TW200942075A - Lighting unit and thermal management system and method therefor - Google Patents

Lighting unit and thermal management system and method therefor Download PDF

Info

Publication number
TW200942075A
TW200942075A TW098103048A TW98103048A TW200942075A TW 200942075 A TW200942075 A TW 200942075A TW 098103048 A TW098103048 A TW 098103048A TW 98103048 A TW98103048 A TW 98103048A TW 200942075 A TW200942075 A TW 200942075A
Authority
TW
Taiwan
Prior art keywords
light
light source
intensity
conversion element
lighting unit
Prior art date
Application number
TW098103048A
Other languages
Chinese (zh)
Inventor
Ian Edward Ashdown
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200942075A publication Critical patent/TW200942075A/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/28Controlling the colour of the light using temperature feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/56Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving measures to prevent abnormal temperature of the LEDs

Abstract

Disclosed is a thermal management system for a lighting unit (1000) including a light source (1004), wherein the thermal management system includes a converting element (1020) configured and disposed to absorb at least some of the light generated by the light source (1004) and emit converted light in response thereto, wherein the intensity of the converted light decays in accordance with a temperature dependent characteristic of said converting element (1020). The system further includes a sensing element (1006) configured to sense a first intensity of the converted light, and one or more subsequent decreased intensities thereof during an off-state of said light source (1004). The system is configured to determine, based at least in part on first intensity and the one or more subsequent intensities, a value indicative of an operating temperature of the light source (1004).

Description

200942075 六、發明說明: 【發明所屬之技術領域】 本發明一般係關於照明單元。更特定言之,本文中揭示 的各種發明方法及設備係關於對一光源的溫度測量及/或 管理。 【先前技術】 數位照明技術’即基於諸如發光二極體(LED)之半導體 光源的照度,提供對傳統螢光、hid及白熾燈的可行替代 Ο 方案。LED之功能優點及利益包括高能量轉換及光學效 率、财用性、較低操作成本與許多其他優點及利益。LED 技術中的最近進步已提供有效率且強固的全光譜照明來 源’其致能許多應用中的各種照明效應。體現此等來源的 夾具之某些的特徵為一照明模組,其包括能夠產生不同色 彩(例如紅色 '綠色及藍色)的一或多個LED,以及用於獨 立地控制該等LED之輸出以便產生各種色彩及色彩改變照 明效應的一處理器,例如如在美國專利第6,〇16,038及 ® 6,211,626號中所詳細論述。 諸如固態半導體及有機LED之發光裝置的光通量之發展 .及改良中的進步已使此等裝置適合用於一般照度應用,包 括建築、娛樂及道路照明。發光二極體正隨諸如白熾、螢 光及高強度放電燈之光源而變得日益具有競爭力。 一般地’此等照明單元包含各包含其上安裝一或多個 LED的一基板之一或多個led或LED封裝。隨著環境溫度 改變’或隨著驅動該等LED所採用的功率改變,該等led 138035.doc 200942075 之溫度亦可改變。LED溫度中的此類改變可導致波長偏 移、光通量輸出變化及其他此類一般不合需要的效應。在 白光或色彩改變LED光源中,對於一相同或不同批次之 LED可能係不同的此等波長偏移及光通量輸出改變可影響 該光源之色溫及/或輸出強度。此外,(例如)當驅動以高電 流的LED(例如,高強度LED)以最大化該照明單元之輸出 時’ LED溫度可明顯上升,此可導致led使用期及/或操作 效率的減小。因此,需要有效地監視及/或控制LED照明單 © 元中的溫度改變。 測量一發光二極趙之接面溫度的一些已知方法包括測量 LED封裝溫度及/或LED前向電壓《採用一此方法,一熱敏 電阻器係安裝為接近於該LED封裝並與其進行良好的熱接 觸。若已知或能估計LED接面與該熱敏電阻器之間的熱電 阻,則旎決疋LED接面溫度。然而,此方法能受lED封裝 及通常包含被動散熱器或散熱管的熱管理系統之熱容量的 藝限制。採用此測量技術,不能以快於LED接面與該熱敏電 阻器之間的熱時間常數之速率來測量LED接面溫度中由於 LED驅動電流中的改變所致的突然改變。 以另一方法,部分藉由電路電阻來決定橫跨LED接面及 電引線的前向電壓《當LED係在其電流電壓(I_v)特性曲 線之線性區域中操作時,前向電壓令的改變係由於焦耳加 熱所致,並且因此係與LED接面溫度中的對應改變成線性 比例。然而’此方法受高強度LED之低電路電阻的限制, 此會產生前向電壓中的小改變。因此,可能難以在存在自 138035.doc 200942075 LED驅動器之電切換雜訊情況下準確地測量絕對電壓,因 而產生準確地評估LED接面溫度之困難。 因此,在該技術中需要能夠以資料獲得之所需速率及/ 或準確度來決定及/或管理一光源之溫度的照明單元與熱 管理系統及其方法。 【發明内容】 此揭示内容係關於用於一光源的溫度測量及/或管理之 發明方法及設備。在其各種具體實施例中,本發明係關於 用於以提供資料獲得之所需速率及/或準確度的方式來測 量LED接面溫度之設備及方法。 一般地,在一個態樣中,本發明集中在用於包括經組態 用以產生光之一光源的一照明單元之一熱管理系統上。該 系統進一步包括一轉換元件,其經組態並佈置用以吸收藉 由該光源產生的光之至少某些並回應其以發射轉換光該 轉換光之一強度依據該轉換元件之溫度相依特性而衰減; 以及一感測元件,其經組態用以感測該轉換光之一第一強 度’以及在該光源之斷開狀態期間的其一或多個其後減小 強度。該系統經組態用以至少部分基於該第一強度及該一 或多個其後強度來決定指示該光源之一操作溫度的一數 值。該轉換元件可包括一磷光體材料、量子點材料或一發 光摻雜物材料。 依據本發明之另一態樣,提供一照明單元,其包括:一 光源’其經組態用以發光;一轉換元件,其經組態並佈置 用以吸收由該光源發射的光之至少某些並回應其以發射轉 138035.doc -6 - 200942075 換光’該轉換光之一強度依據該轉換元件之一溫度相依特 性而衰減;一感測元件,其經組態用以感測該轉換光之一 第一強度,以及在該光源之斷開狀態期間的其一或多個其 後減小強度;以及一熱管理模组,其係操作地耦合至該感 測元件並經組態用以自該第一強度以及該一或多個其後強 度決定指示該光源之一操作溫度的一數值。 在本發明之一項具體實施例中,該熱管理模組經進一步 組態用以回應該數值以調整該照明單元之一操作特性。 依據本發明之另一態樣,提供用於管理包括經組態用以 發光之一光源的一照明單元之操作溫度的方法。該方法預 期下列步驟:經由具有一溫度相依特性的一轉換元件來轉 換藉由該光源產生的光之至少某些;感測在該光源之一接 通狀態期間的該轉換光之一第一強度;感測在該光源之一 斷開狀態期間的該轉換光之一或多個其後強度;以及自該 第一強度及該一或多個其後強度基於該溫度相依特性來決 定指示該光源之一操作溫度的一數值。依據本發明之一項 具體實施例,該方法進一步包括回應該數值以調整該照明 單元之一操作特性的步驟。 如本文中基於本揭示内容之目的所用的術語"LED"應該 瞭解為包括t夠回應電彳§號以產生轄射的任何電致發光二 極體或另一類型之以載子注入/接面為基礎之系統。因 此,術語LED包括但不限於回應電流以發光的各種以半導 體為基礎之結構、發光聚合物、有機發光二極體 (OLED)、電致發光帶及類似物。特定言之,術語lED指所 138035.doc 200942075 有類型的發光二極體(包括半導體及有機發光二極體),其 可經組態用以產生紅外線光譜、紫外線光譜及可見光譜之 各種部分之一或多個中的輕射(一般包括自近似400奈米至 近似700奈米之輻射波長)。LED之一些範例包括但不限於 各種類型的紅外線LED、紫外線LED、紅色LED、藍色 LED、綠色LED、黃色LED、號拍色LED、撥色LED以及 白色LED(以下進一步論述)。亦應該瞭解,LED可經組態 及/或控制用以產生具有對於一給定光譜(例如,窄帶寬、 ❿ 寬帶寬)之各種帶寬(例如,半高寬,或FWHM)的輻射,以 及一給定一般色彩分類内的各種主波長。 例如,經組態用以產生本質白光的一 LED(例如一白色 LED)之一項實施方案可包括若干晶粒,其分別發射電致發 光之不同光譜,其以組合方式混合以形成本質白光。在另 一實施方案中,一白光LED可與將具有一第一光譜的電致 發光轉換為一不同第二光譜之一磷光體材料相關聯。在此 實施方案之一個範例中,具有相對較短波長及窄帶寬光譜 的電致發光"抽吸"破光體材料,其依次輻射具有稱寬光譜 之較長波長輕射。 •亦應該瞭解,術語LED並不限制一 LED之實體及/或電封 裝類型。例如,如以上所論述,一 LED可指具有多個晶粒 的一單一發光裝置,該等晶粒經組態用以分別發射輻射之 不同光譜(例如,可以或不可以個別控制的光譜)。此外, 一 LED可與視為該LED之一整體部分(例如,白色LED之一 些類型)的一磷光體相關聯。一般地,術語led可指封裝式 138035.doc 200942075 LED、非封裝式LED、表面安裝led、板上晶片LED、T形 封裝安裝LED、徑向封裝LED、功率封裝LED、包括套裝 及/或光學元件之某一類型(例如,擴散透鏡)的LED等。 術語"光源"應瞭解為指各種輻射來源之任何一或多個, 包括但不限於以LED為基礎之來源(包括如以上定義之一或 多個LED)、白熾來源(例如,白熾燈、鹵素燈)、螢光來 源、麟光來源、高強度放電來源(例如,鈉汽、汞汽及金 屬鹵化物燈)、雷射、其他類似的電致發光來源、火發光 〇 來源(例如,火焰)、蠟燭發光來源(例如,氣罩燈、碳弧輻 射來源)、光致發光來源(例如,氣體放電來源)、使用電子 飽和的陰極發光來源、電發光來源、結晶發光來源、活動 發光來源、熱發光來源、摩擦發光來源、聲發光來源、無 線電發光來源以及發光聚合物。 一給定光源可經組態用以產生可見光譜内、可見光譜外 或兩者之組合的電磁輻射。因此,在本文中交換使用術語 光"及"賴射"。此外’ 一光源可包括作為一整體組件的一 ® 或多個濾波器(例如’彩色濾波器)、透鏡或其他光學組 件。此外’應該瞭解可針對包括但不限於指示、顯示及/ 或照度的各種應用來組態光源。一"照度來源”係一光源, 其經特疋組態用以產生具有用以有效地照射一内部或外部 空間的充分強度之||射。在此背景下,"充分強度"指在空 間或環境中產生以提供環境照度(即,可間接感知並可(例 如)在整體或部分加以感知之前從各種中間表面之一或多 個反射的光)之可見光譜中的充分輻射功率(單位"流明"通 138035.doc 200942075 常係用以代表根據輻射功率或"光通量"在所有方向上自一 光源輸出的全部光)。200942075 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention generally relates to lighting units. More specifically, the various inventive methods and apparatus disclosed herein relate to temperature measurement and/or management of a light source. [Prior Art] Digital illumination technology, i.e., illumination based on a semiconductor light source such as a light emitting diode (LED), provides a viable alternative to conventional fluorescent, hid, and incandescent lamps. The functional advantages and benefits of LEDs include high energy conversion and optical efficiency, affordability, lower operating costs, and many other advantages and benefits. Recent advances in LED technology have provided efficient and robust full-spectrum illumination sources that enable various lighting effects in many applications. Some of the features of the fixtures embodying such sources are a lighting module that includes one or more LEDs capable of producing different colors (eg, red 'green and blue'), and for independently controlling the output of the LEDs A processor that produces various color and color-changing illumination effects is discussed in detail, for example, in U.S. Patent Nos. 6, , 16, 038 and 6, 211, 626. The development of luminous fluxes for illuminators such as solid state semiconductors and organic LEDs, and improvements in improvements, have made these devices suitable for general illumination applications, including architectural, recreational, and road lighting. Light-emitting diodes are becoming increasingly competitive with light sources such as incandescent, fluorescent and high-intensity discharge lamps. Typically, such lighting units comprise one or more LED or LED packages each comprising a substrate on which one or more LEDs are mounted. The temperature of the LEDs 138035.doc 200942075 may also change as the ambient temperature changes 'or as the power used to drive the LEDs changes. Such changes in LED temperature can result in wavelength shifts, changes in luminous flux output, and other such generally undesirable effects. In white light or color-changing LED sources, such wavelength shifts and changes in luminous flux output that may be different for an identical or different batch of LEDs may affect the color temperature and/or output intensity of the source. In addition, the LED temperature can rise significantly, for example, when driving a high current LED (e.g., a high intensity LED) to maximize the output of the illumination unit, which can result in a reduction in LED lifetime and/or operational efficiency. Therefore, there is a need to effectively monitor and/or control temperature changes in the LED illumination unit. Some known methods for measuring the junction temperature of a light-emitting diode include measuring the LED package temperature and/or the LED forward voltage. "With this method, a thermistor is mounted close to the LED package and is in good condition." Hot contact. If the thermal resistance between the LED junction and the thermistor is known or can be estimated, the LED junction temperature is determined. However, this approach can be limited by the thermal capacity of the lED package and the thermal management system that typically contains passive heat sinks or heat pipes. With this measurement technique, sudden changes in LED junction temperature due to changes in LED drive current cannot be measured at a rate faster than the thermal time constant between the LED junction and the thermistor. In another method, the forward voltage across the LED junction and the electrical leads is determined in part by the circuit resistance. When the LED is operating in the linear region of its current-voltage (I_v) characteristic curve, the forward voltage is changed. It is due to Joule heating and is therefore linearly proportional to the corresponding change in junction temperature of the LED. However, this method is limited by the low circuit resistance of high-intensity LEDs, which produces small changes in the forward voltage. Therefore, it may be difficult to accurately measure the absolute voltage in the presence of electrical switching noise from the 138035.doc 200942075 LED driver, thereby creating the difficulty of accurately evaluating the junction temperature of the LED. Accordingly, there is a need in the art for a lighting unit and thermal management system and method thereof that can determine and/or manage the temperature of a light source at a desired rate and/or accuracy of data acquisition. SUMMARY OF THE INVENTION This disclosure is directed to an inventive method and apparatus for temperature measurement and/or management of a light source. In its various embodiments, the present invention relates to apparatus and methods for measuring the junction temperature of LEDs in a manner that provides the desired rate and/or accuracy of the data acquisition. In general, in one aspect, the invention focuses on a thermal management system for a lighting unit that includes a light source configured to generate light. The system further includes a conversion element configured and arranged to absorb at least some of the light generated by the light source and responsive thereto to emit converted light, the intensity of the converted light being dependent on temperature dependent characteristics of the conversion element Attenuating; and a sensing element configured to sense a first intensity of the converted light and one or more subsequent reduced intensities during the off state of the light source. The system is configured to determine a value indicative of an operating temperature of one of the light sources based at least in part on the first intensity and the one or more subsequent intensities. The conversion element can comprise a phosphor material, a quantum dot material or a luminescent dopant material. According to another aspect of the present invention, a lighting unit is provided, comprising: a light source configured to emit light; a conversion element configured and arranged to absorb at least some of the light emitted by the light source And responding to the transmission 138035.doc -6 - 200942075 for the light change 'the intensity of one of the converted lights is attenuated according to one of the temperature dependent characteristics of the conversion element; a sensing element configured to sense the conversion a first intensity of light, and one or more subsequent reductions in intensity during the off state of the light source; and a thermal management module operatively coupled to the sensing element and configured A value indicative of an operating temperature of one of the light sources is determined from the first intensity and the one or more subsequent intensities. In a particular embodiment of the invention, the thermal management module is further configured to respond to a value to adjust an operational characteristic of the illumination unit. In accordance with another aspect of the present invention, a method for managing an operating temperature of a lighting unit including a light source configured to illuminate is provided. The method contemplates the steps of: converting at least some of the light generated by the light source via a conversion element having a temperature dependent characteristic; sensing a first intensity of the converted light during an on state of the light source Sensing one or more subsequent intensities of the converted light during an off state of the light source; and determining the source from the first intensity and the one or more subsequent intensities based on the temperature dependent characteristic A value of one of the operating temperatures. According to a particular embodiment of the invention, the method further comprises the step of returning a value to adjust an operational characteristic of the illumination unit. The term "LED" as used herein for the purposes of this disclosure should be understood to include any electroluminescent diode that is capable of responding to the 彳 § to generate an illuminating or another type of carrier injection/connection. Face-based system. Thus, the term LED includes, but is not limited to, various semiconductor-based structures that respond to current to illuminate, luminescent polymers, organic light-emitting diodes (OLEDs), electroluminescent strips, and the like. In particular, the term lED refers to the type of light-emitting diode (including semiconductor and organic light-emitting diodes) of 138035.doc 200942075, which can be configured to produce various parts of the infrared spectrum, the ultraviolet spectrum, and the visible spectrum. Light shots in one or more (generally including radiation wavelengths from approximately 400 nm to approximately 700 nm). Some examples of LEDs include, but are not limited to, various types of infrared LEDs, ultraviolet LEDs, red LEDs, blue LEDs, green LEDs, yellow LEDs, slap LEDs, dial LEDs, and white LEDs (discussed further below). It should also be appreciated that LEDs can be configured and/or controlled to generate radiation having various bandwidths (e.g., full width at half maximum, or FWHM) for a given spectrum (e.g., narrow bandwidth, wide bandwidth), and Given the various dominant wavelengths within a general color classification. For example, an embodiment of an LED (e.g., a white LED) configured to produce intrinsic white light can include a plurality of dies that respectively emit different spectra of electroluminescence that are combined in combination to form an intrinsic white light. In another embodiment, a white LED can be associated with a phosphor material that converts electroluminescence having a first spectrum into a different second spectrum. In one example of this embodiment, an electroluminescent "pumping" light-breaking material having a relatively short wavelength and a narrow bandwidth spectrum sequentially radiates a longer wavelength light having a broad spectrum. • It should also be understood that the term LED does not limit the physical and/or electrical package type of an LED. For example, as discussed above, an LED can refer to a single illumination device having a plurality of dies that are configured to separately emit different spectra of radiation (e.g., spectra that may or may not be individually controlled). Additionally, an LED can be associated with a phosphor that is considered to be an integral part of the LED (e.g., some of the types of white LEDs). In general, the term LED may refer to packaged 138035.doc 200942075 LED, non-packaged LED, surface mount led, on-board wafer LED, T-package mounted LED, radial package LED, power package LED, including kit and/or optics An LED or the like of a certain type of component (for example, a diffusion lens). The term "light source" shall be taken to mean any one or more of a variety of sources of radiation, including but not limited to LED-based sources (including one or more LEDs as defined above), incandescent sources (eg, incandescent lamps) , halogen lamps), fluorescent sources, sources of lining, high-intensity discharge sources (eg, sodium vapor, mercury vapor, and metal halide lamps), lasers, other similar sources of electroluminescence, sources of fire luminescence (eg, Flame), source of candle illumination (eg, hood lamp, source of carbon arc radiation), source of photoluminescence (eg, source of gas discharge), source of cathodoluminescence using electron saturation, source of electroluminescence, source of crystalline luminescence, source of active luminescence , sources of thermal luminescence, sources of frictional luminescence, sources of acoustic luminescence, sources of radio luminescence, and luminescent polymers. A given source of light can be configured to produce electromagnetic radiation within the visible spectrum, outside the visible spectrum, or a combination of both. Therefore, in this article, the terms light "&"Lai " Further, a light source can include a ® or multiple filters (e.g., 'color filters), lenses, or other optical components as an integral component. Furthermore, it should be understood that the light source can be configured for a variety of applications including, but not limited to, indication, display, and/or illumination. An "illuminance source" is a source of light that is specifically configured to produce a || shot with sufficient intensity to effectively illuminate an interior or exterior space. In this context, "full intensity" Sufficient radiant power generated in the visible spectrum of the environment or environment to provide ambient illumination (ie, light that can be indirectly perceived and can be reflected from one or more of the various intermediate surfaces, for example, in whole or in part) The unit "lumens" 138035.doc 200942075 is often used to represent all light emitted from a light source in all directions based on radiant power or "luminous flux".

❹ 術語''光譜"應該瞭解為指藉由一或多個光源產生的輻射 之任何一或多個頻率(或波長)。因此,術語光譜指不僅在 可見範圍中的頻率(或波長),而且在紅外線、紫外線及總 電磁光譜之其他區域中的頻率(或波長)。此外,一給定光 譜可具有一相對較窄帶寬(例如,具有本質較小頻率或波 長成分的FWHM)或相對較寬帶寬(具有各種相對強度的數 個頻率或波長成分)。亦應該瞭解,一給定光譜可以係混 合兩個或兩個以上其他光譜(例如,混合分別自多個光源 發射的輻射)之結果。 基於此揭示内容之目的,術語"色彩"係與術語"光譜"交 換使用。然而,術語”色彩"一般係用以主要指藉由一觀察 者所感知的輻射之性質(儘管此使用並非預計限制此術語 之範疇)。因此,術語,,不同色彩"暗示地指具有不同波長成 分及/或波長的多個光譜。亦應該瞭解,術語"色彩"可結合 白及非白光兩者來使用。 術語"色溫"一般係在本文中結合白光來使用,儘管此使 用並非預計限制此術語之範疇。色溫本質上指白光之一特 定色彩含量或陰影(例如淡紅、淡藍”一給定輻射樣本之 色溫的特徵傳統上為依㈣射本質上與討論中的賴射樣本 相同之光譜的一黑體輕射體之溫《,其單位為開氏度 (κ)。黑體輻射體色溫—般落在自近似度κ(通常視作先 前對肉眼所見)至10000度Κ以上的範圍e ;白力一般係在 138035.doc 200942075 度1500至2000度K以上的色溫下感知。 較低色溫一般指示具有更明顯紅色成分或"較暖感覺"之 白光,而較高色溫一般指示具有更明顯藍色成分或"較涼 感覺"之白光。經由範例,火具有近似18〇〇度反之色溫,一 #統白熾燈泡具有近似2848度〖之色溫,清晨日光具有近 似3_度Κ之色溫,以及陰天正午天空具有近似議〇度& 之色溫《在具有近似3000度κ之色溫的白光下觀察的一彩 色影像具有相對淡紅色調,不過在具有近似1〇〇〇〇度反之色 Ο s的白光下觀察的同-彩色影像具有相對淡藍色調。 術語'’照明夾具”係在本文中用以指以特定波形因數的一 或多個照明單元、裝配件或封装之一實施方案或配置。術 語”照明單元"係在本文中用以指包括相同或不同類型之一 或多個光源之一設備。一給定照明單元可具有用於光源的 各種安裝配置、圍攔/外殼配置及形狀及/或電性及機械連 接組態之任何一個。此外,一給定照明單元視需要地可與 ©同該(4 )光源之操作有關之各種其他組件(例如,控制電 路)相關聯(例如,包括耦合該等組件及/或與其封裝在一 起)。一"以LED為基礎之照明單元"指包括單獨或與其他以 非LED為基礎之光源組合的如以上論述之一或多個以[ED 為基礎之光源的一照明單元。一"多通道"照明單元指一以 LED為基礎或以非LeD為基礎之照明單元,其包括經組態 用分別產生輻射之不同光譜的至少兩個光源,其中每一不 同來源光譜可稱為該多通道照明單元之一"通道"。 術語”控制器”係在本文中一般用以說明與一或多個光源 138035.doc 200942075 之操作有關的各種設備。一控制器能以許多方式(例如, 以專用硬體)加以實施以實行本文中所論述的各種功能。 一"處理器"係使用可使用軟體(例如,微碼)加以程式化以 實行本文中論述之各種功能的一或多個微處理器的一控制 器之一個範例。一控制器可在使用或不使用一處理器的情 況下加以實施,並且亦可加以實施為用以實行一些功能的 專用硬體與用以實行其他功能的一處理器(例如一或多個 程式化微處理器及相關聯電路)之一組合。可在本揭示内 容之各種具體實施例中使用的控制器組件之範例包括但不 限於傳統微處理器、特定應用積體電路(ASIC)以及場可程 式化閘極陣列(FPGA)。 在各種實施方案中,一處理器或控制器可與一或多個儲 存媒體(一般在本文中稱為"記憶體",例如非揮發性及非揮 發性電腦記憶體(例如RAM、PR〇M、epr〇m及EEpR〇M)、 軟碟、光碟、光學碟片、磁帶等)相關聯。在一些實施方 案中’該等儲存媒體可以一或多個程式加以編碼,當在一 或多個處理器及/或控制器上執行時該等程式實行本文中 論述的功能之至少某些。各種儲存媒體可加以固定在一處 理器或控制器内或可以係可傳輸的,所以储存於其中的該 一或多個程式能加以載入於一處理器或控制器中以便實施 本文中論述的本發明之各種態樣。術語"程式"或"電腦程 式”係在本文中以一般意義用以指能用以程式化一或多個 處理器或控制器之任何類型的電腦碼(例如軟體或微碼)。 術語"可定址"係在本文中用以指一裝置(例如,一一 138035.doc •12· 200942075 源、一照明單元或夾具、與一或多個光源或照明單元相關 聯的一控制器或處理器、其他非照明相關裝置等),其經 組態用以接收預計用於包括本身之多個裝置的資訊(例 如’-貝料),並且選擇性地回應預計用於其的特定資訊。 術語"可定址"通常係用以結合一網路式環境(或以下進一步 加以論述的一 ”網路"),其中多個裝置係經由某一通信媒體 或一些通彳s媒體而輕合在一起。 在項網路實施方案中,耦合至一網路的一或多個裝置 Ο 叮用作用於輪合至該網路之一或多個其他裝置的一控制器 (例如,以主/從關係)。在另一實施方案中,一網路式環境 可包括一或多個專用控制器,其經組態用以控制耦合至該 網路的該等裝置之一或多個。一般地,柄合至該網路的多 個裝置可存取存在於該(等)通信媒體上的資料;然而一 給定裝置可以係"可定址",因為其經組態用以基於(例如) 指定至其的一或多個特定識別符(例如,"可定址來選擇 ㈣將請與該網路交換(即,自該_接收f料及,或發 送資料至該網路)。 如本文中所用的術語"網路"指兩個或兩個以上裝置(包括 控制器或處理器)之任一互連,其促進任何兩個或兩個以 上裝置之間及/或耦合至該網路的多個裝置當中的資訊之 傳輸(例如用於裝置控制、資料儲存、資料交換等應該 輕易地瞭解,適合於互連多個裝置的網路之各種實施方案 可包括各種網路佈局之任-者並且使用各種通信協定之任 者。此外,在依據本揭示内容的各種網路中,兩個裝置 I38035.doc ^ 200942075 之間的任何一個連接均可代表該兩個系統之間的一專用連 接’或者一非專用連接。除承載預計用於該兩個裝置的資 訊以外,此一非專用連接還可承載不一定預計用於該兩個 裝置之任一個(例如,一開放網路連接)的資訊。此外,應 該輕易地瞭解,如本文中論述的裝置之各種網路可使用一 或多個無線、線路/電纜’及/或光纖鏈路以促進整個網路 中的資訊傳輸。 如本文中所用的術語"使用者介面"指人使用者或操作者 〇 與致能該使用者與該(等)裝置之間的通信之一或多個裝置 之間的一介面》可在本揭示内容之各種實施方案中使用的 使用者介面之範例包括但不限於開關、電位計、按鈕、刻 度盤、滑件、一滑鼠、鍵盤、數字鍵盤、各種類型的遊戲 控制器(例如遊戲操縱桿)、執跡球、顯示螢幕、各種類型 的圖形使用者介面(GUI)、觸控螢幕、麥克風及其他類型 的感測器,其可接收某一形式的人產生刺激並回應其以產 生一信號。 •應該瞭解,前述概念及以下更詳細論述的額外概念之所 有組合(若此類概念並非相互矛盾)係預計為本文中揭示的 發明主旨之部分。特定言之,顯示在此揭示内容的結尾處 之主張的主旨之所有組合係預計為本文中揭示的發明主旨 之部分。亦應該瞭解,本文中明確使用的亦可顯現在以引 用的方式併入之任何揭示内容中的術語應該依據與本文中 揭示的特定概念最為一致的含意。 【實施方式】 138035.doc -14- 200942075 申請者已認識並瞭解有利的係能夠以資料獲得之所需速 率及/或準確度來決定及/或管理一光源之溫度。考慮到前 述說明,本發明之各種具體實施例及實施方案係關於一照 明單元與一熱管理系統及其方法。一般地,依據本發明之 不同具體實施例之本文中說明的照明單元包括一或多個光 源及一或多個轉換元件,其經組態用以轉換藉由該一或多 個光源發射的光之至少某些並依據該(等)轉換元件之一溫 度相依特性(例如一時間溫度相依轉換光強度函數等)來發 β射轉換光。該(等)照明單元進-步包括-或多個感測元 件,其用於感測該轉換光之時間不同強度;以及一熱管理 模組,其係操作地耦合至該等感測元件並經組態用以自感 測的轉換光強度,基於該轉換元件之溫度相依特性而決定 指示該-或多個光源之操作溫度的一數值。視需要地,'依 據一些具體實施例,該照明單元可經進一步調適用以回應 該(等)決定數值以調整該照明單元之一或多個操作特性, ❹經由該熱管理模組,或與其整合或與其不同的另一模 在-些具體實施例中,該照明單元之光源的操作溫度可 :監視用以避免在可能導致顯著及/或明顯損壞之溫度下 操作該(等)光源’及/或引起不合需要的輸出波動 '變化及/ ;=。例如,隨著環境溫度改變,或隨著驅動一光源所 的功率改變’該光源之溫度亦可改變。此類改變可提 之度至一可接受的臨限值以上,在此點該(等)光源 之操作條件(例如效率、使_、光譜功率分佈等)可 138035.doc -15- 200942075 劣化。 特定言之,對於一些應用,一給定照明單元之該(等)光 源可採用盡可能多的電流來驅動以獲得最大光輸出。此類 高驅動電流不變地提升該(等)光源之溫度,此可減小該 (等)光源之期望使用期並減小其操作效率。此對消散大量 熱的高強度LED係尤其相關的。一光源之操作溫度的一指 示因此在幫助延長其使用期及/或維持一所需輸出中可用 於減小對該光源的損壞。 此外,熱效應可在組合(例如)不同色彩之不同光源的一 照明單元中變得日益重要’以產生一組合式光學輸出。此 一照明單元(例如多色照明單元、白色照明單元、色彩改 變照明單70等)當其組成光源之一或多個的操作條件由於 操作溫度的改變而開始發散時可經歷顯著且可能有害的效 應。例如,若一給定光源之光譜功率分佈由於一溫度增加 而改變(例如光譜加寬、峰值輸出波長偏移、光通量輸出 變化及/或波動等),則該照明單元之組合輸出(例如色溫、 色彩品質、演色性指數、輸出強度等)亦可改變。對於某 些多色、白色及/或色彩改變照明單元應用,此類光譜改 變可以係重要的,並且因此應該盡可能最佳且盡可能迅速 地加以監視並整流。此外’因為個別光源之熱感應輸出變 化對於不同色彩或對於自相同或不同批次之光源可以係不 同的’故可能有利的係獨立地監視每一個光源,或每一個 群組、陣列及/或其叢集以當需要時提供適當補償。 為了減小此類熱效應,例如以減小或避免瞬時色彩偏 138035.doc * 16 - 200942075 移、光通量輸出變化及/或不適當的損壞,本發明提供— 照明單元與一熱管理系統及其方法,其係組態用以估定該 照明單元之一或多個溫度相依特性(例如,其組成零件的 一或多個之一或多個溫度相依特性),並且決定該照明單 元之光源的一或多個之操作溫度。該系統可經進一步視需 要地組態用以回應地調整可影響溫度或受溫度影響的照明 單元之一或多個操作特性。 在一些具體實施例中,連續地及/或即時提供溫度之決❹ The term ''spectrum') should be understood to mean any one or more frequencies (or wavelengths) of radiation produced by one or more sources. Thus, the term spectrum refers to frequencies (or wavelengths) that are not only in the visible range, but also in the infrared, ultraviolet, and other regions of the total electromagnetic spectrum (or wavelength). In addition, a given spectrum may have a relatively narrow bandwidth (e.g., FWHM having a substantially small frequency or wavelength component) or a relatively wide bandwidth (several frequencies or wavelength components having various relative intensities). It should also be understood that a given spectrum may be the result of mixing two or more other spectra (e.g., mixing radiation emitted from multiple sources). For the purposes of this disclosure, the term "color" is used interchangeably with the term "spectral". However, the term "color" is generally used to refer primarily to the nature of the radiation perceived by an observer (although this use is not intended to limit the scope of the term). Therefore, the term "different colors" implies implicitly Multiple spectra of different wavelength components and/or wavelengths. It should also be understood that the term "color" can be used in conjunction with both white and non-white light. The term "color temperature" is generally used in conjunction with white light in this article, although This use is not intended to limit the scope of this term. Color temperature essentially refers to a particular color content or shade of white light (eg, light red, light blue). The color temperature characteristics of a given radiation sample are traditionally based on (four) shots in nature and in discussion. The temperature of a blackbody light body with the same spectrum of the sample, in degrees Kelvin (κ). The color temperature of the black body radiator falls from the approximation κ (usually regarded as previously seen to the naked eye) to 10,000 degrees. ΚThe above range e; white force is generally perceived at 138035.doc 200942075 degrees 1500 to 2000 degrees K above the color temperature. Lower color temperature generally indicates a more pronounced red component or " The warmth feels white light, while the higher color temperature generally indicates white light with a more pronounced blue component or "cooler feel". By way of example, the fire has an approximate color of 18 degrees and vice versa, a # incandescent bulb has an approximation The color temperature of the 1988 degree, the morning light has a color temperature of approximately 3 degrees, and the cloudy sky has a similar color and temperature. "A color image observed under white light with a color temperature of approximately 3000 degrees κ has relative A reddish hue, but the same-color image observed under white light with approximately 1 degree and vice versa s has a relatively light blue hue. The term ''lighting fixture' is used herein to refer to a specific form factor) One or more lighting units, assemblies, or packages, an embodiment or configuration. The term "lighting unit" is used herein to refer to a device that includes one or more of the same or different types of light sources. The unit may have any of a variety of mounting configurations for the light source, enclosure/housing configuration and shape and/or electrical and mechanical connection configurations. Additionally, a given lighting unit view The location may be associated with (for example, including, and/or being packaged with) various other components (eg, control circuitry) associated with the operation of the (4) light source. One " LED based "Lighting unit" means a lighting unit that includes one or more of the above [ED-based light sources, alone or in combination with other non-LED based light sources. One "Multichannel" Lighting unit refers to An LED-based or non-LeD-based lighting unit comprising at least two light sources configured to generate different spectra of radiation, each of which may be referred to as one of the multi-channel lighting units &quot ; channel ". The term "controller" is used herein to generally describe various devices associated with the operation of one or more light sources 138035.doc 200942075. A controller can be implemented in a number of ways (e.g., with dedicated hardware) to perform the various functions discussed herein. A "processor" is an example of a controller that uses one or more microprocessors that can be programmed with software (e.g., microcode) to perform the various functions discussed herein. A controller can be implemented with or without a processor, and can also be implemented as a dedicated hardware for performing some functions and a processor (such as one or more programs) for performing other functions. A combination of a microprocessor and associated circuitry). Examples of controller components that can be used in various embodiments of the present disclosure include, but are not limited to, conventional microprocessors, application specific integrated circuits (ASICs), and field programmable gate arrays (FPGAs). In various embodiments, a processor or controller can be associated with one or more storage media (generally referred to herein as "memory", such as non-volatile and non-volatile computer memory (eg, RAM, PR) 〇M, epr〇m and EEpR〇M), floppy disks, CDs, optical discs, tapes, etc.). In some embodiments, the storage medium may be encoded in one or more programs that, when executed on one or more processors and/or controllers, perform at least some of the functions discussed herein. The various storage media may be fixed in a processor or controller or may be transferable, such that the one or more programs stored therein can be loaded into a processor or controller for implementation as discussed herein. Various aspects of the invention. The term "program" or "computer program" is used herein in its ordinary sense to refer to any type of computer code (e.g., software or microcode) that can be used to program one or more processors or controllers. The term "addressable" is used herein to refer to a device (eg, a 138035.doc • 12· 200942075 source, a lighting unit or fixture, a control associated with one or more light sources or lighting units). Or processor, other non-illumination related devices, etc.) configured to receive information intended for use in a plurality of devices including itself (eg, 'behicles') and to selectively respond to specific Information. The term "addressable" is generally used in conjunction with a networked environment (or a "network" as discussed further below), where multiple devices are via a communication medium or some wanted media And light together. In an item network implementation, one or more devices coupled to a network are used as a controller for cycling to one or more other devices of the network (eg, in a master/slave relationship) . In another embodiment, a networked environment can include one or more dedicated controllers configured to control one or more of the devices coupled to the network. Generally, a plurality of devices spliced to the network can access data present on the (or other) communication medium; however, a given device can be "addressable" because it is configured to be based on (for example) one or more specific identifiers assigned to it (for example, "addressable to select (4) will be exchanged with the network (ie, from the receiving and receiving data to the network). The term "network" as used herein refers to any interconnection of two or more devices, including controllers or processors, that facilitates coupling and/or coupling between any two or more devices. The transmission of information to multiple devices in the network (eg, for device control, data storage, data exchange, etc.) should be readily understood, and various implementations of networks suitable for interconnecting multiple devices may include various networks. Any of a variety of communication protocols, and in any of the various networks in accordance with the present disclosure, any connection between two devices, I38035.doc ^ 200942075, can represent between the two systems. a dedicated company Connected to a non-dedicated connection. In addition to carrying information intended for the two devices, this non-dedicated connection may also carry one of the two devices not necessarily intended for use (eg, an open network connection) In addition, it should be readily appreciated that various networks such as the devices discussed herein may use one or more wireless, line/cable' and/or fiber optic links to facilitate the transfer of information throughout the network. The term "user interface" used in the user" refers to an interface between one or more devices of the user or operator and the communication between the user and the device, etc. Examples of user interfaces used in various embodiments of the disclosure include, but are not limited to, switches, potentiometers, buttons, dials, sliders, a mouse, keyboard, numeric keypad, various types of game controllers (eg, game manipulation) Rods, ruling balls, display screens, various types of graphical user interfaces (GUI), touch screens, microphones, and other types of sensors that can receive some form of human product Stimulate and respond to it to produce a signal. • It should be understood that all combinations of the foregoing concepts and additional concepts discussed in more detail below (if such concepts are not mutually contradictory) are contemplated as part of the inventive subject matter disclosed herein. All combinations of the subject matter of the claims at the end of the disclosure are intended to be part of the subject matter of the invention disclosed herein. It should also be understood that any of the disclosures disclosed herein may also be The terms in the content should be based on the meanings most consistent with the specific concepts disclosed herein. [Embodiment] 138035.doc -14- 200942075 Applicants have recognized and understood the advantageous rate and/or accuracy required to obtain the data. Degree to determine and / or manage the temperature of a light source. In view of the foregoing, various specific embodiments and embodiments of the present invention are directed to a lighting unit and a thermal management system and method therefor. Generally, a lighting unit as described herein in accordance with various embodiments of the present invention includes one or more light sources and one or more conversion elements configured to convert light emitted by the one or more light sources At least some of the beta-converted light is emitted in accordance with a temperature dependent characteristic of the (equal) conversion element (e.g., a time-temperature dependent conversion light intensity function, etc.). The lighting unit further includes - or a plurality of sensing elements for sensing different times of the converted light; and a thermal management module operatively coupled to the sensing elements and A converted light intensity configured to self-sensing determines a value indicative of an operating temperature of the one or more light sources based on a temperature dependent characteristic of the converting element. Optionally, according to some embodiments, the lighting unit can be further adapted to respond to (or) determine a value to adjust one or more operational characteristics of the lighting unit, via the thermal management module, or Integrating or different from another mode in some embodiments, the operating temperature of the light source of the lighting unit can be monitored to avoid operating the light source at temperatures that can cause significant and/or significant damage. / or cause undesirable output fluctuations 'change and / ; =. For example, the temperature of the light source may change as the ambient temperature changes, or as the power of a light source is changed. Such changes may be raised above an acceptable threshold at which point the operating conditions of the source (e.g., efficiency, _, spectral power distribution, etc.) may degrade 138035.doc -15-200942075. In particular, for some applications, the (equal) light source of a given lighting unit can be driven with as much current as possible to achieve maximum light output. Such high drive currents constantly increase the temperature of the source, etc., which reduces the desired lifetime of the source and reduces its operational efficiency. This is especially relevant for high-intensity LED systems that dissipate large amounts of heat. An indication of the operating temperature of a light source can therefore be used to reduce damage to the light source while helping to extend its useful life and/or maintain a desired output. Moreover, thermal effects can become increasingly important in a lighting unit that combines, for example, different light sources of different colors to produce a combined optical output. Such a lighting unit (eg, a multi-color lighting unit, a white lighting unit, a color changing lighting sheet 70, etc.) may experience significant and potentially harmful when operating conditions of one or more of its constituent light sources begin to diverge due to changes in operating temperature effect. For example, if the spectral power distribution of a given source changes due to an increase in temperature (eg, spectral broadening, peak output wavelength shift, luminous flux output variation and/or fluctuation, etc.), the combined output of the illumination unit (eg, color temperature, Color quality, color rendering index, output intensity, etc.) can also be changed. For some multi-color, white and/or color-changing lighting unit applications, such spectral changes can be important and should therefore be monitored and rectified as best and as quickly as possible. Furthermore, 'because the heat-induced output variations of individual light sources can be different for different colors or for light sources from the same or different batches', it may be advantageous to monitor each light source independently, or for each group, array and/or The clusters provide appropriate compensation when needed. In order to reduce such thermal effects, for example to reduce or avoid transient color shifts, 138035.doc * 16 - 200942075 shifts, changes in luminous flux output, and/or undue damage, the present invention provides - a lighting unit and a thermal management system and method thereof And configured to estimate one or more temperature dependent characteristics of the lighting unit (eg, one or more temperature dependent characteristics of one or more of its component parts), and determine a light source of the lighting unit Or multiple operating temperatures. The system can be further configured as needed to responsively adjust one or more operational characteristics of the lighting unit that can affect or be affected by temperature. In some embodiments, the temperature is determined continuously and/or instantaneously.

❷ 疋、管理及任選調整❶例如,即時或近即時溫度決定能加 以提供,因為轉換光強度讀數或另外此類讀數之溫度相依 特j·生中的變化能加以感測並在相對較短延遲内做出反應。 例如,在一些具體實施例中,轉換元件係佈置為緊密接近 於需要其溫度估定的光源。 如以上所介紹,並依據本發明之一些具體實施例,一照 明單元包括—或多個光源’以及—熱管理系統,其用於監 視該光源之-或多個的操作溫度,並視需要地回應操作溫 度中的變化以調整其—或多個操作特性。該系統一般包括 或多個轉換元件,其經組態並佈置用以吸收由該(等)光 源產生的光之至少某些並回應其以發射轉換光。例如,在 -些具體實施例中’轉換光之強度可依據轉換元件之一溫 =相依特性而衰減,即,轉換光強度可藉由— 減函數⑼如指數衰減、雙曲線衰減等)來表達或至少近 :系統進_步包含一或多個感測元件其經組以 感測(例如)轉換光之一第一強度,以及該(等)光源之-斷 138035.doc •17- 200942075 開狀態期間的轉換光之一或多個其後強度,所以可藉由感 測元件來感知溫度相依衰減。基於此等感測強度,該熱管 理系統經組態用以決定轉換元件之一操作溫度,其當將該 轉換元件佈置為緊密接近及/或與一或多個對應光源熱搞 合時指示該(等)對應光源之一操作溫度。 該熱管理系統亦視需要地經組態用以回應其感知操作溫 度中的改變以調整該一或多個光源之一個或若干操作特 性。該等調整可依據預定規則或啟發之一集而自動出現, 或者可藉由該熱管理系統之一使用者來實施以依據溫度中 的偵測改變來調整操作特性。 作為一般事件,代表一第一光強度的一數值及代表一其 後光強度的一數值可用於溫度指示數值之每一個決定並決 定光強度中的改變之性質為其與時間及溫度有關。在其中 該等光源依據工作循環而運行的一些具體實施例中該等 第一及其後光強度決定能來自同一循環或不同循環。在此 類具體實施例中,該第一數值可藉由使用在電流循環中決 定的一第一光強度來決定,或者其近似值可藉由使用在另 一循環中先前決定的一第一光強度來決定。可在一循環之 接通狀態部分期間的任一點、就在該接通狀態部分結束後 的一時間點’或在一循環之斷開狀態部分期間決定該第一 光強度。該一或多個其後光強度決定出現(a)在斷開狀態期 間’以及(b)在其中一第一光強度決定出現之電流循環中的 點之後’或者在其中使用該第一光強度決定之近似值的情 況下在^别循環中的一點之後,該點對應於其中在一先 138035.doc 200942075 月j循環中進行第一光強度決定之點。應瞭解可針對每一個 工作循環,或針對間歇循環來重複讀數,以便提供一照明 單几之該(等)光源之溫度的連續及/或即時指示。 如以下參考特定具體實施例及範例更詳細地說明,若溫 度相依強度函數加以瞭解(例如,經由已知材料特性及/或 經由系統/轉換元件校準加以預定),則自該第一強度讀數 及一或多個其後強度讀數,可使用該技術中已知的各種數 學方法及技術來獲得關於該轉換元件之溫度的估計。 應瞭解術語第一強度及其後強度係在本文中基於說明之 簡單目的而使用並能經解譯用以定義經取得用以識別代表 轉換元件溫度相依特性的溫度相依強度函數之不同數值 的強度讀數之各種組合》 圖1提供一般指使用數字1 〇〇〇的一照明單元之高階圖 式,該照明單元包含依據本發明之一項具體實施例的熱管 理系統。應瞭解在讀取下列說明之後,圖1中所描述的具 體實施例僅提供本文中預期的照明單元及其熱管理系統之 一個範例’而且對此範例的變化(其之某些係在以下於不 同範例中說明)並非意指背離本揭示内容之一般範_及性 質。 參考圖1,照明單元1000包含操作地安裝於該照明單元 内的一或多個光源1004。該照明單元進一步包括一轉換元 件1020,其係佈置在光源1004之一輸出透鏡或封裝上,並 經組態用以吸收由該光源產生的光之至少某些並回應其以 發射轉換光。一感測元件1006亦係提供用於至少部分感測 138035.doc -19- 200942075 轉換光之一強度,並傳達指示此強度的一數值至一熱管理 模組,其係在本文中描述為熱管理/驅動模組1〇1〇。一般 地,該照明單70亦包含用於驅動該照明單元之光源的一或 多個驅動模組(例如軟體、韌體、硬體、驅動器電路及/ 或示意性地整合在熱管理/驅動模組内的其他此類驅動構 件)。在此具體實施例中,該熱管理/驅動模組係視需要地 以操作整合方式提供以經由驅動電路1〇〇8驅動該光源同 時維持一可接受的操作溫度,例如如經由該轉換元件及感 ® 測元件所監視。 熟習此項技術者應瞭解,該轉換元件可以若干不同方式 加以佈置’而不背離本揭示内容之一般範疇及性質。例 如’在圖2中所描述的照明單元1100中,該(等)轉換元件 1120形成光源1104之一囊封材料内的一分散,因而產生的 轉換光係藉由一感測元件1106來感測,該感測元件經組態 用以傳達指示該轉換光之強度的一數值至一熱管理/驅動 模組1110,如以上所論述。 魯 在圖3中所描述的照明單元1200中,並且依據另一具體 實施例,轉換元件1220係藉由光源基板1202上的一塗層來 '提供,在此具體實施例中該轉換元件經佈置用以吸收自光 源1204反向散射的光之一部分。藉由該轉換元件產生的轉 換光係至少部分藉由一感測元件1206來感測,該感測元件 經組態用以傳達指示該轉換光之強度的一數值至一熱管理/ 驅動模組1210,如以上所論述。 在圖4中所描述的照明單元1300中,並且依據另一具體 138035.doc •20· 200942075 實施例,轉換元件1320係藉由光源1304之一LED晶粒上的 一塗層來提供’因而產生的轉換光係藉由一感測元件1306 來感測,該感測元件經組態用以傳達指示該轉換光之強度 的一數值至一熱管理/媒動模組1310,如以上所論述。 亦應瞭解’儘管以上具體實施例描述分別朝該照明單元 之一周邊佈置的單一感測元件1006、1106、1206及1306, 但是一或多個感測元件亦可加以提供在不同位置,所以轉 換光係直接及/或間接麵合至該等感測元件。例如,在圖1 至4中解說的具體實施例之每一者中,該感測元件係在與 光源相關聯的一封裝外部。此當該感測元件之大小及/或 提供在該封裝内的受限空間係禁止地錯配時為有利或必要 的。清楚地,熟習此項技術者將瞭解與該光源相關聯的一 類似封裝可加以構造以便包括該封裝上或内的感測元件。 圖5提供依據本發明之另一具體實施例的一類似照明單 元200之一圖式。此範例之照明單元200包含操作地安裝在 該照明單元内的三個光源204。該照明單元進一步包括各 種轉換元件,其經組態用以吸收由該等光源或其一子集產 生的光之至少某些,並且回應其以發射轉換光。該照明單 元亦包含不同感測元件,例如感測元件206,其用於感測 自該等轉換元件之一或多個發射的賴射之強度並傳達指示 其的一數值至一熱管理/驅動模組。 在此具體實施例中,經由該(等)感測元件206來監視三 個光源204之每一者。然而,熟習此項技術者應瞭解,可 選擇不同數目的光源以進行監視而不背離本揭示内容之一 138035.doc -21 - 200942075 般範疇及性質。在此具體實施例中,顯示佈置在每一光源 之一晶粒基板202上的一轉換元件223。額外或替代性轉換 元件亦係提供為用於每一光源封裝222的一塗層(例如在其 透鏡上),作為LED晶粒220本身上的一塗層,及/或分散在 LED封裝221内,例如嵌入在一囊封材料或類似物内。應 瞭解以上範例之一或多個可在不同具體實施例中交換地使 用以提供一類似效應,因為能在本文中考量其他範例,例 如包括上面操作地耦合每一光源之一照明單元基板(未顯 不)上的一轉換元件,而不背離本揭示内容之一般範疇及 性質。 在此範例中’照明單元2〇〇進一步包括電路208,其係操 作地耗合至光源204並引向熱管理/驅動模組21〇。該熱管 理/腰動模組一般經組態用以回應自感測元件206傳達至該 模組的轉換強度數值以既監視並調整該照明單元之光源之 每一者的操作特性以便管理其溫度,例如藉由管理所給予 其的一驅動電流。例如,該(等)感測元件係操作地耦合至 該照明單元之熱管理/驅動模組,其經組態用以經由電路 208驅動光源204,同時維持經由該(等)感測元件所監視的 一可接受的操作溫度。 應瞭解’儘管本具體實施例描述朝照明單元200之周邊 佈置的一或多個感測元件206,但是一或多個感測元件亦 可加以提供在不同位置,所以轉換光係直接及/或間接耦 合至該等感測元件。例如,在圖5中解說的具體實施例 中’該感測元件係在該等光源封裝外部。此當該感測元件 138035.doc •22- 200942075 之大小及/或提供在該封裝内的《限空間係禁止地錯配時 為有利或必要的。清楚地,熟習此項技術者將瞭解,一類 似光源封裝可加以構造以便包括每一各別封裝上或内或 另外在選定數目之此等封裝内的一感測元件。 . Μ此項技術者亦應瞭冑’存在多於或少於光源2〇4或 ΙΜ奐元件的感測元件2〇6。例如,該一或多個感測元件之 每-者不必對應於一各別光源,或與其相關聯的轉換元 件,因為一特定感測元件206在其能加以光學耦合至與此 f光源相關聯的-轉換元件情況下可聯合不同數目的光源 204來操作。 以上說明並分別描述在圖丨至5中的範例性照明單元 1000、1100、1200、1300及200可進一步包含額外元件, 例如主要光學元件(例如光源或光源封裝透鏡、擴散器、 保邊塗層或覆蓋物、燈或彩色濾波器等)、次要光學元件 (例如反射器、透鏡、擴散器、準直器等),及/或其他此類 Φ 光學及/或結構(例如光罩、外殼等)元件。此等及其他此類 額外元件之可選内容物應為熟習此項技術者所明白而且因 此並非視為背離本揭示内容之一般範疇及性質。 '光源 該照明單元可包括類型、色彩及/或大小之不同組合中 的一或多個光源。例如,該照明單元可包含光源之一單一 或單一類型,例如包含一單一色彩之光源,或包含光源之 兩個或兩個以上不同類型,其提供一組合式光譜功率分 佈,例如提供一給定色溫或品質之光。後者之範例可包括 I38035.doc -23· 200942075 但不限於紅色、綠色及藍色光源(RGB),紅色、琥珀色、 綠色及藍色光源(RAGB) ’以及如由熟習此項技術者輕易 瞭解的其他此類組合。 一般地,該一或多個光源可配置在一或多個群組、一或 多個陣列或其一或多個叢集中。此等光源可採用一轉換元 件來塗布,或緊密接近於該轉換元件’該轉換元件能夠以 —或多個第一波長吸收輻射並以一或多個第二波長發射輻 射該等波長之母一者落在該光譜之一相同或不同區域 © 内,例如電磁光譜之紅外線、可見及/或紫外線區域。 在些具體實施例中,該(等)光源係依據一給定循環(有 時由熟習此項技術者稱為"工作循環")來驅動,其中光係在 繼其中實質上未自該光源發射光的一持續時間("斷開狀態") 之後的某一持續時間(,,接通狀態")内自該光源發射。在某 些具體實施例中,該一或多個光源之各別或共同斷開狀態 可以係短於可由肉眼所感知,因而建立其中無斷開狀態可 φ 為使用者所辨識的一效應。此外,該一或多個光源可以係 在交替工作循環中,其中斷開狀態不對應。 此外,熟習此項技術者瞭解該一或多個光源可以不同數 •目及/或類型之陣列、群組及/或叢集來組態以提供不同效 應。個別光源或其群組、陣列及/或叢集可加以獨立地安 裝或作為包含各種數目的驅動電路、感測及/或光學元件 的自含光源封裝之部分。 在本發明之具體實施例中,該一或多個光源之一或多個 選定者可與一或多個共同或各別轉換元件相關聯,其中估 138035.doc -24· 200942075 定僅選定光源之溫度能總體上提供該照明單元之—代表估 定。 在一些具體實施例中,該一或多個光源之每一者係與一 或多個共同或各別轉換元件相關聯以分別獲得(例如)一平 均光源估定’或各別光源估定。 熟習此項技術者應認識到,一光源可進一步包含一透 鏡、保護材料、濾波器、擴散器,或者該技術中已知的其 他元件或特徵。該材料可以由玻璃或透明聚合物或塑膠或 其他材料構成。此一材料能用以(例如)引導或聚焦光並濾 波或改變光之色彩。 可包含塗布元件、非塗布元件或其各種組合之一照明單 元中的該一或多個光源之每一者,以及該一或多個感測元 件可視需要地安裝至各別及/或共同基板,例如一 PCB或一 丧入式半導體裝置。此外,一照明單元可包含一或多個光 源封裝,每一光源封裝包含操作地安裝至一封裝基板上之 一或多個光源,該封裝基板提供必要的光源電極耦合(例 如電極塾、跡線等)以操作、監視及控制該(等)光源。在某 些具體實施例中,一或多個光源封裝可加以安裝於各別及/ 或共同基板(例如一 PCB或一嵌入式半導體裝置)上。 轉換元件 該一或多個轉換元件總體或部分包含一物質,其能夠接 收或吸收輻射,並回應吸收轄射以發射一轉換轄射。一般 地’接收的及發射的輻射兩者的特徵可以為各別波長,其 可落在電磁光譜之一相同或不同區域内’例如在該光譜之 138035.doc -25- 200942075 紅外線、紫外線及/或可見區域中。 此外’該轉換元件可發射具有對此轉換元件為特定之一 或多個光譜特性(例如具有—或多個特定峰值發射線及/或 帶’及/或:或多個特定吸收線及/或帶)的轉換輻射。例 如’可使用波長選擇性轉換材料以便轉換藉由一或多個選 定光源產生的光’同時對其他光源保持不回應。同樣地, 發射預定義發射帶㈣轉換光之轉換材料可聯合經調適用❷ 管理, management and optional adjustments ❶ For example, immediate or near-instant temperature decisions can be provided because the converted light intensity readings or the temperature of the other such readings can be sensed and relatively short Respond within the delay. For example, in some embodiments, the conversion element is arranged in close proximity to a source of light whose temperature is estimated. As described above, and in accordance with some embodiments of the present invention, a lighting unit includes - or a plurality of light sources 'and a thermal management system for monitoring the operating temperature of the source or sources of the light source, and optionally Respond to changes in operating temperature to adjust it—or multiple operating characteristics. The system generally includes or a plurality of conversion elements configured and arranged to absorb at least some of the light produced by the (etc.) light source and to respond thereto to emit converted light. For example, in some embodiments, the intensity of the converted light may be attenuated according to one of the temperature-dependent characteristics of the conversion element, that is, the converted light intensity may be expressed by a subtraction function (9) such as exponential decay, hyperbolic decay, etc. Or at least: the system includes one or more sensing elements grouped to sense, for example, one of the first intensities of the converted light, and the -of-light source-off 138035.doc • 17- 200942075 One or more of the converted light during the state, so the temperature dependent attenuation can be sensed by the sensing element. Based on such sensing intensities, the thermal management system is configured to determine an operating temperature of one of the conversion elements that is indicated when the conversion element is placed in close proximity and/or thermally coupled to one or more corresponding light sources (etc.) corresponds to one of the operating temperatures of the light source. The thermal management system is also configured, as needed, to respond to changes in its perceived operating temperature to adjust one or more operational characteristics of the one or more light sources. The adjustments may occur automatically in accordance with a predetermined set of rules or heuristics, or may be implemented by a user of the thermal management system to adjust operational characteristics based on detected changes in temperature. As a general event, a value representing a first light intensity and a value representing a subsequent light intensity can be used for each of the temperature indicating values to determine and determine the nature of the change in light intensity as a function of time and temperature. In some embodiments in which the light sources operate in accordance with a duty cycle, the first and subsequent light intensity decisions can be from the same cycle or different cycles. In such embodiments, the first value can be determined by using a first light intensity determined in the current cycle, or an approximation thereof can be obtained by using a first light intensity previously determined in another cycle. To decide. The first light intensity may be determined at any point during the on-state portion of the cycle, at a point in time after the end of the on-state portion, or during a portion of the off-state of a cycle. The one or more subsequent light intensity decisions occur (a) during the off state and (b) after a point in a current cycle in which a first light intensity is determined to occur] or in which the first light intensity is used In the case of an approximation of the decision, after a point in the loop, the point corresponds to the point at which the first light intensity decision is made in a first 138035.doc 200942075 j loop. It will be appreciated that the readings may be repeated for each duty cycle or for an intermittent cycle to provide a continuous and/or immediate indication of the temperature of the light source. As explained in more detail below with reference to particular embodiments and examples, if the temperature dependent intensity function is known (eg, via known material properties and/or predetermined via system/conversion component calibration), then from the first intensity reading and One or more subsequent intensity readings can be obtained using various mathematical methods and techniques known in the art to obtain an estimate of the temperature of the conversion element. It should be understood that the terms first intensity and its subsequent strength are used herein for the simple purpose of the description and can be interpreted to define the strength of different values obtained by the temperature dependent intensity function obtained to identify the temperature dependent properties of the conversion element. Various Combinations of Readings FIG. 1 provides a high-level diagram generally referring to a lighting unit using the number 1 ,, the lighting unit including a thermal management system in accordance with an embodiment of the present invention. It will be appreciated that after reading the following description, the specific embodiment depicted in FIG. 1 provides only one example of a lighting unit and its thermal management system contemplated herein' and variations of this example (some of which are The description in the different examples is not intended to depart from the general scope and nature of the disclosure. Referring to Figure 1, lighting unit 1000 includes one or more light sources 1004 operatively mounted within the lighting unit. The lighting unit further includes a conversion element 1020 disposed on an output lens or package of the light source 1004 and configured to absorb at least some of the light generated by the light source and to responsive thereto to emit converted light. A sensing component 1006 is also provided for at least partially sensing a strength of 138035.doc -19-200942075 converted light and communicating a value indicative of the intensity to a thermal management module, which is described herein as hot Management/drive module 1〇1〇. In general, the illumination unit 70 also includes one or more drive modules (eg, software, firmware, hardware, driver circuits, and/or are schematically integrated in the thermal management/drive mode) for driving the light source of the illumination unit. Other such drive components within the group). In this embodiment, the thermal management/drive module is optionally provided in an operationally integrated manner to drive the light source via the drive circuit 1 8 while maintaining an acceptable operating temperature, such as via the conversion element and Sense® is monitored by the measuring component. Those skilled in the art will appreciate that the conversion elements can be arranged in a number of different ways without departing from the general scope and nature of the disclosure. For example, in the illumination unit 1100 depicted in FIG. 2, the (equal) conversion element 1120 forms a dispersion within one of the encapsulating materials of the light source 1104, and the resulting converted light is sensed by a sensing element 1106. The sensing component is configured to communicate a value indicative of the intensity of the converted light to a thermal management/drive module 1110, as discussed above. In the illumination unit 1200 depicted in FIG. 3, and in accordance with another embodiment, the conversion element 1220 is 'provided by a coating on the light source substrate 1202, which in this particular embodiment is arranged A portion of light that is used to absorb backscatter from light source 1204. The converted light generated by the conversion element is sensed at least in part by a sensing element 1206 configured to communicate a value indicative of the intensity of the converted light to a thermal management/drive module 1210, as discussed above. In the illumination unit 1300 depicted in FIG. 4, and in accordance with another embodiment 138035.doc • 20 200942075, the conversion element 1320 is provided by a coating on one of the LED dies of the light source 1304. The converted light is sensed by a sensing element 1306 configured to communicate a value indicative of the intensity of the converted light to a thermal management/media module 1310, as discussed above. It should also be understood that although the above specific embodiments describe a single sensing element 1006, 1106, 1206, and 1306 that are respectively disposed toward one of the periphery of the lighting unit, one or more sensing elements may be provided at different locations, so the conversion The light system is directly and/or indirectly surfaced to the sensing elements. For example, in each of the specific embodiments illustrated in Figures 1 through 4, the sensing element is external to a package associated with the light source. This is advantageous or necessary when the size of the sensing element and/or the limited space provided within the package is prohibited from mismatching. Clearly, those skilled in the art will appreciate that a similar package associated with the light source can be constructed to include sensing elements on or within the package. Figure 5 provides a diagram of a similar illumination unit 200 in accordance with another embodiment of the present invention. The lighting unit 200 of this example includes three light sources 204 operatively mounted within the lighting unit. The lighting unit further includes various conversion elements configured to absorb at least some of the light generated by the light sources or a subset thereof and responsive thereto to emit converted light. The lighting unit also includes different sensing elements, such as sensing elements 206, for sensing the intensity of the radiation emitted from one or more of the conversion elements and communicating a value indicative of it to a thermal management/driver Module. In this particular embodiment, each of the three light sources 204 is monitored via the (equal) sensing element 206. However, those skilled in the art will appreciate that a different number of light sources can be selected for monitoring without departing from the general scope and nature of one of the disclosures 138035.doc -21 - 200942075. In this particular embodiment, a conversion element 223 disposed on one of the die substrates 202 of each of the light sources is shown. Additional or alternative conversion elements are also provided as a coating for each light source package 222 (eg, on its lens), as a coating on the LED die 220 itself, and/or dispersed within the LED package 221. For example, embedded in an encapsulating material or the like. It will be appreciated that one or more of the above examples may be used interchangeably in different embodiments to provide a similar effect, as other examples can be considered herein, including, for example, operatively coupling one of each light source to a lighting unit substrate (not A conversion component is shown without departing from the general scope and nature of the disclosure. In this example, the 'lighting unit 2' further includes circuitry 208 that is operatively coupled to the light source 204 and directed to the thermal management/drive module 21A. The thermal management/lumbar motion module is generally configured to respond to the converted intensity values communicated from the sensing component 206 to the module to monitor and adjust the operational characteristics of each of the light sources of the lighting unit to manage its temperature. For example, by managing a drive current given to it. For example, the (equal) sensing element is operatively coupled to a thermal management/drive module of the illumination unit that is configured to drive light source 204 via circuit 208 while maintaining monitoring via the (equal) sensing element An acceptable operating temperature. It should be understood that although the present embodiment describes one or more sensing elements 206 disposed toward the periphery of the illumination unit 200, one or more of the sensing elements may be provided at different locations, so the converted light system is directly and/or Indirectly coupled to the sensing elements. For example, in the particular embodiment illustrated in Figure 5, the sensing element is external to the light source package. This is advantageous or necessary when the sensing element 138035.doc • 22- 200942075 is sized and/or provided that the space limitation within the package is forbidden to mismatch. Clearly, those skilled in the art will appreciate that a similar type of light source package can be constructed to include a sensing element on or in each of the individual packages or in a selected number of such packages. Μ This technique also requires the presence of sensing elements 2〇6 that are more or less than the source 2〇4 or ΙΜ奂 element. For example, each of the one or more sensing elements need not correspond to a respective light source, or a conversion element associated therewith, because a particular sensing element 206 can be optically coupled to it associated with the f-light source In the case of a conversion element, a different number of light sources 204 can be operated in conjunction. The exemplary illumination units 1000, 1100, 1200, 1300, and 200, described above and described in Figures 5 through 5, may further include additional components, such as primary optical components (eg, light source or light source package lenses, diffusers, edge protection coatings) Or a cover, lamp or color filter, etc.), secondary optics (eg reflectors, lenses, diffusers, collimators, etc.), and/or other such Φ optics and/or structures (eg reticle, housing) Etc.) components. The optional content of these and other such additional components should be understood by those skilled in the art and is therefore not to be construed as a departure from the general scope and nature of the disclosure. 'Light source' The lighting unit may comprise one or more light sources in different combinations of type, color and/or size. For example, the illumination unit can comprise a single or single type of light source, such as a light source comprising a single color, or two or more different types comprising a light source, which provide a combined spectral power distribution, such as providing a given Color temperature or quality light. Examples of the latter may include I38035.doc -23· 200942075 but are not limited to red, green and blue light sources (RGB), red, amber, green and blue light sources (RAGB) and are easily understood by those skilled in the art. Other such combinations. Generally, the one or more light sources can be configured in one or more groups, one or more arrays, or one or more clusters thereof. The light sources may be coated with a conversion element, or in close proximity to the conversion element 'the conversion element capable of absorbing radiation at - or a plurality of first wavelengths and emitting radiation of the wavelengths at one or more second wavelengths The ones fall within one or the same region of the spectrum, such as the infrared, visible and/or ultraviolet regions of the electromagnetic spectrum. In some embodiments, the light source is driven according to a given cycle (sometimes referred to by those skilled in the art as "working cycles"), wherein the light system is substantially unrecognized therefrom The light source emits light from a certain duration (,, on state ") after a duration of light emission ("off state"). In some embodiments, the individual or common disconnected states of the one or more light sources may be shorter than perceived by the naked eye, thereby establishing an effect in which the unbroken state may be recognized by the user. Additionally, the one or more light sources can be in an alternate duty cycle in which the off state does not correspond. Moreover, those skilled in the art will appreciate that the one or more light sources can be configured to provide different effects in different numbers and/or types of arrays, groups, and/or clusters. Individual light sources, or groups, arrays and/or clusters thereof, can be independently mounted or part of a self-contained light source package containing various numbers of drive circuits, sensing and/or optical components. In a particular embodiment of the invention, one or more of the one or more light sources may be associated with one or more common or separate conversion elements, wherein 138035.doc -24· 200942075 is selected to select only the light source The temperature can generally provide a representative estimate of the lighting unit. In some embodiments, each of the one or more light sources is associated with one or more common or separate conversion elements to obtain, for example, an average source estimate or a respective source estimate. Those skilled in the art will recognize that a light source may further comprise a lens, a protective material, a filter, a diffuser, or other elements or features known in the art. The material may be constructed of glass or a transparent polymer or plastic or other material. This material can be used, for example, to direct or focus light and filter or change the color of the light. Each of the one or more light sources in one of the coating elements, the non-coated elements, or various combinations thereof, and the one or more sensing elements can be optionally mounted to the respective and/or common substrates For example, a PCB or a immersive semiconductor device. Additionally, a lighting unit can include one or more light source packages, each light source package including one or more light sources operatively mounted to a package substrate that provides the necessary light source electrode coupling (eg, electrode turns, traces) Etc.) to operate, monitor, and control the (etc.) source. In some embodiments, one or more light source packages can be mounted on separate and/or common substrates (e.g., a PCB or an embedded semiconductor device). Conversion Element The one or more conversion elements comprise, in whole or in part, a substance that is capable of receiving or absorbing radiation and responding to an absorption illuminator to emit a conversion illuminator. Generally, the characteristics of both received and emitted radiation may be individual wavelengths, which may fall within one or the same region of the electromagnetic spectrum 'eg, 138035.doc -25- 200942075 in the spectrum, infrared, ultraviolet, and/or Or in the visible area. Furthermore, the conversion element can emit a specific one or more spectral characteristics (for example having - or a plurality of specific peak emission lines and/or bands ' and/or: or a plurality of specific absorption lines and/or With) conversion radiation. For example, 'wavelength selective conversion material can be used to convert light produced by one or more selected sources' while remaining unresponsive to other sources. Similarly, the conversion material that emits the predefined emission band (4) converted light can be used in combination.

以僅㈣j轉換光之該些波長的感測器及/或遽波器來使 用0 在-些具體實施财’該轉換元件可吸收㈣並接著經 由光致發光(其可包括但不限於螢光及/或磷光)來發射轉換 輻射。 一般地,回應一光學信號以藉由該一或多個轉換元件產 生的轉換光之強度的特徵可以為一時間函數其中一旦移 除該光學信號,轉換光強度就隨時間而變化。此時間函數 之參數-般能與該轉換元件之一或多個特性相關聯,且特 疋S之,與其溫度相關聯。因此,藉由在一對應光源之一 斷開狀態期間隨時間取樣轉換光之強度,能近似此等參 數’並且決定與其相關聯的轉換元件特性。 在其中將溫度敏感轉換元件佈置為緊密接近於一對應光 源或塗布於其上的具體實施例中,指示該光源之一操作溫 度的一數值可藉由下列方式來估定:在該光源之一斷開狀 態期間取樣轉換光強度變化,並且將此取樣與用於此轉換 元件的預定義溫度相依數值或曲線比較。 138035.doc •26- 200942075 例如,在一具體實施例中,溫度指示數值係藉由一第一 強度以及一對應光源之一相同斷開狀態内(例如在開始附 近以及在一相同斷開狀態期間之其後時間)的轉換光之一 或多個其後強度來決定。應瞭解強度讀數亦可自不同斷開 狀態循環使用以提供一類似效應。 在一些具體實施例中,若此第一強度能充分地與一或多 個其後斷開狀態強度比較以擷取特徵為該轉換元件之強度 函數的一或多個參數,則能在移除激發來源之前(即在一 對應光源之接通期間)估定轉換輻射之第一強度。例如, 在一項具體實施例中,該感測元件經調適用以僅感測轉換 光(例如經由一適當濾波器或類似物),所以若已知斷開狀 態之開始’則該第一強度僅指示一穩定狀態或其後強度可 充分比較的飽和轉換光強度。在另一具體實施例中,該第 一強度反映穩定狀態或飽和轉換光強度以及該一或多個光 源之一強度兩者,在此情況下,斷開狀態之開始的感測強 度將藉由當比較該第一強度與其後強度時應該加以解決的 一段差改變來標記。 如熟習此項技術者所輕易認識,在某些具體實施例中可 以使轉換元件以一對一關係對應於光源。亦可以具有用於 多個光源的一單一轉換元件,或者用於一單一光源的多個 轉換元件》 在不同具體實施例中,該轉換元件係一單一轉換元件, 或者不同類型的轉換元件之一混合物。在一些具體實施例 中,該轉換元件包括一磷光體,其一般指展現磷光或螢光 138035.doc -27· 200942075 的物質’但是亦可指展現其他光致發光性質的物質,如熟 習此項技術者所瞭解。磷光體及其他此類轉換元件能各加 以特徵化’因為其具有獨特衰減時間常數。衰減時間常數 指一麟光體之内在性質並能加以說明為與移除激發能量之 . 後發射輻射之強度減小所用的速率相關之一數值。磷光體 之一特定類型一般具有對其係獨特之一給定衰減時間常 數°若已知一特定磷光體的時間常數及其溫度相依性,則 兩個或兩個以上時間分離轉換光強度讀數之評估能用以決 定或近似電流時間常數,並且藉由比例或内插,決定指示 鱗光體溫度之一數值。熟習此項技術者應瞭解,各種數學 方法及方式可用以獲得此數值而不背離本揭示内容之一般 範疇及性質。例如,資料比較、資料擬合及内插以及類似 方法可視為擷取轉換元件強度函數之電流參數,並且按照 此等參數來估定該轉換元件及與其相關聯的光源之一溫 度。 _ 本發明之某些具體實施例包括具有約1 〇〇 ns之時間常數 的磷光體(例如YAG:Ce3+),因此需要具有奈秒解析度的感 測元件’而其他具體實施例可包含具有微秒或較長之衰減 時間常數的磷光體(例如YAG:Cr)。本發明之其他具體實施 例可使用具有約十微秒之更長衰減時間常數的鱗光體,其 迄今僅已知用於最新技術之磷光體而非光源領域。 該(等)轉換元件可塗布該光源或加以放置為緊密接近於 該光源’例如與其熱接觸。在某些具體實施例中,該(等) 轉換元件可形成該光源之一塗層或蓋子之部分。在其他具 138035.d〇c -28- 200942075 體實施例中,該(等)轉換元件可分散在形成該光源之額外 元件及/或特徵的不同媒體中,例如一輸出透鏡(例如半球 形透鏡)、濾波器、保護覆蓋物’及/或其他結構、電性及/ 或光學元件,如熟習此項技術者所輕易瞭解。例如,當一 光源包含一透鏡或保護蓋子時’用以形成該透鏡或保護蓋 子的材料能含有該轉換元件或可採用該轉換元件來"摻雜"。 該轉換元件可進一步包括其他光致發光材料當中的一鱗 光體材料、一量子點材料、一發光摻雜物材料或複數個此 類材料。該轉換元件可進一步包括其中分散該磷光體材 料、該量子點材料或該發光摻雜材料的一透明主要材料。 粉末狀磷光體材料通常係採用鑭系(稀土)元素之離子, 或者諸如鉻、鈦、釩、鈷或鈥之離子加以摻雜的無機材 料。鋼系元素係鋼、飾、镨、敍、矩、彭、销、亂、試、 鋪、鈥、斜、铥、镱及镏。無機材料包括但不限於蘭寶石 (Al2〇3)、砷化鎵(GaAs)、氧化鈹鋁(BeAl2〇4)、氟化鎂 (MgF2)、破化銦(inP)、破化鎵(GaP)、纪铭石權石(YAG或 Υ3Α15〇1ζ)、含铽石榴石、氧化釔鋁鑭系化合物、氧化釔鋁 鑭系鎵化合物、氧化釔(Υ2〇3)、鹵磷酸鹽鈣或锶或鋇 (Ca、Sr、Ba)5(P04)3(Cl、F)、化合物CeMgAln019、麟酸 鑭(LaP04)、鑭系五溴化材料((鑭系)(Mg、Zn)B5O10)、化 合物 BaMgAl10O17、化合物 SrGa2S4、化合物(Sr、Mg、 Ca、Ba)(Ga、A1、In)2S4、化合物SrS、化合物ZnS及氮化 矽酸鹽。存在能在約250 nm下加以激發的若干範例性磷光 體。一範例紅色發光磷光體係Y2〇3:Eu3+。一範例黃色發光 138035.doc 29· 200942075 構光體係YAG:Ce3+。範例綠色發光磷光體包括 CeMgAl"〇19:Tb3+、((鑭系)p〇4:Ce3+、Tb3+)以及GdMgBs〇⑹ce3+、Using only the sensors and/or choppers of the wavelengths of the (four)j-converted light, the conversion element can absorb (four) and then via photoluminescence (which may include, but is not limited to, fluorescent light). And/or phosphorescence) to emit converted radiation. In general, the characteristic of the intensity of the converted light generated by the one or more conversion elements in response to an optical signal can be a time function in which the converted light intensity changes over time upon removal of the optical signal. The parameters of this time function can generally be associated with one or more characteristics of the conversion element, and are characteristically associated with its temperature. Thus, by sampling the intensity of the converted light over time during one of the states of the corresponding light source, the parameters can be approximated and the conversion element characteristics associated therewith can be determined. In a particular embodiment in which the temperature sensitive conversion element is disposed in close proximity to or coated on a corresponding light source, a value indicative of the operating temperature of one of the light sources can be assessed by: in one of the light sources The sample converted light intensity changes during the off state and the sample is compared to a predefined temperature dependent value or curve for the conversion element. 138035.doc • 26- 200942075 For example, in one embodiment, the temperature indication value is within the same off state by one of the first intensity and one of the corresponding sources (eg, near the beginning and during the same off state) One or more of the converted light thereafter is determined. It should be understood that intensity readings can also be recycled from different disconnected states to provide a similar effect. In some embodiments, if the first intensity can be sufficiently compared to one or more subsequent off-state strengths to extract one or more parameters characterized by a strength function of the conversion element, then the removal can be removed. The first intensity of the converted radiation is estimated before the source is excited (i.e., during the turn-on of a corresponding source). For example, in one embodiment, the sensing element is adapted to sense only the converted light (eg, via a suitable filter or the like), so if the beginning of the off state is known ' then the first intensity Only the saturation converted light intensity that is sufficiently comparable to a steady state or subsequent intensity is indicated. In another embodiment, the first intensity reflects both a steady state or saturated converted light intensity and one of the one or more light sources, in which case the sensed intensity at the beginning of the open state will be A difference change that should be resolved when comparing the first intensity to its subsequent intensity is marked. As will be readily appreciated by those skilled in the art, in some embodiments, the conversion elements may correspond to the light source in a one-to-one relationship. It is also possible to have a single conversion element for a plurality of light sources or a plurality of conversion elements for a single light source. In different embodiments, the conversion element is a single conversion element, or one of different types of conversion elements. mixture. In some embodiments, the conversion element comprises a phosphor, generally referred to as a substance exhibiting phosphorescence or fluorescence 138035.doc -27 200942075, but may also refer to a substance exhibiting other photoluminescent properties, such as is familiar with The technician knows. Phosphors and other such conversion elements can each be characterized' because they have a unique decay time constant. The decay time constant refers to the intrinsic property of a smectic body and can be accounted for as a value related to the rate at which the intensity of the post-emissive radiation is reduced by the removal of the excitation energy. A particular type of phosphor typically has a given decay time constant for one of its uniqueities. If a time constant of a particular phosphor is known and its temperature dependence, then two or more time-separated converted light intensity readings are used. The evaluation can be used to determine or approximate the current time constant and to determine a value indicative of the scale temperature by proportional or interpolation. Those skilled in the art will appreciate that a variety of mathematical methods and methods can be used to achieve this value without departing from the general scope and nature of the disclosure. For example, data comparison, data fitting and interpolation, and the like can be viewed as a current parameter that takes a function of the intensity of the conversion element and evaluates the temperature of the conversion element and its associated light source in accordance with such parameters. Some specific embodiments of the invention include a phosphor having a time constant of about 1 〇〇ns (eg, YAG:Ce3+), thus requiring a sensing element having nanosecond resolution' while other embodiments may include Second or longer decay time constant phosphor (eg YAG:Cr). Other embodiments of the present invention may use squama having a longer decay time constant of about ten microseconds, which has hitherto only been known for use in the phosphors of the state of the art rather than in the field of light sources. The (equal) conversion element can be coated with the light source or placed in close proximity to the source' for example in thermal contact therewith. In some embodiments, the (equal) conversion element can form part of a coating or cover of the light source. In other embodiments having 138035.d〇c -28- 200942075, the (equal) conversion element can be dispersed in different media forming additional elements and/or features of the light source, such as an output lens (eg, a hemispherical lens) ), filters, protective coverings, and/or other structural, electrical, and/or optical components are readily understood by those skilled in the art. For example, when a light source includes a lens or a protective cover, the material used to form the lens or protective cover can contain the conversion element or can be "doped". The conversion element may further comprise a scale material, a quantum dot material, a luminescent dopant material or a plurality of such materials among other photoluminescent materials. The conversion element may further comprise a transparent primary material in which the phosphor material, the quantum dot material or the luminescent dopant material is dispersed. The powdered phosphor material is usually an inorganic material doped with a lanthanide (rare earth) element or an ion such as chromium, titanium, vanadium, cobalt or cerium. Steel elements are steel, decoration, enamel, quotation, moment, Peng, pin, chaos, test, shop, shovel, slant, sputum, sputum and sputum. Inorganic materials include, but are not limited to, sapphire (Al2〇3), gallium arsenide (GaAs), beryllium aluminum oxide (BeAl2〇4), magnesium fluoride (MgF2), indium sulfide (inP), gallium decarbide (GaP) , Ji Ming Shi Quanshi (YAG or Υ3Α15〇1ζ), yttrium-containing garnet, yttrium-aluminum lanthanide compound, yttrium aluminum lanthanide lanthanide compound, yttrium oxide (Υ2〇3), calcium halophosphate or lanthanum or cerium (Ca) , Sr, Ba) 5 (P04) 3 (Cl, F), compound CeMgAln019, lanthanum lanthanum (LaP04), lanthanide pentabrominated material ((lanthanide) (Mg, Zn) B5O10), compound BaMgAl10O17, compound SrGa2S4 Compound (Sr, Mg, Ca, Ba) (Ga, A1, In) 2S4, compound SrS, compound ZnS, and cerium nitride. There are several exemplary phosphors that can be excited at about 250 nm. An example red luminescent phosphor system Y2〇3: Eu3+. An example of yellow light 138035.doc 29· 200942075 Light-construction system YAG: Ce3+. Example green luminescent phosphors include CeMgAl"〇19:Tb3+, ((镧) p〇4:Ce3+, Tb3+) and GdMgBs〇(6)ce3+,

Tb3+。範例藍色發光磷光體係BaMgAli〇〇i7:Eu2+及(Sr、 Ba、Ca)5(P〇4)3Cl:Eu2+。對於400至450 nm波長區域或大約 區域中的較長波長LED激發,範例無機材料包括釔鋁石榴 石(YAG或Y3ai5〇〗2)、含铽石榴石、氧化釔(γ2〇3)、 YV04、SrGa2S4、(Sr、Mg、Ca、Ba)(Ga、Al、In)2S4、Tb3+. An example blue luminescent phosphorescent system BaMgAli〇〇i7: Eu2+ and (Sr, Ba, Ca) 5 (P〇4) 3Cl: Eu2+. For longer-wavelength LED excitation in or near the 400 to 450 nm wavelength region, exemplary inorganic materials include yttrium aluminum garnet (YAG or Y3ai5〇2), yttrium-containing garnet, yttrium oxide (γ2〇3), YV04, SrGa2S4, (Sr, Mg, Ca, Ba) (Ga, Al, In) 2S4,

SrS及氮化矽酸鹽。對於4〇〇至45〇 nm波長區域中的led激 發之範例罐光體包括YAG:Ce3+、YAG:H〇3+、YAGp^+、SrS and tantalate. Exemplary can bodies for LED excitation in the wavelength range from 4 〇〇 to 45 〇 nm include YAG: Ce3+, YAG: H〇3+, YAGp^+,

SrGa2S4:Eu2+、SrGa2S4:Ce3+、SrS,Eu2+以及採用 Eu2+加以 摻雜的氮化石夕酸鹽。 量子點材料係具有小於約4〇奈米之粒度的無機半導體之 小粒子。適當的量子點材料包括但不限於Cds、CdSe、SrGa2S4: Eu2+, SrGa2S4: Ce3+, SrS, Eu2+ and a nitride nitride doped with Eu2+. Quantum dot materials are small particles of inorganic semiconductor having a particle size of less than about 4 nanometers. Suitable quantum dot materials include, but are not limited to, Cds, CdSe,

ZnSe InAs、GaAs及GaN之小粒子。量子點材料能以一個 波長吸收光並接著以不同波長重新發射光,該等不同波長 取決於粒度、粒子表面性質以及無機半導體材料。山迪亞 (Sandia)國家實驗室已證實使用採用近紫外線led光激發 之2奈米CdS量子點之白光產生。在分散於大容量之透明主 要材料中的低量子點濃度下達到近似6〇%之效率。因為其 小大小,故分散於透明主要材料中的量子點材料展現低光 學反向散射。 適當發光摻雜物材料包括但不限於有機雷射染料,例如 香豆素螢光素玫瑰紅以及以並為基礎之染料。其他類 型的發光摻雜物材料係鋼系換雜★,其能併X聚合物材料 138035.doc -30· 200942075 中。鋼系元素係鋼、飾、鳍、敛、矩、m #、 鋼、欽、斜、録、鏡及箱。-範例鋼系元素係斜。 透明主要材料包括聚合物材料及無機材料。聚合物材料 包括但不限於丙烯酸鹽、聚苯乙烯、聚碳酸醋、氟化丙締 酸、全氟化丙烯酸、氟磷酸聚合物、氟化聚醯亞胺聚四 氟乙烯、氟碎氧统、溶膠凝膠、環氧樹脂、熱塑勝熱固 塑膠及聚矽氧《範例無機材料包括但不限於二氧化矽=光 學玻璃及硫屬玻璃。 一單一類型的粉末狀磷光體材料、粉末狀量子點材料或 粉末狀發光摻雜物材料可併入該一或多個轉換元件中或者 粉末狀磷光體材料、量子點材料及/或發光摻雜物材料之 一混合物可併入至該(等)轉換元件中。若一第二波長範圍 之光需要一寬光譜發射範圍,則利用比一此材料多的材料 之混合物係有利的。 該(等)轉換元件可以係透明、半透明或部分反射的。該 (等)轉換元件之光學性質強烈取決於用於該層的材料。含 有甚小於可見光之波長並且係分散於一透明主要材料中的 粒子之轉換元件在僅少量光散射情況下可以係高度透明或 半透明的。含有近似等於或大於可見光之波長的粒子之轉 換元件通常強烈地散射光。此類材料將係部分反射的。若 該(等)轉換元件係部分反射的,則可將其體現為一層,使 其足夠薄,所以其發射入射在該層上的光之至少部分。 該(等)轉換元件可應用為光再循環包絡或基板之内表面 上的一塗層,可應用為一 LED之光輸出表面上的一塗層, 138035.doc -31- 200942075 或可部分填充、實質上填充或完全填充聯合光源所共同使 用的若干額外元件或特徵(例如輸出透鏡(例如半球形透 鏡)、濾波器、保護覆蓋物或其他電性及/或光學元件)之任 一者的内部容量。 .藉由將該(等)轉換元件放置成接觸,或與一光源之發射 層緊密接近,該轉換元件與該光源之間的溫度中的差異將 可實質上忽略。 熟習此項技術者應瞭解,可在本文中於不同組態中考量 ® 轉換元件之各種其他範例,而不背離本揭示内容之一般範 疇及性質。 感測元件 該一或多個感測元件係經組態用以接收一特定波長、波 長帶或寬光譜之輻射並測量其強度的裝置。可一般在離散 的時間點進行測量。因為該(等)感測元件具有緊接進行迅 速測量的能力,故該(等)感測元件能夠進行輻射之即時偵 ❹ 測及測量。一即時測量一般經定義用以意指該測量反映以 正在進行或連續方式在或極接近測量時間所測量的物品之 實際狀態》 一般地,該一或多個感測元件包含一裝置或數個裝置, 其經組態用以以-或多個預定波長或其範圍來接收轄射, 並建立且發射與接收輻射之強度相關的一信號。該一或多 個感測裝置可經組態用以在一給定時間點估定韓射強度’ 並因此其能夠以離散時間點或連續決定輻射強度。如熟習 此項技術者所瞭解,在某些具體實施例中可以使感測元件 138035.doc -32· 200942075 以一對一關係對應於光源。同樣可以具有用於多個光源的 一單一感測元件,或者用於一單一光源的多個感測元件。 根據所用的轉換元件之類型,該第一強度與其後強度讀 數之間的延遲能係約數奈秒、微秒或較長。若根據在一特 定應用中可能需要的準確度及精度之位準而可能需要較長 時間週期’則可理解地考慮信雜比、所需光源操作以及其 他此類考量。 該一或多個感測元件可包括不同類型及/或不同數目的 輻射感測裝置’其可包括(例如)一或多個光學感測器、光 二極體、半導體二極體偵測器、光電容器及/或類似物。 該一或多個感測元件一般係直接或間接與一或多個共同或 各別轉換元件光學耦合,後者係塗布於或緊密接近於共 同、選疋或各別光源以轉換因而產生的光,使得感測的轉 換光強度可加以傳達至該熱管理模組以評估該(等)轉換元 件及與其相關聯的光源之一溫度。因此,本發明之具艎實 施例允許該照明單元内的重要光源之相對直接及回應溫度 決定。 熱管理系統/模組 一般地,該熱管理系統/模組經組態用以自該(等)感測元 件接收信號並以諸如用以決定指示該照明單元之一或多個 光源或其子集之一操作溫度的一數值之方式來解譯該等信 號。此數值能在預定時間或時間隔加以決定,或者能連續 加以決定。 當達到某些臨限值時,溫度指示數值能(例如)加以被記 138035.doc •33· 200942075 錄或回應其以引起一使用者的關注,該使用者可(例如)以 特別為基礎來修改該照明單元之操作特性。視需要地,藉 由使用預定規則或啟發,該照明單元之實質最佳操作條件 能另外加以自動維持,因此保持一照明單元之實質最佳品 質及使用期》 該或多個光源及該一或多個感測器兩者可通信地連結 至用於皿視並視需要地調整該一或多個光源之操作特性的Small particles of ZnSe InAs, GaAs, and GaN. Quantum dot materials can absorb light at one wavelength and then re-emit light at different wavelengths depending on particle size, particle surface properties, and inorganic semiconductor materials. The Sandia National Laboratory has demonstrated the use of white light generated by 2 nm CdS quantum dots excited by near-ultraviolet led light. An efficiency of approximately 6% is achieved at low quantum dot concentrations dispersed in a large volume of transparent primary material. Because of their small size, quantum dot materials dispersed in a transparent host material exhibit low optical backscatter. Suitable luminescent dopant materials include, but are not limited to, organic laser dyes such as coumarin fluorescein rose and conjugated dyes. Other types of luminescent dopant materials are steel-based hybrids, which can be used in X polymer materials 138035.doc -30· 200942075. Steel elements are steel, trim, fins, convergence, moment, m #, steel, chin, oblique, recorded, mirror and box. - Example steel elements are skewed. Transparent main materials include polymeric materials and inorganic materials. Polymer materials include, but are not limited to, acrylate, polystyrene, polycarbonate, fluorinated propionic acid, perfluorinated acrylic acid, fluorophosphate polymer, fluorinated polyimide, polytetrafluoroethylene, fluorohydrogenated, Sol-Gel, Epoxy, Thermoplastic, Thermosetting, and Polyoxo "Examples of inorganic materials include, but are not limited to, cerium oxide = optical glass and chalcogenide glass. A single type of powdered phosphor material, powdered quantum dot material or powdered luminescent dopant material may be incorporated into the one or more conversion elements or powdered phosphor material, quantum dot material, and/or luminescent dopant A mixture of one of the material materials can be incorporated into the (etc.) conversion element. If a second wavelength range of light requires a broad spectral emission range, it is advantageous to utilize a mixture of more materials than this material. The (etc.) conversion element can be transparent, translucent or partially reflective. The optical properties of the (etc.) conversion element strongly depend on the material used for the layer. A conversion element containing particles having a wavelength less than visible light and dispersed in a transparent main material can be highly transparent or translucent with only a small amount of light scattering. A switching element that contains particles that are approximately equal to or greater than the wavelength of visible light typically scatters light strongly. Such materials will be partially reflective. If the (equal) conversion element is partially reflective, it can be embodied as a layer that is sufficiently thin that it emits at least a portion of the light incident on the layer. The conversion element can be applied as a coating on the inner surface of the light recycling envelope or substrate, which can be applied as a coating on the light output surface of an LED, 138035.doc -31- 200942075 or can be partially filled Substantially filling or completely filling any of the additional elements or features commonly used in conjunction with a light source, such as an output lens (eg, a hemispherical lens), a filter, a protective covering, or other electrical and/or optical component Internal capacity. By placing the (equal) conversion element in contact, or in close proximity to the emissive layer of a source, the difference in temperature between the conversion element and the source will be substantially negligible. Those skilled in the art will appreciate that various other examples of the conversion elements can be considered in various configurations herein without departing from the general scope and nature of the disclosure. Sensing Element The one or more sensing elements are configured to receive radiation of a particular wavelength, wavelength band or broad spectrum and measure its intensity. Measurements can generally be made at discrete points in time. Because the sensing element has the ability to make rapid measurements, the sensing element is capable of performing real-time detection and measurement of radiation. An instant measurement is generally defined to mean that the measurement reflects the actual state of the item measured at or very close to the measurement time in an ongoing or continuous manner." Typically, the one or more sensing elements comprise a device or a plurality of A device configured to receive an apex at - or a plurality of predetermined wavelengths or ranges thereof and to establish and transmit a signal related to the intensity of the received radiation. The one or more sensing devices can be configured to estimate the Hammer intensity' at a given point in time and thus can determine the radiation intensity at discrete time points or continuously. As will be appreciated by those skilled in the art, in some embodiments, the sensing elements 138035.doc -32. 200942075 can be made to correspond to the light source in a one-to-one relationship. It is equally possible to have a single sensing element for a plurality of light sources or a plurality of sensing elements for a single light source. Depending on the type of conversion element used, the delay between the first intensity and its subsequent intensity reading can be on the order of nanoseconds, microseconds or longer. Considering the signal-to-noise ratio, the desired source operation, and other such considerations, if a longer period of time may be required depending on the level of accuracy and precision that may be required in a particular application. The one or more sensing elements can include different types and/or different numbers of radiation sensing devices that can include, for example, one or more optical sensors, photodiodes, semiconductor diode detectors, Optical capacitors and/or the like. The one or more sensing elements are generally optically coupled directly or indirectly to one or more common or separate conversion elements, the latter being applied to or in close proximity to a common, selective or separate source to convert the resulting light, The sensed converted light intensity can be communicated to the thermal management module to evaluate the temperature of the (equal) conversion element and a light source associated therewith. Thus, embodiments of the present invention allow for relatively direct and response temperature determination of important light sources within the lighting unit. Thermal Management System/Module In general, the thermal management system/module is configured to receive signals from the (equal) sensing element and, for example, to determine one or more light sources or sub-units thereof The signals are interpreted by a set of values of one of the operating temperatures. This value can be determined at predetermined time or time intervals or can be determined continuously. When certain thresholds are reached, the temperature indication value can, for example, be recorded or responded to by 138035.doc • 33· 200942075 to cause a user’s attention, for example, on a special basis. Modify the operational characteristics of the lighting unit. Optionally, by using predetermined rules or heuristics, the substantially optimal operating conditions of the lighting unit can be additionally automatically maintained, thereby maintaining a substantially optimal quality and lifetime of a lighting unit. The one or more light sources and the one or more A plurality of sensors are communicably coupled to the apparatus for viewing and optionally adjusting operational characteristics of the one or more light sources

構件。該等操作特性可包括但不限於電性輸人、光之發 射、光之強度、光發射之持續時間、非光發射之持續時 間、光發射及非光發射之循料_及料魏時間之規 則性或不規則性。 可包括塗布元件、非塗布元件或其任何組合之一照明單 元中的光源之每_•者,以及該—或多個感測元件可視需要 地安裝至各別及/或共同基板,例如一PCB或—嵌人式半導 體裝置。此外’-照明單元可包括一或多個光源封裝每 一光源封裝包含操作地安裝於—封裝基板上之—或多個光 源’該封裝基板提供必要的光源電極耦合(例如電極墊、 跡線等)以操作、監視及控制該(等)光源。在某些且體實施 例中…或多個光源封裝可加以安裝於各別及/或共同基 板(例如一 PCB或一嵌入式半導體裝置)上。 一般地,存在用以估定定時強度測量,實行計算,以及 發送與接收的資料及實行的計算相關之^構件。此類 :件可視需要地併入為該一或多個感測元件、一或多個光 源之部分’或者為-分離元件’其可加以安裝至各別及/ 138035.doc -34- 200942075 或共同基板。該構件亦可通信地連結至該一或多個感測元 件或一或多個光源之每一者。 由經組態用以接收自選定光源之各別及/或各種組合發 射的輻射之該一或多個感測元件收集的資訊能用以決定選 疋光源之操作溫度。在一範例具體實施例中,該(等)光源 係依據包含一重複接通狀態及斷開狀態之一循環來操作。 一般地,決定一第一強度,然後決定一或多個其後強度。 因為發射的轉換輻射之強度依據一已知溫度相依函數而改 變,故能使用兩個或兩個以上測量來估定指示溫度之一數 值。 在一些具體實施例中,光強度之第一及/或一或多個第 二決定可包含指示在一給定時間的個別強度之單一測量。 在其他具體實施例中,光強度之一決定可包含一固定時間 週期内的一單一測量,因而提供在此時間週期期間的強度 之整數或總和的指示。例如,能使用一先前接通狀態讀數 -整合讀數以提供溫 增加取樣時間(整合 充分地縮放在一斷開狀態期間的一單一 度之一評估。在此類具體實施例中,女 讀數而非單一讀數)可允許使用(例如)較低且不那麼昂貴的 類比至數位(A/D)電子設備。member. Such operational characteristics may include, but are not limited to, electrical input, light emission, intensity of light, duration of light emission, duration of non-light emission, light emission and non-light emission data, and material time Regular or irregular. Each of the light sources in the illumination unit may be included in one of the coating element, the non-coated element, or any combination thereof, and the one or more sensing elements may be optionally mounted to separate and/or common substrates, such as a PCB Or - embedded semiconductor device. Furthermore, the '-lighting unit may comprise one or more light source packages, each light source package comprising operatively mounted on the package substrate or a plurality of light sources'. The package substrate provides the necessary light source electrode coupling (eg electrode pads, traces, etc.) ) to operate, monitor, and control the (etc.) light source. In some embodiments, or multiple light source packages may be mounted on separate and/or common substrates (e.g., a PCB or an embedded semiconductor device). In general, there are components associated with estimating timing strength measurements, performing calculations, and transmitting and receiving data and performing calculations. Such: a piece may optionally be incorporated into the one or more sensing elements, a portion of one or more light sources 'or a separate element' that may be mounted to the respective and / 138035.doc -34- 200942075 or Common substrate. The member can also be communicatively coupled to each of the one or more sensing elements or one or more light sources. Information collected by the one or more sensing elements configured to receive radiation emitted from respective and/or various combinations of selected sources can be used to determine the operating temperature of the selected source. In an exemplary embodiment, the (equal) light source operates in accordance with a cycle comprising a repeating on state and an off state. Generally, a first intensity is determined and then one or more subsequent intensities are determined. Since the intensity of the transmitted converted radiation varies according to a known temperature dependent function, two or more measurements can be used to estimate one of the indicated temperatures. In some embodiments, the first and/or one or more second decisions of light intensity may comprise a single measurement indicative of individual intensity at a given time. In other embodiments, one of the light intensities may comprise a single measurement over a fixed period of time, thus providing an indication of the integer or sum of the intensities during the time period. For example, a previous on-state reading-integrated reading can be used to provide a temperature-increasing sampling time (integration is fully scaled to evaluate one of a single degree during an off-state. In such embodiments, female readings are not A single reading) may allow for the use of, for example, lower and less expensive analog to digital (A/D) electronic devices.

外’不同光源可依據未同步的循環來操作, 量值等級。此 因此致能個別 I38035.doc -35- 200942075 光源上的工作循環而不顯著地影響由該照明單元發射的光 之品質。此外,並非該照明單元中的所有光源均需要提供 一溫度指示,因為一準確指示能藉由一照明單元中的該等 光源之一個、一些或全部光源中的決定來獲得。 在某些範例具體實施例中,當該一或多個光源依據一連 肖丄作循環來操料,可決㈣等㈣之-即時或連續溫 度。或者,可在一或多個選定及/或週期性時間循環期間 的任一所需時間點進行離散溫度決定。 ® 在本發明之具體實施例中,該監視及控制構件經組態用 以對一或多個選定光源中之溫度中的増加反應並(例如) 以至此等光源的一電流之形式來調整控制信號以維持一實 質恆定光學輸出。在另一具體實施例中,該監視及控制構 件調整一電流(例如)以便避免過熱並因而減小損壞該(等) 選定光源之可能性。 熟習此項技術者應瞭解可在本文中考量各種類型的監視 φ 及控制構件,例如微控制器、硬體、軟體及/或韌體實施 裝置或電路及類似物,而不背離本揭示内容之一般範疇及 性質。熟習此項技術者應明白,基於所需輸出及達到此輸 出需要的準確度之位準可能需要各種位準的控制,因而影 響驅動機構以及與其相關聯加以實施的可選控制系統之複 雜性。 在—些具體實施例中,該一或多個轉換元件之溫度相依 強度函數能藉由特徵為溫度相依時間常數的一指數衰減來 定義或至少近似。例如,在一項具體實施例中由下列等 138035.doc -36- 200942075 式給定一單一磷光體之強度函數·· W,,/r (1) 其中Ιο係就在激發輻射移除之後(例如在時間零)的初始強 度,It係時間t時的強度,以及了係溫度相依時間常數。 衰減時間常數τ-般係定義為自1〇衰減至I〇/e或近似〇 368 的磷光體發射之時間。磷光體的典型時間常數對於以汕為 基礎的磷光體係30至1〇〇 Msec而且對於以Ce為基礎的磷光 體係10至30 nsec。例如,YAG:Ce3 +磷光體具有小於1〇〇 nsec的衰減時間。 在一些具體實施例中,一磷光體混合物的強度函數係藉 由用於各具有10及τ之各別數值的每一組成磷光體之各別指 數衰減的總和(例如等式(1))來提供。此總和一般能由藉由 下列給定的雙曲線衰減來近似: 其中(X及β係常數。 熟習此項技術者應瞭解,雖然以上範例使用藉由指數或 雙曲線衰減函數所合理定義的磷光體,但是可在本文中考 量該技術中已知的用以在移除激發之來源之後模擬自一轉 換元件發射的轉換光之強度的行為之其他數學手段,而不 脫離本揭示内容之一般範疇及本質。即,該技術中已知的 其他類型之時間常數及數學模型同樣使所需操作具備本文 中揭示的方法及組態。 現在參考特定範例來說明本發明。應瞭解下列範例係預 138035.doc -37- 200942075 計說明本發明之具體實施例而且並非預相任何方式限制 本發明》 範例 範例1 :External 'different light sources can be operated according to unsynchronized cycles, magnitude levels. This thus enables individual work cycles on the light source without significantly affecting the quality of the light emitted by the illumination unit. Moreover, not all of the light sources in the lighting unit need to provide a temperature indication because an accurate indication can be obtained by a decision in one, some or all of the light sources in a lighting unit. In some exemplary embodiments, when the one or more light sources are cycled according to a continuous cycle, the (four), etc. (four) - immediate or continuous temperature may be determined. Alternatively, discrete temperature decisions can be made at any desired point in time during one or more selected and/or periodic time cycles. In a particular embodiment of the invention, the monitoring and control component is configured to adjust the control of the temperature in one or more selected sources and, for example, to a current of the sources The signal is maintained at a substantially constant optical output. In another embodiment, the monitoring and control component adjusts a current (e.g.,) to avoid overheating and thereby reduce the likelihood of damaging the selected source. Those skilled in the art will appreciate that various types of monitoring φ and control components, such as microcontrollers, hardware, software and/or firmware implementations or circuits and the like, can be considered herein without departing from the disclosure. General category and nature. Those skilled in the art will appreciate that the level of accuracy based on the desired output and the need to achieve this output may require various levels of control, thereby affecting the complexity of the drive mechanism and the optional control system associated with it. In some embodiments, the temperature dependent intensity function of the one or more conversion elements can be defined or at least approximated by an exponential decay characterized by a temperature dependent time constant. For example, in one embodiment, the intensity function of a single phosphor is given by the following equation 138035.doc -36- 200942075. W, /r (1) where Ιο is after the excitation radiation is removed ( For example, the initial intensity at time zero), the intensity at which it is time t, and the temperature dependent time constant. The decay time constant τ is generally defined as the time of phosphor emission from 1〇 to I〇/e or approximately 〇368. Typical time constants for phosphors range from 30 to 1 〇〇 Msec for bismuth-based phosphorescent systems and 10 to 30 nsec for Ce-based phosphorescent systems. For example, the YAG:Ce3+ phosphor has a decay time of less than 1 〇〇 nsec. In some embodiments, the intensity function of a phosphor mixture is obtained by summing the individual exponential decays for each of the constituent phosphors having respective values of 10 and τ (e.g., equation (1)). provide. This sum can generally be approximated by the hyperbolic decay given by: (X and β are constants. Those skilled in the art should understand that although the above example uses phosphorescence that is reasonably defined by an exponential or hyperbolic decay function) Body, but other mathematical means known in the art for simulating the behavior of the intensity of converted light emitted from a conversion element after removal of the source of excitation may be considered herein without departing from the general scope of the disclosure. And the nature. That is, other types of time constants and mathematical models known in the art also enable the required operations to have the methods and configurations disclosed herein. The present invention will now be described with reference to specific examples. It should be understood that the following examples are pre-138035 Doc-37-200942075 describes specific embodiments of the invention and is not intended to limit the invention in any way. Example 1:

在-項特定範例性具體實施例中,該熱管理系統包括連 接至一快速類比至數㈣換器或一樣本與保持放大器的一 感測元件(例如—石夕光二極體),其中該感測元件經組態用 以自一磷光體塗布LED接收輻射。在一第一測量中,測量 該感測器輸出,同時採用已知數量的電流來供給能量至該 LED。接著使該LED失能,並在近似等㈣光體時間常數 的-延遲之後,實行一第二測量。若已知磷光艘時間常數 之溫度相依’則第二測量與第一測量的比率將指示磷光體 溫度。若該磷光體塗布LED晶粒,則磷光體溫度將實質上 等於LED接面溫度。給定1〇〇 nsec之典型YAG:Ce3 +磷光體 時間常數,該LED之失能與第二感測器測量之間的時間延 遲將需要幾奈秒的解析度以便準確地測量第二與第一測量 之比率。 範例2 : 圖6顯示常駐於一照明單元上的一感測元件之範例資料 結果2000,該感測元件於在一光源之一接通狀態期間開始 並在該光源之一斷開狀態期間結束之時間間隔期間測量自 一轉換元件發射的轉換光之強度。資料2〇〇〇可例證針對溫 度之一離散指·示或一工作循環内的一單一循環所獲得的資 料。在一接通狀態2010期間取得的讀數顯示,由該光源及 138035.doc -38· 200942075 該轉換元件發射的光之強度係在穩定或飽和狀態(即非改 變條件)中。 如本文中藉由為便於比較而在本文中一起描述的兩個不 同具體實施例A及B所解說,就在該光源之接通狀態結束 後的強度讀數顯示自一穩定狀態操作強度(A)的特性連續 減小2040,或者另外自導致強度2〇4〇中的實質相同特性減 小之穩定狀態操作強度的第一段差減小(B)。 例如,在由具體實施例A描述的範例中,引導至該感測 元件的光可加以適當遮蔽或濾波,使得僅轉換光係入射在 其上,該感測元件亦可或另外經組態用以僅或針對大部分 回應一給定範圍的波長,其中轉換光之一峰值波長落在此 範圍内但是其中該照明單元之光源之一峰值波長可以不落 在此範圍内。 相反地在藉由具體實施例B描述的範例中,可組態該感 測元件,使得由該(等)光源發射的光之一實質部分因而加 以感測’從而當該(等)光源在接通與斷開狀態之間切換時 導致強度讀數中的明顯段差。 如圖6之兩個具體實施例中所描述,在該光源之斷開狀 態期間’存在由該轉換元件發射的光之強度中的衰減。在 此範例中’該衰減在一指數衰減曲線2〇4〇之後,從而具有 在一特定溫度下定義的一特定時間常數。例如,該時間常 數能代表取樣時間2030的時間,其中該強度係近似等於在 取樣時間2020定義的初始強度之36.8%。此外,例如假定 用於該轉換元件(例如磷光體)的一溫度相依時間常數,指 138035.doc •39- 200942075 數衰減曲線2040將係較短或較長,取決於該轉換元件之溫 度。取樣時間2030因此定義取樣時間,自其能自取樣時間 2030處的時間之測量強度與取樣時間2〇2〇的初始時間之測 量強度的比率來推斷該溫度。能用以決定該溫度的等式係 由用於指數衰減的等式(1)及用於雙曲線衰減的等式(2)來 代表。在一些具體實施例中,比率對溫度數值係預計算並 儲存於能藉由(例如)該控制器來存取的一查找表中,自該 查找表可自測量比率來插入本溫度。 在一項具體實施例中,光強度之一第一估定係在取樣時 間2020處的初始強度之時間處實行而且光強度之一其後估 定係在取樣時間2020處的初始強度之時間處開始並具有約 等於該時間常數的持續時間之時間間隔結束時實行。在替 代性具體實施例中,若就在接通狀態在取樣時間2〇2〇處結 束之後出現的段差改變(僅適用於具體實施例B)之量值係 已知或係相對恆定,則第一估定能在穩定狀態相位2〇1〇期 間的任何時間處實行。 在另一具體實施例中,在該光源之斷開狀態期間的一給 定時間處實行第-估定’不過’-或多個其後估^於在此 斷開狀態期間的第一估定之後出現。 如熟習此項技術者所瞭解,第一及一或多個其後估定能 藉由比較取樣時間2020處的初始強度與約在時間常數的強 度來提供指示該轉換元件及因此該光源之溫度的一數值, 或者在替代方案中,在斷開狀態期間實行的任何數目之估 定能用以決定該轉換光之強度的衰減之行為中的溫度相依 138035.doc -40· 200942075 改變。 範例3 : =顯示依據一工作循環操作的一光源或光源封裝之另 外的範例資料結果2100。在一特定且 将疋具體實施例中,能依據 如以上針對圖6說明的變化之任一 任者在圓7中所示的循環之 任一者内獲得溫度之指示。 • « ^ ^ 卜/皿度指不數值能在依據 圖案的每—個接通/斷開循環期間或週期性地(例如, 每一個第5循環)加以估定,此蛊 Φ 从上広 ;1 &此舉將提供一轉換元件所對應 的光源/封裝之溫度的連續指示。 作為另-替代方案,不必對每一個溫度指示實施第一讀 數。例如’僅在第-循環(或者,例如每一個第1〇溫度測 量)十實施第一教’而且若該轉換元件之初始強度中的 改變係相對恆定’則此數值能聯合在其中需要溫度指示之 其他循環期間取得的任何數目之其後估定來使用。此一變 化可提供所需要之計算資源中的減少,當需要頻繁溫度指 φ T以即時決定溫度中的小波動時可能需要該等資源。例 如,一第一讀數能就在移除激發來源(即光源)之後在第一 循環2150期間取得並且此數值能在其後循環2152、2154、 2156、2158及2160之每一者中的斷開狀態214〇期間聯合在 不同取樣時間取得的其後讀數來使用以獲得每一循環中的 溫度之指示。或者另外,能在第一及第三循環期間取得第 一讀數並且能在每一個循環中取得其後讀數。其他此類變 化應該為熟習此項技術者所明白。一般地,此類具體實施 例或其類似變化可採用快速樣本與保持放大器使用(例如) 138035.doc -41· 200942075 慢且便宜的A/D轉換器來實行。 雖然已在本文中說明並解說數個發明具體實施例,但是 熟習此項技術者應輕易預想用於實行功能及/或獲得結果 及/或本文中說明的優點之一或多個的各種其他構件及/或 結構’而且此類變化及/或修改之每一者係相信在本文中 說明的發明具體實施例之範疇内。更明確而言,熟習此項 技術者將輕易瞭解本文中說明的所有參數、尺寸、材料及 組態係意指為範例性而且實際參數、尺寸、材料及/或組 態取決於使用發明教示的特定應用或數個應用。熟習此項 技術者將認識或能夠確定僅使用常式實驗、本文中說明的 特定發明具體實施例之許多等效物。因此,應瞭解前述具 體實施例係僅經由範例來呈現而且在所附申請專利範圍及 其等效物之範嘴内,發明具體實施例可不同於明確說明並 主張的方式來實施。本揭示内容之發明具體實施例係關於 本文中說明的每一個別特徵、系統、商品、材料、成套工 ❹’、及’或方法。此外’兩個或兩個以上此類特徵 '系統、 商时、材料、成套工具及/或方法之任何組合在此類特 徵、系統、商品、材料、成套工具及/或方法不相互矛盾 的情況下係包括在本揭示内容之發明範脅内。 如本文中定義並使用的所有定義應該瞭解為控制詞典定 義以引用方式併入之文件中的定義及/或定義項目之普 通含意。 如本文中所用’在該說明書及中請專利範圍中,不定冠 詞"一"及"一個",除 m 除非凊楚地加以相反指示,應該瞭解為 138035.doc -42· 200942075 意指”至少一個”。 如本文中所用,在該說明書及申請專利範圍中,短語 "及/或”應該瞭解為意指如此結合的元件之"任一個或兩個", 即,聯合存在於一些情況下及分離存在於其他情況下的元 件。採用”及/或"列舉的多個元件應該以同一方式(即,如 此結合的元件之”一或多個")來解釋。可視需要地存在不同 於由”及/或"條款明確識別的元件之其他元件,無論其是否 與明確識別的元件相關或不相關。因此,作為一非限制性 ® 範例,參考"A及/或B"當聯合開端語言(例如"包含")使用時 能在一項具體實施例中僅指A(視需要地包括除B以外的元 件);在另一具體實施例中僅指B(視需要地包括除A以外的 元件);在另一具體實施例中指A及b兩者(視需要地包括其 他元件)等。 如在本文中所用,在該說明書及申請專利範圍中,”或" 應該瞭解為具有與如以上定義的"及/或"相同之含意。例 β 如,當分離一清單中的項目時,"或"或者"及/或"應解譯為 具包括性,即,包括若干元件或元件清單之至少一個但亦 包括一個以上,且視需要地包括額外未列舉項目。僅清楚 地指示相反的術語(例如"之僅一個"或"之正好一個"),或 當用於申請專利範圍中時,”由…組成,,將指包括若干單元 或7L件清單之正好一個元件。一般地,當先於排他性之術 語(例如"任一個"、"之一”、"之僅一個"或"之正好一個") 時,如本文中使用的術語"或"應僅加以解釋為指示排他性 替代方案(即一個或另一個但並非兩者")。當用於申請專 138035.doc -43- 200942075 利範圍時,"本質上由…組成”應具有如在專利法律領域中 使用的其普通含意。 如本文中所用,在該說明書及申請專利範圍中,對一或 多個元件之一清單之參考中的短語••至少一個"應該瞭解為 意指選自元件之清單中的元件之任何一或多個的至少一個 元件,但是不一定包括在元件之清單内明確列舉的每一個 元件之至少一個並且不排除元件之清單中的元件之任何組 合。此定義亦允許可視需要地存在除在短語"至少一個"所 ® 參考的元件之清單内明確識別的元件之元件,無論其是否 與明確識別的元件相關或不相關。因此,作為一非限制性 範例’ "A及B之至少一個"(或等效地”A4b之至少一個", 或等效地"A及/或B之至少一個")能在一項具體實施例中指 至少一個,視需要地包括一個以上之A,其中不存在B(而 且視需要地包括除B以外的元件);在另一具體實施例中, 才曰至少一個’視需要地包括一個以上之B,其中不存在 ❿ Μ而且視需要地包括除a以外的元件);在另一具體實施例 中,指至少一個,視需要地包括一個以上之A;以及至少 一個,視需要地包括一個以上之B(而且視需要地包括其他 元件);等。 亦應該瞭解’除非清楚地相反指示,在本文中主張的包 括一個以上步驟或動作的任何方法中,該方法之步驟或動 作之順序係不-定限於陳述該方法之步驟或動作所採用的 順序。 在申請專利簡中,以及在以上的說明書中,諸如"包 138035.doc • 44 - 200942075 含包括"、"承載"、,,具有"、"含有"、"涉及"、"保持"、 "構成"及類似物之所有過渡性短語應瞭解為開端式,即意 指包括但不限於此。僅過渡性短語"由…組成"及"本質上 由…組成"應分別係封閉或半封閉過度性短語。此外,申 請專利範圍中的參考數字係僅為方便起見而且並非以任何 方式閱讀為限制性。 【圖式簡單說明】 在該等圖式中,在所有不同視圖中相同參考字元一般指 相同零件。此外,該等圖式係不必按比例繪製,其重點改 為一般置於解說本發明之原理上。 圖1解說包含依據本發明之一具鱧實施例的一熱管理系 統之一照明單元。 圖2解說包含依據本發明之另一具體實施例的一熱管理 系統之一照明單元。 圖3解說包含依據本發明之另一具體實施例的一熱管瑄 系統之一照明單元。 圖4解說包含依據本發明之另一具體實施例的一熱管理 系統之一照明單元。 圖5解說包含依據本發明之另一具體實施例的一熱管理 系統之一照明單元。 圖6解說在依據本發明之一項具體實施例的一照明單元 之光源的一單一接通/斷開循環期間所取得的強度讀數之 一圖形代表。 圖7解說在依據本發明之一項具髏實施例的一照明單元 138035.doc -45- 200942075 之光源的複數個接通/斷開循環期間所取得的強度讀數之 一圖形代表。In a specific exemplary embodiment, the thermal management system includes a sensing element (eg, a Shixia diode) connected to a fast analog to digital converter or the same as the holding amplifier, wherein the thermal sensing system The measuring component is configured to receive radiation from a phosphor coated LED. In a first measurement, the sensor output is measured while a known amount of current is used to supply energy to the LED. The LED is then disabled and a second measurement is performed after a delay of approximately (4) the optical body time constant. If the temperature dependence of the phosphor time constant is known, then the ratio of the second measurement to the first measurement will indicate the phosphor temperature. If the phosphor is coated with LED dies, the phosphor temperature will be substantially equal to the LED junction temperature. Given a typical YAG:Ce3+phosphorite time constant of 1〇〇nsec, the time delay between the LED's disability and the second sensor measurement will require a resolution of a few nanoseconds in order to accurately measure the second and the second A ratio of measurements. Example 2: Figure 6 shows an example data result 2000 of a sensing element resident on a lighting unit that begins during an on state of a light source and ends during one of the light source off states The intensity of the converted light emitted from a conversion element is measured during the time interval. Data 2 can be exemplified for information obtained by one of the discrete indications of temperature or a single cycle within a duty cycle. The reading taken during an on state 2010 shows that the intensity of the light emitted by the source and the conversion element is in a stable or saturated state (i.e., non-changing condition). As illustrated herein by two different embodiments A and B, which are described herein together for ease of comparison, the intensity readings after the end of the on state of the light source are shown from a steady state operational strength (A) The characteristic is continuously reduced by 2040, or additionally the first step difference (B) of the steady state operational strength resulting from a substantially identical characteristic decrease in intensity 2〇4〇. For example, in the example described by the specific embodiment A, the light directed to the sensing element can be suitably shielded or filtered such that only the converted light system is incident thereon, the sensing element can also or alternatively be configured The wavelength of a given range is only or for most of the response, wherein one of the peak wavelengths of the converted light falls within this range but wherein one of the peak wavelengths of the light source of the illumination unit may not fall within this range. Conversely, in the example described by the specific embodiment B, the sensing element can be configured such that a substantial portion of the light emitted by the (equal) light source is thus sensed 'so that when the (equal) light source is connected Switching between the on and off states results in a significant step difference in the intensity reading. As depicted in the two embodiments of Figure 6, there is an attenuation in the intensity of the light emitted by the conversion element during the off state of the source. In this example, the attenuation is after an exponential decay curve of 2〇4〇, thereby having a specific time constant defined at a particular temperature. For example, the time constant can represent the time of the sampling time 2030, where the intensity is approximately equal to 36.8% of the initial intensity defined at the sampling time 2020. Further, for example, a temperature dependent time constant for the conversion element (e.g., phosphor) is assumed to mean that the 138035.doc • 39-200942075 number attenuation curve 2040 will be shorter or longer depending on the temperature of the conversion element. The sampling time 2030 thus defines the sampling time, which is inferred from the ratio of the measured intensity of the time at which it can be self-sampling time 2030 to the measured intensity of the initial time of the sampling time 2〇2〇. The equation that can be used to determine this temperature is represented by equation (1) for exponential decay and equation (2) for hyperbolic attenuation. In some embodiments, the ratio versus temperature value is pre-computed and stored in a lookup table accessible by, for example, the controller, from which the temperature can be inserted from the measurement ratio. In a specific embodiment, one of the first estimates of light intensity is performed at the time of the initial intensity at the sampling time 2020 and one of the light intensities is thereafter estimated at the time of the initial intensity at the sampling time 2020. It is implemented at the end of the time interval beginning with a duration equal to the time constant. In an alternative embodiment, if the magnitude of the step change (applicable only to the specific embodiment B) that occurs after the end of the sampling time 2〇2〇 in the on state is known or relatively constant, then An estimate can be made at any time during the steady state phase 2〇1〇. In another embodiment, the first estimate is 'but'- or a plurality of subsequent estimates during the off state during the off state of the light source at a given time. Appeared afterwards. As will be appreciated by those skilled in the art, the first and one or more subsequent estimates can provide an indication of the temperature of the conversion element and thus the source by comparing the initial intensity at the sampling time 2020 with the intensity at about the time constant. A value, or in the alternative, any number of estimates performed during the off state can be used to determine the temperature dependence in the behavior of the attenuation of the intensity of the converted light 138035.doc -40. 200942075. Example 3: = shows additional sample data results 2100 for a light source or light source package operating in accordance with a duty cycle. In a particular and specific embodiment, an indication of temperature can be obtained in any of the cycles illustrated in circle 7 in accordance with any of the variations as described above with respect to FIG. • « ^ ^ Bu / Difficulty means that the value can be estimated during each on/off cycle according to the pattern or periodically (for example, every 5th cycle), this 蛊 Φ from the top; 1 & This will provide a continuous indication of the temperature of the source/package corresponding to a conversion element. As a further alternative, it is not necessary to implement a first reading for each temperature indication. For example, 'only in the first cycle (or, for example, every first temperature measurement) ten implementation of the first teaching 'and if the change in the initial strength of the conversion element is relatively constant' then this value can be combined in which the temperature indication is required Any number obtained during the other cycles is subsequently evaluated for use. This variation can provide a reduction in the computational resources required, which may be needed when frequent temperature fingers φ T are needed to instantly determine small fluctuations in temperature. For example, a first reading can be taken during the first cycle 2150 after removal of the excitation source (ie, the light source) and the value can be broken in each of the subsequent cycles 2152, 2154, 2156, 2158, and 2160. The subsequent reading taken at different sampling times during state 214 is used to obtain an indication of the temperature in each cycle. Alternatively, the first reading can be taken during the first and third cycles and the subsequent reading can be taken in each cycle. Other such changes should be apparent to those skilled in the art. In general, such embodiments or variations thereof may be implemented using fast samples and holding amplifiers using, for example, 138035.doc -41. 200942075 slow and inexpensive A/D converters. Although a number of inventive embodiments have been illustrated and described herein, those skilled in the art should readily envision various other components for performing the functions and/or obtaining the results and/or one or more of the advantages described herein. And/or the structure' and each of such variations and/or modifications are believed to be within the scope of the specific embodiments of the invention described herein. More specifically, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are intended to be exemplary and that actual parameters, dimensions, materials, and/or configurations are dependent upon the teachings of the invention. Specific applications or several applications. Those skilled in the art will recognize or be able to ascertain many equivalents of the specific embodiments of the invention described herein. Therefore, it is to be understood that the specific embodiments of the invention may be DETAILED DESCRIPTION OF THE INVENTION The specific embodiments of the present disclosure are directed to each individual feature, system, article, material, package, and/or method described herein. Further, any combination of 'two or more such features' systems, quotients, materials, kits and/or methods are not mutually exclusive in the context of such features, systems, commodities, materials, kits and/or methods. The following are included in the scope of the invention of the present disclosure. All definitions, as defined and used herein, should be understood as defining the meaning of the definitions and/or defining the items in the documents incorporated by reference. As used herein, the indefinite article """ &""" unless otherwise indicated, should be understood as 138035.doc -42· 200942075 Refers to "at least one." As used herein, the phrase "and/or" should be understood to mean "any or both" of the elements so combined, that is, in some cases And separate components that are present in other instances. Multiple elements listed with "and/or" should be interpreted in the same manner (ie, one or more of the elements so combined). Other elements of the component that are expressly identified by the "and/or" clause, whether or not they are related or unrelated to a clearly identified component. Thus, as a non-limiting® example, reference to "A and/or B" when used in conjunction with a language (eg "include") can refer only to A in a particular embodiment (optionally included) In another embodiment, only B (optionally including elements other than A) is included; in another embodiment, both A and b (including other elements as needed) and the like. As used herein, in the specification and claims, "or" should be understood to have the same meaning as "and/or" as defined above. Example β, for example, when separating items in a list " or " or " and/or " should be interpreted as being inclusive, i.e., comprising at least one of a number of components or a list of components, but also including more than one, and optionally including additional unlisted items. It is only clearly indicated that the opposite term (such as "only one " or " is exactly one "), or when used in the scope of patent application, consists of, consists of several units or 7L pieces. The list is exactly one component. Generally, when the term precedent (such as "any ", "one", "only one " or " is exactly one "), as the term "" should only be interpreted as indicating an exclusive alternative (ie one or the other but not both). When used to apply for the 138035.doc -43- 200942075 range, "consisting essentially of It has its ordinary meaning as used in the field of patent law. As used herein, in the specification and claims, the phrase "at least one" in the reference to the list of one or more elements is understood to mean any element selected from the list of elements. At least one element of one or more of the elements, but not necessarily the one of the one of the elements listed in the list of the elements. This definition also allows for the presence of elements that are explicitly identified in the list of elements referenced in the phrase "at least one "" reference, whether or not they are related or unrelated to an explicitly identified element. Thus, as a non-limiting example, at least one of "A and B" (or equivalently at least one of A4b", or equivalently " at least one of "A and/or B" In a specific embodiment, it refers to at least one, optionally including more than one A, wherein B is not present (and optionally includes elements other than B); in another embodiment, at least one 'view' Desirably includes more than one B, wherein there is no Μ and optionally includes elements other than a); in another specific embodiment, means at least one, optionally including more than one A; and at least one, Optionally including more than one B (and optionally other elements); etc. It should also be understood that 'the method steps are included in any method that includes more than one step or action claimed herein unless clearly indicated to the contrary. Or the order of actions is not limited to the order in which the steps or actions of the method are stated. In the patent application, and in the above specification, such as "Package 138035.doc • 44 - 20 0942075 contains all transitional phrases including ", "bearer",, with ","with","involving ","hold", "constitution" and the like It should be understood that it is a start-up, that is, includes but is not limited to this. Only the transitional phrase "consisting of" and "consisting essentially of " should be closed or semi-closed excessive phrases. The reference numerals in the claims are for convenience only and are not to be construed as limiting in any way. [Simplified illustrations] In the drawings, the same reference characters generally refer to the same parts in all the different views. In addition, the drawings are not necessarily to scale, the emphasis of the invention is generally set forth to illustrate the principles of the invention. FIG. 1 illustrates a lighting unit including a thermal management system in accordance with one embodiment of the present invention. 2 illustrates a lighting unit including a thermal management system in accordance with another embodiment of the present invention. FIG. 3 illustrates a lighting unit including a heat pipe system in accordance with another embodiment of the present invention. 4 illustrates a lighting unit including a thermal management system in accordance with another embodiment of the present invention. FIG. 5 illustrates a lighting unit including a thermal management system in accordance with another embodiment of the present invention. A graphical representation of one of the intensity readings taken during a single on/off cycle of a light source of a lighting unit in accordance with an embodiment of the present invention. FIG. 7 illustrates an embodiment in accordance with an embodiment of the present invention. A graphical representation of one of the intensity readings taken during a plurality of on/off cycles of a light source of 138035.doc -45- 200942075.

【主要元件符號說明】 200 照明單元 202 晶粒基板 204 光源 206 感測元件 208 電路 210 熱管理/驅動模組 220 LED晶粒 221 LED封裝 222 光源封裝 223 轉換元件 1000 照明單元 1004 光源 1006 感測元件 1008 驅動電路 1010 熱管理模組 1020 轉換元件 1100 照明單元 1104 光源 1106 感測元件 1110 熱管理/驅動模組 1120 轉換元件 138035.doc -46· 200942075[Main component symbol description] 200 illumination unit 202 die substrate 204 light source 206 sensing component 208 circuit 210 thermal management / drive module 220 LED die 221 LED package 222 light source package 223 conversion component 1000 lighting unit 1004 light source 1006 sensing component 1008 Drive Circuit 1010 Thermal Management Module 1020 Conversion Element 1100 Lighting Unit 1104 Light Source 1106 Sensing Element 1110 Thermal Management / Drive Module 1120 Conversion Element 138035.doc -46· 200942075

1200 照明單元 1202 基板 1204 光源 1206 感測元件 1210 熱管理/驅動模組 1220 轉換元件 1300 照明單元 1304 光源 1306 感測元件 1310 熱管理/驅動模組 1320 轉換元件1200 Lighting Unit 1202 Substrate 1204 Light Source 1206 Sensing Element 1210 Thermal Management / Drive Module 1220 Conversion Element 1300 Lighting Unit 1304 Light Source 1306 Sensing Element 1310 Thermal Management / Drive Module 1320 Conversion Element

138035.doc 47-138035.doc 47-

Claims (1)

200942075 七、申請專利範圍: 1. 一種熱管理系統,其用於包含經組態用以產生光的一光 源(10〇4)之一照明單元(1000),該系統包含: 一轉換元件(1020),其經組態並佈置用以吸收由該光 源(1004)產生的該光之至少某些並回應其以發射轉換 光,該轉換光之一強度依據該轉換元件(1〇2〇)之一溫度 相依特性而衰減; 一感測元件(1 〇〇6),其經組態用以感測該轉換光之一 第一強度’以及該光源(1〇〇4)之一斷開狀態期間的其一 或多個其後減小強度; 其中該系統經組態用以至少部分基於該第一強度及該 或多個其後強度來決定指示該光源(1004)之一操作溫 度的一數值。 2. 如请求項1之熱管理系統,其中該轉換元件(1020)係佈置 在該光源之一輸出透鏡或一封裝上。 3. 如请求項1之熱管理系統,其中該轉換元件(1020)係分散 在光學耦合至該光源(1004)的一囊封材料内。 4. 如請求項1之熱管理系統,其中該光源(1004)係包含一基 板的一LED並且其中該轉換元件(1〇2〇)係沈積於該基板 上的一塗層。 5. 如請求項1之熱管理系統,其中該光源(1004)係一 LED晶 粒並且其中該轉換元件(1020)係形成於該LED晶粒上的 一塗層。 6· 如請求jg, i $ 1之熱管理系統,其中該轉換元件(1020)係採用 138035.doc 200942075 一單一轉換材料或不同轉換材料之一混合物來製造。 7·如請求項1之熱管理系統,其中該轉換元件(1〇2〇)包含一 鱗光體材料、量子點材料或一發光摻雜物材料。 8· —種照明單元(1〇〇〇),其包含: 一光源(1004),其經組態用以發光; 一轉換元件(1 020),其經組態並佈置用以吸收由該光 源(1004)產生的該光之至少某些並回應其以發射轉換 光’該轉換光之一強度依據該轉換元件(1020)之一溫度 相依特性而衰減; 一感測元件(1006),其經組態用以感測該轉換光之一 第一強度’以及該光源(1004)之一斷開狀態期間的其一 或多個其後減小強度;以及 一熱管理模組(1010),其係操作地耦合至該感測元件 (1006)並經組態用以至少部分基於該第一強度及該一或 多個其後強度決定指示該光源(1〇〇4)之一操作溫度的一 數值。 9·如請求項8之照明單元(1〇〇〇),其中該轉換元件(1〇2〇)係 佈置在該光源(1004)之一輸出透鏡或一封裝上。 10.如請求項8之照明單元(1000),其中該轉換元件(1〇2〇)係 分散在光學耦合至該光源(1004)的一囊封材料内。 Π.如請求項8之照明單元(1〇〇〇),其中該光源(10〇4)係包含 一基板的一 LED並且其中該轉換元件(1020)係沈積於該 基板上的一塗層。 12.如請求項8之照明單元(1000),其中該光源(1〇〇4)係一 138035.doc 200942075 粒並且其中該轉換元件(102〇)係形成於該LED晶 粒上的一塗層。 13. 如請求項8之照明單元(1000),#中該轉換元件(1020)經 組態用以發射具有—或多個預定光譜特性的轉換光。 14. 如請求項8之照明單元(1〇〇〇),#中該轉換元件(1〇2〇)係 採用單一轉換材料或不同轉換材料之一混合物來製 造。 15. 如請求項8之照明單元(1000),其中該轉換元件(1〇2〇)包 含一磷光體材料、量子點材料或一發光摻雜物材料。 16. 如請求項8之照明單元(1〇〇〇),其中該熱管理模組(1〇1〇) 、、i進步組態回應該數值用以調整該照明單元(1 〇〇〇)之 一或多個操作特性。 17. —種用於管理一照明單元(1〇〇〇)的操作溫度之方法該 照明單元(1000)包含經組態用以發光的一光源(1004), 該方法包含下列步驟: 經由具有一溫度相依特性的一轉換元件(1 〇2〇)來轉換 由該光源(1004)產生的該光之至少某些; 感測該光源(1004)之一接通狀態期間的該轉換光之一 第一強度; 感測該光源(1004)之一斷開狀態期間的該轉換光之— 或多個其後強度;以及 至少部分基於根據該溫度相依特性之該第一強度及該 一或多個其後強度來決定指示該光源(1〇〇4)之一操作溫 度的一數值。 138035.doc 200942075 18·如請求項丨7之方法,其中該方法進一步包含回應該數值 以調整該照明單元(1000)之一或多個操作特性。 19. 如請求項17之方法’其中該溫度相依特性係藉由 曲線或一雙曲線來定義。 一指數 ❹200942075 VII. Patent Application Range: 1. A thermal management system for a lighting unit (1000) comprising a light source (10〇4) configured to generate light, the system comprising: a conversion element (1020) ) configured and arranged to absorb at least some of the light generated by the light source (1004) and responsive thereto to emit converted light, the intensity of the converted light being dependent on the conversion element (1〇2〇) Attenuated by a temperature dependent characteristic; a sensing element (1 〇〇 6) configured to sense a first intensity of the converted light and during an off state of the light source (1〇〇4) One or more of its subsequent reduced intensities; wherein the system is configured to determine a value indicative of an operating temperature of one of the light sources (1004) based at least in part on the first intensity and the one or more subsequent intensities . 2. The thermal management system of claim 1, wherein the conversion element (1020) is disposed on an output lens or a package of the light source. 3. The thermal management system of claim 1, wherein the conversion element (1020) is dispersed within an encapsulation material optically coupled to the light source (1004). 4. The thermal management system of claim 1, wherein the light source (1004) is an LED comprising a substrate and wherein the conversion element (1〇2〇) is a coating deposited on the substrate. 5. The thermal management system of claim 1, wherein the light source (1004) is an LED crystal grain and wherein the conversion element (1020) is a coating formed on the LED die. 6. If a thermal management system of jg, i $1 is requested, wherein the conversion element (1020) is fabricated using a single conversion material or a mixture of different conversion materials, 138035.doc 200942075. 7. The thermal management system of claim 1, wherein the conversion element (1〇2〇) comprises a scale material, a quantum dot material, or a luminescent dopant material. 8. A lighting unit (1〇〇〇) comprising: a light source (1004) configured to emit light; a conversion element (1 020) configured and arranged to absorb the light source (1004) generating at least some of the light and responding thereto to emit converted light 'the intensity of one of the converted lights is attenuated according to a temperature dependent characteristic of one of the conversion elements (1020); a sensing element (1006) Configuring to sense one of the first intensity of the converted light and one or more subsequent reduced intensities during one of the off states of the light source (1004); and a thermal management module (1010) An operatively coupled to the sensing element (1006) and configured to determine one of the operating temperatures indicative of one of the light sources (1〇〇4) based at least in part on the first intensity and the one or more subsequent intensities Value. 9. The illumination unit (1) of claim 8, wherein the conversion element (1〇2〇) is disposed on an output lens or a package of the light source (1004). 10. The lighting unit (1000) of claim 8, wherein the converting element (1〇2〇) is dispersed within an encapsulating material optically coupled to the light source (1004). The illumination unit (1) of claim 8, wherein the light source (10〇4) is an LED comprising a substrate and wherein the conversion element (1020) is a coating deposited on the substrate. 12. The lighting unit (1000) of claim 8, wherein the light source (1〇〇4) is a 138035.doc 200942075 particle and wherein the conversion element (102〇) is a coating formed on the LED die . 13. The illumination unit (1000) of claim 8 wherein the conversion element (1020) is configured to emit converted light having - or a plurality of predetermined spectral characteristics. 14. The lighting unit (1〇〇〇) of claim 8 wherein the conversion element (1〇2〇) is made of a single conversion material or a mixture of different conversion materials. 15. The illumination unit (1000) of claim 8, wherein the conversion element (1〇2〇) comprises a phosphor material, a quantum dot material, or a luminescent dopant material. 16. The lighting unit (1〇〇〇) of claim 8, wherein the thermal management module (1〇1〇), i advances the configuration value to adjust the lighting unit (1 〇〇〇) One or more operational characteristics. 17. A method for managing an operating temperature of a lighting unit (1). The lighting unit (1000) includes a light source (1004) configured to emit light, the method comprising the steps of: a conversion element (1 〇 2 〇) of temperature dependent characteristics to convert at least some of the light generated by the light source (1004); sensing one of the converted light during one of the light source (1004) being turned on Sensing the intensity of the converted light during one of the off states of the light source (1004) or a plurality of subsequent intensities; and based at least in part on the first intensity and the one or more of the converted light according to the temperature dependent characteristic The post strength determines a value indicative of the operating temperature of one of the light sources (1〇〇4). The method of claim 7, wherein the method further comprises a response value to adjust one or more operational characteristics of the lighting unit (1000). 19. The method of claim 17, wherein the temperature dependent characteristic is defined by a curve or a hyperbola. An index 138035.doc138035.doc
TW098103048A 2008-01-31 2009-01-23 Lighting unit and thermal management system and method therefor TW200942075A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US2522808P 2008-01-31 2008-01-31

Publications (1)

Publication Number Publication Date
TW200942075A true TW200942075A (en) 2009-10-01

Family

ID=40521743

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098103048A TW200942075A (en) 2008-01-31 2009-01-23 Lighting unit and thermal management system and method therefor

Country Status (2)

Country Link
TW (1) TW200942075A (en)
WO (1) WO2009095817A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456140B (en) * 2011-12-21 2014-10-11 Wintek Corp Protective cover and illumination module therewith
TWI468889B (en) * 2011-09-26 2015-01-11 Univ Nat Chi Nan Automatic luminous flux control system, device, circuit and detection module

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5802657B2 (en) * 2009-05-20 2015-10-28 コーニンクレッカ フィリップス エヌ ヴェ Optical module
WO2012164440A1 (en) * 2011-06-01 2012-12-06 Koninklijke Philips Electronics N.V. A led-based illumination device with low heat up color shift
US8515289B2 (en) * 2011-11-21 2013-08-20 Environmental Light Technologies Corp. Wavelength sensing lighting system and associated methods for national security application
FR3012677B1 (en) * 2013-10-25 2015-12-25 Commissariat Energie Atomique LIGHT EMISSIVE DEVICE, DEVICE AND METHOD FOR ADJUSTING A LIGHT EMITTING OF A PHOSPHORUS LIGHT EMITTING DIODE
US20210312875A1 (en) * 2018-11-27 2021-10-07 Hewlett-Packard Development Company, L.P. Control of light intensities based on use and decay
CN112014707A (en) * 2020-07-13 2020-12-01 北京工业大学 Method for measuring and controlling junction temperature of SiC power VDMOS device in power cycle experiment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6028694A (en) * 1997-05-22 2000-02-22 Schmidt; Gregory W. Illumination device using pulse width modulation of a LED
DE60320307T2 (en) * 2002-12-26 2009-05-14 Koninklijke Philips Electronics N.V. COLOR TEMPERATURE CORRECTION FOR LED WITH WAVE LENGTH CONVERSION ON PHOSPHORUS BASE
JP4857633B2 (en) * 2005-07-20 2012-01-18 スタンレー電気株式会社 LED light source

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468889B (en) * 2011-09-26 2015-01-11 Univ Nat Chi Nan Automatic luminous flux control system, device, circuit and detection module
TWI456140B (en) * 2011-12-21 2014-10-11 Wintek Corp Protective cover and illumination module therewith

Also Published As

Publication number Publication date
WO2009095817A1 (en) 2009-08-06

Similar Documents

Publication Publication Date Title
TW200942075A (en) Lighting unit and thermal management system and method therefor
TWI498047B (en) Method and apparatus for controlling and measuring aspects of time-varying combined light
US7893631B2 (en) White light luminaire with adjustable correlated colour temperature
US7972028B2 (en) System, method and tool for optimizing generation of high CRI white light, and an optimized combination of light emitting diodes
US11723127B2 (en) Solid state lighting systems and associated methods of operation and manufacture
JP5544307B2 (en) Lighting unit with light sensor
JP2013503470A (en) LED-based luminaire and associated method for temperature management
US20080290250A1 (en) Color Lighting Device
JP2004253309A (en) Special purpose led illumination with color rendering properties
CN104303298A (en) White light emitting module
EP1905273B1 (en) Colour point control system
US11743985B2 (en) Color temperature control of a lighting device
TW201212277A (en) LED-based light emitting systems and devices with color compensation
Taylor et al. Colorimetry and efficiency of white LEDs: spectral width dependence
Song et al. Optimum design domain of LED-based solid state lighting considering cost, energy consumption and reliability
US10880962B2 (en) Lighting systems having multiple light sources
JP6045727B2 (en) Dimmable light emitting device
US20200253017A1 (en) Method for controlling a lighting device, and lighting device
Abdullaev et al. White light source with laser-excited phosphor
Ke et al. Estimation of the average junction temperature of two phosphors-converted white LED array based on (B+ Y+ R)/B ratio
EP3575670B1 (en) Light source module, and illumination device comprising light source module
Lokesh et al. A study on the performance characteristics of light emitting diodes from reliability prospective
Moisio et al. Use of junction temperature in control of CCT in LED luminaire
RU2575872C2 (en) Led-based illumination devices and thermal control methods related to them