TW200939900A - Plasma reaction chamber with a plurality of processing plates having a plurality of plasma reaction zone - Google Patents

Plasma reaction chamber with a plurality of processing plates having a plurality of plasma reaction zone Download PDF

Info

Publication number
TW200939900A
TW200939900A TW97107559A TW97107559A TW200939900A TW 200939900 A TW200939900 A TW 200939900A TW 97107559 A TW97107559 A TW 97107559A TW 97107559 A TW97107559 A TW 97107559A TW 200939900 A TW200939900 A TW 200939900A
Authority
TW
Taiwan
Prior art keywords
plasma
gas
reaction chamber
zone
gas transfer
Prior art date
Application number
TW97107559A
Other languages
Chinese (zh)
Other versions
TWI393487B (en
Inventor
Aihua Chen
Yijun Liu
Jinyuan Chen
Lee Luo
Tuqiang Ni
Gerald Yin
Henry Ho
Original Assignee
Advanced Micro Fab Equip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Micro Fab Equip Inc filed Critical Advanced Micro Fab Equip Inc
Priority to TW97107559A priority Critical patent/TWI393487B/en
Publication of TW200939900A publication Critical patent/TW200939900A/en
Application granted granted Critical
Publication of TWI393487B publication Critical patent/TWI393487B/en

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

The present invention provides a plasma reaction chamber comprising a primary reaction body wherein plural processing plates are set. Each of the processing plates has a rotating substrate support inside. Above each substrate support has a plasma production zone, which is synchronous with a plasma reaction zone. Above each of the synchronization plasma production zones neighboring plasma production zones are provided, and both zones are communicated. A radio frequency power source connects to each of the neighboring plasma production zone.

Description

200939900 九、發明說明: 【發明所屬之技術領域】 本發明係關於電漿反應室,或更確切言之,係關於用於 製造微型晶片、LCD面板、太陽能電池等的電漿反應室。 【先前技術】 目前在業界已有多種電漿反應室,用於製造各種半導體 晶片、LCD面板基板、太陽能電池等。這些反應室可以根 據在其電漿所産生的位置不同而分爲三類。第一類電聚反 應室的電漿生成區與電漿參與反應區(即,晶片放置區, 於其内電聚在晶片表面進行工藝處理)同位,因而稱爲,,同 位電榮反應室(in situ plasma chamber)',,在這種反應室 中’電漿直接産生於待處理的基片之上並直接與基片接 觸’由於此特性’該反應室有時也被稱爲"直接電漿反應 室(direct plasma chamber)"。此類反應室的一個例子可以 見於美國專利第4,123,3 16號中之背景技術。此類反應室通 常運用于直接利用電漿對基片進行處理的場合。第二類電 漿反應室的電漿在遠離反應室的外面産生,並通過一&導 管將電漿的粒子(plasma species)引入到放有待處理基片的 反應室中’此種情形下’電漿生成區遠離電漿參與反應 區’因而稱爲"运端電漿反應室(rem〇te plasma chamber)”。 此類反應室的例子有:公佈於1993年的德國專利申請案 DE 19914132559和美國專利第4,138,306號。此類反應室通 常用於利用電漿清洗反應室的場合,但它也可以用於對基 片進行處理。第三類電漿反應室雖然也在反應室内部産生 127482.doc 200939900 電漿’但是在電漿産生區和電漿參與反應區間設有分隔裝 置將它們相鄰地分隔開。在此方式下,産生的電漿不能與 被處理的基片直接接觸,但來自電漿的粒子(Species)可以 通過該分隔裝置上的一些通道流向被處理的基片從而參與 反應’在該種設置下,電漿産生區和電漿參與反應區爲分 立設置、但相鄰的兩個區,因而稱爲"相鄰電漿反應室 (quasi-remote plasma chamber)"。此類反應室的例子有美 國專利第4,123,316號和第6,192,828號。相鄰電漿反應室在 具體實現時也可以不用分隔裝置,而只是簡單將電漿發生 源放置到遠離基片所在區域的位置即可。如美國專利第 4,232,057號 t 所述。 遠化電漿輔助化學氣相沈積(remote piasma_assisted chemical vapor deposition)是遠端電漿反應室技術的一個 應用。它通常可用於在較低溫度下沈積産生薄膜,並能產 生高品質的薄膜’如計量薄膜(st〇ichi〇inetric film),並可 通過控制氣相反應路徑和通過選擇合適的電漿激發源來産 生需要的虱體粒子來保證薄膜較高的一致性。由於基片遠 離電漿輝光區域(Plasma glow regi〇n),電漿對基片的損壞 可以被避免。然而,由於較低的離子轟擊以及自由基的衰 減降低了氣體的解離反應,從而導致沈積速率較低。相鄰 電毁化學氣相沈積可以通過增加自由基密度,例如縮短從 電漿到達晶片的路徑長度從而避免自由基的衰減,來提高 沈積速率同時又可保持上述優勢。 另一方面,在某些情況下成膜過程中也需要用到直接電 127482.doc 200939900 漿,例如,當需要特殊的薄膜屬性(如高壓縮應力要求) 時。由於直接電漿具有強大的離子轟擊效應,此類薄膜屬 性可以通過同位電漿實現。此外,爲了有效地對基片或沈 積的薄膜表面進行電漿處理,以提高其介面粘附性能和薄 膜穩定性能從而提高大多數銅互連技術器件的可靠性,需 要用到直接電漿,因爲其具有高的自由基密度和離子密 度。此外,同位電漿體在用於高含碳材料的化學氣相沈積 反應室清洗時具有比遠端電漿更高的效率。 從上述分析令我們看到’互相衝突的技術處理要求導致 了看起來互不相容的反應室設計。有些技術處理要求在遠 離基片的遠端産生電漿,而另一些則要求電漿產生後能夠 接觸基片。因此我們需要一個反應室,既具有産生相鄰電 漿的能力也具有産生直接電漿的能力。此設計不僅可以用 於形成具有令人滿意的特性的薄膜,也可以用於電漿處 理’從而可以提高半導體器件的可靠性和實現有效的反應 室清洗。 【發明内容】 本發明具體實施例中的反應室既可以使用相鄰電漿也可 以使用同位電漿進行基片處理以及反應室清洗。在不同的 實施例中,也可以通過小批量方式(mini_batch approach)來 增加生産能力’即每一個反應室中包括複數個處理區域, 從而可以同時處理複數個基片。但是,需要注意的是,本 發明的某些特性並不僅限於在小批量反應室中實現。本發 明更進一步的實施例提供了一個”全合一”的化學氣相沈積 127482.doc 200939900 反應室("all-in_one” CVD reactor),它既可以採用同位元電 漿或直接電漿化學氣相沈積、熱化學氣相沈積、相鄰電激 化學氣相沈積或電漿增強化學氣相沈積方式成膜,也可以 用於對基片的同位電漿處理(plasma treatment)以及對薄膜 和電漿反應室的清洗,或以上所述操作模式的各種組合。 由於具有這些擴展功能’本反應室在這裏被稱爲"全合一 化學氣相沈積反應室"。本全合一反應室可以實現爲單一BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma reaction chamber or, more specifically, to a plasma reaction chamber for manufacturing microchips, LCD panels, solar cells, and the like. [Prior Art] A variety of plasma reaction chambers are currently available in the industry for manufacturing various semiconductor wafers, LCD panel substrates, solar cells, and the like. These reaction chambers can be classified into three categories depending on where they are produced by the plasma. The plasma generation zone of the first type of electropolymerization reaction chamber and the plasma participate in the reaction zone (ie, the wafer placement zone, in which the electropolymer is electropolymerized on the surface of the wafer for processing), and thus are called, the co-located Glory reaction chamber ( In situ plasma chamber)', in this reaction chamber, 'the plasma is directly generated on the substrate to be treated and directly in contact with the substrate 'Because of this property', the reaction chamber is sometimes referred to as "direct Plasma plasma chamber ". An example of such a reaction chamber can be found in the background art of U.S. Patent No. 4,123,316. Such reaction chambers are commonly used in applications where the substrate is directly treated with plasma. The plasma of the second type of plasma reaction chamber is generated outside the reaction chamber, and the plasma species of the plasma is introduced into the reaction chamber in which the substrate to be treated is placed through a & conduit 'in this case' The plasma generation zone is remote from the plasma to participate in the reaction zone' and is therefore referred to as the "rem〇te plasma chamber". Examples of such reaction chambers are: German Patent Application DE 19914132559, published in 1993. And U.S. Patent No. 4,138,306. Such a reaction chamber is generally used for cleaning a reaction chamber with plasma, but it can also be used for processing a substrate. The third type of plasma reaction chamber is also inside the reaction chamber. Produces 127482.doc 200939900 plasma 'but there is a separator in the plasma generation zone and the plasma participating reaction zone to separate them adjacently. In this way, the generated plasma cannot be directly connected to the substrate being processed. Contact, but particles from the plasma can flow through some channels on the separator to the substrate being processed to participate in the reaction. 'In this setting, the plasma generation zone and the plasma participate in the reaction zone. The two zones that are separate but adjacent, are referred to as "quasi-remote plasma chamber". Examples of such reaction chambers are U.S. Patent Nos. 4,123,316 and 6 No. 192, 828. The adjacent plasma reaction chamber can also be used without a partitioning device, but simply places the plasma generating source away from the area where the substrate is located, as described in U.S. Patent No. 4,232,057. Remote piasma_assisted chemical vapor deposition is an application of the far-end plasma chamber technology. It is usually used to deposit thin films at lower temperatures and produce high quality films. Metering film (st〇ichi〇inetric film) and ensuring high film uniformity by controlling the gas phase reaction path and by selecting a suitable plasma excitation source to produce the desired ruthenium particles. Plasma glow regi〇n, plasma damage to the substrate can be avoided. However, due to lower ion bombardment and free radical attenuation, the gas is reduced. The dissociation reaction results in a lower deposition rate. Adjacent electro-destruction chemical vapor deposition can increase the deposition rate by increasing the radical density, for example, shortening the path length from the plasma to the wafer to avoid the decay of free radicals. On the other hand, in some cases, direct 127482.doc 200939900 slurry is also required in the film formation process, for example, when special film properties (such as high compressive stress requirements) are required. Due to the powerful ion bombardment effect of direct plasma, such film properties can be achieved by co-located plasma. In addition, in order to effectively plasma-treat the substrate or deposited film surface to improve its interface adhesion and film stability, thereby improving the reliability of most copper interconnect technology devices, direct plasma is required because It has a high radical density and an ion density. In addition, the co-located plasma has a higher efficiency than the far-end plasma when it is cleaned in a chemical vapor deposition reaction chamber for high carbonaceous materials. From the above analysis, we have seen that 'contradictory technical processing requirements lead to seemingly incompatible reaction chamber designs. Some technical treatments require the generation of plasma at the distal end of the substrate, while others require the plasma to be contacted with the substrate. So we need a reaction chamber that has both the ability to produce adjacent plasma and the ability to produce direct plasma. This design can be used not only for forming a film having satisfactory characteristics, but also for plasma treatment', thereby improving the reliability of the semiconductor device and achieving efficient chamber cleaning. SUMMARY OF THE INVENTION The reaction chamber in the specific embodiment of the present invention can use both adjacent plasma and in-situ plasma for substrate processing and reaction chamber cleaning. In various embodiments, the throughput can also be increased by a mini_batch approach, i.e., each of the reaction chambers includes a plurality of processing regions so that a plurality of substrates can be processed simultaneously. However, it should be noted that certain features of the invention are not limited to implementation in a small batch reaction chamber. A still further embodiment of the present invention provides an "all-in-one" chemical vapor deposition 127482.doc 200939900 reaction chamber ("all-in_one" CVD reactor) which can use either isotope plasma or direct plasma chemistry Vapor deposition, thermal chemical vapor deposition, adjacent electro-chemical vapor deposition or plasma enhanced chemical vapor deposition to form a film, can also be used for the plasma treatment of the substrate and the film and Cleaning of the plasma chamber, or various combinations of the modes of operation described above. Due to these extended functions, the reaction chamber is referred to herein as "all-in-one chemical vapor deposition reaction chamber" Room can be implemented as a single

基片反應室’也可以實現爲包括多處理平臺形式以進行小 批量處理(mini-batch processing)。 本發明是通過以下技術方法實現的: 本發明提供一種電漿反應室,包括:反應室主體,於其 内設置有複數個處理平臺;複數個可旋轉的基片支座,每 一個所述基片支座對應設置於每一個所述處理平臺中;複 數個與電漿參與反應區同位的電漿生成區’每一個所述與 電漿參與反應區同位的電漿生成區位於每一個 座的上方;複數個相鄰電衆生成區,每—個所述㈣電漿 生成區位於每一個相應的與電漿參與反應區同位的電漿生 成區的上#,並與該相應的與電漿參與反應區同位的電漿 生成區相連通;以及射頻能量源’與每一個所述相鄰電漿 生成區相連接。 本發明還提供一種電漿反應室,包括:反應室主體; 旋轉的基片支座,其設置於所述反應室主體内;第 傳遞分佈裝置n體傳遞分佈裝置,其與所述第一 體傳遞分佈裝置相互間隔開’並且與所述第一氣體傳遞 I27482.doc 200939900 佈裝置和所述反應室主體相互電絕緣,其中在第—氣體傳 遞分佈裝置與第二氣體傳遞分佈裝置之間構成一相鄰電聚 生成區,在第二氣體傳遞分佈裝置和基片支座之間構成一 與電漿參與反應區同位的電漿生成區,所述第—氣體傳遞 分佈裝置將一第一處理氣體輸送至該相鄰電漿生成區,所 述第二氣體傳遞分佈裝置將一第二處理氣體輸送至該與電 漿參與反應區同位的電漿生成區,所述第二氣體傳遞分佈 裝置還將來自相鄰電漿生成區的電漿粒子輸送至與電聚參 與反應區同位的電漿生成區,射頻源,其與所述第一氣體 傳遞分佈裝置相連接;以及切換裝置,用於將第二氣體傳 遞分佈裝置選擇性地連接至射頻源或接地。 本發明進一步提供一種電漿反應室,包括:反應室主 體’於其内設置有複數個處理平臺;複數個可旋轉的基片 支座,每一個所述基片支座對應設置於每一個所述處理平 臺中;複數個第一氣體傳遞分佈裝置,每一個第一氣體傳 遞分佈裝置對應設置於一相應的處理平臺中;複數個第二 氣體傳遞分佈裝置,每一個第二氣體傳遞分佈裝置對應設 置於一相應的處理區域内並與一對應的第一氣體傳遞分佈 裝置間隔分開,並且與該對應的第一氣體傳遞分佈裝置以 及反應室主體相互電絕緣,其中:在每一相應的處理區域 内,在第一氣體傳遞分佈裝置與第二氣體傳遞分佈裝置之 間構成一相鄰電漿生成區,在第二氣體傳遞分佈裝置和基 片支座之間構成一與電漿參與反應區同位的電漿生成區, 第氣體傳遞分佈裝置將第一處理氣體輸送至相鄰電漿生 127482.doc 200939900 成區’而第二氣體傳遞分佈裝置將第二處理氣體輸送至與 - €漿參與反應區同位的電漿生成區,第二氣體傳遞分佈裝 • 置還將來自相鄰電漿生成區的電漿粒子輸送至與電漿參與 反應區同位的電黎生成區;射頻源,其與所述複數個第/ 氣體傳遞分佈裝置相連接;以及切換裝置,用於將第二氣 體傳遞分佈裝置選擇性地連接至射頻源或接地。 本發明再進一步提供一種電漿反應室,包括:反應室主 體;可旋轉的基片支座,其設置於所述反應室主體内;第 一氣體傳遞分佈裝置;第二氣體傳遞分佈裝置,其與所述 第一氣體傳遞分佈裝置相互間隔開,並且與所述第一氣體 傳遞分佈裝置和所述反應室主體相互電絕緣,其中在第一 氣體傳遞分佈裝置與第二氣體傳遞分佈裝置之間構成一相 鄰電漿生成區,在第二氣體傳遞分佈裝置和基片支座之間 構成一與電漿參與反應區同位的電漿生成區,所述第一氣 體傳遞分佈裝置將一第一處理氣體輸送至該相鄰電漿生成 ❹ 區,所述第二氣體傳遞分佈裝置將一第二處理氣體輸送至 該與電漿參與反應區同位$電衆生成區,所述第二氣體傳 •遞分佈裝置還將來自相鄰電漿生成區的電漿粒子輸送至與 .電漿參與反應區同位的電漿生成區;第一射頻源,其與所 述第一氣體傳遞分佈裝置相連接;以及第二射頻源,其與 所述第二氣體傳遞分佈裝置相連接。 、、 【實施方式】 本發明的各個實施例涉及用於處理各種基片如半導體 晶片、太陽能電池晶片' LCD基片之類的電漿反應室。此 127482.doc 200939900 處描述的各個實施例可以與傳統的自動化處理平臺 (conventional automated processing platforms)聯合使用。 此處描述的各個實施例可以被用於,如熱化學氣相沈積 (thermal chemical vapor deposition)、電漿增強化學氣相沈 積(plasma enhanced CVD)、同位電漿基片處理(in_situ plasma treatment)等。在給出的實施例中,每一個反應室 具有四個處理平臺,可以同時進行相同的技術處理;然 而’需要指出的是,反應室也可以具有兩個、三個或其他 數目的處理平臺。由於處理平臺的數量比較少,所以此處 稱之爲"小批量"系統("mini-batch" system)。 圖1示係顯出根據本發明的一個實施例給出的具有兩個 反應室108和11〇的系統100。在此實施例中,系統1〇〇用於 完成對半導體基片的化學氣相沈積。儘管此例中只顯示了 兩個反應室,該具體實施例也可以採用三個反應室或採用 其他設置使得系統可以包括三個以上的反應室。示意性 地,圖中每一個反應室1〇8和11〇分別具有四個處理平臺 购-刪和^蘭。中央傳輸室115設有至少—個機械 手臂120’它可以將晶片移入或移出每一個處理平臺。每 個反應至内設置有可以沿如箭頭所示方向旋轉的定位臂 (indexing _)150,其可以在不同處理平臺之間旋轉或停 止定位於每一個處理平臺的正上方,從而可以將待處理的 基片裝載於處理平臺的上方或從處理平臺上卸載至定位臂 150上。機械手臂12〇可以配合定位臂⑽將基片裝入或移 出反應至冑械手臂12〇通過傳統的真空鎖125和13〇接收 127482.doc M4785 127482 007151566-1 •12- 200939900 和運輸基片,真空鎖125和130與傳統的小型環境135相連 接在起。在小型環境13 5中,基片被裝載到標準的晶片 處或日日片傳送盒(front 〇pening unified 140c或從裏面卸載出來。The substrate reaction chamber' can also be implemented to include a multi-processing platform format for mini-batch processing. The present invention is achieved by the following technical methods: The present invention provides a plasma reaction chamber comprising: a reaction chamber body having a plurality of processing platforms disposed therein; a plurality of rotatable substrate holders, each of said bases The sheet support is correspondingly disposed in each of the processing platforms; a plurality of plasma generating regions in which the plasma participates in the same reaction zone as the plasma generating zone, and each of the plasma generating regions in which the plasma participates in the reaction zone is located in each seat. Above; a plurality of adjacent electricity generating regions, each of the (four) plasma generating regions is located on each of the corresponding plasma generating regions in the same position as the plasma participating in the reaction zone, and corresponding to the plasma The plasma generation zone participating in the co-location of the reaction zone is in communication; and the RF energy source ' is connected to each of the adjacent plasma generation zones. The present invention also provides a plasma reaction chamber comprising: a reaction chamber body; a rotating substrate holder disposed in the reaction chamber body; a first transfer distribution device n body transfer distribution device, and the first body The transfer distribution devices are spaced apart from each other and electrically insulated from the first gas transfer device and the reaction chamber body, wherein a first gas transfer device and a second gas transfer device are formed An adjacent electropolymerization zone, between the second gas distribution device and the substrate support, forms a plasma generation zone co-located with the plasma in the reaction zone, and the first gas transfer distribution device will be a first process gas Delivered to the adjacent plasma generation zone, the second gas delivery distribution device delivers a second process gas to the plasma generation zone co-located with the plasma in the reaction zone, and the second gas delivery distribution device will also The plasma particles from the adjacent plasma generating zone are transported to a plasma generating zone co-located with the electropolymerization participating reaction zone, and an RF source, which is associated with the first gas transfer distributing device Bonding; and a switching means, a second gas pass for delivery RF source or ground is connected to the distribution device selectively. The invention further provides a plasma reaction chamber, comprising: a reaction chamber body 'with a plurality of processing platforms disposed therein; a plurality of rotatable substrate holders, each of which is disposed correspondingly to each of the substrates In the processing platform; a plurality of first gas transfer distribution devices, each of the first gas transfer distribution devices is correspondingly disposed in a corresponding processing platform; a plurality of second gas transfer distribution devices, each of the second gas transfer distribution devices corresponding Provided in a corresponding processing region and spaced apart from a corresponding first gas transfer distribution device, and electrically insulated from the corresponding first gas transfer distribution device and the reaction chamber body, wherein: in each respective processing region Between the first gas transfer distribution device and the second gas transfer distribution device, an adjacent plasma generating region is formed, and a second plasma transfer device and the substrate support form a parity with the plasma participating in the reaction zone. The plasma generation zone, the first gas delivery device delivers the first process gas to the adjacent plasma 127482.doc 200939900 Forming a zone' and the second gas transfer distribution device delivers the second process gas to a plasma generation zone that is co-located with the - pulp in the reaction zone, and the second gas delivery distribution device also supplies electricity from the adjacent plasma generation zone The slurry particles are transported to a electricity generation region in-situ with the plasma in the reaction zone; a radio frequency source connected to the plurality of gas/gas distribution devices; and a switching device for selectively selecting the second gas distribution device Ground to the RF source or ground. The present invention still further provides a plasma reaction chamber comprising: a reaction chamber body; a rotatable substrate holder disposed in the reaction chamber body; a first gas transfer distribution device; and a second gas transfer distribution device Separating from the first gas transfer distribution device and electrically insulated from the first gas transfer distribution device and the reaction chamber body, wherein between the first gas transfer distribution device and the second gas transfer device Forming an adjacent plasma generating region, forming a plasma generating region in the same position as the plasma participating in the reaction zone between the second gas transfer distributing device and the substrate support, the first gas transfer distributing device will be first Processing gas is delivered to the adjacent plasma generating zone, and the second gas distributing device delivers a second process gas to the electricity generation zone in the same reaction zone as the plasma participating in the reaction zone. The diverging device also transports the plasma particles from the adjacent plasma generating region to a plasma generating region in which the plasma participates in the reaction zone; the first RF source, and the first A gas transfer distribution device is coupled; and a second RF source coupled to the second gas transfer distribution device. [Embodiment] Various embodiments of the present invention relate to a plasma reaction chamber for processing various substrates such as a semiconductor wafer, a solar cell wafer 'LCD substrate. The various embodiments described at 127482.doc 200939900 can be used in conjunction with conventional automated processing platforms. The various embodiments described herein can be used, for example, thermal chemical vapor deposition, plasma enhanced CVD, in_situ plasma treatment, and the like. . In the illustrated embodiment, each reaction chamber has four processing platforms that can perform the same technical processing simultaneously; however, it should be noted that the reaction chamber can also have two, three or other number of processing platforms. Since the number of processing platforms is relatively small, it is called ""mini-batch" system" here. Figure 1 shows a system 100 having two reaction chambers 108 and 11A, shown in accordance with one embodiment of the present invention. In this embodiment, system 1 is used to complete chemical vapor deposition of a semiconductor substrate. Although only two reaction chambers are shown in this example, this embodiment may employ three reaction chambers or other arrangements such that the system may include more than three reaction chambers. Illustratively, each of the reaction chambers 1 〇 8 and 11 图 in the figure has four processing platforms, respectively, purchased and deleted. The central transfer chamber 115 is provided with at least one robot arm 120' which can move the wafer into or out of each processing platform. Each reaction is provided with an indexing arm 150 that can be rotated in the direction indicated by the arrow, which can be rotated or stopped between different processing platforms directly above each processing platform, so that it can be processed The substrate is loaded on or unloaded from the processing platform onto the positioning arm 150. The robot arm 12〇 can be loaded or removed with the positioning arm (10) to react to the arm 12 and receive the 127482.doc M4785 127482 007151566-1 •12- 200939900 and transport substrate through the conventional vacuum locks 125 and 13〇. The vacuum locks 125 and 130 are connected to a conventional small environment 135. In a small environment 135, the substrate is loaded onto or unloaded from a standard wafer or front spening unified 140c.

容易理解,每一個反應室108、110和傳送室115均具有 頂蓋’但均未在圖中顯示出來,目的是爲了顯示這些部件 的内部細f。傳送室115可以採用傳統頂蓋,因此此處將 不對其進行討論和顯示。然而反應室108和110的頂蓋是經 過獨特設計的,將在下面對其結合圖示作說明。 請參閱圖2 ’它顯示出根據本發明的—個實施例給出的 頂蓋(hd)lG位於開放位置時的反應室2()。反應室包括一 個反應室基座40,它至少部分由主體41定義。主體41具有 -個上部表面42以及-個相對的下部表面43。複數個處理 平臺44設置於上部表㈣並可以在各個處理平臺内處理各 自單獨的基片’這將在下文中進行描述。另外,容易理 解’主體具有-個週邊邊界45,它可以具有各種外形並 具有多種斜角。如圖1中所示的配置中,三個反應室20可 以圍繞設置於具有五邊形外形的傳送室23。然而,需要說 明的-點是’在本發明的其他形式中,傳送室讲以具有 其他外形’如六邊形,這樣傳送室⑽邊可以設置四 導體反應室20。 反應室基座40設置有複數個軸孔5〇用於容納基片支座 315的軸312(圖3A)’軸312大體上位於每-㈣理平臺心 的中心位置。圍繞每—個軸孔咐置有複數㈣於容納頂 127482.doc -13- 200939900 針的頂針軸孔52,以與基座或基片支座315一起作用實現 基片的玫置與卸載。在基座4〇之上設置有弓形排氣通道 55,用於將位於反應室2〇的内腔21中的反應氣體在處理完 基片之後排出,排氣通道55與導管63相連接,導管〇與真 空泵62相連接。需要注意的是,儘管圖2示出了一種具體 的排氣實現結構,本發明也可以採用其他排氣方案。例 如,在圖3A中的處理平臺中,排氣通過處理平臺的底部來 完成,並且位於每一個基片支座之下。因而,對於本發 明,任何針對基片處理設計的排氣結構都是可以採用的。 然而,此處描述的以及本專利其他實施例描述的一個特徵 是採用單個真空泵完成一個反應室中所有處理平臺的排氣 操作。這可以在每一個處理平臺中産生均勻的技術處理壓 力,從而可以在所有處理平臺中同時進行相同的技術操 作-即此處所指的小批量處理。 反應室頂蓋10包括主體101’主體101具有頂部或外部表 面102以及相對的底部或内部表面1〇3 ^如圖中所示,反應 室頂蓋1〇〇的底部或内部表面設置有一個空腔1〇4,空腔 104内安裝有數個氣體傳遞分佈元件1〇5。氣體傳遞分佈元 件105和裝載在其上的部件結構將在後面詳細介紹單個處 理平臺44時進行描述。當反應室頂蓋1〇〇置於關閉位置 時,它可以提供對反應室内部提供充分的密封,從而形成 單獨的處理平臺(容後詳述)。需要理解的是,單獨的氣體 傳遞分佈元件105相對於單個處理平臺44是同韩排列的。 另外還需要注意的是,每一個氣體傳遞分佈元件1〇5設置 127482.doc 14- 200939900 有一組小型細孔107 ’用於允許反應氣體源被送入單個處 理平臺44。 4 圖3A顯示根據本發明的一個實施例構造的一個處理平臺 300。該處理平臺可以用於單基片反應室(singie_substrate processing chamber),也可以作爲圖1和圖2中所示批量系 統中的一個處理平臺(one station in a batch system)實現。 在圖3A中,處理平臺300由室壁(或,反應室主體)32〇、室 底板325構成,並具有連接至真空泵的開口 33〇以及一個頂 部元件(top assembly)335。頂部元件355,對應於圖2中所 示的乳體傳遞分佈元件(showerhead assembly) 105,包括導 電性容器(conductive container)345、導電性氣體傳遞分佈 板(conductive block plate)355、以及導電性喷淋板 (conductive showerhead plate )340,所有這些部件相互絕 緣並和室壁320也相互絕緣《導電性容器345通常作爲第一 氣體傳遞分佈裝置或第一氣體傳遞分佈裝置,用來將處理 ❹ 氣體輸送入第一氣箱375所表示的空間中,它是一個相鄰 電毅發生部分。傳遞分佈板355以及喷淋板340共同作用爲 . 第二氣體傳遞分佈裝置或第二氣體傳遞分佈裝置,它具有 兩個功能:將處理氣體輸送至成膜空間305以及將電漿粒 子(plasma species)及自由基(radicals)從第一氣箱375傳送 至成膜空間305。因而,氣體傳遞分佈元件105包括兩個氣 體傳遞分佈裝置,其中,第一氣體傳遞分佈裝置負責將第 一處理氣體引入相鄰電漿生成區域,第二氣體傳遞分佈裝 置負責將第二處理氣體以及電漿粒子從相鄰電漿生成區輸 127482.doc A44785 127482 007151566-1 200939900 送入與電漿參與反應區同位的電漿生成區。在下文中,根 據需要,第一氣體傳遞分佈裝置將被稱爲導電性容器 345,而第二氣體傳遞分佈裝置將根據其在不同實施例中 的構成被稱爲傳遞分佈板355和噴淋板340等。需要說明的 是,本發明中的導電性氣體傳遞分佈板355和導電性喷淋 板340也可以被製造成一整塊部件。相鄰電漿生成區也被 稱爲第一氣箱375,而同位電漿産生區也被稱爲成膜空間 305 ° 成膜空間305由室壁320、底板325以及喷淋板340構成, 並於其内放置基片310。基片310放置於基片支座3 15之 上’在處理基片的過程中,基片支座315可以靜止,也可 以作有利於成膜均勻的各種移動。在本實施例中基片支座 315是可以旋轉的’如箭頭a所示。需要說明的是,在本發 明中的不同實施例中,可旋轉的基片支座315可以帶來至 少兩個顯著的有益效果。首先,在技術處理過程中,通過 基片支座3 15旋轉可以增強所沈積的薄膜的均勻性 (urnfomity),薄膜的均勻性在現代半導體製造技術中是相 當重要的;其次’基片支座315的旋轉幫助實現反應室内 複數個處理平臺的均勻的抽吸排氣(pumping)。當反應室 内3有複數個處理平臺且僅用一個真空泵來對所有處理平 臺抽吸排氣的應用場合下,這種效果尤其明顯。 在基片支座315中設置有接地的電極316。在本實施例 中’兩個射頻發生器(高頻射頻發生器324以及低頻射頻發 生器326)連接$ _ jm >, 個射頻匹配電路312,射頻匹配電路312 127482.doc A44785 127482 007151566-1 * 16 - 200939900 將射頻能量連接至導電性容器345 »高頻射頻發生器324可 以工作於27MHZ、40MHZ、60MHZ等頻率,而低頻射頻 發生器326可以工作於KHZ範圍或較低的Mliz範圍,如2 MHZ、13,56 MHZ等。第一處理氣體或來自氣體供應源 302的混合氣體被輸送入第一氣箱38〇,而第二處理氣體或 來自氣體供應源3 04的混合氣體被輸送入第二氣箱375。從 圖3 A我們可以看到,在本實施例中,第一和第二處理氣體 在到達成膜空間305之前一直沒有混合,直到它們一起到 達成膜空間305才混合》 圖3 A所示的反應室可以工作於兩種不同的模式:相鄰電 襞模式以及同位元電漿模式β在本實施例中,兩種模式之 間的切換是通過機械裝置來實現的。第一可移動接觸元件 370具有兩個可選位置,當其位於上部/斷開位置 (up/disengaged position)時,導電性容器34s被絕緣塊35〇 將其與導電性氣體傳遞分佈板355電絕緣;反之,當其位 於下部/連接位置(down/engaged position)時,導電性容器 345與導電性氣體傳遞分佈板355之間電連接。第二可移動 接觸元件365具有兩個可選位置:當其位於上部/斷開位置 時’導電性氣體傳遞分佈板355被絕緣塊360將其與接地室 壁320之間電絕緣;反之,當其位於下部/連接位置時,導 電性氣體傳遞分佈板355與接地室壁320之間電連接。 進一步參考圖3A,當第一可移動接觸元件370與第二可 移動接觸元件365同時位於上部/斷開位置時,導電性容器 345具有由射頻匹配電路施加的電勢,而導電性底板則是 I27482.doc A44785 127482 00715^66-1 •17- 200939900 電氣可浮地(floating)的。當第一可移動接觸元件37〇位於 • 上°卩/斷開位置而第二可移動接觸元件365位於下部/連接位 . 置時,導電性谷器345具有由射頻匹配電路施加的電勢, 而導電性底板接地。當第一可移動接觸元件37〇位於下部/ 連接位置而第一可移動接觸元件365位於上部/斷開位置 時,導電性容器345與傳遞分佈板355共同具有由射頻匹配 電路施加的電勢。 圖3B顯禾圖3A中的反應室工作于相鄰電漿生成模式下 的If形。在圖3B中,可移動接觸元件37〇位於上部/斷開位 置,而可移動接觸元件365位於下部/連接位置。第一處理 氣體或混合氣體304被輸入至導電性容器345,然後通過導 電性容器345底板上的透氣孔372進入第一氣箱3乃。高頻 射頻頻率或高頻和低頻射頻頻率的混合頻率被施加至導電 性容器345,導電性容器345工作爲電極使第-氣箱π中 產生電漿放電。最終,在第一氣箱375中形成自由基、離 φ 子以及粒子。中性自由基(neutral radicals)以及氣體粒子 (gas species)通過傳遞分佈板355的透氣孔374以及喷淋板 • 340上的匹配孔被輸送入成膜空間305。第二處理氣體3〇4 -被輸送入底板的内部空間,即第二氣箱38〇,並通過位於 喷淋板340上的透氣孔被輸入到成膜空間3〇5 ^第一氣箱 375中由第一處理氣體電漿激發産生的自由基和粒子以及 第二處理氣體在成膜空間3()5中混合,然後在基片31〇上通 過化學反應和聚合形成薄膜,或通過化學反應進行反應室 清洗。值得注意的是,進行反應室清洗操作時有可能不需 127482.doc A44785 127482 007151566-1 -18- 200939900 要使用第*一處理氣體。 圖3C顯示圖3A中的反應室工作於同位或直接電漿生成 模式下的情形。在圖3C中,可移動接觸元件37〇位於下部/ 連接位置’而可移動接觸元件365位於上部/斷開位置。在 此情況下’導電性容器345以及傳遞分佈板355處於同一電 勢。高頻射頻頻率或高頻和低頻混合頻率被用於導電性容 器345,並通過其連接至導電性氣體傳遞分佈板355。導電 性氣體傳遞分佈板355連同喷淋板340—起作爲成膜空間 ❹ 305中産生電漿放電的電極。第一處理氣體3〇4被輸入至導 電性容器345,然後通過導電性容器345底板上的透氣孔 372傳送到第一氣箱375,並從此處通過孔374進入成膜空 間305。第二處理氣體3〇4被輸送入傳遞分佈板的内部空 間,即氣體箱2,並通過喷淋板34〇上的透氣孔進入成膜空 間305。由於電漿是在成臈空間3〇5内被激發形成的,自由 基、離子以及粒子同時出現在成膜空間305中。成膜空間 ❹ 305中的第一和/或第二處理氣體激發産生的電漿形成的自 由基和粒子通過化學反應和聚合在基片31〇上形成薄膜。 .圖3A中的裝置同樣可以被用於熱化學氣相沈積成臈過程 (thermal CVD film formati〇n)e對於此操作,導電性容器 345以及傳遞分佈板355通過將第一可移動接觸元件37〇置 於上部/斷開位置而實現電隔離。傳遞分佈板355通過將第 二可移動接觸元件365置於上部/斷開位置以與反應室主體 320斷開。基片31〇放置於基片支座315上,並通過内置於 基片支座315内的加熱器318對基片31〇進行加熱。第一處 127482.doc A44785 127482 007151566-1 •19- 200939900 理氣體302被輸送入導電性容器345,然後通過位於導電性 容器545底板上的透氣孔372被輸送入第一氣箱375,然後 通過傳遞分佈板355上的透氣孔374和喷淋板340最終被輸 送入成膜空間305。第二處理氣體304被輸送入傳遞分佈板 355的内部空間’即氣體箱2,並通過喷淋板34〇上的透氣 孔被輸送入成膜空間。然後第一處理氣體和第二處理氣體 在成膜空間305中混合,並通過以熱能作爲反應能量的化 學反應在基片310上形成薄膜。 通過前述描述和相關附圖,我們可以理解,圖3A_3c中 的真空反應室包括三個分隔間(conipart;ment)。第一分隔間 由導電性容器345、第一絕緣環3 5 0以及導電性氣體傳遞分 佈板355組成。該分隔間用於輸入及於其内擴散第一處理 氣體302,被稱爲第一氣箱375 ^第二分隔間由上述的導電 性氣體傳遞分佈板355以及導電性噴淋板340構成,用於引 入及於其内擴散第二處理氣體’被稱爲氣體箱2。第三分 隔間由上述的導電性喷淋板34〇、第二絕緣換36〇以及導電 性反應室主體320構成,被稱爲成臈空間3〇5。第三分隔間 包括基片支座315用於裝載基片310。 導電性谷器345連接至一個高頻和一個低頻射頻功率源 324和326,並且導電性容器345的底板上設置有透氣孔372 用於將第一處理氣體從該導電性容器545擴散分佈至第一 氣箱375。在此情況下,應該理解,此處無論何時提及處 理氣體,均可能指一種單一氣體組份或多種氣體的混合 物。在導電性容器345和導電性氣體傳遞分佈板乃5之間設 127482.doc •20· 200939900 置有一第一絕緣環350,因此當第一可移動接觸元件位於 , 上部/斷開位置時,導電性容器345和導電性氣體傳遞分佈 板355之間是通過第一絕緣環35〇電絕緣的。 導電性氣體傳遞分佈板3 55具有透氣孔3 74以便將第一處 理氣體從第一氣箱375擴散分佈至成膜空間3〇5。傳遞分佈 板355還具有一個與第一氣箱375相分離的内部空間,内部 空間通過喷淋板340上的孔376與成膜空間相連通,通過内 冑空間可以將第二處理氣體引入並輸送至成膜空間305。 鏐 ㈣性嗔淋板340與導電性氣體傳遞分佈板355之間是電氣 相連的,並共同構成了氣體箱噴淋板34〇具有兩組透氣 孔374、376,分別用於連通第—氣箱375和成膜空間, 以及第二氣箱380和成膜空間3〇5。 在導電性氣體傳遞分佈板355和導電性反應室主體32〇之 間設置有第二絕緣環36()’因此當第二可移動接觸元件奶 至於上部/斷開位置時,導電性氣體傳遞分佈板355和導電 _ 性反應室主體320之間是電絕緣的。導電性反應室主體32〇 和设置於基片支座315内的電極316均接地。 ,圖4A顯示反應室4〇〇的另一個實施例,它可以被運用於 圖1所示的系統中。所有與圖3A實施例中相似的部件均採 用與圖3八相似的標號’只不過在圖从中採用—系列編 號’因而將不再對這些部件重復進行描述。在本實施例 中,沒有採用機械式的可移動接觸元件來使導電性容器 445和/或傳遞分佈板455存在不同電勢。作爲替代方案°, 切換是通過開關480以電子方式完成的,開關48〇可以位於 127482.doc Α44785 127482 0〇7151566-ι •21· 200939900 遠離處理平臺400的位置。可選擇地,開關48〇也可以被集 成至射頻匹配電路412中。具體而言,開關480可以是機械 式的切換裝置、電子式的電子切換裝置,或者由硬體或軟 體或硬體和軟體的組合來實現切換功能。在圖4A的實施例 中’導電性容器44 5直接連接至射頻匹配電路412,而與傳 遞分佈板445之間的電連接是由通過開關48〇控制的。因 此’在本實施例中’導電性容器545總是由射頻匹配電路 進行偏置(bias)的,而傳遞分佈板455可以從三種位置中選 擇一種·由射頻匹配電路偏置(biase(j by the rf match)、浮 地(floating)、或接地(grounded)。在圖4八中,傳遞分佈板 4 5 5是浮地的。 在圖4B中’開關480與傳遞分佈板45 5連接並使傳遞分佈 板455接地。高頻功率或高頻功率和低頻功率混合後被施 加到導電性容器545上,以便在第一氣箱475中産生電漿放 電,從而在第一氣箱475中産生自由基、離子和電漿粒 子。中性自由基和氣體粒子通過傳遞分佈板445上的入射 孔474和喷淋板440上的孔478被輸送入成膜空間。第二處 理軋體可以被輸送到傳遞分佈板的内部空間,即第二氣箱 480,然後通過喷淋板44〇上的入射孔476被擴散、輸送入 成膜空間405。第一氣箱475中由第一處理氣體激發所產生 的自由基和粒子以及第二處理氣體在成膜空間4〇5中混合 並通過化學反應、聚合在基片上形成薄膜,或通過化學反 應進行反應室清洗操作。 在圖4C中’開關480將導電性氣體傳遞分佈板455和導電 127482.doc -22- 200939900 性容器545連接在—起。高頻功率或高頻功率和低頻功率 混合後被施加到導電性容器545和傳遞分佈板455上。在此 配置下由於導電性容器545、傳遞分佈板455以及喷淋板 440之間等電勢,導電性喷淋板44〇工作爲一個電極。電漿 放電在喷淋板440和基片支座415之間的成膜空間4〇5進行 中。第一和第二處理氣體在成膜空間405中混合,然後通 過化學反應和電漿聚合在基片表面形成薄膜,或通'過離 子自由基以及化學反應産生的粒子進行電漿處理或對反 應腔清洗操作。 圖5A和5B顯示根據本發明的一個實施例構造的另一個 處理平臺。所有與圖3 A實施例相似的部件均採用相同的參 考號碼,不過採用5χχ系列編號。這些部件將不重復進 行描述。 圖5Α和5Β中的化學氣相沈積真空反應室由三個分隔間 構成。第一分隔間由導電性容器545、絕緣材料環55〇以及 導電性氣體傳遞分佈板555組成,用於引入第一處理氣體 並將其分佈、擴散輸送到需要的位置,第一分隔間被稱爲 第一乱箱575。第二分隔間由上述的導電性氣體傳遞分佈 板555以及絕緣板542構成,用於入第二處理氣體並將其 分佈、擴散輸送到需要位置,第二分隔間被稱爲第二氣箱 5 85。第二分隔間由導電性噴淋板54〇以及導電性反應室主 體520構成,用於形成薄膜,被稱爲成膜空間5〇5。 開關580將導電性容器545連接至射頻匹配電路512或浮 地電位。開關580也可以將導電性喷頭54〇連接至射頻匹配 I27482.doc -23- 200939900 電路512或接地。圖5A示出了使用開關580將導電性容器 545連接至匹配網路5 12而將導電性喷頭540接地的情形。 此情形被運用於相鄰電漿操作。圖5B示出了利用開關580 將導電性容器545置於浮地電位而導電性喷頭540連接至射 頻匹配電路5 12的情形。此情形被運用於同位電漿形成。 在圖5A和5B的實施例中,絕緣環550位於導電性容器 5 4 5和導電性氣體傳遞分佈板5 5 5之間,因此導電性容器 545和導電性氣體傳遞分佈板555之間是相互電絕緣的。並 且’在傳遞分佈板555和導電性喷淋板540之間設置有絕緣 板542 ’所以喷淋板540與傳遞分佈板555和反應室主體52〇 之間是電絕緣的。 圖5A顯示當開關580處於相鄰電漿操作模式時處理平臺 的狀態。在此位置下,導電性容器545連接至射頻匹配電 路512,而噴淋板540接地。第一處理氣體輸入至導電性容 器545,然後通過位於導電性容器545底板上的透氣孔572 進入第一氣箱575。來自射頻匹配電路512的射頻功率源連 接至導電性容器545,並使導電性容器545作爲一個電極用 於在第一氣箱575(即,遠端電漿)中進行電漿放電。因此, 自由基、離子以及電漿粒子產生於第一氣箱575。中性自 由基和氣體粒子通過傳遞分佈板555上的透氣孔574和喷淋 板540上的透氣孔578進入成膜空間。如果需要,還可以將 弟一處理氣體輸送至傳遞分佈板545的内部空間,即第_ 氣箱585,並通過喷淋板54〇上的透氣孔576進入成膜空 間。第一氣箱575中的第一處理氣體通過電漿激發形成的 127482.doc •24- 200939900 自由基和粒子以及第二處理氣體在成膜空間5〇5中混合。 圖5B示出了當開關58G處於同位元電漿操作模式時處理 平臺的狀態。在此位置下,導電性容器545連接至浮地電 位(floating potential),而噴淋板54〇連接至射頻匹配電路 512。處理氣體通過與圖5A相同的方式輸入。來自射頻匹 配電路5 12的一個射頻功率源被施加於導電性噴淋板5 4 〇, 導電性噴淋板540作爲電極用於在成膜空間5〇5中産生電漿 放電(即直接電漿或同位電漿),然後通過化學反應和聚合 在基片上形成薄膜。 圖5C顯示圖5Α和圖5Β中所給出的處理平臺的一個變 形。在圖5C所給出的實施例中,處理平臺可以工作於如圖 5Α和圖5Β所述的相鄰或同位元電漿模式下,它也可以同 時工作於相鄰和同位元電漿模式下。如圖5C所示,開關 580既可以將導電性容器545連接至浮地電位也可以將其連 接至射頻匹配電路512,並可以將喷淋板545連接至射頻匹 配電路512或接地。並且,在圖5C中,開關58〇可以爲導電 性容器545和喷淋板540提供不同的頻率,例如,對於同時 進行相鄰和同位電漿生成的情形,開關可以將導電性容器 545連接至低頻或高頻射頻發生器,並將喷淋板54〇連接至 另外一個射頻發生器。在此情形下,電漿可以在第一氣箱 575中和成膜空間505中產生。産生於第一氣箱575内的電 聚中的中性自由基和氣體粒子通過傳遞分佈板555上的透 氣孔574和喷淋板540上的透氣孔578進入成膜空間505。然 後它們加入在成膜空間505中產生的電漿並與第二處理氣 127482.doc A44785 127482 007151566-1 25- 200939900 體相混合。 在圖5A-5C的實施例中’需要說明的是,當沒有射頻功 率源連接至導電性容器545、傳遞分佈板555或喷淋板54〇 時,處理平臺内可以不產生電裝而僅進行熱處理。例如, 在圖5C的實施例中,導電性容器545可讀連接至浮地電 位,而喷淋板54G可以被接地。職,加熱以職啓動以 進行熱技術處理。此外,在前述各種運用㈣配置的實施It will be readily understood that each of the reaction chambers 108, 110 and transfer chamber 115 has a top cover 'but none of which is shown in the figures for the purpose of displaying the internal fineness f of these components. The transfer chamber 115 can be a conventional top cover and will not be discussed and shown here. However, the top covers of the reaction chambers 108 and 110 are uniquely designed and will be described below in conjunction with the drawings. Referring to Fig. 2', it shows a reaction chamber 2 () when the top cover (hd) lG is in the open position, according to an embodiment of the present invention. The reaction chamber includes a reaction chamber base 40 that is at least partially defined by body 41. The body 41 has an upper surface 42 and an opposite lower surface 43. A plurality of processing platforms 44 are disposed in the upper table (4) and can process individual substrates in each processing platform', which will be described below. In addition, it is easy to understand that the body has a peripheral boundary 45 which can have various shapes and various oblique angles. In the configuration shown in Fig. 1, three reaction chambers 20 may be disposed around a transfer chamber 23 having a pentagonal shape. However, it is to be noted that - in other forms of the invention, the transfer chamber has other shapes such as hexagons, such that the transfer chamber (10) side can be provided with a four-conductor reaction chamber 20. The reaction chamber base 40 is provided with a plurality of shaft holes 5 轴 for receiving the shaft 312 of the substrate holder 315 (Fig. 3A). The shaft 312 is located substantially at the center of each of the (four) platform cores. A plurality of (4) thimble shaft holes 52 for receiving the top 127482.doc -13-200939900 needle are placed around each of the shaft holes to cooperate with the base or substrate holder 315 to effect the mounting and unloading of the substrate. An arcuate exhaust passage 55 is provided above the base 4 to discharge the reaction gas in the inner chamber 21 of the reaction chamber 2〇 after the substrate is processed, and the exhaust passage 55 is connected to the conduit 63. The crucible is connected to the vacuum pump 62. It should be noted that although Figure 2 illustrates a particular exhaust gas realization structure, other exhaust solutions may be employed in the present invention. For example, in the processing platform of Figure 3A, exhaust is accomplished through the bottom of the processing platform and under each substrate support. Thus, for the present invention, any exhaust structure designed for substrate processing can be employed. However, one feature described herein and described in other embodiments of the patent is the use of a single vacuum pump to perform the venting operation of all of the processing stations in a reaction chamber. This produces uniform technical processing pressure in each processing platform so that the same technical operations can be performed simultaneously in all processing platforms - the small batch processing referred to herein. The reaction chamber top cover 10 includes a body 101' body 101 having a top or outer surface 102 and opposing bottom or interior surfaces 1 ^ 3 ^ As shown in the figure, the bottom or interior surface of the reaction chamber top cover 1 is provided with an empty space A cavity 1〇4 is provided with a plurality of gas transfer distribution elements 1〇5 in the cavity 104. The gas transfer distribution element 105 and the structure of the components loaded thereon will be described later when the single processing platform 44 is described in detail. When the reaction chamber top cover 1 is placed in the closed position, it provides a sufficient seal to the interior of the reaction chamber to form a separate processing platform (described in detail later). It will be appreciated that the individual gas delivery distribution elements 105 are aligned with respect to a single processing platform 44. It should also be noted that each gas transfer distribution element 1〇5 is provided 127482.doc 14- 200939900 has a set of small pores 107' for allowing a source of reactive gas to be fed to a single processing platform 44. 4 Figure 3A shows a processing platform 300 constructed in accordance with one embodiment of the present invention. The processing platform can be used in a single-substrate processing chamber or as a one station in a batch system as shown in Figures 1 and 2. In Fig. 3A, the processing platform 300 is constituted by a chamber wall (or, reaction chamber body) 32A, a chamber bottom plate 325, and has an opening 33A connected to a vacuum pump and a top assembly 335. The top member 355, corresponding to the showerhead assembly 105 shown in FIG. 2, includes a conductive container 345, a conductive gas block 355, and a conductive spray. A conductive showerhead plate 340, all of which are insulated from each other and from the chamber wall 320. The conductive container 345 is typically used as a first gas transfer distribution device or a first gas transfer distribution device for delivering treated helium gas into the chamber. In the space represented by the first air box 375, it is an adjacent power generating portion. The transfer distribution plate 355 and the shower plate 340 cooperate to function as a second gas transfer distribution device or a second gas transfer distribution device having two functions: transporting the process gas to the film formation space 305 and plasma particles (plasma species) And radicals are transferred from the first gas tank 375 to the film forming space 305. Thus, the gas transfer distribution element 105 comprises two gas transfer distribution devices, wherein the first gas transfer distribution device is responsible for introducing the first process gas into the adjacent plasma generation region, and the second gas transfer device is responsible for the second process gas and The plasma particles are fed into the plasma generation zone co-located with the plasma in the reaction zone from adjacent plasma generation zone 127482.doc A44785 127482 007151566-1 200939900. Hereinafter, the first gas transfer distribution device will be referred to as a conductive container 345 as needed, and the second gas transfer distribution device will be referred to as a transfer distribution plate 355 and a shower plate 340 according to its constitution in various embodiments. Wait. It should be noted that the conductive gas transfer distribution plate 355 and the conductive shower plate 340 in the present invention can also be manufactured as a single piece. The adjacent plasma generating region is also referred to as a first gas tank 375, and the co-located plasma generating region is also referred to as a film forming space 305 °. The film forming space 305 is composed of a chamber wall 320, a bottom plate 325, and a shower plate 340, and A substrate 310 is placed therein. The substrate 310 is placed over the substrate support 3 15 . During processing of the substrate, the substrate support 315 can be stationary or can be used to facilitate various movements of uniform film formation. The substrate holder 315 is rotatable in this embodiment as indicated by arrow a. It should be noted that in various embodiments of the present invention, the rotatable substrate support 315 can provide at least two significant benefits. First, during the technical process, the uniformity of the deposited film can be enhanced by the rotation of the substrate support 3 15 . The uniformity of the film is very important in modern semiconductor manufacturing technology; secondly, the substrate support The rotation of 315 helps achieve uniform pumping of a plurality of processing platforms within the reaction chamber. This effect is particularly pronounced in applications where there are multiple processing platforms in the reaction chamber and only one vacuum pump is used to draw exhaust to all of the processing platforms. A grounded electrode 316 is disposed in the substrate support 315. In the present embodiment, 'two RF generators (high frequency RF generator 324 and low frequency RF generator 326) are connected to $_jm >, RF matching circuit 312, RF matching circuit 312 127482.doc A44785 127482 007151566-1 * 16 - 200939900 Connecting RF energy to conductive container 345 » High frequency RF generator 324 can operate at 27 MHz, 40 MHz, 60 MHz, etc., while low frequency RF generator 326 can operate in the KHZ range or the lower Mliz range, such as 2 MHZ, 13, 56 MHZ, etc. The first process gas or the mixed gas from the gas supply source 302 is sent to the first gas tank 38, and the second process gas or the mixed gas from the gas supply source 404 is sent to the second gas tank 375. From Fig. 3A, we can see that in the present embodiment, the first and second process gases are not mixed until the film space 305 is reached, until they are mixed together to reach the film space 305. The reaction chamber can operate in two different modes: the adjacent electromotive mode and the isotope plasma mode β. In this embodiment, the switching between the two modes is achieved by mechanical means. The first movable contact element 370 has two selectable positions, and when it is in an up/disengaged position, the conductive container 34s is electrically insulated from the conductive gas transfer distribution plate 355 by the insulating block 35 Insulation; conversely, when it is in the down/engaged position, the conductive container 345 is electrically connected to the conductive gas transfer distribution plate 355. The second movable contact element 365 has two selectable positions: the conductive gas transfer distribution plate 355 is electrically insulated from the grounding chamber wall 320 by the insulating block 360 when it is in the upper/open position; When it is in the lower/connected position, the conductive gas transfer distribution plate 355 is electrically connected to the grounding chamber wall 320. With further reference to FIG. 3A, when the first movable contact element 370 and the second movable contact element 365 are simultaneously in the upper/off position, the conductive container 345 has an electric potential applied by the radio frequency matching circuit, and the conductive bottom plate is I27482. .doc A44785 127482 00715^66-1 •17- 200939900 Electrically floatable. When the first movable contact element 37 is at the upper/off position and the second movable contact element 365 is at the lower/connected position, the conductive valley 345 has an electric potential applied by the radio frequency matching circuit, and The conductive bottom plate is grounded. When the first movable contact member 37 is in the lower/connected position and the first movable contact member 365 is in the upper/disconnected position, the conductive container 345 and the transfer distribution plate 355 have a potential applied by the radio frequency matching circuit. Figure 3B shows the If shape of the reaction chamber of Figure 3A operating in an adjacent plasma generation mode. In Figure 3B, the movable contact element 37 is in the upper/off position and the movable contact element 365 is in the lower/connected position. The first process gas or mixed gas 304 is input to the conductive container 345, and then enters the first gas tank 3 through the vent holes 372 in the bottom plate of the conductive container 345. The high frequency RF frequency or a mixed frequency of the high frequency and low frequency RF frequencies is applied to the conductive container 345, and the conductive container 345 operates as an electrode to cause plasma discharge in the first gas box π. Finally, radicals, φ sub and particles are formed in the first gas tank 375. Neutral radicals and gas species are transported into the film forming space 305 through the venting holes 374 of the transfer plate 355 and the matching holes on the shower plate 340. The second process gas 3〇4 is transported into the inner space of the bottom plate, that is, the second air box 38〇, and is input to the film forming space 3〇5 through the vent hole located on the shower plate 340. The radicals and particles generated by the excitation of the first process gas plasma and the second process gas are mixed in the film formation space 3 () 5, and then formed into a thin film by chemical reaction and polymerization on the substrate 31, or by a chemical reaction. The reaction chamber is cleaned. It is worth noting that it is not necessary to perform a chamber cleaning operation. 127482.doc A44785 127482 007151566-1 -18- 200939900 To use the first treatment gas. Figure 3C shows the situation in which the reaction chamber of Figure 3A operates in an in-situ or direct plasma generation mode. In Fig. 3C, the movable contact member 37 is located at the lower/connecting position ' and the movable contact member 365 is at the upper/open position. In this case, the conductive container 345 and the transfer distribution plate 355 are at the same potential. A high frequency radio frequency or a high frequency and low frequency mixing frequency is used for the conductive container 345 and is connected thereto by the conductive gas transfer distribution plate 355. The conductive gas transfer distribution plate 355 together with the shower plate 340 serves as an electrode for generating a plasma discharge in the film formation space 305. The first process gas 3〇4 is input to the conductive container 345 and then transferred to the first gas tank 375 through the vent holes 372 on the bottom plate of the conductive container 345, and from there through the holes 374 into the film forming space 305. The second process gas 3〇4 is fed into the internal space of the transfer distribution plate, i.e., the gas box 2, and enters the film formation space 305 through the vent holes on the shower plate 34. Since the plasma is excited in the crucible space 3〇5, free radicals, ions, and particles are simultaneously present in the film formation space 305. Film formation space The free radicals and particles formed by the plasma generated by the first and/or second process gases in ❹ 305 form a thin film on the substrate 31 by chemical reaction and polymerization. The device of FIG. 3A can also be used for a thermal CVD film format. For this operation, the conductive container 345 and the transfer distribution plate 355 pass the first movable contact element 37. 〇 is placed in the upper/open position for electrical isolation. The transfer distribution plate 355 is disconnected from the reaction chamber body 320 by placing the second movable contact member 365 in the upper/disconnected position. The substrate 31 is placed on the substrate holder 315, and the substrate 31 is heated by a heater 318 built in the substrate holder 315. The first place 127482.doc A44785 127482 007151566-1 •19- 200939900 The process gas 302 is transported into the conductive container 345 and then transported into the first air box 375 through the venting holes 372 on the bottom plate of the conductive container 545, and then passed The venting holes 374 and the shower plate 340 on the transfer distribution plate 355 are finally conveyed into the film forming space 305. The second process gas 304 is sent into the inner space of the transfer distribution plate 355, i.e., the gas box 2, and is conveyed into the film forming space through the vent holes on the shower plate 34. Then, the first process gas and the second process gas are mixed in the film formation space 305, and a film is formed on the substrate 310 by a chemical reaction using heat energy as a reaction energy. From the foregoing description and related drawings, it will be understood that the vacuum reaction chamber of Figures 3A-3c includes three compartments. The first compartment is composed of a conductive container 345, a first insulating ring 350 and a conductive gas transfer distribution plate 355. The partition is used for inputting and diffusing the first process gas 302 therein, and is referred to as a first air tank 375. The second partition is composed of the above-described conductive gas transfer distribution plate 355 and the conductive shower plate 340. The introduction and diffusion of the second process gas therein is referred to as the gas box 2. The third compartment is composed of the above-described conductive shower plate 34, the second insulation 36, and the conductive reaction chamber main body 320, and is called a enthalpy space 3〇5. The third compartment includes a substrate support 315 for loading the substrate 310. The conductive valley 345 is connected to a high frequency and a low frequency RF power source 324 and 326, and the bottom plate of the conductive container 345 is provided with a venting hole 372 for diffusing the first process gas from the conductive container 545 to the first A gas box 375. In this case, it should be understood that whenever a treatment gas is referred to, it may mean a single gas component or a mixture of a plurality of gases. Between the conductive container 345 and the conductive gas transfer distribution plate 5, 127482.doc • 20·200939900 is provided with a first insulating ring 350, so that when the first movable contact element is located at the upper/open position, the conductive The between the flexible container 345 and the conductive gas transfer distribution plate 355 is electrically insulated by the first insulating ring 35 。. The conductive gas transfer distribution plate 3 55 has a vent hole 3 74 for diffusing the first process gas from the first gas tank 375 to the film formation space 3〇5. The transfer distribution plate 355 also has an inner space separated from the first air box 375. The inner space communicates with the film forming space through a hole 376 in the shower plate 340, and the second process gas can be introduced and transported through the inner space. To the film formation space 305. The 四(4) 嗔 嗔 340 340 and the conductive gas transfer distribution plate 355 are electrically connected, and together form a gas box spray plate 34 〇 having two sets of venting holes 374, 376 for respectively connecting the first gas box 375 and film forming space, and second air box 380 and film forming space 3〇5. A second insulating ring 36() is disposed between the conductive gas transfer distribution plate 355 and the conductive reaction chamber main body 32A. Therefore, when the second movable contact member is in the upper/off position, the conductive gas is distributed. The plate 355 and the conductive reaction chamber body 320 are electrically insulated. The conductive reaction chamber main body 32A and the electrodes 316 provided in the substrate holder 315 are both grounded. Figure 4A shows another embodiment of a reaction chamber 4 which can be used in the system shown in Figure 1. All components similar to those in the embodiment of Fig. 3A are designated by the same reference numerals as in Fig. 3-8, except that the drawings are taken from the series-numbers and thus will not be repeatedly described. In the present embodiment, mechanically movable contact members are not employed to cause the conductive container 445 and/or the transfer distribution plate 455 to have different potentials. Alternatively, the switching is done electronically via switch 480, which can be located at 127482.doc Α 44785 127482 0〇7151566-ι • 21· 200939900 away from processing platform 400. Alternatively, switch 48A can also be integrated into RF matching circuit 412. Specifically, the switch 480 may be a mechanical switching device, an electronic electronic switching device, or a switching function by a combination of hardware or software or a combination of hardware and software. In the embodiment of Fig. 4A, the conductive container 44 5 is directly connected to the RF matching circuit 412, and the electrical connection with the transfer distribution plate 445 is controlled by the switch 48A. Therefore, 'in the present embodiment, 'the conductive container 545 is always biased by the RF matching circuit, and the transfer distribution plate 455 can be selected from one of three positions. · Biased by the RF matching circuit (biase(j by The rf match), floating, or grounded. In Figure 4, the transfer distribution plate 455 is floating. In Figure 4B, the switch 480 is connected to the transfer distribution plate 45 5 and The transfer distribution plate 455 is grounded. The high frequency power or high frequency power and low frequency power are mixed and applied to the conductive container 545 to generate a plasma discharge in the first air box 475, thereby creating freedom in the first air box 475. Base, ionic and plasma particles. Neutral free radicals and gas particles are transported into the film forming space through the entrance aperture 474 on the transfer plate 445 and the aperture 478 in the shower plate 440. The second treated rolled body can be transported to The inner space of the distribution plate, that is, the second air box 480, is then diffused and transported into the film forming space 405 through the entrance hole 476 on the shower plate 44. The first air box 475 is generated by the first process gas excitation. Free radicals and particles as well as The process gas is mixed in the film forming space 4〇5 and formed into a film on the substrate by chemical reaction, polymerization, or a reaction chamber cleaning operation by a chemical reaction. In Fig. 4C, the switch 480 transfers the conductive gas to the distribution plate 455 and conducts electricity. 127482.doc -22- 200939900 The sexual container 545 is connected. The high frequency power or high frequency power and low frequency power are mixed and applied to the conductive container 545 and the transfer distribution plate 455. In this configuration, the conductive container 545 The transfer plate 455 and the shower plate 440 have equal potentials, and the conductive shower plate 44 〇 operates as an electrode. The plasma discharge space between the shower plate 440 and the substrate support 415 is 4〇5 In progress, the first and second process gases are mixed in the film forming space 405, and then a film is formed on the surface of the substrate by chemical reaction and plasma polymerization, or plasma treatment is carried out by means of 'ion radicals and particles generated by chemical reaction. Or a cleaning operation of the reaction chamber. Figures 5A and 5B show another processing platform constructed in accordance with one embodiment of the present invention. All components similar to the embodiment of Figure 3A employ the same parameters. The number is given by the 5χχ series. These parts will not be described repeatedly. The chemical vapor deposition vacuum reaction chamber in Figures 5Α and 5Β consists of three compartments. The first compartment consists of a conductive container 545 and an insulating material ring 55. And a conductive gas transfer distribution plate 555 for introducing the first process gas and distributing and diffusing it to a desired position, the first compartment being referred to as a first messenger 575. The second compartment is comprised of the above The conductive gas transfer distribution plate 555 and the insulating plate 542 are configured to enter and distribute the second process gas to a desired position, and the second compartment is referred to as a second air box 585. The second compartment is composed of a conductive shower plate 54A and a conductive reaction chamber body 520 for forming a film, which is called a film forming space 5〇5. Switch 580 connects conductive container 545 to radio frequency matching circuit 512 or to a floating potential. Switch 580 can also connect conductive showerhead 54 to RF matching I27482.doc -23- 200939900 circuit 512 or ground. FIG. 5A illustrates the use of switch 580 to connect conductive container 545 to matching network 5 12 to ground conductive showerhead 540. This situation is applied to adjacent plasma operations. Fig. 5B shows a case where the conductive container 545 is placed at a floating potential by the switch 580 and the conductive head 540 is connected to the RF matching circuit 512. This situation is applied to the formation of co-located plasma. In the embodiment of Figures 5A and 5B, the insulating ring 550 is located between the conductive container 545 and the conductive gas transfer distribution plate 555, so that the conductive container 545 and the conductive gas transfer distribution plate 555 are mutually Electrically insulated. And, an insulating plate 542' is disposed between the transfer distribution plate 555 and the conductive shower plate 540. Therefore, the shower plate 540 is electrically insulated from the transfer distribution plate 555 and the reaction chamber main body 52A. Figure 5A shows the state of the processing platform when switch 580 is in the adjacent plasma mode of operation. In this position, the conductive container 545 is connected to the RF matching circuit 512 and the shower plate 540 is grounded. The first process gas is input to the conductive container 545 and then enters the first air box 575 through a venting opening 572 located in the bottom plate of the conductive container 545. The RF power source from the RF matching circuit 512 is coupled to the conductive container 545 and the conductive container 545 is used as an electrode for plasma discharge in the first gas box 575 (i.e., the distal plasma). Therefore, radicals, ions, and plasma particles are generated in the first gas tank 575. Neutral free radicals and gas particles enter the film forming space through venting holes 574 in the transfer plate 555 and venting holes 578 in the shower plate 540. If desired, the process gas can also be delivered to the interior space of the transfer distribution plate 545, i.e., the _ air box 585, and enter the film forming space through the venting holes 576 in the shower plate 54. The first process gas in the first gas tank 575 is formed by plasma excitation. 127482.doc • 24-200939900 The radicals and particles and the second process gas are mixed in the film formation space 5〇5. Figure 5B shows the state of the processing platform when switch 58G is in the allo-cell plasma mode of operation. In this position, the conductive container 545 is connected to the floating potential and the shower plate 54 is connected to the RF matching circuit 512. The process gas was input in the same manner as in Fig. 5A. An RF power source from the RF matching circuit 512 is applied to the conductive shower plate 5 4 〇, and the conductive shower plate 540 serves as an electrode for generating a plasma discharge in the film forming space 5〇5 (ie, direct plasma Or in-situ plasma), and then a film is formed on the substrate by chemical reaction and polymerization. Figure 5C shows a variation of the processing platform shown in Figures 5A and 5B. In the embodiment presented in FIG. 5C, the processing platform can operate in adjacent or isotropic plasma mode as described in FIGS. 5A and 5B, and it can also operate in adjacent and isotropic plasma modes simultaneously. . As shown in Figure 5C, switch 580 can either connect conductive container 545 to a floating potential or connect it to RF matching circuit 512 and can connect shower plate 545 to RF matching circuit 512 or to ground. Also, in FIG. 5C, the switch 58A can provide different frequencies for the conductive container 545 and the shower plate 540, for example, for the case of simultaneous adjacent and in-situ plasma generation, the switch can connect the conductive container 545 to A low frequency or high frequency RF generator and connect the shower plate 54 to another RF generator. In this case, the plasma can be produced in the first gas tank 575 and in the film forming space 505. The neutral radicals and gas particles generated in the electropolymer in the first gas tank 575 enter the film forming space 505 through the gas permeable holes 574 on the transfer plate 555 and the vent holes 578 on the shower plate 540. They then add the plasma produced in the film forming space 505 and are mixed with the second process gas 127482.doc A44785 127482 007151566-1 25- 200939900. In the embodiment of FIGS. 5A-5C, it should be noted that when no RF power source is connected to the conductive container 545, the transfer distribution plate 555, or the shower plate 54, the processing platform may not be electrically assembled but only Heat treatment. For example, in the embodiment of Figure 5C, the conductive container 545 can be readablely coupled to the floating potential and the shower plate 54G can be grounded. Job, heating to start the job for thermal technology. In addition, in the implementation of the aforementioned various applications (four) configuration

❹ 例中,也可以啓動加熱器518,以辅助技術處理或清洗操 作。 、 圖5D顯示圖5A和圖5B中所給出的處理平臺的另外一個 變形。在圖5D所給出的實施例中,第一氣體傳遞分佈裝置 或第-氣體傳遞分佈裝置(即’導電性容器545)通過第一控 制裝置68〇a與第一射頻源(即,高頻射頻發生器62钝、低 頻射頻發生器626a以及射頻匹配電路612匀相連接;第一 氣體傳遞分佈裝置或第二氣體傳遞分佈裝置(即,傳遞分 佈板555、絕緣板542以及噴淋板54〇)通過第二控制裝置 68〇b與第二射頻源(即,高頻射頻發生器624b、低頻射頰 發生器626b以及射頻匹配電路612b)相連接。第一控制擎 置680a可以選擇性地將第一氣體傳遞分佈裝置或第一氣體 傳遞分佈裝置與第一射頻源相連接或使二者斷開或使第一 氣體傳遞分佈裝置或第一氣體傳遞分佈裝置置於浮地地 位;類似地,第二控制裝置68〇b可以選擇性地將第二氣體 傳遞分佈裝置或第二氣體傳遞分佈裝置與第二射頻源相連 接或使二者斷開或使第二氣體傳遞分佈裝置或第二氣體傳 127482.doc -26- 200939900 遞为佈裝置置於浮地地位。通過第—控制裝置⑽&與第二 控制裝置68Gb在不同位置的連接組合可以使處理平臺選擇 性地工作於相鄰電漿模式、同位元電漿模式或同時工作於 相鄰和同位元電漿模式下。 以下是使用上述任何—個處理平臺生成氮化⑪薄膜的一 個例子。儘管本處理範例也可以在具有單個處理平臺的單 個反應至中凡成,此處採用小批量技術處理方式進行。 即,一個反應室具有四個處理平臺,每一個處理平臺根據 上述的一個實施例進行構造。反應室内載入有四片基片, 母片基片被對應載入到對應的一個處理平臺。然後,在 四個處理平臺上同步地進行生成氮化矽薄膜的技術處理。 即’在每一個處理平臺裏實施相同的技術步驟,以保證每 一個處理平臺中都具有相同的處理條件。 首先,所有的處理平臺均工作于相鄰電漿生成模式。例 如’導電性容器545和傳遞分佈板555相互之間絕緣,而導 電性容器545連接至射頻功率源。傳遞分佈板5 55接地,即 通過將其與接地的反應室主體相連,例如將第二可移動接 觸元件下移使其接觸接地的反應室主體。 第一處理氣體組包括有三類氣體。第一類氣體包括至少 一種下列氣體:氨(ammonia)、胺(hydrazine)、氣(nitrogen) 和氫(hydrogen)。第二類氣體包括至少一種下列氣體:氬 氣(argon)、氦氣(helium)和氣氣(xenon)。第三類氣體由一 種或多種碳氫化合物構成,它們具有共同的分子式 CxHy,其中X的範圍從2到4,y的範圍從2到10,例如乙炔 127482.doc -27- A44785 127482 007151566-1 200939900 (C2H2)、乙烯(C2H4)以及乙烷(C2H6)。第一處理氣體組輸 入至導電性容器545,然後通過導電性容器545底板上的透 氣孔進入第一氣箱575。高頻功率或高頻功率和低頻功率 混合後施加至導電性容器545,並使之作爲電極以在第一 氣箱575中産生電漿放電,從而在第一氣箱575中形成自由 基、離子以及粒子。中性自由基和氣體粒子通過位於傳遞 分佈板和噴淋板上的透氣孔從第一氣箱575進入成膜空 間。 第二處理氣體組包括兩類氣體。第一類氣體至少由以下 三類化合物中的一種構成》第一類化合物由包括Si和Η的 任何化合物組成》第二類化合物由包括Si、Ν和Η的任何化 合物組成》第三類化合物由包括Si、Ν、C和Η的任何化合 物構成。第二類氣體至少包括下列氣體中的一種:氨 (ammonia)、肼(hydrazine)、氮氣(nitrogen)、氫氣 (hydrogen)、氬氣(argon)、氦氣(helium)和氤氣(xenon)。 上述包括Si和Η的化合物具有共同的化學式SixHy,其中X 的範圍從1到2,y的範圍從4到6,例如SiH4,Si2H6。第二 類包括Si、N和Η的化合物具有共同的化學式(SiH3)-nNHn,其中,n的範圍從〇到2,例如三曱矽烷基氨(TSA, (SiH3)3N)。第三類包括Si、N、C和Η的化合物具有共同的 化學式(R-NH)4-nSiXn,其中,R是一個烴基(可以相同也 可以不同),X是Η或鹵素,並且η的範圍從0到3,如 Bis(TertiaryButylAmino)Silane (BTBAS,(t-C4H9NH)2SiH2) 和 Tetrakis(DiethylAmino)Silane (TDAS,Si(N(C2H5)2)4。 127482.doc -28 * M4785 127482 007151566-1 200939900 上述三類化合物可以是液體形式。液體化合物需要先汽化 以用於化學氣相沈積。 第二處理氣體組被輸入傳遞分佈板的内部空間,即第二 氣箱5 85’並通過噴淋板上的透氣孔被擴散輸送入成膜空 間。在第一氣體箱575中由第一處理氣體組電漿激發形成 的自由基和粒子與第二處理氣體組在成膜空間中混合,然 後通過化學反應和聚合在基片表面形成氮化矽薄膜,此薄 膜的含碳原子量保持在1%到2〇%之間。 通過上面的分析可以知道,同位元電漿模式可以用於薄 膜沈積、基片表面處理、沈積後的表面處理以及反應室的 電漿清洗。相鄰電漿模式可以用於薄膜沈積以及反應室電 漿清洗。下面的例子說明了運用本發明的反應室進行技術 處理的技術流程。相鄰電漿被激發並在基片上沈積形成薄 膜。然後取出基片,利用相鄰電漿清洗反應室。可選擇 地,當基片移出反應室之後也可以激發同位電漿進行反應 室清洗。再者,薄膜也可以使用同位電漿操作而沈積得 到,而清洗過程則採用相鄰電漿。採用其他的技術流程, 基片的表面可以先採用同位電漿進行表面處理,然後使用 相鄰電漿進行薄膜沈積。薄膜沈積後可以利用同位電漿進 行表面處理,然後採用相鄰電漿清洗反應室。 圖6顯不根據本發明的一個實現的傳遞分佈板實施例。 傳遞刀佈板655的頂部具有半球形缺口 654,其朝向相鄰電 7產生區域’即第一氣箱775。半球形缺σ通向入射孔 674’使得電漿粒子向下漂移⑽a—進入基片上部的 127482.doc A44785 «7482 007151566-1 -29- 200939900 成膜空間(未標出)。從傳遞分佈板655的下半部分開始用於 構成第二氣箱78〇。在導電性氣體傳遞分佈板的内部空間 (I7第一氣勒780)中有一個緩衝板(buffer pjate)652以使第 一處理氣體均勻地擴散、分佈,第二處理氣體被輸入第二 氣箱78〇,然後通過位於傳遞分佈板654底部的透氣孔676 進入成膜空間。 半球形表面654在上部的直徑大於孔674的直徑。半球形 表面正對第一氣箱775,用以避免第一氣箱775令不穩定的 電漿(unstable plasma)和弧光(arcing),並且通過將電漿生 成空間延伸至朝向孔674的部分增加了自由基密度(radical density) 〇 本發明疋參照具體實施方式描述的,但其所有方面都應 爲示意性而非限定性的。此外,通過研究本專利所揭露的 ,明特徵和實施,熟悉本發明領域的技術人員也可以較爲 容易地想出其他實施方式。本專利所述實施方式的各種方 面和/或70件可以在電漿腔室技術中單獨或以任意組合使 用說月書和附圖中的說明的特徵和實施方式應僅理解爲 不例性質’而本發明的真正範圍和精神則是由下列如申請 專利範圍中所定義的。 【圖式簡單說明】 本說明書中包含的關,作爲本說明書的—部分,顯干 本發明的實施方式’並與說明書-㈣於解釋和插述本發 明的原理和實施。附圖旨在以—種概略的方式描繪所述實 施例的主要特徵。附圖的目的並不在於描述實際實施方式 127482.doc 200939900 的每一詳細特徵,也不在於描繪所述元件的真正尺寸’並 且元件不是按比例繪製。 圖1根據本發明的一個實施例顯示一個具有兩個反應室 的系統。 圖2是根據本發明的一個實施例得到的反應室剖面透視 圖’其中反應室頂蓋位於打開位置。 圖3 A顯示根據本發明的一個實施例構成的一個處理平 臺。 圖3B顯示圖3A中的反應室工作于相鄰電漿生成模式的 情形。 圖3C顯示圖3A中的反應室工作於同位元或直接電漿生 成模式的情形。 圖4 A顯示根據本發明的一個實施例構成的另一個處理平 臺° 圖4B顯示圖4A中的反應室工作于相鄰電漿生成模式的 情形。 圖4C顯示圖4A令的反應室工作於同位元或直接電聚生 成模式的情形。 圖5 A和5B顯示根據本發明的一個實施例構成的再一個 處理平臺。 圖5C和5D描述圖5A和5B中處理平臺的兩個變形的實現 形式。 圖6顯示根據本發明的一個實施例實現的一個傳遞分佈 板的範例。 127482.doc -31· 200939900In the example, heater 518 can also be activated to assist with technical processing or cleaning operations. Figure 5D shows another variation of the processing platform presented in Figures 5A and 5B. In the embodiment given in FIG. 5D, the first gas transfer distribution device or the first gas transfer distribution device (ie, the 'conductive container 545') passes through the first control device 68A and the first RF source (ie, the high frequency The RF generator 62 is blunt, the low frequency RF generator 626a and the RF matching circuit 612 are connected in a uniform phase; the first gas transfer distribution device or the second gas transfer distribution device (ie, the transfer distribution plate 555, the insulating plate 542, and the shower plate 54). Connected to the second RF source (ie, the high frequency RF generator 624b, the low frequency emitter generator 626b, and the RF matching circuit 612b) by the second control device 68〇b. The first control engine 680a can selectively The first gas transfer distribution device or the first gas transfer distribution device is coupled to or disconnected from the first RF source or places the first gas delivery device or the first gas transfer device in a floating position; similarly, The second control device 68〇b can selectively connect or disconnect the second gas transfer distribution device or the second gas transfer distribution device to the second RF source or transfer the second gas to the second gas source. The cloth device or the second gas transmission 127482.doc -26- 200939900 is placed in a floating position. The processing platform can be selectively selected by the combination of the first control device (10) & and the second control device 68Gb at different positions. Working in adjacent plasma mode, isotopic plasma mode or simultaneous operation in adjacent and isotope plasma mode. The following is an example of using any of the above processing platforms to create a nitrided 11 film. It can be carried out in a single reaction to a single process with a single processing platform, here using a small batch technical process. That is, one reaction chamber has four processing platforms, each of which is constructed according to one of the above embodiments. Loaded with four substrates, the mother substrate is correspondingly loaded into a corresponding processing platform. Then, the technical processing for generating a tantalum nitride film is simultaneously performed on four processing platforms. That is, 'on each processing platform Implement the same technical steps to ensure that each processing platform has the same processing conditions. First, all processing is flat. Each stage operates in an adjacent plasma generation mode. For example, 'the conductive container 545 and the transfer distribution plate 555 are insulated from each other, and the conductive container 545 is connected to the RF power source. The transfer distribution plate 555 is grounded, that is, by The grounded reaction chamber body is connected, for example, the second movable contact element is moved down to contact the grounded reaction chamber body. The first process gas group includes three types of gases. The first type of gas includes at least one of the following gases: ammonia (ammonia) , hydrazine, nitrogen, and hydrogen. The second type of gas includes at least one of the following gases: argon, helium, and xenon. Consisting of a variety of hydrocarbons, they have a common molecular formula CxHy, where X ranges from 2 to 4, and y ranges from 2 to 10, such as acetylene 127482.doc -27- A44785 127482 007151566-1 200939900 (C2H2), ethylene ( C2H4) and ethane (C2H6). The first process gas group is input to the conductive container 545 and then enters the first gas tank 575 through the gas permeable holes in the bottom plate of the conductive container 545. The high frequency power or the high frequency power and the low frequency power are mixed and applied to the conductive container 545 and used as an electrode to generate a plasma discharge in the first gas tank 575, thereby forming radicals, ions in the first gas tank 575. And particles. Neutral free radicals and gas particles enter the film forming space from the first gas box 575 through vent holes located in the transfer plate and the shower plate. The second process gas group includes two types of gases. The first type of gas consists of at least one of the following three types of compounds: the first type of compound consists of any compound including Si and ruthenium. The second type of compound consists of any compound including Si, ruthenium and osmium. Any compound consisting of Si, yttrium, C and lanthanum. The second type of gas includes at least one of the following gases: ammonia, hydrazine, nitrogen, hydrogen, argon, helium, and xenon. The above compounds including Si and ruthenium have a common chemical formula SixHy, wherein X ranges from 1 to 2, and y ranges from 4 to 6, such as SiH4, Si2H6. The second class of compounds comprising Si, N and ruthenium have the common chemical formula (SiH3)-nNHn, wherein n ranges from 〇 to 2, such as tridecylamine (TSA, (SiH3)3N). The third class of compounds including Si, N, C and ruthenium have the common chemical formula (R-NH)4-nSiXn, wherein R is a hydrocarbyl group (which may be the same or different), X is ruthenium or halogen, and the range of η From 0 to 3, such as Bis (Tertiary Butyl Amino) Silane (BTBAS, (t-C4H9NH) 2SiH2) and Tetrakis (Diethyl Amino) Silane (TDAS, Si (N (C2H5) 2) 4. 127482.doc -28 * M4785 127482 007151566- 1 200939900 The above three types of compounds may be in liquid form. The liquid compound needs to be vaporized first for chemical vapor deposition. The second process gas group is fed into the internal space of the transfer distribution plate, ie the second gas tank 5 85' and sprayed The venting holes on the plate are diffused and transported into the film forming space. The radicals and particles formed by the plasma of the first processing gas group in the first gas box 575 are mixed with the second processing gas group in the film forming space, and then passed through The chemical reaction and polymerization form a tantalum nitride film on the surface of the substrate, and the carbon atom content of the film is maintained between 1% and 2%. It can be known from the above analysis that the isotope plasma mode can be used for film deposition and basis. Sheet surface treatment, Surface treatment after deposition and plasma cleaning of the reaction chamber. Adjacent plasma mode can be used for film deposition and plasma cleaning of the reaction chamber. The following examples illustrate the technical flow of technical processing using the reaction chamber of the present invention. The plasma is excited and deposited on the substrate to form a film. The substrate is then removed and the reaction chamber is cleaned with adjacent plasma. Alternatively, the plasma can be excited for chamber cleaning after the substrate is removed from the reaction chamber. The film can also be deposited by using the same-position plasma operation, and the cleaning process uses the adjacent plasma. With other technical processes, the surface of the substrate can be surface treated with the same plasma first, and then the adjacent plasma is used. Film deposition. After film deposition, surface treatment can be performed with the same plasma, and then the reaction chamber is cleaned with adjacent plasma. Figure 6 shows an embodiment of a transfer distribution plate according to one implementation of the present invention. The top of the transfer knife plate 655 has A hemispherical notch 654 that produces an area toward the adjacent electric 7 'ie, the first air box 775. The hemispherical defect σ leads to the entrance hole 674' The plasma particles are caused to drift downward (10)a - into the upper part of the substrate 127482.doc A44785 «7482 007151566-1 -29- 200939900 film forming space (not shown). From the lower half of the transfer distribution plate 655 for the composition The second air tank is 78. In the inner space of the conductive gas distribution plate (I7 first gas 780), there is a buffer pjate 652 to uniformly diffuse and distribute the first process gas, and the second process gas It is input into the second air tank 78A, and then enters the film forming space through the vent hole 676 located at the bottom of the transfer distribution plate 654. The diameter of the hemispherical surface 654 at the upper portion is greater than the diameter of the aperture 674. The hemispherical surface faces the first air box 775 to avoid unstable plasma and arcing of the first air box 775 and to increase the plasma generating space to the portion toward the aperture 674. The radical density is described with reference to the specific embodiments, but all aspects thereof are intended to be illustrative and not limiting. Further, other embodiments may be readily conceived by those skilled in the art from a study of this disclosure. Various aspects and/or 70 pieces of the embodiments described in this patent may be used alone or in any combination in the plasma chamber technology. Features and embodiments described in the text and drawings should be understood as merely non-existing properties' The true scope and spirit of the invention are defined by the following claims. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in and constitute a The drawings are intended to depict the main features of the embodiments in a generic manner. The figures are not intended to describe each of the detailed features of the actual embodiment 127482.doc 200939900, nor to depict the true dimensions of the elements and the elements are not drawn to scale. Figure 1 shows a system with two reaction chambers in accordance with one embodiment of the present invention. Figure 2 is a cross-sectional perspective view of a reaction chamber obtained in accordance with one embodiment of the present invention with the reaction chamber top cover in an open position. Figure 3A shows a processing platform constructed in accordance with one embodiment of the present invention. Figure 3B shows the situation in which the reaction chamber of Figure 3A operates in an adjacent plasma generation mode. Figure 3C shows the situation in which the reaction chamber of Figure 3A operates in a homo- or direct plasma generation mode. Figure 4A shows another processing platform constructed in accordance with one embodiment of the present invention. Figure 4B shows the situation in which the reaction chamber of Figure 4A operates in an adjacent plasma generation mode. Figure 4C shows the situation in which the reaction chamber of Figure 4A operates in a homo- or direct electro-generation mode. Figures 5A and 5B show yet another processing platform constructed in accordance with one embodiment of the present invention. Figures 5C and 5D depict an implementation of two variations of the processing platform of Figures 5A and 5B. Figure 6 shows an example of a transfer distribution plate implemented in accordance with one embodiment of the present invention. 127482.doc -31· 200939900

【主要元件符號說明】 10 反應室頂蓋/頂蓋 20 反應室/半導體反應室 21 内腔 40 反應室基座/基座 41 主體 42 上部表面 43 下部表面 44 處理平臺 45 外圍邊界 50 軸孔 52 頂針軸孔 55 排氣通道 62 真空泵 63 導管 100 系統/反應室頂蓋 101 主體 102 頂部或外部表面 103 底部或内部表面 104 空腔 105 氣體傳遞分布總成 107 細孔 108 反應室 108a 處理平臺 -32· 127482.doc A44785 1274B2 007151566-1 200939900[Main component symbol description] 10 Reaction chamber top cover/top cover 20 Reaction chamber/semiconductor reaction chamber 21 Inner chamber 40 Reaction chamber base/base 41 Main body 42 Upper surface 43 Lower surface 44 Processing platform 45 Peripheral boundary 50 Shaft hole 52 Thimble shaft hole 55 Exhaust passage 62 Vacuum pump 63 Catheter 100 System/reaction chamber top cover 101 Main body 102 Top or exterior surface 103 Bottom or internal surface 104 Cavity 105 Gas transmission distribution assembly 107 Fine hole 108 Reaction chamber 108a Processing platform - 32 · 127482.doc A44785 1274B2 007151566-1 200939900

108b 處理平臺 108c 處理平臺 108d 處理平臺 110 反應室 110a 處理平臺 110b 處理平臺 110c 處理平臺 llOd 處理平臺 115 中央傳輸室/傳送室 120 機械手臂 125 真空鎖 130 真空鎖 135 小型環境 140a 標準晶圓盒或晶圓傳送盒 140b 標準晶圓盒或晶圓傳送盒 140c 標準晶圓盒或晶圓傳送盒 150 定位臂 300 處理平臺 302 第一處理氣體/氣體供應源 304 第二處理氣體/氣體供應源/混合氣體 305 成膜空間 310 基板 312 軸/射頻匹配電路 315 基片支座 -33- 127482.doc A44785 127482 007151566-1 200939900108b processing platform 108c processing platform 108d processing platform 110 reaction chamber 110a processing platform 110b processing platform 110c processing platform 11Od processing platform 115 central transfer chamber / transfer chamber 120 robot arm 125 vacuum lock 130 vacuum lock 135 small environment 140a standard wafer cassette or crystal Round transfer box 140b Standard wafer cassette or wafer transfer cassette 140c Standard wafer cassette or wafer transfer cassette 150 Positioning arm 300 Processing platform 302 First process gas/gas supply source 304 Second process gas/gas supply source/mixed gas 305 film forming space 310 substrate 312 axis / RF matching circuit 315 substrate support -33- 127482.doc A44785 127482 007151566-1 200939900

316 318 320 324 325 326 330 335 340 345 350 355 360 36 370 372 374 375 376 380 405 412 415 440 電極 加熱器 導電性反應室主體/室壁 高頻射頻發生器/高頻射頻功率源 底板 低頻射頻發生器/低頻射頻功率源 開口 頂部總成 導電性喷淋板/喷淋板 導電性容器 絕緣塊/第一絕緣環 導電性氣體傳遞分布板 絕緣塊/第二絕緣環 第二可移動接觸元件 第一可移動接觸元件 透氣孔 透氣孔/孔 氣箱 透氣孔/孔 氣箱 成膜空間 射頻匹配電路 基片支座 導電性喷淋板/喷淋板 127482.doc -34- A44785 127482 007151566-1 200939900 ❹ 445 導電性容器/傳遞分布板 455 導電性氣體傳遞分布板/傳遞分布板 474 入射孔 475 氣箱 476 入射孔 478 孔 480 氣箱 505 成膜空間 512 射頻匹配電路/匹配網路 518 加熱器 520 導電性反應室主體 540 導電性喷淋板/噴淋板/導電性噴頭 542 絕緣板 545 導電性容器/傳遞分布板/喷淋板 550 絕緣材料環/絕緣環 555 導電性氣體傳遞分布板/傳遞分布板 572 透氣孔 574 透氣孔 575 氣箱 576 透氣孔 578 透氣孔 580 開關 585 氣箱 612a 射頻匹配電路 1274821.doc •35, 200939900 612b 射頻匹配電路 624a 高頻射頻發生器 624b 高頻射頻發生器 626a 低頻射頻發生器 626b 低頻射頻發生器 652 緩衝板 654 半球形表面/半球形缺口 /傳遞分布板 655 傳遞分布板 674 入射孔/孔 676 透氣孔 680a 第一控制裝置 680b 第二控制裝置 775 氣箱 780 氣箱 127482.doc -36- Α44785 127482 ΟΟ7151566-Ι316 318 320 324 325 326 330 335 340 345 350 355 360 36 370 372 374 375 376 380 405 412 415 440 Electrode heater Conductive reaction chamber main body / chamber wall high frequency RF generator / high frequency RF power source backplane low frequency RF generation / low frequency RF power source open top assembly conductive shower plate / shower plate conductive container insulation block / first insulation ring conductive gas transmission distribution plate insulation block / second insulation ring second movable contact element first Movable contact element venting hole venting hole/hole gas box venting hole/hole gas box filming space RF matching circuit substrate support conductive spray plate/spray plate 127482.doc -34- A44785 127482 007151566-1 200939900 ❹ 445 Conductive container / transfer distribution plate 455 Conductive gas transfer distribution plate / transfer distribution plate 474 Incident hole 475 Air box 476 Incident hole 478 Hole 480 Air box 505 Film formation space 512 RF matching circuit / Matching network 518 Heater 520 Conductive Sex Reaction Chamber Body 540 Conductive Spray Plate / Spray Plate / Conductive Spray Head 542 Insulation Plate 545 Conductive Container / Transfer Distribution Plate / Spray Plate 550 Insulation Ring / Insulation Ring 555 Conductive Gas Transfer Distribution Plate / Transfer Distribution Plate 572 Ventilation Hole 574 Ventilation Hole 575 Air Box 576 Ventilation Hole 578 Ventilation Hole 580 Switch 585 Air Box 612a RF Matching Circuit 1274821.doc •35, 200939900 612b RF Matching Circuit 624a High Frequency RF Generator 624b High Frequency RF Generator 626a Low Frequency RF Generator 626b Low Frequency RF Generator 652 Buffer Board 654 Hemispherical Surface / Hemispherical Notch / Transfer Distribution Plate 655 Transfer Distribution Plate 674 Incident Hole / Hole 676 Vent 680a first control device 680b second control device 775 gas box 780 gas box 127482.doc -36- Α44785 127482 ΟΟ7151566-Ι

Claims (1)

200939900 十、申請專利範園: 1. 一種電漿反應室,其包括: 反應室主體,於其内設置有複數個處理平臺; 複數個可旋轉基片支座,該等基片支座之每一者對應 設置於該等處理平臺之每一者中; 複數個與電衆參與反應區同位之電漿生成區,該等與 電漿參與反應區同位之電聚生成區之每一者位於該等基 片支座之每一者上方; ❹ 複數個相鄰電漿生成區,該等相鄰電漿生成區之每一 者位於每一相應的與電漿參與反應區同位之電漿生成區 上方,並與該相應的與電漿參與反應區同位之電漿生成 區相連通;以及 射頻能量源,其與該等相鄰電漿生成區之每一者相連 接。 2. 如請求項1之電漿反應室,其另包括: 第一氣體傳遞系統’該第一氣體傳遞系統與該等相鄰 電漿生成區之每一者相連接;以及 第二氣體傳遞系統’該第二氣體傳遞系統與該等與電 漿參與反應區同位之電漿生成區之每一者相連接。 3. 如請求項2之電漿反應室,該第二氣體傳遞系統亦將氣 態粒子自每一相鄰電漿生成區輸送至相應的與電漿參與 反應區同位之電漿生成區。 4. 如請求項1之電漿反應室,其亦包括用於將所有處理平 臺連接至同一真空泵之排氣系統。 127482.doc A44785 12748a 0〇7151566-1 200939900 5’如叫求項1之電漿反應室,該射頻能量源包括高頻射頻 發生器、低頻射頻發生器以及射頻匹配電路。 6. 如請求項丨之電漿反應室,其亦包括一個用於控制在相 鄰電漿生成區及與電漿參與反應區同位之電漿生成區中 激發電漿之切換裝置。 7. 如請求項1之電漿反應室,其亦包括在該等基片支座之 每一者中設置的加熱器。 8. —種電漿反應室,其包括: 反應室主體; 可旋轉基片支座,其設置於該反應室主體内; 第一氣體傳遞分布裝置; 第二氣體傳遞分布裝置,其與該第一氣體傳遞分布裝 置相互間隔開,並且與該第一氣體傳遞分布裝置及該反 應室主體相互電絕緣’其中在第—氣體傳遞分布裝置與 第二氣體傳遞分布裝置之間構成—相鄰電漿生成區,在 第二氣體傳遞分布裝置與基片支座之間構成—與電聚參 與反應區同位之電漿生成區,該第—氣體傳遞分布裝置 將一第一處理氣體輸送至該相鄰電漿生成區,該第二氣 體傳遞分布裝置將-第二處理氣錄送至該與電聚參與 反應區同位之電漿生成區,該第二氣體傳遞分布裝置亦 將來自相鄰電漿生成區之電漿粒子輸送至與電漿參與反 應區同位之電漿生成區; 射頻源’其與該第-氣體傳遞分布裝置相連接;以及 刀換裝置,其用於將第二氣體傳遞分布裝置選擇性地 127482.doc 200939900 連接至射頻源或接地。 如明求項8之電漿反應室,該切換裝置包括可移動機械 接觸元件,用以選擇性地將第二氣體傳遞分布裝置連接 至第—氣體傳遞分布裝置或連接至反應室主體。 10·如β求項8之電漿反應室,該切換裝置包括電子式切換 開關。 U.如請求項8之電漿反應室,該第二氣體傳遞分布裝置包 括一導電性喷淋板、一個連接至該導電性噴淋板之絕緣 板,以及一個連接至該絕緣板之導電性氣體傳遞分布 板,其中該傳遞分布板接地,該切換裝置可以選擇性地 將導電性喷淋板連接至射頻源或接地。 12.如請求項“之電漿反應室,該切換裝置選擇性地將第一 氣體傳遞分布裝置連接至射頻源或置於浮動電位。 13·如請求項8之電漿反應室,該第二氣體傳遞分布裝置包 括喷淋板以及與噴淋板相連接之導電性氣體傳遞分布 板,其中該導電性氣體傳遞分布板包括複數個面向相鄰 電漿生成區的半球形孔。 14.如請求項13之電聚反應室,該第二氣體傳遞分布裝置亦 包括一個緩衝板,用於均勻擴散、分布第二處理氣體。 15_如請求項8之電漿反應室,其亦包括加熱器,該加熱器 設置於基片支座内。 16·如請求項8之電漿反應室,該射頻源包括高頻射頻源、 低頻射頻源以及射頻匹配電路。 17. —種電漿反應室,其包括: 127482.doc 200939900 反應室主體,於其内設置有複數個處理平臺; 複數個可旋轉基片支座,該等基片支座之每一者對應 設置於該等處理平臺之每一者中; 複數個第一氣體傳遞分布裝置,每一第一氣體傳遞分 布裝置對應設置於一相應的處理平臺中; 複數個第二氣體傳遞分布裝置,每一第二氣體傳遞分 布裝置對應設置於一相應的處理區域内並與一對應的第 一氣體傳遞分布裝置間隔分開’並且與該對應的第一氣 _ 體傳遞分布裝置以及反應室主體相互電絕緣,其中:在 每一相應的處理區域内,在第一氣體傳遞分布裝置與第 二氣體傳遞分布裝置之間構成一相鄰電漿生成區,在第 二氣體《分布冑置與基片支座<間構成一肖電漿參與 反應區同位之電漿生成區,第一氣體傳遞分布裝置將第 -處理氣體輸送至相鄰電漿生成區,而第二氣體傳遞分 布裝置將k處理氣體輸送至與電衆參與反應區同位之 φ 電漿生成區,第二氣體傳遞分布裝置亦將來自相鄰電聚 生成區之f漿粒子輸送至與電漿參與反應區同位之電浆 # 生成區; 射頻源’其與該複數個第—氣體傳遞分布裝置相連 接;以及 切換裝置,其用於將第二氣體傳遞分布裝置選擇性地 連接至射頻源或接地。 …如請求項17之電漿反應室,其亦包括將所有處理平臺連 接至同一真空泵之排氣系統。 I27482.doc - 200939900 19_如請求項18之電漿反應室,該射頻能量源包括高頻射頻 發生器、低頻射頻發生器以及射頻匹配電路。 20. 如請求項16之電漿反應室’該切換裝置亦用於控制在每 '一相鄰電漿生成區及每一與電漿參與反應區同位之電裝 生成區中激發電漿。 21. 如請求項20之電漿反應室’該切換裝置包括可移動機械 接觸元件,用以選擇性地將每一第二氣體傳遞分布裝置 連接至與其對應的第一氣體傳遞分布裝置或連接至反# ❿室主體。 22. 如請求項20之電漿反應室’該切換裝置包括電子式切換 開關》 23. 如請求項16之電漿反應室,其中每一第二氣體傳遞分布 裝置包括導電性噴淋板、與導電性喷淋板相連接之絕緣 板’以及與絕緣板相連接之導電性氣體傳遞分布板,其 中該導電性氣體傳遞分布板接地,該切換裝置可以選擇 性地將導電性喷淋板連接至第一氣體傳遞分布裝置或接 ^ 地。 • 24.如請求項23之電漿反應室,該切換裝置亦選擇性地將第 一氣體傳遞分布裝置連接至射頻源或置於浮動電位。 25. 如請求項16之電漿反應室,其十每一第二氣體傳遞分布 裝置包括喷淋板以及與喷淋板相連接之導電性氣體傳遞 分布板,其中該導電性氣體傳遞分布板包括複數個面向 相鄰電漿生成區的半球形孔。 26. 如請求項8之電漿反應室,該切換裝置亦選擇性地將第 127482.doc 200939900 二氣體傳遞分布裝置連接至浮動電勢。 27. 如請求項17之電漿反應室,該切換裝置亦選擇性地將第 二氣體傳遞分布裝置連接至浮動電勢。 28. —種電漿反應室,其包括: 反應室主體; 可旋轉基片支座,其設置於該反應室主體内; 第一氣體傳遞分布裝置; 第二氣體傳遞分布裝置,其與該第一氣體傳遞分布裝 置相互間隔開,並且與該第一氣體傳遞分布裝置及該反 應室主體相互電絕緣,其中在第一氣體傳遞分布裝置與 第二氣體傳遞分布裝置之間構成一相鄰電漿生成區,在 第二氣體傳遞分布裝置與基片支座之間構成一與電聚參 與反應區同位之電漿生成區,該第一氣體傳遞分布裝置 將一第一處理氣體輸送至該相鄰電漿生成區,該第二氣 體傳遞分布裝置將一第二處理氣體輸送至該與電漿參與 反應區同位之電漿生成區,該第二氣體傳遞分布裝置亦 將來自相鄰電漿生成區之電漿粒子輸送至與電漿參與反 應區同位之電漿生成區; 第一射頻源,其與該第一氣體傳遞分布裝置相連接; 以及 第二射頻源,其與該第二氣體傳遞分布裝置相連接。 29. 如請求項28之電漿反應室,其進一步包括一第一控制裝 置,該第一控制裝置與該第一射頻源相連接,用以將第 一射頻源與該第一氣體傳遞分布裝置選擇性地相連接或 127482.doc 200939900 斷開或使第一氣體傳遞分布裝置置於浮動電位。 3 0.如請求項28之電漿反應室,其進一步包括一第二控制裝 置,該第二控制裝置與該第二射頻源相連接,用以將第 二射頻源與該第二氣體傳遞分布裝置選擇性地相連接或 斷開或使第二氣體傳遞分布裝置置於浮動電位。200939900 X. Patent application garden: 1. A plasma reaction chamber, comprising: a reaction chamber body, in which a plurality of processing platforms are disposed; a plurality of rotatable substrate holders, each of the substrate holders One is correspondingly disposed in each of the processing platforms; a plurality of plasma generating regions co-located with the electric group participating in the reaction zone, and each of the electropolymer generating regions co-located with the plasma participating in the reaction zone is located at the Above each of the substrate holders; ❹ a plurality of adjacent plasma generating regions, each of the adjacent plasma generating regions being located in each of the corresponding plasma generating regions co-located with the plasma participating in the reaction region Upper, and connected to the corresponding plasma generating region co-located with the plasma in the reaction zone; and a radio frequency energy source connected to each of the adjacent plasma generating regions. 2. The plasma reaction chamber of claim 1, further comprising: a first gas delivery system 'the first gas delivery system coupled to each of the adjacent plasma generation zones; and a second gas delivery system The second gas delivery system is coupled to each of the plasma generating zones co-located with the plasma in the reaction zone. 3. The plasma reaction chamber of claim 2, wherein the second gas delivery system also transports gaseous particles from each adjacent plasma generation zone to a corresponding plasma generation zone that is co-located with the plasma in the reaction zone. 4. The plasma reaction chamber of claim 1 which also includes an exhaust system for connecting all of the processing stages to the same vacuum pump. 127482.doc A44785 12748a 0〇7151566-1 200939900 5' The plasma reaction chamber of claim 1, which includes a high frequency RF generator, a low frequency RF generator, and an RF matching circuit. 6. A plasma reaction chamber as claimed in claim 1, which also includes a switching device for controlling the excitation of plasma in the adjacent plasma generating zone and the plasma generating zone co-located with the plasma participating reaction zone. 7. The plasma reaction chamber of claim 1 further comprising a heater disposed in each of the substrate holders. 8. A plasma reaction chamber comprising: a reaction chamber body; a rotatable substrate holder disposed in the reaction chamber body; a first gas transfer distribution device; a second gas transfer distribution device, and the a gas transfer distribution device spaced apart from each other and electrically insulated from the first gas transfer distribution device and the reaction chamber body - wherein the first gas distribution device and the second gas transfer device are formed - adjacent plasma a generating zone, configured between the second gas transfer distributing device and the substrate support - a plasma generating zone co-located with the electropolymerization participating in the reaction zone, the first gas transfer distributing device transporting a first process gas to the adjacent a plasma generating zone, the second gas transfer distributing device records the second processing gas to the plasma generating zone co-located with the electropolymerization participating reaction zone, and the second gas transfer distributing device is also generated from the adjacent plasma generating device The plasma particles of the zone are transported to a plasma generating zone co-located with the plasma in the reaction zone; the RF source is connected to the first gas transfer distribution device; Home, for transmitting a second gas distribution means are selectively connected to the RF source 127482.doc 200939900 or ground. The plasma processing chamber of claim 8, the switching device comprising a movable mechanical contact member for selectively connecting the second gas delivery distribution device to the first gas delivery distribution device or to the reaction chamber body. 10. The plasma reaction chamber of β, wherein the switching device comprises an electronic switching switch. U. The plasma reaction chamber of claim 8, the second gas transfer distribution device comprising a conductive shower plate, an insulating plate connected to the conductive shower plate, and a conductivity connected to the insulating plate A gas transfer distribution plate, wherein the transfer distribution plate is grounded, the switching device selectively connecting the conductive shower plate to a radio frequency source or ground. 12. The apparatus of claim 6, wherein the switching device selectively connects the first gas delivery distribution device to a radio frequency source or to a floating potential. 13. The plasma reaction chamber of claim 8, the second The gas transfer distribution device includes a shower plate and a conductive gas transfer distribution plate connected to the shower plate, wherein the conductive gas transfer distribution plate includes a plurality of hemispherical holes facing adjacent plasma generating regions. The electropolymerization reaction chamber of item 13, the second gas distribution device further comprising a buffer plate for uniformly diffusing and distributing the second process gas. 15_ The plasma reaction chamber of claim 8, which also includes a heater. The heater is disposed in the substrate holder. 16· The plasma reaction chamber of claim 8, the RF source comprising a high frequency RF source, a low frequency RF source, and a RF matching circuit. 17. A plasma reaction chamber. The method includes: 127482.doc 200939900 The reaction chamber body is provided with a plurality of processing platforms; a plurality of rotatable substrate holders, each of the substrate holders correspondingly disposed on each of the processing platforms In one of the plurality of first gas transfer distribution devices, each of the first gas transfer distribution devices is disposed in a corresponding processing platform; a plurality of second gas transfer distribution devices, each of the second gas transfer distribution devices correspondingly disposed And in a corresponding processing region and spaced apart from a corresponding first gas transfer distribution device and electrically insulated from the corresponding first gas transport distribution device and the reaction chamber body, wherein: in each respective process In the region, an adjacent plasma generating region is formed between the first gas distribution device and the second gas distribution device, and a second plasma is formed between the second gas distribution device and the substrate support. a plasma generating zone in the same region of the reaction zone, the first gas transfer distribution device transports the first process gas to the adjacent plasma generation zone, and the second gas transfer distribution device transports the k process gas to the same position as the electricity participation reaction zone φ plasma generation zone, the second gas transfer distribution device also transports the slurry particles from the adjacent electropolymerization zone to participate in the reaction with the plasma a homogenous plasma # generating region; an RF source 'connected to the plurality of first gas distribution devices; and a switching device for selectively connecting the second gas delivery device to the RF source or ground ... The plasma reaction chamber of claim 17, which also includes an exhaust system that connects all processing platforms to the same vacuum pump. I27482.doc - 200939900 19_A plasma reaction chamber of claim 18, the RF energy source including a high frequency RF generator, low frequency RF generator and RF matching circuit 20. The plasma reaction chamber of claim 16 is also used to control each adjacent plasma generation zone and each reacts with the plasma The plasma is excited in the electrical installation area of the same location. 21. The plasma reaction chamber of claim 20, wherein the switching device includes a movable mechanical contact element for selectively connecting each second gas delivery distribution device to a first gas delivery distribution device corresponding thereto or to Anti # ❿室主. 22. The plasma reaction chamber of claim 20, wherein the switching device comprises an electronic switching switch. 23. The plasma reaction chamber of claim 16, wherein each of the second gas delivery distribution devices comprises a conductive shower plate, and An insulating plate connected to the conductive shower plate and a conductive gas transfer distribution plate connected to the insulating plate, wherein the conductive gas transfer distribution plate is grounded, and the switching device can selectively connect the conductive shower plate to The first gas transfer device or ground. 24. The plasma reaction chamber of claim 23, wherein the switching device also selectively connects the first gas delivery distribution device to the RF source or to a floating potential. 25. The plasma reaction chamber of claim 16, wherein each of the second gas delivery distribution devices comprises a shower plate and a conductive gas transfer distribution plate coupled to the shower plate, wherein the conductive gas transfer distribution plate comprises A plurality of hemispherical holes facing adjacent plasma generating regions. 26. The plasma reaction chamber of claim 8 wherein the switching device selectively connects the 127482.doc 200939900 two gas delivery distribution device to the floating potential. 27. The plasma reaction chamber of claim 17, the switching device also selectively connecting the second gas delivery distribution device to a floating potential. 28. A plasma reaction chamber comprising: a reaction chamber body; a rotatable substrate holder disposed within the reaction chamber body; a first gas delivery distribution device; a second gas delivery distribution device, and the a gas transfer distribution device spaced apart from each other and electrically insulated from the first gas transfer distribution device and the reaction chamber body, wherein an adjacent plasma is formed between the first gas transfer distribution device and the second gas transfer device a generating region, between the second gas transfer distributing device and the substrate support, a plasma generating region co-located with the electropolymerization participating reaction zone, the first gas transfer distributing device transporting a first processing gas to the adjacent a plasma generating zone, the second gas transfer distributing device transports a second process gas to the plasma generating zone co-located with the plasma in the reaction zone, and the second gas distributing device is also from the adjacent plasma generating zone The plasma particles are transported to a plasma generating region co-located with the plasma in the reaction zone; a first RF source coupled to the first gas transfer distribution device; Two RF sources, distribution transmitting means which is connected to the second gas. 29. The plasma reaction chamber of claim 28, further comprising a first control device coupled to the first RF source for coupling the first RF source to the first gas delivery device Selectively connect or 127482.doc 200939900 to disconnect or place the first gas delivery distribution device at a floating potential. The plasma reaction chamber of claim 28, further comprising a second control device coupled to the second RF source for distributing the second RF source and the second gas The device selectively connects or disconnects or places the second gas delivery distribution device at a floating potential. 127482.doc A44785 127482 007151566-1127482.doc A44785 127482 007151566-1
TW97107559A 2008-03-04 2008-03-04 Plasma reaction chamber with a plurality of processing plates having a plurality of plasma reaction zone TWI393487B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97107559A TWI393487B (en) 2008-03-04 2008-03-04 Plasma reaction chamber with a plurality of processing plates having a plurality of plasma reaction zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97107559A TWI393487B (en) 2008-03-04 2008-03-04 Plasma reaction chamber with a plurality of processing plates having a plurality of plasma reaction zone

Publications (2)

Publication Number Publication Date
TW200939900A true TW200939900A (en) 2009-09-16
TWI393487B TWI393487B (en) 2013-04-11

Family

ID=44867826

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97107559A TWI393487B (en) 2008-03-04 2008-03-04 Plasma reaction chamber with a plurality of processing plates having a plurality of plasma reaction zone

Country Status (1)

Country Link
TW (1) TWI393487B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI627669B (en) * 2013-06-24 2018-06-21 Gas injection device for inductively coupled plasma chamber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105474362B (en) * 2013-08-16 2018-05-25 应用材料公司 For the elongated capacitively coupled plasma source of high-temperature low-pressure force environment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165194A (en) * 1994-12-12 1996-06-25 Mitsubishi Heavy Ind Ltd Method and device for forming thin film with microwave plasma cvd
US5780359A (en) * 1995-12-11 1998-07-14 Applied Materials, Inc. Polymer removal from top surfaces and sidewalls of a semiconductor wafer
JPH09260097A (en) * 1996-03-18 1997-10-03 Hitachi Ltd Plasma generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI627669B (en) * 2013-06-24 2018-06-21 Gas injection device for inductively coupled plasma chamber

Also Published As

Publication number Publication date
TWI393487B (en) 2013-04-11

Similar Documents

Publication Publication Date Title
US8336488B2 (en) Multi-station plasma reactor with multiple plasma regions
TWI493622B (en) Method for improving process control and film conformality of pecvd films
TWI433252B (en) Activated gas injector, film deposition apparatus, and film deposition method
US6553932B2 (en) Reduction of plasma edge effect on plasma enhanced CVD processes
KR20220141773A (en) Methods and apparatuses for showerhead backside parasitic plasma suppression in a secondary purge enabled ald system
JP5275038B2 (en) Formation method of barrier film
US8664127B2 (en) Two silicon-containing precursors for gapfill enhancing dielectric liner
US10242866B2 (en) Selective deposition of silicon nitride on silicon oxide using catalytic control
US7897205B2 (en) Film forming method and film forming apparatus
US20120222616A1 (en) Shower head assembly and thin film deposition apparatus comprising same
US20050221000A1 (en) Method of forming a metal layer
US20070065594A1 (en) System for depositing a film by modulated ion-induced atomic layer deposition (MII-ALD)
US10283404B2 (en) Selective deposition of WCN barrier/adhesion layer for interconnect
US20150140786A1 (en) Substrate processing device and substrate processing method
WO2002005329A2 (en) Chemical vapor deposition of barrier layers
SG188656A1 (en) Method of mitigating substrate damage during deposition processes
SG190637A1 (en) Flowable dielectric equipment and processes
KR20050054983A (en) Susceptor device for semiconductor processing, film forming apparatus, and film forming method
TWI691607B (en) Sputtering showerhead
KR101959183B1 (en) Method of depositing dielectric films using microwave plasma
US20040200413A1 (en) Chemical vapor deposition apparatus
TW200939900A (en) Plasma reaction chamber with a plurality of processing plates having a plurality of plasma reaction zone
CN109868459B (en) Semiconductor device
US6918960B2 (en) CVD of PtRh with good adhesion and morphology
CN109778139B (en) Method and device for improving heating performance of heater in chemical vapor deposition chamber