TW200938916A - Liquid crystal display screen - Google Patents

Liquid crystal display screen Download PDF

Info

Publication number
TW200938916A
TW200938916A TW97108078A TW97108078A TW200938916A TW 200938916 A TW200938916 A TW 200938916A TW 97108078 A TW97108078 A TW 97108078A TW 97108078 A TW97108078 A TW 97108078A TW 200938916 A TW200938916 A TW 200938916A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
carbon nanotube
layer
crystal display
substrate
Prior art date
Application number
TW97108078A
Other languages
Chinese (zh)
Other versions
TWI412846B (en
Inventor
Wei-Qi Fu
Liang Liu
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97108078A priority Critical patent/TWI412846B/en
Publication of TW200938916A publication Critical patent/TW200938916A/en
Application granted granted Critical
Publication of TWI412846B publication Critical patent/TWI412846B/en

Links

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention relates to a liquid crystal display screen. The liquid crystal display screen includes a first base, a second base, a liquid crystal layer, a first alignment layer, and a second alignment layer. The first base is spaced at a distance from the second base. The liquid crystal layer is configured for being sandwiched between the first base and the second base. The first alignment layer is disposed on a surface of the first base, which is adjacent to the liquid crystal layer. A surface of the first alignment layer, which is adjacent to the liquid crystal layer, has a plurality of parallel first grooves. The second alignment layer is disposed on a surface of the second base, which is adjacent to the liquid crystal layer. A surface of the second alignment layer, which is adjacent to the liquid crystal layer, has a plurality of parallel second grooves. Arrangement directions of the first grooves are perpendicular to arrangement directions of the second grooves. Further, at least one of the alignment layers includes a carbon nanotube layer. The carbon nanotube layer includes at least one carbon nanotube film. The carbon nanotube film includes a plurality of successively oriented carbon nanotubes joined end to end.

Description

200938916 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種液晶顯示屏,尤其涉及一種採用奈米 碳管作配向層的液晶顯示屏。 【先前技術】 液晶配向技術係决定液晶顯不屏優劣的關鍵技術之 一,因爲液晶配向技術的好壞會直接影響最終液晶顯示屏 的品質。南質1的液晶顯不屏要求液晶有穩定和均勻的初 始排列,而具有誘導液晶定向排列作用的薄層稱爲液晶配 向層。 先前技術中的液晶顯不屏使用的配向層材料有聚苯乙 烯及其衍生物、聚醯亞胺、聚乙稀醇、聚醋、環氧樹脂、 聚胺酯、聚矽烷等,最常見的為聚醯亞胺。這些材料經磨 擦法,傾斜蒸鍍8丨(^膜法和對膜進行微溝槽處理法(請參見 “ Atomic-beam alignment of inorganic materials for liquid-crystal displays” , P. Chaudhari, et al., Nature, vol 411,p56 (2001))等方法處理後,可形成溝槽,該溝槽可使 液晶定向排列。 請參閱圖1中所示的液晶顯示屏100,其包括第一基體 104、第二基體112及夾在第一基體104和第二基體112之間 的液晶層118。 所述第一基體104與第二基體112相對設置。所述液晶 層118包括多個長棒狀的液晶分子1182。所述第一基體104 靠近液晶層118的表面依次設置一第一透明電極層106和一 第一配向層108,且第一基體104的遠離液晶層118的表面設 200938916 置一第一偏光片102。所述第二基體112靠近液晶層118的表 面依次設置一第二透明電極層114和一第二配向層116,且 第二基體112的遠離液晶層118的表面設置一第二偏光片 * 110。 所述第一配向層108靠近液晶層118的表面形成有多個 相互平行的第一溝槽1082。所述第二配向層116靠近液晶層 118的表面形成有多個相互平行的第二溝槽1162。所述第一 溝槽1082和第二溝槽1162的排列方向相互垂直,從而可對 ❹液晶層118中的液晶分子1182進行定向,即使靠近第一溝槽 1082和第二溝槽1162的液晶分子1182分別沿著第一溝槽 1082和第二溝槽1162的方’向定向排列。從而使得液晶分子 1182的排列由上而下自動旋轉90度。 其中,所述第一偏光片102和第二偏光片110可對光線 進行偏振;第一透明電極層106和第二透明電極層114在液 晶顯示屏100中可起到導電的作用。但上述的多個片層結構 及其界面的存在將增加液晶顯示屏100的厚度、複雜程度以 ®及製造成本,降低背光源所提供光線的透過率,並影響顯 示質量。 有鑒于此,確有必要提供一種結構簡單、厚度較薄且 具有較佳的配向品質的液晶顯示屏。 【發明内容】 一種液晶顯示屏,其包括一第一基體;一第二基體, 所述第一基體與所述第二基體相對設置;一個液晶層,設 置于所述第一基體與所述第二基體之間;一第一配向層, 該第一配向層設置于所述第一基體的靠近液晶層的表面, 200938916 且第一配向層靠近液晶層的表面包括多個平行的第一溝 .槽,及一第二配向層,該第二配向層設置于所述第二基體 的Λ近液晶層的表面,且第二配向層靠近液晶層的表面包 括多個平行的第二溝槽,所述第一配向層的第一溝槽的排 列方向與第二配向層的第二溝槽的排列方向垂直。其中, 所述液晶顯示屏中至少一個配向層包括一奈米碳管層,該 奈米碳管層包括至少一個奈米碳管薄膜,該奈米碳管薄膜 包括多個首尾相連且定向排列的奈米碳管。 與先前技術相比較,所述液晶顯示屏具有以下優點: 其一,由于所述奈米碳管薄膜包括多個奈米碳管,從而所 述奈米碳官薄膜具有良好的導電性質,所以奈米碳管薄膜 可代替先前技術中的透明電極層起到導電作用。故本實施 例中的液晶顯示屏採用含有奈米碳管薄膜的配向層時,無 需額外增加偏光片和透明電極層,從而可使得液晶顯示屏 具有較薄的厚度,簡化液晶顯示屏的結構和製造成本,提 ❹高背光源的利用率,改善顯示質量。其二,所述奈米碳管 薄膜設置在基體上後不需要進行機械刷磨或者其它處理, 不會産生靜電和粉塵,從而使所述液晶顯示屏具有較佳的 配向品質。 【實施方式】 以下將結合附圖冑本技術方案作進一步的詳細說明。 請參閱圖2,本技術方案實施例所提供的—種液晶顯 示屏300,其包括一第一基體3〇2; 一第二基體322,=述 第一基體302與所述第二基體322相對設置,·—個液晶層 9 200938916 338 ’设置于所述第—基體302與所述第二基體322之間; .第配向層304,該第-配向層304設置于所述第—美 ,體302的靠近液晶層338的表面,且第-配向層302靠二 液晶層338的表面包括多個平行的第一溝槽3〇8 ;及 二配向層324,該第二配向$ 324設置于所述第二基體您 的靠近液晶層338的表面,且第二配向層324靠近液晶層 338的表面包括多個平行的第二溝槽挪,所述第—配向芦 ❹304的第-溝槽308的排列方向與第二配向層324的第二 溝槽328的排列方向垂直。 所述第-基體3G2與第二基體322應選用透明的材 料,如玻璃、石英、金剛石或塑料等硬性材料或柔性材料。 本實施例中,所述第一基體3〇2和第二基體322的材料爲 二乙酸纖維素(cellulose triacetate,CTA)等柔性材料。優選 地,第一基體302和第二基體322的材料均爲CTA材料形 成。可以理解,所述第一基體3〇2與第二基體322的材料 © 可以相同,也可以不同。 所述液晶層338包括多個長棒狀的液晶分子。所述液 晶層338的液晶材料爲先前技術中常用的液晶材料。 請參閱圖3,所述液晶顯示屏3〇〇中至少一個配向層 包括一個奈米碳管層,該奈米碳管層包括至少一個奈米碳 管薄膜。所述奈米碳管溥膜包括首尾相連且定向排列的奈 米碳管。另,所述奈米碳管層包括至少兩個奈米碳管薄膜 時,所述至少兩個奈米碳管薄臈重叠設置,且相鄰的兩個 奈米碳管薄膜中的奈米碳管沿同一方向定向排列。所述奈 200938916 米碳管薄膜進一步包括多個首尾相連且長度相等的奈米碳 .管束14。所述奈米碳管束14的兩端通過凡德瓦爾力相互 連接。每個奈米碳管束14包括多個長度相等且平行排列的 奈米碳管12。所述相鄰的奈米碳管12之間通過凡德瓦爾 力緊密結合。可以理解,所述奈米碳管薄膜中的多個奈米 碳管12之間具有多個平行的間隙,所述多個間隙可作爲第 一溝槽308或第二溝槽328對液晶分子進行配向。 Q 可以理解,所述液晶顯示屏300中的第一配向層3〇4 或第二配向層324中的一個配向層爲本技術方案實施例所 述的奈米破管層’而另一個配向層則採用先前技術的配向 « 層。優選地’第一配向層304和第二配向層324分別包括 一個奈米碳管層’且第一配向層304的奈米碳管的排列方 向與所述第二配向層324的奈米碳管的排列方向垂直,從 而使得第一溝槽308的排列方向與第二溝槽328的排列方 向垂直。具體地’第一配向層304中的第一溝槽3〇8沿χ ©軸方向平行且定向排列;第二配向層324中的第二溝槽328 沿Ζ轴方向平行且定向排列。故,本技術方案實施例中的 第一溝槽308和第二溝槽328可對液晶層338中的液晶分 子進行配向。所述第一配向層3〇4和第二配向層324的厚 度範圍分別在20奈米〜5微米之間。 由于用作配向層的奈米碳管薄膜具有較好的韌性,且 當第一基體302和第二基體322均由柔性材料形成時,液 晶顯示屏300可彎曲。由于所述奈米碳管薄臈包括多個奈 米碳管,從而所述奈米碳管薄臈具有良好的導電性質,所 11 200938916 以奈米碳㈣膜可代替Μ技術中的透明電極層起到導電 作用。故本實施例中的液晶顯示屏3⑻採用含有奈米碳管 薄膜的配向層時,無需額外增加透明電極層,從而可使得 =顯示屏_具有㈣的厚度’簡化液晶顯示屏的結構 和衣造成本,提南背光源的利用率,改善顯示質量。此外, 碳管薄膜設置在基體上後不需要進行機械刷磨或200938916 IX. Description of the Invention: [Technical Field] The present invention relates to a liquid crystal display, and more particularly to a liquid crystal display using a carbon nanotube as an alignment layer. [Prior Art] The liquid crystal alignment technology is one of the key technologies for determining the advantages and disadvantages of liquid crystal display, because the quality of the liquid crystal alignment technology directly affects the quality of the final liquid crystal display. The liquid crystal display of the Nansheng 1 requires a stable and uniform initial alignment of the liquid crystal, and a thin layer having an effect of inducing alignment of the liquid crystal is called a liquid crystal alignment layer. The alignment layer materials used in the prior art liquid crystal display screens are polystyrene and its derivatives, polyimine, polyethylene glycol, polyester, epoxy resin, polyurethane, polydecane, etc., the most common is poly Yttrium. These materials were subjected to a rubbing method, oblique vapor deposition of 8 Å (method method and micro-groove treatment of the film (see "Atomic-beam alignment of inorganic materials for liquid-crystal displays", P. Chaudhari, et al., After treatment by a method such as Nature, vol 411, p56 (2001)), a trench can be formed, which can align the liquid crystals. Please refer to the liquid crystal display 100 shown in FIG. 1 , which includes the first substrate 104 , a second substrate 112 and a liquid crystal layer 118 sandwiched between the first substrate 104 and the second substrate 112. The first substrate 104 is disposed opposite to the second substrate 112. The liquid crystal layer 118 includes a plurality of long rod-shaped liquid crystal molecules. 1182. A first transparent electrode layer 106 and a first alignment layer 108 are disposed on the surface of the first substrate 104 adjacent to the liquid crystal layer 118, and a surface of the first substrate 104 remote from the liquid crystal layer 118 is provided with a first polarized light of 200938916. A second transparent electrode layer 114 and a second alignment layer 116 are disposed on the surface of the second substrate 112 adjacent to the liquid crystal layer 118, and a second polarizer is disposed on the surface of the second substrate 112 away from the liquid crystal layer 118. * 110. The first match A plurality of first trenches 1082 parallel to each other are formed on the surface of the layer 108 adjacent to the liquid crystal layer 118. The second alignment layer 116 is formed adjacent to the surface of the liquid crystal layer 118 with a plurality of second trenches 1162 that are parallel to each other. The alignment direction of a trench 1082 and the second trench 1162 are perpendicular to each other, so that the liquid crystal molecules 1182 in the liquid crystal layer 118 can be aligned even if the liquid crystal molecules 1182 adjacent to the first trench 1082 and the second trench 1162 are respectively The squares of the first trenches 1082 and the second trenches 1162 are aligned in an orientation such that the arrangement of the liquid crystal molecules 1182 is automatically rotated by 90 degrees from top to bottom. wherein the first polarizer 102 and the second polarizer 110 are The light may be polarized; the first transparent electrode layer 106 and the second transparent electrode layer 114 may function as a conductive layer in the liquid crystal display panel 100. However, the presence of the plurality of sheet structures and their interfaces will increase the liquid crystal display. The thickness, complexity, and manufacturing cost of 100 reduce the transmittance of light provided by the backlight and affect the display quality. In view of this, it is necessary to provide a simple structure, thinner thickness and more The invention relates to a liquid crystal display screen, which comprises a first substrate; a second substrate, the first substrate is opposite to the second substrate; and a liquid crystal layer is disposed at the Between the first substrate and the second substrate; a first alignment layer disposed on a surface of the first substrate adjacent to the liquid crystal layer, 200938916 and including a surface of the first alignment layer adjacent to the liquid crystal layer a plurality of parallel first trenches, a trench, and a second alignment layer disposed on a surface of the second substrate adjacent to the liquid crystal layer, and the second alignment layer includes a plurality of surfaces adjacent to the liquid crystal layer Parallel second trenches, the first trenches of the first alignment layer are arranged in a direction perpendicular to the second trenches of the second alignment layer. Wherein at least one alignment layer in the liquid crystal display panel comprises a carbon nanotube layer, the carbon nanotube layer comprises at least one carbon nanotube film, and the carbon nanotube film comprises a plurality of end-to-end and oriented arrays Carbon nanotubes. Compared with the prior art, the liquid crystal display has the following advantages: First, since the carbon nanotube film comprises a plurality of carbon nanotubes, the nano carbon film has good electrical conductivity, so The carbon nanotube film can replace the transparent electrode layer in the prior art to conduct electricity. Therefore, when the liquid crystal display panel of the embodiment adopts an alignment layer containing a carbon nanotube film, it is not necessary to additionally add a polarizer and a transparent electrode layer, thereby making the liquid crystal display panel have a thin thickness, simplifying the structure of the liquid crystal display and Manufacturing costs, improve the utilization of high backlights, and improve display quality. Secondly, after the carbon nanotube film is disposed on the substrate, no mechanical brushing or other treatment is required, and static electricity and dust are not generated, so that the liquid crystal display has better alignment quality. [Embodiment] Hereinafter, the technical solution will be further described in detail with reference to the accompanying drawings. Referring to FIG. 2, a liquid crystal display 300 provided by an embodiment of the present technical solution includes a first substrate 3〇2; a second substrate 322, wherein the first substrate 302 is opposite to the second substrate 322. a liquid crystal layer 9 200938916 338 ' is disposed between the first substrate 302 and the second substrate 322; a first alignment layer 304, the first alignment layer 304 is disposed in the first The surface of the liquid crystal layer 338 is adjacent to the surface of the liquid crystal layer 338, and the surface of the second alignment layer 302 of the first alignment layer 302 includes a plurality of parallel first trenches 3〇8; and a second alignment layer 324, the second alignment layer 324 is disposed at the The second substrate is near the surface of the liquid crystal layer 338, and the surface of the second alignment layer 324 adjacent to the liquid crystal layer 338 includes a plurality of parallel second trenches, and the first trench 308 of the first alignment reed 304 The alignment direction is perpendicular to the arrangement direction of the second trenches 328 of the second alignment layer 324. The first base 3G2 and the second base 322 should be made of a transparent material such as a hard material such as glass, quartz, diamond or plastic or a flexible material. In this embodiment, the material of the first substrate 3〇2 and the second substrate 322 is a flexible material such as cellulose triacetate (CTA). Preferably, the materials of the first substrate 302 and the second substrate 322 are both formed of a CTA material. It can be understood that the material of the first substrate 3〇2 and the second substrate 322 may be the same or different. The liquid crystal layer 338 includes a plurality of long rod-shaped liquid crystal molecules. The liquid crystal material of the liquid crystal layer 338 is a liquid crystal material commonly used in the prior art. Referring to FIG. 3, at least one of the alignment layers of the liquid crystal display panel 3 includes a carbon nanotube layer including at least one carbon nanotube film. The carbon nanotube membrane comprises end-to-end aligned carbon nanotubes. In addition, when the carbon nanotube layer comprises at least two carbon nanotube films, the at least two carbon nanotubes are overlapped, and the nano carbon in the adjacent two carbon nanotube films The tubes are oriented in the same direction. The nai 200938916 michlon film further comprises a plurality of nano carbons and tube bundles 14 connected end to end and of equal length. Both ends of the carbon nanotube bundle 14 are connected to each other by a van der Waals force. Each of the carbon nanotube bundles 14 includes a plurality of carbon nanotubes 12 of equal length and arranged in parallel. The adjacent carbon nanotubes 12 are tightly bonded by van der Waals forces. It can be understood that there are a plurality of parallel gaps between the plurality of carbon nanotubes 12 in the carbon nanotube film, and the plurality of gaps can serve as liquid crystal molecules for the first trench 308 or the second trench 328. Orientation. It can be understood that one of the first alignment layer 3〇4 or the second alignment layer 324 in the liquid crystal display panel 300 is the nano tube-breaking layer described in the embodiment of the technical solution and the other alignment layer. The prior art alignment « layer is used. Preferably, the first alignment layer 304 and the second alignment layer 324 respectively comprise a carbon nanotube layer 'and the arrangement direction of the carbon nanotubes of the first alignment layer 304 and the carbon nanotubes of the second alignment layer 324 The arrangement direction is vertical such that the arrangement direction of the first trenches 308 is perpendicular to the arrangement direction of the second trenches 328. Specifically, the first trenches 3〇8 in the first alignment layer 304 are aligned and oriented in the χ© axis direction; the second trenches 328 in the second alignment layer 324 are parallel and oriented in the z-axis direction. Therefore, the first trench 308 and the second trench 328 in the embodiment of the present technical solution can align liquid crystal molecules in the liquid crystal layer 338. The thickness of the first alignment layer 3〇4 and the second alignment layer 324 ranges from 20 nm to 5 μm, respectively. Since the carbon nanotube film used as the alignment layer has better toughness, and when both the first substrate 302 and the second substrate 322 are formed of a flexible material, the liquid crystal display panel 300 can be bent. Since the carbon nanotube thin crucible comprises a plurality of carbon nanotubes, the carbon nanotube thin crucible has good electrical conductivity, and 11 200938916 can replace the transparent electrode layer in the crucible technology with a nano carbon (tetra) film. It plays a conductive role. Therefore, when the liquid crystal display 3 (8) in the embodiment adopts an alignment layer containing a carbon nanotube film, it is not necessary to additionally add a transparent electrode layer, so that the display screen has a thickness of (four) simplifies the structure and clothing of the liquid crystal display. Ben, the utilization of the backlight of the Tynan, to improve the display quality. In addition, the carbon tube film does not require mechanical brushing after it is placed on the substrate.

^其匕處理’不會産生靜電和粉塵’從而使所述液晶顯示 屏300具有較佳的配向品質。 另,所达奈米碳管薄膜中的多個奈米礙管為平行排列 的,故所絲米碳管薄膜具有對自然光的偏振作用,從而 可以代替先减術中的偏振片起到偏振作用。可以理解, 爲了使得液晶顯示屏具有更好的偏振效果,還可在第 -基體322和/或第二基體3〇2遠離液晶層338的表面設置 至少一個偏振片(未示出)。 所述奈米碳管層的製備方法包括以下步驟: 超 步驟一:提供一奈米碳管陣列,優選地,該陣列爲 順排奈米碳管陣列。 本技術方案實施例提供的奈米碳管陣列爲單壁奈米碳 管陣列、雙壁奈米碳管陣列或#壁奈米碳管㈣。本實施 例中,超順排奈米碳管_的製備方法採用化學氣相沈積 法,該超順排奈米碳管陣列爲多個彼此平行且垂直于基底 生長的奈米碳管形成的純奈米碳管陣列。 可以理解’本實施例提供的奈米碳管陣列不限于上述 製備方法。也可爲石墨電極恒流電弧放電沈積法、雷射蒸 12 200938916 發沈積法等。 . 步驟一.採用一拉伸工具從奈米碳管陣列中拉取獲得 ‘:奈米奴官薄膜。其具體包括以下步驟:(a)從上述奈米 石反官陣列中選定一定寬度的多個奈米碳管片斷,本實施例 優選爲採用具有一定寬度的膠帶接觸奈米碳管陣列以選定 -定寬度?多個奈米碳管片斷;⑴以一定速度沿基本垂 直于奈米碳官陣列生長方向拉伸該多個奈米碳管片斷,以 ❹形成一連續的奈米碳管薄膜。 在上述拉伸過程中,該多個奈米碳管片段在拉力作用 下^拉伸方向逐漸脫離基底的同時,由于凡德瓦爾力作 用該达疋的夕個奈米碳管片斷分別與其他奈米碳管片斷 百尾相連地連續地被拉出’從而形成一奈米碳管薄膜。 以理解’還可將上述至少兩個奈求碳管薄膜沿奈米 奴g薄膜的拉伸方向,進行重叠設置。 請參閱圖4,該奈米碳管薄膜爲擇優取向排列的多個 ©奈米碳管束首尾相連形成的具有一定寬度的奈米碳管薄 膜。該奈米碳管薄膜中奈米碳管的排列方向基本平行于奈 米碳管薄膜的拉伸方向。該直接拉伸獲得的擇優取向排二 的奈米碳管薄膜比無序的奈米碳管薄膜具有更好的均勻 性,即具有更均勻的厚度以及更均句的導電性能。同時該 直接拉伸獲得奈米碳管薄膜的方法簡單快速,適宜進行工 業化應用。所述奈米碳管薄膜中奈米碳管之間具有多個平 行且均勻分布的間隙,該間隙可作爲第一溝槽3〇8或第二 溝槽328對液晶分子進行配向。 13 200938916 本實色例令,該奈米碳管 所生長的基底的尺寸;^ 度與奈^官陣列 可根據實際需求制得二實碳管薄膜的長度不限’ 米~1〇厘米,該奈米====的寬度可爲請厘 所述奈米碳管薄膜包括、:〜100微米。 壁奈米碳管令的-種或幾箱、雙壁奈米碳管及多 ❹ 管爲單壁太乎^ μ種。虽不米碳管薄膜中的奈米碳 Β舄早璧不未石灭官時’該 ~50奈米。當夺米心未石“的直徑爲〇.5奈米 時,該雙壁令的奈米碳管爲雙壁奈米碳管 又土不木兔官的直徑爲太 碳管薄膜中的奈米碳管爲· 當奈米 管的直徑爲1>5奈米,奈米;^ ^ ^ ’該多壁奈米碳 另外’可使用有機溶劑處理上述 體地,可通過試管將右嫵吟七 乩扪不木奴^薄膜。具 潤整個奈米碳管薄膜。商落在奈米碳管薄膜表面浸 乙醇、甲醇、^ 一 劑f揮發性有機溶劑,如 醇。該多層乳仿,本實施例中採用乙 性有機溶劑的表面張力的作二在揮發 的奈米碳管片斷會…,::: 反官薄膜中的平行 石山势每 。卩刀來集成奈米碳管束,因此,該奈米 :二生祺ί:體積比小,無枯性,且具有良好的機械强度 述的有墙 溶劑處理的奈米碳管薄膜相比,經上 的門隙劑處理後的奈米碳管薄膜具有更小且更加均勾 =顯該:隙用作第-溝槽期或第二溝槽則可使 仵夜日日顯不屏300具有更好的配向品質。 14 200938916 以下結合圖5與圖6對本實施例液晶顯示屏300的工 作過程進行說明。 如圖5所示,當沒有電壓施加在第一配向層304和第 二配向層324之間時,液晶分子的排列會依照第一配向層 304和第二配向層324的配向而定。在本實施例的液晶顯 示屏300中,所述第一配向層304和第二配向層324的配 向方向形成90度,所以液晶分子的排列由上而下會自動旋 •轉90度。當入射的光線L經過第一配向層304時,由于 ❹ 第一配向層3 04的穿透轴(Transmission Axis) 309沿Z轴方 向,所以只有偏振方向與穿透軸309平行的偏振光L1通 過。當偏振光L1通過液晶分子時,由于液晶分子總共旋 轉了 90度,所以當偏振光L1到達第二配向層324時,偏 振光L1的偏振方向恰好轉了 90度。由于第二配向層324 的穿透軸329沿X軸方向,即:偏振光L1的偏振方向因 轉了 90度而與穿透軸329平行,從而可以順利的通過第二 ❿配向層324,此時,本實施例的液晶顯示屏300處于通光 的狀態。 如圖6所示,當有電壓施加在第一配向層304和第二 配向層324之間時,液晶分子受電場的影響,其排列方向 會傾向平行于電場方向而變成與第一基體302垂直的狀 態。此時通過第一配向層304的偏振光L1經過液晶分子 時便不會改變偏振方向,因此就無法通過第二配向層 324,此時,本實施例的液晶顯示屏300處于遮光的狀態。 本技術方案實施例所述的液晶顯示屏300具有以下優 15 200938916 點:其-,由于所述奈米碳管相包料個奈米碳管,從 •而所述奈米碳管薄膜具有良好的導電性質,所以奈米碳管 薄膜可代替先前技術中的透明電極層起到導電作用。故本 實施例中的液晶顯示屏3G0採用含有奈米碳管薄獏的配向 層時,無需額外增加偏光片和透明電極層,從而可使得液 晶顯示屏具有較薄的厚度,簡化液晶顯示屏的結構和 製造成本,提高背光源的利用率,改善顯示質量。其二, 〇所述奈米碳管薄膜設置在基體上後不需要進行機械刷磨或 者其它處理,不會產生靜電和粉塵,從而使所述液晶顯示 屏300具有較佳的配向品質。^The subsequent treatment 'does not generate static electricity and dust' so that the liquid crystal display panel 300 has a better alignment quality. In addition, the plurality of nanotubes in the carbon nanotube film are arranged in parallel, so that the silk carbon nanotube film has a polarization effect on natural light, so that it can be used as a polarizing effect instead of the polarizing plate in the first reduction. It is understood that in order to make the liquid crystal display panel have a better polarizing effect, at least one polarizing plate (not shown) may be disposed on the surface of the first substrate 322 and/or the second substrate 3〇2 away from the liquid crystal layer 338. The method for preparing the carbon nanotube layer comprises the following steps: Ultra Step 1: providing an array of carbon nanotubes, preferably the array is a tandem carbon nanotube array. The carbon nanotube array provided by the embodiment of the present technical solution is a single-walled carbon nanotube array, a double-walled carbon nanotube array, or a #-walled carbon nanotube (IV). In this embodiment, the preparation method of the super-sequential carbon nanotubes is performed by chemical vapor deposition, and the super-sequential carbon nanotube array is pure by a plurality of carbon nanotubes which are parallel to each other and grow perpendicular to the substrate. Nano carbon tube array. It is to be understood that the carbon nanotube array provided in the present embodiment is not limited to the above production method. It can also be a graphite electrode constant current arc discharge deposition method, a laser evaporation method, and the like. Step 1. Using a stretching tool to pull from the array of carbon nanotubes to obtain ‘: nano slave film. Specifically, the method comprises the following steps: (a) selecting a plurality of carbon nanotube segments of a certain width from the nanometer stone reverse array, the embodiment preferably adopts a tape having a certain width to contact the carbon nanotube array to select - Fixed width? a plurality of carbon nanotube segments; (1) stretching the plurality of carbon nanotube segments at a constant speed along a growth direction substantially perpendicular to the carbon carbon array to form a continuous carbon nanotube film. In the above stretching process, the plurality of carbon nanotube fragments are gradually separated from the substrate under the action of the tensile force, and the vanadium carbon nanotube fragments of the scorpion are respectively associated with the other naphthalenes due to the van der Waals force. The carbon nanotube segments are continuously pulled out in a hundred-tailed manner to form a carbon nanotube film. It is understood that the above-mentioned at least two carbon nanotube films may be overlapped along the stretching direction of the nanon g film. Referring to FIG. 4, the carbon nanotube film is a plurality of carbon nanotube films having a certain width formed by connecting a plurality of carbon nanotube bundles arranged in a preferred orientation. The arrangement of the carbon nanotubes in the carbon nanotube film is substantially parallel to the stretching direction of the carbon nanotube film. The direct orientation of the preferred orientation of the carbon nanotube film has better uniformity than the disordered carbon nanotube film, that is, has a more uniform thickness and more uniform conductivity. At the same time, the method of directly stretching the carbon nanotube film is simple and rapid, and is suitable for industrial application. The carbon nanotube film has a plurality of parallel and evenly distributed gaps between the carbon nanotubes, and the gap can align the liquid crystal molecules as the first trench 3〇8 or the second trench 328. 13 200938916 The actual color order, the size of the substrate on which the carbon nanotubes are grown; ^ degrees and the array can be made according to actual needs, the length of the two real carbon tube films is not limited to 'm ~ 1 〇 cm, The width of the nanometer ==== can be PCT, including: ~100 microns. The one or several boxes of double-walled carbon nanotubes and multi-tubes of the wall-nano carbon nanotubes are single-walled. Although the carbon nanotubes in the carbon nanotube film are not as early as the stone, the ~50 nm. When the diameter of the rice is not 5, the diameter of the double-walled carbon nanotube is a double-walled carbon nanotube and the diameter of the rabbit is the diameter of the carbon nanotube film. The carbon tube is · When the diameter of the nanotube is 1> 5 nm, nanometer; ^ ^ ^ 'The multi-walled nano carbon can be treated with an organic solvent, and the right side can be passed through a test tube.扪不木奴^膜. It has a whole nano-carbon tube film. It is immersed in the surface of the carbon nanotube film with ethanol, methanol, and a dose of volatile organic solvent, such as alcohol. The multilayer emulsion, this embodiment The surface tension of the ethylenic organic solvent is used in the volatilized carbon nanotubes....::: The parallel stone in the eclipse film. Each boring tool integrates the carbon nanotube bundle, so the nano : 二生祺ί: a small carbon nanotube film with a small volume ratio, no dryness, and a good mechanical strength, compared with a wall-solvent treated carbon nanotube film. Smaller and more uniform hook = obvious: the gap used as the first-groove period or the second groove can make the day and night display no more than 300 Good alignment quality. 14 200938916 The operation of the liquid crystal display panel 300 of the present embodiment will be described below with reference to Fig. 5 and Fig. 6. As shown in Fig. 5, when no voltage is applied to the first alignment layer 304 and the second alignment layer 324, The arrangement of the liquid crystal molecules may depend on the alignment of the first alignment layer 304 and the second alignment layer 324. In the liquid crystal display panel 300 of the embodiment, the first alignment layer 304 and the second alignment layer 324 The alignment direction forms 90 degrees, so the arrangement of the liquid crystal molecules is automatically rotated from top to bottom by 90 degrees. When the incident light L passes through the first alignment layer 304, due to the transmission axis of the first alignment layer 304 (Transmission) Axis) 309 is along the Z-axis direction, so only the polarized light L1 whose polarization direction is parallel to the transmission axis 309 passes. When the polarized light L1 passes through the liquid crystal molecules, since the liquid crystal molecules are rotated by 90 degrees in total, when the polarized light L1 reaches the second When the alignment layer 324 is aligned, the polarization direction of the polarized light L1 is exactly 90 degrees. Since the transmission axis 329 of the second alignment layer 324 is along the X-axis direction, that is, the polarization direction of the polarized light L1 is rotated by 90 degrees and penetrates. The axis 329 is parallel, The liquid crystal display panel 300 of the present embodiment is in a light-passing state. As shown in FIG. 6, when a voltage is applied to the first alignment layer 304 and the second alignment layer. Between 324, the liquid crystal molecules are affected by the electric field, and the alignment direction thereof tends to be parallel to the direction of the electric field to become perpendicular to the first substrate 302. At this time, the polarized light L1 passing through the first alignment layer 304 passes through the liquid crystal molecules. The liquid crystal display panel 300 of the present embodiment has the following advantages: The following is the first 15 200938916 points: The carbon nanotube film can replace the transparent electrode layer in the prior art because the carbon nanotube phase is coated with a carbon nanotube, and the carbon nanotube film has good electrical conductivity. It plays a conductive role. Therefore, when the liquid crystal display 3G0 in this embodiment adopts an alignment layer containing a thin carbon nanotube thin crucible, it is not necessary to additionally add a polarizer and a transparent electrode layer, thereby making the liquid crystal display panel have a thin thickness and simplifying the liquid crystal display. Structure and manufacturing costs, improve backlight utilization, and improve display quality. Secondly, after the carbon nanotube film is disposed on the substrate, no mechanical brushing or other treatment is required, and static electricity and dust are not generated, so that the liquid crystal display panel 300 has better alignment quality.

I 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 、 ❹【圖式簡單說明】 圖1為一種先前技術的液晶顯示屏的立體示意圖。 圖2為本技術方案實施例的液晶顯示屏的截面示竟 圖。 、 圖3為圖2中的部分奈米碳管層ΠΙ的放大示意圖。 圖4為本技術方案實施例用作配向層的奈米碳管薄膜 的照片。 ' 圖5為本技術方案實施例的液晶顯示屏處于通光狀態 的立體不意圖。 16 200938916 圖6為本技術方案實施例的液晶顯示屏處于遮光狀態I In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a prior art liquid crystal display. Fig. 2 is a cross-sectional view showing the liquid crystal display panel of the embodiment of the present invention. Figure 3 is an enlarged schematic view of a portion of the carbon nanotube layer of Figure 2. Fig. 4 is a photograph of a carbon nanotube film used as an alignment layer in the embodiment of the present invention. FIG. 5 is a perspective view of the liquid crystal display screen of the embodiment of the present invention in a light-passing state. 16 200938916 FIG. 6 is a liquid crystal display screen in a blackout state according to an embodiment of the present technical solution.

的立體示意圖。 【主要元件符號說明】 奈米碳管 12 奈米碳管束 14 液晶顯示屏 100, 300 第一偏光片 102 第一基體 104, 302 第一透明電極層 106 第一配向層 108, 304 第一溝槽 1082, 308 第二偏光片 110 第二基體 112, 322 第二透明電極層 114 第二配向層 116, 324 第二溝槽 1162, 328 液晶層 118, 338 液晶分子 1182 穿透軸 309, 329 17A three-dimensional diagram. [Main component symbol description] Carbon nanotube 12 carbon nanotube bundle 14 Liquid crystal display 100, 300 First polarizer 102 First substrate 104, 302 First transparent electrode layer 106 First alignment layer 108, 304 First trench 1082, 308 second polarizer 110 second substrate 112, 322 second transparent electrode layer 114 second alignment layer 116, 324 second trench 1162, 328 liquid crystal layer 118, 338 liquid crystal molecules 1182 penetrate axis 309, 329 17

Claims (1)

200938916 十、申請專利範圍 .1. 一種液晶顯示屏,其包括·· 一第一基體; -第二基體’所述第—基體與所述第二基體相對設置. -個液晶層’設置于所述第—基體與所述第二基體之 間; -第-配向層,該第一配向層設置于所述第一基體的 〇 线液晶層的表面,且第—配向層靠近液晶層的表面 包括多個平行的第一溝槽;及 :第二配向層,該第二配向層設置于所述第二基體的 靠近液晶層的表面,且第二配向層靠近液晶層的表面 包括多個平行的第二溝槽,所述第一配向層的第一溝 槽的排列方向與第二配向層的第二溝槽的排方 直; ❹ 其改良在于,所述液晶顯示屏中至少一個配向層包括 :奈米碳管層,該奈米碳管層包括至少一個奈米碳管 薄膜該奈米奴管薄膜包括多個首尾相連且定向排列 的奈米碳管。 2. 如申請專利範圍第i項所述的液晶顯示屏,其中,所 述奈米碳管層包括至少兩個重叠設置的奈米碳管薄 膜’且相鄰兩個奈米碳管薄膜中的奈米碳管沿同一方 向排列。 如申晴專利範圍第1項所述的液晶顯示屏,其中,所 述奈米碳管薄膜進一步包括多個首尾相連且長度相等 18 3, 200938916 的奈米碳管束,所述奈米碳管束的兩端通過凡德瓦爾 , 力相互連接。 4. 如申請專利範圍第3項所述的液晶顯示屏,其中,每 個奈米碳管束包括多個長度相等且平行排列的奈米碳 管,所述相鄰的奈米碳管之間通過凡德瓦爾力緊密結 合。 5. 如申請專利範圍第1項所述的液晶顯示屏,其中,所 Q 述多個奈米碳管之間具有多個平行且均勻分布的間 隙’該多個間隙組成多個平行排列的第一溝槽或第二 溝槽。 6’如申請專利範圍第1項所述的液晶顯示屏,其中,所 述奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁 奈米碳管中的一種或幾種,所述單壁奈米碳管的直徑 爲0.5奈米〜50奈米,雙壁奈米碳管的直徑爲丄.〇奈米 〜50奈米,多壁奈 如申請專利範圍第 夕壁奈米碳管的直徑爲i 5奈米〜5〇奈米。200938916 X. Patent application scope. 1. A liquid crystal display comprising: a first substrate; a second substrate 'the first substrate is disposed opposite to the second substrate. - a liquid crystal layer is disposed in the Between the substrate and the second substrate; a first alignment layer disposed on a surface of the first liquid crystal layer of the first substrate, and the surface of the first alignment layer adjacent to the liquid crystal layer includes a plurality of parallel first trenches; and: a second alignment layer disposed on a surface of the second substrate adjacent to the liquid crystal layer, and the surface of the second alignment layer adjacent to the liquid crystal layer includes a plurality of parallel a second trench, wherein the alignment direction of the first trench of the first alignment layer is aligned with the row of the second trench of the second alignment layer; ❹ the improvement is that at least one alignment layer in the liquid crystal display panel comprises : a carbon nanotube layer, the carbon nanotube layer comprising at least one carbon nanotube film, the nanotube film comprising a plurality of carbon nanotubes connected end to end and oriented. 2. The liquid crystal display of claim 1, wherein the carbon nanotube layer comprises at least two carbon nanotube films disposed in an overlapping manner and adjacent to two carbon nanotube films The carbon nanotubes are arranged in the same direction. The liquid crystal display panel of claim 1, wherein the carbon nanotube film further comprises a plurality of carbon nanotube bundles connected end to end and having an equal length of 18 3, 200938916, the carbon nanotube bundle Both ends are connected to each other through Van der Waals. 4. The liquid crystal display according to claim 3, wherein each of the carbon nanotube bundles comprises a plurality of carbon nanotubes of equal length and arranged in parallel, and the adjacent carbon nanotubes pass between Van der Valli is closely integrated. 5. The liquid crystal display according to claim 1, wherein the plurality of carbon nanotubes have a plurality of parallel and evenly distributed gaps between the plurality of carbon nanotubes. a groove or a second groove. The liquid crystal display of claim 1, wherein the carbon nanotube comprises one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotubes is 0.5 nm to 50 nm, and the diameter of the double-walled carbon nanotubes is 丄.〇n~50 nm, and the multi-walled naru is applied for the patent scope. The diameter of the carbon nanotubes is i 5 nm ~ 5 〇 nanometer. 19 200938916 述透月材料爲-柔性材料,該柔性材料爲三乙酸纖維 . 素。 • 11·如中請專利範圍第9項所述的液晶顯示屏,其中,所 述透明材料爲—硬性材料,該硬性材料爲玻璃、石英、 金剛石或塑料。 I2·如申請專利範圍第1項所述的液晶顯示屏,其中,所 =夜晶顯示屏進一步包括至少一個偏振片,該偏振片 ® 設置于第-基體或/和第二基體遠離液晶層的表面。 〇 2019 200938916 The material of the moon is a flexible material, which is a triacetate fiber. The liquid crystal display of claim 9, wherein the transparent material is a hard material, and the hard material is glass, quartz, diamond or plastic. The liquid crystal display of claim 1, wherein the = crystal display further comprises at least one polarizer, the polarizer® being disposed on the first substrate or/and the second substrate away from the liquid crystal layer surface. 〇 20
TW97108078A 2008-03-07 2008-03-07 Liquid crystal display screen TWI412846B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97108078A TWI412846B (en) 2008-03-07 2008-03-07 Liquid crystal display screen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97108078A TWI412846B (en) 2008-03-07 2008-03-07 Liquid crystal display screen

Publications (2)

Publication Number Publication Date
TW200938916A true TW200938916A (en) 2009-09-16
TWI412846B TWI412846B (en) 2013-10-21

Family

ID=44867503

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97108078A TWI412846B (en) 2008-03-07 2008-03-07 Liquid crystal display screen

Country Status (1)

Country Link
TW (1) TWI412846B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI228605B (en) * 2002-11-15 2005-03-01 Hon Hai Prec Ind Co Ltd A polarizer and method for making the same
EP1787955A4 (en) * 2004-07-27 2010-06-23 Nat Inst Of Advanced Ind Scien Single-layer carbon nanotube and alinged single-layer carbon nanotube bulk structure, and their production process, production apparatus and use
US7378040B2 (en) * 2004-08-11 2008-05-27 Eikos, Inc. Method of forming fluoropolymer binders for carbon nanotube-based transparent conductive coatings
TWI297088B (en) * 2005-10-28 2008-05-21 Hon Hai Prec Ind Co Ltd Liquid crystal display and its manufacturing method

Also Published As

Publication number Publication date
TWI412846B (en) 2013-10-21

Similar Documents

Publication Publication Date Title
CN101498865B (en) Lcd
CN100412654C (en) Liquid crystal display device and its manufacturing method
US7630041B2 (en) Liquid crystal cell assembly for liquid crystal display
TWI297088B (en) Liquid crystal display and its manufacturing method
CN101526695B (en) Liquid crystal display screen
JP2006285068A (en) Conductive polarizing film
JP2010049260A (en) Liquid crystal display
JP5065326B2 (en) Liquid crystal display
CN101498864A (en) Lcd
CN104914616B (en) Display panel and display device
JP2009217269A (en) Liquid crystal display panel
CN101515091B (en) Method for manufacturing liquid crystal display screen
JP2009265666A (en) Liquid crystal display panel
CN101566753A (en) Fabricating method of liquid crystal display
US20170003551A1 (en) Composite substrate and methods for fabricating the same, and liquid crystal display panel
TWI356251B (en) Liquid crystal display screen
US9841632B2 (en) Liquid crystal display panel, composite substrate and method for fabricating the same
US9798175B2 (en) Composite substrate and methods for manufacturing the same, and liquid crystal display panel
TWI356253B (en) Liquid crystal display screen
CN1967324A (en) LCD device
TW200938916A (en) Liquid crystal display screen
TWI377415B (en) Liquid crystal display screen
Rahman et al. Integrated carbon nanotubes for novel liquid crystal displays
TWI356252B (en) Liquid crystal display screen
TW200938915A (en) Method for making liquid crystal display screen