TW200934649A - Composite micro-lens and composite micro-lens array - Google Patents

Composite micro-lens and composite micro-lens array

Info

Publication number
TW200934649A
TW200934649A TW97105384A TW97105384A TW200934649A TW 200934649 A TW200934649 A TW 200934649A TW 97105384 A TW97105384 A TW 97105384A TW 97105384 A TW97105384 A TW 97105384A TW 200934649 A TW200934649 A TW 200934649A
Authority
TW
Taiwan
Prior art keywords
plastic lens
layer
array
composite microlens
composite
Prior art date
Application number
TW97105384A
Other languages
Chinese (zh)
Other versions
TWI402162B (en
Inventor
Tai-Cherng Yu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97105384A priority Critical patent/TWI402162B/en
Publication of TW200934649A publication Critical patent/TW200934649A/en
Application granted granted Critical
Publication of TWI402162B publication Critical patent/TWI402162B/en

Links

Abstract

The present invention generally relates to a composite micro-lens including: a rigid light-transmissible layer having a first surface and an opposite second surface, a first plastic lens embossed on the first surface, and a second plastic lens embossed on the second surface. A material of the first plastic lens is different from the second plastic lens. The present invention also provides a composite micro-lens array which can be diced into a plurality of the above-mentioned composite micro-lenses. The present composite micro-lens is manufactured by wafer-level duplication process and thus could readily meet miniaturization and mass-production requirements.

Description

200934649 • 九、發明說明: • 【發明所屬之技術領域】 本發明涉及光學領域,尤其係一種利用晶圓級複製技 術製作之複合微透鏡及複合微透鏡陣列。 【先前技術】 目前應用於手機鏡頭模組中之光學元件,例如透鏡等 大都係採用射出成型方式來製作。然採用射出成型方式製 作之透鏡的厚度均係在0.3毫米(mm)以上,且鏡頭模組中 ❹之黑色Soma遮光片亦會存於一定之厚度。目前手機設計均 以輕薄短小為訴求,其要求手機鏡頭模組中之各光學元件 之厚度降低,整體厚度及尺寸大小要求亦越來越苛刻。然 而,先前之射出成型技術已快達到極致。 隨著光學複製技術之不斷發展,製作更小尺寸之光學 元件已成為可能。例如1/4波片及偏光片等奈米光學元件的 製作,具體可參見 Jian Jim Wang 於 the 14th Annual Wireless ^ and Optical Communications Conference (April 22-23, 2005) 上發表之 “Redefine Optical Device’s Integration and Manufacturing through Nano-Engineering” 一文。 【發明内容】 下面將以實施例說明一種複合微透鏡及一種複合微透 鏡陣列,其可滿足對光學元件之輕薄短小化需求。 一種複合微透鏡,其包括:一剛性透光層,具有一第 一表面及一與該第一表面相對之第二表面;一第一塑膠透 鏡,壓印形成於該第一表面上;一第二塑膠透鏡’壓印形 200934649 成於該第二表面上 質不同。 該第二塑膠透鏡與第一塑膠透鏡之材 進一步的,該剛性透光層之材f可選用玻璃或石英。 進一步的,該壓印方式可採用紫外光壓印。 、 該濾、光層 二表面與 進一步的,該複合微透鏡可包括一濾光層, 設置於該第一表面與該第一塑膠透鏡之間或該第 該第二塑膠透鏡之間。 〇 更進-步的’該複合微透鏡還可包括—抗反射層,該 抗反射層形成於該第-表面上或第二表面上、且與= 層分設於該剛性透光層之兩侧。 進一步的’該第-塑膠透鏡與第二塑膠透鏡 平凸透鏡或平凹透鏡。 j兩 進一步的’該複合微透鏡可包括—遽光層,該遽光層 熱壓成型於該第一塑膠透鏡之遠離該第一表面之一側或該 第二塑膠透鏡之遠離該第二表面之一侧。 © ϋ的’該複合微透鏡可包括—光圈層,該光圈層 臟該第一表面上、該第二表面上、該第一塑膠透鏡: 遠離該第一表面之一側或該第二塑膠透鏡之遠離該第二表 面之一側。 更進一步的 層0 該光圈層可為鉻(Cr)層或鋁(Α1)層等金屬 具有一第一表面及一與該第一表面相對之第二表面;一第 一塑膠透鏡陣列,壓印形成於該第—表面上,該第一塑膠 7 200934649 透鏡陣列包括複數個第一塑膠透鏡;以及一第二塑膠透鏡 陣列’壓印形成於該第二表面上,該第二塑膠透鏡陣列包 括複數個第二塑膠透鏡;該複數個第二塑膠透鏡分別和與 其對應之第一塑膠透鏡共光軸,該第二塑膠透鏡陣列與該 第一塑膠透鏡陣列之材質不同。該種複合微透鏡陣列可切 割成複數個前述複合微透鏡。 相對於先前技術’該第一塑膠透鏡與第二塑膠透鏡係 ❹採用壓印方式形成於剛性透光層上且第一及第二塑膠透鏡 之材質不同;該種結構及特性配置使得該種複合微透鏡適 於採用晶圓級複製技術製造且適於量產,從而可滿足目前 對光學元件之輕薄短小化需求。 【實施方式】 下面將結合附圖對本發明實施例作進一步之詳細說 明。 參見圖1,本發明實施例提供之複合微透鏡1〇〇,其包 ❿括·剛性透光層110、一第一塑膠透鏡13〇以及一第二塑 膠透鏡150。 一其中,剛性透光層110具有一第一表面112及一與第 表面112相對之第二表面114。剛性透光層ιι〇之材質可 、用玻璃或石英等可見光可穿透材料。剛性透光層ιι〇為 平板、,’。構。第一塑膠透鏡13〇壓印形成於剛性透光層 、第表面112,其為一平凸透鏡且其遠離第一表面1:L2之 透鏡表面為凸面。第二塑膠透鏡壓印形成於剛性透光 3 11〇之第一表面114,其為一平凸透鏡且其遠離第二表面 200934649 114之透鏡表面為凸面。該壓印方式可採用紫外光壓印 (Ultraviolet Embossing)等方式。第一塑膠透鏡130與第二 塑膠透鏡150可選用材料折射率位於14至ι.6範圍内之材 質製成;第一塑膠透鏡130與第二塑膠透鏡15〇之材質不 同。 本發明實施例提供第一及第二塑膠透鏡130、150並不 限於平凸透鏡以使得複合微透鏡1〇〇為一雙凸透鏡,其還 ❾可為如圖2至圖4所示之其他形狀配置。具體的,如圖2 所示,第一塑膠透鏡130及第二塑膠透鏡15〇均為一平凹 透鏡,從而使得複合微透鏡為一雙凹透鏡。如圖3所示, 第一塑膠透鏡130為一平凸透鏡,第二塑膠透鏡15〇為一 平凹透鏡’從而使得複合微透鏡為一凹凸透鏡。如圖4所 示,第一塑膠透鏡130為一平凹透鏡,第二塑膠透鏡150 為一平凸透鏡,從而使得複合微透鏡為一凹凸透鏡。 參見圖5,圖1所示之複合微透鏡100還可包括一濾光 ❹層120及一抗反射(Anti-Reflective)層140。濾光層120設 置,例如濺鍍(Sputter)形成於剛性透光層110之第一表面 112上且位於第一表面112與第一塑膠透鏡130之間,其可 為紅外戴止(Infrared Cut)滤光層、紅外導通(Infrared Pass) 濾光層或其他根據實際需要而設置之濾光結構。抗反射層 140設置,例如濺鍍形成於剛性透光層11〇之第二表面114 上且位於第二表面114與第二塑膠透鏡150之間’其與濾 光層120分設於剛性透光層11〇之兩側。 可理解的是,滤光層120與抗反射層140亦可互換位 200934649 置。進一步' 的 ’濾光層120還可設置’例如熱壓成型(Hot Embossing)私 | ;弟一塑膠透鏡130之遠離第一表面112之一側 (如圖6所示、 透鏡表面上或第二塑膠透鏡150之遠離第二 表面114之 . 〜一側之透鏡表面上;抗反射層140亦可設置, 例如熱壓成型於第一塑膠透鏡130之遠離第一表面112之 側之透鏡表面上或第二塑膠透鏡150之遠離第二表面114 之一侧之透鏡表面上。200934649 • IX. INSTRUCTIONS: • Technical Field of the Invention The present invention relates to the field of optics, and more particularly to a composite microlens and composite microlens array fabricated using wafer level replication techniques. [Prior Art] Optical components currently used in mobile phone lens modules, such as lenses, are mostly produced by injection molding. However, the thickness of the lens produced by the injection molding method is 0.3 mm or more, and the black Soma light shielding film in the lens module is also deposited to a certain thickness. At present, mobile phone designs are all demanding in terms of lightness and thinness. They require that the thickness of each optical component in the lens module of the mobile phone be reduced, and the overall thickness and size requirements are becoming more and more demanding. However, previous injection molding techniques have reached their limits. As optical replication technology continues to evolve, it has become possible to fabricate optical components of smaller dimensions. For example, the fabrication of nano-optical components such as 1/4 wave plates and polarizers can be found in "Redefine Optical Device's Integration and by Jian Jim Wang at the 14th Annual Wireless ^ and Optical Communications Conference (April 22-23, 2005). Manufacturing through Nano-Engineering" article. SUMMARY OF THE INVENTION A composite microlens and a composite microlens array are described below by way of example, which can meet the requirements for lightness and thinness of optical components. A composite microlens comprising: a rigid light transmissive layer having a first surface and a second surface opposite the first surface; a first plastic lens embossed on the first surface; The second plastic lens 'embossed shape 200934649' has a different quality on the second surface. The second plastic lens and the material of the first plastic lens. Further, the material f of the rigid light transmissive layer may be glass or quartz. Further, the imprinting method may employ ultraviolet embossing. The composite microlens may further include a filter layer disposed between the first surface and the first plastic lens or between the second plastic lens. The composite microlens may further include an anti-reflection layer formed on the first surface or the second surface, and the = layer is disposed on the rigid transparent layer side. Further, the first plastic lens and the second plastic lens are plano-convex lenses or plano-concave lenses. The two further 'the composite microlens may include a calendering layer, the calendering layer is thermoformed on a side of the first plastic lens away from the first surface or the second plastic lens is away from the second surface One side. The composite microlens of ϋ may include an aperture layer, the aperture layer being dirty on the first surface, the second surface, the first plastic lens: away from the side of the first surface or the second plastic lens It is away from one side of the second surface. Further layer 0, the aperture layer may be a metal such as a chromium (Cr) layer or an aluminum (Α1) layer having a first surface and a second surface opposite to the first surface; a first plastic lens array, imprinted Formed on the first surface, the first plastic 7 200934649 lens array includes a plurality of first plastic lenses; and a second plastic lens array 'embossed on the second surface, the second plastic lens array includes a plurality a second plastic lens; the plurality of second plastic lenses respectively have a common optical axis corresponding to the first plastic lens, and the second plastic lens array is different from the material of the first plastic lens array. The composite microlens array can be cut into a plurality of the aforementioned composite microlenses. Compared with the prior art, the first plastic lens and the second plastic lens system are formed on the rigid transparent layer by imprinting, and the materials of the first and second plastic lenses are different; the structure and characteristic configuration make the composite The microlens is suitable for fabrication by wafer level replication technology and is suitable for mass production, thereby meeting the current demand for thin and light optical components. [Embodiment] Hereinafter, embodiments of the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1, a composite microlens 1A according to an embodiment of the present invention includes a rigid light transmissive layer 110, a first plastic lens 13A, and a second plastic lens 150. The rigid light transmissive layer 110 has a first surface 112 and a second surface 114 opposite the first surface 112. The material of the rigid light-transmissive layer ιι〇 can be made of visible light permeable material such as glass or quartz. The rigid light-transmissive layer ιι is a flat plate, '. Structure. The first plastic lens 13 is formed on the rigid light transmissive layer, the first surface 112, which is a plano-convex lens and has a convex surface away from the first surface 1: L2. The second plastic lens is embossed on the first surface 114 of the rigid light transmission 3 11 , which is a plano-convex lens and the lens surface away from the second surface 200934649 114 is convex. The embossing method can be by ultraviolet embossing (Ultraviolet Embossing) or the like. The first plastic lens 130 and the second plastic lens 150 may be made of a material having a refractive index of 14 to ι.6; the first plastic lens 130 and the second plastic lens 15 are different in material. The embodiment of the present invention provides that the first and second plastic lenses 130, 150 are not limited to the plano-convex lens, so that the composite microlens 1 is a lenticular lens, and the other shapes may be configured as shown in FIG. 2 to FIG. . Specifically, as shown in FIG. 2, the first plastic lens 130 and the second plastic lens 15 are both a plano-concave lens, so that the composite microlens is a double concave lens. As shown in FIG. 3, the first plastic lens 130 is a plano-convex lens, and the second plastic lens 15 is a flat-concave lens ′ such that the composite microlens is a meniscus lens. As shown in FIG. 4, the first plastic lens 130 is a plano-concave lens, and the second plastic lens 150 is a plano-convex lens, so that the composite microlens is a meniscus lens. Referring to FIG. 5, the composite microlens 100 shown in FIG. 1 may further include a filter layer 120 and an anti-Reflective layer 140. The filter layer 120 is disposed, for example, sputtered on the first surface 112 of the rigid light transmissive layer 110 and located between the first surface 112 and the first plastic lens 130, which may be an infrared cut (Infrared Cut) Filter layer, infrared pass filter or other filter structure set according to actual needs. The anti-reflective layer 140 is disposed, for example, sputtered on the second surface 114 of the rigid transparent layer 11 且 and between the second surface 114 and the second plastic lens 150. Layer 11 is on both sides. It can be understood that the filter layer 120 and the anti-reflection layer 140 can also be interchanged. The further 'filter layer 120' may also be provided with, for example, Hot Embossing Private; a side of the plastic lens 130 away from the first surface 112 (as shown in Figure 6, on the lens surface or second) The anti-reflective layer 140 may be disposed on the surface of the lens of the first plastic lens 130 away from the first surface 112 or The second plastic lens 150 is on the surface of the lens away from one side of the second surface 114.

蒼見圖7,圖5所示之複合微透鏡100還可進一步包括 一光圈層16〇。光圈層ι6〇可設置,例如濺鍍形成於第一表 面112與第一塑膠透鏡13〇之間、第二表面114與第二塑 膠透鏡150之間、第一塑膠透鏡130之遠離第一表面112 之一側之透鏡表面上或第二塑膠透鏡150之遠離第二表面 114之一側之透鏡表面上。本實施例中,光圈層160設置於 第一表面112與第一塑膠透鏡130之間;更具體的,光圈 層160係設置於濾光層120與第一塑膠透鏡130之間,其 〇具有一通光孔(圖中未標示)。光圈層160之厚度可設置為1 至2微米(# m)。光圈層160可為鉻(Cr)層、鋁(A1)層或其 他合適之金屬層’用以阻擋雜散光。 需要說明的是,本實施例中之複合微透鏡100可根據 實際需要選擇性地設置濾光層120、抗反射層140及光圈層 160中之一個或多個。 參見圖8及圖9,下面將簡要描述圖1所示複合微透鏡 100之一種製作方法,該製作方法可包括以下步驟: 首先,提供一剛性透光層11,其具有—第一表面102 200934649 • 及一與第一表面102相對之第二表面104;利用紫外光壓印 方式(Ultraviolet Embossing)於剛性透光層11上形成一第一 塑膠透鏡陣列13(如圖8所示)。具體的,剛性透光層11為 一平板結構,於剛性透光層11之第一表面102上提供一紫 外光可固化聚合物(UV curable polymer),將一壓模,例如 壓印面形成有預設圖案之PDMS(Polydimethylsiloxane)壓 模壓制於該紫外光可固化聚合物上,並利用紫外光從壓模 之相對于其壓印面之另一側照射該紫外光可固化聚合物, 〇 從而可於剛性透光層11形成一第一塑膠透鏡陣列13。該第 一塑膠透鏡陣列13包括複數個第一塑膠透鏡130。 接著,於剛性透光層11之第二表面104上以紫外光壓 印方式形成一第二塑膠透鏡陣列15,從而可得到一複合微 透鏡陣列10(如圖9所示);第二塑膠透鏡陣列15之材質與 第一塑膠透鏡陣列13之材質不同。第二塑膠透鏡陣列15 包括複數個第二塑膠透鏡150,且該複數個第二塑膠透鏡 φ 150分別和與其對應之第一塑膠透鏡130共光轴00’。 然後,沿圖9所示之切割線Μ對複合微透鏡陣列10 進行切割(Dicing),從而可得到複數個如圖1所示之複合微 透鏡100。 參見圖10,為得到複數個如圖5所示之複合微透鏡 100,可於形成第一塑膠透鏡陣列13及第二塑膠透鏡陣列 15之前,於剛性透光層11上之第一表面102及第二表面 104上分別形成,例如濺鍍一濾光層12及一抗反射層14。 可理解的是,濾光層12可於第一塑膠透鏡陣列13及第二 11 200934649 塑膠透鏡陣列15形成之後再形成於第一塑膠透鏡陣列13 * 之遠離第一表面102之一側或第二塑膠透鏡陣列15之遠離 第二表面104之一側。同樣的,抗反射層14亦可形成於第 一塑膠透鏡陣列13之遠離第一表面102之一側或第二塑膠 透鏡陣列15之遠離第二表面104之一側。 參見圖11,為得到複數個如圖7所示之複合微透鏡, 可於濾光層12形成之後且第一塑膠透鏡陣列13形成之 A前,再濺鍍形成一光圈層16。可理解的是,光圈層16可於 〇 第一塑膠透鏡陣列13及第二塑膠透鏡陣列15形成之後再 經由熱壓成型(Hot Embossing)於第一塑膠透鏡陣列13之遠 離第一表面102之一侧或第二塑膠透鏡陣列15之遠離第二 表面104之一側。 需要指明的是,本實施例中之複合微透鏡陣列1〇可根 據實際需要選擇性地設置濾光層12、抗反射層14及光圈層 16中之一個或多個。 ❾ 另外,本發明實施例中之第一塑膠透鏡130、第二塑膠 透鏡150、第一塑膠透鏡陣列13及第二塑膠透鏡陣列15 並不限於紫外光壓印成型,其還可採用其他壓印方式’例 如熱壓印方式等。當採用熱壓印方式成型時’較佳者’第 一塑膠透鏡130與第二塑膠透鏡150之玻璃化溫度(Glass transition temperature)不同,第’塑膠透鏡陣列I]與弟一 塑膠透鏡陣列15之玻璃化溫度(Glass transition temperatuire) 不同。 綜上所述,本發明確已符合發明專利之要件,遂依法 12 200934649 提出專利申請。惟,以上所述者僅為本發明之較佳實施方 式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修掷或變化,皆 應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 、圖1係本發明實施例提供之一種複合微透鏡之結構剖 視圖。 〇 圖2係本發明實施例提供 剖視圖 圖 剖視圖 3係本發明實施例提供之再一種複合微透鏡之結相 〇 圖4係本發明實施例提供之又—種凹凸複合微透鏡之 結構剖視圖。 反射1心複合微透鏡進—步包括㈣光層及技 反射層之結構剖視圖。 0塑膠^係、,圖所示複合微透鏡中之遽光層設置於第一 夕,兄之退離第一表面之一側之結構剖視圖。 圖7係圖5所示複合微透鏡進一步包 構剖視圖。 〆匕括有先圈層之結 圖8係本發明實施例提供一 印形成一楚—_ _ 叫氐边先層之一側壓 』膠透鏡陣列之結構剖視圖。 =9係於圖8所示剛性透光層之相對之另 構剖視圖。鏡陣列後而得到一種複合微透鏡陣列之結 13 200934649 圖10係圖9所示複合微透鏡陣列進一步包括有濾光層 ' 及抗反射層之結構剖視圖。 圖11係圖10所示複合微透鏡陣列進一步包括有光圈 層之結構剖視圖。 【主要元件符號說明】 複合微透鏡陣列 10 剛性透光層 11 、 110 第一塑膠透鏡陣列 13 第二塑膠透鏡陣列 15 濾光層 12 、 120 抗反射層 14 、 140 光圈層 16 、 160 複合微透鏡 100 第一表面 102 , 112 第二表面 104 , 114 ^第一塑膠透鏡 130 第二塑膠透鏡 150 OCT 光轴 Μ 切割線 14As shown in Fig. 7, the composite microlens 100 shown in Fig. 5 may further include an aperture layer 16A. The aperture layer ι6 〇 can be disposed, for example, the sputtering is formed between the first surface 112 and the first plastic lens 13 , between the second surface 114 and the second plastic lens 150 , and the first plastic lens 130 is away from the first surface 112 . On one of the lens surfaces or on the lens surface of the second plastic lens 150 away from the side of the second surface 114. In this embodiment, the aperture layer 160 is disposed between the first surface 112 and the first plastic lens 130. More specifically, the aperture layer 160 is disposed between the filter layer 120 and the first plastic lens 130, and has a pass. Light hole (not shown). The thickness of the aperture layer 160 can be set to 1 to 2 micrometers (# m). The aperture layer 160 can be a chromium (Cr) layer, an aluminum (A1) layer, or other suitable metal layer ' to block stray light. It should be noted that the composite microlens 100 in this embodiment can selectively provide one or more of the filter layer 120, the anti-reflection layer 140, and the aperture layer 160 according to actual needs. Referring to FIG. 8 and FIG. 9, a method for fabricating the composite microlens 100 of FIG. 1 will be briefly described below. The manufacturing method may include the following steps: First, a rigid light transmissive layer 11 having a first surface 102 200934649 is provided. And a second surface 104 opposite to the first surface 102; a first plastic lens array 13 (shown in FIG. 8) is formed on the rigid light transmissive layer 11 by ultraviolet embossing (Ultraviolet Embossing). Specifically, the rigid transparent layer 11 is a flat plate structure, and a UV curable polymer is provided on the first surface 102 of the rigid transparent layer 11 to form a stamper, such as a stamping surface. a patterned PDMS (Polydimethylsiloxane) stamper is pressed onto the ultraviolet curable polymer, and the ultraviolet curable polymer is irradiated from the other side of the stamper relative to the embossed surface thereof by ultraviolet light, thereby being The rigid light transmissive layer 11 forms a first plastic lens array 13. The first plastic lens array 13 includes a plurality of first plastic lenses 130. Then, a second plastic lens array 15 is formed on the second surface 104 of the rigid transparent layer 11 by ultraviolet embossing, so that a composite microlens array 10 (shown in FIG. 9) can be obtained; the second plastic lens The material of the array 15 is different from the material of the first plastic lens array 13. The second plastic lens array 15 includes a plurality of second plastic lenses 150, and the plurality of second plastic lenses φ 150 and the first plastic lens 130 corresponding thereto have a common optical axis 00'. Then, the composite microlens array 10 is cut along the cutting line 图 shown in Fig. 9, so that a plurality of composite microlenses 100 as shown in Fig. 1 can be obtained. Referring to FIG. 10, in order to obtain a plurality of composite microlenses 100 as shown in FIG. 5, before forming the first plastic lens array 13 and the second plastic lens array 15, the first surface 102 on the rigid transparent layer 11 and The second surface 104 is formed, for example, by sputtering a filter layer 12 and an anti-reflection layer 14. It can be understood that the filter layer 12 can be formed on the side of the first plastic lens array 13 * away from the first surface 102 or the second after the first plastic lens array 13 and the second 11 200934649 plastic lens array 15 are formed. The plastic lens array 15 is away from one side of the second surface 104. Similarly, the anti-reflection layer 14 may be formed on one side of the first plastic lens array 13 away from the first surface 102 or on the side of the second plastic lens array 15 away from the second surface 104. Referring to Fig. 11, in order to obtain a plurality of composite microlenses as shown in Fig. 7, an aperture layer 16 may be formed by sputtering after the formation of the filter layer 12 and before the formation of the first plastic lens array 13. It can be understood that the aperture layer 16 can be formed by hot stamping on one of the first plastic lens arrays 13 away from the first surface 102 after the first plastic lens array 13 and the second plastic lens array 15 are formed. The side of the side or second plastic lens array 15 is away from one side of the second surface 104. It should be noted that the composite microlens array 1 in the present embodiment can selectively provide one or more of the filter layer 12, the anti-reflection layer 14, and the aperture layer 16 according to actual needs. In addition, the first plastic lens 130, the second plastic lens 150, the first plastic lens array 13, and the second plastic lens array 15 in the embodiment of the present invention are not limited to ultraviolet embossing, and other embossing may be adopted. The method 'such as hot stamping method, etc. When the hot stamping method is used, the 'first plastic lens 130' and the second plastic lens 150 have different glass transition temperatures, and the 'plastic lens array I' and the plastic lens array 15 The glass transition temperature (Glass transition temperatuire) is different. In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law 12 200934649. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing the structure of a composite microlens according to an embodiment of the present invention. 2 is a cross-sectional view showing a phase of a composite microlens according to an embodiment of the present invention. FIG. 4 is a cross-sectional view showing a structure of a concavo-convex composite microlens according to an embodiment of the present invention. The reflective 1-core composite microlens further comprises a structural cross-sectional view of the (four) optical layer and the technical reflective layer. 0 plastic ^ system, the composite microlens shown in the figure is set on the first eve, the structural view of the brother retreating from one side of the first surface. Figure 7 is a cross-sectional view showing a further configuration of the composite microlens shown in Figure 5. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 = 9 is an opposite cross-sectional view of the rigid light transmissive layer shown in Fig. 8. After the mirror array is obtained, a composite microlens array is obtained. 13 200934649 FIG. 10 is a structural cross-sectional view of the composite microlens array shown in FIG. 9 further including a filter layer 'and an anti-reflection layer. Figure 11 is a cross-sectional view showing the structure of the composite microlens array of Figure 10 further including a diaphragm layer. [Main component symbol description] Composite microlens array 10 rigid light transmissive layer 11, 110 first plastic lens array 13 second plastic lens array 15 filter layer 12, 120 antireflection layer 14, 140 aperture layer 16, 160 composite microlens 100 first surface 102, 112 second surface 104, 114^first plastic lens 130 second plastic lens 150 OCT optical axis 切割 cutting line 14

Claims (1)

200934649 十、申請專利範圍: 'l一種複合微透鏡,其包括: 7剛性透光層,具有-第-表面及-與該第-表面相對之 苐二表面; ,塑膠透鏡,壓印形成於該第一表面上;以及 -第二塑膠透鏡,壓印形成於該第二表面上,該第二塑膠 透鏡與該第一塑膠透鏡之材質不同。 ❹·如申π專利範圍第1項所述之複合微透鏡,其中該剛性透 光層之材質為玻璃或石英。 3.如申請專_圍第i項所述之複合微透鏡,其中該第一及 第二塑膠透鏡分別係採用紫外光壓印形成該第一表面及第 -表面上0 4’如申請專鄕圍$ i項所述之複合微透鏡,其巾該複合微 透鏡還包括一渡光層,該濾光層設置於該第-表面與該第 塑膠透鏡之間或該第二表面與該第二塑膠透鏡之間。 ❹5’如申請專利範圍第1項所述之複合微透鏡,其中該複合微 透鏡進:步包括一抗反射層’該抗反射層形成於該第一表 面上或第二表面上、且與該濾光層分設於該剛性透光層之 兩側。 曰 6.如申請專利㈣第1項所述之複合微透鏡,其中該複合微 透鏡還包括一渡光層,該遽光層熱壓成型於該第—塑膠透 鏡之遇離該第一表面之一侧或該第二塑膠透鏡之遠離該第 一表面之一側。 7·如申請專利範圍第4或6項所述之複合微透鏡,其中該濾 15 200934649 光層為紅外戴至濾光層或紅外導通濾光層。 8·如u利|&圍第i項所述之複合微透鏡,其中該第一塑 膠透鏡及第二塑膠透鏡為平凸透鏡或平凹透鏡。 9.如申料利範圍第i項所述之複合微透鏡,其中該複合微 透鏡進一步包括一光圈層,該光圈層形成於該第—表面與 3第望膠透鏡之間、該第二表面與該第二塑膠透鏡之200934649 X. Patent application scope: '1 A composite microlens, comprising: 7 rigid light transmissive layer having a -first surface and a second surface opposite to the first surface; a plastic lens formed by the embossing And a second plastic lens formed on the second surface, the second plastic lens being different from the material of the first plastic lens. The composite microlens according to the first aspect of the invention, wherein the rigid light-transmitting layer is made of glass or quartz. 3. The composite microlens according to the above-mentioned item, wherein the first and second plastic lenses are respectively formed by ultraviolet embossing to form the first surface and the first surface of the first surface. The composite microlens of the item ii, wherein the composite microlens further comprises a light absorbing layer disposed between the first surface and the first plastic lens or the second surface and the second Between plastic lenses. The composite microlens of claim 1, wherein the composite microlens further comprises an anti-reflection layer formed on the first surface or the second surface, and The filter layer is disposed on both sides of the rigid light transmissive layer. The composite microlens of claim 1, wherein the composite microlens further comprises a light-passing layer, the calendering layer being thermoformed on the first surface of the first plastic lens One side or the second plastic lens is away from one side of the first surface. 7. The composite microlens of claim 4, wherein the filter layer is an infrared light-absorbing layer or an infrared-conducting filter layer. The composite microlens of the above-mentioned item i, wherein the first plastic lens and the second plastic lens are plano-convex lenses or plano-concave lenses. 9. The composite microlens of claim i, wherein the composite microlens further comprises an aperture layer formed between the first surface and the third lookout lens, the second surface And the second plastic lens 間、該第-塑膠透鏡之遠離該第—表面之—側或該第二塑 膠透鏡之遠離該第二表面之一側。 9項所述之複合微透鏡,其中該光圈 10.如申請專利範圍第 層為鉻層或|g層。 U·一種複合微透鏡陣列,其包括: 剛性透光層’具有一第一表面及一與該第一表面相對4 弟二表面; 一第-塑膠透鏡陣列,壓印形成於該第—表面上,該第— 塑膠透鏡陣列包括複數個第-塑膠透鏡;以及 ❹-^二塑膠透鏡陣列,壓印形成於該第二表面上,該第二 塑膠透鏡陣列包括複數個第:塑膠透鏡;該複數個第二! 膠透鏡分別和與其對應之第-塑朦透鏡共光軸,該第二! 膠透鏡陣列與該第一塑膠透鏡陣列之材質不同。 如/申請專利範圍第u項所述之複合微透鏡陣列,其中言 硬合微透鏡陣列還包括-濾光層,該濾光層設置於該第一 2與該第-塑膠透鏡陣列之間或該第二表面與該第二多 修透鏡陣列之間。 3.如申叫專利範圍第11項所述之複合微透鏡陣列,其中言 16 200934649 複合微透鏡陣列進一步包括一抗反射層,該抗反射層形成 *於該第一表面上或第二表面上、且與該濾光層分設二該剛 性透光層之兩側。 X 14.如申請專利範圍第u項所述之複合微透鏡陣列,其中該 複合微透鏡陣列還包括一濾光層,該渡光層熱壓成型於气 第一塑膠透鏡陣列之遠離該第一表面之一側或該第二塑= 透鏡陣列之遠離該第二表面之一侧。 > ❹如申請專利範圍第11項所述之複合微透鏡陣列,其中該 第一塑膠透鏡及第二塑膠透鏡為平凸透鏡或平凹透鏡。 16.如申明專利範圍第u項所述之複合微透鏡陣列,其中該 複σ微透鏡陣列進_步包括一金屬光圈層,該金屬光圈層 形成於該第一表面上、該第二表面上、該第一塑膠透鏡陣 歹1j之遠離今笛 士 Μ弟一表面之一侧或該第二塑膠透鏡陣列之遠離 該第二表面之一侧。 ❹ 17The side of the first plastic lens away from the first surface or the side of the second plastic lens away from the second surface. The composite microlens of item 9, wherein the aperture 10. is a chromium layer or a |g layer as in the patent application. U. A composite microlens array, comprising: a rigid light transmissive layer 'having a first surface and a surface opposite to the first surface; a first plastic lens array formed on the first surface The first plastic lens array includes a plurality of first plastic lenses; and a second plastic lens array is formed on the second surface, the second plastic lens array includes a plurality of: plastic lenses; Second! The glue lens and its corresponding first-plastic lens share the optical axis, the second! The glue lens array is different from the material of the first plastic lens array. The composite microlens array of claim 5, wherein the hard microlens array further comprises a filter layer disposed between the first 2 and the first plastic lens array or The second surface is between the second plurality of lens arrays. 3. The composite microlens array of claim 11, wherein the composite microlens array further comprises an anti-reflection layer formed on the first surface or the second surface And separating the two sides of the rigid light transmitting layer from the filter layer. The composite microlens array of claim 5, wherein the composite microlens array further comprises a filter layer, the light-passing layer is thermoformed on the gas first plastic lens array away from the first One side of the surface or the second plastic lens array is away from one side of the second surface. The composite microlens array of claim 11, wherein the first plastic lens and the second plastic lens are plano-convex lenses or plano-concave lenses. 16. The composite microlens array of claim 5, wherein the complex sigma microlens array further comprises a metal aperture layer formed on the first surface and on the second surface The first plastic lens array 1j is away from one side of a surface of the present Descartes or the side of the second plastic lens array is away from the side of the second surface. ❹ 17
TW97105384A 2008-02-15 2008-02-15 Composite micro-lens and composite micro-lens array TWI402162B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97105384A TWI402162B (en) 2008-02-15 2008-02-15 Composite micro-lens and composite micro-lens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97105384A TWI402162B (en) 2008-02-15 2008-02-15 Composite micro-lens and composite micro-lens array

Publications (2)

Publication Number Publication Date
TW200934649A true TW200934649A (en) 2009-08-16
TWI402162B TWI402162B (en) 2013-07-21

Family

ID=44866329

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97105384A TWI402162B (en) 2008-02-15 2008-02-15 Composite micro-lens and composite micro-lens array

Country Status (1)

Country Link
TW (1) TWI402162B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8547648B2 (en) 2010-09-24 2013-10-01 Himax Semiconductor, Inc. Micro-lens module
TWI451118B (en) * 2009-10-06 2014-09-01 Sony Corp Optical unit and camera device
TWI468762B (en) * 2011-09-29 2015-01-11 Sharp Kk Laminated wafer lens method for fabricating the same, and multilayered lens
TWI476438B (en) * 2010-09-30 2015-03-11 Himax Semiconductor Inc Micro-lens module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445772C (en) * 2004-03-06 2008-12-24 鸿富锦精密工业(深圳)有限公司 Translucent element structure and process for making same
CN2763819Y (en) * 2004-12-17 2006-03-08 鸿富锦精密工业(深圳)有限公司 Composite lens
CN100462740C (en) * 2005-04-06 2009-02-18 鸿富锦精密工业(深圳)有限公司 Composite lens manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451118B (en) * 2009-10-06 2014-09-01 Sony Corp Optical unit and camera device
US8547648B2 (en) 2010-09-24 2013-10-01 Himax Semiconductor, Inc. Micro-lens module
TWI476438B (en) * 2010-09-30 2015-03-11 Himax Semiconductor Inc Micro-lens module
TWI468762B (en) * 2011-09-29 2015-01-11 Sharp Kk Laminated wafer lens method for fabricating the same, and multilayered lens

Also Published As

Publication number Publication date
TWI402162B (en) 2013-07-21

Similar Documents

Publication Publication Date Title
JP5024047B2 (en) Manufacturing method of microstructure
US7336423B2 (en) Hybrid lens
JP2008508545A (en) Camera module, array based on the same, and manufacturing method thereof
JP5580207B2 (en) Wafer scale package and manufacturing method thereof, and optical device and manufacturing method thereof
US7760445B2 (en) Compound lens and compound lens array
CN101846757A (en) Micro lens and micro lens array
CN101354447A (en) Optical element
JP2009028952A (en) Method for manufacturing optical element
TWI607247B (en) Optical element and its manufacturing method
TWI402162B (en) Composite micro-lens and composite micro-lens array
US7889310B2 (en) Method for producing apertures in a diffuse reflector layer having a metal reflection film
CN112327391A (en) Preparation method of micro-lens array, micro-lens array and under-screen fingerprint module
US8154794B2 (en) Imaging lens and method of manufacturing the same
JP3547467B2 (en) Micro lens array and method of manufacturing the same
JP2007283581A (en) Manufacturing process of structural body having finely rugged surface
CN110426761B (en) Cycloolefin copolymer micro-lens array with metal diaphragm and preparation method thereof
TWI396923B (en) Miniature camera module and method for making same
JP4820871B2 (en) Antireflection structure and manufacturing method thereof
JP2000298202A (en) Ir-ray lens
TWI695991B (en) Lens structure composed of materials with different refractive indexes
TWI695992B (en) Lens structure composed of materials with different refractive indexes
KR100820349B1 (en) Method for manufacturing microlens array device
US10175462B2 (en) Wafer level lens system and method of fabricating the same
CN217932148U (en) Optical article
TW201942626A (en) Lens structure formed by materials in different refractive indexes

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees