TW200936491A - MEMS microphone and packaging method thereof - Google Patents

MEMS microphone and packaging method thereof Download PDF

Info

Publication number
TW200936491A
TW200936491A TW097106823A TW97106823A TW200936491A TW 200936491 A TW200936491 A TW 200936491A TW 097106823 A TW097106823 A TW 097106823A TW 97106823 A TW97106823 A TW 97106823A TW 200936491 A TW200936491 A TW 200936491A
Authority
TW
Taiwan
Prior art keywords
substrate
mems microphone
layer
electrode layer
conductive
Prior art date
Application number
TW097106823A
Other languages
Chinese (zh)
Other versions
TWI347298B (en
Inventor
Kuo-Ting Lin
Te-Jung Hsu
Original Assignee
Qisda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qisda Corp filed Critical Qisda Corp
Priority to TW097106823A priority Critical patent/TWI347298B/en
Publication of TW200936491A publication Critical patent/TW200936491A/en
Application granted granted Critical
Publication of TWI347298B publication Critical patent/TWI347298B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

A MEMS microphone comprises a first substrate, a second substrate and a conductive joint material. The first substrate comprises an inner surface, a voice chamber installed in the first substrate, a first electrode layer installed on the inner surface, and a dielectric protective layer installed across two ends of the inner surface. The second substrate comprises an inner surface, and an integrated circuit installed on the inner surface of the second substrate. The first substrate is connected to the second substrate via the conductive joint material. The first substrate, the second substrate and the conductive joint material form a sealing chamber.

Description

200936491 九、發明說明: 種微機電麥歧及其封裝 方法 【發明所屬之技術領域】 本發明係有關於一 【先前技術】 微機電(MEMS)麥克風 元件與電子元件設計於 疋1用積體電路技術將機械 而言,皆是利用電容原理;麥克風咖 主要有兩種形式:-種為隹二事:t ’微機電麥克風 ❹200936491 IX. DESCRIPTION OF THE INVENTION: MEMS MEMS and its packaging method [Technical field of the invention] The present invention relates to a prior art Microelectromechanical (MEMS) microphone component and electronic component design integrated circuit for 疋1 The technology will use the principle of capacitance in terms of machinery; there are two main forms of microphone coffee: - two kinds of things: t 'micro electromechanical microphone❹

為駐極體式麥克風(electret type microphone) ’另一種是凝縮式麥克風(c〇ndenser microphone)’這兩種形式中又以凝縮式麥克風具有較佳之 音嗓比(signal-to-iloise ratio)、較高靈敏度、較低溫度係數 (temperature coefficient)以及較高穩定性等優點。電容式麥 克風基本構造係將電極(electrode)分別固定在柔軟的振膜 (diaphragm)以及剛性的背板(back plate)上,振膜與背板之 間存在一間隙(air gap),可隨聲音做完全的自由振動(freely vibration),而振動的振膜與背板之間形成的電場變化就會 產生電路上的電子信號。由於凝縮式麥克風具有低成本、 高性能以及高產量的特性’故已取代傳統的駐極體電容式 麥克風。 然而,微機電麥克風的有效封裝結構相對於外界環境 保護與感測結果的靈敏度是相當重要的。請參閱第1圖, 第1圖為習知微機電麥克風之示意圖(美國專利公告第 US6781231號),習知微機電麥克風1 〇利用'一基板11以及 一蓋體12形成一封閉腔體13 ’利用該封閉腔體13將内部 200936491 控制晶片14保護於其中,而内部控制晶片14係透過打線 接合(wire bonding)的方式達成電性連接,利用此種封裝結 構會產生的問題為:封裝體積大以及由於打線接合容易造 成電性連接路徑過長,因而產生過多雜訊。 再請參閱第2圖,第2圖為另一習知微機電麥克風之 示意圖(美國專利公告第US7221767號),習知微機電麥克 風20利用基板21及凸塊24結合控制晶片22、23以構成 微機電麥克風20,此種封裝結構雖然有效減少整體封裝體 〇 積以及電性連接路徑,但是需要增設基板21展凸塊24, 仍無法達到減少成本之考量。 【發明内容】 _ 為了改善上述缺點,本發明係提供一種一種微機電麥 克風,包括第一基材、第二基材以及導電接合材料,第一 基材包括内表面、位於第一基材中之音腔、位於内表面上 之第一電極層以及跨設於内表面之二端之介電保護層,第 二基材包括内表面以及設於内表面上之積體電路,導電接 ❹ 合材料連接第一基材與該第二基材,其中第一基材、第二 基材以及導電接合材料形成一封閉腔體。 應注意的是,第一基材包括導電凸塊,導電凸塊位於 第二基射二側:。, 應注意的是,第一基材更包括貫穿孔,貫穿孔位於第 一基材之二侧且包括絕緣層位於貫穿孔之侧壁上,以容設, 導電凸塊。 應注意的是’第二基材包括導電凸塊’導電凸塊位於 200936491 第二基材二侧。 應注意的是,第二基材更包括貫穿孔,貫穿孔位於第 二基材之二侧且包括絕緣層位於貫穿孔之侧壁上,以容設 導電凸塊。 應注意的是,第一基板更包括第二電極層,第二電極 層位於介電保護層下並與介電保護層連接。 應注意的是,第一基材更包括蓋體以及外表面,外表 面與内表面為相反面,而蓋體設於外表面上。 φ 應注意的是,蓋體包括音孔,音孔位置與音腔相對應。 應注意的是,蓋體係為金屬材質。 應注意的是,微機電麥克風更包括導電材料層,設於 微機電麥克風最外層。 應注意的是’弟' 電極層係為多晶碎材料 (Poly-silicon)。 應注意的是,微機電麥克風更包括二絕緣層,而第一 基材更包括外表面,絕緣層分別設於第一電極層與内表面 〇 之間以及外表面上。 應注意的是,絕緣層可為氧化矽(Si02)或氮化矽 (Si3N4) 〇 : 應注意的是,導電接合材料係為異方向性導電膠 ‘ (ACF)。, 本發明更提供一種微機電麥克風,包括第一基材、第 二基材、第三基材、積體電路以及導電接合材料’第二基 材包括内表面,積體電路位於第二基材之内表面,導電接 7 200936491 合材料位於第一基材與第二基材以及第三基材之間,使第 一基材分別連接第二基材以及第三基材,第二基材與第三 基材相鄰接,第一基材、第二基材、第三基材以及導電接 合材料形成一封閉腔體,使第一電極層封於封閉腔體内。 本發明更提供一種微機電麥克風之封裝方法,其步驟 包括:提供第一基材,第一基材包括内表面、第一電極層 以及介電保護層,第一電極層位於内表面上,介電保護層 跨設於内表面之二端;提供第二基材,包括内表面以及積體 ❹ 電路,積體電路設於内表面上;以及藉導電接合材料以組合 第一基材以及第二基材以形成封閉腔體,其中第一基材中 之第一電極層與第二基材中之積體電路相對應。 _ 應注意的是,微機電麥克風之封裝方法更包括提供蓋 體,蓋體位於第一基材之外表面,蓋體包括音孔。 ' 應注意的是,微機電麥克風之封裝方法更包括覆蓋一 導電材料層於該微機電麥克風最外層。 應注意的是,微機電麥克風之封裝方法之提供第一基 ⑩ 材之步驟中包括:形成二絕緣層於第一基材之内表面與外 表面;沉積第一電極層於第一基材之内表面並圖案化;沉積 犧牲層於第一基材上並圖案化;沉積第二電極層並圖案化; 沉積介電保護層於第一基材之内表面並圖案化;圖案化位 於第一基材之外表面之絕緣層並形成音腔;以及移除犧牲 〇 應注意的是,微機電麥克風之封裝方法更包括蝕刻第 二基板之外表面,形成貫穿孔於第一基材二侧,且沉積絕 200936491 緣層於貫穿孔之侧壁。 應注意的是,微機電麥克風之封裝方法更包括成形導 電凸塊於第一基材之貫穿孔中。 應注意的是,微機電麥克風之封裝方法更包括形成貫 穿孔於第二基材二側,且沉積絕緣層於貫穿孔之側壁。 應注意的是,微機電麥克風之封裝方法更包括成形導 電凸塊於第二基材之貫穿孔中。 為了讓本發明之上述和其他目的、特徵和優點能更明 ❹ 顯易懂,下文特別舉出較佳實施例,並配合所附圖示,作 詳細說明如下。 【實施方式】 _ 請參閱第3圖,第3圖為本發明之微機電麥克風之第 一實施例示意圖,微機電麥克風30包括第一基材31、第 二基材32、導電接合材料33、二絕緣層34、35以及導電 材料層37,其中第一基材31包括内表面311、音腔312、 第一電極層313、介電保護層314、第二電極層315、外表 ⑩ 面316以及蓋體317,音腔312位於第一基材31中,而弟 一電極層313位於内表面311上,介電保護層314跨設於 内表面311之二端,蓋體317包括音孔318,音孔318之 /位置與音腔312相對應作為允許聲音進入之通道:,應注意 的是,本實施例之蓋體317:傣為金屬材質,而第一電極層 313係為多晶矽材料(Poly-silicon),第二基材32包括内表 面321、積體電路322、導電凸塊323以及貫穿孔324,積 體電路322設於内表面321上,而貫穿孔324位於第二基 200936491 材32之左、右二側,用以容設導電凸塊323,導電凸塊323 係用以作為整個微機電麥克風30與外部系統(未圖示)電性 連接之用’導電接合材料33位於第一基材31與第二基材 32之間,以連接第一基材31以及第二基材32,應注意的 是’導電接合材料33係為異方向性導電膠(ACF),而絕緣 層34設於第一電極層3與第一基材31之内表面311之 間,絕緣層35設於第一基材31之外表面316上,應注意 的是’絕緣層34、35可為氧化矽(Si02)或氮化矽(Si3N4), ❹For the electret type microphone (the other is the condenser microphone), the condensed microphone has a better signal-to-iloise ratio. High sensitivity, low temperature coefficient and high stability. The basic structure of the condenser microphone is to fix the electrodes on the flexible diaphragm and the rigid back plate. There is an air gap between the diaphragm and the back plate, which can follow the sound. A completely free vibration is made, and an electric field change formed between the vibrating diaphragm and the back plate produces an electrical signal on the circuit. The condensed microphone has replaced the traditional electret condenser microphone because of its low cost, high performance and high throughput characteristics. However, the effective packaging structure of the MEMS microphone is quite important relative to the sensitivity of the external environment protection and sensing results. Referring to FIG. 1 , FIG. 1 is a schematic diagram of a conventional MEMS microphone (US Pat. No. 6,78,213). The conventional MEMS microphone 1 〇 uses a substrate 11 and a cover 12 to form a closed cavity 13 ' The internal cavity 2009 is protected by the closed cavity 13 and the internal control chip 14 is electrically connected by wire bonding. The problem of using the package structure is that the package is bulky. And because the wire bonding is easy to cause the electrical connection path to be too long, excessive noise is generated. Referring to FIG. 2 again, FIG. 2 is a schematic diagram of another conventional MEMS microphone (U.S. Patent No. US7221767). The conventional MEMS microphone 20 is combined with the control wafers 22 and 23 by using the substrate 21 and the bumps 24 to form The MEMS microphone 20, although the package structure effectively reduces the overall package hoarding and the electrical connection path, it is necessary to add the substrate 21 to display the bumps 24, and the cost reduction consideration cannot be achieved. SUMMARY OF THE INVENTION In order to improve the above disadvantages, the present invention provides a microelectromechanical microphone comprising a first substrate, a second substrate and a conductive bonding material, the first substrate comprising an inner surface, located in the first substrate a sound chamber, a first electrode layer on the inner surface, and a dielectric protective layer spanning the two ends of the inner surface, the second substrate comprising an inner surface and an integrated circuit disposed on the inner surface, the conductive bonding material The first substrate and the second substrate are joined, wherein the first substrate, the second substrate, and the conductive bonding material form a closed cavity. It should be noted that the first substrate includes conductive bumps, and the conductive bumps are located on the two sides of the second base: It should be noted that the first substrate further includes a through hole located on two sides of the first substrate and including an insulating layer on the sidewall of the through hole to accommodate the conductive bump. It should be noted that the 'second substrate includes conductive bumps' conductive bumps are located on both sides of the second substrate of 200936491. It should be noted that the second substrate further includes a through hole located on two sides of the second substrate and including an insulating layer on the sidewall of the through hole to accommodate the conductive bump. It should be noted that the first substrate further includes a second electrode layer, the second electrode layer being under the dielectric protective layer and connected to the dielectric protective layer. It should be noted that the first substrate further includes a cover body and an outer surface, the outer surface is opposite to the inner surface, and the cover is disposed on the outer surface. φ It should be noted that the cover body includes a sound hole, and the sound hole position corresponds to the sound cavity. It should be noted that the cover system is made of metal. It should be noted that the MEMS microphone further includes a layer of conductive material disposed on the outermost layer of the MEMS microphone. It should be noted that the 'electrode' electrode layer is a poly-silicon material. It should be noted that the MEMS microphone further includes two insulating layers, and the first substrate further includes an outer surface, and the insulating layer is respectively disposed between the first electrode layer and the inner surface 〇 and on the outer surface. It should be noted that the insulating layer may be yttrium oxide (SiO 2 ) or tantalum nitride (Si 3 N 4 ) 〇 : It should be noted that the conductive bonding material is an anisotropic conductive paste ‘ (ACF). The present invention further provides a microelectromechanical microphone comprising a first substrate, a second substrate, a third substrate, an integrated circuit, and a conductive bonding material. The second substrate includes an inner surface, and the integrated circuit is located on the second substrate. The inner surface of the conductive material 7 200936491 is located between the first substrate and the second substrate and the third substrate, so that the first substrate is respectively connected to the second substrate and the third substrate, and the second substrate is The third substrate is adjacent to each other, and the first substrate, the second substrate, the third substrate and the conductive bonding material form a closed cavity, and the first electrode layer is sealed in the closed cavity. The present invention further provides a method for packaging a microelectromechanical microphone, the method comprising: providing a first substrate, the first substrate comprising an inner surface, a first electrode layer and a dielectric protective layer, the first electrode layer being located on the inner surface An electrical protection layer is disposed across the two ends of the inner surface; a second substrate is provided, including an inner surface and an integrated circuit, the integrated circuit is disposed on the inner surface; and the conductive bonding material is used to combine the first substrate and the second The substrate forms a closed cavity, wherein the first electrode layer in the first substrate corresponds to the integrated circuit in the second substrate. _ It should be noted that the packaging method of the MEMS microphone further includes providing a cover body on the outer surface of the first substrate, and the cover body includes a sound hole. It should be noted that the packaging method of the MEMS microphone further includes covering a layer of conductive material on the outermost layer of the MEMS microphone. It should be noted that the step of providing the first base material in the method of packaging the MEMS microphone comprises: forming a second insulating layer on the inner surface and the outer surface of the first substrate; depositing the first electrode layer on the first substrate Inner surface and patterned; depositing a sacrificial layer on the first substrate and patterning; depositing a second electrode layer and patterning; depositing a dielectric protective layer on the inner surface of the first substrate and patterning; patterning is first An insulating layer on the outer surface of the substrate and forming a sound cavity; and removing the sacrificial crucible, it should be noted that the encapsulation method of the microelectromechanical microphone further includes etching the outer surface of the second substrate to form a through hole on both sides of the first substrate, And the deposition of 200936491 edge layer on the side wall of the through hole. It should be noted that the method of packaging the MEMS microphone further includes forming the conductive bumps in the through holes of the first substrate. It should be noted that the packaging method of the MEMS microphone further includes forming a through hole on both sides of the second substrate, and depositing an insulating layer on the sidewall of the through hole. It should be noted that the method of packaging the MEMS microphone further includes forming the conductive bumps in the through holes of the second substrate. The above and other objects, features, and advantages of the invention will be apparent from the description and appended claims appended claims [Embodiment] _ See FIG. 3, FIG. 3 is a schematic view of a first embodiment of a MEMS microphone according to the present invention. The MEMS microphone 30 includes a first substrate 31, a second substrate 32, and a conductive bonding material 33. The second insulating layer 34, 35 and the conductive material layer 37, wherein the first substrate 31 includes an inner surface 311, a sound chamber 312, a first electrode layer 313, a dielectric protective layer 314, a second electrode layer 315, an outer surface 10 316, and The cover 317 is disposed in the first substrate 31, and the electrode layer 313 is located on the inner surface 311. The dielectric protection layer 314 is disposed at two ends of the inner surface 311. The cover 317 includes a sound hole 318. The sound hole 318/position corresponds to the sound chamber 312 as a passage for allowing sound to enter: it should be noted that the cover body 317 of the present embodiment is made of a metal material, and the first electrode layer 313 is a polycrystalline silicon material (Poly). -silicon), the second substrate 32 includes an inner surface 321, an integrated circuit 322, a conductive bump 323, and a through hole 324. The integrated circuit 322 is disposed on the inner surface 321 and the through hole 324 is located at the second base 200936491. The left and right sides are used to accommodate the conductive bumps 323 and the conductive bumps 323 The conductive bonding material 33 is used to electrically connect the entire MEMS microphone 30 to an external system (not shown) between the first substrate 31 and the second substrate 32 to connect the first substrate 31 and the The second substrate 32 should be noted that the conductive bonding material 33 is an isotropic conductive paste (ACF), and the insulating layer 34 is disposed between the first electrode layer 3 and the inner surface 311 of the first substrate 31, and is insulated. The layer 35 is disposed on the outer surface 316 of the first substrate 31. It should be noted that the 'insulating layers 34, 35 may be yttrium oxide (SiO 2 ) or tantalum nitride (Si 3 N 4 ), ❹

並且第一基材31、第二基材32以及導電接合材料33形成 一封閉腔體36,最後,導電材料層37設於微機電麥克風 30之最外層作為電磁波遮蔽,以避免微機電麥克風3〇產 生不必要之雜訊。 請參閱第3、4A-4E圖,第4A-4E圖係為本發明 ,機電麥克風之封裝方法第-實施例之流程圖,先請參β 第4Α圖,其步驟為:提供第一基材3ι,第一基材^ 内表面311、第—電極層313卩及介電保護層^ 位:T311上,介電保護層314跨‘; 34'35^«-^31 , 中,广面316,.雨音腔312賴於第-基板3 則,_二基材32,包括内^ 貝體電路322,積體電路322設於内表面3 扣圖,峨第二基板32之外=3= 、稷數貝穿孔324於第二基材32二側,接箸請參閱第《 200936491 圖,成形複數導電凸塊323於第二基材32之貫穿孔324 中,續請參閱第4E圖,藉導電接合材料33以組合第一基 材31以及第二基材32以形成封閉腔體36,其中第一基材 31中之第一電極層313與第二基材32中之積體電路322 相對應,最後請參閱第4F圖,將導電材料層37覆蓋於微 機電麥克風30二側最外層,並且提供蓋體317,蓋體31.7 位於第一基材31之外表面316,蓋體317具有音孔318。 再請參閱第5圖,第5圖為本發明之微機電麥克風之 ❹ 第二實施例示意圖,此一微機電麥克風30’結構大致同於第 3圖,以下不再重複贅述,而不相同處在於,微機電麥克 風30’中之貫穿孔324’以及金屬凸塊323’係位於第一基板 31中。 請參閱第5、6A-6H圖,第6A-6H圖為本發明之微機 電麥克風之封裝方法流程圖,其步驟包括:於第一基材31 之内表面311及外表面316沉絕緣層34、35(請參考第6A 圖),接著請參考第6B圖,沉積第一電極層313於第一基 ❿ 材31之内表面311並圖案化,並再參考第6C圖,沉積犧 牲層319於第一基材31上並圖案化,接著請參考第6D圖, 沉積第二電極層315並圖案化,以及沉積介電保護層314 於第一基材31之內表面311並」圖案化,接著請參閱第j6E 圖,圖案化位於第-τ基材31之外表面316之絕緣層35.並 形成音腔312以及貫穿孔324,再參閱第6F圖,於貫穿孔 324侧邊沉積絕緣層326,並填入導電凸塊323,然後參考 第6G圖將犧牲層319移除,接著請參閱第6Η圖,提供第 11 200936491 二基材32,第二基材32包括内表面32i以及積體 322,積體電路322設於内表面321上,並且藉導電接= 料33以組合第一基材31以及第二基材32 # + σ何 36八中第一基材31中之第一電極層313與第二美 中之積體電路322相對應、,最後請參考第/圖;^土 ^ 3Π,蓋體317位於第一基材31之外表面 μ、|體 0W,蓋體31 ' :::318 ’音孔318,音腔312相對應,並且覆蓋導; 材料層37於微機電麥克風3〇,之最外層。 等電 ❹ ❹ 最後請參閱第7圖,第7圖為本發明 之第三實施例示意圖,此一微機電麥克風3昨=克風 於第5圖,以下不再重複贅述,而不相 、致同 麥克風30”包括第一基材31、第二基材:贷微機電 38 ’並且第二基材32與第三基材%相鄰* ^基= 材32與第三基材38再與第一基材31對接。傻弟一基 由上可知,本發明之微機電麥克風3〇、3〇,、 使用打線接合方式組裝’故無電性連接路徑過長之疑虞而 也沒有過多雜訊之問題,再者,本發明可有效 ^ 積’因此降低成本。 Μ 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,猶㈣此技藝者,在魏^發明之精= 和範厨内’當可作些許之更動與潤飾,因此本發用之=蠖 範圍當視後附之申請專利範圍所界定者為準。, 12 200936491 【圖式簡單說明】 第1圖為習知微機電麥克風之示意圖; 第2圖為另一習知微機電麥克風之示意圖; 第3圖為本發明之微機電麥克風之第一實施例示意圖; 第4A-4E圖係為本發明之之微機電麥克風之封裝方法 第一實施例之流程圖; 第5圖為本發明之微機電麥克風之第二實施例示意圖; 第6A-6H圖為本發明之微機電麥克風之封裝方法流程 © 圖;以及 第7圖為本發明之微機電麥克風之第三實施例示意 圖。 _ 【主要元件符號說明】 習知技術 ' 10、20微機電麥克風 11、21基板 12蓋體 ❹ 13封閉腔體 14内部控制晶片 22、23控制晶片 24凸塊 ·.. 本發明 30、30’、30”微機電麥克風 31第一基材 311内表面 13 200936491 312音腔 313第一電極層 314介電保護層 315第二電極層 316.外表面 317蓋體 318音孔 319犧牲層 ❹ 32第二基材 321内表面 322積體電路 323、 323’導電凸塊 324、 324’貫穿孔 325外表面 33導電接合材料 34、35絕緣層 ❹ 36封閉腔體 37導電材料層 38第三基材And the first substrate 31, the second substrate 32 and the conductive bonding material 33 form a closed cavity 36. Finally, the conductive material layer 37 is disposed on the outermost layer of the MEMS microphone 30 as electromagnetic wave shielding to avoid the MEMS microphone. Generate unnecessary noise. Please refer to FIG. 3, FIG. 4A-4E, and FIG. 4A-4E is a flow chart of the first embodiment of the present invention, the method for encapsulating the electromechanical microphone, first referring to FIG. 4, the step is: providing the first substrate 3ι, first substrate ^ inner surface 311, first electrode layer 313 卩 and dielectric protective layer ^ position: on T311, dielectric protective layer 314 across '; 34'35^«-^31, medium, wide surface 316 The rain sound chamber 312 depends on the first substrate 3, the second substrate 32 includes an inner body circuit 322, and the integrated circuit 322 is disposed on the inner surface 3, and the outer surface of the second substrate 32 = 3= The number of the perforations 324 is on the two sides of the second substrate 32. Referring to the figure of 200936491, the plurality of conductive bumps 323 are formed in the through holes 324 of the second substrate 32. Please refer to FIG. 4E. The conductive bonding material 33 is combined to form the first substrate 31 and the second substrate 32 to form the closed cavity 36, wherein the first electrode layer 313 of the first substrate 31 is integrated with the integrated circuit 322 of the second substrate 32. Correspondingly, finally, referring to FIG. 4F, the conductive material layer 37 is covered on the outermost layer on both sides of the MEMS microphone 30, and a cover body 317 is provided. The cover body 31.7 is located on the outer surface 316 of the first substrate 31, and the cover body is provided. 317 has a sound hole 318. Referring to FIG. 5, FIG. 5 is a schematic view of a second embodiment of the MEMS microphone of the present invention. The structure of the MEMS microphone 30' is substantially the same as that of FIG. 3, and the details are not repeated here. The through hole 324' and the metal bump 323' in the MEMS microphone 30' are located in the first substrate 31. Please refer to FIG. 5, FIG. 6A-6H. FIG. 6A-6H is a flow chart of a method for packaging a MEMS microphone according to the present invention. The method includes the steps of: insulating the insulating layer 34 on the inner surface 311 and the outer surface 316 of the first substrate 31. 35 (refer to FIG. 6A), then referring to FIG. 6B, depositing the first electrode layer 313 on the inner surface 311 of the first base material 31 and patterning, and referring to FIG. 6C, depositing the sacrificial layer 319 The first substrate 31 is patterned and patterned. Next, referring to FIG. 6D, the second electrode layer 315 is deposited and patterned, and the dielectric protective layer 314 is deposited on the inner surface 311 of the first substrate 31 and patterned. Referring to the j6E drawing, the insulating layer 35 located on the outer surface 316 of the -τ substrate 31 is patterned and the sound cavity 312 and the through hole 324 are formed. Referring to FIG. 6F, an insulating layer 326 is deposited on the side of the through hole 324. And filling the conductive bumps 323, and then removing the sacrificial layer 319 with reference to FIG. 6G, and then referring to FIG. 6 to provide the 11th 200936491 two substrate 32, the second substrate 32 including the inner surface 32i and the integrated body 322 The integrated circuit 322 is disposed on the inner surface 321 and is coupled to the first substrate 31 by a conductive material 33. The first substrate layer 313 of the first substrate 31 in the second substrate 32 corresponds to the second semiconductor circuit 322, and finally, please refer to the figure/图; The cover 317 is located on the outer surface μ of the first substrate 31, the body 0W, the cover 31' ::: 318 'the sound hole 318, the sound chamber 312 corresponds to the cover, and the material layer 37 is in the MEMS microphone 3 , the outermost layer.等 ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ ❹ The same microphone 30" includes a first substrate 31, a second substrate: a loan micro-electromechanical 38' and the second substrate 32 is adjacent to the third substrate by a ** base = material 32 and third substrate 38 again A substrate 31 is docked. From the above, the micro-electromechanical microphone of the present invention is 3〇, 3〇, and assembled by wire bonding. Therefore, the problem of the non-electrical connection path is too long and there is not too much noise. The problem is that the present invention can effectively reduce the cost and thus reduce the cost. Μ Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the present invention, and the skilled person in the art of Wei = and Fan Fan's can be used for some changes and refinements, so the scope of the use of this issue = the scope defined in the attached patent application. 12 200936491 [Simple description of the diagram] Figure 1 is a study Schematic diagram of a micro-electromechanical microphone; Figure 2 is another conventional micro-electromechanical microphone 3 is a schematic view of a first embodiment of a MEMS microphone according to the present invention; and FIG. 4A-4E is a flow chart of a first embodiment of a method for packaging a MEMS microphone according to the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 6A-6H is a flow chart of a method for packaging a MEMS microphone according to the present invention; and FIG. 7 is a schematic view showing a third embodiment of a MEMS microphone according to the present invention. [Major component symbol description] Conventional technology '10, 20 MEMS microphone 11, 21 substrate 12 cover ❹ 13 closed cavity 14 internal control wafer 22, 23 control wafer 24 bumps.. The present invention 30, 30', 30" MEMS microphone 31 first substrate 311 inner surface 13 200936491 312 sound chamber 313 first electrode layer 314 dielectric protective layer 315 second electrode layer 316. outer surface 317 cover 318 sound hole 319 sacrificial layer ❹ 32 second Substrate 321 inner surface 322 integrated circuit 323, 323' conductive bumps 324, 324' through hole 325 outer surface 33 conductive bonding material 34, 35 insulating layer ❹ 36 closed cavity 37 conductive material layer 38 third substrate

Claims (1)

200936491 十、申請專利範圍: 1. 一種微機電麥克風,包括有: 一第一基材,包括一内表面、一音腔、一第一電極層 以及一介電保護層,該音腔係位於該第一基材中,而該第 一電極層位於該内表面上,該介電保護層跨設於該内表面 之二端; 一第二基材,包括一内表面以及一積體電路,該積體 電路設於該内表面上;以及 Φ 一導電接合材料,位於該第一基材與該第二基材之 間,以連接該第一基材以及該第二基材; 其中,該第一基材、該第二基材以及該導電接合材料 形成一封閉腔體。 2. 如申請專利範圍第1項所述之微機電麥克風,其中 該弟一基材包括一導電凸塊5該導電凸塊位於該第'一基材 二侧。 3. 如申請專利範圍第2項所述之微機電麥克風,其中 ⑩ 該第一基材更包括一貫穿孔,該貫穿孔位於該第一基材之 二侧且包括一絕緣層位於該貫穿孔之側壁上,以容設該導 電凸塊。 . :4.如申請專利範圍第1項所述之微機電麥克風,其中 該弟二基材包括·一導電凸塊’該導電凸塊位於該第二基材 二侧。 5.如申請專利範圍第4項所述之微機電麥克風,其中 該第二基材更包括一貫穿孔,該貫穿孔位於該第二基材之 15 200936491 二侧且包括一絕緣層位於該貫穿孔之側壁上,以容設該導 電凸塊。 6. 如申請專利範圍第1項所述之微機電麥克風,其中 該第一基板更包括一第二電極層,該第二電極層位於該介 電保護層下並與該介電保護層連接。 7. 如申請專利範圍第1項所述之微機電麥克風,其中 該第一基材更包括一蓋體以及一外表面,該外表面與該内 表面為相反面,而該蓋體設於該外表面上。 ❹ 8.如申請專利範圍第7項所述之微機電麥克風,其中. 該蓋體包括一音孔,該音孔位置與該音腔相對應。 9. 如申請專利範圍第7項所述之微機電麥克風,其中: 該蓋體係為金屬材質。 10. 如申請專利範圍第1項所述之微機電麥克風,其 更包括一導電材料層,設於該微機電麥克風最外層。 11. 如申請專利範圍第1項所述之微機電麥克風,其 中該第一電極層係為多晶矽材料(Poly-Silicon)。 ❹ 12.如申請專利範圍第1項所述之微機電麥克風,其 更包括二絕緣層,而該第一基材更包括一外表面,該等絕 緣層分別設於該第一電極層與該内表面之間以及該外表面 上。 :. 13. 如申請專利範圍第12項所述之微機電麥克風,其 中該等絕緣層可為氧化矽(Si02)或氮化矽(Si3N4)。 14. 如申請專利範圍第1項所述之微機電麥克風,其 中該導電接合材料係為異方向性導電膠(ACF)。 16 200936491 15. —種微機電麥克風,包括有: 一第一基材,包括一内表面、一音腔、一第一電極層 以及一介電保護層,該音腔係位於該第一基材中,而該第 一電極層位於該内表面上,該介電保護層跨設於該内表面 之二端; 一第二基材,包括一内表面; 一第三基材; 一積體電路,位於該第二基材之該内表面;以及 0 一導電接合材料,位於該第一基材與該第二基材以及 該第三基材之間,使該第一基材分別連接該第二基材以及 該第三基材; 其中,該第二基材與該第三基材相鄰接;以及 該第一基材、該第二基材、該第三基材以及該導電接 合材料形成一封閉腔體,使該第一電極層封於該封閉腔體 内。 16. 如申請專利範圍第15項所述之微機電麥克風,其 參 中該第一基材包括一導電凸塊,該導電凸塊位於該第一基 材二側。 17. 如申請專利範圍第16項所述之微機電麥克風,其 、中該第一基材更包括一貫穿孔,該貫穿孔位於該第一基材 之二側且.包括一絕緣層位於該貫穿孔之側壁上,以容設該 導電凸.塊。 18. 如申請專利範圍第15項所述之微機電麥克風,其 中該第一基板更包括一第二電極層,該第二電極層位於該 17 200936491 介電保護層下並與該介電保護層速接。 二I9·如申請專利範圍第15項所述之微機電麥克風,f 中該第基材更包括一蓋體以及〆外表面,該外表 二 内表面為相Μ,祕蓋觀於該外表面上。 〜該 ry 0 -It., •如申請專利範圍第19項所述之微機電麥多硫 中該蓋體包括〜音孔,該音孔位置與該音腔相對應。其 中二2=圍第19項所述之微機電參克風,其 22 l 更包括一暮申請專利範圍第15項所述之微機電麥克風,其 ^ 電材科層’設於該微機電麥克風最外層。、 中該·如申請專利範圍第15項所述之微機電麥克風,其 k第電極層係為多晶矽材料(p0iy-silicon)。 “ •如申請專利範圍第15項所述之微機電麥岁涵4 更包括二锅絡& , 凡风,其 已緣層’而該第一基材更包括一外表面,該笙幼 上 又於讀第一電極層與該内表面之間以及該外表面 25 * *如申請專利範圍第24項所述之微機電麥# φ ^ Λ» U 双、,其 ^寻、、邑緣層可為氧化矽(Si02)或氮化矽(Si3N4)。 、 ΓΚ ^ …如申請專利範圍第15項所述之微機電麥克取,其 中該導電接合材料係為異方向性 導電膠(ACF)。 27.—種微機電麥克風之封裝方法,其步驟包括· 提供一第一基材,該第一基材包括一内表面、〜第一 電極層以及一介電保護層,該第一電極層位於該内表 上’該介電保護層跨設於該内表面之二端; 面 18 200936491 提供一第二基材,包括一内表面以及一積體電路,該 積體電路設於該内表面上;以及 藉一導電接合材料以組合該第一基材以及該第二基材 以形成一封閉腔體,其中該第一基材中之該第一電極層與 該第二基材中之該積體電路相對應。 28.如申請專利範圍第27項所述之微機電麥克風之 封裝方法,其更包括提供一蓋體,該蓋體位於該第一基材 之一外表面,該蓋體包括一音孔。 φ 29.如申請專利範圍第28項所述之微機電麥克風之 封裝方法,其中該蓋體係為金屬材質。 30;.如申請專利範圍第27項所述之微機電麥克風之 封裝方法,其更包括覆蓋一導電材料層於該微機電麥克風 最外層。 ' 31.如申請專利範圍第27項所述之微機電麥克風之 封裝方法,其中提供該第一基材之步驟中包括: 形成二絕緣層於該第一基材之該内表面與一外表面; ⑩ 沉積該第一電極層於該第一基材之該内表面並圖案 化; 沉積一犧牲層於該第一基材上並圖案化; 沉積該第二電極層並圖案化; … 沉積該介電保護層於該第一基材之該内表面並圖案 化; 圖案化位於該第一基材之該外表面之該絕緣層並形成 一音腔;以及 19 200936491 移除該犧牲層。 32. 如申請專利範圍第31項所述之微機電麥克風之 封裝方法,其中該等絕緣層可為氧化矽(Si02)或氮化矽 (Si3N4)。 33. 如申請專利範圍第27項所述之微機電麥克風之 .封裝方法,其中該弟一電極層係為多晶.咬材料 (Poly-silicon) 〇 34. 如申請專利範圍第27項所述之微機電麥克風之 Q 封裝方法,其更包括蝕刻該第二基板之一外表面,形成複 數貫穿孔於該第一基材二侧,且沉積一絕緣層於該等貫穿 孔之側壁。 35. 如申請專利範圍第34項所述之微機電麥克風之 封裝方法,其更包括成形複數導電凸塊於該第一基材之該 ' 等貫穿孔中。 36. 如申請專利範圍第27項所述之微機電麥克風之 封裝方法,其更包括形成複數貫穿孔於該第二基材二侧, ❿且沉積一絕緣層於該等貫穿孔之側壁。 37. 如申請專利範圍第36項所述之微機電麥克風之 封裝方法,其更包括成形複數導電凸塊於該第二基材之該 … 等貫穿孔中: : I:: ,38.如申請專利範圍第27項所述之微機電麥克風之 封裝方法,其中該導電接合材料係為異方向性導電膠 (ACF)。 20200936491 X. Patent application scope: 1. A MEMS microphone comprising: a first substrate comprising an inner surface, a sound chamber, a first electrode layer and a dielectric protective layer, wherein the sound chamber is located In the first substrate, the first electrode layer is located on the inner surface, the dielectric protection layer is disposed at two ends of the inner surface; a second substrate includes an inner surface and an integrated circuit, An integrated circuit is disposed on the inner surface; and Φ a conductive bonding material between the first substrate and the second substrate to connect the first substrate and the second substrate; wherein the first A substrate, the second substrate, and the electrically conductive bonding material form a closed cavity. 2. The MEMS microphone of claim 1, wherein the substrate comprises a conductive bump 5 on the two sides of the first substrate. 3. The MEMS microphone of claim 2, wherein the first substrate further comprises a continuous perforation, the through hole being located on two sides of the first substrate and comprising an insulating layer located in the through hole The sidewall is disposed to accommodate the conductive bump. The MEMS microphone of claim 1, wherein the second substrate comprises a conductive bump, and the conductive bump is located on two sides of the second substrate. 5. The MEMS microphone of claim 4, wherein the second substrate further comprises a continuous perforation, the through hole being located on two sides of the second substrate 15 200936491 and comprising an insulating layer located in the through hole The sidewall is disposed to receive the conductive bump. 6. The MEMS microphone of claim 1, wherein the first substrate further comprises a second electrode layer, the second electrode layer being under the dielectric protective layer and connected to the dielectric protective layer. 7. The MEMS microphone of claim 1, wherein the first substrate further comprises a cover and an outer surface, the outer surface is opposite to the inner surface, and the cover is disposed on the On the outer surface. 8. The MEMS microphone of claim 7, wherein the cover comprises a sound hole, the sound hole position corresponding to the sound cavity. 9. The MEMS microphone of claim 7, wherein: the cover system is made of metal. 10. The MEMS microphone of claim 1, further comprising a layer of conductive material disposed on an outermost layer of the MEMS microphone. 11. The MEMS microphone of claim 1, wherein the first electrode layer is a poly-Silicon material. The MEMS microphone of claim 1, further comprising a second insulating layer, wherein the first substrate further comprises an outer surface, wherein the insulating layers are respectively disposed on the first electrode layer and the Between the inner surfaces and the outer surface. 13. The MEMS microphone of claim 12, wherein the insulating layer is yttria (SiO 2 ) or tantalum nitride (Si 3 N 4 ). 14. The MEMS microphone of claim 1, wherein the conductive bonding material is an anisotropic conductive paste (ACF). 16 200936491 15. A MEMS microphone comprising: a first substrate comprising an inner surface, a sound chamber, a first electrode layer and a dielectric protective layer, the sound chamber being located on the first substrate The first electrode layer is located on the inner surface, the dielectric protective layer is disposed at two ends of the inner surface; a second substrate includes an inner surface; a third substrate; an integrated circuit Located on the inner surface of the second substrate; and a conductive bonding material between the first substrate and the second substrate and the third substrate, respectively connecting the first substrate to the first substrate a second substrate and the third substrate; wherein the second substrate is adjacent to the third substrate; and the first substrate, the second substrate, the third substrate, and the conductive bonding material A closed cavity is formed to seal the first electrode layer within the enclosed cavity. 16. The MEMS microphone of claim 15, wherein the first substrate comprises a conductive bump, the conductive bump being located on two sides of the first substrate. 17. The MEMS microphone of claim 16, wherein the first substrate further comprises a continuous perforation, the through hole being located on two sides of the first substrate and comprising an insulating layer located therethrough The sidewall of the hole is provided to accommodate the conductive bump. 18. The MEMS microphone of claim 15, wherein the first substrate further comprises a second electrode layer, the second electrode layer being located under the dielectric layer of the 2009 2009 491 and the dielectric protective layer Speed connection. In the MEMS microphone of claim 15, wherein the first substrate further comprises a cover body and an outer surface of the outer surface, the outer surface of the outer surface is opposite, and the outer cover is viewed on the outer surface. . ~ ry 0 - It., • The MEMS of the MEMS, as described in claim 19, wherein the cover comprises a sound hole, the sound hole corresponding to the sound chamber. Among them, 2 2 = the micro-electromechanical gram wind described in item 19, and 22 l further includes a MEMS microphone according to item 15 of the patent application scope, wherein the ^ electrical material layer is located in the MEMS microphone Outer layer. According to the MEMS microphone of claim 15, the first electrode layer is a polysilicon material (p0iy-silicon). “• The micro-electromechanical maiden culvert 4 as described in claim 15 further includes Erguoluo & , where the wind has its edge layer, and the first substrate further includes an outer surface, the 笙Further reading between the first electrode layer and the inner surface and the outer surface 25**, as described in claim 24, the microelectromechanical Mai #φ^ Λ» U double, the ^ search, the edge layer The MEMS (Si02) or the tantalum nitride (Si3N4) may be a microelectromechanical mic which is described in claim 15 wherein the conductive bonding material is an anisotropic conductive paste (ACF). 27. A method of packaging a MEMS microphone, the method comprising: providing a first substrate, the first substrate comprising an inner surface, a first electrode layer, and a dielectric protective layer, the first electrode layer being located The inner surface of the inner surface is disposed on the inner surface of the inner surface; the surface 18 200936491 provides a second substrate including an inner surface and an integrated circuit, and the integrated circuit is disposed on the inner surface And a conductive bonding material to combine the first substrate and the second substrate Forming a closed cavity, wherein the first electrode layer in the first substrate corresponds to the integrated circuit in the second substrate. 28. The MEMS microphone as claimed in claim 27 The encapsulation method further includes providing a cover body on an outer surface of the first substrate, the cover body comprising a sound hole. φ 29. The micro electro mechanical microphone according to claim 28 The method of encapsulating a microelectromechanical microphone according to claim 27, further comprising covering a conductive material layer on an outermost layer of the MEMS microphone. The method of encapsulating a MEMS microphone according to claim 27, wherein the step of providing the first substrate comprises: forming a second insulating layer on the inner surface and an outer surface of the first substrate; Depositing the first electrode layer on the inner surface of the first substrate and patterning; depositing a sacrificial layer on the first substrate and patterning; depositing the second electrode layer and patterning; depositing the dielectric Protective layer The inner surface of a substrate is patterned; the insulating layer on the outer surface of the first substrate is patterned and a sound cavity is formed; and 19 the sacrificial layer is removed from 200936491. 32. The method of encapsulating a MEMS microphone, wherein the insulating layer may be yttrium oxide (SiO 2 ) or tantalum nitride (Si 3 N 4 ). 33. The method of packaging a MEMS microphone according to claim 27 The Q-packaging method of the microelectromechanical microphone according to claim 27, further comprising etching one of the second substrates, wherein the electrode layer is polycrystalline. The outer surface forms a plurality of through holes on two sides of the first substrate, and an insulating layer is deposited on sidewalls of the through holes. 35. The method of packaging a MEMS microphone according to claim 34, further comprising forming a plurality of conductive bumps in the through hole of the first substrate. 36. The method of packaging a MEMS microphone according to claim 27, further comprising forming a plurality of through holes on both sides of the second substrate, and depositing an insulating layer on sidewalls of the through holes. 37. The method of packaging a MEMS microphone according to claim 36, further comprising forming a plurality of conductive bumps in the through hole of the second substrate: : I:: , 38. The method of encapsulating a microelectromechanical microphone according to claim 27, wherein the conductive bonding material is an anisotropic conductive paste (ACF). 20
TW097106823A 2008-02-27 2008-02-27 Mems microphone and packaging method thereof TWI347298B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097106823A TWI347298B (en) 2008-02-27 2008-02-27 Mems microphone and packaging method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW097106823A TWI347298B (en) 2008-02-27 2008-02-27 Mems microphone and packaging method thereof

Publications (2)

Publication Number Publication Date
TW200936491A true TW200936491A (en) 2009-09-01
TWI347298B TWI347298B (en) 2011-08-21

Family

ID=44866852

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097106823A TWI347298B (en) 2008-02-27 2008-02-27 Mems microphone and packaging method thereof

Country Status (1)

Country Link
TW (1) TWI347298B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9400224B2 (en) 2014-09-12 2016-07-26 Industrial Technology Research Institute Pressure sensor and manufacturing method of the same
TWI549522B (en) * 2012-12-14 2016-09-11 美律實業股份有限公司 Mems microphone
TWI613769B (en) * 2014-12-23 2018-02-01 席瑞斯邏輯國際半導體有限公司 Wafer level mems transducer package

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI549522B (en) * 2012-12-14 2016-09-11 美律實業股份有限公司 Mems microphone
US9400224B2 (en) 2014-09-12 2016-07-26 Industrial Technology Research Institute Pressure sensor and manufacturing method of the same
TWI613769B (en) * 2014-12-23 2018-02-01 席瑞斯邏輯國際半導體有限公司 Wafer level mems transducer package
US10405102B2 (en) 2014-12-23 2019-09-03 Cirrus Logic, Inc. MEMS transducer package

Also Published As

Publication number Publication date
TWI347298B (en) 2011-08-21

Similar Documents

Publication Publication Date Title
TWI611531B (en) Internal electrical contact for enclosed mems devices
US9266716B2 (en) MEMS acoustic transducer with silicon nitride backplate and silicon sacrificial layer
CN107285273B (en) Systems and methods for comb drive MEMS devices
US11407636B2 (en) Inter-poly connection for parasitic capacitor and die size improvement
US7466834B2 (en) Electret condenser microphone
US9452920B2 (en) Microelectromechanical system device with internal direct electric coupling
TWI592030B (en) MEMS microphone and its formation method
TW200532746A (en) Electronic component, electronic component module and method of manufacturing the electronic component
US20050104204A1 (en) Wafer-level package and its manufacturing method
US8955212B2 (en) Method for manufacturing a micro-electro-mechanical microphone
CN111170265B (en) MEMS device and method of manufacturing the same
TW201123921A (en) Capacitive transducer and fabrication method
EP2969911A1 (en) Mems acoustic transducer with silicon nitride backplate and silicon sacrificial layer
JP2007267273A (en) Condenser microphone, and manufacturing method thereof
CN104507853B (en) The method forming semiconductor equipment
US11905164B2 (en) Micro-electro-mechanical system acoustic sensor, micro-electro-mechanical system package structure and method for manufacturing the same
JP2006247833A (en) Mems element package and its manufacturing method
TW201225684A (en) Microphone packaging structure and method for fabricating the same
TW200537567A (en) Method of forming a device by removing a conductive layer of a wafer
WO2008044910A1 (en) Ultra-low pressure sensor and method of fabrication of same
CN101534465A (en) Micro electronmechanical microphone and packaging method thereof
TW200936491A (en) MEMS microphone and packaging method thereof
JP2012006092A (en) Mems device and method for manufacturing the same, and package with the same
US20240208801A1 (en) Micro-electro-mechanical system (mems) vibration sensor and fabricating method thereof
KR101472297B1 (en) 1-chip-type MEMS microphone and method for making the 1-chip-type MEMS microphone

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees