving voltage to the penetrating region and the first reflecting region; step S420 providing a coupling voltage, coupling to the first reflecting region via the storage capacitor, and step S430 adjusting the coupling voltage to Adjust the liquid crystal cross-pressure of the first reflective area. The main purpose of adjusting the coupling voltage is to make the reflectivity and transmittance of the transflective display unit 3 相 close to each other at the same pixel driving voltage. Therefore, in combination with the structure of the transflective display unit 300, the step of adjusting the coupling voltage in step S43 further includes: when the pixel driving voltage is positive polarity driving, making the light combining voltage less than the - sharing voltage; and when the pixel driving When the voltage is driven by the negative polarity, the engagement voltage is made larger than the common voltage. The common voltage is the common voltage level of the penetration region ❹ 2G3 and the first reflection region 201 when driving, and may be a specific voltage level or a ground voltage level. At the same pixel driving voltage, by adjusting the coupling voltage, the liquid helium cross-pressure in the first reflective region 2〇1 can be changed to make both the transmittance and the reflectivity of the transflective display unit 300 pressed. _ - To. In the present invention, the radiation can also be applied via a coupling capacitor (end point P3) of the penetrating region to provide a coupling voltage to the pixel electrode of the penetrating region to adjust the liquid crystal cross-pressure in the penetrating region. Adjust to near reflectivity. The size of the combined voltage is determined according to the original position of the transmittance and the reflectivity of the 200944886 ---------1Z1TW 23516twf.doc/n line, which is generally known in the art. The disclosure should be easily inferred and will not be repeated here. In order to clarify the driving method of the embodiment of the present invention, the following description refers to FIGS. 3A and 3B at the same time. In the panel, the semi-transmissive display units are usually arranged in an array, and in Fig. 3B, the equivalent pixel circuit of the reverse display unit is only a single half. After the data line DL outputs the pixel driving voltage to the pixel electrodes of the first reflective region 2〇1 and the transmissive region 203 (ie, the first reflective electrode 220, the second reflective electrode 225, and the transparent electrode 250), the scan line SL will The transistors M301 and M303 are turned off. At this time, the coupling voltage VST changes the voltage level with the driving polarity of the book-driven driving lightning voltage, so that the voltage difference between the two ends of the === is smaller than the voltage difference across the penetrating region capacitor CT. When the pixel driving voltage is positive polarity driving, the 'combining voltage VST will be less than the common voltage VCOM. When the pixel driving voltage is negative polarity driving, the light combination voltage vst will be greater than the common voltage VCOM, and the light combination voltage will change. Affecting the driving voltage V2, it can be expressed as: av2 AV.

CsnCsn

^R\ + ^stl + ^gs2 其中’ Cstl表示儲存電容CST1的電容值,Cri表示第 一反射電容CR1的電容值,Cgs2表示電晶體M301的閘-源極之間寄生電容(請確認Cgs2的說明)。 接下來,以波形圖進一步說明本實施例之驅動方法, 圖4B為根據第三實施例之信號波形圖。資料線dl所對應 的信號表示晝素驅動信號,當掃描線SL·致能時,資料線 DL即輸出相對應的晝素驅動電壓至相對應的半穿反顯示 200944886zitw 23516twf.doc/n 單元,以為上述晝素電路310為例。資料線DL會對第一 反射區201與穿透區203進行充電,在穿透區203與第一 反射區201兩邊的電壓分別以驅動電壓vi、V2表示。若 柄合電壓VST等於共同電壓VCOM,則驅動電壓VI、V2 . 相等。在本實施例中,耦合電壓VST會在正極性驅動期間 T1中下降至低於共同電壓VC0M,在為負極性驅動期間 T2中上升至咼於共同電壓vc〇M。因此,驅動電壓V2會 因為耦合電壓VST而在正極性驅動期間T1低於驅動電壓 VI ’在負極性驅動期間T2中高於驅動電壓v2。 經由耦合電壓VST的影響,使第一反射區201中之液 晶所受到的實質跨壓較低,所以第一反射區2〇1的曲線 C2〇l會往右移’進一步影響整體半穿反顯示單元200的反 射率,如圖4C所示。圖4C為根據本發明第三實施例之光 線相對強度與電壓關係曲線圖。藉由調整麵合電壓VST的 電壓位準’便可微調曲線C2〇的位置。請同時比較圖4c 與圖2B ’便可明顯看出經搞接電壓VST修正後之曲線⑶ ❹ 會更接近轉C2G3。換言之’整合第二實補之半穿反顯 示單元結構與第三實施例之驅動方法將可更有效擬合曲線 C20與曲線C2〇3 ’使半穿反顯示單元的光線反射率與透射 率具有相近的電壓變化關係。 此外’在本發明另—實施例巾’輕合電壓vst亦可施 加在透射區’經由透射區的儲存電容CST1輛合至驅動電 ^ V卜但其1壓位準需反相調整’囉具有擬合曲線的效 果。综合言之’利用輕合電壓VST可調整反射區或透射區 20 1Z1TW 23516twf.doc/u 200944886 的液晶跨壓,_ —半冑反齡單_树 透射率相近,而達到改盖顯干σ射羊/、先線 且有通以H S。在本技術領域^R\ + ^stl + ^gs2 where 'Cstl represents the capacitance value of the storage capacitor CST1, Cri represents the capacitance value of the first reflection capacitor CR1, and Cgs2 represents the parasitic capacitance between the gate and source of the transistor M301 (please confirm the Cgs2 Description). Next, the driving method of the present embodiment will be further described with a waveform diagram, and Fig. 4B is a signal waveform diagram according to the third embodiment. The signal corresponding to the data line dl represents the pixel drive signal. When the scan line SL· is enabled, the data line DL outputs the corresponding pixel drive voltage to the corresponding semi-transparent display 200944886zitw 23516twf.doc/n unit. The above-described pixel circuit 310 is taken as an example. The data line DL charges the first reflection area 201 and the penetration area 203, and the voltages on both sides of the penetration area 203 and the first reflection area 201 are represented by drive voltages vi and V2, respectively. If the handle voltage VST is equal to the common voltage VCOM, the drive voltages VI, V2 are equal. In the present embodiment, the coupling voltage VST drops to below the common voltage VC0M during the positive polarity driving period T1, and rises to the common voltage vc〇M during the negative polarity driving period T2. Therefore, the driving voltage V2 is higher than the driving voltage V2 in the negative polarity driving period T2 during the positive polarity driving period T2 due to the coupling voltage VST during the positive polarity driving period T1. Through the influence of the coupling voltage VST, the substantial cross-pressure of the liquid crystal in the first reflective region 201 is lower, so the curve C2〇1 of the first reflective region 2〇1 will shift to the right to further affect the overall transversal display. The reflectivity of unit 200 is as shown in Figure 4C. Fig. 4C is a graph showing the relationship between the relative intensity of light and voltage in accordance with the third embodiment of the present invention. The position of the curve C2 便可 can be finely adjusted by adjusting the voltage level of the surface voltage VST. Please compare Figure 4c with Figure 2B' to see that the curve (3) 修正 after the correction of the VST voltage is closer to C2G3. In other words, the 'integrated second complemented half-transmissive display unit structure and the driving method of the third embodiment will more effectively fit the curve C20 and the curve C2〇3' to make the light reflectance and transmittance of the transflective display unit have Similar voltage changes. In addition, in the invention, the lightening voltage vst can also be applied in the transmissive region. The storage capacitor CST1 is coupled to the driving capacitor through the transmissive region, but the 1st pressing level needs to be inverted. The effect of fitting the curve. In summary, the light-shielding voltage VST can be used to adjust the liquid crystal cross-pressure of the reflective or transmissive region 20 1Z1TW 23516twf.doc/u 200944886, __half-inverted single-tree transmittance is similar, and the modified dry σ-shot is achieved. Sheep /, first line and have access to HS. In the technical field

八有通巾知鱗,經由本發明H 應用之方式,在此不加累述。 W推知其餘 整二ΐϊ透區增設一第二反射區’並配輕合電壓調 參 =2率曲線更為相近’有效改善半穿反液晶顯 雖然本發明已以較佳實施例揭露如上田 脫離太nL屬捕域巾具有mt知識者,在不 因此本神和範_,#可作些許之更動與潤飾, 為準。χ _範圍#視_之巾請專_圍所界定者 【圖式簡單說明】 =為根據傳統技術之光線強度與電壓關係曲線。 結構圖根據本發明第—實施例之半穿反顯示單元之 圖。圖2Β為根據圖2Α之光線相對強度與電壓關係曲線 結構崎本發明第—實施例之半穿反顯示單元之 圖2D為根據圖2C之等效晝素電路圖。 結構根據本發明第二實_之半穿反顯示單元之 21 2〇〇944886zitw 235l„ 圖3B為根據圖3A之等效晝素電路圖。 圖4Α為根據本發明第三實施例之半穿反顯示單元之 驅動方法。 圖4Β為根據第三實施例之信號波形圖。 圖4C為根據本發明第三實施例之光線相對強度與電 壓關係曲線圖。 【主要元件符號說明】 200、290、300 :半穿反顯示單元 201 :第一反射區 203 ··穿透區 204 :第二反射區 210 :第一基板 220 :第一反射電極 225 :第二反射電極 230、240 :絕緣層 250 透明電極 260 液晶層 270 共同電極 280 第二基板 295、 > 310 :畫素電路 C卜 C2、C2(U、C204、C20、C203 :曲線 CR1 :第一反射區電容 CR2 :第二反射區電容 CST、CST1、CST2 :儲存電容 22 rznw 23516twf.doc/n 200944886 CT :穿透區電容 COG :絕緣層電容 DL :資料線 SL :掃描線 DT :汲極端 GT :閘極端 • M201、M301、M303 :電晶體Eight has a towel to know the scale, and the method of applying H of the present invention is not described here. It is inferred that the other two diametric zones are provided with a second reflection zone 'and the light combination voltage adjustment parameter = 2 rate curve is more similar' effective to improve the transflective liquid crystal display. Although the present invention has been disclosed in the preferred embodiment Too nL belongs to the catching field towel with mt knowledge, in the absence of this god and Fan _, # can make some changes and retouching, whichever is. _ _ Scope #视_巾, please specify _ circumference defined [Simplified illustration] = is the light intensity and voltage curve according to the traditional technology. The structural diagram is a diagram of a transflective display unit according to a first embodiment of the present invention. Figure 2A is a graph showing the relationship between the relative intensity of light and the voltage according to Figure 2. Figure 2D is a diagram of an equivalent pixel circuit according to Figure 2C. Figure 2B is an equivalent pixel circuit diagram according to Figure 3A. Figure 4A is a semi-transparent display according to a third embodiment of the present invention. Figure 2B is a diagram of an equivalent pixel circuit according to Figure 3A. Fig. 4 is a signal waveform diagram according to a third embodiment. Fig. 4C is a graph showing relative light intensity versus voltage according to a third embodiment of the present invention. [Main component symbol description] 200, 290, 300: The transflective display unit 201: the first reflective region 203, the transmissive region 204: the second reflective region 210: the first substrate 220: the first reflective electrode 225: the second reflective electrode 230, 240: the insulating layer 250 the transparent electrode 260 Liquid crystal layer 270 common electrode 280 second substrate 295, > 310: pixel circuit C C2, C2 (U, C204, C20, C203: curve CR1: first reflection area capacitance CR2: second reflection area capacitance CST, CST1 , CST2 : storage capacitor 22 rznw 23516twf.doc / n 200944886 CT : penetration area capacitance COG : insulation layer capacitance DL : data line SL : scan line DT : 汲 extreme GT : gate terminal • M201, M301, M303 : transistor

Ml :第一金屬層 ® M2 :第二金屬層 M3 :第三金屬層 PI、P2、P3 :端點 VCOM :共同電壓 VST :耦合電壓 VI、V2 :驅動電壓 T1 :正極性驅動期間 T2 :負極性驅動期間 ❹ S410〜S430 :步驟 23Ml: first metal layer® M2: second metal layer M3: third metal layer PI, P2, P3: terminal VCOM: common voltage VST: coupling voltage VI, V2: driving voltage T1: positive polarity driving period T2: negative electrode Sex drive period ❹ S410~S430: Step 23

Claims (1)

200944886 -1Z1TW 23516twf.doc/n 十、申請專利範困: 1.一種半穿反顯示單元,包括: 一第一反射區’用以顯示一第一影像,該第—反射區 至少包括一第一反射電極以及一第一絕緣層,其中該第一 反射電極形成於-第-基板之上,該第—絕緣層則^成於 該第一反射電極的上下兩侧或形成於該第—反射電極與該 第一基板之間;以及 〜 一穿透區,用以顯示一第二影像,該穿透區至少包括 一透明電極與一第二反射電極,該透明電極電性連接至該 第二反射電極並形成於該第一基板之上; 其中,該第一反射區與該穿透區分別具有一第二基 板、一共同電極以及一液晶層,該共同電極形成於該第二 基板之上並鄰近於該液晶層,該液晶層位於該第一電極與 該第二基板之間,該第一反射區與該穿透區相鄰,且該第 二反射電極形成一第二反射區。200944886 -1Z1TW 23516twf.doc/n X. Patent application: 1. A transflective display unit comprising: a first reflective area for displaying a first image, the first reflective area comprising at least a first a reflective electrode and a first insulating layer, wherein the first reflective electrode is formed on the first substrate, and the first insulating layer is formed on the upper and lower sides of the first reflective electrode or formed on the first reflective electrode And the first substrate; and a penetrating region for displaying a second image, the penetrating region comprising at least a transparent electrode and a second reflective electrode, the transparent electrode being electrically connected to the second reflection An electrode is formed on the first substrate; wherein the first reflective region and the transparent region respectively have a second substrate, a common electrode and a liquid crystal layer, and the common electrode is formed on the second substrate Adjacent to the liquid crystal layer, the liquid crystal layer is located between the first electrode and the second substrate, the first reflective region is adjacent to the penetrating region, and the second reflective electrode forms a second reflective region. 2.如申請專利範圍第1項所述之畫素,其中該穿透區 更包括: 一第二絕緣層’形成於該第二基板與該透明電極之間。 3. 如申請專利範圍第1項所述之半穿反顯示單元,其 中該第二基板為彩色濾光片之玻璃基板。 4. 如申請專利範圍第1項所述之半穿反顯示單元,其 中該第一反射電極與該第二反射電極由鋁所形成。 5. 如申請專利範圍第1項所述之半穿反顯示單元,其 中該第一反射區的相位延遲量為四分之一個光波長。 24 200944886 zlTW 235l6twfd〇c/n 6. 如申請專利範圍第1項所述之半穿反顯示單元,其 中該穿透區的相位延遲量為二分之一個光波長。 7. 如申請專利範圍第1項所述之半穿反顯示單元,其 中該第一反射區與該穿透區的液晶厚度相同。 • 8.如申請專利範圍第1項所述之半穿反顯示單元,其 中該第一反射區包括: 一第一反射區電容;以及 一絕緣層電容。 ® 9.如申請專利範圍第1項所述之半穿反顯示單元,其 中該第一反射區包括一第一反射區電容。 10. 如申請專利範圍第1項所述之半穿反顯示單元,其 中該穿透區包括: 一穿透區電容;以及 一第二反射區電容,由該第二反射區形成。 11. 如申請專利範圍第1項所述之半穿反顯示單元,更 包括: G —第一電晶體,耦接至該第一反射區與一資料線之 間;以及 一第二電晶體,耦接至該穿透區與該資料線之間; 其中,該第一電晶體與該第二電晶體之閘極耦接於一 掃描線。 • 12.—種半穿反顯示單元之驅動方法,該半穿反顯示單 元包括一穿透區與一第一反射區,該驅動方法包括下列步 . 驟: 提供一晝素驅動電壓至該穿透區與該第一反射區; 25 200944886 .....—rZ1TW 23516twf.doc/n 提供-麵合電壓,經由一儲存電容輕合至該反射 區;以及 調整該麵合電壓,以調整該第一反射區兩端之電壓差。 13. 如申請專利範圍第12項所述之驅動方法,其中在 • 調整該耦合電壓之步驟中包括: 畜該晝素驅動電壓為正極性驅動時,使該耦合電壓小 • 於一共用電壓;以及 田該晝素驅動電壓為負極性驅動時,使該耦合電壓大 於該共用電壓。 14. 如申請專利範圍第12項所述之驅動方法,其中在 調整該耦合電壓之步驟更包括: 虽該晝素驅動電壓為正極性驅動時,使該搞合電壓大 於一共用電壓;以及 當該晝素驅動電壓為負極性驅動時,使該搞合電壓小 於該共用電壓。 15. 如申請專利範圍第12項所述之驅動方法,其中該 〇 穿透區更包括一第二反射區,且該第一反射區與該穿透區 的液晶厚度相同。 16. 如申請專利範圍第12項所述之驅動方法,其中該 第一反射區包括: 一第一基板; • 一第一反射電極,形成於該第一基板之上; 一絕緣層,形成於該反射電極之上; 一液晶層,配置於該反射電極與一第二基板之間;以 26 200944886 x wxvxw^fZlTW 23516twf.doc/n 及 -共同電極,形成於該第二基板之上並鄰近於該 層; 其中’該第-反射電極與該共同電極形成該反射區書 • 素電容。 — 17. 如中請專利範圍第12項所述之驅動方法,其中該 穿透區包括: ^ 一第一基板; 一絕緣層,形成於該第一基板之上; 一透明電極,形成於該絕緣層之上,且該透明電極之 區域中包括一第二反射電極以形成該第二反射區; 一液晶層,配置於該透明電極與一第二基板之間;以 及 一共同電極,形成於該第二基板之上並鄰近於該液晶 層。 18. 如申請專利範圍第π項所述之驅動方法,其中該 ❹ 第一基板為彩色遽光片之玻璃基板。 19. 如申請專利範圍第π項所述之驅動方法,其中該 第二基板為彩色濾光片之玻璃基板。 20. 如申請專利範圍第I?項所述之驅動方法,其中該 第二反射電極由銘所形成。 . 21·如申請專利範圍第12項所述之驅動方法,其中該 穿透區的相位延遲量為二分之一個光波長。 22.如申請專利範圍第12項所述之驅動方法,其中該 反射區的相位延遲量為四分之一個光波長。 27 200944886 JZ1TW 23516twf.doc/n 23. —種半穿反液晶顯示裝置,包括: 一第一基板,包括: 一反射顯示區,包括一第一反射電極;以及 一穿透顯示區,包括一透明電極與一第二反射電 . 極’其中該第二反射電極位於該透明電極之中; 一第二基板,包括一共同電極;以及 一液晶層,形成於該第一基板與該第二基板之間。 24. 如申請專利範圍第23項所述之半穿反液晶顯示裝 • 置,更包括·· 一絕緣層’形成於該第一反射電極的上下兩侧或形成 於該第一反射電極與該第一基板之間。 25. 如申請專利範圍第23項所述之半穿反液晶顯示裝 置,更包括: 一絕緣層,形成於該第一基板與該透明電極之間。 26. 如申請專利範圍第23項所述之半穿反液晶顯示裝 置,其中該第一基板為彩色濾光片之玻璃基板。 @ 27.如申請專利範圍第23項所述之半穿反液晶顯示裝 置,其中該第一反射電極與該第二反射電極由鋁所形成。 28. 如申請專利範圍第23項所述之半穿反液晶顯示裝 置’其中該第一反射區的相位延遲量為四分之一個光波長。 29. 如申請專利範圍第23項所述之半穿反液晶顯示裝 置’其中該穿透區的相位延遲量為二分之一個光波長。 30. 如申請專利範圍第23項所述之半穿反液晶顯示裝 - 置’其中設置於該反射顯示區與該穿透顯示區的液晶厚度 相同。 282. The pixel of claim 1, wherein the penetrating region further comprises: a second insulating layer formed between the second substrate and the transparent electrode. 3. The transflective display unit of claim 1, wherein the second substrate is a glass substrate of a color filter. 4. The transflective display unit of claim 1, wherein the first reflective electrode and the second reflective electrode are formed of aluminum. 5. The transflective display unit of claim 1, wherein the first reflective region has a phase retardation amount of one quarter of a wavelength of light. The semi-transflective display unit of claim 1, wherein the phase retardation of the penetrating region is one-half of the wavelength of light. 7. The transflective display unit of claim 1, wherein the first reflective region has the same liquid crystal thickness as the transmissive region. 8. The transflective display unit of claim 1, wherein the first reflective region comprises: a first reflective region capacitance; and an insulating layer capacitance. 9. The transflective display unit of claim 1, wherein the first reflective region comprises a first reflective region capacitance. 10. The transflective display unit of claim 1, wherein the penetrating region comprises: a penetrating region capacitor; and a second reflecting region capacitor formed by the second reflecting region. 11. The transflective display unit of claim 1, further comprising: G - a first transistor coupled between the first reflective region and a data line; and a second transistor, The gate is coupled to the data line; and the gate of the first transistor and the second transistor are coupled to a scan line. 12. A driving method for a transflective display unit, the transflective display unit comprising a penetrating region and a first reflecting region, the driving method comprising the steps of: providing a pixel driving voltage to the wearing a through region and the first reflective region; 25 200944886 ..... - rZ1TW 23516twf.doc / n providing a - surface voltage, lightly coupled to the reflective region via a storage capacitor; and adjusting the surface voltage to adjust the The voltage difference across the first reflection zone. 13. The driving method according to claim 12, wherein the step of adjusting the coupling voltage comprises: when the driving voltage of the animal is positively driven, the coupling voltage is made smaller than a common voltage; When the driving voltage of the battery is negative polarity driving, the coupling voltage is made larger than the common voltage. 14. The driving method of claim 12, wherein the step of adjusting the coupling voltage further comprises: when the driving voltage of the element is positively driven, causing the engagement voltage to be greater than a common voltage; When the halogen drive voltage is driven by a negative polarity, the engagement voltage is made smaller than the common voltage. 15. The driving method of claim 12, wherein the 穿透 penetration region further comprises a second reflection region, and the first reflection region and the penetration region have the same liquid crystal thickness. 16. The driving method of claim 12, wherein the first reflective region comprises: a first substrate; a first reflective electrode formed on the first substrate; an insulating layer formed on a liquid crystal layer disposed between the reflective electrode and a second substrate; and a common electrode formed on the second substrate by 26 200944886 x wxvxw^fZlTW 23516twf.doc/n and a common electrode In the layer; wherein the first reflective electrode and the common electrode form the reflective region capacitor. The driving method of claim 12, wherein the penetrating region comprises: a first substrate; an insulating layer formed on the first substrate; a transparent electrode formed on the Above the insulating layer, the region of the transparent electrode includes a second reflective electrode to form the second reflective region; a liquid crystal layer disposed between the transparent electrode and a second substrate; and a common electrode formed on Above the second substrate and adjacent to the liquid crystal layer. 18. The driving method of claim π, wherein the first substrate is a glass substrate of a color light film. 19. The driving method of claim π, wherein the second substrate is a glass substrate of a color filter. 20. The driving method of claim 1, wherein the second reflective electrode is formed by the name. The driving method according to claim 12, wherein the phase retardation amount of the penetrating region is one-half of a wavelength of light. The driving method according to claim 12, wherein the phase retardation amount of the reflection region is one quarter of a wavelength of light. 27 200944886 JZ1TW 23516twf.doc/n 23. A transflective liquid crystal display device comprising: a first substrate comprising: a reflective display region comprising a first reflective electrode; and a transmissive display region comprising a transparent An electrode and a second reflective electrode. The second reflective electrode is located in the transparent electrode; a second substrate includes a common electrode; and a liquid crystal layer formed on the first substrate and the second substrate between. 24. The transflective liquid crystal display device of claim 23, further comprising: an insulating layer formed on the upper and lower sides of the first reflective electrode or formed on the first reflective electrode and the Between the first substrates. 25. The transflective liquid crystal display device of claim 23, further comprising: an insulating layer formed between the first substrate and the transparent electrode. 26. The transflective liquid crystal display device of claim 23, wherein the first substrate is a glass substrate of a color filter. The transflective liquid crystal display device of claim 23, wherein the first reflective electrode and the second reflective electrode are formed of aluminum. 28. The transflective liquid crystal display device of claim 23, wherein the first reflective region has a phase retardation amount of one quarter of a wavelength of light. 29. The transflective liquid crystal display device of claim 23, wherein the phase retardation amount of the penetrating region is one-half of a wavelength of light. 30. The transflective liquid crystal display device of claim 23, wherein the thickness of the liquid crystal disposed in the reflective display region and the transmissive display region is the same. 28
TW097114259A 2008-04-18 2008-04-18 Transflective display unit TWI371625B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097114259A TWI371625B (en) 2008-04-18 2008-04-18 Transflective display unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097114259A TWI371625B (en) 2008-04-18 2008-04-18 Transflective display unit

Publications (2)

Publication Number Publication Date
TW200944886A true TW200944886A (en) 2009-11-01
TWI371625B TWI371625B (en) 2012-09-01

Family

ID=44869540

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097114259A TWI371625B (en) 2008-04-18 2008-04-18 Transflective display unit

Country Status (1)

Country Link
TW (1) TWI371625B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404014B (en) * 2010-05-25 2013-08-01 Au Optronics Corp Display panel and driving circuit thereof
TWI572964B (en) * 2009-12-28 2017-03-01 半導體能源研究所股份有限公司 Liquid crystal display device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572964B (en) * 2009-12-28 2017-03-01 半導體能源研究所股份有限公司 Liquid crystal display device and manufacturing method thereof
TWI404014B (en) * 2010-05-25 2013-08-01 Au Optronics Corp Display panel and driving circuit thereof

Also Published As

Publication number Publication date
TWI371625B (en) 2012-09-01

Similar Documents

Publication Publication Date Title
JP6207161B2 (en) Curved liquid crystal display panel
US7944405B2 (en) Dual display device
US7982839B2 (en) Fringe field switching mode liquid crystal display and manufacturing method thereof
US7547494B2 (en) Color filter substrate, manufacturing method thereof and liquid crystal display
KR101071261B1 (en) Liquid crystal display
US20080123026A1 (en) Display device
US7800704B2 (en) Liquid crystal display comprising intersecting common lines
US7894030B2 (en) Liquid crystal display and method havng three pixel electrodes adjacent each other in a column direction connected with three respective gate lines that are commonly connected and three data lines, two of which are overlapped by all three pixel electrodes
TW544942B (en) Thin film transistor array substrate
JP2007004182A (en) Liquid crystal display
US7961265B2 (en) Array substrate, display panel having the same and method of driving the same
WO2018120570A1 (en) Manufacturing process for display panel
US7557880B2 (en) Transflective LCD having a dual common-electrode structure
US9448434B2 (en) Liquid crystal display panel and method for driving the same
CN110320701A (en) The manufacturing method of liquid crystal display device and liquid crystal display device
KR20070002197A (en) Transflective lcd and the fabrication method
TWM288383U (en) Transflective liquid crystal display device
TWI332597B (en) Optically compensated birefringence liquid crystal display panel
TW200944886A (en) Transflective display unit and driving method thereof
JP2007226245A (en) Liquid crystal display
TWI342978B (en) Active device array substrate, pixel structure thereof and driving method thereof
KR20070061993A (en) Liquid crystal display
TW594318B (en) Transflective LCD display structure
CN101576685B (en) Liquid crystal display panel and liquid crystal display device comprising same
TWI284772B (en) Pixel structure of liquid crystal display