TW200935093A - Liquid optical deflector and method for fabricating the same - Google Patents

Liquid optical deflector and method for fabricating the same Download PDF

Info

Publication number
TW200935093A
TW200935093A TW97134604A TW97134604A TW200935093A TW 200935093 A TW200935093 A TW 200935093A TW 97134604 A TW97134604 A TW 97134604A TW 97134604 A TW97134604 A TW 97134604A TW 200935093 A TW200935093 A TW 200935093A
Authority
TW
Taiwan
Prior art keywords
liquid
electrode
wall
substrate
insulating
Prior art date
Application number
TW97134604A
Other languages
Chinese (zh)
Other versions
TWI391710B (en
Inventor
Hsiu-Hsiang Chen
Yu-Tang Li
Chang-Sheng Chu
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW97134604A priority Critical patent/TWI391710B/en
Publication of TW200935093A publication Critical patent/TW200935093A/en
Application granted granted Critical
Publication of TWI391710B publication Critical patent/TWI391710B/en

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

A liquid optical deflector includes a substrate with an electrode layer disposed on the substrate. An insulating layer is on the electrode layer, which having an exposed region. A first electrode wall rights up from the substrate. A first insulating wall is on the first electrode wall. A second electrode wall rights up from the substrate. A second insulating wall is on the second electrode wall. A side wall rights up from the substrate and connects between the first and second electrode walls, to form a containing space. A first liquid is filled in the containing space in contacting with the electrode layer on the substrate. A second liquid is filled in the containing space to have an interface with the first liquid without solving to each other. A cap layer seals over the containing space to form an optical deflector unit.

Description

200935093 1 26551-ltwf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是關於液體光學折光器(liquid optical deflector)與用於製造液體光學折光器之方法。 【先前技術】 電濕潤(electrowetting)現象在此項技術中已為熟知 的。在電濕潤現象中,當兩種液體之間的所施加電壓改變 時,表面張力亦改變,從而導致液體移動。在其他研究中, 若電極之金屬表面是藉由具有若干微米之厚度的絕緣薄膜 (insulationfilm)來形成,則操作可靠性可得到改良。可保 護電極以免受損害。此改良技術則被稱作介電質上電濕潤 (electrowetting-〇n-dielectric,EWOD)。 EW0D技術可(例如)用於實驗室晶片(Lab-on-a-chip, LOC)或光學應用中。光學應用可具有液體透鏡以及電子 紙。電濕潤現象之操作機構如下。舉例而言,將液滴安置 於上面具有薄絕緣層之金屬基板上。接著,將電壓施加於 ❿金屬基板上,液滴與金屬基板之接觸肖可改變。當將此液 滴用作光學透鏡時,使用具有相等密度之兩種液體。一種 液體為絕緣的且另一種液體為導電的。歸因於電壓改變, 兩種液體之間的界面之曲率相應地改變,從致透鏡焦 點改變。 球痛應用中’例如,美國專利第6,369,954號已提 ]^ θ1為不意性地說明具有可變焦點之習知透鏡的 面θ在圖1巾’絕緣液滴11位於填充有導體液體 1 26551-ltwf.doc/n 200935093 13之’丨電腔至12之壁的内表面上。絕緣液體u以及導體 液體13皆為透明不可混溶的、具有不同光學折射係數且具 有實質上相同密度。相對於導體液體13,介電質12自然 地具有低濕潤。確保介電腔室之壁相對於導體液體13之高 濕潤的表面處理14圍繞絕緣液滴u與腔室12之壁之間的 接觸區域15。表面處理14維持液滴u之定位,從而防止 絕緣液體擴展超ώ所要接觸表面。#祕靜止時,絕緣液 滴11自然地呈現由參考A所指定之形狀。當在電極16與 馭電極17之間建立電壓乂時,產生電場,根據上文所提^ 之電濕潤原理,電場將增加區域l5相對於導體液體η之 濕潤。因此,導體液體Η移動絕緣液滴U且使絕緣液滴 11變形為由參考B所指定之形狀。 然而,若干其他揭露已由(例如)WO 2004/051323 以及CN 1881003提議。習知液體光學設備基本上需要將 若干零件組裝於設備中。或者,在習知結構中,將氧化鋼 錫(ITO)電極以及疏水性絕緣層塗佈於玻璃空腔之内表 Ο 面上,且接著將玻璃空腔黏附至下部透明基板。設備尺寸 為約^許毫米。通常,不易於對準以及組裝。誤差可能為 大的且良品率為低的。甚至,不能減小設備尺寸。其他^ 備結構以及製造過程仍在開發中。 、叹 【發明内容】 本發明提議一種液體光學折光器與其製造。液體光學 折光益包括具有絕緣壁之兩個導電電極以形成用於使兩種 液體適應之液體容器。藉由改變兩個導電電極上之操作電 6 1 26551-ltwf.doc/n 200935093 壓’兩種液體之間的界面之角度可得到控制,且接著提供 各種應用。 本發明之實施例的液體光學折光器包括基板。電極層 女置於基板上。絕緣層安置於電極層上,其中電極層且有 曝露區域。第一電極壁自基板豎直。第一絕緣壁安^於第 一電極壁之表面上。第二電極壁自基板豎直且面向第一電 極壁作為第一電極對。第二絕緣壁安置於第二電極壁之表 〇 面上。侧壁自基板豎直且至少連接於第一電極壁與第二電 極壁之間’以便形成包容空間(containing Space )。第一液 體填充於包容空間中以與基板上之電極層接觸。第二液體 填充於包容空間中以具有與第一液體之界面而彼此不會溶 解。頂蓋層(cap layer)密封於包容空間上以形成光學折 光器單元。其中,第一液體與第二液體之間的界面具有角 度,角度是由第一電極壁上之第一電壓以及第二電極壁上 之第二電壓控制。 對於另一實施例,光學折光器陣列包括上文所描述之 w 夕個光學折光器單元以形成陣列。 —種用於製造液體光學折光器之方法的實施例包括提 供基板,其中基板具有在其上之電極層以及安置於電極層 上之絕緣層,且第一電極層具有曝露區域。第一電極壁^ 形成為自基板豎直。第一絕緣壁形成於第一電極壁之表面 第一電極壁經形成為自基板豎直且面向第一電極壁作 為第—電極對。第二絕緣壁形成於第二電極壁之表面上。 側壁經形成為自基板豎直且連接於第一電極壁與第二電極 7 200935093 :1 26551-ltwf.doc/n 壁之間,以便形成包容空間。第一液體填充於包容空間中 以與基板上之電極層接觸。第二液體填充於包容空間中以 具有與第一液體之界面而彼此不會溶解。頂蓋層經形成以 用於密封於包容空間上以形成光學折光器單元。 應瞭解’前述總體描述與以下詳細描述為例示性的, 且思欲挺供對所主張之本發明的進 >一步聞釋。 【實施方式】 ❹ 在本發明中,描述一種液體光學折光器。液體光學折 光器為可以小尺寸(例如,以微米級)而製造之結構。製 造成本以及時間可至少得到減少且良率可保持為高的。本 發明之態樣’可將設備本體整合成小尺寸。製造過程可(例 如)使用導電光聚合物來充當導電電極,且絕緣材料可為 (例如)光聚合物。液體容器可(例如)藉由包括光微影過 程、噴射過程、電鍍過程、絲網印刷(screenprinting)或 壓印之過程來形成。換言之,液體容器之壁可以減小之尺 寸以及增加之對準而直接形成於基板上。製造成本以及速 Ο 度可至少得到改良。 若干實施例經提供以用於描述,而非用於限制本發 明。另外,亦可使實施例彼此適當地組合成另一實施例。 圖2A以及圖2B為示意性地說明根據本發明之實施例 之液體光學折光器之在側向以及橫向方向上的橫截面圖。 在圖2A中’液體光學折光器可(例如)包括下部透明基 板100。電極層1〇2安置於基板10〇上以充當(例如)共 同電極。電極層102可(例如)在實際操作中被施加接地 26551-ltwf.doc/n 200935093 電壓。絕緣層刚安置於所要區域之周邊區域處的電極層 撤上’其中電極層102之所要區域經曝露。第一電極壁 驗以及第二電極壁細安置於基板勘上且自基板 100豎直。第-電極壁106A以及第二電極壁1〇6B藉由絕 緣層104而與電極層102絕緣。電極壁1〇6Α、ι〇6Β可為 (例如)導電光聚合物。絕緣壁1〇8安置於第一電極壁1〇6八 與106B之表面上。基本上,第一電極壁1〇6A以及第二電 極壁1_形成平行電㈣以肋㈣電濕潤機構中 的液體界面。絕緣層1〇8之材料可為(例如)疏水性的, 使得可較容易地控制電濕潤現象。 若以具有四個垂直壁之液體容器做為一實例,則另外 兩個絕緣侧壁在圖2B中可見,但在圖2A中不可見。為了 形成液體容器,應使壁與電極壁1〇6A、1〇6B連續地連接。 絕緣側壁116被形成為安置於基板1〇〇上且自基板1〇〇豎 直以連接於第一電極壁l〇6A、l〇6B之間,用於形成包容 空間。然而,側壁108之形狀不限於圖2B中之兩個壁部 分。可採用用以形成容器之側壁的任何形狀。 液體110填充於包容空間中以輿基板100上之電極層 102接觸。液體no包括(例如)水或導電溶液。另一液 體112填充於包容空間中以具有與液體11〇之界面而彼此 不會溶解。液體112可包括(例如)油或絕緣液體。然而, 一般而言,例如,兩種液體中之一者為導電的且另一者為 絕緣的。透明頂蓋層114密封於包容空間上以形成光學折 光器(Optical Deflector)單元。兩種液體可經選擇以形成界 9 1 26551-1 twf,doc/j 200935093 面^面’其中可控制界面之傾斜角。此外,兩種液體之密 度較佳地為實質上相同。因此,折光器不受重力影響。 圖3至圖5為示意性地說明根據本發明之實施例之操 作機構的4頁截面圖。舉例而言,描述操作機構。在圖3中, 利用相等電壓(諸如,以3G v之電壓)來分別施加相對於 共同電極102之電極ι〇6Α以及電極1〇6B。在此情形下,200935093 1 26551-ltwf.doc/n IX. Description of the Invention: The present invention relates to a liquid optical deflector and a method for manufacturing a liquid optical refractor. [Prior Art] Electrowetting phenomena are well known in the art. In the electrowetting phenomenon, when the applied voltage between the two liquids changes, the surface tension also changes, causing the liquid to move. In other studies, if the metal surface of the electrode is formed by an insulation film having a thickness of several micrometers, operational reliability can be improved. The electrode can be protected from damage. This improved technique is called electrowetting-〇n-dielectric (EWOD). EW0D technology can be used, for example, in Lab-on-a-chip (LOC) or optical applications. Optical applications can have liquid lenses as well as electronic paper. The operating mechanism of the electrowetting phenomenon is as follows. For example, the droplets are placed on a metal substrate having a thin insulating layer thereon. Next, a voltage is applied to the base metal substrate, and the contact of the liquid droplets with the metal substrate can be changed. When this droplet is used as an optical lens, two liquids having equal densities are used. One liquid is insulating and the other liquid is electrically conductive. Due to the voltage change, the curvature of the interface between the two liquids changes correspondingly, changing from the lens focal point. In the case of a ball-fighting application, for example, U.S. Patent No. 6,369,954, the disclosure of which is incorporated herein by reference in its entirety, the entire entire entire entire entire entire entire entire entire entire entire entire- Ltwf.doc/n 200935093 13 ''Electric cavity to the inner surface of the wall of 12'. Both the insulating liquid u and the conductor liquid 13 are transparent, immiscible, have different optical refractive indices, and have substantially the same density. The dielectric 12 naturally has a low wetting relative to the conductor liquid 13. A highly wet surface treatment 14 of the wall of the dielectric chamber relative to the conductor liquid 13 is ensured to surround the contact area 15 between the insulating droplet u and the wall of the chamber 12. The surface treatment 14 maintains the positioning of the droplets u, thereby preventing the insulating liquid from expanding beyond the surface to be contacted. When the secret is still, the insulating liquid droplet 11 naturally assumes the shape specified by the reference A. When a voltage 乂 is established between the electrode 16 and the ytterbium electrode 17, an electric field is generated which, according to the electrowetting principle as described above, increases the wetting of the region l5 with respect to the conductor liquid η. Therefore, the conductor liquid Η moves the insulating droplet U and deforms the insulating droplet 11 into the shape specified by the reference B. However, several other disclosures have been proposed by, for example, WO 2004/051323 and CN 1881003. Conventional liquid optical devices basically require assembly of several parts into the device. Alternatively, in the conventional structure, an oxidized steel tin (ITO) electrode and a hydrophobic insulating layer are coated on the inner surface of the glass cavity, and then the glass cavity is adhered to the lower transparent substrate. The size of the device is approximately ± mm. Usually, it is not easy to align and assemble. The error may be large and the yield is low. Even the device size cannot be reduced. Other construction structures and manufacturing processes are still under development. SUMMARY OF THE INVENTION The present invention proposes a liquid optical refractor and its manufacture. The liquid optical refractive index comprises two electrically conductive electrodes having an insulating wall to form a liquid container for adapting the two liquids. By varying the operating voltage on the two conductive electrodes, the angle between the two liquids can be controlled, and then various applications are provided. A liquid optical refractor of an embodiment of the invention includes a substrate. The electrode layer is placed on the substrate. An insulating layer is disposed on the electrode layer, wherein the electrode layer has an exposed area. The first electrode wall is vertical from the substrate. The first insulating wall is mounted on the surface of the first electrode wall. The second electrode wall is vertical from the substrate and faces the first electrode wall as a first electrode pair. The second insulating wall is disposed on the surface of the second electrode wall. The sidewall is vertically from the substrate and is at least connected between the first electrode wall and the second electrode wall to form a containing space. The first liquid is filled in the containment space to contact the electrode layer on the substrate. The second liquid is filled in the containment space to have an interface with the first liquid without being dissolved with each other. A cap layer is sealed to the containment space to form an optical refractor unit. Wherein the interface between the first liquid and the second liquid has an angle controlled by a first voltage on the first electrode wall and a second voltage on the second electrode wall. For another embodiment, the optical refractor array includes the optical refractor units described above to form an array. An embodiment of a method for fabricating a liquid optical refractor includes providing a substrate, wherein the substrate has an electrode layer thereon and an insulating layer disposed on the electrode layer, and the first electrode layer has an exposed region. The first electrode wall ^ is formed to be vertical from the substrate. The first insulating wall is formed on the surface of the first electrode wall. The first electrode wall is formed to be vertical from the substrate and facing the first electrode wall as a first electrode pair. The second insulating wall is formed on a surface of the second electrode wall. The sidewall is formed to be vertically from the substrate and connected between the first electrode wall and the second electrode 7 200935093 : 1 26551-ltwf.doc/n wall to form a containment space. The first liquid is filled in the containment space to contact the electrode layer on the substrate. The second liquid is filled in the containment space to have an interface with the first liquid and does not dissolve each other. A cap layer is formed for sealing to the containment space to form an optical refractor unit. It is to be understood that the foregoing general description and the following detailed description of the invention are intended to be illustrative of the invention. [Embodiment] In the present invention, a liquid optical refractor is described. Liquid optical refractors are structures that can be fabricated in small sizes (e.g., on the order of microns). The cost and time can be reduced at least and the yield can be kept high. The aspect of the invention can integrate the device body into a small size. The fabrication process can, for example, use a conductive photopolymer to act as a conductive electrode, and the insulating material can be, for example, a photopolymer. The liquid container can be formed, for example, by a process including a photolithography process, a spraying process, a plating process, a screen printing, or an imprint process. In other words, the walls of the liquid container can be formed directly on the substrate by a reduced size and increased alignment. Manufacturing costs and speed can be improved at least. The several embodiments are provided for the purpose of description and are not intended to limit the invention. Further, the embodiments may be combined as appropriate with each other in another embodiment. 2A and 2B are cross-sectional views schematically illustrating lateral and lateral directions of a liquid optical refractor according to an embodiment of the present invention. The liquid optical refractor in Fig. 2A can, for example, comprise a lower transparent substrate 100. The electrode layer 1 2 is placed on the substrate 10 to serve as, for example, a common electrode. The electrode layer 102 can be applied with a ground 26551-ltwf.doc/n 200935093 voltage, for example, in actual operation. The electrode layer immediately after the insulating layer is disposed at the peripheral region of the desired region is removed. The desired region of the electrode layer 102 is exposed. The first electrode wall and the second electrode wall are finely disposed on the substrate and are vertical from the substrate 100. The first electrode wall 106A and the second electrode wall 1〇6B are insulated from the electrode layer 102 by the insulating layer 104. The electrode walls 1〇6Α, ι〇6Β may be, for example, a conductive photopolymer. The insulating walls 1 〇 8 are disposed on the surfaces of the first electrode walls 1 〇 6 8 and 106B. Basically, the first electrode wall 1A6A and the second electrode wall 1_ form a parallel electric (four) rib (iv) liquid interface in the electrowetting mechanism. The material of the insulating layer 1〇8 can be, for example, hydrophobic, so that the electrowetting phenomenon can be controlled more easily. If a liquid container having four vertical walls is used as an example, the other two insulating side walls are visible in Figure 2B, but are not visible in Figure 2A. In order to form a liquid container, the walls are continuously connected to the electrode walls 1A, 6A, 1B, 6B. The insulating sidewalls 116 are formed to be disposed on the substrate 1A and vertically from the substrate 1A to be connected between the first electrode walls 16A, 16B for forming a containment space. However, the shape of the side wall 108 is not limited to the two wall portions in Fig. 2B. Any shape used to form the side walls of the container can be employed. The liquid 110 is filled in the containment space to contact the electrode layer 102 on the substrate 100. The liquid no includes, for example, water or a conductive solution. The other liquid body 112 is filled in the containing space to have an interface with the liquid 11 而 without being dissolved with each other. Liquid 112 can include, for example, an oil or an insulating liquid. However, in general, for example, one of the two liquids is electrically conductive and the other is insulative. A transparent cap layer 114 is sealed to the containment space to form an optical deflector unit. The two liquids can be selected to form a boundary 9 1 26551-1 twf, doc/j 200935093 face where the tilt angle of the interface can be controlled. Moreover, the density of the two liquids is preferably substantially the same. Therefore, the refractometer is not affected by gravity. 3 to 5 are cross-sectional views of a four-page diagram schematically illustrating an operation mechanism according to an embodiment of the present invention. For example, an operating mechanism is described. In Fig. 3, the electrodes ι 6 相对 and the electrodes 1 〇 6B with respect to the common electrode 102 are respectively applied with equal voltages (such as at a voltage of 3 G v ). In this case,

f生,場。液體界面之角度保持水平。對於垂直入射光而 吕,仃進方向不偏轉。在圖4中,例如,當利用電壓v2 f施加電極^ 1G6A且彻電壓%來施加電極壁1〇紐 叶,產生電場。根據電濕潤現象,液體界面202A傾斜。 兩種液體具有不同折射率。相對於液體界面2〇2A,入射光 200具有入射角θι,接著射出光經偏轉至右侧。在圖5中, 當利用電壓Vi來施加電極壁106Α且利用電壓%來施加 電極壁106Β時,產生另一電場。根據電濕潤現象,液體 界面202Β傾斜。相對於液體界面2〇2Β,入射光2〇〇具有 入射角h,接著射出光經偏轉至左側。通常,第一液體與 〇 第一液體之間的液體界面具有角、度。可藉由在電極壁106A 上施加第一電壓且在第二電極壁ί06Β上施加第二電壓來 控制此角度。視電極壁上之所施加電壓的值而定,可控制 液體界面之傾斜角。此時,入射光可在操作中經偏轉至所 要方向。 在實際應用中,例如,液體光學折光器可用於掃描不 同線位置之%描器中。另外,液體光學折光器亦可以立體 顯示設備來實施,以用於將左側影像顯示至左眼且將右侧 200935093 1 26551-ltwf.doc/n 影像顯示至右眼。此外,作為光偏轉單元之若干液體光學 折光器可經形成為用於各種使用之陣列。此處,未完全列 出所有應用。 對於製造過程,本發明之態樣提出用以將液體容器之 壁直接形成於基板上的過程。圖6A至圖6C以及圖7為示 意性地說明根據本發明之實施例之製造過程的橫截面圖。 藉由(例如)在圖6A中採用基於光微影與電鍍之過程, 電鍍晶種層(Plating seed hyer) 302形成於基板300上。 遮罩層304 (諸如,光聚合物層)藉由光微影而形成於電 鍍晶種層302上。遮罩層3〇4具有壁開口 3〇6以曝露電鍍 晶種層302。接著,藉由電鍍來使壁開口 306填充有導電 材料308。在圖6C中,移除電鍍晶種層3〇2與絕緣層3〇3 之一部分,且導電材料308與剩餘電鍍晶種層302形成導 電壁。為了形成液體容器,亦移除遮罩層304之一部分與 剩餘部分(在圖6C之此橫截面圖中不可見)。遮罩層3〇4 之剩餘部分充當連接於導電壁308之間的絕緣壁。此外, 〇 絕緣層310較佳地更形成於導電壁308、302之表面上。所 要兩種液體312與314填充於包容空間中。 在圖7中’形成具有共同電極層3〇1之基板3〇〇。共 同電極為透明導電層’諸如,ITO或任何其他適合材料。 透明基板400安置於導電壁308、302以及絕緣壁上以密封 液體312、314。或者,如先前所提及,亦可藉由印刷過程 等等來形成壁。前述製造過程僅為實例。根據本發明之態 樣’在製造過程中,液體光學折光器可直接形成於基板上。 11 1 26551**li\vf.d〇c/n 200935093 壁亦可藉由其他各種過程而形成以形成於基板上。 相對於結構,導電壁可(例如)為多對。圖8至圖9 為示意性地說明根據本發明之實施例之液體光學折光器之 結構的水平橫截面圖。在圖8中,例如,三對導電壁412 形成於絕緣壁410上。在此情形下,可以更多自由度來控 制液體界面之角度。此外在圖9中作為實例,導電壁42〇a 至420d可單獨形成液體容器之壁,且導電壁420a至420d 與接合部分處之較小絕緣部分422連接在一起。絕緣層424 (諸如,疏水性材料)形成於導電壁42〇a至42〇d之内表面 上。液體可接著填充於包容空間中。 換言之,本發明根據製造過程使用具有適當材料之設 備結構。可更容易地執行製造而不會消耗大量勞動力。設 備直接形成於基板上,且可以減小之尺寸而形成。因此, 折光器設備可更谷易地整合於最終產品中,諸如,掃描芎、 立體顯示裝置,等等。 田° 熟習此項技術者應瞭解,在不脫離本發明之範-戋精 © 神的=況下,可對本發明之結構進行各種修改以及^更。 鑒於前述描述,在本發明之修改以及變更屬於以下申請專 利範圍以及其均等物之範脅的情況下,本發明意欲涵蓋本 發明之修改以及變更。 【圖式簡單說明】 隨附圖式被包括以提供對本發明之進一步理解,且被 併入以及構成本說明書之一部分。圖式說明本發明之實施 例且連同描述一起用以闡釋本發明之原理。 、 12 :1 26551-ltwf.doc/n 200935093 圖1為示意性地說明根據本發明之較佳實施例之面偵 測方法的過程流程圖。 圖2A以及圖2B為示意性地說明根據本發明之實施例 之液體光學折光器之在側向以及橫向方向上的橫截面圖。 圖3至圖5為示意性地說明根據本發明之實施例之操 作機構的橫截面圖。 圖6A至圖6C以及圖7為示意性地說明根據本發明之 實施例之製造過程的橫截面圖。 圖8至圖9為示意性地說明根據本發明之實施例之液 體光學折光器之結構的水平橫截面圖。 【主要元件符號說明】 Η :絕緣液滴/絕緣液體 12 :介電腔室/介電質 13 :導體液體 14 :表面處理 15 .接觸區域 16 ·電極 17 :電極 1〇〇 :基板 102 .電極層 104 :絕緣層 106Α :第一電極壁 106Β :第二電極壁 108 :絕緣壁/絕緣層/側壁 13 200935093 :1 26551-ltwf.doc/n 110 :液體 112 :液體 114 :透明頂蓋層 116 :絕緣側壁 200 :入射光 202A :液體界面 202B :液體界面 300 :基板 〇 . 301:共同電極層 302 :電鍍晶種層/導電壁 303:絕緣層 304 :遮罩層 306 ··壁開口 308 :導電材料/導電壁 310 :絕緣層 312 :液體 Q 314 :液體 400 :基板 410 :絕緣壁 412 :導電壁 420a :導電壁 420b :導電壁 420c :導電壁 420d :導電壁 14 200935093 :1 26551-ltwf.doc/n 422 :絕緣部分 424 :絕緣層 A :參考 B :參考 V :電壓 Vj :電壓 v2 :電壓 ^ :入射角 ❹ θ2:入射角f born, field. The angle of the liquid interface remains horizontal. For normal incident light, the direction of the twist is not deflected. In Fig. 4, for example, when the electrode 1 1G6A is applied with a voltage v2 f and the electrode wall 1 〇 is applied with a full voltage %, an electric field is generated. The liquid interface 202A is tilted according to the electrowetting phenomenon. Both liquids have different refractive indices. The incident light 200 has an incident angle θι with respect to the liquid interface 2〇2A, and then the emitted light is deflected to the right side. In Fig. 5, when the electrode wall 106 is applied with the voltage Vi and the electrode wall 106 is applied with the voltage %, another electric field is generated. According to the electrowetting phenomenon, the liquid interface 202 is tilted. The incident light 2〇〇 has an incident angle h with respect to the liquid interface 2〇2Β, and then the emitted light is deflected to the left side. Typically, the liquid interface between the first liquid and the first liquid has an angle and a degree. This angle can be controlled by applying a first voltage on electrode wall 106A and a second voltage on second electrode wall ί06. The tilt angle of the liquid interface can be controlled depending on the value of the applied voltage on the wall of the electrode. At this point, the incident light can be deflected to the desired direction during operation. In practical applications, for example, liquid optical refractors can be used to scan the % traces of different line positions. Alternatively, the liquid optical refractor can be implemented by a stereoscopic display device for displaying the left image to the left eye and the right side 200935093 1 26551-ltwf.doc/n image to the right eye. Furthermore, several liquid optical refractors as light deflection units can be formed into arrays for various uses. Here, all applications are not fully listed. For the manufacturing process, aspects of the invention propose a process for forming the walls of a liquid container directly onto a substrate. 6A through 6C and Fig. 7 are cross-sectional views schematically illustrating a manufacturing process in accordance with an embodiment of the present invention. A plating seed layer 302 is formed on the substrate 300 by, for example, a process based on photolithography and electroplating in FIG. 6A. A mask layer 304, such as a photopolymer layer, is formed on the electroplated seed layer 302 by photolithography. The mask layer 3〇4 has a wall opening 3〇6 to expose the plating seed layer 302. Next, the wall opening 306 is filled with a conductive material 308 by electroplating. In Fig. 6C, a portion of the plating seed layer 3〇2 and the insulating layer 3〇3 is removed, and the conductive material 308 forms a conductive wall with the remaining plating seed layer 302. To form the liquid container, one portion of the mask layer 304 and the remaining portion are also removed (not visible in this cross-sectional view of Figure 6C). The remaining portion of the mask layer 3〇4 acts as an insulating wall that is connected between the conductive walls 308. Further, the insulating layer 310 is preferably formed on the surface of the conductive walls 308, 302. The two liquids 312 and 314 are required to be filled in the containment space. In Fig. 7, 'the substrate 3' having the common electrode layer 3?1 is formed. The common electrode is a transparent conductive layer such as ITO or any other suitable material. The transparent substrate 400 is disposed on the conductive walls 308, 302 and the insulating walls to seal the liquids 312, 314. Alternatively, as mentioned previously, the wall may also be formed by a printing process or the like. The aforementioned manufacturing process is merely an example. According to the aspect of the invention, the liquid optical refractor can be formed directly on the substrate during the manufacturing process. 11 1 26551**li\vf.d〇c/n 200935093 Walls may also be formed by other various processes to be formed on a substrate. The conductive walls can be, for example, a plurality of pairs with respect to the structure. 8 to 9 are horizontal cross-sectional views schematically illustrating the structure of a liquid optical refractor according to an embodiment of the present invention. In FIG. 8, for example, three pairs of conductive walls 412 are formed on the insulating wall 410. In this case, more degrees of freedom can be used to control the angle of the liquid interface. Further, as an example in Fig. 9, the conductive walls 42a to 420d may separately form the walls of the liquid container, and the conductive walls 420a to 420d are coupled to the smaller insulating portion 422 at the joint portion. An insulating layer 424 (such as a hydrophobic material) is formed on the inner surfaces of the conductive walls 42a to 42〇d. The liquid can then be filled in the containment space. In other words, the present invention uses a device structure having a suitable material in accordance with the manufacturing process. Manufacturing can be performed more easily without consuming a large amount of labor. The device is formed directly on the substrate and can be formed in a reduced size. Thus, the refractor device can be more easily integrated into the final product, such as scanning sputum, stereoscopic display devices, and the like. Those skilled in the art will appreciate that various modifications and alterations can be made to the structure of the present invention without departing from the scope of the invention. In view of the foregoing, it is intended that the present invention cover the modifications and variations of the present invention. The drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and together with the description 12:1 26551-ltwf.doc/n 200935093 FIG. 1 is a process flow diagram schematically illustrating a face detection method in accordance with a preferred embodiment of the present invention. 2A and 2B are cross-sectional views schematically illustrating lateral and lateral directions of a liquid optical refractor according to an embodiment of the present invention. 3 through 5 are cross-sectional views schematically illustrating an operating mechanism in accordance with an embodiment of the present invention. 6A through 6C and Fig. 7 are cross-sectional views schematically illustrating a manufacturing process in accordance with an embodiment of the present invention. 8 to 9 are horizontal cross-sectional views schematically illustrating the structure of a liquid optical refractor according to an embodiment of the present invention. [Main component symbol description] Η : Insulation droplet / insulating liquid 12 : Dielectric chamber / Dielectric 13 : Conductor liquid 14 : Surface treatment 15 . Contact area 16 · Electrode 17 : Electrode 1 : Substrate 102 . Electrode Layer 104: insulating layer 106 Α : first electrode wall 106 Β : second electrode wall 108 : insulating wall / insulating layer / side wall 13 200935093 : 1 26551-ltwf.doc / n 110 : liquid 112 : liquid 114 : transparent cap layer 116 : Insulating sidewall 200: incident light 202A: liquid interface 202B: liquid interface 300: substrate 〇. 301: common electrode layer 302: plating seed layer / conductive wall 303: insulating layer 304: mask layer 306 · wall opening 308: Conductive material/conductive wall 310: insulating layer 312: liquid Q 314: liquid 400: substrate 410: insulating wall 412: conductive wall 420a: conductive wall 420b: conductive wall 420c: conductive wall 420d: conductive wall 14 200935093 : 1 26551-ltwf .doc/n 422: Insulation portion 424: Insulation layer A: Reference B: Reference V: Voltage Vj: Voltage v2: Voltage ^: Angle of incidence ❹ θ2: Angle of incidence

Claims (1)

200935093 -1 26551-ltwf.doc/n 、申請專利範園·· 1. 種液體光學折光器,包括: 一基板; —電極層’其安置於所述基板上; 層具;=安置於所述電極層上’其中所述電極 —第一電極壁,其自所述基板豎直; 上第一絕緣壁,其安置於所述第—電極壁之—表面 —苐一電極壁,其自所述基板豎直 電極壁做為-第-電極對;^且面向所迷第— 上一第二絕緣壁,其安置於所述第二電極壁之—表面 雷^^壁、’其自所述基板豎直且至少連接於所述第-j/、所述第二電極壁之間,以便形成一包容办門. ❹ 板上2:層2充於所述包容空間中以與;基 U—第^賴’其填充於所述包容m中以具有與所 ’·第一液體之界面而彼此不會溶解;以及 '、 光器2蓋層,其密封於所述包容空間上以形成光學折 面43述】、= 體與所述第二液體之間的所述界 堡以及所述第二電極壁上之第二電壓控制。弟電 200935093 26551-ltwf.d〇c/n 2·如申請專利範圍第1項所述之液體光學折光器,其 中所述第一液體以及所述第二液體中之一者為導電液體, 且所述第一液體以及所述第二液體中之另—者為電絕緣液 體。 3. 如申請專利範圍第1項所述之液體光學折光器其 中所述第―液體以及所述第二液體中之-者為水,且所^ 第一液體以及所述第二液體中之另一者為油。 4. 如申請專利範圍第1項所述之液體光學折光器,其 © 中所述第一絕緣壁以及所述第二絕緣壁為疏水性的。 5·如申請專利範圍第1項所述之液體光學折光器,其 中所述側壁之材料包括光聚合物。 6·如申請專利範圍第1項所述之液體光學折光器,其 中所述第一電極壁平行於所述第二電極壁。 7.如申明專利範圍第1項所述之液體光學折光器,其 中所述第電極壁以及所述第二電極壁之材料包括導電光 聚合物。 〇 8.如申請專利範圍第1項所述之液體光學折光器,盆 中所述第一液體與所述第二液體具有不同折射率。Λ 9·如申請專利範圍第1項所述之液體光學折光器,其 中所述界面之所述角度經控制以具有至少兩個值,以便使 入射光之方向偏轉成至少兩個特定方向。 1〇.如申請專利範圍第1項所述之液體光學折光器,更 包括連接至所述側壁之至少第二電極對,以更控制所述兩 種液體之所述界面。 17 200935093 :1 26551-1twf.doc/n 11. 如申請專利範圍第1項所述之液體光學折光器,其 中所述基板、所述基板上之所述電極層以及所述頂蓋層為 光透明的。 12. 如申請專利範圍第i項所述之液體光學折光器,其 中所述第一液體與所述第二液體為實質上相等密度。 13. —種光學折光器陣列,包括如申請專利範圍第i項 所述之多個光學折光器單元,其中所述光學折光器單元形 成陣列。 0 14.一種用於形成液體光學折光器之方法,包括: 提供一基板’其中所述基板具有在其上之一電極層 以及女置於所述電極層上之一絕緣層,且所述第—電極 層具有一曝露區域; 形成一第一電極壁,其自所述基板豎直; 形成一第一絕緣壁,其安置於所述第一電極壁之 面上; ^形成一第二電極壁,其自所述基板豎直且面向所述 0 第一電極壁作為一第一電極對; 形成一第二絕緣壁’其安置於所述第二電極壁之一 表面上; 形成一側壁,其自所述基板豎直且連接於所述第一 電極壁與所述第二電極壁之間,以便形成-包容空間; 將一第一液體填充於所述包容空間中以與所述美 板上之所述電極層接觸; ,土 將一第二液體填充於所述包容空間中以具有與所 18 200935093 :1 26551-ltwf.doc/n 述第一液體之界面而彼此不會溶解;以及 形成一頂盍層以用於密封於所述包容空間上以形 成光學折光器單元。 一 \5.如申請專利範圍第14項所述之用於形成液體光學 折光器之方法’其中猎由執行包括光微影過程之多個過程 來將所述第-電極壁、所述第一絕緣壁、所述第二電極壁、 所述第二絕緣壁以及所述侧壁直接形成於所述基板上。 如申請專利範圍第14項所述之用於形成液體光學 折光器之方法,其中藉由執行包括光微影過程以及電鑛過 程,多個過程來將所述第一電極壁、所述第一絕緣壁、所 述第二電極壁、所述第二絕緣㈣及所述側壁直接形成於 所述基板上。 一!J如申請專利範圍第14項所述之用於形成液體光學 折光器之方法,其中藉由執行包括喷射印刷過程之多個過 私來將所述第—電極壁、所述第—絕緣壁、所述第二電極 壁、所述第二絕緣独及所述侧壁直接形成於所述基板上。 〇 如申請專利範圍第14項所述之用於形成液體光學 折光二之方法’其中藉由執行包括絲網印刷過程之多個過 a來將所述第—電極^、所述第-絕緣壁、所述第二電極 壁、所述第二絕緣壁以及所述侧壁直接形成於所述基板上。 1^.如申睛專利範圍第14項所述之用於形成液體光學 折光器之方法’其中藉由執行包括壓印過程之多個過程來 將^述第一電極壁、所述第一絕緣壁、所述第二電極壁、 ~述第—絕緣壁以及所述側壁直接賴於所述基板上。 19 200935093 26551-ltwf.doc/n 20·如申請專利範圍第14項所述之用於形成液體光學 折光器之方法,其中多個所述光學折光器單元經同時形成 以具有陣列。 21·如申請專利範圍第14項所述之用於形成液體光學 折光器之方法’其中所述第—液體以及所述第二液體中之 一者為導電液體’且所述第—親以及所述第二液體中之 另一者為電絕緣液體。 0 22.如申請專利範圍第14項所述 =方法,其:所述第-液體以及所述第St: ,’、、且所述第Hx及所述第二液體中之另一者 折务專利域第14項所述之用於形成液體光學 其中所述第一絕緣壁以及所述第二絕緣壁 疋由疏水性材料形成。 折/哭請專鄕料14項所狀形成液體光學200935093 -1 26551-ltwf.doc/n, Patent Application Scope 1. A liquid optical refractor comprising: a substrate; an electrode layer disposed on the substrate; a layer; On the electrode layer, wherein the electrode is a first electrode wall that is vertical from the substrate; and an upper first insulating wall is disposed on the surface of the first electrode wall - an electrode wall, The vertical electrode wall of the substrate is a --electrode pair; and facing the first - the second insulating wall, which is disposed on the surface of the second electrode wall, and the surface thereof Vertically and at least connected between the first-j/ and the second electrode wall to form an inclusive door. ❹ 2: 2 layers 2 are filled in the containment space to form a base U- ^ ' 'filled in the containment m to have an interface with the first liquid without dissolving each other; and ', a lighter 2 cap layer sealed on the containment space to form an optical fold 43], the bunker between the body and the second liquid, and the second voltage control on the second electrode wall . The liquid optical refractor of claim 1, wherein one of the first liquid and the second liquid is a conductive liquid, and The other of the first liquid and the second liquid is an electrically insulating liquid. 3. The liquid optical refractor of claim 1, wherein the first liquid and the second liquid are water, and the first liquid and the second liquid One is oil. 4. The liquid optical refractor of claim 1, wherein the first insulating wall and the second insulating wall are hydrophobic. 5. The liquid optical refractor of claim 1, wherein the material of the sidewall comprises a photopolymer. 6. The liquid optical refractor of claim 1, wherein the first electrode wall is parallel to the second electrode wall. 7. The liquid optical refractor of claim 1, wherein the material of the first electrode wall and the second electrode wall comprises a conductive photopolymer. 8. The liquid optical refractor of claim 1, wherein the first liquid and the second liquid have different refractive indices. The liquid optical refractor of claim 1, wherein the angle of the interface is controlled to have at least two values to deflect the direction of incident light into at least two specific directions. The liquid optical refractor of claim 1, further comprising at least a second electrode pair connected to the side wall to more control the interface of the two liquids. The liquid optical refractor of claim 1, wherein the substrate, the electrode layer on the substrate, and the cap layer are light transparent. 12. The liquid optical refractor of claim i, wherein the first liquid and the second liquid are substantially equal in density. 13. An optical refractor array comprising a plurality of optical refractor units as described in claim ii, wherein said optical refractor units are formed in an array. 0 14. A method for forming a liquid optical refractor, comprising: providing a substrate, wherein the substrate has an electrode layer thereon and an insulating layer disposed on the electrode layer, and the The electrode layer has an exposed area; a first electrode wall is formed which is vertical from the substrate; a first insulating wall is formed on the surface of the first electrode wall; and a second electrode wall is formed a first electrode pair from the substrate and facing the 0 first electrode wall; forming a second insulating wall disposed on a surface of the second electrode wall; forming a sidewall The substrate is vertically connected between the first electrode wall and the second electrode wall to form a containment space; a first liquid is filled in the containment space to be associated with the photo plate The electrode layer is in contact with; the soil fills a second liquid in the containment space to have an interface with the first liquid of 18 200935093:1 26551-ltwf.doc/n, and does not dissolve each other; a top layer for sealing The said containment space to form a refractive optical unit. A method for forming a liquid optical refractor as described in claim 14 wherein the finder is performed by performing a plurality of processes including a photolithography process to the first electrode wall, the first The insulating wall, the second electrode wall, the second insulating wall, and the sidewall are directly formed on the substrate. The method for forming a liquid optical refractor according to claim 14, wherein the first electrode wall, the first one is performed by performing a plurality of processes including performing a photolithography process and an electric ore process The insulating wall, the second electrode wall, the second insulation (four), and the sidewall are directly formed on the substrate. One! J. The method for forming a liquid optical refractor according to claim 14, wherein the first electrode wall, the first insulating wall, The second electrode wall, the second insulation, and the sidewall are directly formed on the substrate. For example, the method for forming a liquid optical refraction as described in claim 14 wherein the first electrode and the first insulating wall are formed by performing a plurality of passes a including a screen printing process. The second electrode wall, the second insulating wall, and the sidewall are directly formed on the substrate. 1 . The method for forming a liquid optical refractor according to claim 14 of claim 2, wherein the first electrode wall, the first insulation is performed by performing a plurality of processes including an embossing process The wall, the second electrode wall, the first insulating wall, and the sidewall are directly on the substrate. A method for forming a liquid optical refractor according to claim 14, wherein a plurality of said optical refractor units are simultaneously formed to have an array. The method for forming a liquid optical refractor as described in claim 14, wherein one of the first liquid and the second liquid is a conductive liquid and the first and second The other of the second liquids is an electrically insulating liquid. 0 22. The method of claim 14, wherein: the first liquid and the other of the first and second liquids The method of claim 14, wherein the first insulating wall and the second insulating wall are formed of a hydrophobic material. Fold/Cry, please specialize in the formation of liquid optics «法,其中所述第一絕緣壁以及所述第二絕緣壁 疋由光聚合物形成。 加#15如巾料職81第14項所狀胁形成液體光學 ΐ if 其中所述第—電㈣經形成為平行於所述 第二電極壁。 如申、料利範11第14項所述之用於形成液體光學 β 士:之方法,其中所述第—電極壁以及所述第二電極壁 疋由導電光聚合物形成。 27‘如申4專職μ項所述之驗形成液體光學 20 200935093 1 26551-1twf.doc/n 折光器之方法,其中所述第一液體與所述第二液體具有不 同折射率。 28.如申請專利範園第14項所述之用於形成液體光學 折光器之方法,其中所述基板、所述基板上之所述電極層 以及所述頂蓋層是由光透明材料形成。 曰 ❹ ❹ 21The method wherein the first insulating wall and the second insulating wall are formed of a photopolymer. Adding #15, as in the case of Item No. 81, to form liquid optics ΐ if the first-electrode (four) is formed parallel to the second electrode wall. The method for forming a liquid optical film according to claim 14, wherein the first electrode wall and the second electrode wall are formed of a conductive photopolymer. 27 'A method of forming a liquid optics as described in the application of the full-time item of the present invention. The method of the refracting device, wherein the first liquid and the second liquid have different refractive indices. 28. The method for forming a liquid optical refractor according to claim 14, wherein the substrate, the electrode layer on the substrate, and the cap layer are formed of a light transparent material.曰 ❹ ❹ 21
TW97134604A 2008-02-01 2008-09-09 Liquid optical deflector and method for fabricating the same TWI391710B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97134604A TWI391710B (en) 2008-02-01 2008-09-09 Liquid optical deflector and method for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW97103938 2008-02-01
TW97134604A TWI391710B (en) 2008-02-01 2008-09-09 Liquid optical deflector and method for fabricating the same

Publications (2)

Publication Number Publication Date
TW200935093A true TW200935093A (en) 2009-08-16
TWI391710B TWI391710B (en) 2013-04-01

Family

ID=44866480

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97134604A TWI391710B (en) 2008-02-01 2008-09-09 Liquid optical deflector and method for fabricating the same

Country Status (1)

Country Link
TW (1) TWI391710B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325944C (en) * 2002-12-03 2007-07-11 皇家飞利浦电子股份有限公司 Apparatus for forming variable fluid meniscus configurations
WO2005093489A2 (en) * 2004-03-24 2005-10-06 Koninklijke Philips Electronics N.V. Birefringent optical system

Also Published As

Publication number Publication date
TWI391710B (en) 2013-04-01

Similar Documents

Publication Publication Date Title
JP4610561B2 (en) Display device
KR101520200B1 (en) Electrowetting optical element
US8780435B2 (en) Electrowetting display device and method of manufacturing the same
JP6084663B2 (en) Electrophoretic display device
KR101962963B1 (en) Electrowetting display device
TWI431320B (en) Electrically switchable light modulating cells and methods for manufacturing the same, light modulating devices and methods for manufacturing the same, three-dimensional image display devices, and image display systems
KR101967472B1 (en) Electrowetting display and method of manufacturing the same
US8416503B2 (en) Electrowetting device
US8885261B2 (en) Optical element array, method of forming optical element array, display device and electronic apparatus
JP2007293349A (en) Liquid lens with curved contact surface
TW200933193A (en) Electrowetting display having controlled fluid motion
US9019589B2 (en) Electrowetting device
WO2018157650A1 (en) Liquid crystal lens, manufacturing method therefor, and display device
JP4594378B2 (en) Electrowetting display element
US8922893B2 (en) Optical element, method of forming optical element, optical element array, display device, and electronic apparatus
US20120073740A1 (en) Method for Making an Electrowetting Device
TW200912428A (en) Display device driven by electric field and method for manufacturing the same
TW200935093A (en) Liquid optical deflector and method for fabricating the same
US9585277B2 (en) Through connection of a display device
US20150085342A1 (en) Electrowetting element
NL2010578C2 (en) Electrowetting optical element.
CN102419474B (en) Manufacture method of electrowetting element with hydrophobic retaining wall
KR20080035252A (en) Liquid lens making focal point in 3-dimensional space
WO2009100584A1 (en) Liquid optical deflector and method for fabricating the same
TWI377368B (en) Thin film transistor substrate, fabricating method thereof, and electro-wetting display