TW200939491A - Solar cell and method for making same - Google Patents

Solar cell and method for making same Download PDF

Info

Publication number
TW200939491A
TW200939491A TW97109215A TW97109215A TW200939491A TW 200939491 A TW200939491 A TW 200939491A TW 97109215 A TW97109215 A TW 97109215A TW 97109215 A TW97109215 A TW 97109215A TW 200939491 A TW200939491 A TW 200939491A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
solar cell
semiconductor layer
layer
type semiconductor
Prior art date
Application number
TW97109215A
Other languages
Chinese (zh)
Inventor
Ga-Lane Chen
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97109215A priority Critical patent/TW200939491A/en
Publication of TW200939491A publication Critical patent/TW200939491A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a solar cell. The solar cell includes a substrate, a back metal contact layer formed on a surface of the substrate, a first type semiconductor formed on a surface of the back metal contact layer, a second type semiconductor formed on a surface of the first type semiconductor, and a carbon nanotube layer formed on a surface of the second type semiconductor. In addition, the invention also relates to a method for making the above mentioned solar cell.

Description

200939491 九、發明說明: 【發明所屬之技術領域】 . 本發明涉及太陽能電池及其製造方法,尤其涉及一種 可撓曲之太陽能電池及其製造方法。 【先前技術】 太陽能電池主要係應用光電轉換原理,其結構主要包 括基板以及設置於基板上之P型半導體材料層和N型半導 ©體材料層。 光電轉換係指太陽之輻射能光子通過半導體物質轉變 為電能之過程(請參見 “Grown junction GaAs solar cell” ’ Shen, C.C.; Pearson, G.L.; Proceedings of the IEEE, Volume 64, Issue 3, March 1976 Page(s):384-385 )。當太陽光照射到 半導體上時,其中一部分被表面反射掉,其餘部分被半導 體吸收或透過。被吸收之光,當然有一些變成熱能,另一 些光子則同組成半導體之原子價電子碰撞,於是產生電子-V 空穴對。這樣,光能就以產生電子-空穴對之形式轉變為電 能,並於P型和N型交界面兩邊形成勢壘電場,將電子驅 向N區’空穴驅向P區,從而使得N區有過剩之電子,P 區有過剩之空穴,於P-N結附近形成與勢壘電場方向相反 之光生電場。光生電場之一部分除抵消勢壘電場外,還使 P型半導體層帶正電,N型半導體層帶負電,於N區與P 區之間之薄層產生所謂光生伏打電動勢。若分別於P型層 和N型半導體層焊上金屬引線,接通負載,則外電路便有 200939491 電流通過。如此形成之一個個電池元件,把他們串聯、並 聯起來’就能產生一定之電壓和電流,輸出功率。 ' 近年來’太陽能電池已經廣泛應用於航太、工業、氣 象等領域,如何將太陽能電池應用於日常生活,以解決能 源短缺、環境污染等問題已成為一個熱點問題。其中,將 太陽能電池與建築材料相結合,使得未來之大型建築或家 庭房屋實現電力自給’係未來一大發展方向,德國、美國 等國家更提出光伏屋頂計晝。 為了使太%能電池更容易配合建築物本身之形狀,可 撓曲太陽能電池已經開始應用於建築領域。可撓曲太陽能 電池一般包括一個可撓曲之基板及依次形成於基板上之背 電極、p型半導體層、N型半導體層及透明導電層。透明導 電層一般係採用氧化銦錫(lndiuin Tin Oxide,ITO )膜。 然’ ITO膜比較易碎(Brittle ) ’特別係在彎曲時易碎, 故ιτο膜可撓性較差,因而採用IT〇膜之太陽能電池可撓 ©性較差。 【發明内容】 有鑒於此,有必要提供一種可撓性較佳之太陽能電池。 一種太陽能電池包括:一個基板;一層背電極,該背 電極形成於該基板之一個表面;一層第一型半導體層,該 第一型半導體層形成於該背電極之表面;一層第二型半導 體層,該第二型半導體層形成於該第一型半導體層之表 面,一層奈米碳管膜層,該奈米碳管膜層形成於該第二型 200939491 半導體層之表面。 一種太陽能電池之製造方法,該方法包括以下步驟: 於一個基板之表面形成一層背電極;於該背電極上形成一 層第一型半導體層;於該第一型半導體層上形成一層第二 型半導體層;提供一奈米碳管陣列,採用一拉伸工具從該 奈米碳管陣列中拉取獲得一奈米碳管薄膜,直接將該奈米 碳管薄膜附於該第二型半導體層之表面,形成該奈米碳管 膜層。 相對於先前技術,上述太陽能電池採用奈米碳管膜 層,奈米碳管膜層可透光。並且,奈米碳管具有良好之力 學性能,奈米碳管抗拉強度達到50〜200GPa,係鋼之100 倍,奈米碳管膜層比ITO膜具有更高之機械性能 (Mechanically Robust ),柔動性高,經過反復彎曲後仍然 可保持其性能,故採用奈米碳管膜層之太陽能電池可撓性 較佳。而且,奈米碳管膜層之材料係碳,因此奈米碳管膜 層化學性質較穩定,具有較好之抗化學腐餘性,故奈米碳 管膜層可提高太陽能電池抵抗化學腐蝕之能力,從而提高 太陽能電池之耐用性。 【實施方式】 下面將結合附圖,對本發明作進一步之詳細說明。 請參閱圖1,本發明實施例太陽能電池10包括一個基 板101,基板101具有一個表面1012,基板101之表面1012 上依次形成有:背電極(Back Metal Contact Layer) 102; 200939491 第一型半導體層,如P型半導體層103 ; P-Ν過渡層104 ; 第二型半導體層,如N型半導體層105;奈米碳管膜層106; 及前電極(Front Metal Contact Layer ) 107。可理解,當第 一型半導體層係N型半導體層時,第二型半導體層係P型 半導體層。 基板101可撓曲,故太陽能電池10可撓曲。基板101 可以為聚合物薄片(Polymer Foil)或不錄鋼薄片(Stainless Steel Thin Foil )等。聚合物之材料可以為聚醯亞胺 〇 ( Polyimide )、聚對苯二甲酸乙二醋(Polythylene terephthalate,PET)、聚碳酸醋(Polycarbonate, PC)、聚曱 基丙烯酸曱醋(Polymethyl Methacrylate, PMMA)、冰片稀 (Arton,即 Norbornene )等。 背電極102之材料可以為銀(Ag ),銅(Cu ),鉬(Mo ), 銘(A1),銅紹合金(Cu-A1 Alloy ),銀銅合金(Ag-Cu Alloy ), 或者銅鉬合金(Cu-Mo Alloy)等。背電極102可採用濺射 (Sputtering)或者沈積(Deposition)之方法形成。 P型半導體層103之材料可以為P型非晶矽(P Type Amorphous Silicon,簡稱P-a-Si)材料,特別係P型含氫非 晶石夕(P Type Amorphous Silicon With Hydrogen,簡稱 P-a-Si:H)材料。當然,該P型半導體層之材料亦可以為氮 化鉀(GaN)或鋁砷化鎵(InGaP)。 優選地,P型半導體層103之材料為P型非晶矽材料。 非晶矽材料對光之吸收性比結晶矽材料強約500倍,所以 在對光子吸收量要求相同之情況下,非晶矽材料製成之半 200939491 導體層之厚度遠小於結晶矽材料製成之半導體層之厚度。 且非晶矽材料對基板材質之要求更低。所以採用非晶矽材 - 料不僅可節省大量之材料,亦使得製作大面積之太陽能電 - 池成為可能(結晶矽太陽能電池之面積受限於矽晶圓之尺 寸)。 P-N過渡層104之材料可以為結合性較好之III-V族化 合物、II-VI族化合物或I -III-VI族化合物,如碲化鎘 (CdTe )、銅銦石西(CuInSe2 )等材料。P-N過渡層104之材 ❹料亦可以為銅銦鎵硒(CuInixGaSehCIGS)。該P-N過渡層 132用於將光子轉換成電子-孔穴對並形成勢壘電場。P-N 過渡層104有助於提高整個太陽能電池10之穩定性以及光 電轉換效率。該P-N過渡層132可通過化學氣相沈積法 (Chemical Vapor Deposition,CVD ),濺射法等方法形成。 P-N過渡層132有助於提高整個太陽能電池10之光電轉換 效率以及穩定性。 N型半導體層105之材料可以為N型非晶矽(N type ❿ amorphous silicon,簡稱N-a-Si)材料,特別係N型含氳非 晶石夕(N type amorphous silicon with hydrogen,簡稱 N-a-Si:H)材料。 奈米碳管膜層106作為太陽能電池10之透明導電層。 奈米碳管膜層106可以為單層奈米碳管薄膜,亦可由多層 奈米碳管薄膜重疊而成。上述奈米碳管膜層106中之奈米 碳管薄膜可以為無序之奈米碳管薄膜或者有序之奈米碳管 薄膜。無序之奈米碳管薄膜係由無序之奈米碳管(Carbon 200939491200939491 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a solar cell and a method of fabricating the same, and more particularly to a flexible solar cell and a method of fabricating the same. [Prior Art] The solar cell mainly uses a photoelectric conversion principle, and its structure mainly includes a substrate and a P-type semiconductor material layer and an N-type semi-conductive body material layer provided on the substrate. Photoelectric conversion refers to the process by which solar radiant photons are converted into electrical energy by semiconductor materials (see "Grown junction GaAs solar cell" ' Shen, CC; Pearson, GL; Proceedings of the IEEE, Volume 64, Issue 3, March 1976 Page (s): 384-385). When sunlight hits the semiconductor, some of it is reflected off the surface and the rest is absorbed or transmitted by the semiconductor. The absorbed light, of course, some become thermal energy, and the other photons collide with the valence electrons that make up the semiconductor, thus producing electron-V hole pairs. In this way, the light energy is converted into electric energy in the form of electron-hole pairs, and a barrier electric field is formed on both sides of the P-type and N-type interfaces, and the electrons are driven to the N-zone 'holes to the P-region, thereby making N There is an excess of electrons in the region, and there are excess holes in the P region, and a photo-generated electric field opposite to the electric field of the barrier is formed near the PN junction. In addition to offsetting the barrier electric field, one portion of the photogenerated electric field also positively charges the P-type semiconductor layer, and the N-type semiconductor layer is negatively charged, and a thin layer between the N region and the P region produces a so-called photovoltaic electromotive force. If the metal leads are soldered to the P-type layer and the N-type semiconductor layer respectively, and the load is turned on, the external circuit has a current of 200939491. The battery elements thus formed are connected in series and connected together to generate a certain voltage and current and output power. In recent years, solar cells have been widely used in aerospace, industrial, and meteorological fields. How to apply solar cells to daily life to solve problems such as energy shortage and environmental pollution has become a hot issue. Among them, the combination of solar cells and building materials will enable the future of large-scale buildings or homes to achieve self-sufficiency in power. The United States, the United States and other countries have proposed photovoltaic roofing. In order to make the battery too easy to fit the shape of the building itself, flexible solar cells have begun to be used in the construction field. A flexible solar cell generally includes a flexible substrate, a back electrode sequentially formed on the substrate, a p-type semiconductor layer, an N-type semiconductor layer, and a transparent conductive layer. The transparent conductive layer is generally a film of indium tin oxide (ITO). However, the ITO film is relatively fragile (Brittle), which is particularly brittle when bent, so the ιτο film has poor flexibility, so the solar cell using the IT film is less flexible. SUMMARY OF THE INVENTION In view of the above, it is necessary to provide a solar cell that is more flexible. A solar cell includes: a substrate; a back electrode formed on one surface of the substrate; a first type semiconductor layer, the first type semiconductor layer is formed on the surface of the back electrode; and a second type semiconductor layer The second type semiconductor layer is formed on the surface of the first type semiconductor layer, and a carbon nanotube film layer is formed on the surface of the second type 200939491 semiconductor layer. A method of manufacturing a solar cell, the method comprising the steps of: forming a back electrode on a surface of a substrate; forming a first type semiconductor layer on the back electrode; and forming a second type semiconductor on the first type semiconductor layer a carbon nanotube array is provided, and a carbon nanotube film is taken from the carbon nanotube array by a stretching tool, and the carbon nanotube film is directly attached to the second semiconductor layer. The surface forms the carbon nanotube film layer. Compared with the prior art, the above solar cell adopts a carbon nanotube film layer, and the carbon nanotube film layer can transmit light. Moreover, the carbon nanotubes have good mechanical properties, the nano carbon tube tensile strength reaches 50~200GPa, and the steel is 100 times. The carbon nanotube film has higher mechanical properties than the ITO film (Mechanically Robust). The flexibility is high, and the performance can be maintained after repeated bending, so that the solar cell using the carbon nanotube film layer is more flexible. Moreover, the material of the carbon nanotube film layer is carbon, so the chemical properties of the carbon nanotube film layer are relatively stable and have good chemical corrosion resistance, so the carbon nanotube film layer can improve the solar cell resistance to chemical corrosion. Ability to increase the durability of solar cells. [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1, a solar cell 10 according to an embodiment of the present invention includes a substrate 101 having a surface 1012. The surface 1012 of the substrate 101 is sequentially formed with a back metal contact layer 102; 200939491 For example, a P-type semiconductor layer 103; a P-Ν transition layer 104; a second type semiconductor layer such as an N-type semiconductor layer 105; a carbon nanotube film layer 106; and a Front Metal Contact Layer 107. It can be understood that when the first type semiconductor layer is an N type semiconductor layer, the second type semiconductor layer is a P type semiconductor layer. The substrate 101 can be flexed so that the solar cell 10 can flex. The substrate 101 may be a polymer foil (Stainless Steel Thin Foil) or the like. The polymer material may be Polyimide, Polythylene terephthalate (PET), Polycarbonate (PC), Polymethyl Methacrylate (PMMA). ), icy thin (Arton, Norbornene) and so on. The material of the back electrode 102 may be silver (Ag), copper (Cu), molybdenum (Mo), Ming (A1), copper-alloy (Cu-A1 Alloy), silver-copper alloy (Ag-Cu Alloy), or copper-molybdenum. Alloy (Cu-Mo Alloy) and the like. The back electrode 102 can be formed by sputtering or deposition. The material of the P-type semiconductor layer 103 may be a P-type amorphous silicon (P-Si) material, in particular, a P-type Amorphous Silicon With Hydrogen (Pa-Si: H) Material. Of course, the material of the P-type semiconductor layer may also be potassium nitride (GaN) or aluminum gallium arsenide (InGaP). Preferably, the material of the P-type semiconductor layer 103 is a P-type amorphous germanium material. The amorphous bismuth material is about 500 times stronger than the crystalline bismuth material, so in the case of the same photon absorption, the thickness of the semi-200939491 conductor layer made of amorphous bismuth material is much smaller than that of the crystalline bismuth material. The thickness of the semiconductor layer. And the amorphous germanium material has lower requirements on the substrate material. Therefore, the use of amorphous bismuth material not only saves a large amount of material, but also makes it possible to make a large area of solar power cells (the area of the crystallization solar cell is limited by the size of the ruthenium wafer). The material of the PN transition layer 104 may be a combination of a better group III-V compound, a II-VI compound or a I-III-VI compound, such as cadmium telluride (CdTe) or copper indium sulphide (CuInSe2). . The material of the P-N transition layer 104 may also be copper indium gallium selenide (CuInixGaSehCIGS). The P-N transition layer 132 is used to convert photons into electron-hole pairs and form a barrier electric field. The P-N transition layer 104 helps to improve the stability of the entire solar cell 10 as well as the photoelectric conversion efficiency. The P-N transition layer 132 can be formed by a method such as Chemical Vapor Deposition (CVD), sputtering, or the like. The P-N transition layer 132 helps to improve the photoelectric conversion efficiency and stability of the entire solar cell 10. The material of the N-type semiconductor layer 105 may be an N-type amorphous silicon (Na-Si) material, in particular, an N-type amorphous silicon with hydrogen (Na-Si). :H) Material. The carbon nanotube film layer 106 serves as a transparent conductive layer of the solar cell 10. The carbon nanotube film layer 106 may be a single-layered carbon nanotube film or may be formed by laminating a plurality of layers of carbon nanotube film. The carbon nanotube film in the above carbon nanotube film layer 106 may be a disordered carbon nanotube film or an ordered carbon nanotube film. Disordered carbon nanotube film is made of disordered carbon nanotubes (Carbon 200939491

Nanotube,CNT)組成,而有序之奈米碳管薄膜係由有序之奈 米碳管組成。在無序之奈米碳管薄膜中,奈米碳管為無序 • 或各向同性排列。該無序排列之奈米碳管相互纏繞,該各 . 向同性排列之奈米碳管平行於奈米碳管薄膜之表面。有序 之奈米碳管薄膜中,奈米碳管為沿同一方向擇優取向排列 或沿不同方向擇優取向排列。當奈米碳管膜層106包括多 層有序奈米碳管薄膜時,該多層奈米碳管薄膜可沿任意方 向重疊設置,因此,在該奈米碳管膜層106中,奈米碳管 〇 為沿相同或不同方向擇優取向排列。 優選地,奈米碳管膜層106中之奈米碳管平行於基板 101之表面1012。於本實施例中,奈米碳管膜層106為單 層有序之奈米碳管薄膜。奈米碳管膜層106之厚度可於 10nm〜100nm之間。奈米礙管膜層106可透光,其透明度可 達到75%以上。 前電極107之材料可以為銀(Ag)’銅(Cu)’鉬(Mo), 銘(A1)’銅紹合金(Cu-A1 Alloy ),銀銅合金(Ag-Cu Alloy ) ’ ❹ 或者銅鉬合金(Cu-Mo Alloy)等。 奈米碳管具有良好之力學性能,奈米碳管抗拉強度達 到50〜200GPa,係鋼之100倍。相對於先前技術,奈米碳 管膜層106比ITO膜具有更高之機械性能(Mechanically Robust ),柔勃性高,經過反復彎曲後仍然可保持其性能故 採用奈米碳管膜層106之太陽能電池10可撓性較佳。而 且,奈米碳管膜層106之材料係碳,因此奈米碳管膜層106 化學性質較穩定,具有較好之抗化學腐蝕性,故奈米碳管 11 200939491 膜層106可提高太陽能電池10抵抗化學腐钱之能力,從而 提高太陽能電池之耐用性。 本發明太陽能電池10不僅可應用於建築領域,由於其 具有可撓曲、且成本低等特性,還可廣泛地應用於航天器, 交通工具,以及手機等3C產品上。 上述太陽能電池10可採用以下方法製造: 步驟一,採用藏鍵(Sputtering )法於基板101之表面 1012形成背電極102。 步驟二,通過化學氣相沈積法(Chemical Vapor Deposition, CVD)於背電極102上形成P型半導體層103。 優選地,CVD法採用電漿辅助化學氣相沈積法(Plasma Enhanced Chemical Vapor Deposition, PECVD) ° 步驟三,採用濺鍍法或CVD法於P型半導體層103上 形成P-N過渡層104。 步驟四,通過CVD法於P-N過渡層104上形成N型半 導體層105。優選地,CVD法採用PECVD法。 步驟五,於N型半導體層105之表面,形成奈米碳管 膜層106。 步驟六,於奈米碳管膜層106之表面形成前電極107, 從而得到如圖1所示之太陽能電池。前電極107可通過印 刷法(如網版印刷等)或者濺鍍法形成。 其中,步驟五可進一步包括以下步驟: 步驟1 :提供一奈米碳管陣列,優選地,該陣列為超順 排奈米碳管陣列。 12 200939491Nanotube, CNT), and the ordered carbon nanotube film consists of ordered carbon nanotubes. In a disordered carbon nanotube film, the carbon nanotubes are disordered or isotropically aligned. The disordered array of carbon nanotubes are intertwined, and the isotropically aligned carbon nanotubes are parallel to the surface of the carbon nanotube film. In the ordered carbon nanotube film, the carbon nanotubes are arranged in a preferred orientation along the same direction or in a preferred orientation in different directions. When the carbon nanotube film layer 106 comprises a multi-layered ordered carbon nanotube film, the multi-layered carbon nanotube film can be disposed in an overlapping manner in any direction, and therefore, in the carbon nanotube film layer 106, the carbon nanotubes 〇 Alignment in the same or different directions. Preferably, the carbon nanotubes in the carbon nanotube film layer 106 are parallel to the surface 1012 of the substrate 101. In the present embodiment, the carbon nanotube film layer 106 is a single-layer ordered carbon nanotube film. The carbon nanotube film layer 106 may have a thickness of between 10 nm and 100 nm. The nano-membrane layer 106 is transparent and has a transparency of more than 75%. The material of the front electrode 107 may be silver (Ag) 'copper (Cu) 'molybdenum (Mo), Ming (A1) 'Cu-A1 Alloy ', silver-copper alloy (Ag-Cu Alloy ) ' ❹ or copper Molybdenum alloy (Cu-Mo Alloy). The carbon nanotubes have good mechanical properties, and the carbon nanotubes have a tensile strength of 50 to 200 GPa and 100 times that of the steel. Compared with the prior art, the carbon nanotube film layer 106 has higher mechanical properties (Mechanically Robust) than the ITO film, and has high flexibility and can maintain its performance after repeated bending, so the carbon nanotube film layer 106 is used. The solar cell 10 is preferably flexible. Moreover, the material of the carbon nanotube film layer 106 is carbon, so the carbon nanotube film layer 106 is relatively stable in chemical properties and has good chemical resistance, so the carbon nanotube 11 200939491 film layer 106 can improve the solar cell 10 resistance to chemical rot, thereby increasing the durability of solar cells. The solar cell 10 of the present invention can be applied not only to the construction field but also to 3C products such as spacecraft, vehicles, and mobile phones due to its flexibility and low cost. The solar cell 10 described above can be fabricated by the following method: In step 1, a back electrode 102 is formed on the surface 1012 of the substrate 101 by a sputtering method. In step two, a P-type semiconductor layer 103 is formed on the back electrode 102 by chemical vapor deposition (CVD). Preferably, the CVD method uses a Plasma Enhanced Chemical Vapor Deposition (PECVD) step 3 to form a P-N transition layer 104 on the P-type semiconductor layer 103 by sputtering or CVD. In step four, an N-type semiconductor layer 105 is formed on the P-N transition layer 104 by a CVD method. Preferably, the CVD method employs a PECVD method. In the fifth step, a carbon nanotube film layer 106 is formed on the surface of the N-type semiconductor layer 105. In step six, the front electrode 107 is formed on the surface of the carbon nanotube film layer 106, thereby obtaining a solar cell as shown in FIG. The front electrode 107 can be formed by a printing method such as screen printing or the like or by sputtering. Wherein, step 5 may further comprise the following steps: Step 1: providing a carbon nanotube array, preferably the array is a super-sequential carbon nanotube array. 12 200939491

本實施例提供之奈米碳管陣列為單 雙壁奈米碳管陣列或多壁奈来碳管陣列。本實施^列超 •管陣列之製備方法採用化學氣相L J Ο ,”·“)提供-平整基底,該基底可選用”或Ν 底,或選用形成有氧化層之石夕基底;⑴於基底表 =句形成i化劑層,該催化劑層材料可選用 銘(C。)、鎳(Ni)或鈴意組合之合金之―;⑴將上述 形成有催化劑層之基底於·〜9〇(rc之空氣中退火約 〇分鐘^分鐘;(d)將處理過之基底置於反應爐中,於 ^氣體㈣下加熱到·。c〜·。c,然後通人碳源氣體 反應約5〜30分鐘,生長得到超順排奈求碳管陣列,其高度 為200〜400微求。該超順排奈米碳管陣列為複數彼料行 且垂直於基底生長之奈米碳管形成之純奈米碳管陣列。通 過上述控制生長條件’該超順排奈米碳管陣列中基本不含 有雜質,如無定型碳或殘留之催化劑金屬顆粒等。該奈米 碳官陣列中之奈来碳管彼此通過凡得瓦爾力緊密接觸 陣列。 本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性 質較活潑之碳氫化合物,本實施例優選之碳源氣為乙炔; 保護氣體為氮氣或惰性氣體,本實施例優選之保護氣體為 氬氣。 州 可理解’本實施例提供之奈米碳管陣列不限於上述製 備方法亦可藉由石墨電極恒流電弧放電沈積法、錯射蒸 發沈積法等方法制備。 13 200939491 步驟2:採用一拉伸工具從奈米碳管陣列中拉取獲得一 奈米碳管薄膜。其具體包括以下步驟:(a)從上述奈米碳 .管陣列中選定一定寬度之複數奈米碳管片斷,每個奈米碳 *管片段具有大致相等長度且每個奈米碳管片段由複數相互 平行之奈米碳管構成,奈米碳管片段兩端通過凡得瓦爾力 (VanDerWaalsForce)相互連接,本實施例優選為採用具有 一定寬度之膠帶接觸奈米碳管陣列以選定一定寬度之複數 奈米碳管片斷;(b)以一定速度沿基本垂直於奈米碳管陣 〇列生長方向拉伸該複數奈米碳管片斷,以形成一連續之奈 米碳管薄膜。 $ 在上述拉伸過程中,該複數奈米碳管片段在拉力作用 下沿拉伸方向逐漸脫離基底之同時,由於凡得瓦爾力作 用,該選定之複數奈米碳管片斷分別與其他奈米碳管片斷 首尾相連地連續地被拉出,從而形成一奈米碳管薄膜。 該奈米碳管薄膜為擇優取向排列之複數奈米碳管束首 〇尾相連形成之具有-定寬度之奈米碳管薄膜。該奈米碳管 薄膜中奈米碳管之排列方向基本平行於奈米碳管薄膜之拉 伸方向。該直接拉伸獲得奈米碳管薄膜之方法簡單快速, 適宜進行工業化應用。 在上述拉伸過程中,該複數奈米碳管片斷在拉力作用 下沿拉伸方向逐漸脫離基底之同時,由於凡得瓦爾力作 用’該選定之複數奈米礙管片斷分別與其他奈米碳管片斷 百尾相連地連續地被拉出,從而形成一奈米碳管薄膜。 步驟3 :直接將上述奈米碳管薄膜附於N型半導體層 200939491 105之表面,形成奈米碳管膜層106。 可理解,由於本實施例超順排奈米碳管陣列中之夯 碳官非常純淨’且由於奈米碳管本身之比表面積非常大:、 所以該米碳官薄膜本身具有較強之黏性。因此,該太 碳管薄膜作為透明導電層24可直接黏附於基體22之1個 表面上〇 在上述製造方法中,奈米碳管膜層雇係採用⑽法 〇 ❹ 優點一 拉取而獲得,具有成本低、環保及節能之 ,.上述裊造方法可降低太陽能電池1〇之生產成本。 提出,=::I本發明確已符合發明專利之要件,遂依法 明惟,以上所述者僅為本發明之較佳實施方 :藝::以此限制本案之申請專利範圍。舉凡熟悉本案 it :本發明之精神所作之等效修飾或變化,皆 應涵蓋於Μ下申請專利範圍内。 【圖式簡單說明】 圖1係本發明實施例太陽能電池之剖面示意圖。 10 101 1012 102 103 104 【主要元件符號說明】 太陽能電池 基板 基板之表面 背電極 ρ型半導體層 Ρ-Ν過渡層 15 105 200939491 N型半導體層 奈米碳管膜層 前電極 106 107The carbon nanotube array provided in this embodiment is a single double-walled carbon nanotube array or a multi-walled carbon nanotube array. The preparation method of the super-tube array of the present embodiment uses a chemical vapor phase LJ Ο , "·") to provide a flat substrate, the substrate may be selected from "or a bottom, or a stone base formed with an oxide layer; (1) on the substrate The composition of the catalyst layer is selected from the alloy of Ming (C.), nickel (Ni) or a combination of bells and bells; (1) the substrate on which the catalyst layer is formed is placed on ~~9〇(rc Annealing in air for about ^min ^ minutes; (d) placing the treated substrate in a reaction furnace, heating under gas (4) to · c~·c, and then reacting with carbon source gas about 5~30 Minutes, growth results in a super-sequential carbon nanotube array with a height of 200 to 400 micro-seeking. The super-sequential carbon nanotube array is a pure nano-form formed by a carbon nanotube formed perpendicular to the substrate. A carbon nanotube array. The growth conditions are controlled by the above. The super-sequential carbon nanotube array contains substantially no impurities, such as amorphous carbon or residual catalyst metal particles, etc. The carbon nanotubes in the nanocarbon array The array is in close contact with each other through Van Valle. The carbon source in this embodiment A chemically active hydrocarbon such as acetylene, ethylene or methane may be used. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. The carbon nanotube array provided in the present embodiment is not limited to the above preparation method and can also be prepared by a graphite electrode constant current arc discharge deposition method, a staggered evaporation deposition method, etc. 13 200939491 Step 2: using a stretching tool from Nye The carbon nanotube film is drawn to obtain a carbon nanotube film, which specifically comprises the following steps: (a) selecting a plurality of carbon nanotube segments of a certain width from the nano carbon tube array, each nano carbon* The tube segments have substantially equal lengths and each of the carbon nanotube segments is composed of a plurality of mutually parallel carbon nanotubes, and the carbon nanotube segments are connected to each other by VanDerWaals Force, and the embodiment preferably has A tape of a certain width contacts the array of carbon nanotubes to select a plurality of carbon nanotube segments of a certain width; (b) is substantially perpendicular to the carbon nanotube array at a certain speed Extending the plurality of carbon nanotube segments in a long direction to form a continuous carbon nanotube film. In the above stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction by the tensile force. At the same time, due to the effect of van der Waals force, the selected plurality of carbon nanotube segments are continuously pulled out end to end with other carbon nanotube segments, thereby forming a carbon nanotube film. a carbon nanotube film having a constant width formed by connecting a plurality of carbon nanotube bundles arranged in a preferential orientation. The arrangement of the carbon nanotubes in the carbon nanotube film is substantially parallel to the carbon nanotube film. Stretching direction. The method of directly stretching the carbon nanotube film is simple and rapid, and is suitable for industrial application. In the above stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction under the action of tension. At the same time, due to the effect of Van der Valli', the selected plurality of nano-tube segments are continuously pulled out together with the other carbon nanotube segments, thereby forming a carbon nanotube thin membrane. Step 3: The above carbon nanotube film is directly attached to the surface of the N-type semiconductor layer 200939491 105 to form a carbon nanotube film layer 106. It can be understood that since the carbonaceous carbon in the super-sequential carbon nanotube array of the embodiment is very pure' and because the specific surface area of the carbon nanotube itself is very large: the carbon carbon film itself has strong viscosity. . Therefore, the carbon nanotube film can be directly adhered to one surface of the substrate 22 as the transparent conductive layer 24. In the above manufacturing method, the carbon nanotube film layer is obtained by using the advantage of (10). With low cost, environmental protection and energy saving, the above manufacturing method can reduce the production cost of solar cells. It is proposed that =::I the invention has indeed met the requirements of the invention patent, and that the above is only the preferred embodiment of the invention: Art:: This limits the scope of the patent application in this case. Any equivalent modifications or variations made by the spirit of the present invention should be covered by the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing a solar cell according to an embodiment of the present invention. 10 101 1012 102 103 104 [Description of main component symbols] Solar cell substrate Surface of the substrate Back electrode P-type semiconductor layer Ρ-Ν transition layer 15 105 200939491 N-type semiconductor layer Carbon nanotube film front electrode 106 107

1616

Claims (1)

200939491 十、申請專利範圍: 其改進在於’該太陽能電池包括: -背電極’,所述之背電極形成於該基板之一表面; 第t半導體層,所述之第—型半導體層形成於該背電 極之表面; =i半導體層’所述之第二型半導 於該第一 型半導體層之表面; Ο 1· 一種太陽能電池 一基板, 不米炭,所述之奈来碳管膜層形成於該第二型半 導體層之表面。 2:=請專利範圍第1項所述之太陽能電池,其中,該奈 米反B膜層為-奈米碳管薄膜或複數重疊設置之碳管 薄膜。 、,如&申明專利範圍第2項所述之太陽能電池,其中,該奈 米炭官薄膜中之奈米碳管為無序排列或各向同性排列。 4,·申請專利範圍第1項所述之太陽能電池,其中,該奈 米碳管膜層包含多根奈求碳管,該多根奈米碳管平行於該 基板之該表面。 5·如申請專利範圍第1項所述之太陽能電池,其中,該奈 米碳管膜層之厚度為 10nm〜lOOnm 之間。 6·如申請專利範圍第1項所述之太陽能電池,其中,該奈 米★官膜層中之奈米碳管係單壁奈米碳管或多壁奈米碳 管。 7.如申請專利範圍第1項所述之太陽能電池,其中,該基 17 200939491 板可挽曲。 8. 如申請專利範圍第1項所述之太陽能電池’其中,該太 • 陽能電池進一步包括一位於該第一变半導體層與該第二塑 '半導體層之間之P-N過渡層,且該ι>_Ν過渡層分別與該第 一型半導體層、該第二型半導體層接觸。 9. 一種太陽能電池之製造方法,所述之方法包括以下步 驟: 於一基板之表面形成一層背電極; ❹於所述之背電極上形成一第一型半導體層; 於所述之第一型半導體層上形成一第二型半導體層; 長:供不、米碳管陣列,採用一拉伸工具從所述之奈米破管 陣列中拉取獲得一奈米碳管薄膜,直接將該奈米碳管薄膜 附於該第一型半導體層之表面,形成該奈米碳管膜層。 :〇.如申請專利範圍帛9〶所述之太陽能電池之製造方 法’其中’該奈来碳管膜層包含多根奈米碳管,該多根奈 ❿米碳管平行於該基板之該表面。 18200939491 X. Patent application scope: The improvement is that 'the solar cell comprises: - a back electrode', the back electrode is formed on one surface of the substrate; the tth semiconductor layer, the first type semiconductor layer is formed thereon The surface of the back electrode; the second type of semiconductor layer described in the 'i semiconductor layer' is semi-conducting on the surface of the first type semiconductor layer; Ο 1 · a solar cell-substrate, not carbon, the carbon nanotube film layer Formed on the surface of the second type semiconductor layer. 2: The solar cell according to claim 1, wherein the nano-anti-B film layer is a carbon nanotube film or a plurality of carbon tube films which are arranged in an overlapping manner. The solar cell of claim 2, wherein the carbon nanotubes in the nano-carbon film are disordered or isotropic. 4. The solar cell of claim 1, wherein the carbon nanotube film layer comprises a plurality of carbon nanotubes, the plurality of carbon nanotubes being parallel to the surface of the substrate. 5. The solar cell of claim 1, wherein the carbon nanotube film layer has a thickness of between 10 nm and 100 nm. 6. The solar cell of claim 1, wherein the carbon nanotubes in the nanofilm layer are single-walled carbon nanotubes or multi-walled carbon nanotubes. 7. The solar cell of claim 1, wherein the base 17 200939491 plate is bendable. 8. The solar cell of claim 1, wherein the solar cell further comprises a PN transition layer between the first variable semiconductor layer and the second plastic semiconductor layer, and The ι>_Ν transition layer is in contact with the first type semiconductor layer and the second type semiconductor layer, respectively. A method of manufacturing a solar cell, the method comprising the steps of: forming a back electrode on a surface of a substrate; forming a first type semiconductor layer on the back electrode; Forming a second type semiconductor layer on the semiconductor layer; length: supplying a carbon nanotube array, using a stretching tool to extract a carbon nanotube film from the nano tube array, directly A carbon nanotube film is attached to the surface of the first type semiconductor layer to form the carbon nanotube film layer. The manufacturing method of the solar cell as described in the patent application '9〒, wherein the carbon nanotube layer comprises a plurality of carbon nanotubes, the plurality of nanometer carbon tubes being parallel to the substrate surface. 18
TW97109215A 2008-03-14 2008-03-14 Solar cell and method for making same TW200939491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97109215A TW200939491A (en) 2008-03-14 2008-03-14 Solar cell and method for making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97109215A TW200939491A (en) 2008-03-14 2008-03-14 Solar cell and method for making same

Publications (1)

Publication Number Publication Date
TW200939491A true TW200939491A (en) 2009-09-16

Family

ID=44867718

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97109215A TW200939491A (en) 2008-03-14 2008-03-14 Solar cell and method for making same

Country Status (1)

Country Link
TW (1) TW200939491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453924B (en) * 2010-01-13 2014-09-21 Samsung Corning Prec Mat Co Electrode plate and dye-sensitized photovoltaic cell having the same
TWI633690B (en) * 2016-05-31 2018-08-21 鴻海精密工業股份有限公司 Apparatus and method for forming organic thin film solar battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI453924B (en) * 2010-01-13 2014-09-21 Samsung Corning Prec Mat Co Electrode plate and dye-sensitized photovoltaic cell having the same
TWI633690B (en) * 2016-05-31 2018-08-21 鴻海精密工業股份有限公司 Apparatus and method for forming organic thin film solar battery

Similar Documents

Publication Publication Date Title
Lin et al. Flexible photovoltaic technologies
Ruan et al. Flexible graphene/silicon heterojunction solar cells
AU2007234548B2 (en) Amorphous-crystalline tandem nanostructured solar cells
Kant et al. Review of next generation photovoltaic solar cell technology and comparative materialistic development
JP5324222B2 (en) Nanostructure and photovoltaic cell implementing it
KR100649743B1 (en) Solar cells comprising cnt and its manufacturing method
CN101527328B (en) Solar cell and manufacturing method thereof
Hiralal et al. Nanowires for energy generation
US8497154B2 (en) Solar cell system manufacturing method
O'Donnell et al. Silicon nanowire solar cells grown by PECVD
Li et al. One-dimensional Sb2Se3 enabling ultra-flexible solar cells and mini-modules for IoT applications
JP2010517299A (en) Photocell and method for producing the same
MX2007010330A (en) Nanowires in thin-film silicon solar cells.
US20090250113A1 (en) Solar cell
CN104868045B (en) Electrooptical device and its application
US10109757B2 (en) Solar cell system
CN110247627A (en) A method of improving perovskite solar cell assembly property and thermal stability
El-Atab et al. Flexible and stretchable inorganic solar cells: Progress, challenges, and opportunities
JP2015179695A (en) Manufacturing method of semiconductor device, semiconductor device, and transparent conductive film
US9012767B2 (en) Solar cell system
CN101552297B (en) Solar cell
JP2012064990A (en) Photoelectric conversion device using semiconductor nano materials and manufacturing method thereof
TW200939491A (en) Solar cell and method for making same
US11069870B2 (en) High efficiency graphene/wide band-gap semiconductor heterojunction solar cells
Jaiswal et al. Nanomaterials based solar cells