TWI409961B - Solar cell - Google Patents

Solar cell Download PDF

Info

Publication number
TWI409961B
TWI409961B TW97113268A TW97113268A TWI409961B TW I409961 B TWI409961 B TW I409961B TW 97113268 A TW97113268 A TW 97113268A TW 97113268 A TW97113268 A TW 97113268A TW I409961 B TWI409961 B TW I409961B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
solar cell
single crystal
carbon
crystal germanium
Prior art date
Application number
TW97113268A
Other languages
Chinese (zh)
Other versions
TW200943558A (en
Inventor
Hai-Lin Sun
Kai-Li Jiang
Qun-Qing Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97113268A priority Critical patent/TWI409961B/en
Publication of TW200943558A publication Critical patent/TW200943558A/en
Application granted granted Critical
Publication of TWI409961B publication Critical patent/TWI409961B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a solar cell. The solar cell includes a back electrode, a single crystal silicon substrate and a carbon nanotube structure. The back electrode is disposed on a lower surface of the single crystal silicon substrate, and electrically connected thereto. The carbon nanotube structure is disposed on an upper surface of the single crystal silicon substrate, and electrically connected to the upper surface of the single crystal silicon substrate. The carbon nanotube structure includes a number of carbon nanotubes oriented in a certain direction.

Description

太陽能電池 Solar battery

本發明涉及一種太陽能電池,尤其涉及一種基於奈米碳管薄膜的太陽能電池。 The invention relates to a solar cell, in particular to a solar cell based on a carbon nanotube film.

太陽能係當今最清潔的能源之一,取之不盡、用之不竭。太陽能的利用方式包括光能-熱能轉換、光能-電能轉換和光能-化學能轉換。太陽能電池係光能-電能轉換的典型例子,係利用半導體材料的光生伏特原理製成的。目前,太陽能電池以矽基太陽能電池為主。在矽基太陽能電池中,以單晶矽作為光電轉換的材料,因此,要獲得高轉換效率的矽太陽能電池,就需要製備出高純度的單晶矽。然而,目前單晶矽的製備工藝遠不能滿足太陽能電池發展的需要,並且製備單晶矽需要消耗大量的電能,這不但提高了矽太陽能電池的成本,並且對環境產生很大的污染。因此發展其他類型的太陽能電池就具有重要的戰略意義。 Solar energy is one of the cleanest energy sources in today, and it is inexhaustible. Solar energy utilization includes light energy-thermal energy conversion, light energy-electric energy conversion, and light energy-chemical energy conversion. A typical example of solar cell-based light energy-electric energy conversion is made using the photovoltaic principle of semiconductor materials. At present, solar cells are mainly based on germanium-based solar cells. In a ruthenium-based solar cell, single crystal germanium is used as a material for photoelectric conversion. Therefore, in order to obtain a high conversion efficiency of a germanium solar cell, it is necessary to prepare a high purity single crystal germanium. However, the current preparation process of single crystal germanium is far from meeting the needs of the development of solar cells, and the production of single crystal germanium requires a large amount of electrical energy, which not only increases the cost of germanium solar cells, but also causes great pollution to the environment. Therefore, the development of other types of solar cells is of strategic importance.

從1991年日本科學家Iijima首次發現奈米碳管以來(請參見Helical microtubules of graphitic carbon,Nature,Sumio Iijima,vol 354,p56(1991)),以奈米碳管為代表的奈米材料以其獨特的結構和性質引起了人們極大的關注。研究發現,奈米碳管具有很高的導電能力,且奈米碳管具有很高得吸收太陽光能力,其於可見光和紅外光區的吸收率高達99%以上。因此,將奈米碳管應用於太陽能電池領域,將具有傳 統材料無可比擬的優勢。 Since the first discovery of carbon nanotubes by Japanese scientist Iijima in 1991 (see Helical microtubules of graphitic carbon, Nature, Sumio Iijima, vol 354, p56 (1991)), nanomaterials represented by carbon nanotubes are unique. The structure and nature have aroused great concern. The study found that the carbon nanotubes have high electrical conductivity, and the carbon nanotubes have a high ability to absorb sunlight, and their absorption in the visible and infrared regions is as high as 99%. Therefore, the application of carbon nanotubes in the field of solar cells will have The unparalleled advantages of the materials.

請參閱圖1,先前技術中基於奈米碳管的太陽能電池30包含一背電極32、一單晶矽襯底34和一奈米碳管薄膜36。所述背電極32設置於所述單晶矽襯底34的下表面342。所述奈米碳管薄膜36設置於所述單晶矽襯底34的上表面341。所述奈米碳管薄膜36作為光電轉換材料,同時作為上電極。所述奈米碳管薄膜36的厚度為50奈米~200奈米,其中的奈米碳管無序分佈。所述太陽能電池30的製備方法具體包括以下步驟:提供一單晶矽襯底34;於該單晶矽襯底34的一側表面蒸鍍一金屬薄膜作為背電極32,並用導線引出;提供一奈米碳管薄膜36;將該奈米碳管薄膜36鋪設到所述單晶矽襯底34的另一側表面上,使奈米碳管薄膜36與單晶矽襯底34緊密接觸,並用導線引出。所述奈米碳管薄膜36的製備方法具體包括以下步驟:首先,將奈米碳管於空氣中氧化;其次,將氧化後的奈米碳管浸泡於雙氧水中;再次,加入強酸後,漂洗奈米碳管至漂洗液呈中性;再次,於奈米碳管的水溶液中滴加酒精或丙酮,使奈米碳管浮出水面,展開形成一奈米碳管薄膜36。然而,先前技術中太陽能電池具有以下不足:所述奈米碳管薄膜36中奈米碳管無序分佈,阻值較大,使得該奈米碳管薄膜36的導電性較差,故,導致所制得的太陽能電池的光電轉換效率低。另外,所述奈米碳管薄膜36的製備方法複雜,不適於批量生產。 Referring to FIG. 1, the prior art carbon nanotube-based solar cell 30 includes a back electrode 32, a single crystal germanium substrate 34, and a carbon nanotube film 36. The back electrode 32 is disposed on the lower surface 342 of the single crystal germanium substrate 34. The carbon nanotube film 36 is disposed on the upper surface 341 of the single crystal germanium substrate 34. The carbon nanotube film 36 functions as a photoelectric conversion material and serves as an upper electrode. The carbon nanotube film 36 has a thickness of 50 nm to 200 nm, wherein the carbon nanotubes are disorderly distributed. The method for preparing the solar cell 30 specifically includes the steps of: providing a single crystal germanium substrate 34; depositing a metal film on the one surface of the single crystal germanium substrate 34 as the back electrode 32, and drawing it with a wire; a carbon nanotube film 36; the carbon nanotube film 36 is laid on the other side surface of the single crystal germanium substrate 34, and the carbon nanotube film 36 is brought into close contact with the single crystal germanium substrate 34, and used The wire is led out. The preparation method of the carbon nanotube film 36 specifically includes the following steps: first, oxidizing the carbon nanotubes in the air; secondly, immersing the oxidized carbon nanotubes in the hydrogen peroxide water; again, after adding the strong acid, rinsing The carbon nanotube to the rinsing liquid is neutral; again, alcohol or acetone is added dropwise to the aqueous solution of the carbon nanotubes to float the carbon nanotubes out of the water surface to form a carbon nanotube film 36. However, the solar cell in the prior art has the following disadvantages: the carbon nanotubes in the carbon nanotube film 36 are disorderly distributed and have a large resistance value, so that the conductivity of the carbon nanotube film 36 is poor, so that The solar cell produced has low photoelectric conversion efficiency. In addition, the preparation method of the carbon nanotube film 36 is complicated and is not suitable for mass production.

有鑒於此,提供一種具有光電轉換效率較高、阻值分佈均勻、透光性好及製備方法簡單的太陽能電池實為必要 。 In view of this, it is necessary to provide a solar cell having high photoelectric conversion efficiency, uniform resistance distribution, good light transmittance, and simple preparation method. .

一種太陽能電池包括一背電極、一單晶矽襯底和一奈米碳管結構。所述背電極設置於所述單晶矽襯底的下表面,且與該單晶矽襯底的下表面歐姆接觸。所述奈米碳管結構設置於所述單晶矽襯底的上表面,且與該單晶矽襯底的上表面接觸。該奈米碳管結構包括複數個有序排列的奈米碳管。 A solar cell includes a back electrode, a single crystal germanium substrate, and a carbon nanotube structure. The back electrode is disposed on a lower surface of the single crystal germanium substrate and is in ohmic contact with a lower surface of the single crystal germanium substrate. The carbon nanotube structure is disposed on an upper surface of the single crystal germanium substrate and is in contact with an upper surface of the single crystal germanium substrate. The carbon nanotube structure includes a plurality of ordered carbon nanotubes.

與先前技術相比較,所述太陽能電池的奈米碳管結構中奈米碳管有序排列,具有較均勻的結構,導電性好,故,採用奈米碳管結構作上電極,可使得太陽能電池具有均勻的電阻,從而使得太陽能電池具有較高的光電轉換效率。 Compared with the prior art, the carbon nanotubes in the solar cell structure of the solar cell are arranged in an orderly manner, have a relatively uniform structure, and have good electrical conductivity. Therefore, using a carbon nanotube structure as an upper electrode can make solar energy. The battery has a uniform electrical resistance, so that the solar cell has a high photoelectric conversion efficiency.

以下將結合附圖詳細說明本技術方案太陽能電池。 The solar cell of the present technical solution will be described in detail below with reference to the accompanying drawings.

請參閱圖2及圖4,本技術方案實施例提供一種太陽能電池10包括一背電極12、一單晶矽襯底14和一奈米碳管結構16。所述背電極12設置於所述單晶矽襯底14的下表面141,且與該單晶矽襯底14的下表面141歐姆接觸。所述奈米碳管結構16設置於所述單晶矽襯底14的上表面142,且與該單晶矽襯底14的上表面142接觸。 Referring to FIG. 2 and FIG. 4 , the embodiment of the present invention provides a solar cell 10 including a back electrode 12 , a single crystal germanium substrate 14 , and a carbon nanotube structure 16 . The back electrode 12 is disposed on the lower surface 141 of the single crystal germanium substrate 14 and is in ohmic contact with the lower surface 141 of the single crystal germanium substrate 14. The carbon nanotube structure 16 is disposed on the upper surface 142 of the single crystal germanium substrate 14 and is in contact with the upper surface 142 of the single crystal germanium substrate 14.

所述太陽能電池10進一步包括至少一電極18,該電極18的材料為銀、金或者奈米碳管等導電材料。所述電極18的形狀和厚度不限,可設置於所述奈米碳管結構16的上 表面161或者下表面162,並與奈米碳管結構16的上表面161或者下表面162電接觸。所述電極18的設置可用於收集流過所述奈米碳管結構16中的電流,並與外電路連接。 The solar cell 10 further includes at least one electrode 18, the material of which is a conductive material such as silver, gold or carbon nanotubes. The shape and thickness of the electrode 18 are not limited and may be disposed on the carbon nanotube structure 16 Surface 161 or lower surface 162 is in electrical contact with upper surface 161 or lower surface 162 of carbon nanotube structure 16. The arrangement of the electrodes 18 can be used to collect current flowing through the carbon nanotube structure 16 and to connect to an external circuit.

所述太陽能電池10進一步包括至少一鈍化層20,該鈍化層20的材料為二氧化矽或者四氮化三矽等。所述鈍化層20的形狀和厚度不限,可設置於所述單晶矽襯底14的上表面142和奈米碳管結構16的下表面162之間,用以降低電子和電洞於所述單晶矽襯底14和所述奈米碳管結構16接觸面的複合速度,從而進一步提高所述太陽能電池10的光電轉換效率。 The solar cell 10 further includes at least one passivation layer 20, and the material of the passivation layer 20 is ruthenium dioxide or ruthenium tetranitride or the like. The shape and thickness of the passivation layer 20 are not limited, and may be disposed between the upper surface 142 of the single crystal germanium substrate 14 and the lower surface 162 of the carbon nanotube structure 16 to reduce electrons and holes. The recombination speed of the contact surface of the single crystal germanium substrate 14 and the carbon nanotube structure 16 is further increased, thereby further improving the photoelectric conversion efficiency of the solar cell 10.

所述背電極12的材料可為鋁、鎂或者銀等金屬。所述背電極12的厚度為10微米~300微米。所述背電極12的形狀和厚度不限。 The material of the back electrode 12 may be a metal such as aluminum, magnesium or silver. The back electrode 12 has a thickness of 10 micrometers to 300 micrometers. The shape and thickness of the back electrode 12 are not limited.

所述單晶矽襯底14為p型單晶矽片或者n型單晶矽片。該單晶矽襯底14的厚度為200微米~300微米。所述單晶矽襯底14與所述奈米碳管結構16形成異質結結構,從而實現所述太陽能電池10中光能到電能的轉換。 The single crystal germanium substrate 14 is a p-type single crystal germanium sheet or an n-type single crystal germanium sheet. The single crystal germanium substrate 14 has a thickness of 200 μm to 300 μm. The single crystal germanium substrate 14 forms a heterojunction structure with the carbon nanotube structure 16, thereby effecting conversion of light energy to electrical energy in the solar cell 10.

所述奈米碳管結構16為一層狀結構,包括複數個有序排列的奈米碳管。所述奈米碳管結構16中的奈米碳管均勻分佈且平行於所述奈米碳管結構16的表面,以使所述太陽能電池10具有均勻的電阻。所述的複數個奈米碳管沿固定方向擇優取向排列,以使所述太陽能電池10具有良好的導電性及較高的光電轉換效率。 The carbon nanotube structure 16 is a layered structure comprising a plurality of ordered carbon nanotubes. The carbon nanotubes in the carbon nanotube structure 16 are evenly distributed and parallel to the surface of the carbon nanotube structure 16 so that the solar cell 10 has a uniform electrical resistance. The plurality of carbon nanotubes are arranged in a preferred orientation along a fixed direction to provide the solar cell 10 with good electrical conductivity and high photoelectric conversion efficiency.

所述奈米碳管結構16中的奈米碳管為單壁奈米碳管、雙壁奈米碳管或者多壁奈米碳管。其中,多壁奈米碳管係金屬性質的,單壁奈米碳管根據其手性和直徑不同分為半導體和金屬兩種,雙壁奈米碳管的屬性係金屬性質的。當所述奈米碳管結構16中的奈米碳管為單壁奈米碳管時,該單壁奈米碳管的直徑為0.5奈米~50奈米。當所述奈米碳管結構16中的奈米碳管為雙壁奈米碳管時,該雙壁奈米碳管的直徑為1.0奈米~50奈米。當所述奈米碳管結構16中的奈米碳管為多壁奈米碳管時,該多壁奈米碳管的直徑為1.5奈米~50奈米。由於所述奈米碳管結構16中的奈米碳管非常純淨,且由於奈米碳管本身的比表面積非常大,故該奈米碳管結構16本身具有較強的黏性。該奈米碳管結構16可利用其本身的黏性直接固定於所述單晶矽襯底14的表面。 The carbon nanotubes in the carbon nanotube structure 16 are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes. Among them, multi-walled carbon nanotubes are metal-based, single-walled carbon nanotubes are classified into semiconductors and metals according to their chirality and diameter, and the properties of double-walled carbon nanotubes are metallic. When the carbon nanotubes in the carbon nanotube structure 16 are single-walled carbon nanotubes, the single-walled carbon nanotubes have a diameter of 0.5 nm to 50 nm. When the carbon nanotubes in the carbon nanotube structure 16 are double-walled carbon nanotubes, the double-walled carbon nanotubes have a diameter of 1.0 nm to 50 nm. When the carbon nanotubes in the carbon nanotube structure 16 are multi-walled carbon nanotubes, the diameter of the multi-walled carbon nanotubes is from 1.5 nm to 50 nm. Since the carbon nanotubes in the carbon nanotube structure 16 are very pure, and because the specific surface area of the carbon nanotubes themselves is very large, the carbon nanotube structure 16 itself has a strong viscosity. The carbon nanotube structure 16 can be directly fixed to the surface of the single crystal germanium substrate 14 by its own viscosity.

具體地,所述奈米碳管結構16包括一有序奈米碳管薄膜163。請參閱圖3,該有序奈米碳管薄膜163可通過直接拉伸一奈米碳管陣列獲得。該有序奈米碳管薄膜163包括沿拉伸方向定向排列的奈米碳管。具體地,所述有序奈米碳管薄膜163包括複數個首尾相連且長度相等的奈米碳管束164。所述奈米碳管束164的兩端通過凡德瓦爾力相互連接。每個奈米碳管束164包括複數個長度相等且平行排列的奈米碳管165。所述相鄰的奈米碳管165之間通過凡德瓦爾力緊密結合。所述有序奈米碳管薄膜163係由奈米碳管陣列經進一步處理得到的,故其長度與寬度和奈米碳管陣列所生長的基底的尺寸有關。可根據實際需求制 得。本實施例中,採用氣相沈積法於4英寸的基底生長超順排奈米碳管陣列。所述有序奈米碳管薄膜163的寬度可為0.01厘米~10厘米,厚度為10奈米~100微米。所述有序奈米碳管薄膜163中,複數個奈米碳管均勻分佈且平行於所述奈米碳管結構16的表面。所述的複數個奈米碳管沿拉伸方向擇優取向排列。 Specifically, the carbon nanotube structure 16 includes an ordered carbon nanotube film 163. Referring to FIG. 3, the ordered carbon nanotube film 163 can be obtained by directly stretching a carbon nanotube array. The ordered carbon nanotube film 163 includes carbon nanotubes oriented in the direction of stretching. Specifically, the ordered carbon nanotube film 163 includes a plurality of carbon nanotube bundles 164 that are connected end to end and of equal length. Both ends of the carbon nanotube bundle 164 are connected to each other by a van der Waals force. Each of the carbon nanotube bundles 164 includes a plurality of carbon nanotubes 165 of equal length and arranged in parallel. The adjacent carbon nanotubes 165 are tightly bonded by van der Waals force. The ordered carbon nanotube film 163 is further processed by a carbon nanotube array, so its length is related to the width and the size of the substrate on which the carbon nanotube array is grown. Can be based on actual demand Got it. In this example, a super-sequential carbon nanotube array was grown on a 4 inch substrate using vapor deposition. The ordered carbon nanotube film 163 may have a width of 0.01 cm to 10 cm and a thickness of 10 nm to 100 μm. In the ordered carbon nanotube film 163, a plurality of carbon nanotubes are uniformly distributed and parallel to the surface of the carbon nanotube structure 16. The plurality of carbon nanotubes are arranged in a preferred orientation along the stretching direction.

可以理解,所述奈米碳管結構16還可包括至少兩個重疊設置的上述有序奈米碳管薄膜163。具體地,相鄰的兩個有序奈米碳管薄膜163中的奈米碳管具有一交叉角度α,且0度≦α≦90度,具體可依據實際需求製備。可以理解,由於奈米碳管結構16中的複數個有序奈米碳管薄膜163可重疊設置,故,上述奈米碳管結構16的厚度不限,可根據實際需要製成具有任意厚度的奈米碳管結構16。所述奈米碳管結構16中,複數個奈米碳管均勻分佈且平行於所述奈米碳管結構16的表面。所述的複數個奈米碳管沿拉伸方向擇優取向排列。 It will be understood that the carbon nanotube structure 16 may further comprise at least two of the above-described ordered carbon nanotube films 163 arranged in an overlapping manner. Specifically, the carbon nanotubes in the adjacent two ordered carbon nanotube films 163 have a cross angle α and 0 degrees ≦α ≦ 90 degrees, which can be prepared according to actual needs. It can be understood that, since the plurality of ordered carbon nanotube films 163 in the carbon nanotube structure 16 can be overlapped, the thickness of the above-mentioned carbon nanotube structure 16 is not limited, and can be made to have any thickness according to actual needs. Nano carbon tube structure 16. In the carbon nanotube structure 16, a plurality of carbon nanotubes are evenly distributed and parallel to the surface of the carbon nanotube structure 16. The plurality of carbon nanotubes are arranged in a preferred orientation along the stretching direction.

所述太陽能電池10於應用時,太陽光照射到所述奈米碳管結構16,入射光子被所述奈米碳管結構16吸收後,於所述單晶矽襯底14和奈米碳管結構16的接觸面上產生大量的激子,即電子和電洞對。這些激子將會分離成兩種自由載流子,其中自由電洞載流子通過所述單晶矽襯底14向背電極12傳輸,而由所述背電極12收集。自由電子載流子通過所述奈米碳管結構的傳輸,被本身也作為上電極的奈米碳管結構16傳輸、收集。進一步,通過奈米碳管結構16所收集的電流被所述至少一電極18再次收集 。所述至少一鈍化層20的設置可以降低電子和電洞於所述單晶矽襯底14和所述奈米碳管結構16接觸面的複合速度,從而進一步提高所述太陽能電池10的光電轉換效率。如果於所述太陽能電池10中背電極12與至少一電極18的兩端接上負載,於外電路就會有電流通過負載。 When the solar cell 10 is applied, sunlight is irradiated to the carbon nanotube structure 16, and incident photons are absorbed by the carbon nanotube structure 16, after the single crystal germanium substrate 14 and the carbon nanotube A large number of excitons, i.e., pairs of electrons and holes, are generated on the contact surface of structure 16. These excitons will be separated into two free carriers, wherein free hole carriers are transported through the single crystal germanium substrate 14 to the back electrode 12 and collected by the back electrode 12. The transport of free electron carriers through the carbon nanotube structure is transmitted and collected by the carbon nanotube structure 16 which is also used as the upper electrode. Further, the current collected by the carbon nanotube structure 16 is collected again by the at least one electrode 18. . The arrangement of the at least one passivation layer 20 can reduce the recombination speed of electrons and holes in the contact faces of the single crystal germanium substrate 14 and the carbon nanotube structure 16, thereby further improving the photoelectric conversion of the solar cell 10. effectiveness. If a load is applied to both ends of the back electrode 12 and the at least one electrode 18 in the solar cell 10, current flows through the load in the external circuit.

所述太陽能電池的奈米碳管結構中奈米碳管有序排列,具有較均勻的結構,導電性好,故,採用奈米碳管結構作上電極,可使得太陽能電池具有均勻的電阻,從而使得太陽能電池具有較高的光電轉換效率。 In the carbon nanotube structure of the solar cell, the carbon nanotubes are arranged in an orderly manner, have a relatively uniform structure, and have good electrical conductivity. Therefore, using a carbon nanotube structure as an upper electrode can make the solar cell have a uniform electrical resistance. Thereby the solar cell has a high photoelectric conversion efficiency.

所述有序奈米碳管薄膜163的製備方法包括以下步驟:首先,提供一奈米碳管陣列形成於一基底,優選地,該陣列為超順排奈米碳管陣列。 The method for preparing the ordered carbon nanotube film 163 comprises the following steps: First, an array of carbon nanotubes is provided on a substrate, and preferably the array is a super-sequential carbon nanotube array.

本實施例中,超順排奈米碳管陣列的製備方法採用化學氣相沈積法,其具體步驟包括:(a)提供一平整基底,該基底可選用P型或N型矽基底,或選用形成有氧化層的矽基底,本實施例優選為採用4英寸的矽基底;(b)於基底表面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述形成有催化劑層的基底於700℃~900℃的空氣中退火約30分鐘~90分鐘;(d)將處理過的基底置於反應爐中,於保護氣體環境下加熱到500℃~740℃,然後通入碳源氣體反應約5分鐘~30分鐘,生長得到超順排奈米碳管陣列,其高度為200微米~400微米。該超順排奈米碳管陣列為至少兩個彼此平行且垂直於基底生長的 奈米碳管形成的純奈米碳管陣列。通過上述控制生長條件,該超順排奈米碳管陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬顆粒等。該奈米碳管陣列中的奈米碳管彼此通過凡德瓦爾力緊密接觸形成陣列。該奈米碳管陣列的面積與上述基底面積基本相同。 In this embodiment, the method for preparing the super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or selected The tantalum substrate is formed with an oxide layer. In this embodiment, a 4-inch tantalum substrate is preferably used; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe), cobalt (Co) or nickel ( One of the alloys of Ni) or any combination thereof; (c) annealing the substrate on which the catalyst layer is formed in air at 700 ° C to 900 ° C for about 30 minutes to 90 minutes; (d) placing the treated substrate in the reaction In the furnace, it is heated to 500 ° C ~ 740 ° C in a protective gas atmosphere, and then reacted with a carbon source gas for about 5 minutes to 30 minutes to grow a super-aligned carbon nanotube array having a height of 200 μm to 400 μm. The super-sequential carbon nanotube array is at least two parallel to each other and perpendicular to the substrate A pure carbon nanotube array formed by a carbon nanotube. The super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions described above. The carbon nanotubes in the array of carbon nanotubes are in close contact with each other to form an array by van der Waals force. The area of the carbon nanotube array is substantially the same as the area of the substrate described above.

上述碳源氣可選用乙炔、乙烯、甲烷等化學性質較活潑的碳氫化合物,本實施例優選的碳源氣為乙炔;保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體為氬氣。 The above carbon source gas may be selected from acetylene, ethylene, methane and other chemically active hydrocarbons. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. .

可以理解,本實施例提供的奈米碳管陣列不限於上述製備方法,也可為石墨電極恒流電弧放電沈積法、鐳射蒸發沈積法等。 It can be understood that the carbon nanotube array provided in this embodiment is not limited to the above preparation method, and may be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method or the like.

其次,採用一拉伸工具拉取上述奈米碳管陣列從而獲得一奈米碳管薄膜163。 Next, the above carbon nanotube array is pulled by a stretching tool to obtain a carbon nanotube film 163.

本實施例中,採用一拉伸工具拉取上述奈米碳管陣列從而獲得一奈米碳管薄膜163的方法包括以下步驟:(a)從上述奈米碳管陣列中選定一定寬度的複數個奈米碳管束片斷;(b)沿基本垂直於奈米碳管陣列生長方向拉伸該複數個奈米碳管束片斷,獲得一連續的奈米碳管薄膜163,該奈米碳管薄膜163中的奈米碳管的延伸方向平行於奈米碳管薄膜163的拉伸方向。 In this embodiment, the method for drawing the carbon nanotube array by using a stretching tool to obtain a carbon nanotube film 163 comprises the following steps: (a) selecting a plurality of widths from the array of carbon nanotubes. a carbon nanotube bundle segment; (b) stretching the plurality of carbon nanotube bundle segments substantially perpendicular to the growth direction of the carbon nanotube array to obtain a continuous carbon nanotube film 163, the carbon nanotube film 163 The extending direction of the carbon nanotubes is parallel to the stretching direction of the carbon nanotube film 163.

於上述拉伸過程中,該複數個奈米碳管束片斷於拉力作用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用,該選定的複數個奈米碳管束片斷分別與其他奈米 碳管束片斷首尾相連地連續地被拉出,從而形成一奈米碳管薄膜163。 In the above stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction by the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively associated with the other naphthalenes due to the van der Waals force. Meter The carbon tube bundle segments are continuously pulled out end to end to form a carbon nanotube film 163.

所述有序奈米碳管薄膜163係由奈米碳管陣列經進一步處理得到的,其長度和寬度可以較準確地控制。該有序奈米碳管薄膜163中奈米碳管首尾相連,且長度相等並均勻、有序分佈、相鄰的奈米碳管之間具有空隙,從而使得所述奈米碳管結構具有均勻的阻值分佈和透光特性。故,採用該奈米碳管結構作上電極,可以相應提高所述太陽能電池的光電轉換效率。進一步,所述奈米碳管結構的製備方法簡單、容易實現,適於批量生產。 The ordered carbon nanotube film 163 is further processed by a carbon nanotube array, and its length and width can be controlled more accurately. The carbon nanotubes in the ordered carbon nanotube film 163 are connected end to end, and have the same length and uniform distribution, and there are gaps between the adjacent carbon nanotubes, so that the carbon nanotube structure is uniform. Resistance distribution and light transmission characteristics. Therefore, by using the carbon nanotube structure as the upper electrode, the photoelectric conversion efficiency of the solar cell can be correspondingly improved. Further, the preparation method of the carbon nanotube structure is simple and easy to implement, and is suitable for mass production.

可以理解,所述奈米碳管結構16也可係其他的奈米碳管結構,如複數個奈米碳管長線互相平行鋪設於所述單晶矽襯底14表面,形成一奈米碳管結構16;或者所述奈米碳管結構為一層狀結構,每一層包括複數個互相平行鋪設於所述單晶矽襯底14表面的奈米碳管長線,相鄰兩層中的奈米碳管長線之間具有一交叉角度β,且0度≦β≦90度;或者複數個奈米碳管長線互相平行鋪設於一奈米碳管薄膜表面形成一層狀結構,至少一層狀結構形成一奈米碳管結構16;或者奈米碳管粉末與金屬混合形成的複合材料塗覆於所述單晶矽襯底14表面,形成一奈米碳管結構16等,只需具有良好的吸光性、導電性及耐用性等特性即可。 It can be understood that the carbon nanotube structure 16 can also be other carbon nanotube structures. For example, a plurality of carbon nanotube long lines are laid parallel to each other on the surface of the single crystal germanium substrate 14 to form a carbon nanotube. Structure 16; or the carbon nanotube structure is a layered structure, each layer includes a plurality of long carbon nanotubes laid parallel to each other on the surface of the single crystal germanium substrate 14, and nanoparticles in two adjacent layers The long length of the carbon tube has a crossing angle β, and 0 degrees ≦β≦90 degrees; or a plurality of long carbon nanotubes are laid parallel to each other on the surface of a carbon nanotube film to form a layered structure, at least one layer structure Forming a carbon nanotube structure 16; or a composite material formed by mixing a carbon nanotube powder and a metal is applied to the surface of the single crystal germanium substrate 14, forming a carbon nanotube structure 16 or the like, and only needs to have a good Characteristics such as absorbance, conductivity, and durability are sufficient.

請參閱表1,為以所述有序奈米碳管薄膜163製成的太陽能電池10的各項參數指標列表。其中n-Si表示所述單晶矽襯底14為n型單晶矽片,p-Si表示所述單晶矽襯底14 為p型單晶矽片。所述交叉鋪設表示至少兩層有序奈米碳管薄膜163交叉鋪設形成一奈米碳管結構16,該有序奈米碳管薄膜163中的奈米碳管之間的交叉角度為90度。從圖5中可以看出,本實施例中以n型單晶矽片和p型單晶矽片製成的太陽能電池10都有光生伏特現象,其中以四個有序奈米碳管薄膜163交叉鋪設所制得的太陽能電池10的光電轉換效率最高,為0.84%。以n型單晶矽片製成的太陽能電池10的光電轉換效率比以p型單晶矽片製成的太陽能電池10的光電轉換效率高。 Please refer to Table 1, which is a list of various parameter indexes of the solar cell 10 made of the ordered carbon nanotube film 163. Wherein n-Si indicates that the single crystal germanium substrate 14 is an n-type single crystal germanium sheet, and p-Si indicates the single crystal germanium substrate 14 It is a p-type single crystal wafer. The cross-laying means that at least two layers of ordered carbon nanotube film 163 are cross-laid to form a carbon nanotube structure 16, and the angle of intersection between the carbon nanotubes in the ordered carbon nanotube film 163 is 90 degrees. . As can be seen from FIG. 5, in the present embodiment, the solar cell 10 made of the n-type single crystal crucible and the p-type single crystal crucible has a photovoltaic phenomenon, in which four ordered carbon nanotube films 163 are used. The solar cell 10 produced by cross-laying has the highest photoelectric conversion efficiency of 0.84%. The photoelectric conversion efficiency of the solar cell 10 made of an n-type single crystal crucible is higher than that of the solar cell 10 made of a p-type single crystal crucible.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10,30‧‧‧太陽能電池 10,30‧‧‧ solar cells

12,32‧‧‧背電極 12,32‧‧‧Back electrode

14,34‧‧‧單晶矽襯底 14,34‧‧‧ Single crystal germanium substrate

141,342‧‧‧單晶矽襯底的下表面 141,342‧‧‧ The lower surface of the single crystal substrate

142,341‧‧‧單晶矽襯底的上表面 142,341‧‧‧ The upper surface of the single crystal germanium substrate

16‧‧‧奈米碳管結構 16‧‧‧Nano Carbon Tube Structure

161‧‧‧奈米碳管結構的上表面 161‧‧‧ upper surface of the carbon nanotube structure

162‧‧‧奈米碳管結構的下表面 162‧‧‧The lower surface of the carbon nanotube structure

163,36‧‧‧奈米碳管薄膜 163, 36‧‧‧Nano Carbon Tube Film

164‧‧‧奈米碳管束 164‧‧・Nano carbon tube bundle

165‧‧‧奈米碳管 165‧‧・nano carbon tube

18‧‧‧電極 18‧‧‧ electrodes

20‧‧‧鈍化層 20‧‧‧ Passivation layer

圖1係先前技術中太陽能電池的結構示意圖。 1 is a schematic structural view of a solar cell in the prior art.

圖2係本技術方案實施例的太陽能電池的側視結構示意圖。 2 is a schematic side view showing the structure of a solar cell according to an embodiment of the present technical solution.

圖3係本技術方案實施例的太陽能電池中奈米碳管結構的部分放大示意圖。 FIG. 3 is a partially enlarged schematic view showing the structure of a carbon nanotube in a solar cell according to an embodiment of the present technical solution.

圖4係本技術方案實施例的太陽能電池的俯視結構示意圖。 4 is a schematic top plan view of a solar cell according to an embodiment of the present technical solution.

10‧‧‧太陽能電池 10‧‧‧ solar cells

12‧‧‧背電極 12‧‧‧ Back electrode

14‧‧‧單晶矽襯底 14‧‧‧ Single crystal germanium substrate

141‧‧‧單晶矽襯底的下表面 141‧‧‧ The lower surface of the single crystal germanium substrate

142‧‧‧單晶矽襯底的上表面 142‧‧‧ Upper surface of single crystal germanium substrate

16‧‧‧奈米碳管結構 16‧‧‧Nano Carbon Tube Structure

161‧‧‧奈米碳管結構的上表面 161‧‧‧ upper surface of the carbon nanotube structure

162‧‧‧奈米碳管結構的下表面 162‧‧‧The lower surface of the carbon nanotube structure

18‧‧‧電極 18‧‧‧ electrodes

20‧‧‧鈍化層 20‧‧‧ Passivation layer

Claims (17)

一種太陽能電池,其包括:一單晶矽襯底;一背電極,該背電極設置於所述單晶矽襯底的下表面,且與該單晶矽襯底的下表面歐姆接觸;一奈米碳管結構,該奈米碳管結構設置於所述單晶矽襯底的上表面,且與該單晶矽襯底的上表面接觸;其改良在於,所述奈米碳管結構包括複數個有序排列的奈米碳管,所述複數個奈米碳管平行於所述奈米碳管結構的表面排列。 A solar cell comprising: a single crystal germanium substrate; a back electrode disposed on a lower surface of the single crystal germanium substrate and in ohmic contact with a lower surface of the single crystal germanium substrate; a carbon nanotube structure, wherein the carbon nanotube structure is disposed on an upper surface of the single crystal germanium substrate and is in contact with an upper surface of the single crystal germanium substrate; and the improvement is that the carbon nanotube structure includes plural An ordered array of carbon nanotubes, the plurality of carbon nanotubes being aligned parallel to the surface of the carbon nanotube structure. 如申請專利範圍第1項所述的太陽能電池,其中,所述奈米碳管結構中的奈米碳管為單壁奈米碳管、雙壁奈米碳管或者多壁奈米碳管。 The solar cell according to claim 1, wherein the carbon nanotubes in the carbon nanotube structure are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes. 如申請專利範圍第2項所述的太陽能電池,其中,所述單壁奈米碳管的直徑為0.5奈米~50奈米,雙壁奈米碳管的直徑為1.0奈米~50奈米,多壁奈米碳管的直徑為1.5奈米~50奈米。 The solar cell according to claim 2, wherein the single-walled carbon nanotube has a diameter of 0.5 nm to 50 nm, and the double-walled carbon nanotube has a diameter of 1.0 nm to 50 nm. The diameter of the multi-walled carbon nanotubes is from 1.5 nm to 50 nm. 如申請專利範圍第1項所述的太陽能電池,其中,所述奈米碳管結構中的奈米碳管均勻分佈,且沿固定方向擇優取向排列。 The solar cell according to claim 1, wherein the carbon nanotubes in the carbon nanotube structure are uniformly distributed and arranged in a preferred orientation along a fixed direction. 如申請專利範圍第4項所述的太陽能電池,其中,所述奈米碳管結構包括至少一有序奈米碳管薄膜。 The solar cell of claim 4, wherein the carbon nanotube structure comprises at least one ordered carbon nanotube film. 如申請專利範圍第5項所述的太陽能電池,其中,所述有序奈米碳管薄膜包括複數個首尾相連且長度相等的奈米碳管束,該奈米碳管束的兩端通過凡德瓦爾力相互連接,每 個奈米碳管束包括複數個長度相等且平行排列的奈米碳管。 The solar cell of claim 5, wherein the ordered carbon nanotube film comprises a plurality of carbon nanotube bundles connected end to end and of equal length, the ends of the carbon nanotube bundle passing through the van der Waals Force connected to each other The carbon nanotube bundles comprise a plurality of carbon nanotubes of equal length and arranged in parallel. 如申請專利範圍第5項所述的太陽能電池,其中,所述奈米碳管結構包括至少兩個重疊設置的有序奈米碳管薄膜。 The solar cell of claim 5, wherein the carbon nanotube structure comprises at least two ordered carbon nanotube films arranged in an overlapping manner. 如申請專利範圍第7項所述的太陽能電池,其中,所述相鄰兩個有序奈米碳管薄膜中的奈米碳管之間具有一交叉角度α,且0度≦α≦90度。 The solar cell of claim 7, wherein the carbon nanotubes in the adjacent two ordered carbon nanotube films have an intersection angle α between 0 degrees and ≦α≦90 degrees. . 如申請專利範圍第1項所述的太陽能電池,其中,所述奈米碳管結構包括複數個互相平行鋪設的奈米碳管長線。 The solar cell of claim 1, wherein the carbon nanotube structure comprises a plurality of long carbon nanotubes laid parallel to each other. 如申請專利範圍第1項所述的太陽能電池,其中,所述奈米碳管結構為一層狀結構,每一層包括複數個互相平行鋪設的奈米碳管長線,相鄰兩層中的奈米碳管長線之間具有一交叉角度β,且0度≦β≦90度。 The solar cell according to claim 1, wherein the carbon nanotube structure is a layered structure, and each layer comprises a plurality of long carbon nanotubes laid parallel to each other, and the adjacent two layers are The carbon nanotubes have a cross angle β between the long lines and 0 degrees ≦β≦90 degrees. 如申請專利範圍第1項所述的太陽能電池,其中,所述奈米碳管結構包括至少一奈米碳管薄膜和複數個奈米碳管長線,該複數個奈米碳管長線互相平行鋪設於所述奈米碳管薄膜表面。 The solar cell of claim 1, wherein the carbon nanotube structure comprises at least one carbon nanotube film and a plurality of nano carbon tube long wires, and the plurality of carbon nanotube long lines are laid in parallel with each other. On the surface of the carbon nanotube film. 如申請專利範圍第1項所述的太陽能電池,其中,所述奈米碳管結構為複數層奈米碳管薄膜與複數個奈米碳管長線相互重疊形成的結構。 The solar cell according to claim 1, wherein the carbon nanotube structure is a structure in which a plurality of layers of carbon nanotube film and a plurality of carbon nanotube long lines overlap each other. 如申請專利範圍第1項所述的太陽能電池,其中,所述單晶矽襯底為n型單晶矽片或者p型單晶矽片,該單晶矽襯底的厚度為200微米~300微米。 The solar cell according to claim 1, wherein the single crystal germanium substrate is an n-type single crystal germanium or a p-type single crystal germanium, and the single crystal germanium substrate has a thickness of 200 μm to 300 Micron. 如申請專利範圍第1項所述的太陽能電池,其中,所述背電極的材料為鋁、鎂或銀,該背電極的厚度為10微米~300微米。 The solar cell of claim 1, wherein the back electrode is made of aluminum, magnesium or silver, and the back electrode has a thickness of 10 micrometers to 300 micrometers. 如申請專利範圍第1項所述的太陽能電池,其中,該太陽能電池進一步包括至少一電極,該電極與所述奈米碳管結構的上表面電接觸。 The solar cell of claim 1, wherein the solar cell further comprises at least one electrode in electrical contact with an upper surface of the carbon nanotube structure. 如申請專利範圍第1項所述的太陽能電池,其中,該太陽能電池進一步包括至少一鈍化層,該鈍化層設置於所述單晶矽襯底和奈米碳管結構之間。 The solar cell of claim 1, wherein the solar cell further comprises at least one passivation layer disposed between the single crystal germanium substrate and the carbon nanotube structure. 如申請專利範圍第16項所述的太陽能電池,其中,所述鈍化層的材料為二氧化矽或者四氮化三矽。 The solar cell of claim 16, wherein the passivation layer is made of hafnium oxide or hafnium nitride.
TW97113268A 2008-04-11 2008-04-11 Solar cell TWI409961B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97113268A TWI409961B (en) 2008-04-11 2008-04-11 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97113268A TWI409961B (en) 2008-04-11 2008-04-11 Solar cell

Publications (2)

Publication Number Publication Date
TW200943558A TW200943558A (en) 2009-10-16
TWI409961B true TWI409961B (en) 2013-09-21

Family

ID=44869040

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97113268A TWI409961B (en) 2008-04-11 2008-04-11 Solar cell

Country Status (1)

Country Link
TW (1) TWI409961B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452704B (en) * 2009-12-17 2014-09-11 Hon Hai Prec Ind Co Ltd Solar energy generating device and solar energy generating module
CN112786715B (en) * 2019-11-08 2022-11-22 清华大学 Solar cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Wei et al., "Double-walled carbon nanotube solar cells", Nano Letters Vol. 7, No. 8, (2007), pp. 2317-2321) Xu, "Highly ordered carbon nanotube arrays and IR detection", Infrared Physics & Technology 42 (2001), pp.485-491) *

Also Published As

Publication number Publication date
TW200943558A (en) 2009-10-16

Similar Documents

Publication Publication Date Title
Jiang et al. High-performance single-wall carbon nanotube transparent conductive films
CN101552296B (en) Solar cell
Du et al. 25th anniversary article: carbon nanotube‐and graphene‐based transparent conductive films for optoelectronic devices
Kumar et al. Carbon nanotube: synthesis and application in solar cell
Cui et al. Enhanced efficiency of graphene/silicon heterojunction solar cells by molecular doping
Dervishi et al. Carbon nanotubes: synthesis, properties, and applications
US8524525B2 (en) Joined nanostructures and methods therefor
TWI481056B (en) A method for making a solar cell
TW201104890A (en) Carbon nanotube-based solar cells
CN102781816A (en) Fullerene-doped nanostructures and methods therefor
TWI481050B (en) A solar cell
CN101527328B (en) Solar cell and manufacturing method thereof
CN101552297B (en) Solar cell
Li et al. Space-confined synthesis of SWNT bundles wrapped by MoS2 crystalline layers as flexible sensors and detectors
TWI481046B (en) A solar cell
TWI409961B (en) Solar cell
TWI450402B (en) Solar cell
Shearer et al. Optoelectronic properties of nanocarbons and nanocarbon films
Zhang et al. Assembly of carbon nanotube sheets
TWI446556B (en) Solar cell
Udorn et al. CdSe/ZnS quantum dot (QD) sensitized solar cell utilizing a multi-walled carbon nanotube photoanode on a stainless steel substrate
Shukrullah et al. Carbon nanotubes: Synthesis and application in solar Cells
Su High-Performance Carbon-Based Optoelectronic Nanodevices
Salazar‐Bloise Carbon Nanotubes
US20180155199A1 (en) Novel Carbon Allotrope: Protomene