* 200941053 九、發明說明: 【發明所屬之技術領域】 本發明係關於光學模組耦合結構及製造該結構之方 法’尤其係關於可光學校準並將光纖或球面鏡耦合至像是 光纖、球面鏡、光波導、雷射二極體、光二極體、發光二 極體、反射鏡等等的光學組件之光學模組耦合結構及製造 該結構之方法。* 200941053 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to an optical module coupling structure and a method of fabricating the same, particularly relating to optically alignable and coupling optical fibers or spherical mirrors to optical fibers, spherical mirrors, An optical module coupling structure of an optical component of an optical waveguide, a laser diode, a photodiode, a light emitting diode, a mirror, or the like, and a method of fabricating the same.
【先前技術】 將光纖連接至包含光波導的平面光學模組之方法可分 成主動連接方法或被動連接方法。主動連接方法包含切割 與拋光一件光學模組,如此讓光纖區塊(或光纖)靠近並在 光學上對準具有露出剖面的光波導陣列(或波導)、讓光線 通過光纖到達光學模組的光波導,並且調整光纖區塊(或光 纖)的位置’將光纖區塊(或光纖)固定或附加至光學模組上 從光波導所發出光線亮度最大之處,藉此達成光波導與光 纖之間的光校準與固定。在此,光纖區塊就是兩端都經過 2與抛光以及平行校準並且固定至同—直線上一平板與 纖=板之間形成的v形溝槽(此後稱為「v溝渠」)之光 例如田认士 一丨认初文饮々成匕言罝接形成一種、麵 用於在光纖模組本體上校準/gl定光纖的一廷 ::不需用到像是光纖區塊的個別機構,並且將另 槽内’使用光學模組本身上形成的實體校準爲 200941053 執行光波導與光纖間之光學校準和固定。 、、傳統光纖校準/耦合至光波導主要使用主動連接方 法原因疋主動連接方法測置通過光波導的光線亮度,將 光纖固疋在光學模組上最佳位置,因此確定足夠的校準精 確度(9μπ!光纖核心直徑時為1μιη或以下)。另一方面主 動連接方法具備好幾μιη的不良校準精確度。不過,因為 主動連接方法必須在每—裝置内使用昂貴的光纖區塊,並 且使用昂責的校準設備將光龜塊校準/固定至每一裝 置,所以製造該光學模组相當耗時與耗費成本。 為了解決主動連接方法使用光纖區塊的問題,所已提 出許多被動連接方法。日本專利第2982861號揭示一種使 用「矽」基板的「氧化矽」光波導模組之光纖之主動連接 結構H切基板上製造氧㈣光波導的方法,並且使 用非等向財晶㈣㈣成V溝渠(V溝槽),來固定與氧化 矽光波導校準的光纖。運用該方法,可相對而言快速形成 溝槽,以便在光學模峰板上手動連接光纖。不過,卻難 以將此方法付諸實施,因為基於許多原@而無法在形成校 準結構時提供Ιμιη或町足夠的精確度。此外,適用於此 方法的矽基板具僙大約3xl〇-6/C3C的熱膨脹係數,這遠差於 形成光波導的氧化矽材料〇5xl〇-6/〇c的熱膨服.係數。因 此’應力會施加於光學模組的光波導上,在光波導内產生 雙折射(即是其中波導材料的反射係數根據光偏振方向與 基板水平或垂直而在0.0005至0 001之間改變的現象)。鲈 果,光學模組的特性取決於光的偏振狀態,即是產生的極 * 200941053 化相依耗損(PDL,“polarization dependent loss,,)等等。因 此近來,廣泛使用在氧化發基板而非發基板上製造光波 導的技術,例如用戶光學通訊網路内使用的光分配器,此 網路稱為光纖到府(FTTH,“fiber-t〇the_h_”)網路。在本' 卷月:中,當在非結晶介電基板上,像是例如氧化矽的融 熔石英基板,形成光波導時,使用傳統方法難以形成v溝 渠,關鍵點在於在光學模組基板上如何與光波導一起形成 0 光纖固疋溝槽,以便手動連接光纖。 首先’檢視傳統形成光纖區塊V溝渠的方法是否可用 來在光學模組基板上形成溝槽,可使用石夕或氧化石夕基板來 製造傳統光纖區塊。在石夕光纖區塊的案例中,利用半導體 光微影姓刻處理,往方向110在石夕基板100内形成用來护 成溝槽的矩形溝槽圖樣,並且運用石夕結晶基板的特性將基 板浸泡在KOH⑽溶劑内來㈣矩形溝槽圖樣形成溝样 (此後稱為「非等向性钱刻」),此溝槽停止於表面⑴" ❹=航料,可同岐迅速切基㈣形成級導與V溝 不過’當基板由氧化石夕形成時,因為氧化石夕為非姓曰 材料’所以不可能使用非等向祕刻方法形成v溝準; 此,當製造氧化石夕光纖區塊時’使用具有V形刀刀的旋韓 拋光工具來作為V溝渠之氧化石夕基板表面抛光方法 過,該方法不適用於同時形成V溝渠和光波導。因為且: 特定半徑的旋轉拋光工具係旋轉並且在v溝渠的移動㈣ 内移動’所以旋_光工具可拋光位在V溝渠延伸線上: 200941053 與v溝渠對準的光波導。 針對使用旋轉拋光工具形成對準溝槽的方法以外之解 決方案’可考慮使用半導體光微影蝕刻處理的氧化矽基板 之乾蝕刻方法。韓國專利申請案第10-2005-23238號,標 「Fabrication Method of Optical Module for Enabling Passive Alignment Between Optical Waveguide and Optical F i b e r」’其中光波導核心圖樣和光纖校準溝槽圖樣再相同遮 罩上對準v如此光纖校準溝槽透過與形成光波導核心相同 的處理來形成’藉此在基板表面上自動校準光波導與光纖 校準溝槽。 在此具體實施例内,校準溝槽使用U溝渠,並且插入 u溝渠的光纖與U溝渠的左、右和下表面三點接觸來動態 固定光纖。不過,光纖的直徑容許值為±1μπ1,如此在此方 法中’在光纖與U溝渠之間由於垂直與橫向直徑容許值而 產生校準誤差。此外,當光纖已插入U溝渠内,該υ溝渠 必須具有大於光纖直徑的寬度,也就是,一固定光纖容許 值。 進一步,雖然在傳統方法内,光波導與光纖之間的垂 直校準由U溝渠的姓刻深度所決定,如此在υ溝渠的银刻 期間會使用具有精確度高達2%的姑刻設備,產生至少2μιη 的蝕刻容許值(傳統上,因為光纖的直徑為125μιη&且光波 導的上層厚度為30μιη’所以U溝渠必須钮刻至大約ιοομιη 的深度)。因此,U溝槽内的光纖具有對應至光纖直徑容許 值總合的垂直與水平校準誤差、U溝渠的插入容許值以及 200941053 由於姓刻一致性的餘刻容許值。 此外’即使當u溝渠的钱刻深度由化學汽相沈積(CVD, “chemical哪沉deposition”)或層的乾蝕刻所補償,CVD層 可沈積在U溝槽的兩側壁上而窄溝渠,或以預定角度 用一傾斜方式蝕刻U溝槽的兩側壁而拓寬u溝渠。也就 是,保形沈積或蝕刻過切可根據其拓寬1;溝渠深度改變寬 度,因此導致光纖校準誤差。其他專利申請案 〇 PCT/KR2()()2/()義4則揭露—種類似於傳統方法的技術。 【發明内容】 本發明的目的在於提供—種光學模組搞合結構及製造 該結構之料,討絲校準並將_或麵餘合至像 是光纖、球面鏡、光波導等等在平介電基板上製造在光學 模組内的光學組件。 尽發明的另 η…-风货尤学模組耦合結構及製造該 =構的方法,當光纖連接至光學模_,該結構可提高生 力並且降低包3光波導的氧切基板之光學模組製造成 本。 及製又另—目的在於提供—種光學模_合結構 光波導水平校準,並且妒媸 土低上系尤纖興 (盘水抑μ ‘ 據讀刻、沈積料處理條件 水千㈣㈣)垂直校準錢,藉此改善產量與處理彈 種光學模組耦合結構 本發明的再另一目的在於提供— 9 200941053 及製造該結構之方法,其可在光纖插入校準溝槽時承受施 加於溝槽結構的壓力或衝擊。 本發明的再另一目的為提供光學模組耦合結構及製造 該結構的方法,其可避免上敷鍍層沈積在校準溝槽内而減 少必須蝕刻用於垂直校準的溝槽深度,藉此提高經濟效益。 本發明的再另一目的在於提供一種光學模組耦合結構 及製造該結構之方法,其可光學校準並將光纖或球面鏡耦 合至像是雷射二極體、光二極體、發光二極體、反射鏡等 等光學耦合元件。 ^ 本發明的再另一目的在於提供一種附加球面鏡的方 法,其可藉由當球面鏡固定至校準溝槽時減少使用環氧樹 脂,來避免環氧樹脂污染球面鏡表面。 本發明的第一態樣提供一種光學模組耦合結構,其包 含一第一溝槽,該溝槽形成於基板内來支撐光學組件,以 及一第二溝槽,該溝槽内包含第一溝槽並且與固定的光學 組件間隔,其中當固定該光學組件時由第一溝槽彎角的線 q 或點來導引光學組件。 在此,「光學模組」表示一種包含光纖或球面鏡的結 構,並且其中光學通訊、光學連接、光學感應器等等當中 使用的光學裝置係配置以單一或複數個結構。 在此,「光學組件」為與光學模組光學校準的元件,由 單元光學裝置或單元光學裝置的組合所形成。在具體實施 例内,光學組件包含光纖、球面鏡、光波導、雷射二極體、 光二極體、發光二極體、反射表面等等。光學組件可整合 10 200941053 形成於基板上,或個別形成並固定至基板。 「光波導」表示減麵半導體光微影_處理的核 心之先波導。該核心具有許多剖面,像是矩形、凸起、圓 形或橢圓形。此外,光波導可為以陽刻圖案姓刻從基板表 面上突出的正波導,或在陰刻圖案的下敷鍍層内姓刻核心 來在陰刻圖案内形成核心層而:讓光波導凹陷入基板内的負 波導。 、 ❹ 基板」可為半導體基板、介電基板、玻璃基板、聚 合物基板、結晶基板或其合成基板,而特別是氧化矽基板。 第一溝槽可具有至少一個「彎角線」或「彎角點」,其 為放置在第一溝槽内部下方表面上的機械結構,用於支撐/ 固定光學鏡頭或球面鏡,藉此形成雙溝槽,其中提供光纖 或球面鏡關於光學組件的校準位置。 光纖校準用的溝槽可具有在u溝槽内形成u溝槽的結 構(此後稱為雙U溝槽)。雖然在雙u溝槽内通常使用二彎 ⑩ 角線來支撐光纖,當使用單一彎角線來支撐光纖時進一步 需要一個固定表面來支撐光纖。固定表面可與基板垂直, 或以預定角度傾斜。 雖然球面鏡校準用的溝槽可使用三個彎角線或彎角 點’當使用一或二個彎角點或彎角線時,可進一步需要一 或二個固定表面。固定表面可垂直或傾斜於基板。 第一溝槽和/或第二溝槽可具有透過半導體光微影/蝕 刻、雷射束處理、沖壓模等等來形成的許多結構,而不限 定採取何種處理技術。 11 200941053 第二溝槽可決定第-溝槽f角線或彎#距離基板表 面的深度。此外,第二溝槽可提供最小空間來容納光纖或 球面鏡。 & 光學模組可進一步包含至少〜個子溝槽速接至第一溝 槽或第二溝槽的彎角線。該子溝槽可連接炱在之間整合形 成的第一溝槽和第二溝槽。該子溝槽可幫助清除當光學組 件為光纖時將光纖黏至彎角線的灰^或污染物,並且可當 成第一溝槽與第二溝槽之間環氧樹脂的流道,如此環氧樹 脂可順暢導入溝槽以及從溝槽排出,以便夜用最少量的環 〇 氧樹脂來校準並固定光纖》 本發明的第二態樣提供-種光學模組揭合結構,其包 S在基板上形成的第-光學組件連接部分以及第二光學組 件連接部分,每-光學組件連接部分都包含〆用來支撐光 學纽件的第一溝槽以及一第二溝槽,該第二溝槽係形成以 包含第-溝槽於其内並且造有一空間,其中固定該光學組 件’其中當固定該光學組件時由第1槽彎角的線或點來 導引光學組件,並且該第-光學組件連接部分與該第二光 學組件連接部分彼此對準。 光學模組的耦合結構可進一步包含要耦合至其他光學 組件的支撐框架。例如:光學模級的耦合結構可進一步包 含要輕合光二極體或雷射二極體的支撐框架。一般而言, 利用處理基板表面可讓支撐框架整合形成於基板上。[Prior Art] A method of connecting an optical fiber to a planar optical module including an optical waveguide can be classified into an active connection method or a passive connection method. The active bonding method involves cutting and polishing an optical module such that the fiber optic block (or fiber) is brought into close proximity and optically aligned with the optical waveguide array (or waveguide) having the exposed profile, allowing light to pass through the fiber to the optical module. Optical waveguide, and adjust the position of the fiber block (or fiber) to fix or attach the fiber block (or fiber) to the optical module to maximize the brightness of the light emitted from the optical waveguide, thereby achieving optical waveguide and fiber The light is calibrated and fixed. Here, the fiber block is light which is both polished and parallel-aligned at both ends and is fixed to a v-shaped groove (hereinafter referred to as a "v-ditch") formed between a flat plate and a fiber plate. After confirming that the first drink was made into a rumor, Tian Tianshi formed a kind of face that was used to calibrate/gly fix the fiber on the body of the fiber module: no need for individual mechanisms like fiber blocks. And the entity formed on the optical module itself is calibrated to 200941053 in another slot to perform optical calibration and fixing between the optical waveguide and the optical fiber. Traditional fiber calibrating/coupling to the optical waveguide mainly uses the active connection method. The active connection method measures the brightness of the light passing through the optical waveguide, and fixes the optical fiber to the optimal position on the optical module, thus determining sufficient calibration accuracy ( 9μπ! Fiber core diameter is 1μηη or less). On the other hand, the active connection method has a poor calibration accuracy of several μm. However, because the active connection method must use expensive fiber optic blocks in each device, and use the calibrated equipment to calibrate/fix the light turtle block to each device, manufacturing the optical module is time consuming and costly. . In order to solve the problem of using the fiber block by the active connection method, many passive connection methods have been proposed. Japanese Patent No. 2982861 discloses a method for manufacturing an oxygen (four) optical waveguide on an active connection structure of an optical fiber of a "yttria" optical waveguide module using a "矽" substrate, and using an anisotropic crystal (4) (4) to form a V-ditch. (V-groove) to fix the fiber calibrated with the yttria optical waveguide. With this method, trenches can be formed relatively quickly to manually connect the fibers to the optical mode peak plate. However, it is difficult to put this method into practice because it is not possible to provide sufficient accuracy for Ιμηη or machi in the formation of the calibration structure based on many originals. Further, the ruthenium substrate suitable for this method has a thermal expansion coefficient of about 3xl 〇-6/C3C, which is far worse than the thermal expansion coefficient of the yttrium oxide material 〇5xl 〇-6/〇c which forms the optical waveguide. Therefore, 'stress is applied to the optical waveguide of the optical module, and birefringence is generated in the optical waveguide (that is, the reflection coefficient of the waveguide material changes between 0.0005 and 0 001 according to the direction of polarization of the light and the horizontal or vertical direction of the substrate). ). As a result, the characteristics of the optical module depend on the polarization state of the light, that is, the generated polarization* (PDL, “polarization dependent loss,”), etc. Therefore, recently, it is widely used in the oxidized hair substrate instead of the hair. A technique for fabricating optical waveguides on a substrate, such as an optical splitter used in a user's optical communication network. This network is called a fiber-to-the-home (FTTH, "fiber-t〇the_h_") network. In this month, When forming an optical waveguide on a non-crystalline dielectric substrate, such as a fused silica substrate such as yttria, it is difficult to form a v-channel using conventional methods. The key point is how to form a 0-fiber together with the optical waveguide on the optical module substrate. Fixing the trenches to manually connect the fibers. First, 'viewing the traditional method of forming the fiber-optic block V-ditch can be used to form trenches on the optical module substrate. You can use the Xixi or Oxide substrate to fabricate the traditional fiber-optic block. In the case of the Shixi fiber block, a semiconductor light lithography process is used to form a rectangular groove pattern for protecting the groove in the Shishi substrate 100 in the direction 110. And using the characteristics of the stone substrate to soak the substrate in the KOH (10) solvent (4) the rectangular groove pattern forms a groove (hereinafter referred to as "non-isotropic"), the groove stops at the surface (1) " The same can be used to quickly cut the base (4) to form the level guide and V groove, but when the substrate is formed by the oxidized stone eve, because the oxidized stone is a non-surnamed material, it is impossible to form the v-channel using the non-isotropic method; Therefore, when the oxidized stone fiber block is manufactured, a spin-on polishing tool having a V-shaped knife is used as the oxidized stone substrate polishing method of the V-ditch, which is not suitable for simultaneously forming the V-ditch and the optical waveguide. Because and: The rotating polishing tool of a certain radius rotates and moves within the movement (4) of the v-ditch, so the rotary-light tool can be polished on the V-ditch extension line: 200941053 The optical waveguide aligned with the v-ditch. A dry etching method using a semiconductor photolithography etching treatment of a hafnium oxide substrate can be considered for a solution other than the method of forming an alignment trench using a rotary polishing tool. Korean Patent Application No. 10-2005-23238, entitled "Fabrication Method of Optical Module for Enabling Passive Alignment Between Optical Waveguide and Optical F iber", in which the optical waveguide core pattern and the fiber alignment groove pattern are aligned on the same mask v such a fiber alignment trench is formed by the same process as forming the optical waveguide core 'by thereby automatically aligning the optical waveguide with the fiber alignment trench on the substrate surface. In this embodiment, the calibration trench uses a U-ditch, and the fiber inserted into the u-ditch is in contact with the left, right, and lower surfaces of the U-ditch at three points to dynamically secure the fiber. However, the allowable diameter of the fiber is ±1 μπ1, which results in a calibration error between the fiber and the U-ditch due to the vertical and lateral diameter tolerances in this method. In addition, when the fiber has been inserted into the U-channel, the channel must have a width greater than the diameter of the fiber, i.e., a fixed fiber tolerance. Further, although in the conventional method, the vertical alignment between the optical waveguide and the optical fiber is determined by the depth of the U-channel, so that during the silver engraving of the trench, a precision device with an accuracy of up to 2% is used, generating at least The etching allowance of 2 μm (conventionally, since the diameter of the optical fiber is 125 μm & and the thickness of the upper layer of the optical waveguide is 30 μm), the U ditch must be engraved to a depth of about ιοομιη. Therefore, the fiber in the U-groove has vertical and horizontal calibration errors corresponding to the tolerance of the fiber diameter, the insertion tolerance of the U-ditch, and the allowable value of the 200941053 due to the consistency of the surname. In addition, even when the depth of the ditch is compensated by chemical vapor deposition (CVD, "chemical deposition") or dry etching of the layer, the CVD layer can be deposited on both sidewalls of the U trench and narrow trenches, or The two trenches of the U trench are etched in a tilted manner at a predetermined angle to widen the u trench. That is, the conformal deposition or etch overcut can be broadened according to 1; the trench depth changes width, thus causing fiber alignment errors. Other patent applications PCT PCT/KR2()() 2/() 4 discloses a technique similar to the traditional method. SUMMARY OF THE INVENTION The object of the present invention is to provide an optical module that fits the structure and manufactures the material of the structure, and aligns the wire and _ or the surface to a fiber, a spherical mirror, an optical waveguide, etc. An optical component fabricated in the optical module on the substrate. Invented by the other η...-the wind cargo esthetic module coupling structure and the method of manufacturing the same, when the optical fiber is connected to the optical mode, the structure can improve the productivity and reduce the optical mode of the oxygen-cut substrate of the optical waveguide of the package 3 Group manufacturing costs. And the purpose of the other is to provide a horizontal calibration of the optical mode-combined optical waveguide, and the high-level system of the bauxite is high-fibre (the water-suppressed μ' is read, the sediment processing conditions are thousands (four) (four)) vertical calibration Still another object of the present invention is to provide a method for fabricating the structure that can withstand application to the trench structure when the fiber is inserted into the calibration trench. Pressure or shock. It is still another object of the present invention to provide an optical module coupling structure and a method of fabricating the same that avoids the deposition of an overlying plating layer in the alignment trench and reduces the depth of the trench that must be etched for vertical alignment, thereby increasing economic efficiency . Still another object of the present invention is to provide an optical module coupling structure and a method of fabricating the same that optically align and couple a fiber or a spherical mirror to a laser diode, a photodiode, or a light emitting diode Optical coupling elements such as mirrors. Still another object of the present invention is to provide a method of attaching a spherical mirror which can prevent epoxy from contaminating the surface of the spherical mirror by reducing the use of the epoxy resin when the spherical mirror is fixed to the alignment groove. A first aspect of the present invention provides an optical module coupling structure including a first trench formed in a substrate to support an optical component, and a second trench including a first trench therein The slot is spaced from the fixed optical component, wherein the optical component is guided by a line q or point of the first groove corner when the optical component is secured. Here, the "optical module" means a structure including an optical fiber or a spherical mirror, and optical devices used in optical communication, optical connection, optical sensor, and the like are configured in a single or plural configuration. Here, the "optical component" is an element optically calibrated with an optical module, and is formed by a combination of a unit optical device or a unit optical device. In a specific embodiment, the optical component comprises an optical fiber, a spherical mirror, an optical waveguide, a laser diode, a photodiode, a light emitting diode, a reflective surface, and the like. The optical components can be integrated on the substrate 10 200941053 or formed separately and fixed to the substrate. The "optical waveguide" indicates the first waveguide of the core of the reduced-surface semiconductor photolithography. The core has many sections, such as rectangular, convex, circular or elliptical. In addition, the optical waveguide may be a positive waveguide protruding from the surface of the substrate by a positive pattern, or a core may be formed in the underlying layer of the intaglio pattern to form a core layer in the intaglio pattern: a negative hole for recessing the optical waveguide into the substrate waveguide. The ruthenium substrate may be a semiconductor substrate, a dielectric substrate, a glass substrate, a polymer substrate, a crystal substrate or a composite substrate thereof, and particularly a ruthenium oxide substrate. The first groove may have at least one "angle line" or "bent point", which is a mechanical structure placed on the inner lower surface of the first groove for supporting/fixing the optical lens or the spherical mirror, thereby forming a double A trench in which the alignment position of the fiber or spherical mirror with respect to the optical component is provided. The trench for fiber alignment may have a structure in which a u trench is formed in the u trench (hereinafter referred to as a double U trench). Although a two-bend 10 corner line is typically used to support the fiber in a double u-groove, a fixed surface is needed to support the fiber when a single corner line is used to support the fiber. The fixed surface may be perpendicular to the substrate or inclined at a predetermined angle. Although the groove for spherical mirror calibration can use three corner lines or corner points, one or two fixed surfaces may be further required when one or two corner points or corner lines are used. The fixed surface can be perpendicular or oblique to the substrate. The first trench and/or the second trench may have a number of structures formed by semiconductor photolithography/etching, laser beam processing, stamping dies, etc., without regard to what processing technique is employed. 11 200941053 The second groove determines the depth of the first groove or the angle of the bend from the surface of the substrate. In addition, the second groove provides minimal space to accommodate the fiber or spherical mirror. The optical module may further comprise at least ~ sub-grooves that are spliced to the first trench or the second trench. The sub-grooves may connect the first trenches and the second trenches formed between the turns. The sub-trench can help remove the ash or contaminant that sticks the fiber to the corner line when the optical component is an optical fiber, and can be used as a flow path of the epoxy between the first groove and the second groove, such a ring The oxygen resin can be smoothly introduced into the trench and discharged from the trench to calibrate and fix the optical fiber with a minimum amount of cyclic epoxy resin at night. The second aspect of the present invention provides an optical module uncovering structure, and the package S is a first optical component connecting portion and a second optical component connecting portion formed on the substrate, each of the optical component connecting portions includes a first trench for supporting the optical button and a second trench, the second trench Forming to include a first groove therein and creating a space in which the optical component is fixed, wherein the optical component is guided by a line or a point of the first groove angle when the optical component is fixed, and the first optical The component connecting portion and the second optical component connecting portion are aligned with each other. The coupling structure of the optical module can further include a support frame to be coupled to other optical components. For example, the coupling structure of the optical mode may further comprise a support frame to be lighted to the light diode or the laser diode. In general, the surface of the substrate can be used to integrate the support frame on the substrate.
本發明的第二悲樣提供一種光學模組耦合結構,其包 含光學組件連接部分以及在基㈣形成具有狀斜坡的V 12 200941053 溝槽,該光學組件連接部分包含一經配置以支撐基板内光 學組件的第一溝槽以及一第二溝槽,該第二溝槽係形成以 包含第一溝槽並且造有一空間,其中固定光學組件,其中 當固定該光學組件時由第一溝槽彎角的線或點來導引光學 組件,並且該v溝槽具有一斜坡,如此光學組件固定在要 光連接的該光學組件連接部分上。 該第一溝槽或第二溝槽可用許多方式形成,像是半導 赢 體光微影、蝕刻、雷射束處理或沖壓模,並且從基板上方 看時,第一溝槽與第二溝槽的寬度可一致、以階段或錐形 方式改變或以三角形、矩形或鋸齒形連續或斷續改變。也 就是,當光纖形成溝槽的支撐表面時,該第一溝槽和第二 溝槽可為具有特定長度的筆直溝槽。不過,溝槽支撐表面 的形狀可根據支撐的光學裝置形狀而變。例如:在球面鏡 的案例中,三角形每一邊的特定部分為支撐結構。 本發明的第四態樣提供一種製造光學模組耦合結構的 〇 方法,包含:在一基板内形成一第一溝槽來支撐一光學組 件;以及形成一第二溝槽,其内包含該第一溝槽並且其内 形成一空間來容納該光學組件,其中當固定該光學組件時 利用該第一溝槽一彎角的一線或一點來引導該光學組件。 該方法進一步包含在光學組件與光波導之間形成第三 溝槽,其中該第三溝槽與該第一和第二溝槽同時形成。 該方法進一步包含在第一溝槽的彎角上往縱向方向形 成子溝槽。 該第三溝槽可去除光纖支撐結構的阻礙物,這阻礙物 13 200941053 可能形成於光波導與光線固定溝槽之間,以確a 端盡可能靠近光學組件或光波導。此外, 二纖的一 :樹,主,雜,來幫助舆子溝槽:=二 田然,%氡樹脂可從第二溝槽的基板上:% f軋 徑可能會受到環氧樹脂或光纖校 二因 大篁環氧樹脂覆蓋基板上的光纖或球二或者當 環氧樹丨供麵少量的 樹知通過第三溝槽與子溝槽。 ❹ 方法本態樣提供一種製造光學模_合結構的 成-光二的Γ遮罩,其用於使用一光波導核心層形 先波導的1心以及一光學組件連 槽:使用該遮單餘刻該第一溝槽;在至少該J導: 數錄層4及形成-其内包含該第—溝槽的第二溝槽。 夕方法進步包含在該光波導與該光學組件連接部分 之間形成-第三溝槽。 丨刀 Ο 、 另一方面,雖然形成該遮罩來形成該第一溝槽,在該 遮草内以及在該第一溝槽的縱向方向的彎角内可形成— 溝槽。 、本發明的第六態樣提供一種製造光學模組耦合結構的 方法,包含:以陰刻圖樣在一基板内形成一光波導的一核 樣成形圖樣以及—光學組件連接部分的一第一溝槽成形圖 結,使用該第〜溝槽成形圖樣蝕刻一第一溝槽;在該整個 樣上形成光波導核心材料,來填滿至少該核心成形圖 ,形成一其内包含該第一溝槽的第二溝槽;以及在至少 14 200941053 該光波導的一核心上形成一上敷鍍層。 另一方面,雖然在該整個結構上形成該光波導核心材 料來填滿至少該核心成形圖樣,也可填滿該第一溝槽的邊 緣部分。 本發明的第七態樣提供一種製造光學模組耦合結構的 方法,包含:形成一遮罩,其用於使用一光波導核心層形 成一光波導的一核心以及一光學組件連接部分的一第一溝 槽;'使用該遮罩蝕刻該第一溝槽;在至少該光波導上形成 一上敷鍍層;以及形成一其内包含該第一溝槽的第二溝槽。 本發明的第八態樣提供一種製造光學模組耦合結構的 方法,包含:整合形成具有一第二光學組件連接部分的一 第一光學組件連接部分,其中每一該光學組件連接部分包 含一經配置以支撐該光學組件的第一溝槽以及一第二溝 槽,該第二溝槽係形成以包含該第一溝槽並且製作一其中 固定該光學組件的空間,當固定該光學組件時由該第一溝 ❿ 槽一彎角的一線或點來導引該光學組件,以及根據該溝槽 的蝕刻深度,該第一光學組件連接部分與該第二光學組件 連接部分彼此對準。 本發明的第九態樣提供一種製造光學模組耦合結構的 方法,包含:在一基板内形成一第一溝槽來支禮一光學組 件;以及形成一第二溝槽,在其内包含該第一溝槽並且製 作一其中固定該光學組件的空間,其中一光學模組的該耦 合結構包含一光學組件連接部分和具有一預定角度的一 v 溝槽,其中該光學組件連接部分包含一經配置以在該基板 15 200941053 内支撐該光學組件的第一溝槽以及一第二溝槽,該第二溝 槽係形成以包含該第一溝槽並且製作一其中固定該光學組 件的空間,其中當固定該光學組件時由該第一溝槽一彎角 的一線或點來導引該光學組件,以及該v溝槽具有一斜 面,如此該光學組件固定在要光學連接至的該光學組件連 接部分上。 雖然上面本發明的步驟對應至實施本發明所需的最少 量處理,在不悖離本發明原理的情況下,可增加額外步驟 並且可改變步驟順序。 該第一、第二和第三溝槽可利用乾蝕刻、濕蝕刻、雷 射束處理、沖壓模、機械加工等等方式來形成。該第一和 第二溝槽最有效率的形成方式為使用電漿的乾蝕刻,並且 第三溝槽最有效率的形成方式為使用旋轉拋光的機械加 工、雷射束處理或乾蝕刻。在此,雷射束處理就是使用高 功率脈衝雷射來雕刻基板的方法。 當該第一、第二和第三溝槽利用乾蝕刻、濕蝕刻、機 ❹ 械加工等等方式來形成時,該彎角線可為銳角。當特定壓 力施加給光纖線來將光纖插入基板,如此插入的光纖與彎 角線完全接觸時,該彎角部分會迅速破裂。因此,在形成 第二溝槽上必須進一步執行非等方向性電漿蝕刻,或必須 使用化學汽相沈積來在光波導的上敷鍍層形成時將彎角線 圓滑。彎角線的轉換可加入上述本發明第二態樣的處理當 中或同時執行。 16 200941053 【實施方式】 此後將參考附圖來詳細說明本發明,其中將顯示本發 明的示例性具體實施例。不過,本發明可以有許多不同形 式的修改,並且不受限於此處公佈的示例性具體實施例。 而是提供這些示例性具體實施例,如此所揭示範圍更完 整,並且將本發明範疇完整傳輸給精通此技術的人士。 <第一示例性具體實施例> 第一圖為根據本發明第一示例性具體實施例的光學模 組搞合結構之透視圖。該麵合結構包含一形成來支稽該光 學組件的第一溝槽A以及一形成來包含該第一溝槽並且製 作出一其中固定該光學組件的空間之第二溝槽B,其中當 固定該光學組件時由該第一溝槽A彎角的線或點來導引該 光學組件。當固定該光學組件時由第二溝槽B的彎角來導 引該光學組件,藉此有效將光學組件對準光波導的核心 102。 另一方面,在光學模組的耦合結構内,可有效將光波 導部分20與包含第一溝槽A和第二溝槽B的光纖連接部 分30整合形成。在光波導部分20與光纖連接部分30之間 可能形‘成臨界409 (請參閱第二D圖),使得光纖難以理想 地完全靠近光波導。為了解決此問題,切割鋸刀沿著光波 導部分20與光纖連接部分30之間的邊界切割基板表面至 特定深度來形成第三溝槽501。 第二A圖至第二F圖為用於解釋根據本發明第一示例 17 200941053 性具體實施例的光學模組製造程序之透視圖。 第二A圖為根據本發明第一示例性具體實施例製造光 學模組的第一步驟之透視圖。 請參閱第二A圖,光波導核心層1〇3 (包含1〇2和1〇3 來覆蓋整個基板)沈積在基板10上。在此示例性具體實施 例内、’用氧化石夕基板當成範例’並且使用氧化石夕基板當成 光波導的下方敷鍍層。當基板由矽形成時,矽基板表面會 氧化大約ΙΟμιη厚度來將基板表面轉成氧化矽層,或可在 基板上沈積氧化石夕下方敷鍍層,並且在其上沈積光波導核❹ 心層103。 一接下來,在光波導核心層1〇3上沈積蝕刻遮罩層(未顯 示)。在示例性具體實施例内,具有數十叫或以上厚度的 氧化矽基板應該乾蝕刻。因此,蝕刻遮罩必須具有足夠的 餘刻選擇率’而不會在完成氧化石夕溝槽結構侧之前遭電 滎耗光。祕刻遮罩可為由鉻、鎢、鍊等等所形成的金屬 層,並且在本示例性具體實施例内,該餘刻遮罩由絡形成。 該姓刻遮罩層運用在光波導部分2〇上具有陽刻核心 圖樣以及在光學組件連接部分3〇上具有陰刻第一溝槽圖 樣的遮罩來通過光微景》處理,來形成光阻㈣)圖樣,該圖 樣轉換成鉻姑刻遮罩層,並且運用該蚀刻遮罩層來姓刻核 心層’藉此形成光波導核心搬和第—溝槽圖樣1〇4。 第一 Β圖為根據本發明第一示例性具體實施例製造光 ,模組的第二步驟之透視圖。在第二步驟内,姓刻遮單覆 蓋在基板上除了光學組件連接部分3〇以外的光波導部分 28 200941053 20之上,並且光學組件連接部分3〇的第一溝槽A經過乾 姓刻。八在光波導部分2〇上覆蓋钮刻遮罩的方法可為將蚀 刻遮罩覆蓋在整個基板上,並只去除光學組件連接部分3〇 的蝕刻遮罩來通過光微影處理之方法,或只在光波導部分 20上覆蓋蝕刻遮罩通過剥除處理之方法。在此處理當中, 形成光學組件連接部分30的第一溝槽A。然後,去ς基板 上剩餘的完整遮罩。 *· ❹ 第二C圖為根據本發明第一示例性具體實施例製造光 學模組的第三步驟之透視圖。在第三步驟内,透過^^〇在 光波導核w層1〇2上沈積上敷鍍層3〇2。在此處理當中, 上敷鍍層302也沈積在光學組件連接部分3〇上,並且第一 溝槽Α的彎角脊部會去角來支樓/固定光學組件,像是光纖A second sorrow of the present invention provides an optical module coupling structure including an optical component connection portion and a V12 200941053 trench having a slope formed at a base (4), the optical component connection portion including a configuration to support an optical component within the substrate a first trench and a second trench, the second trench is formed to include the first trench and has a space in which the optical component is fixed, wherein the first trench is bent when the optical component is fixed A wire or a point guides the optical component, and the v-groove has a slope such that the optical component is attached to the optical component connection portion to be optically connected. The first trench or the second trench may be formed in a number of ways, such as a semiconductor light lithography, etching, laser beam processing or stamping die, and the first trench and the second trench when viewed from above the substrate The width of the grooves can be uniform, changed in stages or in a tapered manner, or continuously or intermittently changed in a triangular, rectangular or zigzag shape. That is, when the optical fiber forms the support surface of the groove, the first groove and the second groove may be straight grooves having a specific length. However, the shape of the groove support surface may vary depending on the shape of the supported optical device. For example, in the case of a spherical mirror, a specific part of each side of the triangle is a support structure. A fourth aspect of the present invention provides a method for fabricating an optical module coupling structure, comprising: forming a first trench in a substrate to support an optical component; and forming a second trench including the first A groove and a space therein for receiving the optical component, wherein the optical component is guided by a line or a point of the first groove to the corner when the optical component is fixed. The method further includes forming a third trench between the optical component and the optical waveguide, wherein the third trench is formed simultaneously with the first and second trenches. The method further includes forming a sub-groove in a longitudinal direction at an angle of the first trench. The third trench removes the obstruction of the fiber support structure, and the obstruction 13 200941053 may be formed between the optical waveguide and the light-fixing trench to ensure that the a end is as close as possible to the optical component or the optical waveguide. In addition, one of the two fibers: the tree, the main, the miscellaneous, to help the scorpion groove: = two Tianran, the % 氡 resin can be from the substrate of the second groove: % f rolling diameter may be affected by epoxy or fiber The second is due to the large epoxy resin covering the fiber or the ball on the substrate or when a small amount of the surface of the epoxy tree is passed through the third groove and the sub-groove. ❹ In this aspect, a 成-mask of a photo-optical structure for fabricating an optical mode-integrated structure is provided for using a core of an optical waveguide core layer-shaped waveguide and an optical component splicing: using the splicing a first trench; at least the J-conductor: the recording layer 4 and the second trench forming the first trench therein. The advancement of the method includes forming a third trench between the optical waveguide and the connecting portion of the optical component. On the other hand, although the mask is formed to form the first groove, a groove may be formed in the grass and in a corner in the longitudinal direction of the first groove. A sixth aspect of the present invention provides a method of fabricating an optical module coupling structure, comprising: forming a core-like pattern of an optical waveguide in a substrate in an intaglio pattern; and a first trench of the optical component connecting portion Forming a pattern, etching a first trench using the first trench forming pattern; forming an optical waveguide core material on the entire sample to fill at least the core forming pattern to form a first trench therein a second trench; and an overlying layer formed on a core of the optical waveguide of at least 14 200941053. Alternatively, although the optical waveguide core material is formed on the entire structure to fill at least the core forming pattern, the edge portion of the first trench may be filled. A seventh aspect of the present invention provides a method of fabricating an optical module coupling structure, comprising: forming a mask for forming a core of an optical waveguide and a portion of an optical component connecting portion using an optical waveguide core layer a trench; 'etching the first trench using the mask; forming an upper plating layer on at least the optical waveguide; and forming a second trench including the first trench therein. An eighth aspect of the present invention provides a method of fabricating an optical module coupling structure, comprising: integrating to form a first optical component connection portion having a second optical component connection portion, wherein each of the optical component connection portions includes a configured a first trench for supporting the optical component and a second trench formed to include the first trench and to form a space in which the optical component is fixed, when the optical component is fixed A line or point of a corner of the first groove is used to guide the optical component, and the first optical component connecting portion and the second optical component connecting portion are aligned with each other according to the etching depth of the groove. A ninth aspect of the present invention provides a method of fabricating an optical module coupling structure, comprising: forming a first trench in a substrate to support an optical component; and forming a second trench including the a first trench and a space in which the optical component is fixed, wherein the coupling structure of an optical module comprises an optical component connecting portion and a v-groove having a predetermined angle, wherein the optical component connecting portion comprises a configured Supporting a first trench of the optical component and a second trench in the substrate 15 200941053, the second trench is formed to include the first trench and to form a space in which the optical component is fixed, wherein Fixing the optical component, the optical component is guided by a line or a point of the first groove, and the v-groove has a slope, such that the optical component is fixed to the optical component connecting portion to be optically connected on. Although the above-described steps of the present invention correspond to the minimum amount of processing required to practice the invention, additional steps may be added and the order of steps may be varied without departing from the principles of the invention. The first, second and third trenches may be formed by dry etching, wet etching, laser beam processing, stamping, machining, or the like. The most efficient formation of the first and second trenches is dry etching using plasma, and the third trench is most efficiently formed by mechanical processing using spin polishing, laser beam processing or dry etching. Here, laser beam processing is a method of engraving a substrate using a high power pulsed laser. When the first, second, and third grooves are formed by dry etching, wet etching, mechanical machining, or the like, the corner line may be an acute angle. When a specific pressure is applied to the fiber optic line to insert the fiber into the substrate, the inserted fiber is rapidly broken when it is in full contact with the corner line. Therefore, non-isotropic plasma etching must be further performed on the formation of the second trench, or chemical vapor deposition must be used to round the corner line when the upper plating layer of the optical waveguide is formed. The conversion of the corner line can be performed in the process of the second aspect of the invention described above or simultaneously. [Embodiment] Hereinafter, the present invention will be described in detail with reference to the accompanying drawings, in which an exemplary embodiment of the invention will be shown. The invention may, however, be modified in many different forms and is not limited to the exemplary embodiments disclosed herein. Rather, these exemplary embodiments are provided so that the scope of the disclosure is more complete and the scope of the invention is fully disclosed to those skilled in the art. <First Exemplary Embodiment> The first figure is a perspective view of an optical module engagement structure according to a first exemplary embodiment of the present invention. The surface structure includes a first trench A formed to support the optical component and a second trench B formed to include the first trench and to form a space in which the optical component is fixed, wherein when fixed The optical component is guided by the line or point of the first groove A to the optical component. The optical component is guided by the angle of the second trench B when the optical component is secured, thereby effectively aligning the optical component with the core 102 of the optical waveguide. On the other hand, in the coupling structure of the optical module, the optical waveguide portion 20 can be effectively formed integrally with the optical fiber connecting portion 30 including the first trench A and the second trench B. Between the optical waveguide portion 20 and the fiber connecting portion 30, a criticality 409 (see the second D diagram) may be formed so that it is difficult for the optical fiber to be ideally completely close to the optical waveguide. In order to solve this problem, the dicing saw blade cuts the substrate surface to a specific depth along the boundary between the optical waveguide portion 20 and the optical fiber connecting portion 30 to form a third groove 501. 2A through 2F are perspective views for explaining an optical module manufacturing procedure according to the first example 17 200941053 embodiment of the present invention. Figure 2A is a perspective view of a first step of fabricating an optical module in accordance with a first exemplary embodiment of the present invention. Referring to FIG. 2A, the optical waveguide core layer 1〇3 (including 1〇2 and 1〇3 to cover the entire substrate) is deposited on the substrate 10. In this exemplary embodiment, 'using an oxidized stone substrate as an example' and using an oxidized oxidized substrate as a lower plating layer of the optical waveguide. When the substrate is formed of tantalum, the surface of the tantalum substrate may be oxidized to a thickness of about ΙΟμη to convert the surface of the substrate into a ruthenium oxide layer, or a layer of oxidized stone may be deposited on the substrate, and an optical waveguide core layer 103 may be deposited thereon. . Next, an etch mask layer (not shown) is deposited on the optical waveguide core layer 1〇3. In an exemplary embodiment, a yttria substrate having a thickness of tens of or more should be dry etched. Therefore, the etch mask must have sufficient residual selectivity' without the wattage being consumed by the enamel before completing the oxidized oxide trench structure side. The secret mask can be a metal layer formed of chrome, tungsten, chains, etc., and in the exemplary embodiment, the residual mask is formed of a network. The surname mask layer is formed by using a mask having a positive core pattern on the optical waveguide portion 2 and a mask having an intaglio first groove pattern on the optical component connecting portion 3A to form a photoresist through the light microscopic process (4). The pattern is converted into a chrome-etched mask layer, and the etched mask layer is used to surname the core layer 'by thereby forming the optical waveguide core transfer and the first-groove pattern 1〇4. The first diagram is a perspective view of a second step of fabricating a light module according to a first exemplary embodiment of the present invention. In the second step, the surname is overlaid on the substrate over the optical waveguide portion 28 200941053 20 except for the optical component connecting portion 3 , and the first trench A of the optical component connecting portion 3 is pasted. The method of covering the mask portion on the optical waveguide portion 2 can be performed by covering the entire substrate with the etching mask and removing only the etching mask of the optical component connecting portion 3〇 by photolithography, or The etching mask is covered only by the stripping treatment on the optical waveguide portion 20. In this process, the first trench A of the optical component connecting portion 30 is formed. Then, remove the remaining mask remaining on the substrate. *· ❹ The second C is a perspective view of a third step of fabricating an optical module in accordance with the first exemplary embodiment of the present invention. In the third step, the upper plating layer 3〇2 is deposited on the optical waveguide core w layer 1〇2. In this process, the upper plating layer 302 is also deposited on the optical component connecting portion 3, and the corner ridges of the first trench 会 are chamfered to support/fix optical components, such as optical fibers.
風“第—〇圖為根據本發明第一示例性具體實施例製造光 :杈組的第四步驟之透視圖。在第四步驟内’使用光微影 再度沈積鉻細丨料來形成第二溝槽_遮罩圖樣, ^後軸第二溝槽則料隨至特定深度來形成第二溝 形成第二溝槽B的乾則遮罩之方法與形成第一溝 』樣的乾蝕刻遮罩之方法相同。因為第-溝槽A沈積在 溝槽B内’所以維持第—溝槽a _狀並且在触刻第 =槽3時朝向基板的下方表面下降,藉此職雙溝槽結 现第E圖為根據本發明第一示例性具體實施例製造夫 、、且的第五步驟之透視圖。在第四步驟之後,在光波導 200941053 部分20與光學組件連接部分3〇之間的界面可能產生臨界 409,使得光學組件難以理想地完全靠近光波導。因此在第 五步驟内’切割鋸刀沿著光波導部分2〇與光學組件連接部 分30之間的邊界切割基板表面至特定深度來形成第三溝 槽501。在此,切割鋸刀可為鋸子或具有鑽石顆粒的拋光 鑛刀,其係一般用於切割半導體基板。 Φ 第二F圖為根據本發明第—示例性具體實施例製造光 學模組的第六步驟之透視圖。在第六㈣内 # 60並且與雙U料(A和B)對準,來凝 纖6〇固定至溝槽。光纖使用真空固定器等=二 與雙溝槽的彎角脊部接觸,如此戸二[纖,讓光纖實雜上 二和第三溝槽A、B和501滲透1樹脂可沿著第-、第 樹脂,如此光纖60固定至雙 溝样後用紫外光凝固環氧 曰的彎角線。 〇 <第二示例性具體實施例> 第三圖為根據本發明第二示例性呈 組耦合結構之透視圖。不像第〜具/、體實施例的光學# 具體實施例的耦合結構包含一形^實施例’第二示例揀 C,以及一其内包含該第一溝槽·迷且=支撐光纖的第一潫槽 組件的空間之第二溝槽D。在此,$中製作出一固定光拳 要與光波導的核心702對準之第〜、田固疋光學組件時,由 學組件,並且環氧樹脂順楊地導^槽0之彎角來導弓丨光 在與第一溝槽C的彎角縱向之大< 角或從中排出,同掎 万向内形成子溝槽,以夜有 20 200941053 效導引並固定光學零件至第一溝槽Μ彎角。 針對製造光學模挺輕合結構的範例,利用乾银刻形成 第-至第三溝槽〇〇和707,並且光波導的上敷鐘層則選 擇性覆蓋在除了第-至第三溝槽以外的基板表面上。 帛四Α圖至第四”為用於解釋根據本發明第二示例 性具體實施例的光學模組製造程序:之透視圖。 第四A圖為根據本發明第二示例性具體實施例製造光 ❺,模組的第-步驟之透視圖。碁先,光波導核心層7〇3覆 蓋在基板10上,並且蝕刻遮罩層沈積在核心層上。接下 來’使用在光波導部分2 〇上形成具有陽刻光波導圖樣以及 在光學組件連接部分30上形成具有陰刻第一溝槽成形圖 樣7〇3來形成姓刻遮罩圖樣的遮罩來執行光影處理,並且 姓刻遮罩圖樣轉換成路餘刻遮罩層。然後,乾蚀刻該核心 層來形成光波導核心7〇2和第一溝槽成开)圖樣7〇3。在 示例性具體實施例内’當已形成第—溝槽成形圖樣7〇3, ©貝】在具有第-溝槽的彎角之縱向方向内額外形成個別子溝 槽705 ’如此環氧樹脂順暢地導入或排出第一和第二溝槽, 以便有效對準光學組件(例如:光纖)與雙溝槽的彎角脊部。 第四B圖為根據本發明第二示例性具體實施例製造光 學模組的第二步驟之透視圖。在第二步驟内,蝕刻遮罩覆 盍在光波導部分20上來保護它,並且沈積在光學組件連接 部分30上的第一溝槽成形圖樣7〇3額外經過進一步乾蝕 刻。在此處理當中,光學組件連接部分3〇的第一溝槽成形 圖樣703党到钱刻遮罩的保護,並且一起蚀刻第三溝槽 21 200941053 和第一溝槽c。 第四c圖為根據本發明第二示例性具體實施例製造光 學模組的第三步驟之透視圖。在第三步驟内,用在第二步 驟内的蝕刻遮罩已移除,並且沈積新的蝕刻遮罩層。然後, 在其上透過光微影處理形成蝕刻遮罩圖樣,並且蝕刻遮罩 圖樣轉換成蝕刻遮罩層來形成用於形成第二溝槽D的蝕刻 遮罩。接下來,在其中蝕刻遮罩保護第二溝槽和光波導部 一分20的肩部703 ’第二溝槽D和第三溝槽7〇7則蝕刻呈特 疋深度。在此處理當中,第一溝槽c沈積在第二溝槽D内, 所以維持第-溝槽C的形狀並且與姓刻第二溝槽D 一起朝 向基板的下方表面下降。在蝴完成之後,則去除独到遮 罩。 第四D圖為根據本發明第二示例性具體實施例製造光 學模組的第四步驟之透視圖。在第四步驟内,在其中第一 至第三溝槽C、D和707都受到保護的狀態下,上敷鍵層 只覆蓋在基板的上表面上。 在第四D圖内’(a)為第三步驟期間基板的光學組件連 接部分30的剖面圖。首先,像是su_8或光阻的感光聚合 物材料1003塗抹在基板上(步驟(b))。接下來,基板曝光並 顯衫來移除與基板表面相鄰的感光聚合物材料丨謝,雙溝 7内部除外(㈣阶在喊理#巾,重點在於調整曝光 捋間,如此有足夠的感光聚合物材料Hog留在雙溝槽内。 然後’利用火焰水解沈積(FHD deposition )或電漿增強化學汽相沈積(pEcvD,“ 22 200941053 enhanced chemical vapor deposition”)來沈積上敷鍍氧 層1007 (步驟(d))。 石夕 此時’沈積溫度為120至250。(:。當沈積溫度過高, 則難以去除感光聚合物。接下來,將基板加熱然後冷卻, 利用感光聚合物的熱漲冷縮使得上敷鑛層1〇〇7破裂,並將 基板浸泡在熱光阻去除溶劑内,來去除雙溝槽和其上氧化 石夕層内的聚合物(步驟(e))。 ❹ ❹ 如上述’溝槽的内部受到感光聚合物的保護。使用感 =合物的原因為將基板内溝槽外的聚合物曝光就可迅速 去除’但是本發明並不受限於使用感光聚合物 使用以耐熱性優於感光聚合物的聚合物材料 、 且使用電㈣除基板内溝槽外㈣合物來塗抹基板並 地。==的結果,光波導的上數錢二選擇性 地此積在基板表面上,並不在溝槽 有20μιη或以上的厚度。因為第—具體 上敷鑛層^ 必須沈積在雙溝槽内,不像第二具體實;;例的上敷= 第二溝槽必須㈣至上敷鑛層的厚度,一 ’所以第二 導核心對準。因此,在第二具體實=讓光纖與光^ 減少第二溝槽賴騎度。 的方轉例中,-Γ 第四£圖為根據本發明第二示例性 學模組的第五步驟之透視圖。在此,:,施例製= 決定先織料料核心在與絲Μ心^ D 有效光麵合之非常重要的參數。c準來:: 用像疋二維測量儀器這類儀器來測量第二溝槽^深度之 23 200941053 後,則可微調第二溝槽D的深度。當想要溝槽較深,可執 行使用等向性電漿的乾蝕刻,並且當想要第二溝槽D較 淺,則利用化學汽相沈積均勻沈積氧化矽層。在此處理當 中,將光纖固定在雙溝槽内的彎角線會類似第一具體實施 例一樣去角。 第四F圖為根據本發明第二示例性具體實施例製造光 學模組的第六步驟之透視圖。在第六步驟中,光纖60利用 環氧樹脂固定在U溝槽内,類似於第一具體實施例。此時, 在第一和第二溝槽C、D内額外蝕刻子溝槽708來幫助導 入環氧樹脂,以減少環氧樹脂的使用量。 <第三示例性具體實施例> 第三示例性具體實施例屬於在陰刻圖樣内形成光波導 與雙U溝槽,來利用FHD在光波導陰刻核心内形成光波導 核心,並且去除除了光波導溝槽以外基板表面上的光波導 核心層,並沈積光波導上敷鍍層來形成光波導與雙U溝槽 ❹ 之其他方法,用於手動光纖連接。 第五A圖至第五F圖為用於解釋根據本發明第三示例 性具體實施例的光學模組製造處理之透視圖和剖面圖。 第五A圖為顯示製造本發明第三示例性具體實施例的 光學模組耦合結構之第一步驟透視圖。首先,在沈積蝕刻 遮罩層至基板10上之後,使用具有在光波導部分20内形 成的陰刻光波導成形圖樣以及在光學組件連接部分30内 形成的陰刻第一溝槽圖樣之遮罩來執行光微影處理,來將 24 200941053 圖樣轉換成鉻韻刻遮罩層。然後,氧化石夕基板經過乾 來形成光波導核心的陰刻圖樣F和第一溝槽的陰刻圖樣它。 第五B圖為顯示製造本發明第三示例性具體實施例的 光學模組輕合結構之第二步驟透視圖。在第二步驟内,覆 蓋钱刻遮罩來保護光波導部分20,並且光學組件連 30的第一溝槽圖樣額外經過乾蝕刻。 《刀 第五C圖為顯示製造本發明第三示例性具體實施例的 光學模組耦合結構之第三步驟货視圖。第三步驟為將光波 導核心材料131填入第一步驟内形成的光波導之陰刻溝槽 内的處理。第五C圖中⑴至(4)為顯示在光波導部分2〇」 執行第三步驟的處理之剖面圖,並且第五c圖中⑴至 為在光學組件連接部分30上執行第三步驟的處理之剖面 圖。雖然光波導部分20和光學組件連接部分3〇可用個別 處理來形成,由於甩相同處理來形成比較簡單,第三示例 性具體實施例還是將參考相同處理案例來說明。也就是, ❹第五0圖⑴和第五C圖(i)以及第五〇圖⑺和第五c圖⑼ 都以相同的處理來執行。 第五C圖⑴為光波導部分20的剖面圖,並且第五c 圖⑴為辟組件連接部分3G的剖面^首先,在第五C 圖(1)和第五C圖⑴内,去除第二步驟内使用的钱刻遮罩。 接下來W用FHD沈積氧化石夕粒子(請參閱第五〔圖(2)和 第五C圖(ii)),然後加熱形成氧化矽核心層(第五匚圖(3) 和第五C圖(lu))。然後,基板上形成的核心層餘刻至其上 厚度並去除(請參閱第五C _和第五C圖(iv))。 25 200941053 在此處理當中,填入核心溝槽的氧化矽材料跟之前一 樣。在加熱處理期間,氧化矽粒子層的厚度減少^到二: 1/10,並且粒子熔化並彼此相黏來形成氧化矽層。當粒子 層下的基板表面具有階梯差異,像是溝槽或階4,二熔化 的粒子藉由表面張力在縱方向内順暢移動,讓氧 石夕層的 〇 〇 另一方面,因此,氧化矽粒子沈積在光學組件連接部 分30上的厚度會在光纖固定處的彎角脊部附近達到最 小,如此彎角脊部去角並且第一溝槽E的底彎角也去角取 然後,在下列核心層去除處理當中(第五c圖(4)和第五°c 圖(iv))’因為光波導部分20除了核心溝槽f以外的校心層 已去除’並且光學組件連接部分30的光纖固定彎角脊部 145沿著第五C圖(iii)的脊部145之形狀來蝕刻,所以脊部 的高度低於基板表面(未顯示),並且可絨少用於決定光纖 垂直校準的第二溝槽G之蚀刻深度。當不需要_光_ 定彎角脊部145時,在第二步驟内只可去除光波導部分如 的蝕刻遮罩,並且第二步驟的光學組件連接部分3〇之蝕刻 遮罩可在執行第三步驟之後移除。在此案例中,氧化矽美 板的表面受到平面狀態保護,如第五c圖(iv)内所示。土 第五Μ為顯示製造本發明第三示例性具體實施例的 '予模級耦合結構之第四步驟透視圖。在第四步驟内,在 =積新麵刻遮罩層之後,在㈣遮罩層上形成姓刻遮罩圖 鼓她利用麵影處理形成第二溝槽〇’教將_遮單圖樣 轉換成遮罩層。然後,在其中光波導部分2〇受到保護的狀 26 200941053 態中’蝕刻第二溝槽G炱特定深度。在蝕刻完成之後,則 去除蝕刻遮罩。 第五E圖為顯示製造本發明第三示例性具體實施例的 光學模組耦合結構之第玉步驟透視圖。在第五步驟内,類 似第二具體實施例的第四步驟,在基板内形成的溝槽受到 光阻保護的狀態下,沈積上敷鍍層179。 第五F圖為顯示製造本發明第三示例性具體實施例的 Q 先學模組耦合結構之第六步驟透視圖在第六步驟内,類 似第一具體實施例,使用旋轉拋光設備在基板内沿著光波 導部分20與光學組件連接部分30之間的邊界形成第三溝 槽181,並且插入雙U溝槽的光纖60以用環氧樹脂固定。 雖然參閱其中使用單一光纖的案例來說明第一至第三 具體實施例,複數個第一溝槽可耦合至單一第二溝槽。 第六圖為其中根據本發明第一至第三示例性具體實施 例的複數個光學模組耦合結構整合在基板上之結構透視 ❹ 圖。此後將參考光分配器來說明該結構。光分配器具有單 一輪入接口以及四個輸出接口。輸入接口耦合至單一第一 溝槽與單一第二溝槽,並且輸出接口耦合至四個第一溝槽 以及單一第二溝槽,即是多重U溝槽結構,其中在單一 υ 溝槽内形成四個U溝槽。在此,光纖的直徑為125μιη,並 且光纖的間隔為126μιη。 <第四示例性具體實施例> 在此具體實施例内,將說明使用球面鏡光學校準並固 27 200941053 定光學組件在平基板上的機構,以及使用該機構製造光傳 輸/接收模組的方法。 雖然底下說明使用球面鏡將雷射二極體連接至光纖, 本發明的此具體實施例適用於光纖、光波導、發光二極體、 光二極體、雷射二極體等等的配對,並且不受限於雷射二 極體與光纖的配對。此具體實施例在使用氧化矽基板的案 例中特別有用。 第七圖為根據本發明第四示例性具體實施例的光學模 #1 組耗合結構之透視圖。 根據本發明第四示例性具體實施例的光學模組耦合結 構包含第一光學組件連接部分L和第二光學組件連接部分 Μ,其彼此相連。光學組件連接部分包含形成來支撐光學 組件的第一溝槽L-1和Μ-1以及其内包含第一溝槽並且製 作一空間讓光學組件固定的第二溝槽L-2和Μ-2。當固定 光學組件時,利用第一溝槽L-1和Μ-1彎角的點或線來導 引光學組件。第一光學組件連接部分L與該第二光學組件 ❹ 連接部分Μ彼此對準。 此外,這種結構可為連續重複結構,並且可具有支撐 框架201耦合至光學組件,像是其他光源、光二極體等等。 在第四具體實施例内,第一光學組件連接部分L為光 纖並且第二光學組件連接部分Μ為球面鏡,如附圖所示, 並且將說明其中雷射二極體連接至光學鏡的結構。 光纖70、球面鏡80和雷射二極體235都在光學上彼 此連接,光纖70和球面鏡80的光學軸應該放置在直線上, 28 200941053 以便讓光學連接最佳化。此外,球面鏡80與光纖70在光 學轴方向内相隔預定距離。 光學組件在與基板平行方向内的位置由遮罩圖樣製作 的校準結構之水平位置所決定,也就是,球面鏡80的位置 由三條彎角線226所決定,光纖70的位置由兩條彎角線 228 (只顯示一條彎角線)以及光纖停止臨界229所決定,並 且雷射二極體235的位置由金屬校準圖樣236所決定(請參 閱第七圖)。 〇 金屬校準圖樣236 (請參閱第七圖)可用來當成供應電 流給雷射二極體235的電極。因為雷射二極體235釋放可 觀的熱量,所以需要增加雷射二極體235的厚度以便有效 散熱,並且具有良好導電性的矽層可放置在金屬層與基板 之間。 接下來,球面鏡80關於雷射二極體235的垂直高度由 溝槽M-1和M-2的連接部分中三個彎角線226之高度來決 ❿ 定,並且光纖70關於球面鏡80的垂直高度由溝槽L-1的 彎角線228 (只顯示一條)來決定。 在此,球面鏡80的位置可由彎角點來決定,並且不受 限於彎角線226。此外,線的部分可為與基板垂直的表面, '其可與基板夾特定角度而傾斜。 溝槽L-2的兩底端表面決定兩彎角線228 (只顯示一條 彎角線)之間的間隙以及光纖的高度。溝槽M-2的三個底部 表面決定三條彎角線226之間的間隙以及球面鏡80的高 度0 29 200941053 溝槽L-2的底部表面可具有與溝槽M-2的底部表面相 同之深度。在此案例中,光纖70和球面鏡80的中央軸距 離基板表面之高度可由在設計遮罩時,支撐光纖的兩彎角 線之間間隙與支撐球面鏡的三彎角線之間間隙之不同設定 來決定。 接下來,將說明製造根據本發明第四示例性具體實施 例的光學模組之方法。 第八A圖至第八D圖為用於解釋根據本發明第四示例 性具體實施例的光學模組製造處理之透視圖。 第八A圖為顯示製造本發明第四示例性具體實施例的 光學模組耦合結構之第一步驟透視圖。利用光微影處理以 及乾蝕刻處理在基板内形成溝槽L-1和M-1,類似於第一 至第三具體實施例。 第八B圖為顯示製造本發明第四示例性具體實施例的 光學模組耦合結構之第二步驟透視圖。在完成第一步驟之 後,利用光微影處理以及乾蝕刻處理形成溝槽M-2,類似 0 於第一至第三具體實施例。在此處理當中,溝槽L-1和M-1 距離基板表面的深度增加。 第八C圖為顯示製造本發明第四示例性具體實施例的 光學模組耦合結構之第三步驟透視圖。在完成第二步驟之 後,利用光微影處理以及乾蝕刻處理形成溝槽L-2,類似 於第一至第三具體實施例。在此處理當中,溝槽L-1、M-1 和M-2距離基板表面的深度增加。 第八D圖為顯示製造本發明第四示例性具體實施例的 30 200941053 光學模組耦合結構之第四步驟透視圖。首先,在基 成雷射二極體校準金屬遮罩-。校準金屬遮軍说可^ 有個別校準圖樣’以便絮助將雷射二極體235放置在準禮 的水平位置上。接下來,雷射二極體235放置在校準位置 上並固定在此。然後,球面鏡80固定在三條彎角線226上, 並且用CVD附加至三條贊角線226。在此,利用CVD沈 積的氧化石夕層沈積在球面鏡與三條彎角線之間的間隙内以 及基板正個表面上,來將球面鏡附加至三個彎角。在此 理當中’當不要將氧化發層沈積在溝槽^和L_2上來固 定光纖時,可使用第二具體實施例的方法在光纖固定溝槽 内可填入光阻來保護溝槽。 9 球面鏡可由可提供與基板相同熱膨脹係數的材料所形 成,避免球面鏡因為雷射二極體產生的高溫而破裂並從基 板上分離。例如:當基板由石夕形成時,球面鏡由,ex形 成,並且當基板由石英玻璃形成時,則球面鏡也由石英玻 φ 璃形成。 除了使用CVD固定球面鏡的方法以#卜,還可使用將環 氧樹脂注入溝槽並且照射紫外線來凝固的方法。接下 來’光纖70插入固定溝槽L-1和l_2並注入環氧樹脂,然 ‘後凝固來固定光纖。 <第五示例性具體實施例〉 在此具體實施例内’將說明使用45度鏡進行光學校準 並固定光學组件在平基板上的機構,以及使用該機構製造 31 200941053 光學模組耦合結構之方法。 在此具體實施例内,雖然說明使用45度鏡將光二極體 連接至光纖,不過可讓光二極體光連接至光纖的其他角度 、: 外’此具體實施例可套用於光纖、光波導、發 光-極體、雷射二極體等等的配對,並且不受限於光二極 體和光纖的配對。再者,此具體實施例在使用氧化石夕基板 的案例中特别有用。 第九圖為根據本發明第五示例性具體實施例的光學模 組之透視圖。 ' 清參閱第九圖,光學模組的該耦合結構包含一光學組 件連接部分和具有—預定角度的—v溝槽,該光學組件連 接部分包含在該基板内形成來支撐該光學組件的第一溝槽 K-1以及一第二溝槽κ_2,該第二溝槽内包含該第一溝槽 Κ-1並且製作出一其中固定該光學組件的空間,其中當固 定該光學組件時由該第一溝槽一彎角的一線或點來導引該 光學組件。 該V溝槽具有要光學連接至該光學組件連接部分内所 固定光纖之預定傾斜角度。例如:光纖70透過45度鏡277 光學連接至光二極體279 (請參閱第十D圖)。光纖70與光 二極體279關於基板的平行位置由遮罩圖樣製作的校準結 構之水平位置所決定,使用包含垂直於基板的V形刀刃並 且具有兩個衫度表面之旋轉拋光設備,藉由拋光氧化矽基 板來製造45度鏡。光纖的位置由兩條彎角線263 (只顯示 一條彎角線)以及一個光學組件連接部分264所決定,並且 32 200941053 光二極體279的位置由金屬校準圖樣258來決定。金屬校 準圖樣258可用來當成光二極體的電極279。 接下來,將說明製造光學模組耦合結構的方法。 第十A圖至第十D圖為用於解釋根據本發明第五示例 性具體實施例的光學模組製造處理之透視圖。 第十A圖為根據本發明第五示例性具體實施例製造光 學模組的第一步驟之透視圖。利用光微影處理以及乾蝕刻 處理在'基板内形成溝槽K-1,類似於第一至第三具體實施 〇 例。 第十B圖為根據本發明第五示例性具體實施例製造光 學模組的第二步驟之透視圖。在完成第一步驟之後,利用 光微影處理以及乾蝕刻處理形成第二溝槽K-2,類似於第 一至第三具體實施例。在此處理當中,第一溝槽K-1距離 基板表面的深度增加。接下來,沈積用於光二極體校準的 電極金屬層258。 0 第十C圖為根據本發明第五示例性具體實施例製造光 學模組的第三步驟之透視圖。在此步驟内,利用旋轉拋光 工具將V溝槽266拋光,來形成45度反射表面。然後, 介電或金屬反射層267塗抹在45度表面上。 ' 第十D圖為根據本發明第五示例性具體實施例製造光 學模組的第四步驟之透視圖。首先,光二極體放置在校準 位置上並固定在此。為了幫助將光二極體放置在準確的水 平位置上,校準金屬遮罩可具有個別校準圖樣。接下來, 光纖70插入溝槽K-1和K-2並在溝槽内注入環氧樹脂,然 33 200941053 後凝固來固定光纖。 從前面可瞭解,本發明的效果如下: ⑴因為光纖不❹域n塊直接連接至光學模組,所 以可降低製造成本。. (2) 因為用雙溝槽内的兩_定線來μ光纖,所以可 確定穩定的光纖連接。 (3) 因為用雙溝槽内的兩個固定線來固定球面鏡,所以 可確定穩定校準球面鏡。 (4) 此外’因為固線或固^點可轉成圓表面,所以可 滅少在光纖或球面鏡插入時因為壓迫至固定線或固定點而 導致校準結構受損的可能性。 (5) 光纖或球面鏡在基板的水平方向内自動校準,如此 玎以基板的垂直方向調整光纖或球面鏡的高度,與水平方 向無關。也就是’利用在校準溝槽内沈積CVD層就可提高 光纖或球面鏡的高度,或利用乾蝕刻校準溝槽就可降低光 @或球面鏡的南度。 (6) 可避免光波導的上敷鍍層沈積在光纖或球面鏡的 校準溝槽内,藉此減少光纖或球面鏡的校準溝槽蝕刻時間。 (7) 使用CVD方法不使用環氧樹脂就可將球面鏡固定 炎揭合至球面鏡校準溝槽内。 雖然舉例說明本發明的示例性具體實施例,不過所屬 技術領域中具有通常知識者會瞭解,在不悖離申請專利範 園内公佈的本發明精神與範疇之下,可進行許多修改、增 添以及取代。 34 200941053 【圖式簡單說明】 從下列參考附圖的詳細說明中,將會更清楚了解到本 發明的上述與其他目的、特色與其他優點。 第一圖為根據本發明第一示例性具體實施例的光學模 組耦合結構之透視圖; 第二A圖至第二F圖為用於解釋根據本發明第一示例 _ 性具體實施例的光學模組製造程序之透視圖; ❹ 第三圖為根據本發明第二示例性具體實施例的光學模 組麵合結構之透視圖; 第四A圖至第四F圖為用於解釋根據本發明第二示例 性具體實施例的光學模組製造程序之透視圖; 第五A圖至第五F圖為用於解釋根據本發明第三示例 性具體實施例的光學模組製造程序之透視圖和剖面圖; 第六圖為根據本發明第一至第三示例性具體實施例的 ❹ 光分配器之光學模組透視圖; 第七圖為根據本發明第四示例性具體實施例的光學模 組叙合結構之透視圖; 第八A圖至第八D圖為用於解釋根據本發明第四示例 性具體實施例的光學模組製造程序之透視圖; 第九圖為根據本發明第五示例性具體實施例的光學模 組之透視圖;以及 第十A圖至第十D圖為用於解釋根據本發明第五示例 性具體實施例的光學模組製造程序之透視圖。 35 200941053 【主要元件符號說明】 10 基板 20 光波導部分 30 光學組件連接部分 60 光纖 70 光纖 80 球面鏡 102 核心 103 光波導核心層 104 第一溝槽圖樣 131 光波導核心材料 145 光纖固定彎角脊部 179 上敷鑛層 181 第三溝槽 201 支撐框架 226 彎角線 228 彎角線 229 光纖停止臨界 235 雷射二極體 236 金屬校準圖樣 258 金屬校準圖樣 263 彎角線 264 光學組件連接部分 266 V溝槽 ❹The wind "first" is a perspective view of a fourth step of manufacturing a light: iridium group according to the first exemplary embodiment of the present invention. In the fourth step, 're-depositing chrome fines using photolithography to form a second Trench_mask pattern, ^The second groove of the rear axis is prepared to form a second trench to form a second trench B, and a dry etching mask is formed by forming a first trench The method is the same. Because the first trench A is deposited in the trench B, the first trench a_ is maintained and the lower surface of the substrate is lowered when the first trench 3 is touched. Figure E is a perspective view of a fifth step of fabricating a dummy according to a first exemplary embodiment of the present invention. After the fourth step, an interface between the optical waveguide 200941053 portion 20 and the optical component connecting portion 3A A criticality 409 may be generated, making it difficult for the optical component to be ideally close to the optical waveguide. Therefore, in the fifth step, the 'cutting saw' cuts the substrate surface to a specific depth along the boundary between the optical waveguide portion 2 and the optical component connecting portion 30. Forming a third trench 501. Here The cutting saw blade may be a saw or a polishing ore having diamond particles, which is generally used for cutting a semiconductor substrate. Φ Second F is a perspective view of a sixth step of fabricating an optical module in accordance with a first exemplary embodiment of the present invention. Fig. In the sixth (four) #60 and aligned with the double U material (A and B), the condensate 6 〇 is fixed to the groove. The optical fiber uses a vacuum holder, etc. = two contact with the curved ridge of the double groove So, the second fiber [fiber, the second and third grooves A, B and 501 can penetrate the resin along the first and the second resin, so that the optical fiber 60 is fixed to the double groove and then the epoxy is cured by ultraviolet light.弯的弯角线。 〇<Second exemplary embodiment> The third figure is a perspective view of a second exemplary group-coupled structure according to the present invention. Unlike the optical/# The coupling structure of the specific embodiment comprises a second example pick C, and a second trench D containing a space of the first trench and the first trench assembly supporting the optical fiber. Here, in the $, a fixed light boxing is made to align with the core 702 of the optical waveguide. When learning the component, the component is learned, and the angle of the epoxy resin is adjusted to the angle of the groove 0 to guide the bow to the longitudinal angle of the first groove C. The angle is or is discharged from it. Forming the sub-grooves inward, guiding and fixing the optical parts to the first groove Μ corners at night with 20 200941053. For the example of manufacturing the optical mode, the first to third grooves are formed by dry silver etching. The groove and the 707, and the upper clock layer of the optical waveguide is selectively covered on the surface of the substrate other than the first to third grooves. The fourth to fourth" is for explaining the second example according to the present invention. Optical module manufacturing procedure of a specific embodiment: perspective view. Figure 4A is a perspective view of a first step of fabricating a diaphragm in accordance with a second exemplary embodiment of the present invention. First, the optical waveguide core layer 7〇3 is overlaid on the substrate 10, and an etch mask layer is deposited on the core layer. Next, a light-shield is formed by forming a mask having a positive-engraved optical waveguide pattern on the optical waveguide portion 2 and forming an inscribed first groove-forming pattern 7〇3 on the optical component connecting portion 30 to form a mask pattern. Processing, and the surname mask pattern is converted into a road mask layer. Then, the core layer is dry etched to form the optical waveguide core 7〇2 and the first trench is opened) pattern 7〇3. In the exemplary embodiment, 'when the first groove forming pattern 7〇3 has been formed, the outer sub-groove 705' is additionally formed in the longitudinal direction of the corner having the first groove so that the epoxy resin is smooth The first and second grooves are introduced or discharged to effectively align the optical components (e.g., optical fibers) with the angled ridges of the double grooves. Figure 4B is a perspective view of a second step of fabricating an optical module in accordance with a second exemplary embodiment of the present invention. In the second step, the etch mask is overlaid on the optical waveguide portion 20 to protect it, and the first trench forming pattern 7〇3 deposited on the optical component connecting portion 30 is additionally subjected to further dry etching. In this process, the first groove forming pattern 703 of the optical component connecting portion 3 is protected by the mask and the third trench 21 200941053 and the first trench c are etched together. Figure 4c is a perspective view of a third step of fabricating an optical module in accordance with a second exemplary embodiment of the present invention. In the third step, the etch mask used in the second step has been removed and a new etch mask layer is deposited. Then, an etch mask pattern is formed thereon by photolithography, and the etch mask pattern is converted into an etch mask layer to form an etch mask for forming the second trench D. Next, the second trench D and the third trench 7'' are etched to a specific depth in which the etch mask protects the second trench and the shoulder portion 703' of the optical waveguide portion 20. In this process, the first trench c is deposited in the second trench D, so that the shape of the first trench C is maintained and falls toward the lower surface of the substrate together with the second trench D. After the butterfly is finished, the unique mask is removed. The fourth D is a perspective view of a fourth step of fabricating an optical module in accordance with a second exemplary embodiment of the present invention. In the fourth step, in a state in which the first to third grooves C, D, and 707 are all protected, the upper bonding layer covers only the upper surface of the substrate. In the fourth D diagram, '(a) is a cross-sectional view of the optical component connecting portion 30 of the substrate during the third step. First, a photosensitive polymer material 1003 such as su_8 or photoresist is applied to the substrate (step (b)). Next, the substrate is exposed and exposed to remove the photopolymer material adjacent to the surface of the substrate. Except for the inside of the double groove 7 ((4) is in the shouting #巾, the focus is on adjusting the exposure time, so there is enough sensitivity The polymer material Hog is left in the double trench. Then, the overlying oxygen plating layer 1007 is deposited by flame deposition (FHD deposition) or plasma enhanced chemical vapor deposition (pEcvD, "22 200941053 enhanced chemical vapor deposition"). (d)). Shi Xi at this time 'deposition temperature is 120 to 250. (: When the deposition temperature is too high, it is difficult to remove the photopolymer. Next, the substrate is heated and then cooled, using the thermal expansion of the photopolymer Shrinking the upper ore layer 1〇〇7, and immersing the substrate in the thermal photoresist removal solvent to remove the double grooves and the polymer in the oxide layer (step (e)). ❹ ❹ 'The inside of the trench is protected by the photopolymer. The reason for using the sensitizer is that the polymer outside the trench in the substrate can be quickly removed by exposure. 'But the invention is not limited to the use of a photopolymer. The polymer material is superior in heat resistance to the photopolymer, and the substrate is coated with the electric material (4) in addition to the outer layer (tetra) in the substrate. As a result of the ==, the optical waveguide is selectively accumulated. On the surface of the substrate, there is not a thickness of 20 μm or more in the trench. Because the first-specific deposit layer must be deposited in the double trench, unlike the second concrete example; the upper coating = the second trench must be (four) to the top The thickness of the ore layer, a 'so the second core is aligned. Therefore, in the second concrete = let the fiber and the light ^ reduce the second groove to the riding degree. - Γ fourth map It is a perspective view of the fifth step of the second exemplary module according to the present invention. Here, the embodiment method determines the very important parameters of the first woven material core in combination with the effective surface of the silk core. c. Come to:: Use a device such as a two-dimensional measuring instrument to measure the second groove ^ depth 23 200941053, then fine-tune the depth of the second groove D. When you want the groove to be deep, you can perform Dry etching using an isotropic plasma, and using a chemical vapor phase sink when it is desired that the second trench D is shallow The yttrium oxide layer is uniformly deposited. In this process, the corner line in which the optical fiber is fixed in the double groove is chamfered like the first embodiment. The fourth F picture is manufactured according to the second exemplary embodiment of the present invention. A perspective view of a sixth step of the optical module. In a sixth step, the optical fiber 60 is secured within the U-groove with epoxy, similar to the first embodiment. At this point, in the first and second trenches C Additional sub-channels 708 are etched into the D to help introduce epoxy resin to reduce the amount of epoxy resin used. <Third Exemplary Embodiment> The third exemplary embodiment pertains to forming light in an intaglio pattern. a waveguide and a double U trench to form an optical waveguide core in the optical core of the optical waveguide by FHD, and remove the optical waveguide core layer on the surface of the substrate except the optical waveguide trench, and deposit an optical waveguide on the optical waveguide to form an optical waveguide and a double Other methods of U-groove 用于 for manual fiber optic connections. Figs. 5A to 5F are perspective and cross-sectional views for explaining an optical module manufacturing process according to a third exemplary embodiment of the present invention. Fig. 5A is a perspective view showing a first step of manufacturing the optical module coupling structure of the third exemplary embodiment of the present invention. First, after depositing the etch mask layer onto the substrate 10, using a mask having an annealed optical waveguide forming pattern formed in the optical waveguide portion 20 and an intaglio first trench pattern formed in the optical component connecting portion 30 is performed. Light lithography to convert the 24 200941053 pattern into a chrome mask. Then, the oxidized stone substrate is dried to form an intaglio pattern F of the optical waveguide core and an intaglio pattern of the first trench. Fig. 5B is a perspective view showing a second step of manufacturing the optical module light-bonding structure of the third exemplary embodiment of the present invention. In the second step, the mask is covered to protect the optical waveguide portion 20, and the first trench pattern of the optical component 30 is additionally dry etched. Fig. 5C is a view showing a third step of the optical module coupling structure for manufacturing the third exemplary embodiment of the present invention. The third step is a process of filling the optical waveguide core material 131 into the intaglio trench of the optical waveguide formed in the first step. In the fifth C diagram, (1) to (4) are cross-sectional views showing the process of performing the third step in the optical waveguide portion 2'', and (1) in the fifth c-figure to the third step of performing the third step on the optical component connecting portion 30. Processing profile. Although the optical waveguide portion 20 and the optical component connecting portion 3 can be formed by individual processing, since the formation of the same processing is relatively simple, the third exemplary embodiment will be explained with reference to the same processing example. That is, ❹ fifth 0 (1) and fifth C (i) and fifth (7) and fifth c (9) are all performed in the same process. The fifth C diagram (1) is a cross-sectional view of the optical waveguide portion 20, and the fifth c diagram (1) is a cross section of the component connection portion 3G. First, in the fifth C diagram (1) and the fifth C diagram (1), the second is removed. The money used in the steps is engraved. Next, W-deposited oxidized stone particles (see Figure 5 (Fig. (2) and Figure 5 (ii)), and then heated to form a cerium oxide core layer (fifth (3) and fifth C) (lu)). Then, the core layer formed on the substrate is left to the thickness and removed (see fifth C_ and fifth C (iv)). 25 200941053 In this process, the yttrium oxide material filled in the core trench is the same as before. During the heat treatment, the thickness of the cerium oxide particle layer is reduced by two to one tenth, and the particles are melted and adhered to each other to form a cerium oxide layer. When the surface of the substrate under the particle layer has a step difference, such as a groove or a step 4, the two melted particles move smoothly in the longitudinal direction by the surface tension, so that the oxon layer is on the other hand, and therefore, yttrium oxide The thickness of the particles deposited on the optical component connecting portion 30 is minimized near the corner ridge where the fiber is fixed, such that the corner ridge is chamfered and the bottom corner of the first groove E is also dehorned and then, in the following Among the core layer removal processes (fifth c-picture (4) and fifth-degree diagram (iv)) 'because the optical waveguide portion 20 has removed the core layer other than the core trench f' and the optical component of the optical component connection portion 30 The fixed corner ridge 145 is etched along the shape of the ridge 145 of the fifth C-Fig. (iii), so the height of the ridge is lower than the surface of the substrate (not shown), and the velvet is less used to determine the vertical alignment of the fiber. The etching depth of the two trenches G. When the _light_corner ridge 145 is not required, only the etch mask of the optical waveguide portion can be removed in the second step, and the etch mask of the optical component connecting portion 3 of the second step can be performed. Remove after three steps. In this case, the surface of the yttrium oxide plate is protected by a planar state, as shown in Figure 5 (iv). The fifth step is a fourth step perspective view showing the 'pre-modulation coupling structure for manufacturing the third exemplary embodiment of the present invention. In the fourth step, after the mask layer is formed, the surname mask is formed on the (four) mask layer. She uses the mask processing to form the second trench 〇 'teaching _ mask pattern into Mask layer. Then, the second trench G is etched to a certain depth in the state in which the optical waveguide portion 2 is protected. After the etching is completed, the etch mask is removed. Fig. 6E is a perspective view showing the jade step of the optical module coupling structure for fabricating the third exemplary embodiment of the present invention. In the fifth step, similar to the fourth step of the second embodiment, the upper plating layer 179 is deposited in a state where the trench formed in the substrate is protected by the photoresist. The fifth F is a sixth step perspective view showing the coupling structure of the Q pre-learning module for manufacturing the third exemplary embodiment of the present invention. In the sixth step, similar to the first embodiment, a rotary polishing apparatus is used in the substrate. A third groove 181 is formed along a boundary between the optical waveguide portion 20 and the optical component connecting portion 30, and the double U-trenched optical fiber 60 is inserted to be fixed with an epoxy resin. Although the first to third embodiments are described with reference to a case in which a single fiber is used, a plurality of first trenches may be coupled to a single second trench. Fig. 6 is a perspective view showing the structure in which a plurality of optical module coupling structures according to the first to third exemplary embodiments of the present invention are integrated on a substrate. The structure will be described later with reference to a light distributor. The optical splitter has a single wheel-in interface and four output interfaces. The input interface is coupled to the single first trench and the single second trench, and the output interface is coupled to the four first trenches and the single second trench, ie, a multiple U trench structure in which a single trench is formed Four U grooves. Here, the diameter of the optical fiber is 125 μm, and the interval of the optical fibers is 126 μm. <Fourth Exemplary Embodiment> In this embodiment, a mechanism for optically aligning and fixing the optical component on a flat substrate using a spherical mirror, and manufacturing the optical transmission/reception module using the mechanism will be described. Methods. Although the following description illustrates the use of a spherical mirror to connect a laser diode to an optical fiber, this embodiment of the invention is applicable to the pairing of optical fibers, optical waveguides, light-emitting diodes, photodiodes, laser diodes, etc., and Limited by the pairing of the laser diode and the fiber. This embodiment is particularly useful in the case of using a ruthenium oxide substrate. The seventh figure is a perspective view of the optical module #1 group consumable structure according to the fourth exemplary embodiment of the present invention. The optical module coupling structure according to the fourth exemplary embodiment of the present invention includes a first optical component connecting portion L and a second optical component connecting portion Μ which are connected to each other. The optical component connecting portion includes first trenches L-1 and Μ-1 formed to support the optical component, and second trenches L-2 and Μ-2 including therein the first trench and making a space for fixing the optical component . When the optical component is fixed, the optical components are guided by points or lines of the first grooves L-1 and Μ-1. The first optical component connecting portion L and the second optical component ❹ connecting portion 对准 are aligned with each other. Moreover, such a structure can be a continuous repeating structure and can have a support frame 201 coupled to an optical component such as other light sources, photodiodes, and the like. In the fourth embodiment, the first optical component connecting portion L is a fiber and the second optical component connecting portion Μ is a spherical mirror as shown in the drawing, and a structure in which the laser diode is connected to the optical mirror will be explained. The optical fiber 70, the spherical mirror 80 and the laser diode 235 are optically connected to each other, and the optical axes of the optical fiber 70 and the spherical mirror 80 should be placed in a straight line, 28 200941053 to optimize the optical connection. Further, the spherical mirror 80 is spaced apart from the optical fiber 70 by a predetermined distance in the optical axis direction. The position of the optical component in the direction parallel to the substrate is determined by the horizontal position of the calibration structure made by the mask pattern, that is, the position of the spherical mirror 80 is determined by three corner lines 226, and the position of the optical fiber 70 is composed of two curved lines. The 228 (showing only one corner line) and the fiber stop threshold 229 are determined, and the position of the laser diode 235 is determined by the metal calibration pattern 236 (see Figure 7). 〇 The metal calibration pattern 236 (see Figure 7) can be used as an electrode to supply current to the laser diode 235. Since the laser diode 235 releases appreciable heat, it is necessary to increase the thickness of the laser diode 235 for efficient heat dissipation, and a layer of germanium having good conductivity can be placed between the metal layer and the substrate. Next, the vertical height of the spherical mirror 80 with respect to the laser diode 235 is determined by the height of the three corner lines 226 in the connecting portions of the grooves M-1 and M-2, and the vertical direction of the optical fiber 70 with respect to the spherical mirror 80 The height is determined by the corner line 228 of the groove L-1 (only one is shown). Here, the position of the spherical mirror 80 can be determined by the corner point and is not limited to the corner line 226. In addition, the portion of the wire can be a surface that is perpendicular to the substrate, which can be tilted at a particular angle to the substrate. The two bottom end surfaces of the groove L-2 determine the gap between the two corner lines 228 (only one corner line is displayed) and the height of the fiber. The three bottom surfaces of the groove M-2 determine the gap between the three corner lines 226 and the height of the spherical mirror 80. 29 200941053 The bottom surface of the groove L-2 may have the same depth as the bottom surface of the groove M-2. . In this case, the height of the central axis of the optical fiber 70 and the spherical mirror 80 from the surface of the substrate can be set differently between the gap between the two corner lines supporting the optical fiber and the three curved lines supporting the spherical mirror when the mask is designed. Decide. Next, a method of manufacturing an optical module according to a fourth exemplary embodiment of the present invention will be explained. 8A to 8D are perspective views for explaining an optical module manufacturing process according to a fourth exemplary embodiment of the present invention. Figure 8A is a perspective view showing a first step of fabricating the coupling structure of the optical module of the fourth exemplary embodiment of the present invention. The grooves L-1 and M-1 are formed in the substrate by photolithography and dry etching, similar to the first to third embodiments. Figure 8B is a perspective view showing a second step of fabricating the coupling structure of the optical module of the fourth exemplary embodiment of the present invention. After the completion of the first step, the trench M-2 is formed by photolithography and dry etching, similar to the first to third embodiments. In this process, the depths of the grooves L-1 and M-1 from the surface of the substrate are increased. The eighth C is a perspective view showing a third step of manufacturing the optical module coupling structure of the fourth exemplary embodiment of the present invention. After the completion of the second step, the trenches L-2 are formed by photolithography and dry etching, similar to the first to third embodiments. In this process, the depths of the trenches L-1, M-1, and M-2 from the surface of the substrate are increased. The eighth D is a perspective view showing a fourth step of the 30 200941053 optical module coupling structure for manufacturing the fourth exemplary embodiment of the present invention. First, the metal mask is calibrated in the base laser diode. The calibration metal can be said to have an individual calibration pattern to facilitate placement of the laser diode 235 in a horizontal position. Next, the laser diode 235 is placed in the calibration position and fixed thereto. Then, the spherical mirror 80 is fixed to the three corner lines 226 and attached to the three angle lines 226 by CVD. Here, the spherical mirror is attached to the three corners by depositing a layer of oxidized stone deposited by CVD in the gap between the spherical mirror and the three corner lines and on the front surface of the substrate. In this case, when the oxidized hair layer is not deposited on the grooves ^ and L_2 to fix the optical fiber, the method of the second embodiment can be used to fill the optical fiber fixing groove with a photoresist to protect the groove. 9 Spherical mirrors can be formed from materials that provide the same coefficient of thermal expansion as the substrate, preventing the spherical mirror from rupturing and separating from the substrate due to the high temperatures generated by the laser diode. For example, when the substrate is formed by a stone eve, the spherical mirror is formed of ex, and when the substrate is formed of quartz glass, the spherical mirror is also formed of quartz glass φ glass. In addition to the method of fixing a spherical mirror by CVD, a method of injecting an epoxy resin into a groove and irradiating with ultraviolet rays to solidify may be used. Next, the optical fiber 70 is inserted into the fixing grooves L-1 and l_2 and injected with epoxy resin, and then 'post-solidified to fix the optical fiber. <Fifth Exemplary Embodiment> In this embodiment, a mechanism for optically aligning and fixing an optical component on a flat substrate using a 45-degree mirror, and manufacturing using the mechanism will be described. 31 200941053 Optical module coupling structure The method. In this embodiment, although the use of a 45 degree mirror to connect the optical diode to the optical fiber is illustrated, the optical diode can be optically connected to other angles of the optical fiber, and the specific embodiment can be applied to the optical fiber, the optical waveguide, Pairing of illuminators - polar bodies, laser diodes, etc., and is not limited to pairing of photodiodes and optical fibers. Again, this particular embodiment is particularly useful in the case of using an oxidized stone substrate. The ninth drawing is a perspective view of an optical module in accordance with a fifth exemplary embodiment of the present invention. Referring to the ninth drawing, the coupling structure of the optical module includes an optical component connecting portion and a -v groove having a predetermined angle, the optical component connecting portion including a first portion formed in the substrate to support the optical component a trench K-1 and a second trench κ_2, the second trench includes the first trench Κ-1 and a space in which the optical component is fixed, wherein the optical component is fixed by the first A line or point of a groove and an angle guides the optical component. The V-groove has a predetermined tilt angle to be optically coupled to the fixed fiber within the connecting portion of the optical component. For example, fiber 70 is optically coupled to photodiode 279 through a 45 degree mirror 277 (see Figure 10D). The parallel position of the optical fiber 70 and the photodiode 279 with respect to the substrate is determined by the horizontal position of the calibration structure made of the mask pattern, and is rotated by using a rotary polishing apparatus including a V-shaped blade perpendicular to the substrate and having two jersey surfaces. A ruthenium oxide substrate is used to fabricate a 45 degree mirror. The position of the fiber is determined by two corner lines 263 (only one angle line is shown) and an optical component connection portion 264, and the position of the 32 200941053 light diode 279 is determined by the metal calibration pattern 258. The metal calibration pattern 258 can be used as the electrode 279 of the photodiode. Next, a method of manufacturing an optical module coupling structure will be explained. 10A to 10D are perspective views for explaining an optical module manufacturing process according to a fifth exemplary embodiment of the present invention. Figure 10A is a perspective view of a first step of fabricating an optical module in accordance with a fifth exemplary embodiment of the present invention. The trench K-1 is formed in the 'substrate by photolithography and dry etching, similar to the first to third embodiments. Figure 10B is a perspective view of a second step of fabricating an optical module in accordance with a fifth exemplary embodiment of the present invention. After the completion of the first step, the second trench K-2 is formed by photolithography and dry etching, similar to the first to third embodiments. In this process, the depth of the first trench K-1 from the surface of the substrate increases. Next, an electrode metal layer 258 for photodiode calibration is deposited. 0 C is a perspective view of a third step of fabricating an optical module in accordance with a fifth exemplary embodiment of the present invention. In this step, the V-grooves 266 are polished using a rotary polishing tool to form a 45-degree reflective surface. A dielectric or metal reflective layer 267 is then applied over the 45 degree surface. The tenth D is a perspective view of a fourth step of fabricating an optical module in accordance with a fifth exemplary embodiment of the present invention. First, the photodiode is placed in the calibration position and fixed here. To help position the photodiode in an accurate horizontal position, the calibrated metal mask can have individual calibration patterns. Next, the optical fiber 70 is inserted into the grooves K-1 and K-2 and an epoxy resin is injected into the groove, and then 33,410,53, and then solidified to fix the optical fiber. As can be understood from the foregoing, the effects of the present invention are as follows: (1) Since the optical fiber is not directly connected to the optical module, the manufacturing cost can be reduced. (2) Since the μ fiber is used for the two _ alignments in the double trench, a stable fiber connection can be determined. (3) Since the spherical mirror is fixed by two fixed lines in the double groove, the stable calibration spherical mirror can be determined. (4) In addition, because the fixed line or the solid point can be converted into a round surface, the possibility of damage to the calibration structure due to compression to a fixed line or a fixed point when the fiber or the spherical mirror is inserted can be eliminated. (5) The fiber or the spherical mirror is automatically calibrated in the horizontal direction of the substrate, so that the height of the fiber or the spherical mirror is adjusted in the vertical direction of the substrate, regardless of the horizontal direction. That is, the height of the fiber or the spherical mirror can be increased by depositing a CVD layer in the calibration trench, or the alignment of the trench can be reduced by dry etching to reduce the southness of the light or the spherical mirror. (6) The upper coating of the optical waveguide can be prevented from depositing in the alignment trench of the fiber or the spherical mirror, thereby reducing the calibration trench etching time of the fiber or the spherical mirror. (7) Using a CVD method, the spherical mirror can be removed into the spherical mirror calibration groove without using epoxy resin. While exemplifying the exemplary embodiments of the present invention, those of ordinary skill in the art will appreciate that many modifications, additions and substitutions can be made without departing from the spirit and scope of the invention disclosed in the application. . BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features and other advantages of the present invention will become more apparent from the aspects of the appended claims. The first figure is a perspective view of a coupling structure of an optical module according to a first exemplary embodiment of the present invention; the second to second figures F are diagrams for explaining optical according to a first exemplary embodiment of the present invention A perspective view of a module manufacturing process; ❹ The third drawing is a perspective view of an optical module facing structure according to a second exemplary embodiment of the present invention; and FIGS. 4A to 4F are for explaining the present invention. A perspective view of an optical module manufacturing program of the second exemplary embodiment; FIGS. 5A to 5F are perspective views for explaining an optical module manufacturing program according to a third exemplary embodiment of the present invention, and 6 is a perspective view of an optical module of a neon light distributor according to first to third exemplary embodiments of the present invention; and a seventh embodiment is an optical module according to a fourth exemplary embodiment of the present invention; A perspective view of a synthesizing structure; FIGS. 8A to 8D are perspective views for explaining an optical module manufacturing procedure according to a fourth exemplary embodiment of the present invention; and a ninth drawing is a fifth example according to the present invention Specific embodiment A perspective view of an optical module; and a tenth through tenth Dth are perspective views for explaining an optical module manufacturing procedure according to a fifth exemplary embodiment of the present invention. 35 200941053 [Description of main component symbols] 10 Substrate 20 Optical waveguide part 30 Optical component connection part 60 Optical fiber 70 Optical fiber 80 Spherical mirror 102 Core 103 Optical waveguide core layer 104 First groove pattern 131 Optical waveguide core material 145 Optical fiber fixed angle ridge 179 Upper dressing layer 181 Third groove 201 Support frame 226 Angle line 228 Corner line 229 Fiber stop critical 235 Laser diode 236 Metal calibration pattern 258 Metal calibration pattern 263 Corner line 264 Optical component connection part 266 V groove Groove
36 200941053 267 金屬反射層 277 45度鏡 279 光二極體 302 上敷鍍層 409 臨界 501 第三溝槽 702 核心 703 光波導核心層36 200941053 267 Metal Reflective Layer 277 45 Degree Mirror 279 Light Diode 302 Upper Coating 409 Critical 501 Third Groove 702 Core 703 Optical Waveguide Core Layer
705 子溝槽 707 第三溝槽 708 子溝槽 1003感光聚合物材料 1007上敷鍍氧化矽層 A 第一溝槽 B 第二溝槽 C 第一溝槽 D 第二溝槽 E 陰刻圖樣 F 陰刻圖樣 G 第二溝槽 K-1 第一溝槽 K-2 第二溝槽 L 第一光學組件連接部分 L-1 第一溝槽 37 200941053 L-2 第二溝槽 Μ 第二光學組件連接部分 M-l 第一溝槽 M-2 第二溝槽 ❹705 sub-trench 707 third trench 708 sub-trench 1003 photo-polymer layer 1007 coated with yttrium oxide layer A first trench B second trench C first trench D second trench E negative pattern F intaglio pattern G Second groove K-1 First groove K-2 Second groove L First optical component connection portion L-1 First groove 37 200941053 L-2 Second groove Μ Second optical component connection portion M1 First trench M-2 second trench
Q 38Q 38