200944689 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種光源裝置,尤其涉及一種可自身提供 電能之LED光源裝置。 【先前技術】 隨著節能之宣導,越來越多綠色能源被開發利用。led 作為最理想之發光件越來越多地被應用於路燈、地燈、機 場照明燈等照明裝置上。目前’發光二極體(Light Emitting ❿Diode, LED)因具光質佳(也即LED光源射出之光譜)及發光 效率高等特性得到廣泛之應用,具體可參閱Michael S. Shur 等人於文獻 Proceedings of the IEEE,Vol. 93,No. 10 (2005 年 10 月)中發表之 “Solid-State Lighting: Toward Superior Illumination” 一文。 現有之LED光源裝置中,一般採用燃燒大量煤炭和石 油來發電,從而提供電能。然而,這樣卻造成了環境污染 ❹和不可再生之礦物能源資源之減少,嚴重地影響了人類社 會之可持續發展。 【發明内容】 有鑒於此,有必要提供一種可自身提供電能之LED光 源裝置。 一種LED光源裝置,其包括:一 LED發光元件,該 LED發光元件用於發光。該LED光源裝置還進一步包括: 一太陽能電池單元及一可充電電池單元。該太陽能電池單 元用於產生電能。該可充電電池單元用於存儲該太陽能電 6 200944689 -池單元產生之電能,並將該存儲之電能提供給該led發光 ,元件使其發光。 相對於先前技術,該LED光源装置進一步包括一可產 生電能之太陽能電池單元及-可存儲該太陽能電池單元產 生之電能之可充電電池單元。因此,該咖發光元件發光 時,可直接通過該可充電電池單元存儲之電能使其發光, 從而無需再接收外部電能。 I【實施方式】 以下將結合附圖對本發明作進一步之詳細說明。 凊一併參閱圖1與圖2,為本發明實施方式之j^ED光 源裝置10 ’其包括一太陽能電池單元1〇〇、一可充電電池 單元(Rechargeable Battery ) 110 及一 LEd 發光元件 12〇。 該太陽能電池單元100包括一基板17,該基板17具有 一承載面172 ’該基板17之承載面172上依次形成有:背 電極(Back Metal Contact Layer) 16,P 型半導體層 15, ❹P_N結層14 ’ N型半導體層13,透明導電層(Transparent Conductive 0xide)12’ 及前電極(Front Metal Contact Layer) 11。 該基板17是可撓曲之材料做成,該基板17之厚度大 約於10 // m至100 /^m之間。本實施方式中,該基板17是 可撓曲之鋁鎂合金箔(Al-Mg alloy foil)。該基板17之材料 還可是I呂不錄鋼片(stainless steel sheet) ’或聚合物薄板 (polymer sheet)等可挽曲之材料。實際應用中’該基板17 也可由單晶矽、多晶矽或玻璃材料做成,並不限於本實式 200944689 „ 方式。 .該背電極16之材料可是銀(Ag),銅(Cu),鉬(Mo), 銘(A1),銅銘合金(Cu-A1 Alloy ) ’ 銀銅合金(Ag-Cu Alloy ) ’ 或者銅鉬合金(Cu-Mo Alloy)等。該背電極16之侧邊設 有一電連接端161。 該P型半導體層15之材料可是P型非晶矽(P type amorphous silicon,簡稱P-a-Si)材料,特別是P型含氫非 晶石夕(P type amorphous silicon with hydrogen,簡稱 ❹ P-a-Si:H)材料。當然,該P型半導體層之材料也可是III-V 族化合物或II-VI族化合物,特別是摻雜鋁(A1)、鉀(Ga)、 銦(In)之半導體材料,如氮化鋁鉀(AlGaN)或鋁砷化鎵 (AlGaAs ) 〇 優選地,該P型半導體層15之材料為P型非晶矽材料。 非晶矽材料對光之吸收性比結晶矽材料強約500倍,所以 於對光子吸收量要求相同之情況下,非晶矽材料製成之P ©型半導體層之厚度遠小於結晶矽材料製成之P型半導體層 之厚度。且非晶矽材料對基板材質之要求更低。所以採用 非晶矽材料不僅可節省大量之材料,也使得製作大面積之 太陽能電池單元成為可能(結晶矽太陽能電池單元之面積 受限於矽晶圓之尺寸)。 該P-N結層14之材料可是結合性較好之III-V族化合 物或I-III-VI族化合物,如碲化鎘(CdTe )、銅銦硒(CuInSe2 ) 等材料。也可是銅銦鎵硒(CuInl-XGaSe2, CIGS)。該P-N 結層14用於將光子轉換成電子-孔穴對並形成勢壘電場。 200944689 N型半導體層13之材料可是N型非晶矽(N Type Amorphous Silicon,簡稱N-a-Si)材料,特別是N型含氫 非晶石夕(N Type Amorphous Silicon With Hydrogen,簡稱 N-a-Si:H)材料。當然,該N型半導體層13之材料也可是 III-V族化合物或II-VI族化合物,特別是摻雜氮(N)、磷 (P)、砷(As)之半導體材料,如氮化鉀(GaN)或磷化 銦鎵(InGaP)。 ❹ 透明導電層12之材料可是,例如,銦錫氧化層(Indium Tin Oxide,ITO),氧化鋅(ZnO)等。 前電極11之材料可是銀(Ag ),銅(Cu ),钥(Mo ), 鋁(A1),銅鋁合金(Cu-Al Alloy ),銀銅合金(Ag-Cu Alloy ), 或者銅鉬合金(Cu-Mo Alloy)等。該太陽能電池單元100 通過其前電極11和背電極16上之電連接端161分別連接 至可充電電池單元(Rechargeable Battery)ll〇之正負極上可 對其充電。 ❿ 該可充電電池單元110可選擇鋰離子/鋰聚合物電池, 可適應于薄型化設計。其用於為該LED發光元件120提供 電能。 本實施方式中,該LED發光元件120為複數LED組成 之LED陣列,於實際製造之過程中,可根據實際對照明亮 度和照明範圍之需要設置LED發光元件120之數量。而 且’太陽能電池單元100之面積也可根據其光電轉換效率 和實際所需要之電能來確定。 該LED光源裝置10進一步包括一充放電控制器 200944689 (Charge/Discharge Controller)130。該充放電控制器 (Charge/Discharge Controller)130 為一模組化之晶片,其包 括一第一 DC/DC 轉換器(DC/DC Converter)132、一第二 DC/DC 轉換器 134、一 PWM 控制器(Pulse Width Modulation Controller ’即脈寬調製控制器)136。 具體之,該太陽能電池單元100與可充電電池單元110 之間通過該第一 DC/DC轉換器(DC/DC Converter)132電連 ©接,該可充電電池單元110與該LED發光元件120之間通 過該第二DC/DC轉換器134電連接。 該PWM控制器136分別與該可充電電池單元110、第 一 DC/DC轉換器132、LED發光元件120以及第二DC/DC 轉換器134電連接,其工作方法為: 於充電模式下,該PWM控制器136由該可充電電池單 元110獲得一電壓回饋訊號VF和一電流回饋訊號IF,從而 提供給該第一 DC/DC轉換器132 —第一 PWM輸出訊號(圖 ❹2中I表示第一 PWM輸出訊號)以精准控制對該可充電電池 單元110充電。 於放電模式下,該PWM控制器136由該LED發光元 件120獲得一亮度回饋訊號lf,從而提供給該第二DC/DC 轉換器134 —第二PWM輪出訊號(圖2中II表示第一 PWM 輸出訊號)以精准控制該LED發光元件120之亮度。可理解 之是,該第二PWM輸出訊號設定一定之占空比,進而可控 制該LED發光元件120點亮和未點亮時間比,從而控制該 LED發光元件120之亮度。 200944689 該LED光源裝置進一步包括一可產生電能之太陽能電 池單元及一可存儲該太陽能電池單元產生之電能之可充電 電池單元。因此,該LED發光元件發光時,可直接通過該 可充電電池單元存儲之電能使其發光,從而無需再接收外 部電能。 综上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化,皆 應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明實施方式LED光源裝置之結構示意圖; 圖2係圖1中LED光源裝置之太陽能電池單元之結構 不意圖。 【主要元件符號說明】 LED光源裝置 10 基板 17 太陽能電池單元 100 承載面 172 可充電電池單元 110 背電極 16 LED發光元件 120 P型半導體層 15 充放電控制器 130 P-N結層 14 第一 DC/DC轉換器 132 N型半導體層 13 第二DC/DC轉換器 134 透明導電層 12 PWM控制器 136 前電極 11 電連接端 161 11BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light source device, and more particularly to an LED light source device capable of providing electrical energy by itself. [Prior Art] With the promotion of energy conservation, more and more green energy is being exploited. Led as the most ideal illuminating part is increasingly used in lighting devices such as street lamps, floor lamps, and stadium lighting. At present, 'Light Emitting ❿ Diode (LED) is widely used for its good light quality (that is, the spectrum emitted by LED light source) and high luminous efficiency. For details, please refer to Michael S. Shur et al. in Proceedings of the literature. "Solid-State Lighting: Toward Superior Illumination" published in IEEE, Vol. 93, No. 10 (October 2005). In the existing LED light source device, a large amount of coal and oil are generally burned to generate electricity to supply electric energy. However, this has caused environmental pollution and the reduction of non-renewable mineral energy resources, which has seriously affected the sustainable development of human society. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide an LED light source device that can supply electric energy by itself. An LED light source device comprising: an LED light emitting element for emitting light. The LED light source device further includes: a solar battery unit and a rechargeable battery unit. The solar cell unit is used to generate electrical energy. The rechargeable battery unit is configured to store the electrical energy generated by the solar cell 6 200944689 - the cell unit, and provide the stored electrical energy to the LED to emit light, and the component causes it to emit light. In contrast to the prior art, the LED light source device further includes a solar cell capable of generating electrical energy and a rechargeable battery cell capable of storing electrical energy generated by the solar cell. Therefore, when the coffee light-emitting element emits light, it can be directly illuminated by the electric energy stored in the rechargeable battery unit, thereby eliminating the need to receive external electric energy. I [Embodiment] The present invention will be further described in detail below with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2, a j^ED light source device 10' includes a solar battery unit 1 , a rechargeable battery unit 110 and a LEd light-emitting element 12 . . The solar cell unit 100 includes a substrate 17 having a bearing surface 172. The carrier surface 172 of the substrate 17 is sequentially formed with a back metal contact layer 16, a P-type semiconductor layer 15, and a P_N junction layer. 14 'N-type semiconductor layer 13, transparent conductive layer (Transparent Conductive 0xide) 12' and front electrode (Front Metal Contact Layer) 11. The substrate 17 is made of a flexible material having a thickness of between about 10 // m and 100 / m. In the present embodiment, the substrate 17 is a flexible aluminum-magnesium alloy foil (Al-Mg alloy foil). The material of the substrate 17 may also be a buckable material such as a stainless steel sheet or a polymer sheet. In practical applications, the substrate 17 can also be made of single crystal germanium, polycrystalline germanium or glass material, and is not limited to the actual method of 200944689. The material of the back electrode 16 can be silver (Ag), copper (Cu), molybdenum ( Mo), Ming (A1), Cu-A1 Alloy 'Ag-Cu Alloy ' or copper-molybdenum alloy (Cu-Mo Alloy), etc. The back electrode 16 is provided with a side The material of the P-type semiconductor layer 15 may be a P-type amorphous silicon (Pa-Si) material, in particular, a P-type amorphous silicon with hydrogen (P-type amorphous silicon with hydrogen). ❹ Pa-Si: H) material. Of course, the material of the P-type semiconductor layer may also be a III-V compound or a II-VI compound, especially doped aluminum (A1), potassium (Ga), indium (In). The semiconductor material, such as aluminum nitride (AlGaN) or aluminum gallium arsenide (AlGaAs). Preferably, the material of the P-type semiconductor layer 15 is a P-type amorphous germanium material. The absorption ratio of the amorphous germanium material to light The crystalline germanium material is about 500 times stronger, so P_ is made of amorphous germanium material under the same requirements for photon absorption. The thickness of the semiconductor layer is much smaller than the thickness of the P-type semiconductor layer made of the crystalline germanium material, and the amorphous germanium material has lower requirements on the material of the substrate. Therefore, the use of the amorphous germanium material not only saves a large amount of material, but also makes the production large. The solar cell of the area becomes possible (the area of the crystallization solar cell is limited by the size of the ruthenium wafer.) The material of the PN junction layer 14 may be a combination of a better group III-V compound or a group I-III-VI. a compound such as cadmium telluride (CdTe), copper indium selenide (CuInSe2), etc. It may also be copper indium gallium selenide (CuInl-XGaSe2, CIGS). The PN junction layer 14 is used to convert photons into electron-hole pairs and form The barrier electric field. 200944689 The material of the N-type semiconductor layer 13 may be an N Type Amorphous Silicon (Na-Si) material, in particular, a N Type Amorphous Silicon With Hydrogen (referred to as N Type Amorphous Silicon With Hydrogen). Na-Si: H) material. Of course, the material of the N-type semiconductor layer 13 may also be a III-V compound or a II-VI compound, especially nitrogen (N), phosphorus (P), arsenic (As). Semiconductor materials such as potassium nitride (GaN) or phosphorous InGaP. The material of the transparent conductive layer 12 may be, for example, Indium Tin Oxide (ITO), zinc oxide (ZnO) or the like. The material of the front electrode 11 may be silver (Ag), copper (Cu), molybdenum (Mo), aluminum (A1), copper-aluminum alloy (Cu-Al Alloy), silver-copper alloy (Ag-Cu Alloy), or copper-molybdenum alloy. (Cu-Mo Alloy) and the like. The solar battery cell 100 is connected to the positive and negative electrodes of the rechargeable battery unit (Rechargeable Battery) through its front electrode 11 and the electrical connection terminal 161 on the back electrode 16, respectively, to be charged. ❿ The rechargeable battery unit 110 can be selected from lithium ion/lithium polymer batteries, and can be adapted to a thin design. It is used to supply electrical energy to the LED lighting element 120. In the embodiment, the LED light-emitting element 120 is an LED array composed of a plurality of LEDs. During actual manufacturing, the number of LED light-emitting elements 120 can be set according to the actual contrast brightness and illumination range. Moreover, the area of the solar cell unit 100 can also be determined based on its photoelectric conversion efficiency and the actual electrical energy required. The LED light source device 10 further includes a charge and discharge controller 200944689 (Charge/Discharge Controller) 130. The charge/discharge controller 130 is a modular wafer including a first DC/DC converter 132, a second DC/DC converter 134, and a PWM. Controller (Pulse Width Modulation Controller) 136. Specifically, the solar battery unit 100 and the rechargeable battery unit 110 are electrically connected by the first DC/DC converter 132, and the rechargeable battery unit 110 and the LED light-emitting element 120 are connected. The second DC/DC converter 134 is electrically connected. The PWM controller 136 is electrically connected to the rechargeable battery unit 110, the first DC/DC converter 132, the LED lighting component 120, and the second DC/DC converter 134, respectively. The working method is: in the charging mode, the The PWM controller 136 obtains a voltage feedback signal VF and a current feedback signal IF from the rechargeable battery unit 110, and supplies the first DC/DC converter 132 to the first PWM output signal (in FIG. 2, I represents the first The PWM output signal) charges the rechargeable battery unit 110 with precise control. In the discharge mode, the PWM controller 136 obtains a brightness feedback signal lf from the LED light-emitting component 120, and provides the second DC/DC converter 134 to the second PWM wheel-out signal (II in FIG. 2 represents the first The PWM output signal) precisely controls the brightness of the LED light-emitting element 120. It can be understood that the second PWM output signal sets a certain duty ratio, thereby controlling the ratio of the illumination and the non-lighting time of the LED light-emitting element 120, thereby controlling the brightness of the LED light-emitting element 120. 200944689 The LED light source device further includes a solar battery unit capable of generating electrical energy and a rechargeable battery unit capable of storing electrical energy generated by the solar battery unit. Therefore, when the LED light-emitting element emits light, it can be directly illuminated by the electric energy stored in the rechargeable battery unit, thereby eliminating the need to receive external electric energy. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the present invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of an LED light source device according to an embodiment of the present invention; Fig. 2 is a view showing the structure of a solar battery cell of the LED light source device of Fig. 1. [Main component symbol description] LED light source device 10 Substrate 17 Solar battery cell 100 Bearing surface 172 Rechargeable battery unit 110 Back electrode 16 LED light emitting element 120 P type semiconductor layer 15 Charge and discharge controller 130 PN junction layer 14 First DC/DC Converter 132 N-type semiconductor layer 13 second DC/DC converter 134 transparent conductive layer 12 PWM controller 136 front electrode 11 electrical connection end 161 11